• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**************************************************************************//**
2  * @file     cmsis_gcc.h
3  * @brief    CMSIS compiler GCC header file
4  * @version  V5.4.1
5  * @date     27. May 2021
6  ******************************************************************************/
7 /*
8  * Copyright (c) 2009-2021 Arm Limited. All rights reserved.
9  *
10  * SPDX-License-Identifier: Apache-2.0
11  *
12  * Licensed under the Apache License, Version 2.0 (the License); you may
13  * not use this file except in compliance with the License.
14  * You may obtain a copy of the License at
15  *
16  * www.apache.org/licenses/LICENSE-2.0
17  *
18  * Unless required by applicable law or agreed to in writing, software
19  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
20  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
21  * See the License for the specific language governing permissions and
22  * limitations under the License.
23  */
24 
25 #ifndef __CMSIS_GCC_H
26 #define __CMSIS_GCC_H
27 
28 /* ignore some GCC warnings */
29 #pragma GCC diagnostic push
30 #pragma GCC diagnostic ignored "-Wsign-conversion"
31 #pragma GCC diagnostic ignored "-Wconversion"
32 #pragma GCC diagnostic ignored "-Wunused-parameter"
33 
34 /* Fallback for __has_builtin */
35 #ifndef __has_builtin
36   #define __has_builtin(x) (0)
37 #endif
38 
39 /* CMSIS compiler specific defines */
40 #ifndef   __ASM
41   #define __ASM                                  __asm
42 #endif
43 #ifndef   __INLINE
44   #define __INLINE                               inline
45 #endif
46 #ifndef   __STATIC_INLINE
47   #define __STATIC_INLINE                        static inline
48 #endif
49 #ifndef   __STATIC_FORCEINLINE
50   #define __STATIC_FORCEINLINE                   __attribute__((always_inline)) static inline
51 #endif
52 #ifndef   __NO_RETURN
53   #define __NO_RETURN                            __attribute__((__noreturn__))
54 #endif
55 #ifndef   __USED
56   #define __USED                                 __attribute__((used))
57 #endif
58 #ifndef   __WEAK
59   #define __WEAK                                 __attribute__((weak))
60 #endif
61 #ifndef   __PACKED
62   #define __PACKED                               __attribute__((packed, aligned(1)))
63 #endif
64 #ifndef   __PACKED_STRUCT
65   #define __PACKED_STRUCT                        struct __attribute__((packed, aligned(1)))
66 #endif
67 #ifndef   __PACKED_UNION
68   #define __PACKED_UNION                         union __attribute__((packed, aligned(1)))
69 #endif
70 #ifndef   __UNALIGNED_UINT32        /* deprecated */
71   #pragma GCC diagnostic push
72   #pragma GCC diagnostic ignored "-Wpacked"
73   #pragma GCC diagnostic ignored "-Wattributes"
74   struct __attribute__((packed)) T_UINT32 { uint32_t v; };
75   #pragma GCC diagnostic pop
76   #define __UNALIGNED_UINT32(x)                  (((struct T_UINT32 *)(x))->v)
77 #endif
78 #ifndef   __UNALIGNED_UINT16_WRITE
79   #pragma GCC diagnostic push
80   #pragma GCC diagnostic ignored "-Wpacked"
81   #pragma GCC diagnostic ignored "-Wattributes"
82   __PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
83   #pragma GCC diagnostic pop
84   #define __UNALIGNED_UINT16_WRITE(addr, val)    (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
85 #endif
86 #ifndef   __UNALIGNED_UINT16_READ
87   #pragma GCC diagnostic push
88   #pragma GCC diagnostic ignored "-Wpacked"
89   #pragma GCC diagnostic ignored "-Wattributes"
90   __PACKED_STRUCT T_UINT16_READ { uint16_t v; };
91   #pragma GCC diagnostic pop
92   #define __UNALIGNED_UINT16_READ(addr)          (((const struct T_UINT16_READ *)(const void *)(addr))->v)
93 #endif
94 #ifndef   __UNALIGNED_UINT32_WRITE
95   #pragma GCC diagnostic push
96   #pragma GCC diagnostic ignored "-Wpacked"
97   #pragma GCC diagnostic ignored "-Wattributes"
98   __PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
99   #pragma GCC diagnostic pop
100   #define __UNALIGNED_UINT32_WRITE(addr, val)    (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
101 #endif
102 #ifndef   __UNALIGNED_UINT32_READ
103   #pragma GCC diagnostic push
104   #pragma GCC diagnostic ignored "-Wpacked"
105   #pragma GCC diagnostic ignored "-Wattributes"
106   __PACKED_STRUCT T_UINT32_READ { uint32_t v; };
107   #pragma GCC diagnostic pop
108   #define __UNALIGNED_UINT32_READ(addr)          (((const struct T_UINT32_READ *)(const void *)(addr))->v)
109 #endif
110 #ifndef   __ALIGNED
111   #define __ALIGNED(x)                           __attribute__((aligned(x)))
112 #endif
113 #ifndef   __RESTRICT
114   #define __RESTRICT                             __restrict
115 #endif
116 #ifndef   __COMPILER_BARRIER
117   #define __COMPILER_BARRIER()                   __ASM volatile("":::"memory")
118 #endif
119 
120 /* #########################  Startup and Lowlevel Init  ######################## */
121 
122 #ifndef __PROGRAM_START
123 
124 /**
125   \brief   Initializes data and bss sections
126   \details This default implementations initialized all data and additional bss
127            sections relying on .copy.table and .zero.table specified properly
128            in the used linker script.
129 
130  */
__cmsis_start(void)131 __STATIC_FORCEINLINE __NO_RETURN void __cmsis_start(void)
132 {
133   extern void _start(void) __NO_RETURN;
134 
135   typedef struct {
136     uint32_t const* src;
137     uint32_t* dest;
138     uint32_t  wlen;
139   } __copy_table_t;
140 
141   typedef struct {
142     uint32_t* dest;
143     uint32_t  wlen;
144   } __zero_table_t;
145 
146   extern const __copy_table_t __copy_table_start__;
147   extern const __copy_table_t __copy_table_end__;
148   extern const __zero_table_t __zero_table_start__;
149   extern const __zero_table_t __zero_table_end__;
150 
151   for (__copy_table_t const* pTable = &__copy_table_start__; pTable < &__copy_table_end__; ++pTable) {
152     for(uint32_t i=0u; i<pTable->wlen; ++i) {
153       pTable->dest[i] = pTable->src[i];
154     }
155   }
156 
157   for (__zero_table_t const* pTable = &__zero_table_start__; pTable < &__zero_table_end__; ++pTable) {
158     for(uint32_t i=0u; i<pTable->wlen; ++i) {
159       pTable->dest[i] = 0u;
160     }
161   }
162 
163   _start();
164 }
165 
166 #define __PROGRAM_START           __cmsis_start
167 #endif
168 
169 #ifndef __INITIAL_SP
170 #define __INITIAL_SP              __StackTop
171 #endif
172 
173 #ifndef __STACK_LIMIT
174 #define __STACK_LIMIT             __StackLimit
175 #endif
176 
177 #ifndef __VECTOR_TABLE
178 #define __VECTOR_TABLE            __Vectors
179 #endif
180 
181 #ifndef __VECTOR_TABLE_ATTRIBUTE
182 #define __VECTOR_TABLE_ATTRIBUTE  __attribute__((used, section(".vectors")))
183 #endif
184 
185 #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)
186 #ifndef __STACK_SEAL
187 #define __STACK_SEAL              __StackSeal
188 #endif
189 
190 #ifndef __TZ_STACK_SEAL_SIZE
191 #define __TZ_STACK_SEAL_SIZE      8U
192 #endif
193 
194 #ifndef __TZ_STACK_SEAL_VALUE
195 #define __TZ_STACK_SEAL_VALUE     0xFEF5EDA5FEF5EDA5ULL
196 #endif
197 
198 
__TZ_set_STACKSEAL_S(uint32_t * stackTop)199 __STATIC_FORCEINLINE void __TZ_set_STACKSEAL_S (uint32_t* stackTop) {
200   *((uint64_t *)stackTop) = __TZ_STACK_SEAL_VALUE;
201 }
202 #endif
203 
204 
205 /* ##########################  Core Instruction Access  ######################### */
206 /** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
207   Access to dedicated instructions
208   @{
209 */
210 
211 /* Define macros for porting to both thumb1 and thumb2.
212  * For thumb1, use low register (r0-r7), specified by constraint "l"
213  * Otherwise, use general registers, specified by constraint "r" */
214 #if defined (__thumb__) && !defined (__thumb2__)
215 #define __CMSIS_GCC_OUT_REG(r) "=l" (r)
216 #define __CMSIS_GCC_RW_REG(r) "+l" (r)
217 #define __CMSIS_GCC_USE_REG(r) "l" (r)
218 #else
219 #define __CMSIS_GCC_OUT_REG(r) "=r" (r)
220 #define __CMSIS_GCC_RW_REG(r) "+r" (r)
221 #define __CMSIS_GCC_USE_REG(r) "r" (r)
222 #endif
223 
224 /**
225   \brief   No Operation
226   \details No Operation does nothing. This instruction can be used for code alignment purposes.
227  */
228 #define __NOP()                             __ASM volatile ("nop")
229 
230 /**
231   \brief   Wait For Interrupt
232   \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
233  */
234 #define __WFI()                             __ASM volatile ("wfi":::"memory")
235 
236 
237 /**
238   \brief   Wait For Event
239   \details Wait For Event is a hint instruction that permits the processor to enter
240            a low-power state until one of a number of events occurs.
