1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/core.c
4 *
5 * Core kernel scheduler code and related syscalls
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9 #define CREATE_TRACE_POINTS
10 #include <trace/events/sched.h>
11 #undef CREATE_TRACE_POINTS
12
13 #include "sched.h"
14
15 #include <linux/nospec.h>
16
17 #include <linux/kcov.h>
18 #include <linux/scs.h>
19 #include <linux/irq.h>
20 #include <linux/delay.h>
21
22 #include <asm/switch_to.h>
23 #include <asm/tlb.h>
24
25 #include "../workqueue_internal.h"
26 #include "../../fs/io-wq.h"
27 #include "../smpboot.h"
28
29 #include "pelt.h"
30 #include "smp.h"
31 #include "walt.h"
32 #include "rtg/rtg.h"
33
34 /*
35 * Export tracepoints that act as a bare tracehook (ie: have no trace event
36 * associated with them) to allow external modules to probe them.
37 */
38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
48
49 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
50
51 #ifdef CONFIG_SCHED_DEBUG
52 /*
53 * Debugging: various feature bits
54 *
55 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
56 * sysctl_sched_features, defined in sched.h, to allow constants propagation
57 * at compile time and compiler optimization based on features default.
58 */
59 #define SCHED_FEAT(name, enabled) \
60 (1UL << __SCHED_FEAT_##name) * enabled |
61 const_debug unsigned int sysctl_sched_features =
62 #include "features.h"
63 0;
64 #undef SCHED_FEAT
65 #endif
66
67 /*
68 * Number of tasks to iterate in a single balance run.
69 * Limited because this is done with IRQs disabled.
70 */
71 const_debug unsigned int sysctl_sched_nr_migrate = 32;
72
73 /*
74 * period over which we measure -rt task CPU usage in us.
75 * default: 1s
76 */
77 unsigned int sysctl_sched_rt_period = 1000000;
78
79 __read_mostly int scheduler_running;
80
81 /*
82 * part of the period that we allow rt tasks to run in us.
83 * default: 0.95s
84 */
85 int sysctl_sched_rt_runtime = 950000;
86
87
88 /*
89 * Serialization rules:
90 *
91 * Lock order:
92 *
93 * p->pi_lock
94 * rq->lock
95 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
96 *
97 * rq1->lock
98 * rq2->lock where: rq1 < rq2
99 *
100 * Regular state:
101 *
102 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
103 * local CPU's rq->lock, it optionally removes the task from the runqueue and
104 * always looks at the local rq data structures to find the most elegible task
105 * to run next.
106 *
107 * Task enqueue is also under rq->lock, possibly taken from another CPU.
108 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
109 * the local CPU to avoid bouncing the runqueue state around [ see
110 * ttwu_queue_wakelist() ]
111 *
112 * Task wakeup, specifically wakeups that involve migration, are horribly
113 * complicated to avoid having to take two rq->locks.
114 *
115 * Special state:
116 *
117 * System-calls and anything external will use task_rq_lock() which acquires
118 * both p->pi_lock and rq->lock. As a consequence the state they change is
119 * stable while holding either lock:
120 *
121 * - sched_setaffinity()/
122 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
123 * - set_user_nice(): p->se.load, p->*prio
124 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
125 * p->se.load, p->rt_priority,
126 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
127 * - sched_setnuma(): p->numa_preferred_nid
128 * - sched_move_task()/
129 * cpu_cgroup_fork(): p->sched_task_group
130 * - uclamp_update_active() p->uclamp*
131 *
132 * p->state <- TASK_*:
133 *
134 * is changed locklessly using set_current_state(), __set_current_state() or
135 * set_special_state(), see their respective comments, or by
136 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
137 * concurrent self.
138 *
139 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
140 *
141 * is set by activate_task() and cleared by deactivate_task(), under
142 * rq->lock. Non-zero indicates the task is runnable, the special
143 * ON_RQ_MIGRATING state is used for migration without holding both
144 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
145 *
146 * p->on_cpu <- { 0, 1 }:
147 *
148 * is set by prepare_task() and cleared by finish_task() such that it will be
149 * set before p is scheduled-in and cleared after p is scheduled-out, both
150 * under rq->lock. Non-zero indicates the task is running on its CPU.
151 *
152 * [ The astute reader will observe that it is possible for two tasks on one
153 * CPU to have ->on_cpu = 1 at the same time. ]
154 *
155 * task_cpu(p): is changed by set_task_cpu(), the rules are:
156 *
157 * - Don't call set_task_cpu() on a blocked task:
158 *
159 * We don't care what CPU we're not running on, this simplifies hotplug,
160 * the CPU assignment of blocked tasks isn't required to be valid.
161 *
162 * - for try_to_wake_up(), called under p->pi_lock:
163 *
164 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
165 *
166 * - for migration called under rq->lock:
167 * [ see task_on_rq_migrating() in task_rq_lock() ]
168 *
169 * o move_queued_task()
170 * o detach_task()
171 *
172 * - for migration called under double_rq_lock():
173 *
174 * o __migrate_swap_task()
175 * o push_rt_task() / pull_rt_task()
176 * o push_dl_task() / pull_dl_task()
177 * o dl_task_offline_migration()
178 *
179 */
180
181 /*
182 * __task_rq_lock - lock the rq @p resides on.
183 */
__task_rq_lock(struct task_struct * p,struct rq_flags * rf)184 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
185 __acquires(rq->lock)
186 {
187 struct rq *rq;
188
189 lockdep_assert_held(&p->pi_lock);
190
191 for (;;) {
192 rq = task_rq(p);
193 raw_spin_lock(&rq->lock);
194 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
195 rq_pin_lock(rq, rf);
196 return rq;
197 }
198 raw_spin_unlock(&rq->lock);
199
200 while (unlikely(task_on_rq_migrating(p)))
201 cpu_relax();
202 }
203 }
204
205 /*
206 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
207 */
task_rq_lock(struct task_struct * p,struct rq_flags * rf)208 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
209 __acquires(p->pi_lock)
210 __acquires(rq->lock)
211 {
212 struct rq *rq;
213
214 for (;;) {
215 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
216 rq = task_rq(p);
217 raw_spin_lock(&rq->lock);
218 /*
219 * move_queued_task() task_rq_lock()
220 *
221 * ACQUIRE (rq->lock)
222 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
223 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
224 * [S] ->cpu = new_cpu [L] task_rq()
225 * [L] ->on_rq
226 * RELEASE (rq->lock)
227 *
228 * If we observe the old CPU in task_rq_lock(), the acquire of
229 * the old rq->lock will fully serialize against the stores.
230 *
231 * If we observe the new CPU in task_rq_lock(), the address
232 * dependency headed by '[L] rq = task_rq()' and the acquire
233 * will pair with the WMB to ensure we then also see migrating.
234 */
235 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
236 rq_pin_lock(rq, rf);
237 return rq;
238 }
239 raw_spin_unlock(&rq->lock);
240 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
241
242 while (unlikely(task_on_rq_migrating(p)))
243 cpu_relax();
244 }
245 }
246
247 /*
248 * RQ-clock updating methods:
249 */
250
update_rq_clock_task(struct rq * rq,s64 delta)251 static void update_rq_clock_task(struct rq *rq, s64 delta)
252 {
253 /*
254 * In theory, the compile should just see 0 here, and optimize out the call
255 * to sched_rt_avg_update. But I don't trust it...
256 */
257 s64 __maybe_unused steal = 0, irq_delta = 0;
258
259 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
260 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
261
262 /*
263 * Since irq_time is only updated on {soft,}irq_exit, we might run into
264 * this case when a previous update_rq_clock() happened inside a
265 * {soft,}irq region.
266 *
267 * When this happens, we stop ->clock_task and only update the
268 * prev_irq_time stamp to account for the part that fit, so that a next
269 * update will consume the rest. This ensures ->clock_task is
270 * monotonic.
271 *
272 * It does however cause some slight miss-attribution of {soft,}irq
273 * time, a more accurate solution would be to update the irq_time using
274 * the current rq->clock timestamp, except that would require using
275 * atomic ops.
276 */
277 if (irq_delta > delta)
278 irq_delta = delta;
279
280 rq->prev_irq_time += irq_delta;
281 delta -= irq_delta;
282 #endif
283 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
284 if (static_key_false((¶virt_steal_rq_enabled))) {
285 steal = paravirt_steal_clock(cpu_of(rq));
286 steal -= rq->prev_steal_time_rq;
287
288 if (unlikely(steal > delta))
289 steal = delta;
290
291 rq->prev_steal_time_rq += steal;
292 delta -= steal;
293 }
294 #endif
295
296 rq->clock_task += delta;
297
298 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
299 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
300 update_irq_load_avg(rq, irq_delta + steal);
301 #endif
302 update_rq_clock_pelt(rq, delta);
303 }
304
update_rq_clock(struct rq * rq)305 void update_rq_clock(struct rq *rq)
306 {
307 s64 delta;
308
309 lockdep_assert_held(&rq->lock);
310
311 if (rq->clock_update_flags & RQCF_ACT_SKIP)
312 return;
313
314 #ifdef CONFIG_SCHED_DEBUG
315 if (sched_feat(WARN_DOUBLE_CLOCK))
316 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
317 rq->clock_update_flags |= RQCF_UPDATED;
318 #endif
319
320 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
321 if (delta < 0)
322 return;
323 rq->clock += delta;
324 update_rq_clock_task(rq, delta);
325 }
326
327 static inline void
rq_csd_init(struct rq * rq,struct __call_single_data * csd,smp_call_func_t func)328 rq_csd_init(struct rq *rq, struct __call_single_data *csd, smp_call_func_t func)
329 {
330 csd->flags = 0;
331 csd->func = func;
332 csd->info = rq;
333 }
334
335 #ifdef CONFIG_SCHED_HRTICK
336 /*
337 * Use HR-timers to deliver accurate preemption points.
338 */
339
hrtick_clear(struct rq * rq)340 static void hrtick_clear(struct rq *rq)
341 {
342 if (hrtimer_active(&rq->hrtick_timer))
343 hrtimer_cancel(&rq->hrtick_timer);
344 }
345
346 /*
347 * High-resolution timer tick.
348 * Runs from hardirq context with interrupts disabled.
349 */
hrtick(struct hrtimer * timer)350 static enum hrtimer_restart hrtick(struct hrtimer *timer)
351 {
352 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
353 struct rq_flags rf;
354
355 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
356
357 rq_lock(rq, &rf);
358 update_rq_clock(rq);
359 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
360 rq_unlock(rq, &rf);
361
362 return HRTIMER_NORESTART;
363 }
364
365 #ifdef CONFIG_SMP
366
__hrtick_restart(struct rq * rq)367 static void __hrtick_restart(struct rq *rq)
368 {
369 struct hrtimer *timer = &rq->hrtick_timer;
370 ktime_t time = rq->hrtick_time;
371
372 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
373 }
374
375 /*
376 * called from hardirq (IPI) context
377 */
__hrtick_start(void * arg)378 static void __hrtick_start(void *arg)
379 {
380 struct rq *rq = arg;
381 struct rq_flags rf;
382
383 rq_lock(rq, &rf);
384 __hrtick_restart(rq);
385 rq_unlock(rq, &rf);
386 }
387
388 /*
389 * Called to set the hrtick timer state.
390 *
391 * called with rq->lock held and irqs disabled
392 */
hrtick_start(struct rq * rq,u64 delay)393 void hrtick_start(struct rq *rq, u64 delay)
394 {
395 struct hrtimer *timer = &rq->hrtick_timer;
396 s64 delta;
397
398 /*
399 * Don't schedule slices shorter than 10000ns, that just
400 * doesn't make sense and can cause timer DoS.
401 */
402 delta = max_t(s64, delay, 10000LL);
403 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
404
405 if (rq == this_rq())
406 __hrtick_restart(rq);
407 else
408 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
409 }
410
411 #else
412 /*
413 * Called to set the hrtick timer state.
414 *
415 * called with rq->lock held and irqs disabled
416 */
hrtick_start(struct rq * rq,u64 delay)417 void hrtick_start(struct rq *rq, u64 delay)
418 {
419 /*
420 * Don't schedule slices shorter than 10000ns, that just
421 * doesn't make sense. Rely on vruntime for fairness.
422 */
423 delay = max_t(u64, delay, 10000LL);
424 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
425 HRTIMER_MODE_REL_PINNED_HARD);
426 }
427
428 #endif /* CONFIG_SMP */
429
hrtick_rq_init(struct rq * rq)430 static void hrtick_rq_init(struct rq *rq)
431 {
432 #ifdef CONFIG_SMP
433 rq_csd_init(rq, &rq->hrtick_csd, __hrtick_start);
434 #endif
435 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
436 rq->hrtick_timer.function = hrtick;
437 }
438 #else /* CONFIG_SCHED_HRTICK */
hrtick_clear(struct rq * rq)439 static inline void hrtick_clear(struct rq *rq)
440 {
441 }
442
hrtick_rq_init(struct rq * rq)443 static inline void hrtick_rq_init(struct rq *rq)
444 {
445 }
446 #endif /* CONFIG_SCHED_HRTICK */
447
448 /*
449 * cmpxchg based fetch_or, macro so it works for different integer types
450 */
451 #define fetch_or(ptr, mask) \
452 ({ \
453 typeof(ptr) _ptr = (ptr); \
454 typeof(mask) _mask = (mask); \
455 typeof(*_ptr) _old, _val = *_ptr; \
456 \
457 for (;;) { \
458 _old = cmpxchg(_ptr, _val, _val | _mask); \
459 if (_old == _val) \
460 break; \
461 _val = _old; \
462 } \
463 _old; \
464 })
465
466 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
467 /*
468 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
469 * this avoids any races wrt polling state changes and thereby avoids
470 * spurious IPIs.
471 */
set_nr_and_not_polling(struct task_struct * p)472 static bool set_nr_and_not_polling(struct task_struct *p)
473 {
474 struct thread_info *ti = task_thread_info(p);
475 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
476 }
477
478 /*
479 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
480 *
481 * If this returns true, then the idle task promises to call
482 * sched_ttwu_pending() and reschedule soon.
483 */
set_nr_if_polling(struct task_struct * p)484 static bool set_nr_if_polling(struct task_struct *p)
485 {
486 struct thread_info *ti = task_thread_info(p);
487 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
488
489 for (;;) {
490 if (!(val & _TIF_POLLING_NRFLAG))
491 return false;
492 if (val & _TIF_NEED_RESCHED)
493 return true;
494 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
495 if (old == val)
496 break;
497 val = old;
498 }
499 return true;
500 }
501
502 #else
set_nr_and_not_polling(struct task_struct * p)503 static bool set_nr_and_not_polling(struct task_struct *p)
504 {
505 set_tsk_need_resched(p);
506 return true;
507 }
508
509 #ifdef CONFIG_SMP
set_nr_if_polling(struct task_struct * p)510 static bool set_nr_if_polling(struct task_struct *p)
511 {
512 return false;
513 }
514 #endif
515 #endif
516
__wake_q_add(struct wake_q_head * head,struct task_struct * task)517 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
518 {
519 struct wake_q_node *node = &task->wake_q;
520
521 /*
522 * Atomically grab the task, if ->wake_q is !nil already it means
523 * its already queued (either by us or someone else) and will get the
524 * wakeup due to that.
525 *
526 * In order to ensure that a pending wakeup will observe our pending
527 * state, even in the failed case, an explicit smp_mb() must be used.
528 */
529 smp_mb__before_atomic();
530 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
531 return false;
532
533 /*
534 * The head is context local, there can be no concurrency.
535 */
536 *head->lastp = node;
537 head->lastp = &node->next;
538 return true;
539 }
540
541 /**
542 * wake_q_add() - queue a wakeup for 'later' waking.
543 * @head: the wake_q_head to add @task to
544 * @task: the task to queue for 'later' wakeup
545 *
546 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
547 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
548 * instantly.
549 *
550 * This function must be used as-if it were wake_up_process(); IOW the task
551 * must be ready to be woken at this location.
552 */
wake_q_add(struct wake_q_head * head,struct task_struct * task)553 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
554 {
555 if (__wake_q_add(head, task))
556 get_task_struct(task);
557 }
558
559 /**
560 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
561 * @head: the wake_q_head to add @task to
562 * @task: the task to queue for 'later' wakeup
563 *
564 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
565 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
566 * instantly.
567 *
568 * This function must be used as-if it were wake_up_process(); IOW the task
569 * must be ready to be woken at this location.
570 *
571 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
572 * that already hold reference to @task can call the 'safe' version and trust
573 * wake_q to do the right thing depending whether or not the @task is already
574 * queued for wakeup.
575 */
wake_q_add_safe(struct wake_q_head * head,struct task_struct * task)576 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
577 {
578 if (!__wake_q_add(head, task))
579 put_task_struct(task);
580 }
581
wake_up_q(struct wake_q_head * head)582 void wake_up_q(struct wake_q_head *head)
583 {
584 struct wake_q_node *node = head->first;
585
586 while (node != WAKE_Q_TAIL) {
587 struct task_struct *task;
588
589 task = container_of(node, struct task_struct, wake_q);
590 BUG_ON(!task);
591 /* Task can safely be re-inserted now: */
592 node = node->next;
593 task->wake_q.next = NULL;
594
595 /*
596 * wake_up_process() executes a full barrier, which pairs with
597 * the queueing in wake_q_add() so as not to miss wakeups.
598 */
599 wake_up_process(task);
600 put_task_struct(task);
601 }
602 }
603
604 /*
605 * resched_curr - mark rq's current task 'to be rescheduled now'.
606 *
607 * On UP this means the setting of the need_resched flag, on SMP it
608 * might also involve a cross-CPU call to trigger the scheduler on
609 * the target CPU.
610 */
resched_curr(struct rq * rq)611 void resched_curr(struct rq *rq)
612 {
613 struct task_struct *curr = rq->curr;
614 int cpu;
615
616 lockdep_assert_held(&rq->lock);
617
618 if (test_tsk_need_resched(curr))
619 return;
620
621 cpu = cpu_of(rq);
622
623 if (cpu == smp_processor_id()) {
624 set_tsk_need_resched(curr);
625 set_preempt_need_resched();
626 return;
627 }
628
629 if (set_nr_and_not_polling(curr))
630 smp_send_reschedule(cpu);
631 else
632 trace_sched_wake_idle_without_ipi(cpu);
633 }
634
resched_cpu(int cpu)635 void resched_cpu(int cpu)
636 {
637 struct rq *rq = cpu_rq(cpu);
638 unsigned long flags;
639
640 raw_spin_lock_irqsave(&rq->lock, flags);
641 if (cpu_online(cpu) || cpu == smp_processor_id())
642 resched_curr(rq);
643 raw_spin_unlock_irqrestore(&rq->lock, flags);
644 }
645
646 #ifdef CONFIG_SMP
647 #ifdef CONFIG_NO_HZ_COMMON
648 /*
649 * In the semi idle case, use the nearest busy CPU for migrating timers
650 * from an idle CPU. This is good for power-savings.
