1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * S390 version
4 * Copyright IBM Corp. 1999, 2000
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (weigand@de.ibm.com)
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 *
9 * Derived from "include/asm-i386/pgtable.h"
10 */
11
12 #ifndef _ASM_S390_PGTABLE_H
13 #define _ASM_S390_PGTABLE_H
14
15 #include <linux/sched.h>
16 #include <linux/mm_types.h>
17 #include <linux/page-flags.h>
18 #include <linux/radix-tree.h>
19 #include <linux/atomic.h>
20 #include <asm/bug.h>
21 #include <asm/page.h>
22 #include <asm/uv.h>
23
24 extern pgd_t swapper_pg_dir[];
25 extern void paging_init(void);
26
27 enum {
28 PG_DIRECT_MAP_4K = 0,
29 PG_DIRECT_MAP_1M,
30 PG_DIRECT_MAP_2G,
31 PG_DIRECT_MAP_MAX
32 };
33
34 extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
35
update_page_count(int level,long count)36 static inline void update_page_count(int level, long count)
37 {
38 if (IS_ENABLED(CONFIG_PROC_FS))
39 atomic_long_add(count, &direct_pages_count[level]);
40 }
41
42 struct seq_file;
43 void arch_report_meminfo(struct seq_file *m);
44
45 /*
46 * The S390 doesn't have any external MMU info: the kernel page
47 * tables contain all the necessary information.
48 */
49 #define update_mmu_cache(vma, address, ptep) do { } while (0)
50 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
51
52 /*
53 * ZERO_PAGE is a global shared page that is always zero; used
54 * for zero-mapped memory areas etc..
55 */
56
57 extern unsigned long empty_zero_page;
58 extern unsigned long zero_page_mask;
59
60 #define ZERO_PAGE(vaddr) \
61 (virt_to_page((void *)(empty_zero_page + \
62 (((unsigned long)(vaddr)) &zero_page_mask))))
63 #define __HAVE_COLOR_ZERO_PAGE
64
65 /* TODO: s390 cannot support io_remap_pfn_range... */
66
67 #define FIRST_USER_ADDRESS 0UL
68
69 #define pte_ERROR(e) \
70 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
71 #define pmd_ERROR(e) \
72 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
73 #define pud_ERROR(e) \
74 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
75 #define p4d_ERROR(e) \
76 printk("%s:%d: bad p4d %p.\n", __FILE__, __LINE__, (void *) p4d_val(e))
77 #define pgd_ERROR(e) \
78 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
79
80 /*
81 * The vmalloc and module area will always be on the topmost area of the
82 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
83 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
84 * modules will reside. That makes sure that inter module branches always
85 * happen without trampolines and in addition the placement within a 2GB frame
86 * is branch prediction unit friendly.
87 */
88 extern unsigned long VMALLOC_START;
89 extern unsigned long VMALLOC_END;
90 #define VMALLOC_DEFAULT_SIZE ((128UL << 30) - MODULES_LEN)
91 extern struct page *vmemmap;
92 extern unsigned long vmemmap_size;
93
94 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
95
96 extern unsigned long MODULES_VADDR;
97 extern unsigned long MODULES_END;
98 #define MODULES_VADDR MODULES_VADDR
99 #define MODULES_END MODULES_END
100 #define MODULES_LEN (1UL << 31)
101
is_module_addr(void * addr)102 static inline int is_module_addr(void *addr)
103 {
104 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
105 if (addr < (void *)MODULES_VADDR)
106 return 0;
107 if (addr > (void *)MODULES_END)
108 return 0;
109 return 1;
110 }
111
112 /*
113 * A 64 bit pagetable entry of S390 has following format:
114 * | PFRA |0IPC| OS |
115 * 0000000000111111111122222222223333333333444444444455555555556666
116 * 0123456789012345678901234567890123456789012345678901234567890123
117 *
118 * I Page-Invalid Bit: Page is not available for address-translation
119 * P Page-Protection Bit: Store access not possible for page
120 * C Change-bit override: HW is not required to set change bit
121 *
122 * A 64 bit segmenttable entry of S390 has following format:
123 * | P-table origin | TT
124 * 0000000000111111111122222222223333333333444444444455555555556666
125 * 0123456789012345678901234567890123456789012345678901234567890123
126 *
127 * I Segment-Invalid Bit: Segment is not available for address-translation
128 * C Common-Segment Bit: Segment is not private (PoP 3-30)
129 * P Page-Protection Bit: Store access not possible for page
130 * TT Type 00
131 *
132 * A 64 bit region table entry of S390 has following format:
133 * | S-table origin | TF TTTL
134 * 0000000000111111111122222222223333333333444444444455555555556666
135 * 0123456789012345678901234567890123456789012345678901234567890123
136 *
137 * I Segment-Invalid Bit: Segment is not available for address-translation
138 * TT Type 01
139 * TF
140 * TL Table length
141 *
142 * The 64 bit regiontable origin of S390 has following format:
143 * | region table origon | DTTL
144 * 0000000000111111111122222222223333333333444444444455555555556666
145 * 0123456789012345678901234567890123456789012345678901234567890123
146 *
147 * X Space-Switch event:
148 * G Segment-Invalid Bit:
149 * P Private-Space Bit:
150 * S Storage-Alteration:
151 * R Real space
152 * TL Table-Length:
153 *
154 * A storage key has the following format:
155 * | ACC |F|R|C|0|
156 * 0 3 4 5 6 7
157 * ACC: access key
158 * F : fetch protection bit
159 * R : referenced bit
160 * C : changed bit
161 */
162
163 /* Hardware bits in the page table entry */
164 #define _PAGE_NOEXEC 0x100 /* HW no-execute bit */
165 #define _PAGE_PROTECT 0x200 /* HW read-only bit */
166 #define _PAGE_INVALID 0x400 /* HW invalid bit */
167 #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
168
169 /* Software bits in the page table entry */
170 #define _PAGE_PRESENT 0x001 /* SW pte present bit */
171 #define _PAGE_YOUNG 0x004 /* SW pte young bit */
172 #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
173 #define _PAGE_READ 0x010 /* SW pte read bit */
174 #define _PAGE_WRITE 0x020 /* SW pte write bit */
175 #define _PAGE_SPECIAL 0x040 /* SW associated with special page */
176 #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
177
178 #ifdef CONFIG_MEM_SOFT_DIRTY
179 #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
180 #else
181 #define _PAGE_SOFT_DIRTY 0x000
182 #endif
183
184 /* Set of bits not changed in pte_modify */
185 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
186 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
187
188 /*
189 * handle_pte_fault uses pte_present and pte_none to find out the pte type
190 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
191 * distinguish present from not-present ptes. It is changed only with the page
192 * table lock held.
