1 // Copyright Jim Bosch 2010-2012.
2 // Copyright Stefan Seefeld 2016.
3 // Distributed under the Boost Software License, Version 1.0.
4 // (See accompanying file LICENSE_1_0.txt or copy at
5 // http://www.boost.org/LICENSE_1_0.txt)
6
7 #ifndef boost_python_numpy_ndarray_hpp_
8 #define boost_python_numpy_ndarray_hpp_
9
10 /**
11 * @brief Object manager and various utilities for numpy.ndarray.
12 */
13
14 #include <boost/python.hpp>
15 #include <boost/utility/enable_if.hpp>
16 #include <boost/python/detail/type_traits.hpp>
17 #include <boost/python/numpy/numpy_object_mgr_traits.hpp>
18 #include <boost/python/numpy/dtype.hpp>
19 #include <boost/python/numpy/config.hpp>
20
21 #include <vector>
22
23 namespace boost { namespace python { namespace numpy {
24
25 /**
26 * @brief A boost.python "object manager" (subclass of object) for numpy.ndarray.
27 *
28 * @todo This could have a lot more functionality (like boost::python::numeric::array).
29 * Right now all that exists is what was needed to move raw data between C++ and Python.
30 */
31
32 class BOOST_NUMPY_DECL ndarray : public object
33 {
34
35 /**
36 * @brief An internal struct that's byte-compatible with PyArrayObject.
37 *
38 * This is just a hack to allow inline access to this stuff while hiding numpy/arrayobject.h
39 * from the user.
40 */
41 struct array_struct
42 {
43 PyObject_HEAD
44 char * data;
45 int nd;
46 Py_intptr_t * shape;
47 Py_intptr_t * strides;
48 PyObject * base;
49 PyObject * descr;
50 int flags;
51 PyObject * weakreflist;
52 };
53
54 /// @brief Return the held Python object as an array_struct.
get_struct() const55 array_struct * get_struct() const { return reinterpret_cast<array_struct*>(this->ptr()); }
56
57 public:
58
59 /**
60 * @brief Enum to represent (some) of Numpy's internal flags.
61 *
62 * These don't match the actual Numpy flag values; we can't get those without including
63 * numpy/arrayobject.h or copying them directly. That's very unfortunate.
64 *
65 * @todo I'm torn about whether this should be an enum. It's very convenient to not
66 * make these simple integer values for overloading purposes, but the need to
67 * define every possible combination and custom bitwise operators is ugly.
68 */
69 enum bitflag
70 {
71 NONE=0x0, C_CONTIGUOUS=0x1, F_CONTIGUOUS=0x2, V_CONTIGUOUS=0x1|0x2,
72 ALIGNED=0x4, WRITEABLE=0x8, BEHAVED=0x4|0x8,
73 CARRAY_RO=0x1|0x4, CARRAY=0x1|0x4|0x8, CARRAY_MIS=0x1|0x8,
74 FARRAY_RO=0x2|0x4, FARRAY=0x2|0x4|0x8, FARRAY_MIS=0x2|0x8,
75 UPDATE_ALL=0x1|0x2|0x4, VARRAY=0x1|0x2|0x8, ALL=0x1|0x2|0x4|0x8
76 };
77
78 BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(ndarray, object);
79
80 /// @brief Return a view of the scalar with the given dtype.
81 ndarray view(dtype const & dt) const;
82
83 /// @brief Copy the array, cast to a specified type.
84 ndarray astype(dtype const & dt) const;
85
86 /// @brief Copy the scalar (deep for all non-object fields).
87 ndarray copy() const;
88
89 /// @brief Return the size of the nth dimension. raises IndexError if k not in [-get_nd() : get_nd()-1 ]
90 Py_intptr_t shape(int n) const;
91
92 /// @brief Return the stride of the nth dimension. raises IndexError if k not in [-get_nd() : get_nd()-1]
93 Py_intptr_t strides(int n) const;
94
95 /**
96 * @brief Return the array's raw data pointer.
97 *
98 * This returns char so stride math works properly on it. It's pretty much
99 * expected that the user will have to reinterpret_cast it.
100 */
get_data() const101 char * get_data() const { return get_struct()->data; }
102
103 /// @brief Return the array's data-type descriptor object.
104 dtype get_dtype() const;
105
106 /// @brief Return the object that owns the array's data, or None if the array owns its own data.
107 object get_base() const;
108
109 /// @brief Set the object that owns the array's data. Use with care.