651 *
652 * We don't do similar optimization for completely idle system, as
653 * selecting an idle CPU will add more delays to the timers than intended
654 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
655 */
get_nohz_timer_target(void)656 int get_nohz_timer_target(void)
657 {
658 int i, cpu = smp_processor_id(), default_cpu = -1;
659 struct sched_domain *sd;
660
661 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
662 if (!idle_cpu(cpu))
663 return cpu;
664 default_cpu = cpu;
665 }
666
667 rcu_read_lock();
668 for_each_domain(cpu, sd) {
669 for_each_cpu_and(i, sched_domain_span(sd),
670 housekeeping_cpumask(HK_FLAG_TIMER)) {
671 if (cpu == i)
672 continue;
673
674 if (!idle_cpu(i)) {
675 cpu = i;
676 goto unlock;
677 }
678 }
679 }
680
681 if (default_cpu == -1)
682 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
683 cpu = default_cpu;
684 unlock:
685 rcu_read_unlock();
686 return cpu;
687 }
688
689 /*
690 * When add_timer_on() enqueues a timer into the timer wheel of an
691 * idle CPU then this timer might expire before the next timer event
692 * which is scheduled to wake up that CPU. In case of a completely
693 * idle system the next event might even be infinite time into the
694 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
695 * leaves the inner idle loop so the newly added timer is taken into
696 * account when the CPU goes back to idle and evaluates the timer
697 * wheel for the next timer event.
698 */
wake_up_idle_cpu(int cpu)699 static void wake_up_idle_cpu(int cpu)
700 {
701 struct rq *rq = cpu_rq(cpu);
702
703 if (cpu == smp_processor_id())
704 return;
705
706 if (set_nr_and_not_polling(rq->idle))
707 smp_send_reschedule(cpu);
708 else
709 trace_sched_wake_idle_without_ipi(cpu);
710 }
711
wake_up_full_nohz_cpu(int cpu)712 static bool wake_up_full_nohz_cpu(int cpu)
713 {
714 /*
715 * We just need the target to call irq_exit() and re-evaluate
716 * the next tick. The nohz full kick at least implies that.
717 * If needed we can still optimize that later with an
718 * empty IRQ.
719 */
720 if (cpu_is_offline(cpu))
721 return true; /* Don't try to wake offline CPUs. */
722 if (tick_nohz_full_cpu(cpu)) {
723 if (cpu != smp_processor_id() ||
724 tick_nohz_tick_stopped())
725 tick_nohz_full_kick_cpu(cpu);
726 return true;
727 }
728
729 return false;
730 }
731
732 /*
733 * Wake up the specified CPU. If the CPU is going offline, it is the
734 * caller's responsibility to deal with the lost wakeup, for example,
735 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
736 */
wake_up_nohz_cpu(int cpu)737 void wake_up_nohz_cpu(int cpu)
738 {
739 if (!wake_up_full_nohz_cpu(cpu))
740 wake_up_idle_cpu(cpu);
741 }
742
nohz_csd_func(void * info)743 static void nohz_csd_func(void *info)
744 {
745 struct rq *rq = info;
746 int cpu = cpu_of(rq);
747 unsigned int flags;
748
749 /*
750 * Release the rq::nohz_csd.
751 */
752 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
753 WARN_ON(!(flags & NOHZ_KICK_MASK));
754
755 rq->idle_balance = idle_cpu(cpu);
756 if (rq->idle_balance && !need_resched()) {
757 rq->nohz_idle_balance = flags;
758 raise_softirq_irqoff(SCHED_SOFTIRQ);
759 }
760 }
761
762 #endif /* CONFIG_NO_HZ_COMMON */
763
764 #ifdef CONFIG_NO_HZ_FULL
sched_can_stop_tick(struct rq * rq)765 bool sched_can_stop_tick(struct rq *rq)
766 {
767 int fifo_nr_running;
768
769 /* Deadline tasks, even if single, need the tick */
770 if (rq->dl.dl_nr_running)
771 return false;
772
773 /*
774 * If there are more than one RR tasks, we need the tick to effect the
775 * actual RR behaviour.
776 */
777 if (rq->rt.rr_nr_running) {
778 if (rq->rt.rr_nr_running == 1)
779 return true;
780 else
781 return false;
782 }
783
784 /*
785 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
786 * forced preemption between FIFO tasks.
787 */
788 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
789 if (fifo_nr_running)
790 return true;
791
792 /*
793 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
794 * if there's more than one we need the tick for involuntary
795 * preemption.
796 */
797 if (rq->nr_running > 1)
798 return false;
799
800 return true;
801 }
802 #endif /* CONFIG_NO_HZ_FULL */
803 #endif /* CONFIG_SMP */
804
805 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
806 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
807 /*
808 * Iterate task_group tree rooted at *from, calling @down when first entering a
809 * node and @up when leaving it for the final time.
810 *
811 * Caller must hold rcu_lock or sufficient equivalent.
812 */
walk_tg_tree_from(struct task_group * from,tg_visitor down,tg_visitor up,void * data)813 int walk_tg_tree_from(struct task_group *from,
814 tg_visitor down, tg_visitor up, void *data)
815 {
816 struct task_group *parent, *child;
817 int ret;
818
819 parent = from;
820
821 down:
822 ret = (*down)(parent, data);
823 if (ret)
824 goto out;
825 list_for_each_entry_rcu(child, &parent->children, siblings) {
826 parent = child;
827 goto down;
828
829 up:
830 continue;
831 }
832 ret = (*up)(parent, data);
833 if (ret || parent == from)
834 goto out;
835
836 child = parent;
837 parent = parent->parent;
838 if (parent)
839 goto up;
840 out:
841 return ret;
842 }
843
tg_nop(struct task_group * tg,void * data)844 int tg_nop(struct task_group *tg, void *data)
845 {
846 return 0;
847 }
848 #endif
849
set_load_weight(struct task_struct * p,bool update_load)850 static void set_load_weight(struct task_struct *p, bool update_load)
851 {
852 int prio = p->static_prio - MAX_RT_PRIO;
853 struct load_weight *load = &p->se.load;
854
855 /*
856 * SCHED_IDLE tasks get minimal weight:
857 */
858 if (task_has_idle_policy(p)) {
859 load->weight = scale_load(WEIGHT_IDLEPRIO);
860 load->inv_weight = WMULT_IDLEPRIO;
861 return;
862 }
863
864 /*
865 * SCHED_OTHER tasks have to update their load when changing their
866 * weight
867 */
868 if (update_load && p->sched_class == &fair_sched_class) {
869 reweight_task(p, prio);
870 } else {
871 load->weight = scale_load(sched_prio_to_weight[prio]);
872 load->inv_weight = sched_prio_to_wmult[prio];
873 }
874 }
875
876 #ifdef CONFIG_SCHED_LATENCY_NICE
set_latency_weight(struct task_struct * p)877 static void set_latency_weight(struct task_struct *p)
878 {
879 p->se.latency_weight = sched_latency_to_weight[p->latency_prio];
880 }
881
__setscheduler_latency(struct task_struct * p,const struct sched_attr * attr)882 static void __setscheduler_latency(struct task_struct *p,
883 const struct sched_attr *attr)
884 {
885 if (attr->sched_flags & SCHED_FLAG_LATENCY_NICE) {
886 p->latency_prio = NICE_TO_LATENCY(attr->sched_latency_nice);
887 set_latency_weight(p);
888 }
889 }
890
latency_nice_validate(struct task_struct * p,bool user,const struct sched_attr * attr)891 static int latency_nice_validate(struct task_struct *p, bool user,
892 const struct sched_attr *attr)
893 {
894 if (attr->sched_latency_nice > MAX_LATENCY_NICE)
895 return -EINVAL;
896 if (attr->sched_latency_nice < MIN_LATENCY_NICE)
897 return -EINVAL;
898 /* Use the same security checks as NICE */
899 if (user && attr->sched_latency_nice < LATENCY_TO_NICE(p->latency_prio)
900 && !capable(CAP_SYS_NICE))
901 return -EPERM;
902
903 return 0;
904 }
905 #else
906 static void
__setscheduler_latency(struct task_struct * p,const struct sched_attr * attr)907 __setscheduler_latency(struct task_struct *p, const struct sched_attr *attr)
908 {
909 }
910
911 static inline
latency_nice_validate(struct task_struct * p,bool user,const struct sched_attr * attr)912 int latency_nice_validate(struct task_struct *p, bool user,
913 const struct sched_attr *attr)
914 {
915 return -EOPNOTSUPP;
916 }
917 #endif
918
919 #ifdef CONFIG_UCLAMP_TASK
920 /*
921 * Serializes updates of utilization clamp values
922 *
923 * The (slow-path) user-space triggers utilization clamp value updates which
924 * can require updates on (fast-path) scheduler's data structures used to
925 * support enqueue/dequeue operations.
926 * While the per-CPU rq lock protects fast-path update operations, user-space
927 * requests are serialized using a mutex to reduce the risk of conflicting
928 * updates or API abuses.
929 */
930 static DEFINE_MUTEX(uclamp_mutex);
931
932 /* Max allowed minimum utilization */
933 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
934
935 /* Max allowed maximum utilization */
936 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
937
938 /*
939 * By default RT tasks run at the maximum performance point/capacity of the
940 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
941 * SCHED_CAPACITY_SCALE.
942 *
943 * This knob allows admins to change the default behavior when uclamp is being
944 * used. In battery powered devices, particularly, running at the maximum
945 * capacity and frequency will increase energy consumption and shorten the
946 * battery life.
947 *
948 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
949 *
950 * This knob will not override the system default sched_util_clamp_min defined
951 * above.
952 */
953 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
954
955 /* All clamps are required to be less or equal than these values */
956 static struct uclamp_se uclamp_default[UCLAMP_CNT];
957
958 /*
959 * This static key is used to reduce the uclamp overhead in the fast path. It
960 * primarily disables the call to uclamp_rq_{inc, dec}() in
961 * enqueue/dequeue_task().
962 *
963 * This allows users to continue to enable uclamp in their kernel config with
964 * minimum uclamp overhead in the fast path.
965 *
966 * As soon as userspace modifies any of the uclamp knobs, the static key is
967 * enabled, since we have an actual users that make use of uclamp
968 * functionality.
969 *
970 * The knobs that would enable this static key are:
971 *
972 * * A task modifying its uclamp value with sched_setattr().
973 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
974 * * An admin modifying the cgroup cpu.uclamp.{min, max}
975 */
976 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
977
978 /* Integer rounded range for each bucket */
979 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
980
981 #define for_each_clamp_id(clamp_id) \
982 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
983
uclamp_bucket_id(unsigned int clamp_value)984 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
985 {
986 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
987 }
988
uclamp_none(enum uclamp_id clamp_id)989 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
990 {
991 if (clamp_id == UCLAMP_MIN)
992 return 0;
993 return SCHED_CAPACITY_SCALE;
994 }
995
uclamp_se_set(struct uclamp_se * uc_se,unsigned int value,bool user_defined)996 static inline void uclamp_se_set(struct uclamp_se *uc_se,
997 unsigned int value, bool user_defined)
998 {
999 uc_se->value = value;
1000 uc_se->bucket_id = uclamp_bucket_id(value);
1001 uc_se->user_defined = user_defined;
1002 }
1003
1004 static inline unsigned int
uclamp_idle_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1005 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1006 unsigned int clamp_value)
1007 {
1008 /*
1009 * Avoid blocked utilization pushing up the frequency when we go
1010 * idle (which drops the max-clamp) by retaining the last known
1011 * max-clamp.
1012 */
1013 if (clamp_id == UCLAMP_MAX) {
1014 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1015 return clamp_value;
1016 }
1017
1018 return uclamp_none(UCLAMP_MIN);
1019 }
1020
uclamp_idle_reset(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1021 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1022 unsigned int clamp_value)
1023 {
1024 /* Reset max-clamp retention only on idle exit */
1025 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1026 return;
1027
1028 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
1029 }
1030
1031 static inline
uclamp_rq_max_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1032 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1033 unsigned int clamp_value)
1034 {
1035 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1036 int bucket_id = UCLAMP_BUCKETS - 1;
1037
1038 /*
1039 * Since both min and max clamps are max aggregated, find the
1040 * top most bucket with tasks in.
1041 */
1042 for ( ; bucket_id >= 0; bucket_id--) {
1043 if (!bucket[bucket_id].tasks)
1044 continue;
1045 return bucket[bucket_id].value;
1046 }
1047
1048 /* No tasks -- default clamp values */
1049 return uclamp_idle_value(rq, clamp_id, clamp_value);
1050 }
1051
__uclamp_update_util_min_rt_default(struct task_struct * p)1052 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1053 {
1054 unsigned int default_util_min;
1055 struct uclamp_se *uc_se;
1056
1057 lockdep_assert_held(&p->pi_lock);
1058
1059 uc_se = &p->uclamp_req[UCLAMP_MIN];
1060
1061 /* Only sync if user didn't override the default */
1062 if (uc_se->user_defined)
1063 return;
1064
1065 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1066 uclamp_se_set(uc_se, default_util_min, false);
1067 }
1068
uclamp_update_util_min_rt_default(struct task_struct * p)1069 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1070 {
1071 struct rq_flags rf;
1072 struct rq *rq;
1073
1074 if (!rt_task(p))
1075 return;
1076
1077 /* Protect updates to p->uclamp_* */
1078 rq = task_rq_lock(p, &rf);
1079 __uclamp_update_util_min_rt_default(p);
1080 task_rq_unlock(rq, p, &rf);
1081 }
1082
uclamp_sync_util_min_rt_default(void)1083 static void uclamp_sync_util_min_rt_default(void)
1084 {
1085 struct task_struct *g, *p;
1086
1087 /*
1088 * copy_process() sysctl_uclamp
1089 * uclamp_min_rt = X;
1090 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1091 * // link thread smp_mb__after_spinlock()
1092 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1093 * sched_post_fork() for_each_process_thread()
1094 * __uclamp_sync_rt() __uclamp_sync_rt()
1095 *
1096 * Ensures that either sched_post_fork() will observe the new
1097 * uclamp_min_rt or for_each_process_thread() will observe the new
1098 * task.
1099 */
1100 read_lock(&tasklist_lock);
1101 smp_mb__after_spinlock();
1102 read_unlock(&tasklist_lock);
1103
1104 rcu_read_lock();
1105 for_each_process_thread(g, p)
1106 uclamp_update_util_min_rt_default(p);
1107 rcu_read_unlock();
1108 }
1109
1110 static inline struct uclamp_se
uclamp_tg_restrict(struct task_struct * p,enum uclamp_id clamp_id)1111 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1112 {
1113 /* Copy by value as we could modify it */
1114 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1115 #ifdef CONFIG_UCLAMP_TASK_GROUP
1116 unsigned int tg_min, tg_max, value;
1117
1118 /*
1119 * Tasks in autogroups or root task group will be
1120 * restricted by system defaults.
1121 */
1122 if (task_group_is_autogroup(task_group(p)))
1123 return uc_req;
1124 if (task_group(p) == &root_task_group)
1125 return uc_req;
1126
1127 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1128 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1129 value = uc_req.value;
1130 value = clamp(value, tg_min, tg_max);
1131 uclamp_se_set(&uc_req, value, false);
1132 #endif
1133
1134 return uc_req;
1135 }
1136
1137 /*
1138 * The effective clamp bucket index of a task depends on, by increasing
1139 * priority:
1140 * - the task specific clamp value, when explicitly requested from userspace
1141 * - the task group effective clamp value, for tasks not either in the root
1142 * group or in an autogroup
1143 * - the system default clamp value, defined by the sysadmin
1144 */
1145 static inline struct uclamp_se
uclamp_eff_get(struct task_struct * p,enum uclamp_id clamp_id)1146 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1147 {
1148 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1149 struct uclamp_se uc_max = uclamp_default[clamp_id];
1150
1151 /* System default restrictions always apply */
1152 if (unlikely(uc_req.value > uc_max.value))
1153 return uc_max;
1154
1155 return uc_req;
1156 }
1157
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)1158 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1159 {
1160 struct uclamp_se uc_eff;
1161
1162 /* Task currently refcounted: use back-annotated (effective) value */
1163 if (p->uclamp[clamp_id].active)
1164 return (unsigned long)p->uclamp[clamp_id].value;
1165
1166 uc_eff = uclamp_eff_get(p, clamp_id);
1167
1168 return (unsigned long)uc_eff.value;
1169 }
1170
1171 /*
1172 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1173 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1174 * updates the rq's clamp value if required.
1175 *
1176 * Tasks can have a task-specific value requested from user-space, track
1177 * within each bucket the maximum value for tasks refcounted in it.
1178 * This "local max aggregation" allows to track the exact "requested" value
1179 * for each bucket when all its RUNNABLE tasks require the same clamp.
1180 */
uclamp_rq_inc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1181 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1182 enum uclamp_id clamp_id)
1183 {
1184 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1185 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1186 struct uclamp_bucket *bucket;
1187
1188 lockdep_assert_held(&rq->lock);
1189
1190 /* Update task effective clamp */
1191 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1192
1193 bucket = &uc_rq->bucket[uc_se->bucket_id];
1194 bucket->tasks++;
1195 uc_se->active = true;
1196
1197 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1198
1199 /*
1200 * Local max aggregation: rq buckets always track the max
1201 * "requested" clamp value of its RUNNABLE tasks.
1202 */
1203 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1204 bucket->value = uc_se->value;
1205
1206 if (uc_se->value > READ_ONCE(uc_rq->value))
1207 WRITE_ONCE(uc_rq->value, uc_se->value);
1208 }
1209
1210 /*
1211 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1212 * is released. If this is the last task reference counting the rq's max
1213 * active clamp value, then the rq's clamp value is updated.
1214 *
1215 * Both refcounted tasks and rq's cached clamp values are expected to be
1216 * always valid. If it's detected they are not, as defensive programming,
1217 * enforce the expected state and warn.