241  */
242 #define __WFE()                             __ASM volatile ("wfe":::"memory")
243 
244 
245 /**
246   \brief   Send Event
247   \details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
248  */
249 #define __SEV()                             __ASM volatile ("sev")
250 
251 
252 /**
253   \brief   Instruction Synchronization Barrier
254   \details Instruction Synchronization Barrier flushes the pipeline in the processor,
255            so that all instructions following the ISB are fetched from cache or memory,
256            after the instruction has been completed.
257  */
__ISB(void)258 __STATIC_FORCEINLINE void __ISB(void)
259 {
260   __ASM volatile ("isb 0xF":::"memory");
261 }
262 
263 
264 /**
265   \brief   Data Synchronization Barrier
266   \details Acts as a special kind of Data Memory Barrier.
267            It completes when all explicit memory accesses before this instruction complete.
268  */
__DSB(void)269 __STATIC_FORCEINLINE void __DSB(void)
270 {
271   __ASM volatile ("dsb 0xF":::"memory");
272 }
273 
274 
275 /**
276   \brief   Data Memory Barrier
277   \details Ensures the apparent order of the explicit memory operations before
278            and after the instruction, without ensuring their completion.
279  */
__DMB(void)280 __STATIC_FORCEINLINE void __DMB(void)
281 {
282   __ASM volatile ("dmb 0xF":::"memory");
283 }
284 
285 
286 /**
287   \brief   Reverse byte order (32 bit)
288   \details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412.
289   \param [in]    value  Value to reverse
290   \return               Reversed value
291  */
__REV(uint32_t value)292 __STATIC_FORCEINLINE uint32_t __REV(uint32_t value)
293 {
294 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5)
295   return __builtin_bswap32(value);
296 #else
297   uint32_t result;
298 
299   __ASM ("rev %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
300   return result;
301 #endif
302 }
303 
304 
305 /**
306   \brief   Reverse byte order (16 bit)
307   \details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856.
308   \param [in]    value  Value to reverse
309   \return               Reversed value
310  */
__REV16(uint32_t value)311 __STATIC_FORCEINLINE uint32_t __REV16(uint32_t value)
312 {
313   uint32_t result;
314 
315   __ASM ("rev16 %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
316   return result;
317 }
318 
319 
320 /**
321   \brief   Reverse byte order (16 bit)
322   \details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000.
323   \param [in]    value  Value to reverse
324   \return               Reversed value
325  */
__REVSH(int16_t value)326 __STATIC_FORCEINLINE int16_t __REVSH(int16_t value)
327 {
328 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
329   return (int16_t)__builtin_bswap16(value);
330 #else
331   int16_t result;
332 
333   __ASM ("revsh %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
334   return result;
335 #endif
336 }
337 
338 
339 /**
340   \brief   Rotate Right in unsigned value (32 bit)
341   \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
342   \param [in]    op1  Value to rotate
343   \param [in]    op2  Number of Bits to rotate
344   \return               Rotated value
345  */
__ROR(uint32_t op1,uint32_t op2)346 __STATIC_FORCEINLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
347 {
348   op2 %= 32U;
349   if (op2 == 0U)
350   {
351     return op1;
352   }
353   return (op1 >> op2) | (op1 << (32U - op2));
354 }
355 
356 
357 /**
358   \brief   Breakpoint
359   \details Causes the processor to enter Debug state.
360            Debug tools can use this to investigate system state when the instruction at a particular address is reached.
361   \param [in]    value  is ignored by the processor.
362                  If required, a debugger can use it to store additional information about the breakpoint.
363  */
364 #define __BKPT(value)                       __ASM volatile ("bkpt "#value)
365 
366 
367 /**
368   \brief   Reverse bit order of value
369   \details Reverses the bit order of the given value.
370   \param [in]    value  Value to reverse
371   \return               Reversed value
372  */
__RBIT(uint32_t value)373 __STATIC_FORCEINLINE uint32_t __RBIT(uint32_t value)
374 {
375   uint32_t result;
376 
377 #if ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
378      (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
379      (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    )
380    __ASM ("rbit %0, %1" : "=r" (result) : "r" (value) );
381 #else
382   uint32_t s = (4U /*sizeof(v)*/ * 8U) - 1U; /* extra shift needed at end */
383 
384   result = value;                      /* r will be reversed bits of v; first get LSB of v */
385   for (value >>= 1U; value != 0U; value >>= 1U)
386   {
387     result <<= 1U;
388     result |= value & 1U;
389     s--;
390   }
391   result <<= s;                        /* shift when v's highest bits are zero */
392 #endif
393   return result;
394 }
395 
396 
397 /**
398   \brief   Count leading zeros
399   \details Counts the number of leading zeros of a data value.
400   \param [in]  value  Value to count the leading zeros
401   \return             number of leading zeros in value
402  */
__CLZ(uint32_t value)403 __STATIC_FORCEINLINE uint8_t __CLZ(uint32_t value)
404 {
405   /* Even though __builtin_clz produces a CLZ instruction on ARM, formally
406      __builtin_clz(0) is undefined behaviour, so handle this case specially.
407      This guarantees ARM-compatible results if happening to compile on a non-ARM
408      target, and ensures the compiler doesn't decide to activate any
409      optimisations using the logic "value was passed to __builtin_clz, so it
410      is non-zero".
411      ARM GCC 7.3 and possibly earlier will optimise this test away, leaving a
412      single CLZ instruction.
413    */
414   if (value == 0U)
415   {
416     return 32U;
417   }
418   return __builtin_clz(value);
419 }
420 
421 
422 #if ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
423      (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
424      (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
425      (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    )
426 /**
427   \brief   LDR Exclusive (8 bit)
428   \details Executes a exclusive LDR instruction for 8 bit value.
429   \param [in]    ptr  Pointer to data
430   \return             value of type uint8_t at (*ptr)
431  */
__LDREXB(volatile uint8_t * addr)432 __STATIC_FORCEINLINE uint8_t __LDREXB(volatile uint8_t *addr)
433 {
434     uint32_t result;
435 
436 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
437    __ASM volatile ("ldrexb %0, %1" : "=r" (result) : "Q" (*addr) );
438 #else
439     /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
440        accepted by assembler. So has to use following less efficient pattern.
441     */
442    __ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
443 #endif
444    return ((uint8_t) result);    /* Add explicit type cast here */
445 }
446 
447 
448 /**
449   \brief   LDR Exclusive (16 bit)
450   \details Executes a exclusive LDR instruction for 16 bit values.
451   \param [in]    ptr  Pointer to data
452   \return        value of type uint16_t at (*ptr)
453  */
__LDREXH(volatile uint16_t * addr)454 __STATIC_FORCEINLINE uint16_t __LDREXH(volatile uint16_t *addr)
455 {
456     uint32_t result;
457 
458 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
459    __ASM volatile ("ldrexh %0, %1" : "=r" (result) : "Q" (*addr) );
460 #else
461     /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
462        accepted by assembler. So has to use following less efficient pattern.
463     */
464    __ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
465 #endif
466    return ((uint16_t) result);    /* Add explicit type cast here */
467 }
468 
469 
470 /**
471   \brief   LDR Exclusive (32 bit)
472   \details Executes a exclusive LDR instruction for 32 bit values.
473   \param [in]    ptr  Pointer to data
474   \return        value of type uint32_t at (*ptr)
475  */
__LDREXW(volatile uint32_t * addr)476 __STATIC_FORCEINLINE uint32_t __LDREXW(volatile uint32_t *addr)
477 {
478     uint32_t result;
479 
480    __ASM volatile ("ldrex %0, %1" : "=r" (result) : "Q" (*addr) );
481    return(result);
482 }
483 
484 
485 /**
486   \brief   STR Exclusive (8 bit)
487   \details Executes a exclusive STR instruction for 8 bit values.
488   \param [in]  value  Value to store
489   \param [in]    ptr  Pointer to location
490   \return          0  Function succeeded
491   \return          1  Function failed
492  */
__STREXB(uint8_t value,volatile uint8_t * addr)493 __STATIC_FORCEINLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr)
494 {
495    uint32_t result;
496 
497    __ASM volatile ("strexb %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) );
498    return(result);
499 }
500 
501 
502 /**
503   \brief   STR Exclusive (16 bit)
504   \details Executes a exclusive STR instruction for 16 bit values.
505   \param [in]  value  Value to store
506   \param [in]    ptr  Pointer to location
507   \return          0  Function succeeded
508   \return          1  Function failed
509  */
__STREXH(uint16_t value,volatile uint16_t * addr)510 __STATIC_FORCEINLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr)
511 {
512    uint32_t result;
513 
514    __ASM volatile ("strexh %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) );
515    return(result);
516 }
517 
518 
519 /**
520   \brief   STR Exclusive (32 bit)
521   \details Executes a exclusive STR instruction for 32 bit values.
522   \param [in]  value  Value to store
523   \param [in]    ptr  Pointer to location
524   \return          0  Function succeeded
525   \return          1  Function failed
526  */
__STREXW(uint32_t value,volatile uint32_t * addr)527 __STATIC_FORCEINLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr)
528 {
529    uint32_t result;
530 
531    __ASM volatile ("strex %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" (value) );
532    return(result);
533 }
534 
535 
536 /**
537   \brief   Remove the exclusive lock
538   \details Removes the exclusive lock which is created by LDREX.
539  */
__CLREX(void)540 __STATIC_FORCEINLINE void __CLREX(void)
541 {
542   __ASM volatile ("clrex" ::: "memory");
543 }
544 
545 #endif /* ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
546            (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
547            (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
548            (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    ) */
549 
550 
551 #if ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
552      (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
553      (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    )
554 /**
555   \brief   Signed Saturate
556   \details Saturates a signed value.