193 *
194 * The following table gives the different possible bit combinations for
195 * the pte hardware and software bits in the last 12 bits of a pte
196 * (. unassigned bit, x don't care, t swap type):
197 *
198 * 842100000000
199 * 000084210000
200 * 000000008421
201 * .IR.uswrdy.p
202 * empty .10.00000000
203 * swap .11..ttttt.0
204 * prot-none, clean, old .11.xx0000.1
205 * prot-none, clean, young .11.xx0001.1
206 * prot-none, dirty, old .11.xx0010.1
207 * prot-none, dirty, young .11.xx0011.1
208 * read-only, clean, old .11.xx0100.1
209 * read-only, clean, young .01.xx0101.1
210 * read-only, dirty, old .11.xx0110.1
211 * read-only, dirty, young .01.xx0111.1
212 * read-write, clean, old .11.xx1100.1
213 * read-write, clean, young .01.xx1101.1
214 * read-write, dirty, old .10.xx1110.1
215 * read-write, dirty, young .00.xx1111.1
216 * HW-bits: R read-only, I invalid
217 * SW-bits: p present, y young, d dirty, r read, w write, s special,
218 * u unused, l large
219 *
220 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
221 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
222 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
223 */
224
225 /* Bits in the segment/region table address-space-control-element */
226 #define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */
227 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
228 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
229 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
230 #define _ASCE_REAL_SPACE 0x20 /* real space control */
231 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
232 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
233 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
234 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
235 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
236 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
237
238 /* Bits in the region table entry */
239 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
240 #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
241 #define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */
242 #define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
243 #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
244 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region table type mask */
245 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
246 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
247 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
248 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
249
250 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
251 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
252 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
253 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
254 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
255 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
256
257 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
258 #define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
259 #define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
260 #define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
261 #define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
262 #define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
263
264 #ifdef CONFIG_MEM_SOFT_DIRTY
265 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
266 #else
267 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
268 #endif
269
270 #define _REGION_ENTRY_BITS 0xfffffffffffff22fUL
271
272 /* Bits in the segment table entry */
273 #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
274 #define _SEGMENT_ENTRY_HARDWARE_BITS 0xfffffffffffffe30UL
275 #define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE 0xfffffffffff00730UL
276 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
277 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */
278 #define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */
279 #define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */
280 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
281 #define _SEGMENT_ENTRY_TYPE_MASK 0x0c /* segment table type mask */
282
283 #define _SEGMENT_ENTRY (0)
284 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
285
286 #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
287 #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
288 #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
289 #define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
290 #define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
291
292 #ifdef CONFIG_MEM_SOFT_DIRTY
293 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
294 #else
295 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
296 #endif
297
298 #define _CRST_ENTRIES 2048 /* number of region/segment table entries */
299 #define _PAGE_ENTRIES 256 /* number of page table entries */
300
301 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
302 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
303
304 #define _REGION1_SHIFT 53
305 #define _REGION2_SHIFT 42
306 #define _REGION3_SHIFT 31
307 #define _SEGMENT_SHIFT 20
308
309 #define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT)
310 #define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT)
311 #define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT)
312 #define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT)
313 #define _PAGE_INDEX (0xffUL << _PAGE_SHIFT)
314
315 #define _REGION1_SIZE (1UL << _REGION1_SHIFT)
316 #define _REGION2_SIZE (1UL << _REGION2_SHIFT)
317 #define _REGION3_SIZE (1UL << _REGION3_SHIFT)
318 #define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT)
319
320 #define _REGION1_MASK (~(_REGION1_SIZE - 1))
321 #define _REGION2_MASK (~(_REGION2_SIZE - 1))
322 #define _REGION3_MASK (~(_REGION3_SIZE - 1))
323 #define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1))
324
325 #define PMD_SHIFT _SEGMENT_SHIFT
326 #define PUD_SHIFT _REGION3_SHIFT
327 #define P4D_SHIFT _REGION2_SHIFT
328 #define PGDIR_SHIFT _REGION1_SHIFT
329
330 #define PMD_SIZE _SEGMENT_SIZE
331 #define PUD_SIZE _REGION3_SIZE
332 #define P4D_SIZE _REGION2_SIZE
333 #define PGDIR_SIZE _REGION1_SIZE
334
335 #define PMD_MASK _SEGMENT_MASK
336 #define PUD_MASK _REGION3_MASK
337 #define P4D_MASK _REGION2_MASK
338 #define PGDIR_MASK _REGION1_MASK
339
340 #define PTRS_PER_PTE _PAGE_ENTRIES
341 #define PTRS_PER_PMD _CRST_ENTRIES
342 #define PTRS_PER_PUD _CRST_ENTRIES
343 #define PTRS_PER_P4D _CRST_ENTRIES
344 #define PTRS_PER_PGD _CRST_ENTRIES
345
346 #define MAX_PTRS_PER_P4D PTRS_PER_P4D
347
348 /*
349 * Segment table and region3 table entry encoding
350 * (R = read-only, I = invalid, y = young bit):
351 * dy..R...I...wr
352 * prot-none, clean, old 00..1...1...00
353 * prot-none, clean, young 01..1...1...00
354 * prot-none, dirty, old 10..1...1...00
355 * prot-none, dirty, young 11..1...1...00
356 * read-only, clean, old 00..1...1...01
357 * read-only, clean, young 01..1...0...01
358 * read-only, dirty, old 10..1...1...01
359 * read-only, dirty, young 11..1...0...01
360 * read-write, clean, old 00..1...1...11
361 * read-write, clean, young 01..1...0...11
362 * read-write, dirty, old 10..0...1...11
363 * read-write, dirty, young 11..0...0...11
364 * The segment table origin is used to distinguish empty (origin==0) from
365 * read-write, old segment table entries (origin!=0)
366 * HW-bits: R read-only, I invalid
367 * SW-bits: y young, d dirty, r read, w write
368 */
369
370 /* Page status table bits for virtualization */
371 #define PGSTE_ACC_BITS 0xf000000000000000UL
372 #define PGSTE_FP_BIT 0x0800000000000000UL
373 #define PGSTE_PCL_BIT 0x0080000000000000UL
374 #define PGSTE_HR_BIT 0x0040000000000000UL
375 #define PGSTE_HC_BIT 0x0020000000000000UL
376 #define PGSTE_GR_BIT 0x0004000000000000UL
377 #define PGSTE_GC_BIT 0x0002000000000000UL
378 #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
379 #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
380 #define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
381
382 /* Guest Page State used for virtualization */
383 #define _PGSTE_GPS_ZERO 0x0000000080000000UL
384 #define _PGSTE_GPS_NODAT 0x0000000040000000UL
385 #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
386 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
387 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
388 #define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL
389 #define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK
390
391 /*
392 * A user page table pointer has the space-switch-event bit, the
393 * private-space-control bit and the storage-alteration-event-control
394 * bit set. A kernel page table pointer doesn't need them.