1218 */
uclamp_rq_dec_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1219 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1220 enum uclamp_id clamp_id)
1221 {
1222 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1223 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1224 struct uclamp_bucket *bucket;
1225 unsigned int bkt_clamp;
1226 unsigned int rq_clamp;
1227
1228 lockdep_assert_held(&rq->lock);
1229
1230 /*
1231 * If sched_uclamp_used was enabled after task @p was enqueued,
1232 * we could end up with unbalanced call to uclamp_rq_dec_id().
1233 *
1234 * In this case the uc_se->active flag should be false since no uclamp
1235 * accounting was performed at enqueue time and we can just return
1236 * here.
1237 *
1238 * Need to be careful of the following enqeueue/dequeue ordering
1239 * problem too
1240 *
1241 * enqueue(taskA)
1242 * // sched_uclamp_used gets enabled
1243 * enqueue(taskB)
1244 * dequeue(taskA)
1245 * // Must not decrement bukcet->tasks here
1246 * dequeue(taskB)
1247 *
1248 * where we could end up with stale data in uc_se and
1249 * bucket[uc_se->bucket_id].
1250 *
1251 * The following check here eliminates the possibility of such race.
1252 */
1253 if (unlikely(!uc_se->active))
1254 return;
1255
1256 bucket = &uc_rq->bucket[uc_se->bucket_id];
1257
1258 SCHED_WARN_ON(!bucket->tasks);
1259 if (likely(bucket->tasks))
1260 bucket->tasks--;
1261
1262 uc_se->active = false;
1263
1264 /*
1265 * Keep "local max aggregation" simple and accept to (possibly)
1266 * overboost some RUNNABLE tasks in the same bucket.
1267 * The rq clamp bucket value is reset to its base value whenever
1268 * there are no more RUNNABLE tasks refcounting it.
1269 */
1270 if (likely(bucket->tasks))
1271 return;
1272
1273 rq_clamp = READ_ONCE(uc_rq->value);
1274 /*
1275 * Defensive programming: this should never happen. If it happens,
1276 * e.g. due to future modification, warn and fixup the expected value.
1277 */
1278 SCHED_WARN_ON(bucket->value > rq_clamp);
1279 if (bucket->value >= rq_clamp) {
1280 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1281 WRITE_ONCE(uc_rq->value, bkt_clamp);
1282 }
1283 }
1284
uclamp_rq_inc(struct rq * rq,struct task_struct * p)1285 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1286 {
1287 enum uclamp_id clamp_id;
1288
1289 /*
1290 * Avoid any overhead until uclamp is actually used by the userspace.
1291 *
1292 * The condition is constructed such that a NOP is generated when
1293 * sched_uclamp_used is disabled.
1294 */
1295 if (!static_branch_unlikely(&sched_uclamp_used))
1296 return;
1297
1298 if (unlikely(!p->sched_class->uclamp_enabled))
1299 return;
1300
1301 for_each_clamp_id(clamp_id)
1302 uclamp_rq_inc_id(rq, p, clamp_id);
1303
1304 /* Reset clamp idle holding when there is one RUNNABLE task */
1305 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1306 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1307 }
1308
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1309 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1310 {
1311 enum uclamp_id clamp_id;
1312
1313 /*
1314 * Avoid any overhead until uclamp is actually used by the userspace.
1315 *
1316 * The condition is constructed such that a NOP is generated when
1317 * sched_uclamp_used is disabled.
1318 */
1319 if (!static_branch_unlikely(&sched_uclamp_used))
1320 return;
1321
1322 if (unlikely(!p->sched_class->uclamp_enabled))
1323 return;
1324
1325 for_each_clamp_id(clamp_id)
1326 uclamp_rq_dec_id(rq, p, clamp_id);
1327 }
1328
uclamp_rq_reinc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1329 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1330 enum uclamp_id clamp_id)
1331 {
1332 if (!p->uclamp[clamp_id].active)
1333 return;
1334
1335 uclamp_rq_dec_id(rq, p, clamp_id);
1336 uclamp_rq_inc_id(rq, p, clamp_id);
1337
1338 /*
1339 * Make sure to clear the idle flag if we've transiently reached 0
1340 * active tasks on rq.
1341 */
1342 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1343 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1344 }
1345
1346 static inline void
uclamp_update_active(struct task_struct * p)1347 uclamp_update_active(struct task_struct *p)
1348 {
1349 enum uclamp_id clamp_id;
1350 struct rq_flags rf;
1351 struct rq *rq;
1352
1353 /*
1354 * Lock the task and the rq where the task is (or was) queued.
1355 *
1356 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1357 * price to pay to safely serialize util_{min,max} updates with
1358 * enqueues, dequeues and migration operations.
1359 * This is the same locking schema used by __set_cpus_allowed_ptr().
1360 */
1361 rq = task_rq_lock(p, &rf);
1362
1363 /*
1364 * Setting the clamp bucket is serialized by task_rq_lock().
1365 * If the task is not yet RUNNABLE and its task_struct is not
1366 * affecting a valid clamp bucket, the next time it's enqueued,
1367 * it will already see the updated clamp bucket value.
1368 */
1369 for_each_clamp_id(clamp_id)
1370 uclamp_rq_reinc_id(rq, p, clamp_id);
1371
1372 task_rq_unlock(rq, p, &rf);
1373 }
1374
1375 #ifdef CONFIG_UCLAMP_TASK_GROUP
1376 static inline void
uclamp_update_active_tasks(struct cgroup_subsys_state * css)1377 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1378 {
1379 struct css_task_iter it;
1380 struct task_struct *p;
1381
1382 css_task_iter_start(css, 0, &it);
1383 while ((p = css_task_iter_next(&it)))
1384 uclamp_update_active(p);
1385 css_task_iter_end(&it);
1386 }
1387
1388 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
uclamp_update_root_tg(void)1389 static void uclamp_update_root_tg(void)
1390 {
1391 struct task_group *tg = &root_task_group;
1392
1393 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1394 sysctl_sched_uclamp_util_min, false);
1395 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1396 sysctl_sched_uclamp_util_max, false);
1397
1398 rcu_read_lock();
1399 cpu_util_update_eff(&root_task_group.css);
1400 rcu_read_unlock();
1401 }
1402 #else
uclamp_update_root_tg(void)1403 static void uclamp_update_root_tg(void) { }
1404 #endif
1405
sysctl_sched_uclamp_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1406 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1407 void *buffer, size_t *lenp, loff_t *ppos)
1408 {
1409 bool update_root_tg = false;
1410 int old_min, old_max, old_min_rt;
1411 int result;
1412
1413 mutex_lock(&uclamp_mutex);
1414 old_min = sysctl_sched_uclamp_util_min;
1415 old_max = sysctl_sched_uclamp_util_max;
1416 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1417
1418 result = proc_dointvec(table, write, buffer, lenp, ppos);
1419 if (result)
1420 goto undo;
1421 if (!write)
1422 goto done;
1423
1424 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1425 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1426 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1427
1428 result = -EINVAL;
1429 goto undo;
1430 }
1431
1432 if (old_min != sysctl_sched_uclamp_util_min) {
1433 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1434 sysctl_sched_uclamp_util_min, false);
1435 update_root_tg = true;
1436 }
1437 if (old_max != sysctl_sched_uclamp_util_max) {
1438 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1439 sysctl_sched_uclamp_util_max, false);
1440 update_root_tg = true;
1441 }
1442
1443 if (update_root_tg) {
1444 static_branch_enable(&sched_uclamp_used);
1445 uclamp_update_root_tg();
1446 }
1447
1448 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1449 static_branch_enable(&sched_uclamp_used);
1450 uclamp_sync_util_min_rt_default();
1451 }
1452
1453 /*
1454 * We update all RUNNABLE tasks only when task groups are in use.
1455 * Otherwise, keep it simple and do just a lazy update at each next
1456 * task enqueue time.
1457 */
1458
1459 goto done;
1460
1461 undo:
1462 sysctl_sched_uclamp_util_min = old_min;
1463 sysctl_sched_uclamp_util_max = old_max;
1464 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1465 done:
1466 mutex_unlock(&uclamp_mutex);
1467
1468 return result;
1469 }
1470
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)1471 static int uclamp_validate(struct task_struct *p,
1472 const struct sched_attr *attr)
1473 {
1474 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1475 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1476
1477 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1478 lower_bound = attr->sched_util_min;
1479 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1480 upper_bound = attr->sched_util_max;
1481
1482 if (lower_bound > upper_bound)
1483 return -EINVAL;
1484 if (upper_bound > SCHED_CAPACITY_SCALE)
1485 return -EINVAL;
1486
1487 /*
1488 * We have valid uclamp attributes; make sure uclamp is enabled.
1489 *
1490 * We need to do that here, because enabling static branches is a
1491 * blocking operation which obviously cannot be done while holding
1492 * scheduler locks.
1493 */
1494 static_branch_enable(&sched_uclamp_used);
1495
1496 return 0;
1497 }
1498
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)1499 static void __setscheduler_uclamp(struct task_struct *p,
1500 const struct sched_attr *attr)
1501 {
1502 enum uclamp_id clamp_id;
1503
1504 /*
1505 * On scheduling class change, reset to default clamps for tasks
1506 * without a task-specific value.
1507 */
1508 for_each_clamp_id(clamp_id) {
1509 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1510
1511 /* Keep using defined clamps across class changes */
1512 if (uc_se->user_defined)
1513 continue;
1514
1515 /*
1516 * RT by default have a 100% boost value that could be modified
1517 * at runtime.
1518 */
1519 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1520 __uclamp_update_util_min_rt_default(p);
1521 else
1522 uclamp_se_set(uc_se, uclamp_none(clamp_id), false);
1523
1524 }
1525
1526 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1527 return;
1528
1529 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1530 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1531 attr->sched_util_min, true);
1532 }
1533
1534 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1535 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1536 attr->sched_util_max, true);
1537 }
1538 }
1539
uclamp_fork(struct task_struct * p)1540 static void uclamp_fork(struct task_struct *p)
1541 {
1542 enum uclamp_id clamp_id;
1543
1544 /*
1545 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1546 * as the task is still at its early fork stages.
1547 */
1548 for_each_clamp_id(clamp_id)
1549 p->uclamp[clamp_id].active = false;
1550
1551 if (likely(!p->sched_reset_on_fork))
1552 return;
1553
1554 for_each_clamp_id(clamp_id) {
1555 uclamp_se_set(&p->uclamp_req[clamp_id],
1556 uclamp_none(clamp_id), false);
1557 }
1558 }
1559
uclamp_post_fork(struct task_struct * p)1560 static void uclamp_post_fork(struct task_struct *p)
1561 {
1562 uclamp_update_util_min_rt_default(p);
1563 }
1564
init_uclamp_rq(struct rq * rq)1565 static void __init init_uclamp_rq(struct rq *rq)
1566 {
1567 enum uclamp_id clamp_id;
1568 struct uclamp_rq *uc_rq = rq->uclamp;
1569
1570 for_each_clamp_id(clamp_id) {
1571 uc_rq[clamp_id] = (struct uclamp_rq) {
1572 .value = uclamp_none(clamp_id)
1573 };
1574 }
1575
1576 rq->uclamp_flags = UCLAMP_FLAG_IDLE;
1577 }
1578
init_uclamp(void)1579 static void __init init_uclamp(void)
1580 {
1581 struct uclamp_se uc_max = {};
1582 enum uclamp_id clamp_id;
1583 int cpu;
1584
1585 for_each_possible_cpu(cpu)
1586 init_uclamp_rq(cpu_rq(cpu));
1587
1588 for_each_clamp_id(clamp_id) {
1589 uclamp_se_set(&init_task.uclamp_req[clamp_id],
1590 uclamp_none(clamp_id), false);
1591 }
1592
1593 /* System defaults allow max clamp values for both indexes */
1594 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1595 for_each_clamp_id(clamp_id) {
1596 uclamp_default[clamp_id] = uc_max;
1597 #ifdef CONFIG_UCLAMP_TASK_GROUP
1598 root_task_group.uclamp_req[clamp_id] = uc_max;
1599 root_task_group.uclamp[clamp_id] = uc_max;
1600 #endif
1601 }
1602 }
1603
1604 #else /* CONFIG_UCLAMP_TASK */
uclamp_rq_inc(struct rq * rq,struct task_struct * p)1605 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1606 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)1607 static inline int uclamp_validate(struct task_struct *p,
1608 const struct sched_attr *attr)
1609 {
1610 return -EOPNOTSUPP;
1611 }
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)1612 static void __setscheduler_uclamp(struct task_struct *p,
1613 const struct sched_attr *attr) { }
uclamp_fork(struct task_struct * p)1614 static inline void uclamp_fork(struct task_struct *p) { }
uclamp_post_fork(struct task_struct * p)1615 static inline void uclamp_post_fork(struct task_struct *p) { }
init_uclamp(void)1616 static inline void init_uclamp(void) { }
1617 #endif /* CONFIG_UCLAMP_TASK */
1618
enqueue_task(struct rq * rq,struct task_struct * p,int flags)1619 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1620 {
1621 if (!(flags & ENQUEUE_NOCLOCK))
1622 update_rq_clock(rq);
1623
1624 if (!(flags & ENQUEUE_RESTORE)) {
1625 sched_info_queued(rq, p);
1626 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1627 }
1628
1629 uclamp_rq_inc(rq, p);
1630 p->sched_class->enqueue_task(rq, p, flags);
1631 }
1632
dequeue_task(struct rq * rq,struct task_struct * p,int flags)1633 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1634 {
1635 if (!(flags & DEQUEUE_NOCLOCK))
1636 update_rq_clock(rq);
1637
1638 if (!(flags & DEQUEUE_SAVE)) {
1639 sched_info_dequeued(rq, p);
1640 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1641 }
1642
1643 uclamp_rq_dec(rq, p);
1644 p->sched_class->dequeue_task(rq, p, flags);
1645 }
1646
activate_task(struct rq * rq,struct task_struct * p,int flags)1647 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1648 {
1649 enqueue_task(rq, p, flags);
1650
1651 p->on_rq = TASK_ON_RQ_QUEUED;
1652 }
1653
deactivate_task(struct rq * rq,struct task_struct * p,int flags)1654 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1655 {
1656 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1657
1658 dequeue_task(rq, p, flags);
1659 }
1660
__normal_prio(int policy,int rt_prio,int nice)1661 static inline int __normal_prio(int policy, int rt_prio, int nice)
1662 {
1663 int prio;
1664
1665 if (dl_policy(policy))
1666 prio = MAX_DL_PRIO - 1;
1667 else if (rt_policy(policy))
1668 prio = MAX_RT_PRIO - 1 - rt_prio;
1669 else
1670 prio = NICE_TO_PRIO(nice);
1671
1672 return prio;
1673 }
1674
1675 /*
1676 * Calculate the expected normal priority: i.e. priority
1677 * without taking RT-inheritance into account. Might be
1678 * boosted by interactivity modifiers. Changes upon fork,
1679 * setprio syscalls, and whenever the interactivity
1680 * estimator recalculates.
1681 */
normal_prio(struct task_struct * p)1682 static inline int normal_prio(struct task_struct *p)
1683 {
1684 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
1685 }
1686
1687 /*
1688 * Calculate the current priority, i.e. the priority
1689 * taken into account by the scheduler. This value might
1690 * be boosted by RT tasks, or might be boosted by
1691 * interactivity modifiers. Will be RT if the task got
1692 * RT-boosted. If not then it returns p->normal_prio.
1693 */
effective_prio(struct task_struct * p)1694 static int effective_prio(struct task_struct *p)
1695 {
1696 p->normal_prio = normal_prio(p);
1697 /*
1698 * If we are RT tasks or we were boosted to RT priority,
1699 * keep the priority unchanged. Otherwise, update priority
1700 * to the normal priority:
1701 */
1702 if (!rt_prio(p->prio))
1703 return p->normal_prio;
1704 return p->prio;
1705 }
1706
1707 /**
1708 * task_curr - is this task currently executing on a CPU?
1709 * @p: the task in question.
1710 *
1711 * Return: 1 if the task is currently executing. 0 otherwise.
1712 */
task_curr(const struct task_struct * p)1713 inline int task_curr(const struct task_struct *p)
1714 {
1715 return cpu_curr(task_cpu(p)) == p;
1716 }
1717
1718 /*
1719 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1720 * use the balance_callback list if you want balancing.
1721 *
1722 * this means any call to check_class_changed() must be followed by a call to
1723 * balance_callback().
1724 */
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio)1725 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1726 const struct sched_class *prev_class,
1727 int oldprio)
1728 {
1729 if (prev_class != p->sched_class) {
1730 if (prev_class->switched_from)
1731 prev_class->switched_from(rq, p);
1732
1733 p->sched_class->switched_to(rq, p);
1734 } else if (oldprio != p->prio || dl_task(p))
1735 p->sched_class->prio_changed(rq, p, oldprio);
1736 }
1737
check_preempt_curr(struct rq * rq,struct task_struct * p,int flags)1738 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1739 {
1740 if (p->sched_class == rq->curr->sched_class)
1741 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1742 else if (p->sched_class > rq->curr->sched_class)
1743 resched_curr(rq);
1744
1745 /*
1746 * A queue event has occurred, and we're going to schedule. In
1747 * this case, we can save a useless back to back clock update.
1748 */
1749 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1750 rq_clock_skip_update(rq);
1751 }
1752
1753 #ifdef CONFIG_SMP
1754
1755 /*
1756 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1757 * __set_cpus_allowed_ptr() and select_fallback_rq().
1758 */
is_cpu_allowed(struct task_struct * p,int cpu)1759 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1760 {
1761 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1762 return false;
1763
1764 if (is_per_cpu_kthread(p))
1765 return cpu_online(cpu);
1766
1767 return cpu_active(cpu);
1768 }
1769
1770 /*
1771 * This is how migration works:
1772 *
1773 * 1) we invoke migration_cpu_stop() on the target CPU using
1774 * stop_one_cpu().
1775 * 2) stopper starts to run (implicitly forcing the migrated thread
1776 * off the CPU)
1777 * 3) it checks whether the migrated task is still in the wrong runqueue.
1778 * 4) if it's in the wrong runqueue then the migration thread removes
1779 * it and puts it into the right queue.
1780 * 5) stopper completes and stop_one_cpu() returns and the migration
1781 * is done.
1782 */
1783
1784 /*
1785 * move_queued_task - move a queued task to new rq.
1786 *
1787 * Returns (locked) new rq. Old rq's lock is released.