557   \param [in]  ARG1  Value to be saturated
558   \param [in]  ARG2  Bit position to saturate to (1..32)
559   \return             Saturated value
560  */
561 #define __SSAT(ARG1, ARG2) \
562 __extension__ \
563 ({                          \
564   int32_t __RES, __ARG1 = (ARG1); \
565   __ASM volatile ("ssat %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) : "cc" ); \
566   __RES; \
567  })
568 
569 
570 /**
571   \brief   Unsigned Saturate
572   \details Saturates an unsigned value.
573   \param [in]  ARG1  Value to be saturated
574   \param [in]  ARG2  Bit position to saturate to (0..31)
575   \return             Saturated value
576  */
577 #define __USAT(ARG1, ARG2) \
578 __extension__ \
579 ({                          \
580   uint32_t __RES, __ARG1 = (ARG1); \
581   __ASM volatile ("usat %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) : "cc" ); \
582   __RES; \
583  })
584 
585 
586 /**
587   \brief   Rotate Right with Extend (32 bit)
588   \details Moves each bit of a bitstring right by one bit.
589            The carry input is shifted in at the left end of the bitstring.
590   \param [in]    value  Value to rotate
591   \return               Rotated value
592  */
__RRX(uint32_t value)593 __STATIC_FORCEINLINE uint32_t __RRX(uint32_t value)
594 {
595   uint32_t result;
596 
597   __ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
598   return(result);
599 }
600 
601 
602 /**
603   \brief   LDRT Unprivileged (8 bit)
604   \details Executes a Unprivileged LDRT instruction for 8 bit value.
605   \param [in]    ptr  Pointer to data
606   \return             value of type uint8_t at (*ptr)
607  */
__LDRBT(volatile uint8_t * ptr)608 __STATIC_FORCEINLINE uint8_t __LDRBT(volatile uint8_t *ptr)
609 {
610     uint32_t result;
611 
612 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
613    __ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*ptr) );
614 #else
615     /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
616        accepted by assembler. So has to use following less efficient pattern.
617     */
618    __ASM volatile ("ldrbt %0, [%1]" : "=r" (result) : "r" (ptr) : "memory" );
619 #endif
620    return ((uint8_t) result);    /* Add explicit type cast here */
621 }
622 
623 
624 /**
625   \brief   LDRT Unprivileged (16 bit)
626   \details Executes a Unprivileged LDRT instruction for 16 bit values.
627   \param [in]    ptr  Pointer to data
628   \return        value of type uint16_t at (*ptr)
629  */
__LDRHT(volatile uint16_t * ptr)630 __STATIC_FORCEINLINE uint16_t __LDRHT(volatile uint16_t *ptr)
631 {
632     uint32_t result;
633 
634 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
635    __ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*ptr) );
636 #else
637     /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
638        accepted by assembler. So has to use following less efficient pattern.
639     */
640    __ASM volatile ("ldrht %0, [%1]" : "=r" (result) : "r" (ptr) : "memory" );
641 #endif
642    return ((uint16_t) result);    /* Add explicit type cast here */
643 }
644 
645 
646 /**
647   \brief   LDRT Unprivileged (32 bit)
648   \details Executes a Unprivileged LDRT instruction for 32 bit values.
649   \param [in]    ptr  Pointer to data
650   \return        value of type uint32_t at (*ptr)
651  */
__LDRT(volatile uint32_t * ptr)652 __STATIC_FORCEINLINE uint32_t __LDRT(volatile uint32_t *ptr)
653 {
654     uint32_t result;
655 
656    __ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*ptr) );
657    return(result);
658 }
659 
660 
661 /**
662   \brief   STRT Unprivileged (8 bit)
663   \details Executes a Unprivileged STRT instruction for 8 bit values.
664   \param [in]  value  Value to store
665   \param [in]    ptr  Pointer to location
666  */
__STRBT(uint8_t value,volatile uint8_t * ptr)667 __STATIC_FORCEINLINE void __STRBT(uint8_t value, volatile uint8_t *ptr)
668 {
669    __ASM volatile ("strbt %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
670 }
671 
672 
673 /**
674   \brief   STRT Unprivileged (16 bit)
675   \details Executes a Unprivileged STRT instruction for 16 bit values.
676   \param [in]  value  Value to store
677   \param [in]    ptr  Pointer to location
678  */
__STRHT(uint16_t value,volatile uint16_t * ptr)679 __STATIC_FORCEINLINE void __STRHT(uint16_t value, volatile uint16_t *ptr)
680 {
681    __ASM volatile ("strht %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
682 }
683 
684 
685 /**
686   \brief   STRT Unprivileged (32 bit)
687   \details Executes a Unprivileged STRT instruction for 32 bit values.
688   \param [in]  value  Value to store
689   \param [in]    ptr  Pointer to location
690  */
__STRT(uint32_t value,volatile uint32_t * ptr)691 __STATIC_FORCEINLINE void __STRT(uint32_t value, volatile uint32_t *ptr)
692 {
693    __ASM volatile ("strt %1, %0" : "=Q" (*ptr) : "r" (value) );
694 }
695 
696 #else  /* ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
697            (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
698            (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    ) */
699 
700 /**
701   \brief   Signed Saturate
702   \details Saturates a signed value.
703   \param [in]  value  Value to be saturated
704   \param [in]    sat  Bit position to saturate to (1..32)
705   \return             Saturated value
706  */
__SSAT(int32_t val,uint32_t sat)707 __STATIC_FORCEINLINE int32_t __SSAT(int32_t val, uint32_t sat)
708 {
709   if ((sat >= 1U) && (sat <= 32U))
710   {
711     const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U);
712     const int32_t min = -1 - max ;
713     if (val > max)
714     {
715       return max;
716     }
717     else if (val < min)
718     {
719       return min;
720     }
721   }
722   return val;
723 }
724 
725 /**
726   \brief   Unsigned Saturate
727   \details Saturates an unsigned value.
728   \param [in]  value  Value to be saturated
729   \param [in]    sat  Bit position to saturate to (0..31)
730   \return             Saturated value
731  */
__USAT(int32_t val,uint32_t sat)732 __STATIC_FORCEINLINE uint32_t __USAT(int32_t val, uint32_t sat)
733 {
734   if (sat <= 31U)
735   {
736     const uint32_t max = ((1U << sat) - 1U);
737     if (val > (int32_t)max)
738     {
739       return max;
740     }
741     else if (val < 0)
742     {
743       return 0U;
744     }
745   }
746   return (uint32_t)val;
747 }
748 
749 #endif /* ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
750            (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
751            (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    ) */
752 
753 
754 #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
755      (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    )
756 /**
757   \brief   Load-Acquire (8 bit)
758   \details Executes a LDAB instruction for 8 bit value.
759   \param [in]    ptr  Pointer to data
760   \return             value of type uint8_t at (*ptr)
761  */
__LDAB(volatile uint8_t * ptr)762 __STATIC_FORCEINLINE uint8_t __LDAB(volatile uint8_t *ptr)
763 {
764     uint32_t result;
765 
766    __ASM volatile ("ldab %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" );
767    return ((uint8_t) result);
768 }
769 
770 
771 /**
772   \brief   Load-Acquire (16 bit)
773   \details Executes a LDAH instruction for 16 bit values.
774   \param [in]    ptr  Pointer to data
775   \return        value of type uint16_t at (*ptr)
776  */
__LDAH(volatile uint16_t * ptr)777 __STATIC_FORCEINLINE uint16_t __LDAH(volatile uint16_t *ptr)
778 {
779     uint32_t result;
780 
781    __ASM volatile ("ldah %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" );
782    return ((uint16_t) result);
783 }
784 
785 
786 /**
787   \brief   Load-Acquire (32 bit)
788   \details Executes a LDA instruction for 32 bit values.
789   \param [in]    ptr  Pointer to data
790   \return        value of type uint32_t at (*ptr)
791  */
__LDA(volatile uint32_t * ptr)792 __STATIC_FORCEINLINE uint32_t __LDA(volatile uint32_t *ptr)
793 {
794     uint32_t result;
795 
796    __ASM volatile ("lda %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" );
797    return(result);
798 }
799 
800 
801 /**
802   \brief   Store-Release (8 bit)
803   \details Executes a STLB instruction for 8 bit values.
804   \param [in]  value  Value to store
805   \param [in]    ptr  Pointer to location
806  */
__STLB(uint8_t value,volatile uint8_t * ptr)807 __STATIC_FORCEINLINE void __STLB(uint8_t value, volatile uint8_t *ptr)
808 {
809    __ASM volatile ("stlb %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" );
810 }
811 
812 
813 /**
814   \brief   Store-Release (16 bit)
815   \details Executes a STLH instruction for 16 bit values.
816   \param [in]  value  Value to store
817   \param [in]    ptr  Pointer to location
818  */
__STLH(uint16_t value,volatile uint16_t * ptr)819 __STATIC_FORCEINLINE void __STLH(uint16_t value, volatile uint16_t *ptr)
820 {
821    __ASM volatile ("stlh %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" );
822 }
823 
824 
825 /**
826   \brief   Store-Release (32 bit)
827   \details Executes a STL instruction for 32 bit values.
828   \param [in]  value  Value to store
829   \param [in]    ptr  Pointer to location
830  */
__STL(uint32_t value,volatile uint32_t * ptr)831 __STATIC_FORCEINLINE void __STL(uint32_t value, volatile uint32_t *ptr)
832 {
833    __ASM volatile ("stl %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" );
834 }
835 
836 
837 /**
838   \brief   Load-Acquire Exclusive (8 bit)
839   \details Executes a LDAB exclusive instruction for 8 bit value.
