• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * This file contains the functions which manage clocksource drivers.
4  *
5  * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/device.h>
11 #include <linux/clocksource.h>
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
15 #include <linux/tick.h>
16 #include <linux/kthread.h>
17 
18 #include "tick-internal.h"
19 #include "timekeeping_internal.h"
20 
21 /**
22  * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
23  * @mult:	pointer to mult variable
24  * @shift:	pointer to shift variable
25  * @from:	frequency to convert from
26  * @to:		frequency to convert to
27  * @maxsec:	guaranteed runtime conversion range in seconds
28  *
29  * The function evaluates the shift/mult pair for the scaled math
30  * operations of clocksources and clockevents.
31  *
32  * @to and @from are frequency values in HZ. For clock sources @to is
33  * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
34  * event @to is the counter frequency and @from is NSEC_PER_SEC.
35  *
36  * The @maxsec conversion range argument controls the time frame in
37  * seconds which must be covered by the runtime conversion with the
38  * calculated mult and shift factors. This guarantees that no 64bit
39  * overflow happens when the input value of the conversion is
40  * multiplied with the calculated mult factor. Larger ranges may
41  * reduce the conversion accuracy by chosing smaller mult and shift
42  * factors.
43  */
44 void
clocks_calc_mult_shift(u32 * mult,u32 * shift,u32 from,u32 to,u32 maxsec)45 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
46 {
47 	u64 tmp;
48 	u32 sft, sftacc= 32;
49 
50 	/*
51 	 * Calculate the shift factor which is limiting the conversion
52 	 * range:
53 	 */
54 	tmp = ((u64)maxsec * from) >> 32;
55 	while (tmp) {
56 		tmp >>=1;
57 		sftacc--;
58 	}
59 
60 	/*
61 	 * Find the conversion shift/mult pair which has the best
62 	 * accuracy and fits the maxsec conversion range:
63 	 */
64 	for (sft = 32; sft > 0; sft--) {
65 		tmp = (u64) to << sft;
66 		tmp += from / 2;
67 		do_div(tmp, from);
68 		if ((tmp >> sftacc) == 0)
69 			break;
70 	}
71 	*mult = tmp;
72 	*shift = sft;
73 }
74 EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
75 
76 /*[Clocksource internal variables]---------
77  * curr_clocksource:
78  *	currently selected clocksource.
79  * suspend_clocksource:
80  *	used to calculate the suspend time.
81  * clocksource_list:
82  *	linked list with the registered clocksources
83  * clocksource_mutex:
84  *	protects manipulations to curr_clocksource and the clocksource_list
85  * override_name:
86  *	Name of the user-specified clocksource.
87  */
88 static struct clocksource *curr_clocksource;
89 static struct clocksource *suspend_clocksource;
90 static LIST_HEAD(clocksource_list);
91 static DEFINE_MUTEX(clocksource_mutex);
92 static char override_name[CS_NAME_LEN];
93 static int finished_booting;
94 static u64 suspend_start;
95 
96 /*
97  * Threshold: 0.0312s, when doubled: 0.0625s.
98  * Also a default for cs->uncertainty_margin when registering clocks.
99  */
100 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 5)
101 
102 /*
103  * Maximum permissible delay between two readouts of the watchdog
104  * clocksource surrounding a read of the clocksource being validated.
105  * This delay could be due to SMIs, NMIs, or to VCPU preemptions.  Used as
106  * a lower bound for cs->uncertainty_margin values when registering clocks.
107  */
108 #define WATCHDOG_MAX_SKEW (100 * NSEC_PER_USEC)
109 
110 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
111 static void clocksource_watchdog_work(struct work_struct *work);
112 static void clocksource_select(void);
113 
114 static LIST_HEAD(watchdog_list);
115 static struct clocksource *watchdog;
116 static struct timer_list watchdog_timer;
117 static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
118 static DEFINE_SPINLOCK(watchdog_lock);
119 static int watchdog_running;
120 static atomic_t watchdog_reset_pending;
121 
clocksource_watchdog_lock(unsigned long * flags)122 static inline void clocksource_watchdog_lock(unsigned long *flags)
123 {
124 	spin_lock_irqsave(&watchdog_lock, *flags);
125 }
126 
clocksource_watchdog_unlock(unsigned long * flags)127 static inline void clocksource_watchdog_unlock(unsigned long *flags)
128 {
129 	spin_unlock_irqrestore(&watchdog_lock, *flags);
130 }
131 
132 static int clocksource_watchdog_kthread(void *data);
133 static void __clocksource_change_rating(struct clocksource *cs, int rating);
134 
135 /*
136  * Interval: 0.5sec.
137  */
138 #define WATCHDOG_INTERVAL (HZ >> 1)
139 
clocksource_watchdog_work(struct work_struct * work)140 static void clocksource_watchdog_work(struct work_struct *work)
141 {
142 	/*
143 	 * We cannot directly run clocksource_watchdog_kthread() here, because
144 	 * clocksource_select() calls timekeeping_notify() which uses
145 	 * stop_machine(). One cannot use stop_machine() from a workqueue() due
146 	 * lock inversions wrt CPU hotplug.
147 	 *
148 	 * Also, we only ever run this work once or twice during the lifetime
149 	 * of the kernel, so there is no point in creating a more permanent
150 	 * kthread for this.
151 	 *
152 	 * If kthread_run fails the next watchdog scan over the
153 	 * watchdog_list will find the unstable clock again.
154 	 */
155 	kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
156 }
157 
__clocksource_unstable(struct clocksource * cs)158 static void __clocksource_unstable(struct clocksource *cs)
159 {
160 	cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
161 	cs->flags |= CLOCK_SOURCE_UNSTABLE;
162 
163 	/*
164 	 * If the clocksource is registered clocksource_watchdog_kthread() will
165 	 * re-rate and re-select.
166 	 */
167 	if (list_empty(&cs->list)) {
168 		cs->rating = 0;
169 		return;
170 	}
171 
172 	if (cs->mark_unstable)
173 		cs->mark_unstable(cs);
174 
175 	/* kick clocksource_watchdog_kthread() */
176 	if (finished_booting)
177 		schedule_work(&watchdog_work);
178 }
179 
180 /**
181  * clocksource_mark_unstable - mark clocksource unstable via watchdog
182  * @cs:		clocksource to be marked unstable
183  *
184  * This function is called by the x86 TSC code to mark clocksources as unstable;
185  * it defers demotion and re-selection to a kthread.