1788 */
move_queued_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int new_cpu)1789 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1790 struct task_struct *p, int new_cpu)
1791 {
1792 lockdep_assert_held(&rq->lock);
1793
1794 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
1795 #ifdef CONFIG_SCHED_WALT
1796 double_lock_balance(rq, cpu_rq(new_cpu));
1797 if (!(rq->clock_update_flags & RQCF_UPDATED))
1798 update_rq_clock(rq);
1799 #endif
1800 set_task_cpu(p, new_cpu);
1801 #ifdef CONFIG_SCHED_WALT
1802 double_rq_unlock(cpu_rq(new_cpu), rq);
1803 #else
1804 rq_unlock(rq, rf);
1805 #endif
1806
1807 rq = cpu_rq(new_cpu);
1808
1809 rq_lock(rq, rf);
1810 BUG_ON(task_cpu(p) != new_cpu);
1811 activate_task(rq, p, 0);
1812 check_preempt_curr(rq, p, 0);
1813
1814 return rq;
1815 }
1816
1817 struct migration_arg {
1818 struct task_struct *task;
1819 int dest_cpu;
1820 };
1821
1822 /*
1823 * Move (not current) task off this CPU, onto the destination CPU. We're doing
1824 * this because either it can't run here any more (set_cpus_allowed()
1825 * away from this CPU, or CPU going down), or because we're
1826 * attempting to rebalance this task on exec (sched_exec).
1827 *
1828 * So we race with normal scheduler movements, but that's OK, as long
1829 * as the task is no longer on this CPU.
1830 */
__migrate_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int dest_cpu)1831 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1832 struct task_struct *p, int dest_cpu)
1833 {
1834 /* Affinity changed (again). */
1835 if (!is_cpu_allowed(p, dest_cpu))
1836 return rq;
1837
1838 update_rq_clock(rq);
1839 rq = move_queued_task(rq, rf, p, dest_cpu);
1840
1841 return rq;
1842 }
1843
1844 /*
1845 * migration_cpu_stop - this will be executed by a highprio stopper thread
1846 * and performs thread migration by bumping thread off CPU then
1847 * 'pushing' onto another runqueue.
1848 */
migration_cpu_stop(void * data)1849 static int migration_cpu_stop(void *data)
1850 {
1851 struct migration_arg *arg = data;
1852 struct task_struct *p = arg->task;
1853 struct rq *rq = this_rq();
1854 struct rq_flags rf;
1855
1856 /*
1857 * The original target CPU might have gone down and we might
1858 * be on another CPU but it doesn't matter.
1859 */
1860 local_irq_disable();
1861 /*
1862 * We need to explicitly wake pending tasks before running
1863 * __migrate_task() such that we will not miss enforcing cpus_ptr
1864 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1865 */
1866 flush_smp_call_function_from_idle();
1867
1868 raw_spin_lock(&p->pi_lock);
1869 rq_lock(rq, &rf);
1870 /*
1871 * If task_rq(p) != rq, it cannot be migrated here, because we're
1872 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1873 * we're holding p->pi_lock.
1874 */
1875 if (task_rq(p) == rq) {
1876 if (task_on_rq_queued(p))
1877 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1878 else
1879 p->wake_cpu = arg->dest_cpu;
1880 }
1881 rq_unlock(rq, &rf);
1882 raw_spin_unlock(&p->pi_lock);
1883
1884 local_irq_enable();
1885 return 0;
1886 }
1887
1888 /*
1889 * sched_class::set_cpus_allowed must do the below, but is not required to
1890 * actually call this function.
1891 */
set_cpus_allowed_common(struct task_struct * p,const struct cpumask * new_mask)1892 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1893 {
1894 cpumask_copy(&p->cpus_mask, new_mask);
1895 p->nr_cpus_allowed = cpumask_weight(new_mask);
1896 }
1897
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)1898 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1899 {
1900 struct rq *rq = task_rq(p);
1901 bool queued, running;
1902
1903 lockdep_assert_held(&p->pi_lock);
1904
1905 queued = task_on_rq_queued(p);
1906 running = task_current(rq, p);
1907
1908 if (queued) {
1909 /*
1910 * Because __kthread_bind() calls this on blocked tasks without
1911 * holding rq->lock.
1912 */
1913 lockdep_assert_held(&rq->lock);
1914 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1915 }
1916 if (running)
1917 put_prev_task(rq, p);
1918
1919 p->sched_class->set_cpus_allowed(p, new_mask);
1920
1921 if (queued)
1922 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1923 if (running)
1924 set_next_task(rq, p);
1925 }
1926
1927 /*
1928 * Change a given task's CPU affinity. Migrate the thread to a
1929 * proper CPU and schedule it away if the CPU it's executing on
1930 * is removed from the allowed bitmask.
1931 *
1932 * NOTE: the caller must have a valid reference to the task, the
1933 * task must not exit() & deallocate itself prematurely. The
1934 * call is not atomic; no spinlocks may be held.
1935 */
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,bool check)1936 static int __set_cpus_allowed_ptr(struct task_struct *p,
1937 const struct cpumask *new_mask, bool check)
1938 {
1939 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1940 unsigned int dest_cpu;
1941 struct rq_flags rf;
1942 struct rq *rq;
1943 int ret = 0;
1944 #ifdef CONFIG_CPU_ISOLATION_OPT
1945 cpumask_t allowed_mask;
1946 #endif
1947
1948 rq = task_rq_lock(p, &rf);
1949 update_rq_clock(rq);
1950
1951 if (p->flags & PF_KTHREAD) {
1952 /*
1953 * Kernel threads are allowed on online && !active CPUs
1954 */
1955 cpu_valid_mask = cpu_online_mask;
1956 }
1957
1958 /*
1959 * Must re-check here, to close a race against __kthread_bind(),
1960 * sched_setaffinity() is not guaranteed to observe the flag.
1961 */
1962 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1963 ret = -EINVAL;
1964 goto out;
1965 }
1966
1967 if (cpumask_equal(&p->cpus_mask, new_mask))
1968 goto out;
1969
1970 #ifdef CONFIG_CPU_ISOLATION_OPT
1971 cpumask_andnot(&allowed_mask, new_mask, cpu_isolated_mask);
1972 cpumask_and(&allowed_mask, &allowed_mask, cpu_valid_mask);
1973
1974 dest_cpu = cpumask_any(&allowed_mask);
1975 if (dest_cpu >= nr_cpu_ids) {
1976 cpumask_and(&allowed_mask, cpu_valid_mask, new_mask);
1977 dest_cpu = cpumask_any(&allowed_mask);
1978 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1979 ret = -EINVAL;
1980 goto out;
1981 }
1982 }
1983 #else
1984 /*
1985 * Picking a ~random cpu helps in cases where we are changing affinity
1986 * for groups of tasks (ie. cpuset), so that load balancing is not
1987 * immediately required to distribute the tasks within their new mask.
1988 */
1989 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
1990 if (dest_cpu >= nr_cpu_ids) {
1991 ret = -EINVAL;
1992 goto out;
1993 }
1994 #endif
1995
1996 do_set_cpus_allowed(p, new_mask);
1997
1998 if (p->flags & PF_KTHREAD) {
1999 /*
2000 * For kernel threads that do indeed end up on online &&
2001 * !active we want to ensure they are strict per-CPU threads.
2002 */
2003 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
2004 !cpumask_intersects(new_mask, cpu_active_mask) &&
2005 p->nr_cpus_allowed != 1);
2006 }
2007
2008 /* Can the task run on the task's current CPU? If so, we're done */
2009 #ifdef CONFIG_CPU_ISOLATION_OPT
2010 if (cpumask_test_cpu(task_cpu(p), &allowed_mask))
2011 goto out;
2012 #else
2013 if (cpumask_test_cpu(task_cpu(p), new_mask))
2014 goto out;
2015 #endif
2016
2017 if (task_running(rq, p) || p->state == TASK_WAKING) {
2018 struct migration_arg arg = { p, dest_cpu };
2019 /* Need help from migration thread: drop lock and wait. */
2020 task_rq_unlock(rq, p, &rf);
2021 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
2022 return 0;
2023 } else if (task_on_rq_queued(p)) {
2024 /*
2025 * OK, since we're going to drop the lock immediately
2026 * afterwards anyway.
2027 */
2028 rq = move_queued_task(rq, &rf, p, dest_cpu);
2029 }
2030 out:
2031 task_rq_unlock(rq, p, &rf);
2032
2033 return ret;
2034 }
2035
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)2036 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2037 {
2038 return __set_cpus_allowed_ptr(p, new_mask, false);
2039 }
2040 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2041
set_task_cpu(struct task_struct * p,unsigned int new_cpu)2042 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2043 {
2044 #ifdef CONFIG_SCHED_DEBUG
2045 /*
2046 * We should never call set_task_cpu() on a blocked task,
2047 * ttwu() will sort out the placement.
2048 */
2049 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2050 !p->on_rq);
2051
2052 /*
2053 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
2054 * because schedstat_wait_{start,end} rebase migrating task's wait_start
2055 * time relying on p->on_rq.
2056 */
2057 WARN_ON_ONCE(p->state == TASK_RUNNING &&
2058 p->sched_class == &fair_sched_class &&
2059 (p->on_rq && !task_on_rq_migrating(p)));
2060
2061 #ifdef CONFIG_LOCKDEP
2062 /*
2063 * The caller should hold either p->pi_lock or rq->lock, when changing
2064 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2065 *
2066 * sched_move_task() holds both and thus holding either pins the cgroup,
2067 * see task_group().
2068 *
2069 * Furthermore, all task_rq users should acquire both locks, see
2070 * task_rq_lock().
2071 */
2072 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2073 lockdep_is_held(&task_rq(p)->lock)));
2074 #endif
2075 /*
2076 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
2077 */
2078 WARN_ON_ONCE(!cpu_online(new_cpu));
2079 #endif
2080
2081 trace_sched_migrate_task(p, new_cpu);
2082
2083 if (task_cpu(p) != new_cpu) {
2084 if (p->sched_class->migrate_task_rq)
2085 p->sched_class->migrate_task_rq(p, new_cpu);
2086 p->se.nr_migrations++;
2087 rseq_migrate(p);
2088 perf_event_task_migrate(p);
2089 fixup_busy_time(p, new_cpu);
2090 }
2091
2092 __set_task_cpu(p, new_cpu);
2093 }
2094
2095 #ifdef CONFIG_NUMA_BALANCING
__migrate_swap_task(struct task_struct * p,int cpu)2096 static void __migrate_swap_task(struct task_struct *p, int cpu)
2097 {
2098 if (task_on_rq_queued(p)) {
2099 struct rq *src_rq, *dst_rq;
2100 struct rq_flags srf, drf;
2101
2102 src_rq = task_rq(p);
2103 dst_rq = cpu_rq(cpu);
2104
2105 rq_pin_lock(src_rq, &srf);
2106 rq_pin_lock(dst_rq, &drf);
2107
2108 deactivate_task(src_rq, p, 0);
2109 set_task_cpu(p, cpu);
2110 activate_task(dst_rq, p, 0);
2111 check_preempt_curr(dst_rq, p, 0);
2112
2113 rq_unpin_lock(dst_rq, &drf);
2114 rq_unpin_lock(src_rq, &srf);
2115
2116 } else {
2117 /*
2118 * Task isn't running anymore; make it appear like we migrated
2119 * it before it went to sleep. This means on wakeup we make the
2120 * previous CPU our target instead of where it really is.
2121 */
2122 p->wake_cpu = cpu;
2123 }
2124 }
2125
2126 struct migration_swap_arg {
2127 struct task_struct *src_task, *dst_task;
2128 int src_cpu, dst_cpu;
2129 };
2130
migrate_swap_stop(void * data)2131 static int migrate_swap_stop(void *data)
2132 {
2133 struct migration_swap_arg *arg = data;
2134 struct rq *src_rq, *dst_rq;
2135 int ret = -EAGAIN;
2136
2137 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2138 return -EAGAIN;
2139
2140 src_rq = cpu_rq(arg->src_cpu);
2141 dst_rq = cpu_rq(arg->dst_cpu);
2142
2143 double_raw_lock(&arg->src_task->pi_lock,
2144 &arg->dst_task->pi_lock);
2145 double_rq_lock(src_rq, dst_rq);
2146
2147 if (task_cpu(arg->dst_task) != arg->dst_cpu)
2148 goto unlock;
2149
2150 if (task_cpu(arg->src_task) != arg->src_cpu)
2151 goto unlock;
2152
2153 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
2154 goto unlock;
2155
2156 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
2157 goto unlock;
2158
2159 __migrate_swap_task(arg->src_task, arg->dst_cpu);
2160 __migrate_swap_task(arg->dst_task, arg->src_cpu);
2161
2162 ret = 0;
2163
2164 unlock:
2165 double_rq_unlock(src_rq, dst_rq);
2166 raw_spin_unlock(&arg->dst_task->pi_lock);
2167 raw_spin_unlock(&arg->src_task->pi_lock);
2168
2169 return ret;
2170 }
2171
2172 /*
2173 * Cross migrate two tasks
2174 */
migrate_swap(struct task_struct * cur,struct task_struct * p,int target_cpu,int curr_cpu)2175 int migrate_swap(struct task_struct *cur, struct task_struct *p,
2176 int target_cpu, int curr_cpu)
2177 {
2178 struct migration_swap_arg arg;
2179 int ret = -EINVAL;
2180
2181 arg = (struct migration_swap_arg){
2182 .src_task = cur,
2183 .src_cpu = curr_cpu,
2184 .dst_task = p,
2185 .dst_cpu = target_cpu,
2186 };
2187
2188 if (arg.src_cpu == arg.dst_cpu)
2189 goto out;
2190
2191 /*
2192 * These three tests are all lockless; this is OK since all of them
2193 * will be re-checked with proper locks held further down the line.
2194 */
2195 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2196 goto out;
2197
2198 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
2199 goto out;
2200
2201 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
2202 goto out;
2203
2204 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
2205 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2206
2207 out:
2208 return ret;
2209 }
2210 #endif /* CONFIG_NUMA_BALANCING */
2211
2212 /*
2213 * wait_task_inactive - wait for a thread to unschedule.
2214 *
2215 * If @match_state is nonzero, it's the @p->state value just checked and
2216 * not expected to change. If it changes, i.e. @p might have woken up,
2217 * then return zero. When we succeed in waiting for @p to be off its CPU,
2218 * we return a positive number (its total switch count). If a second call
2219 * a short while later returns the same number, the caller can be sure that
2220 * @p has remained unscheduled the whole time.
2221 *
2222 * The caller must ensure that the task *will* unschedule sometime soon,
2223 * else this function might spin for a *long* time. This function can't
2224 * be called with interrupts off, or it may introduce deadlock with
2225 * smp_call_function() if an IPI is sent by the same process we are
2226 * waiting to become inactive.
2227 */
wait_task_inactive(struct task_struct * p,long match_state)2228 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2229 {
2230 int running, queued;
2231 struct rq_flags rf;
2232 unsigned long ncsw;
2233 struct rq *rq;
2234
2235 for (;;) {
2236 /*
2237 * We do the initial early heuristics without holding
2238 * any task-queue locks at all. We'll only try to get
2239 * the runqueue lock when things look like they will
2240 * work out!
2241 */
2242 rq = task_rq(p);
2243
2244 /*
2245 * If the task is actively running on another CPU
2246 * still, just relax and busy-wait without holding
2247 * any locks.
2248 *
2249 * NOTE! Since we don't hold any locks, it's not
2250 * even sure that "rq" stays as the right runqueue!
2251 * But we don't care, since "task_running()" will
2252 * return false if the runqueue has changed and p
2253 * is actually now running somewhere else!
2254 */
2255 while (task_running(rq, p)) {
2256 if (match_state && unlikely(p->state != match_state))
2257 return 0;
2258 cpu_relax();
2259 }
2260
2261 /*
2262 * Ok, time to look more closely! We need the rq
2263 * lock now, to be *sure*. If we're wrong, we'll
2264 * just go back and repeat.
2265 */
2266 rq = task_rq_lock(p, &rf);
2267 trace_sched_wait_task(p);
2268 running = task_running(rq, p);
2269 queued = task_on_rq_queued(p);
2270 ncsw = 0;
2271 if (!match_state || p->state == match_state)
2272 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2273 task_rq_unlock(rq, p, &rf);
2274
2275 /*
2276 * If it changed from the expected state, bail out now.
2277 */
2278 if (unlikely(!ncsw))
2279 break;
2280
2281 /*
2282 * Was it really running after all now that we
2283 * checked with the proper locks actually held?
2284 *
2285 * Oops. Go back and try again..
2286 */
2287 if (unlikely(running)) {
2288 cpu_relax();
2289 continue;
2290 }
2291
2292 /*
2293 * It's not enough that it's not actively running,
2294 * it must be off the runqueue _entirely_, and not
2295 * preempted!
2296 *
2297 * So if it was still runnable (but just not actively
2298 * running right now), it's preempted, and we should
2299 * yield - it could be a while.
2300 */
2301 if (unlikely(queued)) {
2302 ktime_t to = NSEC_PER_SEC / HZ;
2303
2304 set_current_state(TASK_UNINTERRUPTIBLE);
2305 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2306 continue;
2307 }
2308
2309 /*
2310 * Ahh, all good. It wasn't running, and it wasn't
2311 * runnable, which means that it will never become
2312 * running in the future either. We're all done!
2313 */
2314 break;
2315 }
2316
2317 return ncsw;
2318 }
2319
2320 /***
2321 * kick_process - kick a running thread to enter/exit the kernel
2322 * @p: the to-be-kicked thread
2323 *
2324 * Cause a process which is running on another CPU to enter
2325 * kernel-mode, without any delay. (to get signals handled.)
2326 *
2327 * NOTE: this function doesn't have to take the runqueue lock,
2328 * because all it wants to ensure is that the remote task enters
2329 * the kernel. If the IPI races and the task has been migrated
2330 * to another CPU then no harm is done and the purpose has been
2331 * achieved as well.
2332 */
kick_process(struct task_struct * p)2333 void kick_process(struct task_struct *p)
2334 {
2335 int cpu;
2336
2337 preempt_disable();
2338 cpu = task_cpu(p);
2339 if ((cpu != smp_processor_id()) && task_curr(p))
2340 smp_send_reschedule(cpu);
2341 preempt_enable();
2342 }
2343 EXPORT_SYMBOL_GPL(kick_process);
2344
2345 /*
2346 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2347 *
2348 * A few notes on cpu_active vs cpu_online:
2349 *
2350 * - cpu_active must be a subset of cpu_online
2351 *
2352 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2353 * see __set_cpus_allowed_ptr(). At this point the newly online
2354 * CPU isn't yet part of the sched domains, and balancing will not
2355 * see it.