840   \param [in]    ptr  Pointer to data
841   \return             value of type uint8_t at (*ptr)
842  */
__LDAEXB(volatile uint8_t * ptr)843 __STATIC_FORCEINLINE uint8_t __LDAEXB(volatile uint8_t *ptr)
844 {
845     uint32_t result;
846 
847    __ASM volatile ("ldaexb %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" );
848    return ((uint8_t) result);
849 }
850 
851 
852 /**
853   \brief   Load-Acquire Exclusive (16 bit)
854   \details Executes a LDAH exclusive instruction for 16 bit values.
855   \param [in]    ptr  Pointer to data
856   \return        value of type uint16_t at (*ptr)
857  */
__LDAEXH(volatile uint16_t * ptr)858 __STATIC_FORCEINLINE uint16_t __LDAEXH(volatile uint16_t *ptr)
859 {
860     uint32_t result;
861 
862    __ASM volatile ("ldaexh %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" );
863    return ((uint16_t) result);
864 }
865 
866 
867 /**
868   \brief   Load-Acquire Exclusive (32 bit)
869   \details Executes a LDA exclusive instruction for 32 bit values.
870   \param [in]    ptr  Pointer to data
871   \return        value of type uint32_t at (*ptr)
872  */
__LDAEX(volatile uint32_t * ptr)873 __STATIC_FORCEINLINE uint32_t __LDAEX(volatile uint32_t *ptr)
874 {
875     uint32_t result;
876 
877    __ASM volatile ("ldaex %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" );
878    return(result);
879 }
880 
881 
882 /**
883   \brief   Store-Release Exclusive (8 bit)
884   \details Executes a STLB exclusive instruction for 8 bit values.
885   \param [in]  value  Value to store
886   \param [in]    ptr  Pointer to location
887   \return          0  Function succeeded
888   \return          1  Function failed
889  */
__STLEXB(uint8_t value,volatile uint8_t * ptr)890 __STATIC_FORCEINLINE uint32_t __STLEXB(uint8_t value, volatile uint8_t *ptr)
891 {
892    uint32_t result;
893 
894    __ASM volatile ("stlexb %0, %2, %1" : "=&r" (result), "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" );
895    return(result);
896 }
897 
898 
899 /**
900   \brief   Store-Release Exclusive (16 bit)
901   \details Executes a STLH exclusive instruction for 16 bit values.
902   \param [in]  value  Value to store
903   \param [in]    ptr  Pointer to location
904   \return          0  Function succeeded
905   \return          1  Function failed
906  */
__STLEXH(uint16_t value,volatile uint16_t * ptr)907 __STATIC_FORCEINLINE uint32_t __STLEXH(uint16_t value, volatile uint16_t *ptr)
908 {
909    uint32_t result;
910 
911    __ASM volatile ("stlexh %0, %2, %1" : "=&r" (result), "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" );
912    return(result);
913 }
914 
915 
916 /**
917   \brief   Store-Release Exclusive (32 bit)
918   \details Executes a STL exclusive instruction for 32 bit values.
919   \param [in]  value  Value to store
920   \param [in]    ptr  Pointer to location
921   \return          0  Function succeeded
922   \return          1  Function failed
923  */
__STLEX(uint32_t value,volatile uint32_t * ptr)924 __STATIC_FORCEINLINE uint32_t __STLEX(uint32_t value, volatile uint32_t *ptr)
925 {
926    uint32_t result;
927 
928    __ASM volatile ("stlex %0, %2, %1" : "=&r" (result), "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" );
929    return(result);
930 }
931 
932 #endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
933            (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    ) */
934 
935 /*@}*/ /* end of group CMSIS_Core_InstructionInterface */
936 
937 
938 /* ###########################  Core Function Access  ########################### */
939 /** \ingroup  CMSIS_Core_FunctionInterface
940     \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
941   @{
942  */
943 
944 /**
945   \brief   Enable IRQ Interrupts
946   \details Enables IRQ interrupts by clearing special-purpose register PRIMASK.
947            Can only be executed in Privileged modes.
948  */
__enable_irq(void)949 __STATIC_FORCEINLINE void __enable_irq(void)
950 {
951   __ASM volatile ("cpsie i" : : : "memory");
952 }
953 
954 
955 /**
956   \brief   Disable IRQ Interrupts
957   \details Disables IRQ interrupts by setting special-purpose register PRIMASK.
958            Can only be executed in Privileged modes.
959  */
__disable_irq(void)960 __STATIC_FORCEINLINE void __disable_irq(void)
961 {
962   __ASM volatile ("cpsid i" : : : "memory");
963 }
964 
965 
966 /**
967   \brief   Get Control Register
968   \details Returns the content of the Control Register.
969   \return               Control Register value
970  */
__get_CONTROL(void)971 __STATIC_FORCEINLINE uint32_t __get_CONTROL(void)
972 {
973   uint32_t result;
974 
975   __ASM volatile ("MRS %0, control" : "=r" (result) );
976   return(result);
977 }
978 
979 
980 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
981 /**
982   \brief   Get Control Register (non-secure)
983   \details Returns the content of the non-secure Control Register when in secure mode.
984   \return               non-secure Control Register value
985  */
__TZ_get_CONTROL_NS(void)986 __STATIC_FORCEINLINE uint32_t __TZ_get_CONTROL_NS(void)
987 {
988   uint32_t result;
989 
990   __ASM volatile ("MRS %0, control_ns" : "=r" (result) );
991   return(result);
992 }
993 #endif
994 
995 
996 /**
997   \brief   Set Control Register
998   \details Writes the given value to the Control Register.
999   \param [in]    control  Control Register value to set
1000  */
__set_CONTROL(uint32_t control)1001 __STATIC_FORCEINLINE void __set_CONTROL(uint32_t control)
1002 {
1003   __ASM volatile ("MSR control, %0" : : "r" (control) : "memory");
1004   __ISB();
1005 }
1006 
1007 
1008 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1009 /**
1010   \brief   Set Control Register (non-secure)
1011   \details Writes the given value to the non-secure Control Register when in secure state.
1012   \param [in]    control  Control Register value to set
1013  */
__TZ_set_CONTROL_NS(uint32_t control)1014 __STATIC_FORCEINLINE void __TZ_set_CONTROL_NS(uint32_t control)
1015 {
1016   __ASM volatile ("MSR control_ns, %0" : : "r" (control) : "memory");
1017   __ISB();
1018 }
1019 #endif
1020 
1021 
1022 /**
1023   \brief   Get IPSR Register
1024   \details Returns the content of the IPSR Register.
1025   \return               IPSR Register value
1026  */
__get_IPSR(void)1027 __STATIC_FORCEINLINE uint32_t __get_IPSR(void)
1028 {
1029   uint32_t result;
1030 
1031   __ASM volatile ("MRS %0, ipsr" : "=r" (result) );
1032   return(result);
1033 }
1034 
1035 
1036 /**
1037   \brief   Get APSR Register
1038   \details Returns the content of the APSR Register.
1039   \return               APSR Register value
1040  */
__get_APSR(void)1041 __STATIC_FORCEINLINE uint32_t __get_APSR(void)
1042 {
1043   uint32_t result;
1044 
1045   __ASM volatile ("MRS %0, apsr" : "=r" (result) );
1046   return(result);
1047 }
1048 
1049 
1050 /**
1051   \brief   Get xPSR Register
1052   \details Returns the content of the xPSR Register.
1053   \return               xPSR Register value
1054  */
__get_xPSR(void)1055 __STATIC_FORCEINLINE uint32_t __get_xPSR(void)
1056 {
1057   uint32_t result;
1058 
1059   __ASM volatile ("MRS %0, xpsr" : "=r" (result) );
1060   return(result);
1061 }
1062 
1063 
1064 /**
1065   \brief   Get Process Stack Pointer
1066   \details Returns the current value of the Process Stack Pointer (PSP).
1067   \return               PSP Register value
1068  */
__get_PSP(void)1069 __STATIC_FORCEINLINE uint32_t __get_PSP(void)
1070 {
1071   uint32_t result;
1072 
1073   __ASM volatile ("MRS %0, psp"  : "=r" (result) );
1074   return(result);
1075 }
1076 
1077 
1078 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1079 /**
1080   \brief   Get Process Stack Pointer (non-secure)
1081   \details Returns the current value of the non-secure Process Stack Pointer (PSP) when in secure state.
1082   \return               PSP Register value
1083  */
__TZ_get_PSP_NS(void)1084 __STATIC_FORCEINLINE uint32_t __TZ_get_PSP_NS(void)
1085 {
1086   uint32_t result;
1087 
1088   __ASM volatile ("MRS %0, psp_ns"  : "=r" (result) );
1089   return(result);
1090 }
1091 #endif
1092 
1093 
1094 /**
1095   \brief   Set Process Stack Pointer
1096   \details Assigns the given value to the Process Stack Pointer (PSP).
1097   \param [in]    topOfProcStack  Process Stack Pointer value to set
1098  */
__set_PSP(uint32_t topOfProcStack)1099 __STATIC_FORCEINLINE void __set_PSP(uint32_t topOfProcStack)
1100 {
1101   __ASM volatile ("MSR psp, %0" : : "r" (topOfProcStack) : );
1102 }
1103 
1104 
1105 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1106 /**
1107   \brief   Set Process Stack Pointer (non-secure)
1108   \details Assigns the given value to the non-secure Process Stack Pointer (PSP) when in secure state.
1109   \param [in]    topOfProcStack  Process Stack Pointer value to set
1110  */
__TZ_set_PSP_NS(uint32_t topOfProcStack)1111 __STATIC_FORCEINLINE void __TZ_set_PSP_NS(uint32_t topOfProcStack)
1112 {
1113   __ASM volatile ("MSR psp_ns, %0" : : "r" (topOfProcStack) : );
1114 }
1115 #endif
1116 
1117 
1118 /**
1119   \brief   Get Main Stack Pointer
1120   \details Returns the current value of the Main Stack Pointer (MSP).