186  */
clocksource_mark_unstable(struct clocksource * cs)187 void clocksource_mark_unstable(struct clocksource *cs)
188 {
189 	unsigned long flags;
190 
191 	spin_lock_irqsave(&watchdog_lock, flags);
192 	if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
193 		if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
194 			list_add(&cs->wd_list, &watchdog_list);
195 		__clocksource_unstable(cs);
196 	}
197 	spin_unlock_irqrestore(&watchdog_lock, flags);
198 }
199 
200 static ulong max_cswd_read_retries = 3;
201 module_param(max_cswd_read_retries, ulong, 0644);
202 
203 enum wd_read_status {
204 	WD_READ_SUCCESS,
205 	WD_READ_UNSTABLE,
206 	WD_READ_SKIP
207 };
208 
cs_watchdog_read(struct clocksource * cs,u64 * csnow,u64 * wdnow)209 static enum wd_read_status cs_watchdog_read(struct clocksource *cs, u64 *csnow, u64 *wdnow)
210 {
211 	unsigned int nretries;
212 	u64 wd_end, wd_end2, wd_delta;
213 	int64_t wd_delay, wd_seq_delay;
214 
215 	for (nretries = 0; nretries <= max_cswd_read_retries; nretries++) {
216 		local_irq_disable();
217 		*wdnow = watchdog->read(watchdog);
218 		*csnow = cs->read(cs);
219 		wd_end = watchdog->read(watchdog);
220 		wd_end2 = watchdog->read(watchdog);
221 		local_irq_enable();
222 
223 		wd_delta = clocksource_delta(wd_end, *wdnow, watchdog->mask);
224 		wd_delay = clocksource_cyc2ns(wd_delta, watchdog->mult,
225 					      watchdog->shift);
226 		if (wd_delay <= WATCHDOG_MAX_SKEW) {
227 			if (nretries > 1 || nretries >= max_cswd_read_retries) {
228 				pr_warn("timekeeping watchdog on CPU%d: %s retried %d times before success\n",
229 					smp_processor_id(), watchdog->name, nretries);
230 			}
231 			return WD_READ_SUCCESS;
232 		}
233 
234 		/*
235 		 * Now compute delay in consecutive watchdog read to see if
236 		 * there is too much external interferences that cause
237 		 * significant delay in reading both clocksource and watchdog.
238 		 *
239 		 * If consecutive WD read-back delay > WATCHDOG_MAX_SKEW/2,
240 		 * report system busy, reinit the watchdog and skip the current
241 		 * watchdog test.
242 		 */
243 		wd_delta = clocksource_delta(wd_end2, wd_end, watchdog->mask);
244 		wd_seq_delay = clocksource_cyc2ns(wd_delta, watchdog->mult, watchdog->shift);
245 		if (wd_seq_delay > WATCHDOG_MAX_SKEW/2)
246 			goto skip_test;
247 	}
248 
249 	pr_warn("timekeeping watchdog on CPU%d: %s read-back delay of %lldns, attempt %d, marking unstable\n",
250 		smp_processor_id(), watchdog->name, wd_delay, nretries);
251 	return WD_READ_UNSTABLE;
252 
253 skip_test:
254 	pr_info("timekeeping watchdog on CPU%d: %s wd-wd read-back delay of %lldns\n",
255 		smp_processor_id(), watchdog->name, wd_seq_delay);
256 	pr_info("wd-%s-wd read-back delay of %lldns, clock-skew test skipped!\n",
257 		cs->name, wd_delay);
258 	return WD_READ_SKIP;
259 }
260 
261 static u64 csnow_mid;
262 static cpumask_t cpus_ahead;
263 static cpumask_t cpus_behind;
264 
clocksource_verify_one_cpu(void * csin)265 static void clocksource_verify_one_cpu(void *csin)
266 {
267 	struct clocksource *cs = (struct clocksource *)csin;
268 
269 	csnow_mid = cs->read(cs);
270 }
271 
clocksource_verify_percpu(struct clocksource * cs)272 static void clocksource_verify_percpu(struct clocksource *cs)
273 {
274 	int64_t cs_nsec, cs_nsec_max = 0, cs_nsec_min = LLONG_MAX;
275 	u64 csnow_begin, csnow_end;
276 	int cpu, testcpu;
277 	s64 delta;
278 
279 	cpumask_clear(&cpus_ahead);
280 	cpumask_clear(&cpus_behind);
281 	preempt_disable();
282 	testcpu = smp_processor_id();
283 	pr_warn("Checking clocksource %s synchronization from CPU %d.\n", cs->name, testcpu);
284 	for_each_online_cpu(cpu) {
285 		if (cpu == testcpu)
286 			continue;
287 		csnow_begin = cs->read(cs);
288 		smp_call_function_single(cpu, clocksource_verify_one_cpu, cs, 1);
289 		csnow_end = cs->read(cs);
290 		delta = (s64)((csnow_mid - csnow_begin) & cs->mask);
291 		if (delta < 0)
292 			cpumask_set_cpu(cpu, &cpus_behind);
293 		delta = (csnow_end - csnow_mid) & cs->mask;
294 		if (delta < 0)
295 			cpumask_set_cpu(cpu, &cpus_ahead);
296 		delta = clocksource_delta(csnow_end, csnow_begin, cs->mask);
297 		cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
298 		if (cs_nsec > cs_nsec_max)
299 			cs_nsec_max = cs_nsec;
300 		if (cs_nsec < cs_nsec_min)
301 			cs_nsec_min = cs_nsec;
302 	}
303 	preempt_enable();
304 	if (!cpumask_empty(&cpus_ahead))
305 		pr_warn("        CPUs %*pbl ahead of CPU %d for clocksource %s.\n",
306 			cpumask_pr_args(&cpus_ahead), testcpu, cs->name);
307 	if (!cpumask_empty(&cpus_behind))
308 		pr_warn("        CPUs %*pbl behind CPU %d for clocksource %s.\n",
309 			cpumask_pr_args(&cpus_behind), testcpu, cs->name);
310 	if (!cpumask_empty(&cpus_ahead) || !cpumask_empty(&cpus_behind))
311 		pr_warn("        CPU %d check durations %lldns - %lldns for clocksource %s.\n",
312 			testcpu, cs_nsec_min, cs_nsec_max, cs->name);
313 }
314 
clocksource_watchdog(struct timer_list * unused)315 static void clocksource_watchdog(struct timer_list *unused)
316 {
317 	u64 csnow, wdnow, cslast, wdlast, delta;
318 	int next_cpu, reset_pending;
319 	int64_t wd_nsec, cs_nsec;
320 	struct clocksource *cs;
321 	enum wd_read_status read_ret;
322 	u32 md;
323 
324 	spin_lock(&watchdog_lock);
325 	if (!watchdog_running)
326 		goto out;
327 
328 	reset_pending = atomic_read(&watchdog_reset_pending);
329 
330 	list_for_each_entry(cs, &watchdog_list, wd_list) {
331 
332 		/* Clocksource already marked unstable? */
333 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
334 			if (finished_booting)
335 				schedule_work(&watchdog_work);
336 			continue;
337 		}
338 
339 		read_ret = cs_watchdog_read(cs, &csnow, &wdnow);
340 
341 		if (read_ret != WD_READ_SUCCESS) {
342 			if (read_ret == WD_READ_UNSTABLE)
343 				/* Clock readout unreliable, so give it up. */
344 				__clocksource_unstable(cs);
345 			continue;
346 		}
347 