2356 *
2357 * - on CPU-down we clear cpu_active() to mask the sched domains and
2358 * avoid the load balancer to place new tasks on the to be removed
2359 * CPU. Existing tasks will remain running there and will be taken
2360 * off.
2361 *
2362 * This means that fallback selection must not select !active CPUs.
2363 * And can assume that any active CPU must be online. Conversely
2364 * select_task_rq() below may allow selection of !active CPUs in order
2365 * to satisfy the above rules.
2366 */
2367 #ifdef CONFIG_CPU_ISOLATION_OPT
select_fallback_rq(int cpu,struct task_struct * p,bool allow_iso)2368 static int select_fallback_rq(int cpu, struct task_struct *p, bool allow_iso)
2369 #else
2370 static int select_fallback_rq(int cpu, struct task_struct *p)
2371 #endif
2372 {
2373 int nid = cpu_to_node(cpu);
2374 const struct cpumask *nodemask = NULL;
2375 enum { cpuset, possible, fail, bug } state = cpuset;
2376 int dest_cpu;
2377 #ifdef CONFIG_CPU_ISOLATION_OPT
2378 int isolated_candidate = -1;
2379 #endif
2380
2381 /*
2382 * If the node that the CPU is on has been offlined, cpu_to_node()
2383 * will return -1. There is no CPU on the node, and we should
2384 * select the CPU on the other node.
2385 */
2386 if (nid != -1) {
2387 nodemask = cpumask_of_node(nid);
2388
2389 /* Look for allowed, online CPU in same node. */
2390 for_each_cpu(dest_cpu, nodemask) {
2391 if (!cpu_active(dest_cpu))
2392 continue;
2393 if (cpu_isolated(dest_cpu))
2394 continue;
2395 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2396 return dest_cpu;
2397 }
2398 }
2399
2400 for (;;) {
2401 /* Any allowed, online CPU? */
2402 for_each_cpu(dest_cpu, p->cpus_ptr) {
2403 if (!is_cpu_allowed(p, dest_cpu))
2404 continue;
2405 #ifdef CONFIG_CPU_ISOLATION_OPT
2406 if (cpu_isolated(dest_cpu)) {
2407 if (allow_iso)
2408 isolated_candidate = dest_cpu;
2409 continue;
2410 }
2411 goto out;
2412 }
2413
2414 if (isolated_candidate != -1) {
2415 dest_cpu = isolated_candidate;
2416 #endif
2417 goto out;
2418 }
2419
2420 /* No more Mr. Nice Guy. */
2421 switch (state) {
2422 case cpuset:
2423 if (IS_ENABLED(CONFIG_CPUSETS)) {
2424 cpuset_cpus_allowed_fallback(p);
2425 state = possible;
2426 break;
2427 }
2428 fallthrough;
2429 case possible:
2430 do_set_cpus_allowed(p, cpu_possible_mask);
2431 state = fail;
2432 break;
2433
2434 case fail:
2435 #ifdef CONFIG_CPU_ISOLATION_OPT
2436 allow_iso = true;
2437 state = bug;
2438 break;
2439 #else
2440 /* fall through; */
2441 #endif
2442
2443 case bug:
2444 BUG();
2445 break;
2446 }
2447 }
2448
2449 out:
2450 if (state != cpuset) {
2451 /*
2452 * Don't tell them about moving exiting tasks or
2453 * kernel threads (both mm NULL), since they never
2454 * leave kernel.
2455 */
2456 if (p->mm && printk_ratelimit()) {
2457 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2458 task_pid_nr(p), p->comm, cpu);
2459 }
2460 }
2461
2462 return dest_cpu;
2463 }
2464
2465 /*
2466 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2467 */
2468 static inline
select_task_rq(struct task_struct * p,int cpu,int sd_flags,int wake_flags)2469 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2470 {
2471 #ifdef CONFIG_CPU_ISOLATION_OPT
2472 bool allow_isolated = (p->flags & PF_KTHREAD);
2473 #endif
2474
2475 lockdep_assert_held(&p->pi_lock);
2476
2477 if (p->nr_cpus_allowed > 1)
2478 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2479 else
2480 cpu = cpumask_any(p->cpus_ptr);
2481
2482 /*
2483 * In order not to call set_task_cpu() on a blocking task we need
2484 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2485 * CPU.
2486 *
2487 * Since this is common to all placement strategies, this lives here.
2488 *
2489 * [ this allows ->select_task() to simply return task_cpu(p) and
2490 * not worry about this generic constraint ]
2491 */
2492 #ifdef CONFIG_CPU_ISOLATION_OPT
2493 if (unlikely(!is_cpu_allowed(p, cpu)) ||
2494 (cpu_isolated(cpu) && !allow_isolated))
2495 cpu = select_fallback_rq(task_cpu(p), p, allow_isolated);
2496 #else
2497 if (unlikely(!is_cpu_allowed(p, cpu)))
2498 cpu = select_fallback_rq(task_cpu(p), p);
2499 #endif
2500
2501 return cpu;
2502 }
2503
sched_set_stop_task(int cpu,struct task_struct * stop)2504 void sched_set_stop_task(int cpu, struct task_struct *stop)
2505 {
2506 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2507 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2508
2509 if (stop) {
2510 /*
2511 * Make it appear like a SCHED_FIFO task, its something
2512 * userspace knows about and won't get confused about.
2513 *
2514 * Also, it will make PI more or less work without too
2515 * much confusion -- but then, stop work should not
2516 * rely on PI working anyway.
2517 */
2518 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
2519
2520 stop->sched_class = &stop_sched_class;
2521 }
2522
2523 cpu_rq(cpu)->stop = stop;
2524
2525 if (old_stop) {
2526 /*
2527 * Reset it back to a normal scheduling class so that
2528 * it can die in pieces.
2529 */
2530 old_stop->sched_class = &rt_sched_class;
2531 }
2532 }
2533
2534 #else
2535
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,bool check)2536 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2537 const struct cpumask *new_mask, bool check)
2538 {
2539 return set_cpus_allowed_ptr(p, new_mask);
2540 }
2541
2542 #endif /* CONFIG_SMP */
2543
2544 static void
ttwu_stat(struct task_struct * p,int cpu,int wake_flags)2545 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2546 {
2547 struct rq *rq;
2548
2549 if (!schedstat_enabled())
2550 return;
2551
2552 rq = this_rq();
2553
2554 #ifdef CONFIG_SMP
2555 if (cpu == rq->cpu) {
2556 __schedstat_inc(rq->ttwu_local);
2557 __schedstat_inc(p->se.statistics.nr_wakeups_local);
2558 } else {
2559 struct sched_domain *sd;
2560
2561 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
2562 rcu_read_lock();
2563 for_each_domain(rq->cpu, sd) {
2564 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2565 __schedstat_inc(sd->ttwu_wake_remote);
2566 break;
2567 }
2568 }
2569 rcu_read_unlock();
2570 }
2571
2572 if (wake_flags & WF_MIGRATED)
2573 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2574 #endif /* CONFIG_SMP */
2575
2576 __schedstat_inc(rq->ttwu_count);
2577 __schedstat_inc(p->se.statistics.nr_wakeups);
2578
2579 if (wake_flags & WF_SYNC)
2580 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
2581 }
2582
2583 /*
2584 * Mark the task runnable and perform wakeup-preemption.
2585 */
ttwu_do_wakeup(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)2586 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2587 struct rq_flags *rf)
2588 {
2589 check_preempt_curr(rq, p, wake_flags);
2590 p->state = TASK_RUNNING;
2591 trace_sched_wakeup(p);
2592
2593 #ifdef CONFIG_SMP
2594 if (p->sched_class->task_woken) {
2595 /*
2596 * Our task @p is fully woken up and running; so its safe to
2597 * drop the rq->lock, hereafter rq is only used for statistics.
2598 */
2599 rq_unpin_lock(rq, rf);
2600 p->sched_class->task_woken(rq, p);
2601 rq_repin_lock(rq, rf);
2602 }
2603
2604 if (rq->idle_stamp) {
2605 u64 delta = rq_clock(rq) - rq->idle_stamp;
2606 u64 max = 2*rq->max_idle_balance_cost;
2607
2608 update_avg(&rq->avg_idle, delta);
2609
2610 if (rq->avg_idle > max)
2611 rq->avg_idle = max;
2612
2613 rq->idle_stamp = 0;
2614 }
2615 #endif
2616 }
2617
2618 static void
ttwu_do_activate(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)2619 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2620 struct rq_flags *rf)
2621 {
2622 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2623
2624 lockdep_assert_held(&rq->lock);
2625
2626 if (p->sched_contributes_to_load)
2627 rq->nr_uninterruptible--;
2628
2629 #ifdef CONFIG_SMP
2630 if (wake_flags & WF_MIGRATED)
2631 en_flags |= ENQUEUE_MIGRATED;
2632 else
2633 #endif
2634 if (p->in_iowait) {
2635 delayacct_blkio_end(p);
2636 atomic_dec(&task_rq(p)->nr_iowait);
2637 }
2638
2639 activate_task(rq, p, en_flags);
2640 ttwu_do_wakeup(rq, p, wake_flags, rf);
2641 }
2642
2643 /*
2644 * Consider @p being inside a wait loop:
2645 *
2646 * for (;;) {
2647 * set_current_state(TASK_UNINTERRUPTIBLE);
2648 *
2649 * if (CONDITION)
2650 * break;
2651 *
2652 * schedule();
2653 * }
2654 * __set_current_state(TASK_RUNNING);
2655 *
2656 * between set_current_state() and schedule(). In this case @p is still
2657 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
2658 * an atomic manner.
2659 *
2660 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
2661 * then schedule() must still happen and p->state can be changed to
2662 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
2663 * need to do a full wakeup with enqueue.
2664 *
2665 * Returns: %true when the wakeup is done,
2666 * %false otherwise.
2667 */
ttwu_runnable(struct task_struct * p,int wake_flags)2668 static int ttwu_runnable(struct task_struct *p, int wake_flags)
2669 {
2670 struct rq_flags rf;
2671 struct rq *rq;
2672 int ret = 0;
2673
2674 rq = __task_rq_lock(p, &rf);
2675 if (task_on_rq_queued(p)) {
2676 /* check_preempt_curr() may use rq clock */
2677 update_rq_clock(rq);
2678 ttwu_do_wakeup(rq, p, wake_flags, &rf);
2679 ret = 1;
2680 }
2681 __task_rq_unlock(rq, &rf);
2682
2683 return ret;
2684 }
2685
2686 #ifdef CONFIG_SMP
sched_ttwu_pending(void * arg)2687 void sched_ttwu_pending(void *arg)
2688 {
2689 struct llist_node *llist = arg;
2690 struct rq *rq = this_rq();
2691 struct task_struct *p, *t;
2692 struct rq_flags rf;
2693
2694 if (!llist)
2695 return;
2696
2697 /*
2698 * rq::ttwu_pending racy indication of out-standing wakeups.
2699 * Races such that false-negatives are possible, since they
2700 * are shorter lived that false-positives would be.
2701 */
2702 WRITE_ONCE(rq->ttwu_pending, 0);
2703
2704 rq_lock_irqsave(rq, &rf);
2705 update_rq_clock(rq);
2706
2707 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
2708 if (WARN_ON_ONCE(p->on_cpu))
2709 smp_cond_load_acquire(&p->on_cpu, !VAL);
2710
2711 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
2712 set_task_cpu(p, cpu_of(rq));
2713
2714 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2715 }
2716
2717 rq_unlock_irqrestore(rq, &rf);
2718 }
2719
send_call_function_single_ipi(int cpu)2720 void send_call_function_single_ipi(int cpu)
2721 {
2722 struct rq *rq = cpu_rq(cpu);
2723
2724 if (!set_nr_if_polling(rq->idle))
2725 arch_send_call_function_single_ipi(cpu);
2726 else
2727 trace_sched_wake_idle_without_ipi(cpu);
2728 }
2729
2730 /*
2731 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
2732 * necessary. The wakee CPU on receipt of the IPI will queue the task
2733 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
2734 * of the wakeup instead of the waker.
2735 */
__ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)2736 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2737 {
2738 struct rq *rq = cpu_rq(cpu);
2739
2740 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2741
2742 WRITE_ONCE(rq->ttwu_pending, 1);
2743 __smp_call_single_queue(cpu, &p->wake_entry.llist);
2744 }
2745
wake_up_if_idle(int cpu)2746 void wake_up_if_idle(int cpu)
2747 {
2748 struct rq *rq = cpu_rq(cpu);
2749 struct rq_flags rf;
2750
2751 rcu_read_lock();
2752
2753 if (!is_idle_task(rcu_dereference(rq->curr)))
2754 goto out;
2755
2756 if (set_nr_if_polling(rq->idle)) {
2757 trace_sched_wake_idle_without_ipi(cpu);
2758 } else {
2759 rq_lock_irqsave(rq, &rf);
2760 if (is_idle_task(rq->curr))
2761 smp_send_reschedule(cpu);
2762 /* Else CPU is not idle, do nothing here: */
2763 rq_unlock_irqrestore(rq, &rf);
2764 }
2765
2766 out:
2767 rcu_read_unlock();
2768 }
2769
cpus_share_cache(int this_cpu,int that_cpu)2770 bool cpus_share_cache(int this_cpu, int that_cpu)
2771 {
2772 if (this_cpu == that_cpu)
2773 return true;
2774
2775 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2776 }
2777
ttwu_queue_cond(int cpu,int wake_flags)2778 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
2779 {
2780 /*
2781 * If the CPU does not share cache, then queue the task on the
2782 * remote rqs wakelist to avoid accessing remote data.
2783 */
2784 if (!cpus_share_cache(smp_processor_id(), cpu))
2785 return true;
2786
2787 /*
2788 * If the task is descheduling and the only running task on the
2789 * CPU then use the wakelist to offload the task activation to
2790 * the soon-to-be-idle CPU as the current CPU is likely busy.
2791 * nr_running is checked to avoid unnecessary task stacking.
2792 */
2793 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
2794 return true;
2795
2796 return false;
2797 }
2798
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)2799 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2800 {
2801 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
2802 if (WARN_ON_ONCE(cpu == smp_processor_id()))
2803 return false;
2804
2805 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2806 __ttwu_queue_wakelist(p, cpu, wake_flags);
2807 return true;
2808 }
2809
2810 return false;
2811 }
2812
2813 #else /* !CONFIG_SMP */
2814
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)2815 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2816 {
2817 return false;
2818 }
2819
2820 #endif /* CONFIG_SMP */
2821
ttwu_queue(struct task_struct * p,int cpu,int wake_flags)2822 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2823 {
2824 struct rq *rq = cpu_rq(cpu);
2825 struct rq_flags rf;
2826
2827 if (ttwu_queue_wakelist(p, cpu, wake_flags))
2828 return;
2829
2830 rq_lock(rq, &rf);
2831 update_rq_clock(rq);
2832 ttwu_do_activate(rq, p, wake_flags, &rf);
2833 rq_unlock(rq, &rf);
2834 }
2835
2836 /*
2837 * Notes on Program-Order guarantees on SMP systems.
2838 *
2839 * MIGRATION
2840 *
2841 * The basic program-order guarantee on SMP systems is that when a task [t]
2842 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2843 * execution on its new CPU [c1].
2844 *
2845 * For migration (of runnable tasks) this is provided by the following means:
2846 *
2847 * A) UNLOCK of the rq(c0)->lock scheduling out task t
2848 * B) migration for t is required to synchronize *both* rq(c0)->lock and
2849 * rq(c1)->lock (if not at the same time, then in that order).
2850 * C) LOCK of the rq(c1)->lock scheduling in task
2851 *
2852 * Release/acquire chaining guarantees that B happens after A and C after B.
2853 * Note: the CPU doing B need not be c0 or c1
2854 *
2855 * Example:
2856 *
2857 * CPU0 CPU1 CPU2
2858 *
2859 * LOCK rq(0)->lock
2860 * sched-out X
2861 * sched-in Y
2862 * UNLOCK rq(0)->lock
2863 *
2864 * LOCK rq(0)->lock // orders against CPU0
2865 * dequeue X
2866 * UNLOCK rq(0)->lock
2867 *
2868 * LOCK rq(1)->lock
2869 * enqueue X
2870 * UNLOCK rq(1)->lock
2871 *
2872 * LOCK rq(1)->lock // orders against CPU2
2873 * sched-out Z
2874 * sched-in X
2875 * UNLOCK rq(1)->lock
2876 *
2877 *
2878 * BLOCKING -- aka. SLEEP + WAKEUP
2879 *
2880 * For blocking we (obviously) need to provide the same guarantee as for
2881 * migration. However the means are completely different as there is no lock
2882 * chain to provide order. Instead we do:
2883 *
2884 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
2885 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
2886 *
2887 * Example:
2888 *
2889 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
2890 *
2891 * LOCK rq(0)->lock LOCK X->pi_lock
2892 * dequeue X
2893 * sched-out X
2894 * smp_store_release(X->on_cpu, 0);
2895 *
2896 * smp_cond_load_acquire(&X->on_cpu, !VAL);
2897 * X->state = WAKING
2898 * set_task_cpu(X,2)
2899 *
2900 * LOCK rq(2)->lock
2901 * enqueue X
2902 * X->state = RUNNING
2903 * UNLOCK rq(2)->lock
2904 *
2905 * LOCK rq(2)->lock // orders against CPU1
2906 * sched-out Z
2907 * sched-in X
2908 * UNLOCK rq(2)->lock
2909 *
2910 * UNLOCK X->pi_lock
2911 * UNLOCK rq(0)->lock
2912 *
2913 *
2914 * However, for wakeups there is a second guarantee we must provide, namely we
2915 * must ensure that CONDITION=1 done by the caller can not be reordered with
2916 * accesses to the task state; see try_to_wake_up() and set_current_state().
2917 */
2918
2919 #ifdef CONFIG_SMP
2920 #ifdef CONFIG_SCHED_WALT
2921 /* utility function to update walt signals at wakeup */
walt_try_to_wake_up(struct task_struct * p)2922 static inline void walt_try_to_wake_up(struct task_struct *p)
2923 {
2924 struct rq *rq = cpu_rq(task_cpu(p));
2925 struct rq_flags rf;
2926 u64 wallclock;
2927
2928 rq_lock_irqsave(rq, &rf);
2929 wallclock = sched_ktime_clock();
2930 update_task_ravg(rq->curr, rq, TASK_UPDATE, wallclock, 0);
2931 update_task_ravg(p, rq, TASK_WAKE, wallclock, 0);
2932 rq_unlock_irqrestore(rq, &rf);
2933 }
2934 #else
2935 #define walt_try_to_wake_up(a) {}
2936 #endif
2937 #endif
2938
2939 /**
2940 * try_to_wake_up - wake up a thread
2941 * @p: the thread to be awakened
2942 * @state: the mask of task states that can be woken
2943 * @wake_flags: wake modifier flags (WF_*)
2944 *
2945 * Conceptually does:
2946 *
2947 * If (@state & @p->state) @p->state = TASK_RUNNING.