1121   \return               MSP Register value
1122  */
__get_MSP(void)1123 __STATIC_FORCEINLINE uint32_t __get_MSP(void)
1124 {
1125   uint32_t result;
1126 
1127   __ASM volatile ("MRS %0, msp" : "=r" (result) );
1128   return(result);
1129 }
1130 
1131 
1132 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1133 /**
1134   \brief   Get Main Stack Pointer (non-secure)
1135   \details Returns the current value of the non-secure Main Stack Pointer (MSP) when in secure state.
1136   \return               MSP Register value
1137  */
__TZ_get_MSP_NS(void)1138 __STATIC_FORCEINLINE uint32_t __TZ_get_MSP_NS(void)
1139 {
1140   uint32_t result;
1141 
1142   __ASM volatile ("MRS %0, msp_ns" : "=r" (result) );
1143   return(result);
1144 }
1145 #endif
1146 
1147 
1148 /**
1149   \brief   Set Main Stack Pointer
1150   \details Assigns the given value to the Main Stack Pointer (MSP).
1151   \param [in]    topOfMainStack  Main Stack Pointer value to set
1152  */
__set_MSP(uint32_t topOfMainStack)1153 __STATIC_FORCEINLINE void __set_MSP(uint32_t topOfMainStack)
1154 {
1155   __ASM volatile ("MSR msp, %0" : : "r" (topOfMainStack) : );
1156 }
1157 
1158 
1159 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1160 /**
1161   \brief   Set Main Stack Pointer (non-secure)
1162   \details Assigns the given value to the non-secure Main Stack Pointer (MSP) when in secure state.
1163   \param [in]    topOfMainStack  Main Stack Pointer value to set
1164  */
__TZ_set_MSP_NS(uint32_t topOfMainStack)1165 __STATIC_FORCEINLINE void __TZ_set_MSP_NS(uint32_t topOfMainStack)
1166 {
1167   __ASM volatile ("MSR msp_ns, %0" : : "r" (topOfMainStack) : );
1168 }
1169 #endif
1170 
1171 
1172 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1173 /**
1174   \brief   Get Stack Pointer (non-secure)
1175   \details Returns the current value of the non-secure Stack Pointer (SP) when in secure state.
1176   \return               SP Register value
1177  */
__TZ_get_SP_NS(void)1178 __STATIC_FORCEINLINE uint32_t __TZ_get_SP_NS(void)
1179 {
1180   uint32_t result;
1181 
1182   __ASM volatile ("MRS %0, sp_ns" : "=r" (result) );
1183   return(result);
1184 }
1185 
1186 
1187 /**
1188   \brief   Set Stack Pointer (non-secure)
1189   \details Assigns the given value to the non-secure Stack Pointer (SP) when in secure state.
1190   \param [in]    topOfStack  Stack Pointer value to set
1191  */
__TZ_set_SP_NS(uint32_t topOfStack)1192 __STATIC_FORCEINLINE void __TZ_set_SP_NS(uint32_t topOfStack)
1193 {
1194   __ASM volatile ("MSR sp_ns, %0" : : "r" (topOfStack) : );
1195 }
1196 #endif
1197 
1198 
1199 /**
1200   \brief   Get Priority Mask
1201   \details Returns the current state of the priority mask bit from the Priority Mask Register.
1202   \return               Priority Mask value
1203  */
__get_PRIMASK(void)1204 __STATIC_FORCEINLINE uint32_t __get_PRIMASK(void)
1205 {
1206   uint32_t result;
1207 
1208   __ASM volatile ("MRS %0, primask" : "=r" (result) );
1209   return(result);
1210 }
1211 
1212 
1213 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1214 /**
1215   \brief   Get Priority Mask (non-secure)
1216   \details Returns the current state of the non-secure priority mask bit from the Priority Mask Register when in secure state.
1217   \return               Priority Mask value
1218  */
__TZ_get_PRIMASK_NS(void)1219 __STATIC_FORCEINLINE uint32_t __TZ_get_PRIMASK_NS(void)
1220 {
1221   uint32_t result;
1222 
1223   __ASM volatile ("MRS %0, primask_ns" : "=r" (result) );
1224   return(result);
1225 }
1226 #endif
1227 
1228 
1229 /**
1230   \brief   Set Priority Mask
1231   \details Assigns the given value to the Priority Mask Register.
1232   \param [in]    priMask  Priority Mask
1233  */
__set_PRIMASK(uint32_t priMask)1234 __STATIC_FORCEINLINE void __set_PRIMASK(uint32_t priMask)
1235 {
1236   __ASM volatile ("MSR primask, %0" : : "r" (priMask) : "memory");
1237 }
1238 
1239 
1240 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1241 /**
1242   \brief   Set Priority Mask (non-secure)
1243   \details Assigns the given value to the non-secure Priority Mask Register when in secure state.
1244   \param [in]    priMask  Priority Mask
1245  */
__TZ_set_PRIMASK_NS(uint32_t priMask)1246 __STATIC_FORCEINLINE void __TZ_set_PRIMASK_NS(uint32_t priMask)
1247 {
1248   __ASM volatile ("MSR primask_ns, %0" : : "r" (priMask) : "memory");
1249 }
1250 #endif
1251 
1252 
1253 #if ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
1254      (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
1255      (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    )
1256 /**
1257   \brief   Enable FIQ
1258   \details Enables FIQ interrupts by clearing special-purpose register FAULTMASK.
1259            Can only be executed in Privileged modes.
1260  */
__enable_fault_irq(void)1261 __STATIC_FORCEINLINE void __enable_fault_irq(void)
1262 {
1263   __ASM volatile ("cpsie f" : : : "memory");
1264 }
1265 
1266 
1267 /**
1268   \brief   Disable FIQ
1269   \details Disables FIQ interrupts by setting special-purpose register FAULTMASK.
1270            Can only be executed in Privileged modes.
1271  */
__disable_fault_irq(void)1272 __STATIC_FORCEINLINE void __disable_fault_irq(void)
1273 {
1274   __ASM volatile ("cpsid f" : : : "memory");
1275 }
1276 
1277 
1278 /**
1279   \brief   Get Base Priority
1280   \details Returns the current value of the Base Priority register.
1281   \return               Base Priority register value
1282  */
__get_BASEPRI(void)1283 __STATIC_FORCEINLINE uint32_t __get_BASEPRI(void)
1284 {
1285   uint32_t result;
1286 
1287   __ASM volatile ("MRS %0, basepri" : "=r" (result) );
1288   return(result);
1289 }
1290 
1291 
1292 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1293 /**
1294   \brief   Get Base Priority (non-secure)
1295   \details Returns the current value of the non-secure Base Priority register when in secure state.
1296   \return               Base Priority register value
1297  */
__TZ_get_BASEPRI_NS(void)1298 __STATIC_FORCEINLINE uint32_t __TZ_get_BASEPRI_NS(void)
1299 {
1300   uint32_t result;
1301 
1302   __ASM volatile ("MRS %0, basepri_ns" : "=r" (result) );
1303   return(result);
1304 }
1305 #endif
1306 
1307 
1308 /**
1309   \brief   Set Base Priority
1310   \details Assigns the given value to the Base Priority register.
1311   \param [in]    basePri  Base Priority value to set
1312  */
__set_BASEPRI(uint32_t basePri)1313 __STATIC_FORCEINLINE void __set_BASEPRI(uint32_t basePri)
1314 {
1315   __ASM volatile ("MSR basepri, %0" : : "r" (basePri) : "memory");
1316 }
1317 
1318 
1319 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1320 /**
1321   \brief   Set Base Priority (non-secure)
1322   \details Assigns the given value to the non-secure Base Priority register when in secure state.
1323   \param [in]    basePri  Base Priority value to set
1324  */
__TZ_set_BASEPRI_NS(uint32_t basePri)1325 __STATIC_FORCEINLINE void __TZ_set_BASEPRI_NS(uint32_t basePri)
1326 {
1327   __ASM volatile ("MSR basepri_ns, %0" : : "r" (basePri) : "memory");
1328 }
1329 #endif
1330 
1331 
1332 /**
1333   \brief   Set Base Priority with condition
1334   \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,
1335            or the new value increases the BASEPRI priority level.
1336   \param [in]    basePri  Base Priority value to set
1337  */
__set_BASEPRI_MAX(uint32_t basePri)1338 __STATIC_FORCEINLINE void __set_BASEPRI_MAX(uint32_t basePri)
1339 {
1340   __ASM volatile ("MSR basepri_max, %0" : : "r" (basePri) : "memory");
1341 }
1342 
1343 
1344 /**
1345   \brief   Get Fault Mask
1346   \details Returns the current value of the Fault Mask register.
1347   \return               Fault Mask register value
1348  */
__get_FAULTMASK(void)1349 __STATIC_FORCEINLINE uint32_t __get_FAULTMASK(void)
1350 {
1351   uint32_t result;
1352 
1353   __ASM volatile ("MRS %0, faultmask" : "=r" (result) );
1354   return(result);
1355 }
1356 
1357 
1358 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1359 /**
1360   \brief   Get Fault Mask (non-secure)
1361   \details Returns the current value of the non-secure Fault Mask register when in secure state.
1362   \return               Fault Mask register value
1363  */
__TZ_get_FAULTMASK_NS(void)1364 __STATIC_FORCEINLINE uint32_t __TZ_get_FAULTMASK_NS(void)
1365 {
1366   uint32_t result;
1367 
1368   __ASM volatile ("MRS %0, faultmask_ns" : "=r" (result) );
1369   return(result);
1370 }
1371 #endif
1372 
1373 
1374 /**
1375   \brief   Set Fault Mask
1376   \details Assigns the given value to the Fault Mask register.