348 		/* Clocksource initialized ? */
349 		if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
350 		    atomic_read(&watchdog_reset_pending)) {
351 			cs->flags |= CLOCK_SOURCE_WATCHDOG;
352 			cs->wd_last = wdnow;
353 			cs->cs_last = csnow;
354 			continue;
355 		}
356 
357 		delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
358 		wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
359 					     watchdog->shift);
360 
361 		delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
362 		cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
363 		wdlast = cs->wd_last; /* save these in case we print them */
364 		cslast = cs->cs_last;
365 		cs->cs_last = csnow;
366 		cs->wd_last = wdnow;
367 
368 		if (atomic_read(&watchdog_reset_pending))
369 			continue;
370 
371 		/* Check the deviation from the watchdog clocksource. */
372 		md = cs->uncertainty_margin + watchdog->uncertainty_margin;
373 		if (abs(cs_nsec - wd_nsec) > md) {
374 			pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
375 				smp_processor_id(), cs->name);
376 			pr_warn("                      '%s' wd_now: %llx wd_last: %llx mask: %llx\n",
377 				watchdog->name, wdnow, wdlast, watchdog->mask);
378 			pr_warn("                      '%s' cs_now: %llx cs_last: %llx mask: %llx\n",
379 				cs->name, csnow, cslast, cs->mask);
380 			__clocksource_unstable(cs);
381 			continue;
382 		}
383 
384 		if (cs == curr_clocksource && cs->tick_stable)
385 			cs->tick_stable(cs);
386 
387 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
388 		    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
389 		    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
390 			/* Mark it valid for high-res. */
391 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
392 
393 			/*
394 			 * clocksource_done_booting() will sort it if
395 			 * finished_booting is not set yet.
396 			 */
397 			if (!finished_booting)
398 				continue;
399 
400 			/*
401 			 * If this is not the current clocksource let
402 			 * the watchdog thread reselect it. Due to the
403 			 * change to high res this clocksource might
404 			 * be preferred now. If it is the current
405 			 * clocksource let the tick code know about
406 			 * that change.
407 			 */
408 			if (cs != curr_clocksource) {
409 				cs->flags |= CLOCK_SOURCE_RESELECT;
410 				schedule_work(&watchdog_work);
411 			} else {
412 				tick_clock_notify();
413 			}
414 		}
415 	}
416 
417 	/*
418 	 * We only clear the watchdog_reset_pending, when we did a
419 	 * full cycle through all clocksources.
420 	 */
421 	if (reset_pending)
422 		atomic_dec(&watchdog_reset_pending);
423 
424 	/*
425 	 * Cycle through CPUs to check if the CPUs stay synchronized
426 	 * to each other.
427 	 */
428 	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
429 	if (next_cpu >= nr_cpu_ids)
430 		next_cpu = cpumask_first(cpu_online_mask);
431 
432 	/*
433 	 * Arm timer if not already pending: could race with concurrent
434 	 * pair clocksource_stop_watchdog() clocksource_start_watchdog().
435 	 */
436 	if (!timer_pending(&watchdog_timer)) {
437 		watchdog_timer.expires += WATCHDOG_INTERVAL;
438 		add_timer_on(&watchdog_timer, next_cpu);
439 	}
440 out:
441 	spin_unlock(&watchdog_lock);
442 }
443 
clocksource_start_watchdog(void)444 static inline void clocksource_start_watchdog(void)
445 {
446 	if (watchdog_running || !watchdog || list_empty(&watchdog_list))
447 		return;
448 	timer_setup(&watchdog_timer, clocksource_watchdog, 0);
449 	watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
450 	add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
451 	watchdog_running = 1;
452 }
453 
clocksource_stop_watchdog(void)454 static inline void clocksource_stop_watchdog(void)
455 {
456 	if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
457 		return;
458 	del_timer(&watchdog_timer);
459 	watchdog_running = 0;
460 }
461 
clocksource_reset_watchdog(void)462 static inline void clocksource_reset_watchdog(void)
463 {
464 	struct clocksource *cs;
465 
466 	list_for_each_entry(cs, &watchdog_list, wd_list)
467 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
468 }
469 
clocksource_resume_watchdog(void)470 static void clocksource_resume_watchdog(void)
471 {
472 	atomic_inc(&watchdog_reset_pending);
473 }
474 
clocksource_enqueue_watchdog(struct clocksource * cs)475 static void clocksource_enqueue_watchdog(struct clocksource *cs)
476 {
477 	INIT_LIST_HEAD(&cs->wd_list);
478 
479 	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
480 		/* cs is a clocksource to be watched. */
481 		list_add(&cs->wd_list, &watchdog_list);
482 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
483 	} else {
484 		/* cs is a watchdog. */
485 		if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
486 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
487 	}
488 }
489 
clocksource_select_watchdog(bool fallback)490 static void clocksource_select_watchdog(bool fallback)
491 {
492 	struct clocksource *cs, *old_wd;
493 	unsigned long flags;
494 
495 	spin_lock_irqsave(&watchdog_lock, flags);
496 	/* save current watchdog */
497 	old_wd = watchdog;
498 	if (fallback)
499 		watchdog = NULL;
500 
501 	list_for_each_entry(cs, &clocksource_list, list) {
502 		/* cs is a clocksource to be watched. */
503 		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
504 			continue;
505 
506 		/* Skip current if we were requested for a fallback. */
507 		if (fallback && cs == old_wd)
508 			continue;
509 
510 		/* Pick the best watchdog. */
511 		if (!watchdog || cs->rating > watchdog->rating)
512 			watchdog = cs;
513 	}
514 	/* If we failed to find a fallback restore the old one. */
515 	if (!watchdog)
516 		watchdog = old_wd;
517 
518 	/* If we changed the watchdog we need to reset cycles. */
519 	if (watchdog != old_wd)
520 		clocksource_reset_watchdog();
521 
522 	/* Check if the watchdog timer needs to be started. */