395 */
396 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
397 _ASCE_ALT_EVENT)
398
399 /*
400 * Page protection definitions.
401 */
402 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
403 #define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \
404 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
405 #define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \
406 _PAGE_INVALID | _PAGE_PROTECT)
407 #define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
408 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
409 #define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
410 _PAGE_INVALID | _PAGE_PROTECT)
411
412 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
413 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
414 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
415 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
416 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
417 _PAGE_PROTECT | _PAGE_NOEXEC)
418 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
419 _PAGE_YOUNG | _PAGE_DIRTY)
420
421 /*
422 * On s390 the page table entry has an invalid bit and a read-only bit.
423 * Read permission implies execute permission and write permission
424 * implies read permission.
425 */
426 /*xwr*/
427 #define __P000 PAGE_NONE
428 #define __P001 PAGE_RO
429 #define __P010 PAGE_RO
430 #define __P011 PAGE_RO
431 #define __P100 PAGE_RX
432 #define __P101 PAGE_RX
433 #define __P110 PAGE_RX
434 #define __P111 PAGE_RX
435
436 #define __S000 PAGE_NONE
437 #define __S001 PAGE_RO
438 #define __S010 PAGE_RW
439 #define __S011 PAGE_RW
440 #define __S100 PAGE_RX
441 #define __S101 PAGE_RX
442 #define __S110 PAGE_RWX
443 #define __S111 PAGE_RWX
444
445 /*
446 * Segment entry (large page) protection definitions.
447 */
448 #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
449 _SEGMENT_ENTRY_PROTECT)
450 #define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \
451 _SEGMENT_ENTRY_READ | \
452 _SEGMENT_ENTRY_NOEXEC)
453 #define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \
454 _SEGMENT_ENTRY_READ)
455 #define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \
456 _SEGMENT_ENTRY_WRITE | \
457 _SEGMENT_ENTRY_NOEXEC)
458 #define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \
459 _SEGMENT_ENTRY_WRITE)
460 #define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
461 _SEGMENT_ENTRY_LARGE | \
462 _SEGMENT_ENTRY_READ | \
463 _SEGMENT_ENTRY_WRITE | \
464 _SEGMENT_ENTRY_YOUNG | \
465 _SEGMENT_ENTRY_DIRTY | \
466 _SEGMENT_ENTRY_NOEXEC)
467 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
468 _SEGMENT_ENTRY_LARGE | \
469 _SEGMENT_ENTRY_READ | \
470 _SEGMENT_ENTRY_YOUNG | \
471 _SEGMENT_ENTRY_PROTECT | \
472 _SEGMENT_ENTRY_NOEXEC)
473 #define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY | \
474 _SEGMENT_ENTRY_LARGE | \
475 _SEGMENT_ENTRY_READ | \
476 _SEGMENT_ENTRY_WRITE | \
477 _SEGMENT_ENTRY_YOUNG | \
478 _SEGMENT_ENTRY_DIRTY)
479
480 /*
481 * Region3 entry (large page) protection definitions.
482 */
483
484 #define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
485 _REGION3_ENTRY_LARGE | \
486 _REGION3_ENTRY_READ | \
487 _REGION3_ENTRY_WRITE | \
488 _REGION3_ENTRY_YOUNG | \
489 _REGION3_ENTRY_DIRTY | \
490 _REGION_ENTRY_NOEXEC)
491 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
492 _REGION3_ENTRY_LARGE | \
493 _REGION3_ENTRY_READ | \
494 _REGION3_ENTRY_YOUNG | \
495 _REGION_ENTRY_PROTECT | \
496 _REGION_ENTRY_NOEXEC)
497
mm_p4d_folded(struct mm_struct * mm)498 static inline bool mm_p4d_folded(struct mm_struct *mm)
499 {
500 return mm->context.asce_limit <= _REGION1_SIZE;
501 }
502 #define mm_p4d_folded(mm) mm_p4d_folded(mm)
503
mm_pud_folded(struct mm_struct * mm)504 static inline bool mm_pud_folded(struct mm_struct *mm)
505 {
506 return mm->context.asce_limit <= _REGION2_SIZE;
507 }
508 #define mm_pud_folded(mm) mm_pud_folded(mm)
509
mm_pmd_folded(struct mm_struct * mm)510 static inline bool mm_pmd_folded(struct mm_struct *mm)
511 {
512 return mm->context.asce_limit <= _REGION3_SIZE;
513 }
514 #define mm_pmd_folded(mm) mm_pmd_folded(mm)
515
mm_has_pgste(struct mm_struct * mm)516 static inline int mm_has_pgste(struct mm_struct *mm)
517 {
518 #ifdef CONFIG_PGSTE
519 if (unlikely(mm->context.has_pgste))
520 return 1;
521 #endif
522 return 0;
523 }
524
mm_is_protected(struct mm_struct * mm)525 static inline int mm_is_protected(struct mm_struct *mm)
526 {
527 #ifdef CONFIG_PGSTE
528 if (unlikely(atomic_read(&mm->context.is_protected)))
529 return 1;
530 #endif
531 return 0;
532 }
533
mm_alloc_pgste(struct mm_struct * mm)534 static inline int mm_alloc_pgste(struct mm_struct *mm)
535 {
536 #ifdef CONFIG_PGSTE
537 if (unlikely(mm->context.alloc_pgste))
538 return 1;
539 #endif
540 return 0;
541 }
542
543 /*
544 * In the case that a guest uses storage keys
545 * faults should no longer be backed by zero pages
546 */
547 #define mm_forbids_zeropage mm_has_pgste
mm_uses_skeys(struct mm_struct * mm)548 static inline int mm_uses_skeys(struct mm_struct *mm)
549 {
550 #ifdef CONFIG_PGSTE
551 if (mm->context.uses_skeys)
552 return 1;
553 #endif
554 return 0;
555 }
556
csp(unsigned int * ptr,unsigned int old,unsigned int new)557 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
558 {
559 register unsigned long reg2 asm("2") = old;
560 register unsigned long reg3 asm("3") = new;
561 unsigned long address = (unsigned long)ptr | 1;
562
563 asm volatile(
564 " csp %0,%3"
565 : "+d" (reg2), "+m" (*ptr)
566 : "d" (reg3), "d" (address)
567 : "cc");
568 }
569
cspg(unsigned long * ptr,unsigned long old,unsigned long new)570 static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
571 {
572 register unsigned long reg2 asm("2") = old;
573 register unsigned long reg3 asm("3") = new;
574 unsigned long address = (unsigned long)ptr | 1;
575
576 asm volatile(
577 " .insn rre,0xb98a0000,%0,%3"
578 : "+d" (reg2), "+m" (*ptr)
579 : "d" (reg3), "d" (address)
580 : "cc");
581 }
582
583 #define CRDTE_DTT_PAGE 0x00UL
584 #define CRDTE_DTT_SEGMENT 0x10UL
585 #define CRDTE_DTT_REGION3 0x14UL
586 #define CRDTE_DTT_REGION2 0x18UL
587 #define CRDTE_DTT_REGION1 0x1cUL
588
crdte(unsigned long old,unsigned long new,unsigned long table,unsigned long dtt,unsigned long address,unsigned long asce)589 static inline void crdte(unsigned long old, unsigned long new,
590 unsigned long table, unsigned long dtt,
591 unsigned long address, unsigned long asce)
592 {
593 register unsigned long reg2 asm("2") = old;
594 register unsigned long reg3 asm("3") = new;
595 register unsigned long reg4 asm("4") = table | dtt;
596 register unsigned long reg5 asm("5") = address;
597
598 asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
599 : "+d" (reg2)
600 : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
601 : "memory", "cc");
602 }
603