2948 *
2949 * If the task was not queued/runnable, also place it back on a runqueue.
2950 *
2951 * This function is atomic against schedule() which would dequeue the task.
2952 *
2953 * It issues a full memory barrier before accessing @p->state, see the comment
2954 * with set_current_state().
2955 *
2956 * Uses p->pi_lock to serialize against concurrent wake-ups.
2957 *
2958 * Relies on p->pi_lock stabilizing:
2959 * - p->sched_class
2960 * - p->cpus_ptr
2961 * - p->sched_task_group
2962 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
2963 *
2964 * Tries really hard to only take one task_rq(p)->lock for performance.
2965 * Takes rq->lock in:
2966 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
2967 * - ttwu_queue() -- new rq, for enqueue of the task;
2968 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
2969 *
2970 * As a consequence we race really badly with just about everything. See the
2971 * many memory barriers and their comments for details.
2972 *
2973 * Return: %true if @p->state changes (an actual wakeup was done),
2974 * %false otherwise.
2975 */
2976 static int
try_to_wake_up(struct task_struct * p,unsigned int state,int wake_flags)2977 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2978 {
2979 unsigned long flags;
2980 int cpu, success = 0;
2981
2982 preempt_disable();
2983 if (p == current) {
2984 /*
2985 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2986 * == smp_processor_id()'. Together this means we can special
2987 * case the whole 'p->on_rq && ttwu_runnable()' case below
2988 * without taking any locks.
2989 *
2990 * In particular:
2991 * - we rely on Program-Order guarantees for all the ordering,
2992 * - we're serialized against set_special_state() by virtue of
2993 * it disabling IRQs (this allows not taking ->pi_lock).
2994 */
2995 if (!(p->state & state))
2996 goto out;
2997
2998 success = 1;
2999 trace_sched_waking(p);
3000 p->state = TASK_RUNNING;
3001 trace_sched_wakeup(p);
3002 goto out;
3003 }
3004
3005 /*
3006 * If we are going to wake up a thread waiting for CONDITION we
3007 * need to ensure that CONDITION=1 done by the caller can not be
3008 * reordered with p->state check below. This pairs with smp_store_mb()
3009 * in set_current_state() that the waiting thread does.
3010 */
3011 raw_spin_lock_irqsave(&p->pi_lock, flags);
3012 smp_mb__after_spinlock();
3013 if (!(p->state & state))
3014 goto unlock;
3015
3016 trace_sched_waking(p);
3017
3018 /* We're going to change ->state: */
3019 success = 1;
3020
3021 /*
3022 * Ensure we load p->on_rq _after_ p->state, otherwise it would
3023 * be possible to, falsely, observe p->on_rq == 0 and get stuck
3024 * in smp_cond_load_acquire() below.
3025 *
3026 * sched_ttwu_pending() try_to_wake_up()
3027 * STORE p->on_rq = 1 LOAD p->state
3028 * UNLOCK rq->lock
3029 *
3030 * __schedule() (switch to task 'p')
3031 * LOCK rq->lock smp_rmb();
3032 * smp_mb__after_spinlock();
3033 * UNLOCK rq->lock
3034 *
3035 * [task p]
3036 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
3037 *
3038 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3039 * __schedule(). See the comment for smp_mb__after_spinlock().
3040 *
3041 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
3042 */
3043 smp_rmb();
3044 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
3045 goto unlock;
3046
3047 #ifdef CONFIG_SMP
3048 /*
3049 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
3050 * possible to, falsely, observe p->on_cpu == 0.
3051 *
3052 * One must be running (->on_cpu == 1) in order to remove oneself
3053 * from the runqueue.
3054 *
3055 * __schedule() (switch to task 'p') try_to_wake_up()
3056 * STORE p->on_cpu = 1 LOAD p->on_rq
3057 * UNLOCK rq->lock
3058 *
3059 * __schedule() (put 'p' to sleep)
3060 * LOCK rq->lock smp_rmb();
3061 * smp_mb__after_spinlock();
3062 * STORE p->on_rq = 0 LOAD p->on_cpu
3063 *
3064 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3065 * __schedule(). See the comment for smp_mb__after_spinlock().
3066 *
3067 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
3068 * schedule()'s deactivate_task() has 'happened' and p will no longer
3069 * care about it's own p->state. See the comment in __schedule().
3070 */
3071 smp_acquire__after_ctrl_dep();
3072
3073 walt_try_to_wake_up(p);
3074
3075 /*
3076 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
3077 * == 0), which means we need to do an enqueue, change p->state to
3078 * TASK_WAKING such that we can unlock p->pi_lock before doing the
3079 * enqueue, such as ttwu_queue_wakelist().
3080 */
3081 p->state = TASK_WAKING;
3082
3083 /*
3084 * If the owning (remote) CPU is still in the middle of schedule() with
3085 * this task as prev, considering queueing p on the remote CPUs wake_list
3086 * which potentially sends an IPI instead of spinning on p->on_cpu to
3087 * let the waker make forward progress. This is safe because IRQs are
3088 * disabled and the IPI will deliver after on_cpu is cleared.
3089 *
3090 * Ensure we load task_cpu(p) after p->on_cpu:
3091 *
3092 * set_task_cpu(p, cpu);
3093 * STORE p->cpu = @cpu
3094 * __schedule() (switch to task 'p')
3095 * LOCK rq->lock
3096 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
3097 * STORE p->on_cpu = 1 LOAD p->cpu
3098 *
3099 * to ensure we observe the correct CPU on which the task is currently
3100 * scheduling.
3101 */
3102 if (smp_load_acquire(&p->on_cpu) &&
3103 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
3104 goto unlock;
3105
3106 /*
3107 * If the owning (remote) CPU is still in the middle of schedule() with
3108 * this task as prev, wait until its done referencing the task.
3109 *
3110 * Pairs with the smp_store_release() in finish_task().
3111 *
3112 * This ensures that tasks getting woken will be fully ordered against
3113 * their previous state and preserve Program Order.
3114 */
3115 smp_cond_load_acquire(&p->on_cpu, !VAL);
3116
3117 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
3118 if (task_cpu(p) != cpu) {
3119 if (p->in_iowait) {
3120 delayacct_blkio_end(p);
3121 atomic_dec(&task_rq(p)->nr_iowait);
3122 }
3123
3124 wake_flags |= WF_MIGRATED;
3125 psi_ttwu_dequeue(p);
3126 set_task_cpu(p, cpu);
3127 }
3128 #else
3129 cpu = task_cpu(p);
3130 #endif /* CONFIG_SMP */
3131
3132 ttwu_queue(p, cpu, wake_flags);
3133 unlock:
3134 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3135 out:
3136 if (success)
3137 ttwu_stat(p, task_cpu(p), wake_flags);
3138 preempt_enable();
3139
3140 return success;
3141 }
3142
3143 /**
3144 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
3145 * @p: Process for which the function is to be invoked, can be @current.
3146 * @func: Function to invoke.
3147 * @arg: Argument to function.
3148 *
3149 * If the specified task can be quickly locked into a definite state
3150 * (either sleeping or on a given runqueue), arrange to keep it in that
3151 * state while invoking @func(@arg). This function can use ->on_rq and
3152 * task_curr() to work out what the state is, if required. Given that
3153 * @func can be invoked with a runqueue lock held, it had better be quite
3154 * lightweight.
3155 *
3156 * Returns:
3157 * @false if the task slipped out from under the locks.
3158 * @true if the task was locked onto a runqueue or is sleeping.
3159 * However, @func can override this by returning @false.
3160 */
try_invoke_on_locked_down_task(struct task_struct * p,bool (* func)(struct task_struct * t,void * arg),void * arg)3161 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3162 {
3163 struct rq_flags rf;
3164 bool ret = false;
3165 struct rq *rq;
3166
3167 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3168 if (p->on_rq) {
3169 rq = __task_rq_lock(p, &rf);
3170 if (task_rq(p) == rq)
3171 ret = func(p, arg);
3172 rq_unlock(rq, &rf);
3173 } else {
3174 switch (p->state) {
3175 case TASK_RUNNING:
3176 case TASK_WAKING:
3177 break;
3178 default:
3179 smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3180 if (!p->on_rq)
3181 ret = func(p, arg);
3182 }
3183 }
3184 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
3185 return ret;
3186 }
3187
3188 /**
3189 * wake_up_process - Wake up a specific process
3190 * @p: The process to be woken up.
3191 *
3192 * Attempt to wake up the nominated process and move it to the set of runnable
3193 * processes.
3194 *
3195 * Return: 1 if the process was woken up, 0 if it was already running.
3196 *
3197 * This function executes a full memory barrier before accessing the task state.
3198 */
wake_up_process(struct task_struct * p)3199 int wake_up_process(struct task_struct *p)
3200 {
3201 return try_to_wake_up(p, TASK_NORMAL, 0);
3202 }
3203 EXPORT_SYMBOL(wake_up_process);
3204
wake_up_state(struct task_struct * p,unsigned int state)3205 int wake_up_state(struct task_struct *p, unsigned int state)
3206 {
3207 return try_to_wake_up(p, state, 0);
3208 }
3209
3210 /*
3211 * Perform scheduler related setup for a newly forked process p.
3212 * p is forked by current.
3213 *
3214 * __sched_fork() is basic setup used by init_idle() too:
3215 */
__sched_fork(unsigned long clone_flags,struct task_struct * p)3216 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
3217 {
3218 p->on_rq = 0;
3219
3220 p->se.on_rq = 0;
3221 p->se.exec_start = 0;
3222 p->se.sum_exec_runtime = 0;
3223 p->se.prev_sum_exec_runtime = 0;
3224 p->se.nr_migrations = 0;
3225 p->se.vruntime = 0;
3226 INIT_LIST_HEAD(&p->se.group_node);
3227
3228 #ifdef CONFIG_FAIR_GROUP_SCHED
3229 p->se.cfs_rq = NULL;
3230 #endif
3231
3232 #ifdef CONFIG_SCHEDSTATS
3233 /* Even if schedstat is disabled, there should not be garbage */
3234 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
3235 #endif
3236
3237 RB_CLEAR_NODE(&p->dl.rb_node);
3238 init_dl_task_timer(&p->dl);
3239 init_dl_inactive_task_timer(&p->dl);
3240 __dl_clear_params(p);
3241
3242 INIT_LIST_HEAD(&p->rt.run_list);
3243 p->rt.timeout = 0;
3244 p->rt.time_slice = sched_rr_timeslice;
3245 p->rt.on_rq = 0;
3246 p->rt.on_list = 0;
3247
3248 #ifdef CONFIG_PREEMPT_NOTIFIERS
3249 INIT_HLIST_HEAD(&p->preempt_notifiers);
3250 #endif
3251
3252 #ifdef CONFIG_COMPACTION
3253 p->capture_control = NULL;
3254 #endif
3255 init_numa_balancing(clone_flags, p);
3256 #ifdef CONFIG_SMP
3257 p->wake_entry.u_flags = CSD_TYPE_TTWU;
3258 #endif
3259 #ifdef CONFIG_SCHED_RTG
3260 p->rtg_depth = 0;
3261 #endif
3262 }
3263
3264 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3265
3266 #ifdef CONFIG_NUMA_BALANCING
3267
set_numabalancing_state(bool enabled)3268 void set_numabalancing_state(bool enabled)
3269 {
3270 if (enabled)
3271 static_branch_enable(&sched_numa_balancing);
3272 else
3273 static_branch_disable(&sched_numa_balancing);
3274 }
3275
3276 #ifdef CONFIG_PROC_SYSCTL
sysctl_numa_balancing(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3277 int sysctl_numa_balancing(struct ctl_table *table, int write,
3278 void *buffer, size_t *lenp, loff_t *ppos)
3279 {
3280 struct ctl_table t;
3281 int err;
3282 int state = static_branch_likely(&sched_numa_balancing);
3283
3284 if (write && !capable(CAP_SYS_ADMIN))
3285 return -EPERM;
3286
3287 t = *table;
3288 t.data = &state;
3289 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3290 if (err < 0)
3291 return err;
3292 if (write)
3293 set_numabalancing_state(state);
3294 return err;
3295 }
3296 #endif
3297 #endif
3298
3299 #ifdef CONFIG_SCHEDSTATS
3300
3301 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
3302 static bool __initdata __sched_schedstats = false;
3303
set_schedstats(bool enabled)3304 static void set_schedstats(bool enabled)
3305 {
3306 if (enabled)
3307 static_branch_enable(&sched_schedstats);
3308 else
3309 static_branch_disable(&sched_schedstats);
3310 }
3311
force_schedstat_enabled(void)3312 void force_schedstat_enabled(void)
3313 {
3314 if (!schedstat_enabled()) {
3315 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
3316 static_branch_enable(&sched_schedstats);
3317 }
3318 }
3319
setup_schedstats(char * str)3320 static int __init setup_schedstats(char *str)
3321 {
3322 int ret = 0;
3323 if (!str)
3324 goto out;
3325
3326 /*
3327 * This code is called before jump labels have been set up, so we can't
3328 * change the static branch directly just yet. Instead set a temporary
3329 * variable so init_schedstats() can do it later.
3330 */
3331 if (!strcmp(str, "enable")) {
3332 __sched_schedstats = true;
3333 ret = 1;
3334 } else if (!strcmp(str, "disable")) {
3335 __sched_schedstats = false;
3336 ret = 1;
3337 }
3338 out:
3339 if (!ret)
3340 pr_warn("Unable to parse schedstats=\n");
3341
3342 return ret;
3343 }
3344 __setup("schedstats=", setup_schedstats);
3345
init_schedstats(void)3346 static void __init init_schedstats(void)
3347 {
3348 set_schedstats(__sched_schedstats);
3349 }
3350
3351 #ifdef CONFIG_PROC_SYSCTL
sysctl_schedstats(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3352 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
3353 size_t *lenp, loff_t *ppos)
3354 {
3355 struct ctl_table t;
3356 int err;
3357 int state = static_branch_likely(&sched_schedstats);
3358
3359 if (write && !capable(CAP_SYS_ADMIN))
3360 return -EPERM;
3361
3362 t = *table;
3363 t.data = &state;
3364 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3365 if (err < 0)
3366 return err;
3367 if (write)
3368 set_schedstats(state);
3369 return err;
3370 }
3371 #endif /* CONFIG_PROC_SYSCTL */
3372 #else /* !CONFIG_SCHEDSTATS */
init_schedstats(void)3373 static inline void init_schedstats(void) {}
3374 #endif /* CONFIG_SCHEDSTATS */
3375
3376 /*
3377 * fork()/clone()-time setup:
3378 */
sched_fork(unsigned long clone_flags,struct task_struct * p)3379 int sched_fork(unsigned long clone_flags, struct task_struct *p)
3380 {
3381 init_new_task_load(p);
3382 __sched_fork(clone_flags, p);
3383 /*
3384 * We mark the process as NEW here. This guarantees that
3385 * nobody will actually run it, and a signal or other external
3386 * event cannot wake it up and insert it on the runqueue either.
3387 */
3388 p->state = TASK_NEW;
3389
3390 /*
3391 * Make sure we do not leak PI boosting priority to the child.
3392 */
3393 p->prio = current->normal_prio;
3394
3395 #ifdef CONFIG_SCHED_LATENCY_NICE
3396 /* Propagate the parent's latency requirements to the child as well */
3397 p->latency_prio = current->latency_prio;
3398 #endif
3399
3400 uclamp_fork(p);
3401
3402 /*
3403 * Revert to default priority/policy on fork if requested.
3404 */
3405 if (unlikely(p->sched_reset_on_fork)) {
3406 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3407 p->policy = SCHED_NORMAL;
3408 #ifdef CONFIG_SCHED_RTG
3409 if (current->rtg_depth != 0)
3410 p->static_prio = current->static_prio;
3411 else
3412 p->static_prio = NICE_TO_PRIO(0);
3413 #else
3414 p->static_prio = NICE_TO_PRIO(0);
3415 #endif
3416 p->rt_priority = 0;
3417 } else if (PRIO_TO_NICE(p->static_prio) < 0)
3418 p->static_prio = NICE_TO_PRIO(0);
3419
3420 p->prio = p->normal_prio = p->static_prio;
3421 set_load_weight(p, false);
3422
3423 #ifdef CONFIG_SCHED_LATENCY_NICE
3424 p->latency_prio = NICE_TO_LATENCY(0);
3425 set_latency_weight(p);
3426 #endif
3427
3428 /*
3429 * We don't need the reset flag anymore after the fork. It has
3430 * fulfilled its duty:
3431 */
3432 p->sched_reset_on_fork = 0;
3433 }
3434
3435 if (dl_prio(p->prio))
3436 return -EAGAIN;
3437 else if (rt_prio(p->prio))
3438 p->sched_class = &rt_sched_class;
3439 else
3440 p->sched_class = &fair_sched_class;
3441
3442 init_entity_runnable_average(&p->se);
3443
3444 #ifdef CONFIG_SCHED_INFO
3445 if (likely(sched_info_on()))
3446 memset(&p->sched_info, 0, sizeof(p->sched_info));
3447 #endif
3448 #if defined(CONFIG_SMP)
3449 p->on_cpu = 0;
3450 #endif
3451 init_task_preempt_count(p);
3452 #ifdef CONFIG_SMP
3453 plist_node_init(&p->pushable_tasks, MAX_PRIO);
3454 RB_CLEAR_NODE(&p->pushable_dl_tasks);
3455 #endif
3456 return 0;
3457 }
3458
sched_post_fork(struct task_struct * p,struct kernel_clone_args * kargs)3459 void sched_post_fork(struct task_struct *p, struct kernel_clone_args *kargs)
3460 {
3461 unsigned long flags;
3462 #ifdef CONFIG_CGROUP_SCHED
3463 struct task_group *tg;
3464 #endif
3465
3466 raw_spin_lock_irqsave(&p->pi_lock, flags);
3467 #ifdef CONFIG_CGROUP_SCHED
3468 tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
3469 struct task_group, css);
3470 p->sched_task_group = autogroup_task_group(p, tg);
3471 #endif
3472 rseq_migrate(p);
3473 /*
3474 * We're setting the CPU for the first time, we don't migrate,
3475 * so use __set_task_cpu().