523 	clocksource_start_watchdog();
524 	spin_unlock_irqrestore(&watchdog_lock, flags);
525 }
526 
clocksource_dequeue_watchdog(struct clocksource * cs)527 static void clocksource_dequeue_watchdog(struct clocksource *cs)
528 {
529 	if (cs != watchdog) {
530 		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
531 			/* cs is a watched clocksource. */
532 			list_del_init(&cs->wd_list);
533 			/* Check if the watchdog timer needs to be stopped. */
534 			clocksource_stop_watchdog();
535 		}
536 	}
537 }
538 
__clocksource_watchdog_kthread(void)539 static int __clocksource_watchdog_kthread(void)
540 {
541 	struct clocksource *cs, *tmp;
542 	unsigned long flags;
543 	int select = 0;
544 
545 	/* Do any required per-CPU skew verification. */
546 	if (curr_clocksource &&
547 	    curr_clocksource->flags & CLOCK_SOURCE_UNSTABLE &&
548 	    curr_clocksource->flags & CLOCK_SOURCE_VERIFY_PERCPU)
549 		clocksource_verify_percpu(curr_clocksource);
550 
551 	spin_lock_irqsave(&watchdog_lock, flags);
552 	list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
553 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
554 			list_del_init(&cs->wd_list);
555 			__clocksource_change_rating(cs, 0);
556 			select = 1;
557 		}
558 		if (cs->flags & CLOCK_SOURCE_RESELECT) {
559 			cs->flags &= ~CLOCK_SOURCE_RESELECT;
560 			select = 1;
561 		}
562 	}
563 	/* Check if the watchdog timer needs to be stopped. */
564 	clocksource_stop_watchdog();
565 	spin_unlock_irqrestore(&watchdog_lock, flags);
566 
567 	return select;
568 }
569 
clocksource_watchdog_kthread(void * data)570 static int clocksource_watchdog_kthread(void *data)
571 {
572 	mutex_lock(&clocksource_mutex);
573 	if (__clocksource_watchdog_kthread())
574 		clocksource_select();
575 	mutex_unlock(&clocksource_mutex);
576 	return 0;
577 }
578 
clocksource_is_watchdog(struct clocksource * cs)579 static bool clocksource_is_watchdog(struct clocksource *cs)
580 {
581 	return cs == watchdog;
582 }
583 
584 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */
585 
clocksource_enqueue_watchdog(struct clocksource * cs)586 static void clocksource_enqueue_watchdog(struct clocksource *cs)
587 {
588 	if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
589 		cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
590 }
591 
clocksource_select_watchdog(bool fallback)592 static void clocksource_select_watchdog(bool fallback) { }
clocksource_dequeue_watchdog(struct clocksource * cs)593 static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
clocksource_resume_watchdog(void)594 static inline void clocksource_resume_watchdog(void) { }
__clocksource_watchdog_kthread(void)595 static inline int __clocksource_watchdog_kthread(void) { return 0; }
clocksource_is_watchdog(struct clocksource * cs)596 static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
clocksource_mark_unstable(struct clocksource * cs)597 void clocksource_mark_unstable(struct clocksource *cs) { }
598 
clocksource_watchdog_lock(unsigned long * flags)599 static inline void clocksource_watchdog_lock(unsigned long *flags) { }
clocksource_watchdog_unlock(unsigned long * flags)600 static inline void clocksource_watchdog_unlock(unsigned long *flags) { }
601 
602 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
603 
clocksource_is_suspend(struct clocksource * cs)604 static bool clocksource_is_suspend(struct clocksource *cs)
605 {
606 	return cs == suspend_clocksource;
607 }
608 
__clocksource_suspend_select(struct clocksource * cs)609 static void __clocksource_suspend_select(struct clocksource *cs)
610 {
611 	/*
612 	 * Skip the clocksource which will be stopped in suspend state.
613 	 */
614 	if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP))
615 		return;
616 
617 	/*
618 	 * The nonstop clocksource can be selected as the suspend clocksource to
619 	 * calculate the suspend time, so it should not supply suspend/resume
620 	 * interfaces to suspend the nonstop clocksource when system suspends.
621 	 */
622 	if (cs->suspend || cs->resume) {
623 		pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n",
624 			cs->name);
625 	}
626 
627 	/* Pick the best rating. */
628 	if (!suspend_clocksource || cs->rating > suspend_clocksource->rating)
629 		suspend_clocksource = cs;
630 }
631 
632 /**
633  * clocksource_suspend_select - Select the best clocksource for suspend timing
634  * @fallback:	if select a fallback clocksource
635  */
clocksource_suspend_select(bool fallback)636 static void clocksource_suspend_select(bool fallback)
637 {
638 	struct clocksource *cs, *old_suspend;
639 
640 	old_suspend = suspend_clocksource;
641 	if (fallback)
642 		suspend_clocksource = NULL;
643 
644 	list_for_each_entry(cs, &clocksource_list, list) {
645 		/* Skip current if we were requested for a fallback. */
646 		if (fallback && cs == old_suspend)
647 			continue;
648 
649 		__clocksource_suspend_select(cs);
650 	}
651 }
652 
653 /**
654  * clocksource_start_suspend_timing - Start measuring the suspend timing
655  * @cs:			current clocksource from timekeeping
656  * @start_cycles:	current cycles from timekeeping
657  *
658  * This function will save the start cycle values of suspend timer to calculate
659  * the suspend time when resuming system.
660  *
661  * This function is called late in the suspend process from timekeeping_suspend(),
662  * that means processes are freezed, non-boot cpus and interrupts are disabled
663  * now. It is therefore possible to start the suspend timer without taking the
664  * clocksource mutex.
665  */
clocksource_start_suspend_timing(struct clocksource * cs,u64 start_cycles)666 void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles)
667 {
668 	if (!suspend_clocksource)
669 		return;
670 
671 	/*
672 	 * If current clocksource is the suspend timer, we should use the
673 	 * tkr_mono.cycle_last value as suspend_start to avoid same reading
674 	 * from suspend timer.