110 void set_base(object const & base);
111
112 /// @brief Return the shape of the array as an array of integers (length == get_nd()).
get_shape() const113 Py_intptr_t const * get_shape() const { return get_struct()->shape; }
114
115 /// @brief Return the stride of the array as an array of integers (length == get_nd()).
get_strides() const116 Py_intptr_t const * get_strides() const { return get_struct()->strides; }
117
118 /// @brief Return the number of array dimensions.
get_nd() const119 int get_nd() const { return get_struct()->nd; }
120
121 /// @brief Return the array flags.
122 bitflag get_flags() const;
123
124 /// @brief Reverse the dimensions of the array.
125 ndarray transpose() const;
126
127 /// @brief Eliminate any unit-sized dimensions.
128 ndarray squeeze() const;
129
130 /// @brief Equivalent to self.reshape(*shape) in Python.
131 ndarray reshape(python::tuple const & shape) const;
132
133 /**
134 * @brief If the array contains only a single element, return it as an array scalar; otherwise return
135 * the array.
136 *
137 * @internal This is simply a call to PyArray_Return();
138 */
139 object scalarize() const;
140 };
141
142 /**
143 * @brief Construct a new array with the given shape and data type, with data initialized to zero.
144 */
145 BOOST_NUMPY_DECL ndarray zeros(python::tuple const & shape, dtype const & dt);
146 BOOST_NUMPY_DECL ndarray zeros(int nd, Py_intptr_t const * shape, dtype const & dt);
147
148 /**
149 * @brief Construct a new array with the given shape and data type, with data left uninitialized.
150 */
151 BOOST_NUMPY_DECL ndarray empty(python::tuple const & shape, dtype const & dt);
152 BOOST_NUMPY_DECL ndarray empty(int nd, Py_intptr_t const * shape, dtype const & dt);
153
154 /**
155 * @brief Construct a new array from an arbitrary Python sequence.
156 *
157 * @todo This does't seem to handle ndarray subtypes the same way that "numpy.array" does in Python.
158 */
159 BOOST_NUMPY_DECL ndarray array(object const & obj);
160 BOOST_NUMPY_DECL ndarray array(object const & obj, dtype const & dt);
161
162 namespace detail
163 {
164
165 BOOST_NUMPY_DECL ndarray from_data_impl(void * data,
166 dtype const & dt,
167 std::vector<Py_intptr_t> const & shape,
168 std::vector<Py_intptr_t> const & strides,
169 object const & owner,
170 bool writeable);
171
172 template <typename Container>
from_data_impl(void * data,dtype const & dt,Container shape,Container strides,object const & owner,bool writeable,typename boost::enable_if<boost::python::detail::is_integral<typename Container::value_type>>::type * enabled=NULL)173 ndarray from_data_impl(void * data,
174 dtype const & dt,
175 Container shape,
176 Container strides,
177 object const & owner,
178 bool writeable,
179 typename boost::enable_if< boost::python::detail::is_integral<typename Container::value_type> >::type * enabled = NULL)
180 {
181 std::vector<Py_intptr_t> shape_(shape.begin(),shape.end());
182 std::vector<Py_intptr_t> strides_(strides.begin(), strides.end());
183 return from_data_impl(data, dt, shape_, strides_, owner, writeable);
184 }
185
186 BOOST_NUMPY_DECL ndarray from_data_impl(void * data,
187 dtype const & dt,
188 object const & shape,
189 object const & strides,
190 object const & owner,
191 bool writeable);
192
193 } // namespace boost::python::numpy::detail
194
195 /**
196 * @brief Construct a new ndarray object from a raw pointer.
197 *
198 * @param[in] data Raw pointer to the first element of the array.
199 * @param[in] dt Data type descriptor. Often retrieved with dtype::get_builtin().
200 * @param[in] shape Shape of the array as STL container of integers; must have begin() and end().
201 * @param[in] strides Shape of the array as STL container of integers; must have begin() and end().
202 * @param[in] owner An arbitray Python object that owns that data pointer. The array object will
203 * keep a reference to the object, and decrement it's reference count when the
204 * array goes out of scope. Pass None at your own peril.
205 *
206 * @todo Should probably take ranges of iterators rather than actual container objects.