3476 */
3477 __set_task_cpu(p, smp_processor_id());
3478 if (p->sched_class->task_fork)
3479 p->sched_class->task_fork(p);
3480 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3481
3482 uclamp_post_fork(p);
3483 }
3484
to_ratio(u64 period,u64 runtime)3485 unsigned long to_ratio(u64 period, u64 runtime)
3486 {
3487 if (runtime == RUNTIME_INF)
3488 return BW_UNIT;
3489
3490 /*
3491 * Doing this here saves a lot of checks in all
3492 * the calling paths, and returning zero seems
3493 * safe for them anyway.
3494 */
3495 if (period == 0)
3496 return 0;
3497
3498 return div64_u64(runtime << BW_SHIFT, period);
3499 }
3500
3501 /*
3502 * wake_up_new_task - wake up a newly created task for the first time.
3503 *
3504 * This function will do some initial scheduler statistics housekeeping
3505 * that must be done for every newly created context, then puts the task
3506 * on the runqueue and wakes it.
3507 */
wake_up_new_task(struct task_struct * p)3508 void wake_up_new_task(struct task_struct *p)
3509 {
3510 struct rq_flags rf;
3511 struct rq *rq;
3512
3513 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3514 add_new_task_to_grp(p);
3515
3516 p->state = TASK_RUNNING;
3517 #ifdef CONFIG_SMP
3518 /*
3519 * Fork balancing, do it here and not earlier because:
3520 * - cpus_ptr can change in the fork path
3521 * - any previously selected CPU might disappear through hotplug
3522 *
3523 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3524 * as we're not fully set-up yet.
3525 */
3526 p->recent_used_cpu = task_cpu(p);
3527 rseq_migrate(p);
3528 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
3529 #endif
3530 rq = __task_rq_lock(p, &rf);
3531 update_rq_clock(rq);
3532 post_init_entity_util_avg(p);
3533
3534 mark_task_starting(p);
3535
3536 activate_task(rq, p, ENQUEUE_NOCLOCK);
3537 trace_sched_wakeup_new(p);
3538 check_preempt_curr(rq, p, WF_FORK);
3539 #ifdef CONFIG_SMP
3540 if (p->sched_class->task_woken) {
3541 /*
3542 * Nothing relies on rq->lock after this, so its fine to
3543 * drop it.
3544 */
3545 rq_unpin_lock(rq, &rf);
3546 p->sched_class->task_woken(rq, p);
3547 rq_repin_lock(rq, &rf);
3548 }
3549 #endif
3550 task_rq_unlock(rq, p, &rf);
3551 }
3552
3553 #ifdef CONFIG_PREEMPT_NOTIFIERS
3554
3555 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
3556
preempt_notifier_inc(void)3557 void preempt_notifier_inc(void)
3558 {
3559 static_branch_inc(&preempt_notifier_key);
3560 }
3561 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3562
preempt_notifier_dec(void)3563 void preempt_notifier_dec(void)
3564 {
3565 static_branch_dec(&preempt_notifier_key);
3566 }
3567 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3568
3569 /**
3570 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3571 * @notifier: notifier struct to register
3572 */
preempt_notifier_register(struct preempt_notifier * notifier)3573 void preempt_notifier_register(struct preempt_notifier *notifier)
3574 {
3575 if (!static_branch_unlikely(&preempt_notifier_key))
3576 WARN(1, "registering preempt_notifier while notifiers disabled\n");
3577
3578 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
3579 }
3580 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3581
3582 /**
3583 * preempt_notifier_unregister - no longer interested in preemption notifications
3584 * @notifier: notifier struct to unregister
3585 *
3586 * This is *not* safe to call from within a preemption notifier.
3587 */
preempt_notifier_unregister(struct preempt_notifier * notifier)3588 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3589 {
3590 hlist_del(¬ifier->link);
3591 }
3592 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3593
__fire_sched_in_preempt_notifiers(struct task_struct * curr)3594 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3595 {
3596 struct preempt_notifier *notifier;
3597
3598 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3599 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3600 }
3601
fire_sched_in_preempt_notifiers(struct task_struct * curr)3602 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3603 {
3604 if (static_branch_unlikely(&preempt_notifier_key))
3605 __fire_sched_in_preempt_notifiers(curr);
3606 }
3607
3608 static void
__fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)3609 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3610 struct task_struct *next)
3611 {
3612 struct preempt_notifier *notifier;
3613
3614 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3615 notifier->ops->sched_out(notifier, next);
3616 }
3617
3618 static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)3619 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3620 struct task_struct *next)
3621 {
3622 if (static_branch_unlikely(&preempt_notifier_key))
3623 __fire_sched_out_preempt_notifiers(curr, next);
3624 }
3625
3626 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3627
fire_sched_in_preempt_notifiers(struct task_struct * curr)3628 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3629 {
3630 }
3631
3632 static inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)3633 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3634 struct task_struct *next)
3635 {
3636 }
3637
3638 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3639
prepare_task(struct task_struct * next)3640 static inline void prepare_task(struct task_struct *next)
3641 {
3642 #ifdef CONFIG_SMP
3643 /*
3644 * Claim the task as running, we do this before switching to it
3645 * such that any running task will have this set.
3646 *
3647 * See the ttwu() WF_ON_CPU case and its ordering comment.
3648 */
3649 WRITE_ONCE(next->on_cpu, 1);
3650 #endif
3651 }
3652
finish_task(struct task_struct * prev)3653 static inline void finish_task(struct task_struct *prev)
3654 {
3655 #ifdef CONFIG_SMP
3656 /*
3657 * This must be the very last reference to @prev from this CPU. After
3658 * p->on_cpu is cleared, the task can be moved to a different CPU. We
3659 * must ensure this doesn't happen until the switch is completely
3660 * finished.
3661 *
3662 * In particular, the load of prev->state in finish_task_switch() must
3663 * happen before this.
3664 *
3665 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3666 */
3667 smp_store_release(&prev->on_cpu, 0);
3668 #endif
3669 }
3670
3671 static inline void
prepare_lock_switch(struct rq * rq,struct task_struct * next,struct rq_flags * rf)3672 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3673 {
3674 /*
3675 * Since the runqueue lock will be released by the next
3676 * task (which is an invalid locking op but in the case
3677 * of the scheduler it's an obvious special-case), so we
3678 * do an early lockdep release here:
3679 */
3680 rq_unpin_lock(rq, rf);
3681 spin_release(&rq->lock.dep_map, _THIS_IP_);
3682 #ifdef CONFIG_DEBUG_SPINLOCK
3683 /* this is a valid case when another task releases the spinlock */
3684 rq->lock.owner = next;
3685 #endif
3686 }
3687
finish_lock_switch(struct rq * rq)3688 static inline void finish_lock_switch(struct rq *rq)
3689 {
3690 /*
3691 * If we are tracking spinlock dependencies then we have to
3692 * fix up the runqueue lock - which gets 'carried over' from
3693 * prev into current:
3694 */
3695 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3696 raw_spin_unlock_irq(&rq->lock);
3697 }
3698
3699 /*
3700 * NOP if the arch has not defined these:
3701 */
3702
3703 #ifndef prepare_arch_switch
3704 # define prepare_arch_switch(next) do { } while (0)
3705 #endif
3706
3707 #ifndef finish_arch_post_lock_switch
3708 # define finish_arch_post_lock_switch() do { } while (0)
3709 #endif
3710
3711 /**
3712 * prepare_task_switch - prepare to switch tasks
3713 * @rq: the runqueue preparing to switch
3714 * @prev: the current task that is being switched out
3715 * @next: the task we are going to switch to.
3716 *
3717 * This is called with the rq lock held and interrupts off. It must
3718 * be paired with a subsequent finish_task_switch after the context
3719 * switch.
3720 *
3721 * prepare_task_switch sets up locking and calls architecture specific
3722 * hooks.
3723 */
3724 static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)3725 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3726 struct task_struct *next)
3727 {
3728 kcov_prepare_switch(prev);
3729 sched_info_switch(rq, prev, next);
3730 perf_event_task_sched_out(prev, next);
3731 rseq_preempt(prev);
3732 fire_sched_out_preempt_notifiers(prev, next);
3733 prepare_task(next);
3734 prepare_arch_switch(next);
3735 }
3736
3737 /**
3738 * finish_task_switch - clean up after a task-switch
3739 * @prev: the thread we just switched away from.
3740 *
3741 * finish_task_switch must be called after the context switch, paired
3742 * with a prepare_task_switch call before the context switch.
3743 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3744 * and do any other architecture-specific cleanup actions.
3745 *
3746 * Note that we may have delayed dropping an mm in context_switch(). If
3747 * so, we finish that here outside of the runqueue lock. (Doing it
3748 * with the lock held can cause deadlocks; see schedule() for
3749 * details.)
3750 *
3751 * The context switch have flipped the stack from under us and restored the
3752 * local variables which were saved when this task called schedule() in the
3753 * past. prev == current is still correct but we need to recalculate this_rq
3754 * because prev may have moved to another CPU.
3755 */
finish_task_switch(struct task_struct * prev)3756 static struct rq *finish_task_switch(struct task_struct *prev)
3757 __releases(rq->lock)
3758 {
3759 struct rq *rq = this_rq();
3760 struct mm_struct *mm = rq->prev_mm;
3761 long prev_state;
3762
3763 /*
3764 * The previous task will have left us with a preempt_count of 2
3765 * because it left us after:
3766 *
3767 * schedule()
3768 * preempt_disable(); // 1
3769 * __schedule()
3770 * raw_spin_lock_irq(&rq->lock) // 2
3771 *
3772 * Also, see FORK_PREEMPT_COUNT.
3773 */
3774 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3775 "corrupted preempt_count: %s/%d/0x%x\n",
3776 current->comm, current->pid, preempt_count()))
3777 preempt_count_set(FORK_PREEMPT_COUNT);
3778
3779 rq->prev_mm = NULL;
3780
3781 /*
3782 * A task struct has one reference for the use as "current".
3783 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3784 * schedule one last time. The schedule call will never return, and
3785 * the scheduled task must drop that reference.
3786 *
3787 * We must observe prev->state before clearing prev->on_cpu (in
3788 * finish_task), otherwise a concurrent wakeup can get prev
3789 * running on another CPU and we could rave with its RUNNING -> DEAD
3790 * transition, resulting in a double drop.
3791 */
3792 prev_state = prev->state;
3793 vtime_task_switch(prev);
3794 perf_event_task_sched_in(prev, current);
3795 finish_task(prev);
3796 finish_lock_switch(rq);
3797 finish_arch_post_lock_switch();
3798 kcov_finish_switch(current);
3799
3800 fire_sched_in_preempt_notifiers(current);
3801 /*
3802 * When switching through a kernel thread, the loop in
3803 * membarrier_{private,global}_expedited() may have observed that
3804 * kernel thread and not issued an IPI. It is therefore possible to
3805 * schedule between user->kernel->user threads without passing though
3806 * switch_mm(). Membarrier requires a barrier after storing to
3807 * rq->curr, before returning to userspace, so provide them here:
3808 *
3809 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3810 * provided by mmdrop(),
3811 * - a sync_core for SYNC_CORE.
3812 */
3813 if (mm) {
3814 membarrier_mm_sync_core_before_usermode(mm);
3815 mmdrop(mm);
3816 }
3817 if (unlikely(prev_state == TASK_DEAD)) {
3818 if (prev->sched_class->task_dead)
3819 prev->sched_class->task_dead(prev);
3820
3821 /*
3822 * Remove function-return probe instances associated with this
3823 * task and put them back on the free list.
3824 */
3825 kprobe_flush_task(prev);
3826
3827 /* Task is done with its stack. */
3828 put_task_stack(prev);
3829
3830 put_task_struct_rcu_user(prev);
3831 }
3832
3833 tick_nohz_task_switch();
3834 return rq;
3835 }
3836
3837 #ifdef CONFIG_SMP
3838
3839 /* rq->lock is NOT held, but preemption is disabled */
__balance_callback(struct rq * rq)3840 static void __balance_callback(struct rq *rq)
3841 {
3842 struct callback_head *head, *next;
3843 void (*func)(struct rq *rq);
3844 unsigned long flags;
3845
3846 raw_spin_lock_irqsave(&rq->lock, flags);
3847 head = rq->balance_callback;
3848 rq->balance_callback = NULL;
3849 while (head) {
3850 func = (void (*)(struct rq *))head->func;
3851 next = head->next;
3852 head->next = NULL;
3853 head = next;
3854
3855 func(rq);
3856 }
3857 raw_spin_unlock_irqrestore(&rq->lock, flags);
3858 }
3859
balance_callback(struct rq * rq)3860 static inline void balance_callback(struct rq *rq)
3861 {
3862 if (unlikely(rq->balance_callback))
3863 __balance_callback(rq);
3864 }
3865
3866 #else
3867
balance_callback(struct rq * rq)3868 static inline void balance_callback(struct rq *rq)
3869 {
3870 }
3871
3872 #endif
3873
3874 /**
3875 * schedule_tail - first thing a freshly forked thread must call.
3876 * @prev: the thread we just switched away from.
3877 */
schedule_tail(struct task_struct * prev)3878 asmlinkage __visible void schedule_tail(struct task_struct *prev)
3879 __releases(rq->lock)
3880 {
3881 struct rq *rq;
3882
3883 /*
3884 * New tasks start with FORK_PREEMPT_COUNT, see there and
3885 * finish_task_switch() for details.
3886 *
3887 * finish_task_switch() will drop rq->lock() and lower preempt_count
3888 * and the preempt_enable() will end up enabling preemption (on
3889 * PREEMPT_COUNT kernels).
3890 */
3891
3892 rq = finish_task_switch(prev);
3893 balance_callback(rq);
3894 preempt_enable();
3895
3896 if (current->set_child_tid)
3897 put_user(task_pid_vnr(current), current->set_child_tid);
3898
3899 calculate_sigpending();
3900 }
3901
3902 /*
3903 * context_switch - switch to the new MM and the new thread's register state.
3904 */
3905 static __always_inline struct rq *
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next,struct rq_flags * rf)3906 context_switch(struct rq *rq, struct task_struct *prev,
3907 struct task_struct *next, struct rq_flags *rf)
3908 {
3909 prepare_task_switch(rq, prev, next);
3910
3911 /*
3912 * For paravirt, this is coupled with an exit in switch_to to
3913 * combine the page table reload and the switch backend into
3914 * one hypercall.
3915 */
3916 arch_start_context_switch(prev);
3917
3918 /*
3919 * kernel -> kernel lazy + transfer active
3920 * user -> kernel lazy + mmgrab() active
3921 *
3922 * kernel -> user switch + mmdrop() active
3923 * user -> user switch
3924 */
3925 if (!next->mm) { // to kernel
3926 enter_lazy_tlb(prev->active_mm, next);
3927
3928 next->active_mm = prev->active_mm;
3929 if (prev->mm) // from user
3930 mmgrab(prev->active_mm);
3931 else
3932 prev->active_mm = NULL;
3933 } else { // to user
3934 membarrier_switch_mm(rq, prev->active_mm, next->mm);
3935 /*
3936 * sys_membarrier() requires an smp_mb() between setting
3937 * rq->curr / membarrier_switch_mm() and returning to userspace.
3938 *
3939 * The below provides this either through switch_mm(), or in
3940 * case 'prev->active_mm == next->mm' through
3941 * finish_task_switch()'s mmdrop().
3942 */
3943 switch_mm_irqs_off(prev->active_mm, next->mm, next);
3944
3945 if (!prev->mm) { // from kernel
3946 /* will mmdrop() in finish_task_switch(). */
3947 rq->prev_mm = prev->active_mm;
3948 prev->active_mm = NULL;
3949 }
3950 }
3951
3952 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3953
3954 prepare_lock_switch(rq, next, rf);
3955
3956 /* Here we just switch the register state and the stack. */
3957 switch_to(prev, next, prev);
3958 barrier();
3959
3960 return finish_task_switch(prev);
3961 }
3962
3963 /*
3964 * nr_running and nr_context_switches:
3965 *
3966 * externally visible scheduler statistics: current number of runnable
3967 * threads, total number of context switches performed since bootup.
3968 */
nr_running(void)3969 unsigned long nr_running(void)
3970 {
3971 unsigned long i, sum = 0;
3972
3973 for_each_online_cpu(i)
3974 sum += cpu_rq(i)->nr_running;
3975
3976 return sum;
3977 }
3978
3979 /*
3980 * Check if only the current task is running on the CPU.
3981 *
3982 * Caution: this function does not check that the caller has disabled
3983 * preemption, thus the result might have a time-of-check-to-time-of-use
3984 * race. The caller is responsible to use it correctly, for example:
3985 *
3986 * - from a non-preemptible section (of course)
3987 *
3988 * - from a thread that is bound to a single CPU
3989 *
3990 * - in a loop with very short iterations (e.g. a polling loop)
3991 */
single_task_running(void)3992 bool single_task_running(void)
3993 {
3994 return raw_rq()->nr_running == 1;
3995 }
3996 EXPORT_SYMBOL(single_task_running);
3997
nr_context_switches(void)3998 unsigned long long nr_context_switches(void)
3999 {
4000 int i;
4001 unsigned long long sum = 0;
4002
4003 for_each_possible_cpu(i)
4004 sum += cpu_rq(i)->nr_switches;
4005
4006 return sum;
4007 }
4008
4009 /*
4010 * Consumers of these two interfaces, like for example the cpuidle menu
4011 * governor, are using nonsensical data. Preferring shallow idle state selection
4012 * for a CPU that has IO-wait which might not even end up running the task when
4013 * it does become runnable.
4014 */
4015
nr_iowait_cpu(int cpu)4016 unsigned long nr_iowait_cpu(int cpu)
4017 {
4018 return atomic_read(&cpu_rq(cpu)->nr_iowait);
4019 }
4020
4021 /*
4022 * IO-wait accounting, and how its mostly bollocks (on SMP).
4023 *
4024 * The idea behind IO-wait account is to account the idle time that we could
4025 * have spend running if it were not for IO. That is, if we were to improve the
4026 * storage performance, we'd have a proportional reduction in IO-wait time.
4027 *
4028 * This all works nicely on UP, where, when a task blocks on IO, we account
4029 * idle time as IO-wait, because if the storage were faster, it could've been
4030 * running and we'd not be idle.
4031 *
4032 * This has been extended to SMP, by doing the same for each CPU. This however
4033 * is broken.