675 	 */
676 	if (clocksource_is_suspend(cs)) {
677 		suspend_start = start_cycles;
678 		return;
679 	}
680 
681 	if (suspend_clocksource->enable &&
682 	    suspend_clocksource->enable(suspend_clocksource)) {
683 		pr_warn_once("Failed to enable the non-suspend-able clocksource.\n");
684 		return;
685 	}
686 
687 	suspend_start = suspend_clocksource->read(suspend_clocksource);
688 }
689 
690 /**
691  * clocksource_stop_suspend_timing - Stop measuring the suspend timing
692  * @cs:		current clocksource from timekeeping
693  * @cycle_now:	current cycles from timekeeping
694  *
695  * This function will calculate the suspend time from suspend timer.
696  *
697  * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource.
698  *
699  * This function is called early in the resume process from timekeeping_resume(),
700  * that means there is only one cpu, no processes are running and the interrupts
701  * are disabled. It is therefore possible to stop the suspend timer without
702  * taking the clocksource mutex.
703  */
clocksource_stop_suspend_timing(struct clocksource * cs,u64 cycle_now)704 u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now)
705 {
706 	u64 now, delta, nsec = 0;
707 
708 	if (!suspend_clocksource)
709 		return 0;
710 
711 	/*
712 	 * If current clocksource is the suspend timer, we should use the
713 	 * tkr_mono.cycle_last value from timekeeping as current cycle to
714 	 * avoid same reading from suspend timer.
715 	 */
716 	if (clocksource_is_suspend(cs))
717 		now = cycle_now;
718 	else
719 		now = suspend_clocksource->read(suspend_clocksource);
720 
721 	if (now > suspend_start) {
722 		delta = clocksource_delta(now, suspend_start,
723 					  suspend_clocksource->mask);
724 		nsec = mul_u64_u32_shr(delta, suspend_clocksource->mult,
725 				       suspend_clocksource->shift);
726 	}
727 
728 	/*
729 	 * Disable the suspend timer to save power if current clocksource is
730 	 * not the suspend timer.
731 	 */
732 	if (!clocksource_is_suspend(cs) && suspend_clocksource->disable)
733 		suspend_clocksource->disable(suspend_clocksource);
734 
735 	return nsec;
736 }
737 
738 /**
739  * clocksource_suspend - suspend the clocksource(s)
740  */
clocksource_suspend(void)741 void clocksource_suspend(void)
742 {
743 	struct clocksource *cs;
744 
745 	list_for_each_entry_reverse(cs, &clocksource_list, list)
746 		if (cs->suspend)
747 			cs->suspend(cs);
748 }
749 
750 /**
751  * clocksource_resume - resume the clocksource(s)
752  */
clocksource_resume(void)753 void clocksource_resume(void)
754 {
755 	struct clocksource *cs;
756 
757 	list_for_each_entry(cs, &clocksource_list, list)
758 		if (cs->resume)
759 			cs->resume(cs);
760 
761 	clocksource_resume_watchdog();
762 }
763 
764 /**
765  * clocksource_touch_watchdog - Update watchdog
766  *
767  * Update the watchdog after exception contexts such as kgdb so as not
768  * to incorrectly trip the watchdog. This might fail when the kernel
769  * was stopped in code which holds watchdog_lock.
770  */
clocksource_touch_watchdog(void)771 void clocksource_touch_watchdog(void)
772 {
773 	clocksource_resume_watchdog();
774 }
775 
776 /**
777  * clocksource_max_adjustment- Returns max adjustment amount
778  * @cs:         Pointer to clocksource
779  *
780  */
clocksource_max_adjustment(struct clocksource * cs)781 static u32 clocksource_max_adjustment(struct clocksource *cs)
782 {
783 	u64 ret;
784 	/*
785 	 * We won't try to correct for more than 11% adjustments (110,000 ppm),
786 	 */
787 	ret = (u64)cs->mult * 11;
788 	do_div(ret,100);
789 	return (u32)ret;
790 }
791 
792 /**
793  * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
794  * @mult:	cycle to nanosecond multiplier
795  * @shift:	cycle to nanosecond divisor (power of two)
796  * @maxadj:	maximum adjustment value to mult (~11%)
797  * @mask:	bitmask for two's complement subtraction of non 64 bit counters
798  * @max_cyc:	maximum cycle value before potential overflow (does not include
799  *		any safety margin)
800  *
801  * NOTE: This function includes a safety margin of 50%, in other words, we
802  * return half the number of nanoseconds the hardware counter can technically
803  * cover. This is done so that we can potentially detect problems caused by
804  * delayed timers or bad hardware, which might result in time intervals that
805  * are larger than what the math used can handle without overflows.
806  */
clocks_calc_max_nsecs(u32 mult,u32 shift,u32 maxadj,u64 mask,u64 * max_cyc)807 u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
808 {
809 	u64 max_nsecs, max_cycles;
810 
811 	/*
812 	 * Calculate the maximum number of cycles that we can pass to the
813 	 * cyc2ns() function without overflowing a 64-bit result.
814 	 */
815 	max_cycles = ULLONG_MAX;
816 	do_div(max_cycles, mult+maxadj);
817 
818 	/*
819 	 * The actual maximum number of cycles we can defer the clocksource is
820 	 * determined by the minimum of max_cycles and mask.
821 	 * Note: Here we subtract the maxadj to make sure we don't sleep for
822 	 * too long if there's a large negative adjustment.
823 	 */
824 	max_cycles = min(max_cycles, mask);
825 	max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
826 
827 	/* return the max_cycles value as well if requested */
828 	if (max_cyc)
829 		*max_cyc = max_cycles;
830 
831 	/* Return 50% of the actual maximum, so we can detect bad values */
832 	max_nsecs >>= 1;
833 
834 	return max_nsecs;
835 }
836 
837 /**
838  * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
839  * @cs:         Pointer to clocksource to be updated
840  *
841  */
clocksource_update_max_deferment(struct clocksource * cs)842 static inline void clocksource_update_max_deferment(struct clocksource *cs)
843 {
844 	cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
845 						cs->maxadj, cs->mask,
846 						&cs->max_cycles);
847 }
848 
849 #ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
850 
clocksource_find_best(bool oneshot,bool skipcur)851 static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
852 {
853 	struct clocksource *cs;
854 
855 	if (!finished_booting || list_empty(&clocksource_list))
856 		return NULL;
857 
858 	/*
859 	 * We pick the clocksource with the highest rating. If oneshot
860 	 * mode is active, we pick the highres valid clocksource with
861 	 * the best rating.