604 /*
605 * pgd/p4d/pud/pmd/pte query functions
606 */
pgd_folded(pgd_t pgd)607 static inline int pgd_folded(pgd_t pgd)
608 {
609 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
610 }
611
pgd_present(pgd_t pgd)612 static inline int pgd_present(pgd_t pgd)
613 {
614 if (pgd_folded(pgd))
615 return 1;
616 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
617 }
618
pgd_none(pgd_t pgd)619 static inline int pgd_none(pgd_t pgd)
620 {
621 if (pgd_folded(pgd))
622 return 0;
623 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
624 }
625
pgd_bad(pgd_t pgd)626 static inline int pgd_bad(pgd_t pgd)
627 {
628 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
629 return 0;
630 return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
631 }
632
pgd_pfn(pgd_t pgd)633 static inline unsigned long pgd_pfn(pgd_t pgd)
634 {
635 unsigned long origin_mask;
636
637 origin_mask = _REGION_ENTRY_ORIGIN;
638 return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
639 }
640
p4d_folded(p4d_t p4d)641 static inline int p4d_folded(p4d_t p4d)
642 {
643 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
644 }
645
p4d_present(p4d_t p4d)646 static inline int p4d_present(p4d_t p4d)
647 {
648 if (p4d_folded(p4d))
649 return 1;
650 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
651 }
652
p4d_none(p4d_t p4d)653 static inline int p4d_none(p4d_t p4d)
654 {
655 if (p4d_folded(p4d))
656 return 0;
657 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
658 }
659
p4d_pfn(p4d_t p4d)660 static inline unsigned long p4d_pfn(p4d_t p4d)
661 {
662 unsigned long origin_mask;
663
664 origin_mask = _REGION_ENTRY_ORIGIN;
665 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
666 }
667
pud_folded(pud_t pud)668 static inline int pud_folded(pud_t pud)
669 {
670 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
671 }
672
pud_present(pud_t pud)673 static inline int pud_present(pud_t pud)
674 {
675 if (pud_folded(pud))
676 return 1;
677 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
678 }
679
pud_none(pud_t pud)680 static inline int pud_none(pud_t pud)
681 {
682 if (pud_folded(pud))
683 return 0;
684 return pud_val(pud) == _REGION3_ENTRY_EMPTY;
685 }
686
687 #define pud_leaf pud_large
pud_large(pud_t pud)688 static inline int pud_large(pud_t pud)
689 {
690 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
691 return 0;
692 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
693 }
694
695 #define pmd_leaf pmd_large
pmd_large(pmd_t pmd)696 static inline int pmd_large(pmd_t pmd)
697 {
698 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
699 }
700
pmd_bad(pmd_t pmd)701 static inline int pmd_bad(pmd_t pmd)
702 {
703 if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_large(pmd))
704 return 1;
705 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
706 }
707
pud_bad(pud_t pud)708 static inline int pud_bad(pud_t pud)
709 {
710 unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
711
712 if (type > _REGION_ENTRY_TYPE_R3 || pud_large(pud))
713 return 1;
714 if (type < _REGION_ENTRY_TYPE_R3)
715 return 0;
716 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
717 }
718
p4d_bad(p4d_t p4d)719 static inline int p4d_bad(p4d_t p4d)
720 {
721 unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
722
723 if (type > _REGION_ENTRY_TYPE_R2)
724 return 1;
725 if (type < _REGION_ENTRY_TYPE_R2)
726 return 0;
727 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
728 }
729
pmd_present(pmd_t pmd)730 static inline int pmd_present(pmd_t pmd)
731 {
732 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
733 }
734
pmd_none(pmd_t pmd)735 static inline int pmd_none(pmd_t pmd)
736 {
737 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
738 }
739
740 #define pmd_write pmd_write
pmd_write(pmd_t pmd)741 static inline int pmd_write(pmd_t pmd)
742 {
743 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
744 }
745
746 #define pud_write pud_write
pud_write(pud_t pud)747 static inline int pud_write(pud_t pud)
748 {
749 return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
750 }
751
pmd_dirty(pmd_t pmd)752 static inline int pmd_dirty(pmd_t pmd)
753 {
754 return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
755 }
756
pmd_young(pmd_t pmd)757 static inline int pmd_young(pmd_t pmd)
758 {
759 return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
760 }
761
pte_present(pte_t pte)762 static inline int pte_present(pte_t pte)
763 {
764 /* Bit pattern: (pte & 0x001) == 0x001 */
765 return (pte_val(pte) & _PAGE_PRESENT) != 0;
766 }
767
pte_none(pte_t pte)768 static inline int pte_none(pte_t pte)
769 {
770 /* Bit pattern: pte == 0x400 */
771 return pte_val(pte) == _PAGE_INVALID;
772 }
773
pte_swap(pte_t pte)774 static inline int pte_swap(pte_t pte)
775 {
776 /* Bit pattern: (pte & 0x201) == 0x200 */
777 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
778 == _PAGE_PROTECT;
779 }
780
pte_special(pte_t pte)781 static inline int pte_special(pte_t pte)
782 {
783 return (pte_val(pte) & _PAGE_SPECIAL);
784 }
785
786 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t a,pte_t b)787 static inline int pte_same(pte_t a, pte_t b)
788 {
789 return pte_val(a) == pte_val(b);
790 }
791
792 #ifdef CONFIG_NUMA_BALANCING
pte_protnone(pte_t pte)793 static inline int pte_protnone(pte_t pte)
794 {
795 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
796 }
797
pmd_protnone(pmd_t pmd)798 static inline int pmd_protnone(pmd_t pmd)
799 {
800 /* pmd_large(pmd) implies pmd_present(pmd) */
801 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
802 }
803 #endif
804
pte_soft_dirty(pte_t pte)805 static inline int pte_soft_dirty(pte_t pte)
806 {
807 return pte_val(pte) & _PAGE_SOFT_DIRTY;
808 }
809 #define pte_swp_soft_dirty pte_soft_dirty
810
pte_mksoft_dirty(pte_t pte)811 static inline pte_t pte_mksoft_dirty(pte_t pte)
812 {
813 pte_val(pte) |= _PAGE_SOFT_DIRTY;
814 return pte;
815 }
816 #define pte_swp_mksoft_dirty pte_mksoft_dirty
817
pte_clear_soft_dirty(pte_t pte)818 static inline pte_t pte_clear_soft_dirty(pte_t pte)
819 {
820 pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
821 return pte;
822 }
823 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
824
pmd_soft_dirty(pmd_t pmd)825 static inline int pmd_soft_dirty(pmd_t pmd)
826 {
827 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
828 }
829
pmd_mksoft_dirty(pmd_t pmd)830 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
831 {
832 pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
833 return pmd;
834 }
835
pmd_clear_soft_dirty(pmd_t pmd)836 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
837 {
838 pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
839 return pmd;
840 }
841
842 /*
843 * query functions pte_write/pte_dirty/pte_young only work if
844 * pte_present() is true. Undefined behaviour if not..