1377   \param [in]    faultMask  Fault Mask value to set
1378  */
__set_FAULTMASK(uint32_t faultMask)1379 __STATIC_FORCEINLINE void __set_FAULTMASK(uint32_t faultMask)
1380 {
1381   __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory");
1382 }
1383 
1384 
1385 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1386 /**
1387   \brief   Set Fault Mask (non-secure)
1388   \details Assigns the given value to the non-secure Fault Mask register when in secure state.
1389   \param [in]    faultMask  Fault Mask value to set
1390  */
__TZ_set_FAULTMASK_NS(uint32_t faultMask)1391 __STATIC_FORCEINLINE void __TZ_set_FAULTMASK_NS(uint32_t faultMask)
1392 {
1393   __ASM volatile ("MSR faultmask_ns, %0" : : "r" (faultMask) : "memory");
1394 }
1395 #endif
1396 
1397 #endif /* ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
1398            (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
1399            (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    ) */
1400 
1401 
1402 #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1403      (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    )
1404 
1405 /**
1406   \brief   Get Process Stack Pointer Limit
1407   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1408   Stack Pointer Limit register hence zero is returned always in non-secure
1409   mode.
1410 
1411   \details Returns the current value of the Process Stack Pointer Limit (PSPLIM).
1412   \return               PSPLIM Register value
1413  */
__get_PSPLIM(void)1414 __STATIC_FORCEINLINE uint32_t __get_PSPLIM(void)
1415 {
1416 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
1417     (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
1418     // without main extensions, the non-secure PSPLIM is RAZ/WI
1419   return 0U;
1420 #else
1421   uint32_t result;
1422   __ASM volatile ("MRS %0, psplim"  : "=r" (result) );
1423   return result;
1424 #endif
1425 }
1426 
1427 #if (defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
1428 /**
1429   \brief   Get Process Stack Pointer Limit (non-secure)
1430   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1431   Stack Pointer Limit register hence zero is returned always.
1432 
1433   \details Returns the current value of the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
1434   \return               PSPLIM Register value
1435  */
__TZ_get_PSPLIM_NS(void)1436 __STATIC_FORCEINLINE uint32_t __TZ_get_PSPLIM_NS(void)
1437 {
1438 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
1439   // without main extensions, the non-secure PSPLIM is RAZ/WI
1440   return 0U;
1441 #else
1442   uint32_t result;
1443   __ASM volatile ("MRS %0, psplim_ns"  : "=r" (result) );
1444   return result;
1445 #endif
1446 }
1447 #endif
1448 
1449 
1450 /**
1451   \brief   Set Process Stack Pointer Limit
1452   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1453   Stack Pointer Limit register hence the write is silently ignored in non-secure
1454   mode.
1455 
1456   \details Assigns the given value to the Process Stack Pointer Limit (PSPLIM).
1457   \param [in]    ProcStackPtrLimit  Process Stack Pointer Limit value to set
1458  */
__set_PSPLIM(uint32_t ProcStackPtrLimit)1459 __STATIC_FORCEINLINE void __set_PSPLIM(uint32_t ProcStackPtrLimit)
1460 {
1461 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
1462     (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
1463   // without main extensions, the non-secure PSPLIM is RAZ/WI
1464   (void)ProcStackPtrLimit;
1465 #else
1466   __ASM volatile ("MSR psplim, %0" : : "r" (ProcStackPtrLimit));
1467 #endif
1468 }
1469 
1470 
1471 #if (defined (__ARM_FEATURE_CMSE  ) && (__ARM_FEATURE_CMSE   == 3))
1472 /**
1473   \brief   Set Process Stack Pointer (non-secure)
1474   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1475   Stack Pointer Limit register hence the write is silently ignored.
1476 
1477   \details Assigns the given value to the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
1478   \param [in]    ProcStackPtrLimit  Process Stack Pointer Limit value to set
1479  */
__TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit)1480 __STATIC_FORCEINLINE void __TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit)
1481 {
1482 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
1483   // without main extensions, the non-secure PSPLIM is RAZ/WI
1484   (void)ProcStackPtrLimit;
1485 #else
1486   __ASM volatile ("MSR psplim_ns, %0\n" : : "r" (ProcStackPtrLimit));
1487 #endif
1488 }
1489 #endif
1490 
1491 
1492 /**
1493   \brief   Get Main Stack Pointer Limit
1494   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1495   Stack Pointer Limit register hence zero is returned always in non-secure
1496   mode.
1497 
1498   \details Returns the current value of the Main Stack Pointer Limit (MSPLIM).
1499   \return               MSPLIM Register value
1500  */
__get_MSPLIM(void)1501 __STATIC_FORCEINLINE uint32_t __get_MSPLIM(void)
1502 {
1503 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
1504     (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
1505   // without main extensions, the non-secure MSPLIM is RAZ/WI
1506   return 0U;
1507 #else
1508   uint32_t result;
1509   __ASM volatile ("MRS %0, msplim" : "=r" (result) );
1510   return result;
1511 #endif
1512 }
1513 
1514 
1515 #if (defined (__ARM_FEATURE_CMSE  ) && (__ARM_FEATURE_CMSE   == 3))
1516 /**
1517   \brief   Get Main Stack Pointer Limit (non-secure)
1518   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1519   Stack Pointer Limit register hence zero is returned always.
1520 
1521   \details Returns the current value of the non-secure Main Stack Pointer Limit(MSPLIM) when in secure state.
1522   \return               MSPLIM Register value
1523  */
__TZ_get_MSPLIM_NS(void)1524 __STATIC_FORCEINLINE uint32_t __TZ_get_MSPLIM_NS(void)
1525 {
1526 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
1527   // without main extensions, the non-secure MSPLIM is RAZ/WI
1528   return 0U;
1529 #else
1530   uint32_t result;
1531   __ASM volatile ("MRS %0, msplim_ns" : "=r" (result) );
1532   return result;
1533 #endif
1534 }
1535 #endif
1536 
1537 
1538 /**
1539   \brief   Set Main Stack Pointer Limit
1540   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1541   Stack Pointer Limit register hence the write is silently ignored in non-secure
1542   mode.
1543 
1544   \details Assigns the given value to the Main Stack Pointer Limit (MSPLIM).
1545   \param [in]    MainStackPtrLimit  Main Stack Pointer Limit value to set
1546  */
__set_MSPLIM(uint32_t MainStackPtrLimit)1547 __STATIC_FORCEINLINE void __set_MSPLIM(uint32_t MainStackPtrLimit)
1548 {
1549 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
1550     (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
1551   // without main extensions, the non-secure MSPLIM is RAZ/WI
1552   (void)MainStackPtrLimit;
1553 #else
1554   __ASM volatile ("MSR msplim, %0" : : "r" (MainStackPtrLimit));
1555 #endif
1556 }
1557 
1558 
1559 #if (defined (__ARM_FEATURE_CMSE  ) && (__ARM_FEATURE_CMSE   == 3))
1560 /**
1561   \brief   Set Main Stack Pointer Limit (non-secure)
1562   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1563   Stack Pointer Limit register hence the write is silently ignored.
1564 
1565   \details Assigns the given value to the non-secure Main Stack Pointer Limit (MSPLIM) when in secure state.
1566   \param [in]    MainStackPtrLimit  Main Stack Pointer value to set
1567  */
__TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit)1568 __STATIC_FORCEINLINE void __TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit)
1569 {
1570 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
1571   // without main extensions, the non-secure MSPLIM is RAZ/WI
1572   (void)MainStackPtrLimit;
1573 #else
1574   __ASM volatile ("MSR msplim_ns, %0" : : "r" (MainStackPtrLimit));
1575 #endif
1576 }
1577 #endif
1578 
1579 #endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1580            (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    ) */
1581 
1582 
1583 /**
1584   \brief   Get FPSCR
1585   \details Returns the current value of the Floating Point Status/Control register.
1586   \return               Floating Point Status/Control register value
1587  */
__get_FPSCR(void)1588 __STATIC_FORCEINLINE uint32_t __get_FPSCR(void)
1589 {
1590 #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
1591      (defined (__FPU_USED   ) && (__FPU_USED    == 1U))     )
1592 #if __has_builtin(__builtin_arm_get_fpscr)
1593 // Re-enable using built-in when GCC has been fixed
1594 // || (__GNUC__ > 7) || (__GNUC__ == 7 && __GNUC_MINOR__ >= 2)
1595   /* see https://gcc.gnu.org/ml/gcc-patches/2017-04/msg00443.html */
1596   return __builtin_arm_get_fpscr();
1597 #else
1598   uint32_t result;
1599 
1600   __ASM volatile ("VMRS %0, fpscr" : "=r" (result) );
1601   return(result);
1602 #endif
1603 #else
1604   return(0U);
1605 #endif
1606 }
1607 
1608 
1609 /**
1610   \brief   Set FPSCR
1611   \details Assigns the given value to the Floating Point Status/Control register.