862 	 */
863 	list_for_each_entry(cs, &clocksource_list, list) {
864 		if (skipcur && cs == curr_clocksource)
865 			continue;
866 		if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
867 			continue;
868 		return cs;
869 	}
870 	return NULL;
871 }
872 
__clocksource_select(bool skipcur)873 static void __clocksource_select(bool skipcur)
874 {
875 	bool oneshot = tick_oneshot_mode_active();
876 	struct clocksource *best, *cs;
877 
878 	/* Find the best suitable clocksource */
879 	best = clocksource_find_best(oneshot, skipcur);
880 	if (!best)
881 		return;
882 
883 	if (!strlen(override_name))
884 		goto found;
885 
886 	/* Check for the override clocksource. */
887 	list_for_each_entry(cs, &clocksource_list, list) {
888 		if (skipcur && cs == curr_clocksource)
889 			continue;
890 		if (strcmp(cs->name, override_name) != 0)
891 			continue;
892 		/*
893 		 * Check to make sure we don't switch to a non-highres
894 		 * capable clocksource if the tick code is in oneshot
895 		 * mode (highres or nohz)
896 		 */
897 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
898 			/* Override clocksource cannot be used. */
899 			if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
900 				pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
901 					cs->name);
902 				override_name[0] = 0;
903 			} else {
904 				/*
905 				 * The override cannot be currently verified.
906 				 * Deferring to let the watchdog check.
907 				 */
908 				pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
909 					cs->name);
910 			}
911 		} else
912 			/* Override clocksource can be used. */
913 			best = cs;
914 		break;
915 	}
916 
917 found:
918 	if (curr_clocksource != best && !timekeeping_notify(best)) {
919 		pr_info("Switched to clocksource %s\n", best->name);
920 		curr_clocksource = best;
921 	}
922 }
923 
924 /**
925  * clocksource_select - Select the best clocksource available
926  *
927  * Private function. Must hold clocksource_mutex when called.
928  *
929  * Select the clocksource with the best rating, or the clocksource,
930  * which is selected by userspace override.
931  */
clocksource_select(void)932 static void clocksource_select(void)
933 {
934 	__clocksource_select(false);
935 }
936 
clocksource_select_fallback(void)937 static void clocksource_select_fallback(void)
938 {
939 	__clocksource_select(true);
940 }
941 
942 #else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
clocksource_select(void)943 static inline void clocksource_select(void) { }
clocksource_select_fallback(void)944 static inline void clocksource_select_fallback(void) { }
945 
946 #endif
947 
948 /*
949  * clocksource_done_booting - Called near the end of core bootup
950  *
951  * Hack to avoid lots of clocksource churn at boot time.
952  * We use fs_initcall because we want this to start before
953  * device_initcall but after subsys_initcall.
954  */
clocksource_done_booting(void)955 static int __init clocksource_done_booting(void)
956 {
957 	mutex_lock(&clocksource_mutex);
958 	curr_clocksource = clocksource_default_clock();
959 	finished_booting = 1;
960 	/*
961 	 * Run the watchdog first to eliminate unstable clock sources
962 	 */
963 	__clocksource_watchdog_kthread();
964 	clocksource_select();
965 	mutex_unlock(&clocksource_mutex);
966 	return 0;
967 }
968 fs_initcall(clocksource_done_booting);
969 
970 /*
971  * Enqueue the clocksource sorted by rating
972  */
clocksource_enqueue(struct clocksource * cs)973 static void clocksource_enqueue(struct clocksource *cs)
974 {
975 	struct list_head *entry = &clocksource_list;
976 	struct clocksource *tmp;
977 
978 	list_for_each_entry(tmp, &clocksource_list, list) {
979 		/* Keep track of the place, where to insert */
980 		if (tmp->rating < cs->rating)
981 			break;
982 		entry = &tmp->list;
983 	}
984 	list_add(&cs->list, entry);
985 }
986 
987 /**
988  * __clocksource_update_freq_scale - Used update clocksource with new freq
989  * @cs:		clocksource to be registered
990  * @scale:	Scale factor multiplied against freq to get clocksource hz
991  * @freq:	clocksource frequency (cycles per second) divided by scale
992  *
993  * This should only be called from the clocksource->enable() method.
994  *
995  * This *SHOULD NOT* be called directly! Please use the
996  * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
997  * functions.
998  */
__clocksource_update_freq_scale(struct clocksource * cs,u32 scale,u32 freq)999 void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
1000 {
1001 	u64 sec;
1002 
1003 	/*
1004 	 * Default clocksources are *special* and self-define their mult/shift.
1005 	 * But, you're not special, so you should specify a freq value.
1006 	 */
1007 	if (freq) {
1008 		/*
1009 		 * Calc the maximum number of seconds which we can run before
1010 		 * wrapping around. For clocksources which have a mask > 32-bit
1011 		 * we need to limit the max sleep time to have a good
1012 		 * conversion precision. 10 minutes is still a reasonable
1013 		 * amount. That results in a shift value of 24 for a
1014 		 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
1015 		 * ~ 0.06ppm granularity for NTP.
1016 		 */
1017 		sec = cs->mask;
1018 		do_div(sec, freq);
1019 		do_div(sec, scale);
1020 		if (!sec)
1021 			sec = 1;
1022 		else if (sec > 600 && cs->mask > UINT_MAX)
1023 			sec = 600;
1024 
1025 		clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
1026 				       NSEC_PER_SEC / scale, sec * scale);
1027 	}
1028 
1029 	/*
1030 	 * If the uncertainty margin is not specified, calculate it.
1031 	 * If both scale and freq are non-zero, calculate the clock
1032 	 * period, but bound below at 2*WATCHDOG_MAX_SKEW.  However,
1033 	 * if either of scale or freq is zero, be very conservative and
1034 	 * take the tens-of-milliseconds WATCHDOG_THRESHOLD value for the
1035 	 * uncertainty margin.  Allow stupidly small uncertainty margins
1036 	 * to be specified by the caller for testing purposes, but warn
1037 	 * to discourage production use of this capability.
1038 	 */
1039 	if (scale && freq && !cs->uncertainty_margin) {
1040 		cs->uncertainty_margin = NSEC_PER_SEC / (scale * freq);
1041 		if (cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW)
1042 			cs->uncertainty_margin = 2 * WATCHDOG_MAX_SKEW;
1043 	} else if (!cs->uncertainty_margin) {
1044 		cs->uncertainty_margin = WATCHDOG_THRESHOLD;
1045 	}
1046 	WARN_ON_ONCE(cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW);
1047 
1048 	/*
1049 	 * Ensure clocksources that have large 'mult' values don't overflow
1050 	 * when adjusted.