845 */
pte_write(pte_t pte)846 static inline int pte_write(pte_t pte)
847 {
848 return (pte_val(pte) & _PAGE_WRITE) != 0;
849 }
850
pte_dirty(pte_t pte)851 static inline int pte_dirty(pte_t pte)
852 {
853 return (pte_val(pte) & _PAGE_DIRTY) != 0;
854 }
855
pte_young(pte_t pte)856 static inline int pte_young(pte_t pte)
857 {
858 return (pte_val(pte) & _PAGE_YOUNG) != 0;
859 }
860
861 #define __HAVE_ARCH_PTE_UNUSED
pte_unused(pte_t pte)862 static inline int pte_unused(pte_t pte)
863 {
864 return pte_val(pte) & _PAGE_UNUSED;
865 }
866
867 /*
868 * Extract the pgprot value from the given pte while at the same time making it
869 * usable for kernel address space mappings where fault driven dirty and
870 * young/old accounting is not supported, i.e _PAGE_PROTECT and _PAGE_INVALID
871 * must not be set.
872 */
pte_pgprot(pte_t pte)873 static inline pgprot_t pte_pgprot(pte_t pte)
874 {
875 unsigned long pte_flags = pte_val(pte) & _PAGE_CHG_MASK;
876
877 if (pte_write(pte))
878 pte_flags |= pgprot_val(PAGE_KERNEL);
879 else
880 pte_flags |= pgprot_val(PAGE_KERNEL_RO);
881 pte_flags |= pte_val(pte) & mio_wb_bit_mask;
882
883 return __pgprot(pte_flags);
884 }
885
886 /*
887 * pgd/pmd/pte modification functions
888 */
889
pgd_clear(pgd_t * pgd)890 static inline void pgd_clear(pgd_t *pgd)
891 {
892 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
893 pgd_val(*pgd) = _REGION1_ENTRY_EMPTY;
894 }
895
p4d_clear(p4d_t * p4d)896 static inline void p4d_clear(p4d_t *p4d)
897 {
898 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
899 p4d_val(*p4d) = _REGION2_ENTRY_EMPTY;
900 }
901
pud_clear(pud_t * pud)902 static inline void pud_clear(pud_t *pud)
903 {
904 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
905 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
906 }
907
pmd_clear(pmd_t * pmdp)908 static inline void pmd_clear(pmd_t *pmdp)
909 {
910 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
911 }
912
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)913 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
914 {
915 pte_val(*ptep) = _PAGE_INVALID;
916 }
917
918 /*
919 * The following pte modification functions only work if
920 * pte_present() is true. Undefined behaviour if not..
921 */
pte_modify(pte_t pte,pgprot_t newprot)922 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
923 {
924 pte_val(pte) &= _PAGE_CHG_MASK;
925 pte_val(pte) |= pgprot_val(newprot);
926 /*
927 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
928 * has the invalid bit set, clear it again for readable, young pages
929 */
930 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
931 pte_val(pte) &= ~_PAGE_INVALID;
932 /*
933 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
934 * protection bit set, clear it again for writable, dirty pages
935 */
936 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
937 pte_val(pte) &= ~_PAGE_PROTECT;
938 return pte;
939 }
940
pte_wrprotect(pte_t pte)941 static inline pte_t pte_wrprotect(pte_t pte)
942 {
943 pte_val(pte) &= ~_PAGE_WRITE;
944 pte_val(pte) |= _PAGE_PROTECT;
945 return pte;
946 }
947
pte_mkwrite(pte_t pte)948 static inline pte_t pte_mkwrite(pte_t pte)
949 {
950 pte_val(pte) |= _PAGE_WRITE;
951 if (pte_val(pte) & _PAGE_DIRTY)
952 pte_val(pte) &= ~_PAGE_PROTECT;
953 return pte;
954 }
955
pte_mkclean(pte_t pte)956 static inline pte_t pte_mkclean(pte_t pte)
957 {
958 pte_val(pte) &= ~_PAGE_DIRTY;
959 pte_val(pte) |= _PAGE_PROTECT;
960 return pte;
961 }
962
pte_mkdirty(pte_t pte)963 static inline pte_t pte_mkdirty(pte_t pte)
964 {
965 pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
966 if (pte_val(pte) & _PAGE_WRITE)
967 pte_val(pte) &= ~_PAGE_PROTECT;
968 return pte;
969 }
970
pte_mkold(pte_t pte)971 static inline pte_t pte_mkold(pte_t pte)
972 {
973 pte_val(pte) &= ~_PAGE_YOUNG;
974 pte_val(pte) |= _PAGE_INVALID;
975 return pte;
976 }
977
pte_mkyoung(pte_t pte)978 static inline pte_t pte_mkyoung(pte_t pte)
979 {
980 pte_val(pte) |= _PAGE_YOUNG;
981 if (pte_val(pte) & _PAGE_READ)
982 pte_val(pte) &= ~_PAGE_INVALID;
983 return pte;
984 }
985
pte_mkspecial(pte_t pte)986 static inline pte_t pte_mkspecial(pte_t pte)
987 {
988 pte_val(pte) |= _PAGE_SPECIAL;
989 return pte;
990 }
991
992 #ifdef CONFIG_HUGETLB_PAGE
pte_mkhuge(pte_t pte)993 static inline pte_t pte_mkhuge(pte_t pte)
994 {
995 pte_val(pte) |= _PAGE_LARGE;
996 return pte;
997 }
998 #endif
999
1000 #define IPTE_GLOBAL 0
1001 #define IPTE_LOCAL 1
1002
1003 #define IPTE_NODAT 0x400
1004 #define IPTE_GUEST_ASCE 0x800
1005
__ptep_ipte(unsigned long address,pte_t * ptep,unsigned long opt,unsigned long asce,int local)1006 static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1007 unsigned long opt, unsigned long asce,
1008 int local)
1009 {
1010 unsigned long pto = (unsigned long) ptep;
1011
1012 if (__builtin_constant_p(opt) && opt == 0) {
1013 /* Invalidation + TLB flush for the pte */
1014 asm volatile(
1015 " .insn rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
1016 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1017 [m4] "i" (local));
1018 return;
1019 }
1020
1021 /* Invalidate ptes with options + TLB flush of the ptes */
1022 opt = opt | (asce & _ASCE_ORIGIN);
1023 asm volatile(
1024 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1025 : [r2] "+a" (address), [r3] "+a" (opt)
1026 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1027 }
1028
__ptep_ipte_range(unsigned long address,int nr,pte_t * ptep,int local)1029 static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1030 pte_t *ptep, int local)
1031 {
1032 unsigned long pto = (unsigned long) ptep;
1033
1034 /* Invalidate a range of ptes + TLB flush of the ptes */
1035 do {
1036 asm volatile(
1037 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1038 : [r2] "+a" (address), [r3] "+a" (nr)
1039 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1040 } while (nr != 255);
1041 }
1042
1043 /*
1044 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1045 * both clear the TLB for the unmapped pte. The reason is that
1046 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1047 * to modify an active pte. The sequence is
1048 * 1) ptep_get_and_clear
1049 * 2) set_pte_at
1050 * 3) flush_tlb_range
1051 * On s390 the tlb needs to get flushed with the modification of the pte
1052 * if the pte is active. The only way how this can be implemented is to
1053 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1054 * is a nop.