1612   \param [in]    fpscr  Floating Point Status/Control value to set
1613  */
__set_FPSCR(uint32_t fpscr)1614 __STATIC_FORCEINLINE void __set_FPSCR(uint32_t fpscr)
1615 {
1616 #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
1617      (defined (__FPU_USED   ) && (__FPU_USED    == 1U))     )
1618 #if __has_builtin(__builtin_arm_set_fpscr)
1619 // Re-enable using built-in when GCC has been fixed
1620 // || (__GNUC__ > 7) || (__GNUC__ == 7 && __GNUC_MINOR__ >= 2)
1621   /* see https://gcc.gnu.org/ml/gcc-patches/2017-04/msg00443.html */
1622   __builtin_arm_set_fpscr(fpscr);
1623 #else
1624   __ASM volatile ("VMSR fpscr, %0" : : "r" (fpscr) : "vfpcc", "memory");
1625 #endif
1626 #else
1627   (void)fpscr;
1628 #endif
1629 }
1630 
1631 
1632 /*@} end of CMSIS_Core_RegAccFunctions */
1633 
1634 
1635 /* ###################  Compiler specific Intrinsics  ########################### */
1636 /** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
1637   Access to dedicated SIMD instructions
1638   @{
1639 */
1640 
1641 #if (defined (__ARM_FEATURE_DSP) && (__ARM_FEATURE_DSP == 1))
1642 
__SADD8(uint32_t op1,uint32_t op2)1643 __STATIC_FORCEINLINE uint32_t __SADD8(uint32_t op1, uint32_t op2)
1644 {
1645   uint32_t result;
1646 
1647   __ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1648   return(result);
1649 }
1650 
__QADD8(uint32_t op1,uint32_t op2)1651 __STATIC_FORCEINLINE uint32_t __QADD8(uint32_t op1, uint32_t op2)
1652 {
1653   uint32_t result;
1654 
1655   __ASM ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1656   return(result);
1657 }
1658 
__SHADD8(uint32_t op1,uint32_t op2)1659 __STATIC_FORCEINLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2)
1660 {
1661   uint32_t result;
1662 
1663   __ASM ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1664   return(result);
1665 }
1666 
__UADD8(uint32_t op1,uint32_t op2)1667 __STATIC_FORCEINLINE uint32_t __UADD8(uint32_t op1, uint32_t op2)
1668 {
1669   uint32_t result;
1670 
1671   __ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1672   return(result);
1673 }
1674 
__UQADD8(uint32_t op1,uint32_t op2)1675 __STATIC_FORCEINLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2)
1676 {
1677   uint32_t result;
1678 
1679   __ASM ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1680   return(result);
1681 }
1682 
__UHADD8(uint32_t op1,uint32_t op2)1683 __STATIC_FORCEINLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2)
1684 {
1685   uint32_t result;
1686 
1687   __ASM ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1688   return(result);
1689 }
1690 
1691 
__SSUB8(uint32_t op1,uint32_t op2)1692 __STATIC_FORCEINLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2)
1693 {
1694   uint32_t result;
1695 
1696   __ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1697   return(result);
1698 }
1699 
__QSUB8(uint32_t op1,uint32_t op2)1700 __STATIC_FORCEINLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2)
1701 {
1702   uint32_t result;
1703 
1704   __ASM ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1705   return(result);
1706 }
1707 
__SHSUB8(uint32_t op1,uint32_t op2)1708 __STATIC_FORCEINLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2)
1709 {
1710   uint32_t result;
1711 
1712   __ASM ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1713   return(result);
1714 }
1715 
__USUB8(uint32_t op1,uint32_t op2)1716 __STATIC_FORCEINLINE uint32_t __USUB8(uint32_t op1, uint32_t op2)
1717 {
1718   uint32_t result;
1719 
1720   __ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1721   return(result);
1722 }
1723 
__UQSUB8(uint32_t op1,uint32_t op2)1724 __STATIC_FORCEINLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2)
1725 {
1726   uint32_t result;
1727 
1728   __ASM ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1729   return(result);
1730 }
1731 
__UHSUB8(uint32_t op1,uint32_t op2)1732 __STATIC_FORCEINLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2)
1733 {
1734   uint32_t result;
1735 
1736   __ASM ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1737   return(result);
1738 }
1739 
1740 
__SADD16(uint32_t op1,uint32_t op2)1741 __STATIC_FORCEINLINE uint32_t __SADD16(uint32_t op1, uint32_t op2)
1742 {
1743   uint32_t result;
1744 
1745   __ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1746   return(result);
1747 }
1748 
__QADD16(uint32_t op1,uint32_t op2)1749 __STATIC_FORCEINLINE uint32_t __QADD16(uint32_t op1, uint32_t op2)
1750 {
1751   uint32_t result;
1752 
1753   __ASM ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1754   return(result);
1755 }
1756 
__SHADD16(uint32_t op1,uint32_t op2)1757 __STATIC_FORCEINLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2)
1758 {
1759   uint32_t result;
1760 
1761   __ASM ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1762   return(result);
1763 }
1764 
__UADD16(uint32_t op1,uint32_t op2)1765 __STATIC_FORCEINLINE uint32_t __UADD16(uint32_t op1, uint32_t op2)
1766 {
1767   uint32_t result;
1768 
1769   __ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1770   return(result);
1771 }
1772 
__UQADD16(uint32_t op1,uint32_t op2)1773 __STATIC_FORCEINLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2)
1774 {
1775   uint32_t result;
1776 
1777   __ASM ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1778   return(result);
1779 }
1780 
__UHADD16(uint32_t op1,uint32_t op2)1781 __STATIC_FORCEINLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2)
1782 {
1783   uint32_t result;
1784 
1785   __ASM ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1786   return(result);
1787 }
1788 
__SSUB16(uint32_t op1,uint32_t op2)1789 __STATIC_FORCEINLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2)
1790 {
1791   uint32_t result;
1792 
1793   __ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1794   return(result);
1795 }
1796 
__QSUB16(uint32_t op1,uint32_t op2)1797 __STATIC_FORCEINLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2)
1798 {
1799   uint32_t result;
1800 
1801   __ASM ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1802   return(result);
1803 }
1804 
__SHSUB16(uint32_t op1,uint32_t op2)1805 __STATIC_FORCEINLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2)
1806 {
1807   uint32_t result;
1808 
1809   __ASM ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1810   return(result);
1811 }
1812 
__USUB16(uint32_t op1,uint32_t op2)1813 __STATIC_FORCEINLINE uint32_t __USUB16(uint32_t op1, uint32_t op2)
1814 {
1815   uint32_t result;
1816 
1817   __ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1818   return(result);
1819 }
1820 
__UQSUB16(uint32_t op1,uint32_t op2)1821 __STATIC_FORCEINLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2)
1822 {
1823   uint32_t result;
1824 
1825   __ASM ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1826   return(result);
1827 }
1828 
__UHSUB16(uint32_t op1,uint32_t op2)1829 __STATIC_FORCEINLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2)
1830 {
1831   uint32_t result;
1832 
1833   __ASM ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1834   return(result);
1835 }
1836 
__SASX(uint32_t op1,uint32_t op2)1837 __STATIC_FORCEINLINE uint32_t __SASX(uint32_t op1, uint32_t op2)
1838 {
1839   uint32_t result;
1840 
1841   __ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1842   return(result);
1843 }
1844 
__QASX(uint32_t op1,uint32_t op2)1845 __STATIC_FORCEINLINE uint32_t __QASX(uint32_t op1, uint32_t op2)
1846 {
1847   uint32_t result;
1848 
1849   __ASM ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1850   return(result);
1851 }
1852 
__SHASX(uint32_t op1,uint32_t op2)1853 __STATIC_FORCEINLINE uint32_t __SHASX(uint32_t op1, uint32_t op2)
1854 {
1855   uint32_t result;
1856 
1857   __ASM ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1858   return(result);
1859 }
1860 
__UASX(uint32_t op1,uint32_t op2)1861 __STATIC_FORCEINLINE uint32_t __UASX(uint32_t op1, uint32_t op2)
1862 {
1863   uint32_t result;
1864 
1865   __ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1866   return(result);
1867 }
1868 
__UQASX(uint32_t op1,uint32_t op2)1869 __STATIC_FORCEINLINE uint32_t __UQASX(uint32_t op1, uint32_t op2)
1870 {
1871   uint32_t result;
1872 
1873   __ASM ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1874   return(result);
1875 }
1876 
__UHASX(uint32_t op1,uint32_t op2)1877 __STATIC_FORCEINLINE uint32_t __UHASX(uint32_t op1, uint32_t op2)
1878 {
1879   uint32_t result;
1880 
1881   __ASM ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1882   return(result);
1883 }
1884 
__SSAX(uint32_t op1,uint32_t op2)1885 __STATIC_FORCEINLINE uint32_t __SSAX(uint32_t op1, uint32_t op2)
1886 {
1887   uint32_t result;
1888 
1889   __ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1890   return(result);
1891 }
1892 
__QSAX(uint32_t op1,uint32_t op2)1893 __STATIC_FORCEINLINE uint32_t __QSAX(uint32_t op1, uint32_t op2)
1894 {
1895   uint32_t result;
1896 
1897   __ASM ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1898   return(result);
1899 }
1900 
__SHSAX(uint32_t op1,uint32_t op2)1901 __STATIC_FORCEINLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2)
1902 {
1903   uint32_t result;
1904 
1905   __ASM ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1906   return(result);
1907 }
1908 
__USAX(uint32_t op1,uint32_t op2)1909 __STATIC_FORCEINLINE uint32_t __USAX(uint32_t op1, uint32_t op2)
1910 {
1911   uint32_t result;
1912 
1913   __ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1914   return(result);