1051 	 */
1052 	cs->maxadj = clocksource_max_adjustment(cs);
1053 	while (freq && ((cs->mult + cs->maxadj < cs->mult)
1054 		|| (cs->mult - cs->maxadj > cs->mult))) {
1055 		cs->mult >>= 1;
1056 		cs->shift--;
1057 		cs->maxadj = clocksource_max_adjustment(cs);
1058 	}
1059 
1060 	/*
1061 	 * Only warn for *special* clocksources that self-define
1062 	 * their mult/shift values and don't specify a freq.
1063 	 */
1064 	WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
1065 		"timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
1066 		cs->name);
1067 
1068 	clocksource_update_max_deferment(cs);
1069 
1070 	pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
1071 		cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
1072 }
1073 EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
1074 
1075 /**
1076  * __clocksource_register_scale - Used to install new clocksources
1077  * @cs:		clocksource to be registered
1078  * @scale:	Scale factor multiplied against freq to get clocksource hz
1079  * @freq:	clocksource frequency (cycles per second) divided by scale
1080  *
1081  * Returns -EBUSY if registration fails, zero otherwise.
1082  *
1083  * This *SHOULD NOT* be called directly! Please use the
1084  * clocksource_register_hz() or clocksource_register_khz helper functions.
1085  */
__clocksource_register_scale(struct clocksource * cs,u32 scale,u32 freq)1086 int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
1087 {
1088 	unsigned long flags;
1089 
1090 	clocksource_arch_init(cs);
1091 
1092 	if (cs->vdso_clock_mode < 0 ||
1093 	    cs->vdso_clock_mode >= VDSO_CLOCKMODE_MAX) {
1094 		pr_warn("clocksource %s registered with invalid VDSO mode %d. Disabling VDSO support.\n",
1095 			cs->name, cs->vdso_clock_mode);
1096 		cs->vdso_clock_mode = VDSO_CLOCKMODE_NONE;
1097 	}
1098 
1099 	/* Initialize mult/shift and max_idle_ns */
1100 	__clocksource_update_freq_scale(cs, scale, freq);
1101 
1102 	/* Add clocksource to the clocksource list */
1103 	mutex_lock(&clocksource_mutex);
1104 
1105 	clocksource_watchdog_lock(&flags);
1106 	clocksource_enqueue(cs);
1107 	clocksource_enqueue_watchdog(cs);
1108 	clocksource_watchdog_unlock(&flags);
1109 
1110 	clocksource_select();
1111 	clocksource_select_watchdog(false);
1112 	__clocksource_suspend_select(cs);
1113 	mutex_unlock(&clocksource_mutex);
1114 	return 0;
1115 }
1116 EXPORT_SYMBOL_GPL(__clocksource_register_scale);
1117 
__clocksource_change_rating(struct clocksource * cs,int rating)1118 static void __clocksource_change_rating(struct clocksource *cs, int rating)
1119 {
1120 	list_del(&cs->list);
1121 	cs->rating = rating;
1122 	clocksource_enqueue(cs);
1123 }
1124 
1125 /**
1126  * clocksource_change_rating - Change the rating of a registered clocksource
1127  * @cs:		clocksource to be changed
1128  * @rating:	new rating
1129  */
clocksource_change_rating(struct clocksource * cs,int rating)1130 void clocksource_change_rating(struct clocksource *cs, int rating)
1131 {
1132 	unsigned long flags;
1133 
1134 	mutex_lock(&clocksource_mutex);
1135 	clocksource_watchdog_lock(&flags);
1136 	__clocksource_change_rating(cs, rating);
1137 	clocksource_watchdog_unlock(&flags);
1138 
1139 	clocksource_select();
1140 	clocksource_select_watchdog(false);
1141 	clocksource_suspend_select(false);
1142 	mutex_unlock(&clocksource_mutex);
1143 }
1144 EXPORT_SYMBOL(clocksource_change_rating);
1145 
1146 /*
1147  * Unbind clocksource @cs. Called with clocksource_mutex held
1148  */
clocksource_unbind(struct clocksource * cs)1149 static int clocksource_unbind(struct clocksource *cs)
1150 {
1151 	unsigned long flags;
1152 
1153 	if (clocksource_is_watchdog(cs)) {
1154 		/* Select and try to install a replacement watchdog. */
1155 		clocksource_select_watchdog(true);
1156 		if (clocksource_is_watchdog(cs))
1157 			return -EBUSY;
1158 	}
1159 
1160 	if (cs == curr_clocksource) {
1161 		/* Select and try to install a replacement clock source */
1162 		clocksource_select_fallback();
1163 		if (curr_clocksource == cs)
1164 			return -EBUSY;
1165 	}
1166 
1167 	if (clocksource_is_suspend(cs)) {
1168 		/*
1169 		 * Select and try to install a replacement suspend clocksource.
1170 		 * If no replacement suspend clocksource, we will just let the
1171 		 * clocksource go and have no suspend clocksource.
1172 		 */
1173 		clocksource_suspend_select(true);
1174 	}
1175 
1176 	clocksource_watchdog_lock(&flags);
1177 	clocksource_dequeue_watchdog(cs);
1178 	list_del_init(&cs->list);
1179 	clocksource_watchdog_unlock(&flags);
1180 
1181 	return 0;
1182 }
1183 
1184 /**
1185  * clocksource_unregister - remove a registered clocksource
1186  * @cs:	clocksource to be unregistered
1187  */
clocksource_unregister(struct clocksource * cs)1188 int clocksource_unregister(struct clocksource *cs)
1189 {
1190 	int ret = 0;
1191 
1192 	mutex_lock(&clocksource_mutex);
1193 	if (!list_empty(&cs->list))
1194 		ret = clocksource_unbind(cs);
1195 	mutex_unlock(&clocksource_mutex);
1196 	return ret;
1197 }
1198 EXPORT_SYMBOL(clocksource_unregister);
1199 
1200 #ifdef CONFIG_SYSFS
1201 /**
1202  * current_clocksource_show - sysfs interface for current clocksource
1203  * @dev:	unused
1204  * @attr:	unused
1205  * @buf:	char buffer to be filled with clocksource list
1206  *
1207  * Provides sysfs interface for listing current clocksource.