1055 */
1056 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1057 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1058
1059 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1060 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1061 unsigned long addr, pte_t *ptep)
1062 {
1063 pte_t pte = *ptep;
1064
1065 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1066 return pte_young(pte);
1067 }
1068
1069 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1070 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1071 unsigned long address, pte_t *ptep)
1072 {
1073 return ptep_test_and_clear_young(vma, address, ptep);
1074 }
1075
1076 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1077 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1078 unsigned long addr, pte_t *ptep)
1079 {
1080 pte_t res;
1081
1082 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1083 if (mm_is_protected(mm) && pte_present(res))
1084 uv_convert_from_secure(pte_val(res) & PAGE_MASK);
1085 return res;
1086 }
1087
1088 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1089 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1090 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1091 pte_t *, pte_t, pte_t);
1092
1093 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
ptep_clear_flush(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1094 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1095 unsigned long addr, pte_t *ptep)
1096 {
1097 pte_t res;
1098
1099 res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1100 if (mm_is_protected(vma->vm_mm) && pte_present(res))
1101 uv_convert_from_secure(pte_val(res) & PAGE_MASK);
1102 return res;
1103 }
1104
1105 /*
1106 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1107 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1108 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1109 * cannot be accessed while the batched unmap is running. In this case
1110 * full==1 and a simple pte_clear is enough. See tlb.h.
1111 */
1112 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long addr,pte_t * ptep,int full)1113 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1114 unsigned long addr,
1115 pte_t *ptep, int full)
1116 {
1117 pte_t res;
1118
1119 if (full) {
1120 res = *ptep;
1121 *ptep = __pte(_PAGE_INVALID);
1122 } else {
1123 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1124 }
1125 if (mm_is_protected(mm) && pte_present(res))
1126 uv_convert_from_secure(pte_val(res) & PAGE_MASK);
1127 return res;
1128 }
1129
1130 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1131 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1132 unsigned long addr, pte_t *ptep)
1133 {
1134 pte_t pte = *ptep;
1135
1136 if (pte_write(pte))
1137 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1138 }
1139
1140 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t entry,int dirty)1141 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1142 unsigned long addr, pte_t *ptep,
1143 pte_t entry, int dirty)
1144 {
1145 if (pte_same(*ptep, entry))
1146 return 0;
1147 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1148 return 1;
1149 }
1150
1151 /*
1152 * Additional functions to handle KVM guest page tables
1153 */
1154 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1155 pte_t *ptep, pte_t entry);
1156 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1157 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1158 pte_t *ptep, unsigned long bits);
1159 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1160 pte_t *ptep, int prot, unsigned long bit);
1161 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1162 pte_t *ptep , int reset);
1163 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1164 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1165 pte_t *sptep, pte_t *tptep, pte_t pte);
1166 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1167
1168 bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1169 pte_t *ptep);
1170 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1171 unsigned char key, bool nq);
1172 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1173 unsigned char key, unsigned char *oldkey,
1174 bool nq, bool mr, bool mc);
1175 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1176 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1177 unsigned char *key);
1178
1179 int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1180 unsigned long bits, unsigned long value);
1181 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1182 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1183 unsigned long *oldpte, unsigned long *oldpgste);
1184 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1185 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1186 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1187 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1188
1189 #define pgprot_writecombine pgprot_writecombine
1190 pgprot_t pgprot_writecombine(pgprot_t prot);
1191
1192 #define pgprot_writethrough pgprot_writethrough
1193 pgprot_t pgprot_writethrough(pgprot_t prot);
1194
1195 /*
1196 * Certain architectures need to do special things when PTEs
1197 * within a page table are directly modified. Thus, the following
1198 * hook is made available.
1199 */
set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t entry)1200 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1201 pte_t *ptep, pte_t entry)
1202 {
1203 if (pte_present(entry))
1204 pte_val(entry) &= ~_PAGE_UNUSED;
1205 if (mm_has_pgste(mm))
1206 ptep_set_pte_at(mm, addr, ptep, entry);
1207 else
1208 *ptep = entry;
1209 }
1210
1211 /*
1212 * Conversion functions: convert a page and protection to a page entry,
1213 * and a page entry and page directory to the page they refer to.