1915 }
1916 
__UQSAX(uint32_t op1,uint32_t op2)1917 __STATIC_FORCEINLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2)
1918 {
1919   uint32_t result;
1920 
1921   __ASM ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1922   return(result);
1923 }
1924 
__UHSAX(uint32_t op1,uint32_t op2)1925 __STATIC_FORCEINLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2)
1926 {
1927   uint32_t result;
1928 
1929   __ASM ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1930   return(result);
1931 }
1932 
__USAD8(uint32_t op1,uint32_t op2)1933 __STATIC_FORCEINLINE uint32_t __USAD8(uint32_t op1, uint32_t op2)
1934 {
1935   uint32_t result;
1936 
1937   __ASM ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1938   return(result);
1939 }
1940 
__USADA8(uint32_t op1,uint32_t op2,uint32_t op3)1941 __STATIC_FORCEINLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3)
1942 {
1943   uint32_t result;
1944 
1945   __ASM ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1946   return(result);
1947 }
1948 
1949 #define __SSAT16(ARG1, ARG2) \
1950 __extension__ \
1951 ({                          \
1952   int32_t __RES, __ARG1 = (ARG1); \
1953   __ASM volatile ("ssat16 %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) : "cc" ); \
1954   __RES; \
1955  })
1956 
1957 #define __USAT16(ARG1, ARG2) \
1958 __extension__ \
1959 ({                          \
1960   uint32_t __RES, __ARG1 = (ARG1); \
1961   __ASM volatile ("usat16 %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) : "cc" ); \
1962   __RES; \
1963  })
1964 
__UXTB16(uint32_t op1)1965 __STATIC_FORCEINLINE uint32_t __UXTB16(uint32_t op1)
1966 {
1967   uint32_t result;
1968 
1969   __ASM ("uxtb16 %0, %1" : "=r" (result) : "r" (op1));
1970   return(result);
1971 }
1972 
__UXTAB16(uint32_t op1,uint32_t op2)1973 __STATIC_FORCEINLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2)
1974 {
1975   uint32_t result;
1976 
1977   __ASM ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1978   return(result);
1979 }
1980 
__SXTB16(uint32_t op1)1981 __STATIC_FORCEINLINE uint32_t __SXTB16(uint32_t op1)
1982 {
1983   uint32_t result;
1984 
1985   __ASM ("sxtb16 %0, %1" : "=r" (result) : "r" (op1));
1986   return(result);
1987 }
1988 
__SXTB16_RORn(uint32_t op1,uint32_t rotate)1989 __STATIC_FORCEINLINE uint32_t __SXTB16_RORn(uint32_t op1, uint32_t rotate)
1990 {
1991   uint32_t result;
1992   if (__builtin_constant_p(rotate) && ((rotate == 8U) || (rotate == 16U) || (rotate == 24U))) {
1993     __ASM volatile ("sxtb16 %0, %1, ROR %2" : "=r" (result) : "r" (op1), "i" (rotate) );
1994   } else {
1995     result = __SXTB16(__ROR(op1, rotate)) ;
1996   }
1997   return result;
1998 }
1999 
__SXTAB16(uint32_t op1,uint32_t op2)2000 __STATIC_FORCEINLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2)
2001 {
2002   uint32_t result;
2003 
2004   __ASM ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2005   return(result);
2006 }
2007 
__SXTAB16_RORn(uint32_t op1,uint32_t op2,uint32_t rotate)2008 __STATIC_FORCEINLINE uint32_t __SXTAB16_RORn(uint32_t op1, uint32_t op2, uint32_t rotate)
2009 {
2010   uint32_t result;
2011   if (__builtin_constant_p(rotate) && ((rotate == 8U) || (rotate == 16U) || (rotate == 24U))) {
2012     __ASM volatile ("sxtab16 %0, %1, %2, ROR %3" : "=r" (result) : "r" (op1) , "r" (op2) , "i" (rotate));
2013   } else {
2014     result = __SXTAB16(op1, __ROR(op2, rotate));
2015   }
2016   return result;
2017 }
2018 
2019 
__SMUAD(uint32_t op1,uint32_t op2)2020 __STATIC_FORCEINLINE uint32_t __SMUAD  (uint32_t op1, uint32_t op2)
2021 {
2022   uint32_t result;
2023 
2024   __ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2025   return(result);
2026 }
2027 
__SMUADX(uint32_t op1,uint32_t op2)2028 __STATIC_FORCEINLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2)
2029 {
2030   uint32_t result;
2031 
2032   __ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2033   return(result);
2034 }
2035 
__SMLAD(uint32_t op1,uint32_t op2,uint32_t op3)2036 __STATIC_FORCEINLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3)
2037 {
2038   uint32_t result;
2039 
2040   __ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
2041   return(result);
2042 }
2043 
__SMLADX(uint32_t op1,uint32_t op2,uint32_t op3)2044 __STATIC_FORCEINLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3)
2045 {
2046   uint32_t result;
2047 
2048   __ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
2049   return(result);
2050 }
2051 
__SMLALD(uint32_t op1,uint32_t op2,uint64_t acc)2052 __STATIC_FORCEINLINE uint64_t __SMLALD (uint32_t op1, uint32_t op2, uint64_t acc)
2053 {
2054   union llreg_u{
2055     uint32_t w32[2];
2056     uint64_t w64;
2057   } llr;
2058   llr.w64 = acc;
2059 
2060 #ifndef __ARMEB__   /* Little endian */
2061   __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
2062 #else               /* Big endian */
2063   __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
2064 #endif
2065 
2066   return(llr.w64);
2067 }
2068 
__SMLALDX(uint32_t op1,uint32_t op2,uint64_t acc)2069 __STATIC_FORCEINLINE uint64_t __SMLALDX (uint32_t op1, uint32_t op2, uint64_t acc)
2070 {
2071   union llreg_u{
2072     uint32_t w32[2];
2073     uint64_t w64;
2074   } llr;
2075   llr.w64 = acc;
2076 
2077 #ifndef __ARMEB__   /* Little endian */
2078   __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
2079 #else               /* Big endian */
2080   __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
2081 #endif
2082 
2083   return(llr.w64);
2084 }
2085 
__SMUSD(uint32_t op1,uint32_t op2)2086 __STATIC_FORCEINLINE uint32_t __SMUSD  (uint32_t op1, uint32_t op2)
2087 {
2088   uint32_t result;
2089 
2090   __ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2091   return(result);
2092 }
2093 
__SMUSDX(uint32_t op1,uint32_t op2)2094 __STATIC_FORCEINLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2)
2095 {
2096   uint32_t result;
2097 
2098   __ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2099   return(result);
2100 }
2101 
__SMLSD(uint32_t op1,uint32_t op2,uint32_t op3)2102 __STATIC_FORCEINLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3)
2103 {
2104   uint32_t result;
2105 
2106   __ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
2107   return(result);
2108 }
2109 
__SMLSDX(uint32_t op1,uint32_t op2,uint32_t op3)2110 __STATIC_FORCEINLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3)
2111 {
2112   uint32_t result;
2113 
2114   __ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
2115   return(result);
2116 }
2117 
__SMLSLD(uint32_t op1,uint32_t op2,uint64_t acc)2118 __STATIC_FORCEINLINE uint64_t __SMLSLD (uint32_t op1, uint32_t op2, uint64_t acc)
2119 {
2120   union llreg_u{
2121     uint32_t w32[2];
2122     uint64_t w64;
2123   } llr;
2124   llr.w64 = acc;
2125 
2126 #ifndef __ARMEB__   /* Little endian */
2127   __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
2128 #else               /* Big endian */
2129   __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
2130 #endif
2131 
2132   return(llr.w64);
2133 }
2134 
__SMLSLDX(uint32_t op1,uint32_t op2,uint64_t acc)2135 __STATIC_FORCEINLINE uint64_t __SMLSLDX (uint32_t op1, uint32_t op2, uint64_t acc)
2136 {
2137   union llreg_u{
2138     uint32_t w32[2];
2139     uint64_t w64;
2140   } llr;
2141   llr.w64 = acc;
2142 
2143 #ifndef __ARMEB__   /* Little endian */
2144   __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
2145 #else               /* Big endian */
2146   __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
2147 #endif
2148 
2149   return(llr.w64);
2150 }
2151 
__SEL(uint32_t op1,uint32_t op2)2152 __STATIC_FORCEINLINE uint32_t __SEL  (uint32_t op1, uint32_t op2)
2153 {
2154   uint32_t result;
2155 
2156   __ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2157   return(result);
2158 }
2159 
__QADD(int32_t op1,int32_t op2)2160 __STATIC_FORCEINLINE  int32_t __QADD( int32_t op1,  int32_t op2)
2161 {
2162   int32_t result;
2163 
2164   __ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2165   return(result);
2166 }
2167 
__QSUB(int32_t op1,int32_t op2)2168 __STATIC_FORCEINLINE  int32_t __QSUB( int32_t op1,  int32_t op2)
2169 {
2170   int32_t result;
2171 
2172   __ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2173   return(result);
2174 }
2175 
2176 
2177 #define __PKHBT(ARG1,ARG2,ARG3) \
2178 __extension__ \
2179 ({                          \
2180   uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
2181   __ASM ("pkhbt %0, %1, %2, lsl %3" : "=r" (__RES) :  "r" (__ARG1), "r" (__ARG2), "I" (ARG3)  ); \
2182   __RES; \
2183  })
2184 
2185 #define __PKHTB(ARG1,ARG2,ARG3) \
2186 __extension__ \
2187 ({                          \
2188   uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
2189   if (ARG3 == 0) \
2190     __ASM ("pkhtb %0, %1, %2" : "=r" (__RES) :  "r" (__ARG1), "r" (__ARG2)  ); \
2191   else \
2192     __ASM ("pkhtb %0, %1, %2, asr %3" : "=r" (__RES) :  "r" (__ARG1), "r" (__ARG2), "I" (ARG3)  ); \
2193   __RES; \
2194  })
2195 
2196 
__SMMLA(int32_t op1,int32_t op2,int32_t op3)2197 __STATIC_FORCEINLINE int32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3)
2198 {
2199  int32_t result;
2200 
2201  __ASM ("smmla %0, %1, %2, %3" : "=r" (result): "r"  (op1), "r" (op2), "r" (op3) );
2202  return(result);
2203 }
2204 
2205 #endif /* (__ARM_FEATURE_DSP == 1) */
2206 /*@} end of group CMSIS_SIMD_intrinsics */
2207 
2208 
2209 #pragma GCC diagnostic pop
2210 
2211 #endif /* __CMSIS_GCC_H */
2212