1208  */
current_clocksource_show(struct device * dev,struct device_attribute * attr,char * buf)1209 static ssize_t current_clocksource_show(struct device *dev,
1210 					struct device_attribute *attr,
1211 					char *buf)
1212 {
1213 	ssize_t count = 0;
1214 
1215 	mutex_lock(&clocksource_mutex);
1216 	count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
1217 	mutex_unlock(&clocksource_mutex);
1218 
1219 	return count;
1220 }
1221 
sysfs_get_uname(const char * buf,char * dst,size_t cnt)1222 ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
1223 {
1224 	size_t ret = cnt;
1225 
1226 	/* strings from sysfs write are not 0 terminated! */
1227 	if (!cnt || cnt >= CS_NAME_LEN)
1228 		return -EINVAL;
1229 
1230 	/* strip of \n: */
1231 	if (buf[cnt-1] == '\n')
1232 		cnt--;
1233 	if (cnt > 0)
1234 		memcpy(dst, buf, cnt);
1235 	dst[cnt] = 0;
1236 	return ret;
1237 }
1238 
1239 /**
1240  * current_clocksource_store - interface for manually overriding clocksource
1241  * @dev:	unused
1242  * @attr:	unused
1243  * @buf:	name of override clocksource
1244  * @count:	length of buffer
1245  *
1246  * Takes input from sysfs interface for manually overriding the default
1247  * clocksource selection.
1248  */
current_clocksource_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1249 static ssize_t current_clocksource_store(struct device *dev,
1250 					 struct device_attribute *attr,
1251 					 const char *buf, size_t count)
1252 {
1253 	ssize_t ret;
1254 
1255 	mutex_lock(&clocksource_mutex);
1256 
1257 	ret = sysfs_get_uname(buf, override_name, count);
1258 	if (ret >= 0)
1259 		clocksource_select();
1260 
1261 	mutex_unlock(&clocksource_mutex);
1262 
1263 	return ret;
1264 }
1265 static DEVICE_ATTR_RW(current_clocksource);
1266 
1267 /**
1268  * unbind_clocksource_store - interface for manually unbinding clocksource
1269  * @dev:	unused
1270  * @attr:	unused
1271  * @buf:	unused
1272  * @count:	length of buffer
1273  *
1274  * Takes input from sysfs interface for manually unbinding a clocksource.
1275  */
unbind_clocksource_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1276 static ssize_t unbind_clocksource_store(struct device *dev,
1277 					struct device_attribute *attr,
1278 					const char *buf, size_t count)
1279 {
1280 	struct clocksource *cs;
1281 	char name[CS_NAME_LEN];
1282 	ssize_t ret;
1283 
1284 	ret = sysfs_get_uname(buf, name, count);
1285 	if (ret < 0)
1286 		return ret;
1287 
1288 	ret = -ENODEV;
1289 	mutex_lock(&clocksource_mutex);
1290 	list_for_each_entry(cs, &clocksource_list, list) {
1291 		if (strcmp(cs->name, name))
1292 			continue;
1293 		ret = clocksource_unbind(cs);
1294 		break;
1295 	}
1296 	mutex_unlock(&clocksource_mutex);
1297 
1298 	return ret ? ret : count;
1299 }
1300 static DEVICE_ATTR_WO(unbind_clocksource);
1301 
1302 /**
1303  * available_clocksource_show - sysfs interface for listing clocksource
1304  * @dev:	unused
1305  * @attr:	unused
1306  * @buf:	char buffer to be filled with clocksource list
1307  *
1308  * Provides sysfs interface for listing registered clocksources
1309  */
available_clocksource_show(struct device * dev,struct device_attribute * attr,char * buf)1310 static ssize_t available_clocksource_show(struct device *dev,
1311 					  struct device_attribute *attr,
1312 					  char *buf)
1313 {
1314 	struct clocksource *src;
1315 	ssize_t count = 0;
1316 
1317 	mutex_lock(&clocksource_mutex);
1318 	list_for_each_entry(src, &clocksource_list, list) {
1319 		/*
1320 		 * Don't show non-HRES clocksource if the tick code is
1321 		 * in one shot mode (highres=on or nohz=on)
1322 		 */
1323 		if (!tick_oneshot_mode_active() ||
1324 		    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1325 			count += snprintf(buf + count,
1326 				  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1327 				  "%s ", src->name);
1328 	}
1329 	mutex_unlock(&clocksource_mutex);
1330 
1331 	count += snprintf(buf + count,
1332 			  max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1333 
1334 	return count;
1335 }
1336 static DEVICE_ATTR_RO(available_clocksource);
1337 
1338 static struct attribute *clocksource_attrs[] = {
1339 	&dev_attr_current_clocksource.attr,
1340 	&dev_attr_unbind_clocksource.attr,
1341 	&dev_attr_available_clocksource.attr,
1342 	NULL
1343 };
1344 ATTRIBUTE_GROUPS(clocksource);
1345 
1346 static struct bus_type clocksource_subsys = {
1347 	.name = "clocksource",
1348 	.dev_name = "clocksource",
1349 };
1350 
1351 static struct device device_clocksource = {
1352 	.id	= 0,
1353 	.bus	= &clocksource_subsys,
1354 	.groups	= clocksource_groups,
1355 };
1356 
init_clocksource_sysfs(void)1357 static int __init init_clocksource_sysfs(void)
1358 {
1359 	int error = subsys_system_register(&clocksource_subsys, NULL);
1360 
1361 	if (!error)
1362 		error = device_register(&device_clocksource);
1363 
1364 	return error;
1365 }
1366 
1367 device_initcall(init_clocksource_sysfs);
1368 #endif /* CONFIG_SYSFS */
1369 
1370 /**
1371  * boot_override_clocksource - boot clock override
1372  * @str:	override name
1373  *
1374  * Takes a clocksource= boot argument and uses it
1375  * as the clocksource override name.
1376  */
boot_override_clocksource(char * str)1377 static int __init boot_override_clocksource(char* str)
1378 {
1379 	mutex_lock(&clocksource_mutex);
1380 	if (str)
1381 		strlcpy(override_name, str, sizeof(override_name));
1382 	mutex_unlock(&clocksource_mutex);
1383 	return 1;
1384 }
1385 
1386 __setup("clocksource=", boot_override_clocksource);
1387 
1388 /**
1389  * boot_override_clock - Compatibility layer for deprecated boot option
1390  * @str:	override name
1391  *
1392  * DEPRECATED! Takes a clock= boot argument and uses it
1393  * as the clocksource override name
1394  */
boot_override_clock(char * str)1395 static int __init boot_override_clock(char* str)
1396 {
1397 	if (!strcmp(str, "pmtmr")) {
1398 		pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1399 		return boot_override_clocksource("acpi_pm");
1400 	}
1401 	pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1402 	return boot_override_clocksource(str);
1403 }
1404 
1405 __setup("clock=", boot_override_clock);
1406