1214 */
mk_pte_phys(unsigned long physpage,pgprot_t pgprot)1215 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1216 {
1217 pte_t __pte;
1218
1219 pte_val(__pte) = physpage | pgprot_val(pgprot);
1220 if (!MACHINE_HAS_NX)
1221 pte_val(__pte) &= ~_PAGE_NOEXEC;
1222 return pte_mkyoung(__pte);
1223 }
1224
mk_pte(struct page * page,pgprot_t pgprot)1225 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1226 {
1227 unsigned long physpage = page_to_phys(page);
1228 pte_t __pte = mk_pte_phys(physpage, pgprot);
1229
1230 if (pte_write(__pte) && PageDirty(page))
1231 __pte = pte_mkdirty(__pte);
1232 return __pte;
1233 }
1234
1235 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1236 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1237 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1238 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1239
1240 #define p4d_deref(pud) (p4d_val(pud) & _REGION_ENTRY_ORIGIN)
1241 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1242
pmd_deref(pmd_t pmd)1243 static inline unsigned long pmd_deref(pmd_t pmd)
1244 {
1245 unsigned long origin_mask;
1246
1247 origin_mask = _SEGMENT_ENTRY_ORIGIN;
1248 if (pmd_large(pmd))
1249 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1250 return pmd_val(pmd) & origin_mask;
1251 }
1252
pmd_pfn(pmd_t pmd)1253 static inline unsigned long pmd_pfn(pmd_t pmd)
1254 {
1255 return pmd_deref(pmd) >> PAGE_SHIFT;
1256 }
1257
pud_deref(pud_t pud)1258 static inline unsigned long pud_deref(pud_t pud)
1259 {
1260 unsigned long origin_mask;
1261
1262 origin_mask = _REGION_ENTRY_ORIGIN;
1263 if (pud_large(pud))
1264 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
1265 return pud_val(pud) & origin_mask;
1266 }
1267
pud_pfn(pud_t pud)1268 static inline unsigned long pud_pfn(pud_t pud)
1269 {
1270 return pud_deref(pud) >> PAGE_SHIFT;
1271 }
1272
1273 /*
1274 * The pgd_offset function *always* adds the index for the top-level
1275 * region/segment table. This is done to get a sequence like the
1276 * following to work:
1277 * pgdp = pgd_offset(current->mm, addr);
1278 * pgd = READ_ONCE(*pgdp);
1279 * p4dp = p4d_offset(&pgd, addr);
1280 * ...
1281 * The subsequent p4d_offset, pud_offset and pmd_offset functions
1282 * only add an index if they dereferenced the pointer.
1283 */
pgd_offset_raw(pgd_t * pgd,unsigned long address)1284 static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1285 {
1286 unsigned long rste;
1287 unsigned int shift;
1288
1289 /* Get the first entry of the top level table */
1290 rste = pgd_val(*pgd);
1291 /* Pick up the shift from the table type of the first entry */
1292 shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1293 return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1294 }
1295
1296 #define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1297
p4d_offset_lockless(pgd_t * pgdp,pgd_t pgd,unsigned long address)1298 static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address)
1299 {
1300 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1301 return (p4d_t *) pgd_deref(pgd) + p4d_index(address);
1302 return (p4d_t *) pgdp;
1303 }
1304 #define p4d_offset_lockless p4d_offset_lockless
1305
p4d_offset(pgd_t * pgdp,unsigned long address)1306 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address)
1307 {
1308 return p4d_offset_lockless(pgdp, *pgdp, address);
1309 }
1310
pud_offset_lockless(p4d_t * p4dp,p4d_t p4d,unsigned long address)1311 static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address)
1312 {
1313 if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1314 return (pud_t *) p4d_deref(p4d) + pud_index(address);
1315 return (pud_t *) p4dp;
1316 }
1317 #define pud_offset_lockless pud_offset_lockless
1318
pud_offset(p4d_t * p4dp,unsigned long address)1319 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address)
1320 {
1321 return pud_offset_lockless(p4dp, *p4dp, address);
1322 }
1323 #define pud_offset pud_offset
1324
pmd_offset_lockless(pud_t * pudp,pud_t pud,unsigned long address)1325 static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address)
1326 {
1327 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1328 return (pmd_t *) pud_deref(pud) + pmd_index(address);
1329 return (pmd_t *) pudp;
1330 }
1331 #define pmd_offset_lockless pmd_offset_lockless
1332
pmd_offset(pud_t * pudp,unsigned long address)1333 static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address)
1334 {
1335 return pmd_offset_lockless(pudp, *pudp, address);
1336 }
1337 #define pmd_offset pmd_offset
1338
pmd_page_vaddr(pmd_t pmd)1339 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1340 {
1341 return (unsigned long) pmd_deref(pmd);
1342 }
1343
gup_fast_permitted(unsigned long start,unsigned long end)1344 static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1345 {
1346 return end <= current->mm->context.asce_limit;
1347 }
1348 #define gup_fast_permitted gup_fast_permitted
1349
1350 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1351 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1352 #define pte_page(x) pfn_to_page(pte_pfn(x))
1353
1354 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1355 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1356 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1357 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1358
pmd_wrprotect(pmd_t pmd)1359 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1360 {
1361 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1362 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1363 return pmd;
1364 }
1365
pmd_mkwrite(pmd_t pmd)1366 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1367 {
1368 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1369 if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
1370 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1371 return pmd;
1372 }
1373
pmd_mkclean(pmd_t pmd)1374 static inline pmd_t pmd_mkclean(pmd_t pmd)
1375 {
1376 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1377 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1378 return pmd;
1379 }
1380
pmd_mkdirty(pmd_t pmd)1381 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1382 {
1383 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY;
1384 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1385 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1386 return pmd;
1387 }
1388
pud_wrprotect(pud_t pud)1389 static inline pud_t pud_wrprotect(pud_t pud)
1390 {
1391 pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1392 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1393 return pud;
1394 }
1395
pud_mkwrite(pud_t pud)1396 static inline pud_t pud_mkwrite(pud_t pud)
1397 {
1398 pud_val(pud) |= _REGION3_ENTRY_WRITE;
1399 if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
1400 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1401 return pud;
1402 }
1403
pud_mkclean(pud_t pud)1404 static inline pud_t pud_mkclean(pud_t pud)
1405 {
1406 pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1407 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1408 return pud;
1409 }
1410
pud_mkdirty(pud_t pud)1411 static inline pud_t pud_mkdirty(pud_t pud)
1412 {
1413 pud_val(pud) |= _REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY;
1414 if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1415 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1416 return pud;
1417 }
1418
1419 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
massage_pgprot_pmd(pgprot_t pgprot)1420 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1421 {
1422 /*
1423 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1424 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1425 */
1426 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1427 return pgprot_val(SEGMENT_NONE);
1428 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1429 return pgprot_val(SEGMENT_RO);
1430 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1431 return pgprot_val(SEGMENT_RX);
1432 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1433 return pgprot_val(SEGMENT_RW);
1434 return pgprot_val(SEGMENT_RWX);
1435 }
1436
pmd_mkyoung(pmd_t pmd)1437 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1438 {
1439 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1440 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1441 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1442 return pmd;
1443 }
1444
pmd_mkold(pmd_t pmd)1445 static inline pmd_t pmd_mkold(pmd_t pmd)
1446 {
1447 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1448 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1449 return pmd;
1450 }
1451
pmd_modify(pmd_t pmd,pgprot_t newprot)1452 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1453 {
1454 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1455 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1456 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1457 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1458 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1459 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1460 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1461 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1462 return pmd;
1463 }
1464
mk_pmd_phys(unsigned long physpage,pgprot_t pgprot)1465 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1466 {
1467 pmd_t __pmd;