207 */
208 template <typename Container>
from_data(void * data,dtype const & dt,Container shape,Container strides,python::object const & owner)209 inline ndarray from_data(void * data,
210 dtype const & dt,
211 Container shape,
212 Container strides,
213 python::object const & owner)
214 {
215 return numpy::detail::from_data_impl(data, dt, shape, strides, owner, true);
216 }
217
218 /**
219 * @brief Construct a new ndarray object from a raw pointer.
220 *
221 * @param[in] data Raw pointer to the first element of the array.
222 * @param[in] dt Data type descriptor. Often retrieved with dtype::get_builtin().
223 * @param[in] shape Shape of the array as STL container of integers; must have begin() and end().
224 * @param[in] strides Shape of the array as STL container of integers; must have begin() and end().
225 * @param[in] owner An arbitray Python object that owns that data pointer. The array object will
226 * keep a reference to the object, and decrement it's reference count when the
227 * array goes out of scope. Pass None at your own peril.
228 *
229 * This overload takes a const void pointer and sets the "writeable" flag of the array to false.
230 *
231 * @todo Should probably take ranges of iterators rather than actual container objects.
232 */
233 template <typename Container>
from_data(void const * data,dtype const & dt,Container shape,Container strides,python::object const & owner)234 inline ndarray from_data(void const * data,
235 dtype const & dt,
236 Container shape,
237 Container strides,
238 python::object const & owner)
239 {
240 return numpy::detail::from_data_impl(const_cast<void*>(data), dt, shape, strides, owner, false);
241 }
242
243 /**
244 * @brief Transform an arbitrary object into a numpy array with the given requirements.
245 *
246 * @param[in] obj An arbitrary python object to convert. Arrays that meet the requirements
247 * will be passed through directly.
248 * @param[in] dt Data type descriptor. Often retrieved with dtype::get_builtin().
249 * @param[in] nd_min Minimum number of dimensions.
250 * @param[in] nd_max Maximum number of dimensions.
251 * @param[in] flags Bitwise OR of flags specifying additional requirements.
252 */
253 BOOST_NUMPY_DECL ndarray from_object(object const & obj,
254 dtype const & dt,
255 int nd_min,
256 int nd_max,
257 ndarray::bitflag flags=ndarray::NONE);
258
from_object(object const & obj,dtype const & dt,int nd,ndarray::bitflag flags=ndarray::NONE)259 BOOST_NUMPY_DECL inline ndarray from_object(object const & obj,
260 dtype const & dt,
261 int nd,
262 ndarray::bitflag flags=ndarray::NONE)
263 {
264 return from_object(obj, dt, nd, nd, flags);
265 }
266
from_object(object const & obj,dtype const & dt,ndarray::bitflag flags=ndarray::NONE)267 BOOST_NUMPY_DECL inline ndarray from_object(object const & obj,
268 dtype const & dt,
269 ndarray::bitflag flags=ndarray::NONE)
270 {
271 return from_object(obj, dt, 0, 0, flags);
272 }
273
274 BOOST_NUMPY_DECL ndarray from_object(object const & obj,
275 int nd_min,
276 int nd_max,
277 ndarray::bitflag flags=ndarray::NONE);
278
from_object(object const & obj,int nd,ndarray::bitflag flags=ndarray::NONE)279 BOOST_NUMPY_DECL inline ndarray from_object(object const & obj,
280 int nd,
281 ndarray::bitflag flags=ndarray::NONE)
282 {
283 return from_object(obj, nd, nd, flags);
284 }
285
from_object(object const & obj,ndarray::bitflag flags=ndarray::NONE)286 BOOST_NUMPY_DECL inline ndarray from_object(object const & obj,
287 ndarray::bitflag flags=ndarray::NONE)
288 {
289 return from_object(obj, 0, 0, flags);
290 }
291
operator |(ndarray::bitflag a,ndarray::bitflag b)292 BOOST_NUMPY_DECL inline ndarray::bitflag operator|(ndarray::bitflag a,
293 ndarray::bitflag b)
294 {
295 return ndarray::bitflag(int(a) | int(b));
296 }
297
operator &(ndarray::bitflag a,ndarray::bitflag b)298 BOOST_NUMPY_DECL inline ndarray::bitflag operator&(ndarray::bitflag a,
299 ndarray::bitflag b)
300 {
301 return ndarray::bitflag(int(a) & int(b));
302 }
303
304 } // namespace boost::python::numpy
305
306 namespace converter
307 {
308
309 NUMPY_OBJECT_MANAGER_TRAITS(numpy::ndarray);
310
311 }}} // namespace boost::python::converter
312
313 #endif
314