1468 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1469 return __pmd;
1470 }
1471
1472 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1473
__pmdp_csp(pmd_t * pmdp)1474 static inline void __pmdp_csp(pmd_t *pmdp)
1475 {
1476 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1477 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1478 }
1479
1480 #define IDTE_GLOBAL 0
1481 #define IDTE_LOCAL 1
1482
1483 #define IDTE_PTOA 0x0800
1484 #define IDTE_NODAT 0x1000
1485 #define IDTE_GUEST_ASCE 0x2000
1486
__pmdp_idte(unsigned long addr,pmd_t * pmdp,unsigned long opt,unsigned long asce,int local)1487 static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1488 unsigned long opt, unsigned long asce,
1489 int local)
1490 {
1491 unsigned long sto;
1492
1493 sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t);
1494 if (__builtin_constant_p(opt) && opt == 0) {
1495 /* flush without guest asce */
1496 asm volatile(
1497 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1498 : "+m" (*pmdp)
1499 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1500 [m4] "i" (local)
1501 : "cc" );
1502 } else {
1503 /* flush with guest asce */
1504 asm volatile(
1505 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1506 : "+m" (*pmdp)
1507 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1508 [r3] "a" (asce), [m4] "i" (local)
1509 : "cc" );
1510 }
1511 }
1512
__pudp_idte(unsigned long addr,pud_t * pudp,unsigned long opt,unsigned long asce,int local)1513 static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1514 unsigned long opt, unsigned long asce,
1515 int local)
1516 {
1517 unsigned long r3o;
1518
1519 r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t);
1520 r3o |= _ASCE_TYPE_REGION3;
1521 if (__builtin_constant_p(opt) && opt == 0) {
1522 /* flush without guest asce */
1523 asm volatile(
1524 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1525 : "+m" (*pudp)
1526 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1527 [m4] "i" (local)
1528 : "cc");
1529 } else {
1530 /* flush with guest asce */
1531 asm volatile(
1532 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1533 : "+m" (*pudp)
1534 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1535 [r3] "a" (asce), [m4] "i" (local)
1536 : "cc" );
1537 }
1538 }
1539
1540 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1541 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1542 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1543
1544 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1545
1546 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1547 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1548 pgtable_t pgtable);
1549
1550 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1551 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1552
1553 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,pmd_t entry,int dirty)1554 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1555 unsigned long addr, pmd_t *pmdp,
1556 pmd_t entry, int dirty)
1557 {
1558 VM_BUG_ON(addr & ~HPAGE_MASK);
1559
1560 entry = pmd_mkyoung(entry);
1561 if (dirty)
1562 entry = pmd_mkdirty(entry);
1563 if (pmd_val(*pmdp) == pmd_val(entry))
1564 return 0;
1565 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1566 return 1;
1567 }
1568
1569 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1570 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1571 unsigned long addr, pmd_t *pmdp)
1572 {
1573 pmd_t pmd = *pmdp;
1574
1575 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1576 return pmd_young(pmd);
1577 }
1578
1579 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
pmdp_clear_flush_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1580 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1581 unsigned long addr, pmd_t *pmdp)
1582 {
1583 VM_BUG_ON(addr & ~HPAGE_MASK);
1584 return pmdp_test_and_clear_young(vma, addr, pmdp);
1585 }
1586
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t entry)1587 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1588 pmd_t *pmdp, pmd_t entry)
1589 {
1590 if (!MACHINE_HAS_NX)
1591 pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
1592 *pmdp = entry;
1593 }
1594
pmd_mkhuge(pmd_t pmd)1595 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1596 {
1597 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1598 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1599 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1600 return pmd;
1601 }
1602
1603 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1604 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1605 unsigned long addr, pmd_t *pmdp)
1606 {
1607 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1608 }
1609
1610 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
pmdp_huge_get_and_clear_full(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,int full)1611 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1612 unsigned long addr,
1613 pmd_t *pmdp, int full)
1614 {
1615 if (full) {
1616 pmd_t pmd = *pmdp;
1617 *pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
1618 return pmd;
1619 }
1620 return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1621 }
1622
1623 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
pmdp_huge_clear_flush(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1624 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1625 unsigned long addr, pmd_t *pmdp)
1626 {
1627 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1628 }
1629
1630 #define __HAVE_ARCH_PMDP_INVALIDATE
pmdp_invalidate(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1631 static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1632 unsigned long addr, pmd_t *pmdp)
1633 {
1634 pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1635
1636 return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1637 }
1638
1639 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1640 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1641 unsigned long addr, pmd_t *pmdp)
1642 {
1643 pmd_t pmd = *pmdp;
1644
1645 if (pmd_write(pmd))
1646 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1647 }
1648
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)1649 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1650 unsigned long address,
1651 pmd_t *pmdp)
1652 {
1653 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1654 }
1655 #define pmdp_collapse_flush pmdp_collapse_flush
1656
1657 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1658 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1659
pmd_trans_huge(pmd_t pmd)1660 static inline int pmd_trans_huge(pmd_t pmd)
1661 {
1662 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1663 }
1664
1665 #define has_transparent_hugepage has_transparent_hugepage
has_transparent_hugepage(void)1666 static inline int has_transparent_hugepage(void)
1667 {
1668 return MACHINE_HAS_EDAT1 ? 1 : 0;
1669 }
1670 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1671
1672 /*
1673 * 64 bit swap entry format:
1674 * A page-table entry has some bits we have to treat in a special way.
1675 * Bits 52 and bit 55 have to be zero, otherwise a specification
1676 * exception will occur instead of a page translation exception. The
1677 * specification exception has the bad habit not to store necessary
1678 * information in the lowcore.
1679 * Bits 54 and 63 are used to indicate the page type.
1680 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1681 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1682 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1683 * for the offset.
1684 * | offset |01100|type |00|
1685 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1686 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1687 */
1688
1689 #define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1690 #define __SWP_OFFSET_SHIFT 12
1691 #define __SWP_TYPE_MASK ((1UL << 5) - 1)
1692 #define __SWP_TYPE_SHIFT 2
1693
mk_swap_pte(unsigned long type,unsigned long offset)1694 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1695 {
1696 pte_t pte;
1697
1698 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1699 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1700 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1701 return pte;
1702 }
1703
__swp_type(swp_entry_t entry)1704 static inline unsigned long __swp_type(swp_entry_t entry)
1705 {
1706 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1707 }
1708
__swp_offset(swp_entry_t entry)1709 static inline unsigned long __swp_offset(swp_entry_t entry)
1710 {
1711 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1712 }
1713
__swp_entry(unsigned long type,unsigned long offset)1714 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1715 {
1716 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1717 }
1718
1719 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1720 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1721
1722 #define kern_addr_valid(addr) (1)
1723
1724 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1725 extern void vmem_remove_mapping(unsigned long start, unsigned long size);
1726 extern int s390_enable_sie(void);
1727 extern int s390_enable_skey(void);
1728 extern void s390_reset_cmma(struct mm_struct *mm);
1729
1730 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1731 #define HAVE_ARCH_UNMAPPED_AREA
1732 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1733
1734 #endif /* _S390_PAGE_H */
1735