4034 *
4035 * Imagine for instance the case where two tasks block on one CPU, only the one
4036 * CPU will have IO-wait accounted, while the other has regular idle. Even
4037 * though, if the storage were faster, both could've ran at the same time,
4038 * utilising both CPUs.
4039 *
4040 * This means, that when looking globally, the current IO-wait accounting on
4041 * SMP is a lower bound, by reason of under accounting.
4042 *
4043 * Worse, since the numbers are provided per CPU, they are sometimes
4044 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
4045 * associated with any one particular CPU, it can wake to another CPU than it
4046 * blocked on. This means the per CPU IO-wait number is meaningless.
4047 *
4048 * Task CPU affinities can make all that even more 'interesting'.
4049 */
4050
nr_iowait(void)4051 unsigned long nr_iowait(void)
4052 {
4053 unsigned long i, sum = 0;
4054
4055 for_each_possible_cpu(i)
4056 sum += nr_iowait_cpu(i);
4057
4058 return sum;
4059 }
4060
4061 #ifdef CONFIG_SMP
4062
4063 /*
4064 * sched_exec - execve() is a valuable balancing opportunity, because at
4065 * this point the task has the smallest effective memory and cache footprint.
4066 */
sched_exec(void)4067 void sched_exec(void)
4068 {
4069 struct task_struct *p = current;
4070 unsigned long flags;
4071 int dest_cpu;
4072
4073 raw_spin_lock_irqsave(&p->pi_lock, flags);
4074 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
4075 if (dest_cpu == smp_processor_id())
4076 goto unlock;
4077
4078 if (likely(cpu_active(dest_cpu) && likely(!cpu_isolated(dest_cpu)))) {
4079 struct migration_arg arg = { p, dest_cpu };
4080
4081 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4082 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
4083 return;
4084 }
4085 unlock:
4086 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4087 }
4088
4089 #endif
4090
4091 DEFINE_PER_CPU(struct kernel_stat, kstat);
4092 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
4093
4094 EXPORT_PER_CPU_SYMBOL(kstat);
4095 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
4096
4097 /*
4098 * The function fair_sched_class.update_curr accesses the struct curr
4099 * and its field curr->exec_start; when called from task_sched_runtime(),
4100 * we observe a high rate of cache misses in practice.
4101 * Prefetching this data results in improved performance.
4102 */
prefetch_curr_exec_start(struct task_struct * p)4103 static inline void prefetch_curr_exec_start(struct task_struct *p)
4104 {
4105 #ifdef CONFIG_FAIR_GROUP_SCHED
4106 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
4107 #else
4108 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
4109 #endif
4110 prefetch(curr);
4111 prefetch(&curr->exec_start);
4112 }
4113
4114 /*
4115 * Return accounted runtime for the task.
4116 * In case the task is currently running, return the runtime plus current's
4117 * pending runtime that have not been accounted yet.
4118 */
task_sched_runtime(struct task_struct * p)4119 unsigned long long task_sched_runtime(struct task_struct *p)
4120 {
4121 struct rq_flags rf;
4122 struct rq *rq;
4123 u64 ns;
4124
4125 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
4126 /*
4127 * 64-bit doesn't need locks to atomically read a 64-bit value.
4128 * So we have a optimization chance when the task's delta_exec is 0.
4129 * Reading ->on_cpu is racy, but this is ok.
4130 *
4131 * If we race with it leaving CPU, we'll take a lock. So we're correct.
4132 * If we race with it entering CPU, unaccounted time is 0. This is
4133 * indistinguishable from the read occurring a few cycles earlier.
4134 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
4135 * been accounted, so we're correct here as well.
4136 */
4137 if (!p->on_cpu || !task_on_rq_queued(p))
4138 return p->se.sum_exec_runtime;
4139 #endif
4140
4141 rq = task_rq_lock(p, &rf);
4142 /*
4143 * Must be ->curr _and_ ->on_rq. If dequeued, we would
4144 * project cycles that may never be accounted to this
4145 * thread, breaking clock_gettime().
4146 */
4147 if (task_current(rq, p) && task_on_rq_queued(p)) {
4148 prefetch_curr_exec_start(p);
4149 update_rq_clock(rq);
4150 p->sched_class->update_curr(rq);
4151 }
4152 ns = p->se.sum_exec_runtime;
4153 task_rq_unlock(rq, p, &rf);
4154
4155 return ns;
4156 }
4157
4158 /*
4159 * This function gets called by the timer code, with HZ frequency.
4160 * We call it with interrupts disabled.
4161 */
scheduler_tick(void)4162 void scheduler_tick(void)
4163 {
4164 int cpu = smp_processor_id();
4165 struct rq *rq = cpu_rq(cpu);
4166 struct task_struct *curr = rq->curr;
4167 struct rq_flags rf;
4168 u64 wallclock;
4169 unsigned long thermal_pressure;
4170
4171 arch_scale_freq_tick();
4172 sched_clock_tick();
4173
4174 rq_lock(rq, &rf);
4175
4176 set_window_start(rq);
4177 wallclock = sched_ktime_clock();
4178 update_task_ravg(rq->curr, rq, TASK_UPDATE, wallclock, 0);
4179 update_rq_clock(rq);
4180 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
4181 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
4182 curr->sched_class->task_tick(rq, curr, 0);
4183 calc_global_load_tick(rq);
4184 psi_task_tick(rq);
4185
4186 rq_unlock(rq, &rf);
4187
4188 #ifdef CONFIG_SCHED_RTG
4189 sched_update_rtg_tick(curr);
4190 #endif
4191 perf_event_task_tick();
4192
4193 #ifdef CONFIG_SMP
4194 rq->idle_balance = idle_cpu(cpu);
4195 trigger_load_balance(rq);
4196
4197 #ifdef CONFIG_SCHED_EAS
4198 if (curr->sched_class->check_for_migration)
4199 curr->sched_class->check_for_migration(rq, curr);
4200 #endif
4201 #endif
4202 }
4203
4204 #ifdef CONFIG_NO_HZ_FULL
4205
4206 struct tick_work {
4207 int cpu;
4208 atomic_t state;
4209 struct delayed_work work;
4210 };
4211 /* Values for ->state, see diagram below. */
4212 #define TICK_SCHED_REMOTE_OFFLINE 0
4213 #define TICK_SCHED_REMOTE_OFFLINING 1
4214 #define TICK_SCHED_REMOTE_RUNNING 2
4215
4216 /*
4217 * State diagram for ->state:
4218 *
4219 *
4220 * TICK_SCHED_REMOTE_OFFLINE
4221 * | ^
4222 * | |
4223 * | | sched_tick_remote()
4224 * | |
4225 * | |
4226 * +--TICK_SCHED_REMOTE_OFFLINING
4227 * | ^
4228 * | |
4229 * sched_tick_start() | | sched_tick_stop()
4230 * | |
4231 * V |
4232 * TICK_SCHED_REMOTE_RUNNING
4233 *
4234 *
4235 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
4236 * and sched_tick_start() are happy to leave the state in RUNNING.
4237 */
4238
4239 static struct tick_work __percpu *tick_work_cpu;
4240
sched_tick_remote(struct work_struct * work)4241 static void sched_tick_remote(struct work_struct *work)
4242 {
4243 struct delayed_work *dwork = to_delayed_work(work);
4244 struct tick_work *twork = container_of(dwork, struct tick_work, work);
4245 int cpu = twork->cpu;
4246 struct rq *rq = cpu_rq(cpu);
4247 struct task_struct *curr;
4248 struct rq_flags rf;
4249 u64 delta;
4250 int os;
4251
4252 /*
4253 * Handle the tick only if it appears the remote CPU is running in full
4254 * dynticks mode. The check is racy by nature, but missing a tick or
4255 * having one too much is no big deal because the scheduler tick updates
4256 * statistics and checks timeslices in a time-independent way, regardless
4257 * of when exactly it is running.
4258 */
4259 if (!tick_nohz_tick_stopped_cpu(cpu))
4260 goto out_requeue;
4261
4262 rq_lock_irq(rq, &rf);
4263 curr = rq->curr;
4264 if (cpu_is_offline(cpu))
4265 goto out_unlock;
4266
4267 update_rq_clock(rq);
4268
4269 if (!is_idle_task(curr)) {
4270 /*
4271 * Make sure the next tick runs within a reasonable
4272 * amount of time.
4273 */
4274 delta = rq_clock_task(rq) - curr->se.exec_start;
4275 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
4276 }
4277 curr->sched_class->task_tick(rq, curr, 0);
4278
4279 calc_load_nohz_remote(rq);
4280 out_unlock:
4281 rq_unlock_irq(rq, &rf);
4282 out_requeue:
4283
4284 /*
4285 * Run the remote tick once per second (1Hz). This arbitrary
4286 * frequency is large enough to avoid overload but short enough
4287 * to keep scheduler internal stats reasonably up to date. But
4288 * first update state to reflect hotplug activity if required.
4289 */
4290 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
4291 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
4292 if (os == TICK_SCHED_REMOTE_RUNNING)
4293 queue_delayed_work(system_unbound_wq, dwork, HZ);
4294 }
4295
sched_tick_start(int cpu)4296 static void sched_tick_start(int cpu)
4297 {
4298 int os;
4299 struct tick_work *twork;
4300
4301 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4302 return;
4303
4304 WARN_ON_ONCE(!tick_work_cpu);
4305
4306 twork = per_cpu_ptr(tick_work_cpu, cpu);
4307 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
4308 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
4309 if (os == TICK_SCHED_REMOTE_OFFLINE) {
4310 twork->cpu = cpu;
4311 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
4312 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
4313 }
4314 }
4315
4316 #ifdef CONFIG_HOTPLUG_CPU
sched_tick_stop(int cpu)4317 static void sched_tick_stop(int cpu)
4318 {
4319 struct tick_work *twork;
4320 int os;
4321
4322 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4323 return;
4324
4325 WARN_ON_ONCE(!tick_work_cpu);
4326
4327 twork = per_cpu_ptr(tick_work_cpu, cpu);
4328 /* There cannot be competing actions, but don't rely on stop-machine. */
4329 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
4330 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
4331 /* Don't cancel, as this would mess up the state machine. */
4332 }
4333 #endif /* CONFIG_HOTPLUG_CPU */
4334
sched_tick_offload_init(void)4335 int __init sched_tick_offload_init(void)
4336 {
4337 tick_work_cpu = alloc_percpu(struct tick_work);
4338 BUG_ON(!tick_work_cpu);
4339 return 0;
4340 }
4341
4342 #else /* !CONFIG_NO_HZ_FULL */
sched_tick_start(int cpu)4343 static inline void sched_tick_start(int cpu) { }
sched_tick_stop(int cpu)4344 static inline void sched_tick_stop(int cpu) { }
4345 #endif
4346
4347 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
4348 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
4349 /*
4350 * If the value passed in is equal to the current preempt count
4351 * then we just disabled preemption. Start timing the latency.
4352 */
preempt_latency_start(int val)4353 static inline void preempt_latency_start(int val)
4354 {
4355 if (preempt_count() == val) {
4356 unsigned long ip = get_lock_parent_ip();
4357 #ifdef CONFIG_DEBUG_PREEMPT
4358 current->preempt_disable_ip = ip;
4359 #endif
4360 trace_preempt_off(CALLER_ADDR0, ip);
4361 }
4362 }
4363
preempt_count_add(int val)4364 void preempt_count_add(int val)
4365 {
4366 #ifdef CONFIG_DEBUG_PREEMPT
4367 /*
4368 * Underflow?
4369 */
4370 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4371 return;
4372 #endif
4373 __preempt_count_add(val);
4374 #ifdef CONFIG_DEBUG_PREEMPT
4375 /*
4376 * Spinlock count overflowing soon?
4377 */
4378 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4379 PREEMPT_MASK - 10);
4380 #endif
4381 preempt_latency_start(val);
4382 }
4383 EXPORT_SYMBOL(preempt_count_add);
4384 NOKPROBE_SYMBOL(preempt_count_add);
4385
4386 /*
4387 * If the value passed in equals to the current preempt count
4388 * then we just enabled preemption. Stop timing the latency.
4389 */
preempt_latency_stop(int val)4390 static inline void preempt_latency_stop(int val)
4391 {
4392 if (preempt_count() == val)
4393 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
4394 }
4395
preempt_count_sub(int val)4396 void preempt_count_sub(int val)
4397 {
4398 #ifdef CONFIG_DEBUG_PREEMPT
4399 /*
4400 * Underflow?
4401 */
4402 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4403 return;
4404 /*
4405 * Is the spinlock portion underflowing?
4406 */
4407 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4408 !(preempt_count() & PREEMPT_MASK)))
4409 return;
4410 #endif
4411
4412 preempt_latency_stop(val);
4413 __preempt_count_sub(val);
4414 }
4415 EXPORT_SYMBOL(preempt_count_sub);
4416 NOKPROBE_SYMBOL(preempt_count_sub);
4417
4418 #else
preempt_latency_start(int val)4419 static inline void preempt_latency_start(int val) { }
preempt_latency_stop(int val)4420 static inline void preempt_latency_stop(int val) { }
4421 #endif
4422
get_preempt_disable_ip(struct task_struct * p)4423 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
4424 {
4425 #ifdef CONFIG_DEBUG_PREEMPT
4426 return p->preempt_disable_ip;
4427 #else
4428 return 0;
4429 #endif
4430 }
4431
4432 /*
4433 * Print scheduling while atomic bug:
4434 */
__schedule_bug(struct task_struct * prev)4435 static noinline void __schedule_bug(struct task_struct *prev)
4436 {
4437 /* Save this before calling printk(), since that will clobber it */
4438 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
4439
4440 if (oops_in_progress)
4441 return;
4442
4443 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4444 prev->comm, prev->pid, preempt_count());
4445
4446 debug_show_held_locks(prev);
4447 print_modules();
4448 if (irqs_disabled())
4449 print_irqtrace_events(prev);
4450 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
4451 && in_atomic_preempt_off()) {
4452 pr_err("Preemption disabled at:");
4453 print_ip_sym(KERN_ERR, preempt_disable_ip);
4454 }
4455 if (panic_on_warn)
4456 panic("scheduling while atomic\n");
4457
4458 dump_stack();
4459 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4460 }
4461
4462 /*
4463 * Various schedule()-time debugging checks and statistics:
4464 */
schedule_debug(struct task_struct * prev,bool preempt)4465 static inline void schedule_debug(struct task_struct *prev, bool preempt)
4466 {
4467 #ifdef CONFIG_SCHED_STACK_END_CHECK
4468 if (task_stack_end_corrupted(prev))
4469 panic("corrupted stack end detected inside scheduler\n");
4470
4471 if (task_scs_end_corrupted(prev))
4472 panic("corrupted shadow stack detected inside scheduler\n");
4473 #endif
4474
4475 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
4476 if (!preempt && prev->state && prev->non_block_count) {
4477 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
4478 prev->comm, prev->pid, prev->non_block_count);
4479 dump_stack();
4480 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4481 }
4482 #endif
4483
4484 if (unlikely(in_atomic_preempt_off())) {
4485 __schedule_bug(prev);
4486 preempt_count_set(PREEMPT_DISABLED);
4487 }
4488 rcu_sleep_check();
4489
4490 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4491
4492 schedstat_inc(this_rq()->sched_count);
4493 }
4494
put_prev_task_balance(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)4495 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
4496 struct rq_flags *rf)
4497 {
4498 #ifdef CONFIG_SMP
4499 const struct sched_class *class;
4500 /*
4501 * We must do the balancing pass before put_prev_task(), such
4502 * that when we release the rq->lock the task is in the same
4503 * state as before we took rq->lock.
4504 *
4505 * We can terminate the balance pass as soon as we know there is
4506 * a runnable task of @class priority or higher.
4507 */
4508 for_class_range(class, prev->sched_class, &idle_sched_class) {
4509 if (class->balance(rq, prev, rf))
4510 break;
4511 }
4512 #endif
4513
4514 put_prev_task(rq, prev);
4515 }
4516
4517 /*
4518 * Pick up the highest-prio task:
4519 */
4520 static inline struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)4521 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
4522 {
4523 const struct sched_class *class;
4524 struct task_struct *p;
4525
4526 /*
4527 * Optimization: we know that if all tasks are in the fair class we can
4528 * call that function directly, but only if the @prev task wasn't of a
4529 * higher scheduling class, because otherwise those loose the
4530 * opportunity to pull in more work from other CPUs.
4531 */
4532 if (likely(prev->sched_class <= &fair_sched_class &&
4533 rq->nr_running == rq->cfs.h_nr_running)) {
4534
4535 p = pick_next_task_fair(rq, prev, rf);
4536 if (unlikely(p == RETRY_TASK))
4537 goto restart;
4538
4539 /* Assumes fair_sched_class->next == idle_sched_class */
4540 if (!p) {
4541 put_prev_task(rq, prev);
4542 p = pick_next_task_idle(rq);
4543 }
4544
4545 return p;
4546 }
4547
4548 restart:
4549 put_prev_task_balance(rq, prev, rf);
4550
4551 for_each_class(class) {
4552 p = class->pick_next_task(rq);
4553 if (p)
4554 return p;
4555 }
4556
4557 /* The idle class should always have a runnable task: */
4558 BUG();
4559 }
4560
4561 /*
4562 * __schedule() is the main scheduler function.
4563 *
4564 * The main means of driving the scheduler and thus entering this function are:
4565 *
4566 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4567 *
4568 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4569 * paths. For example, see arch/x86/entry_64.S.
4570 *
4571 * To drive preemption between tasks, the scheduler sets the flag in timer
4572 * interrupt handler scheduler_tick().
4573 *
4574 * 3. Wakeups don't really cause entry into schedule(). They add a
4575 * task to the run-queue and that's it.
4576 *
4577 * Now, if the new task added to the run-queue preempts the current
4578 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4579 * called on the nearest possible occasion:
4580 *
4581 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
4582 *
4583 * - in syscall or exception context, at the next outmost
4584 * preempt_enable(). (this might be as soon as the wake_up()'s
4585 * spin_unlock()!)
4586 *
4587 * - in IRQ context, return from interrupt-handler to
4588 * preemptible context
4589 *
4590 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4591 * then at the next:
4592 *
4593 * - cond_resched() call
4594 * - explicit schedule() call
4595 * - return from syscall or exception to user-space
4596 * - return from interrupt-handler to user-space
4597 *
4598 * WARNING: must be called with preemption disabled!
4599 */
__schedule(bool preempt)4600 static void __sched notrace __schedule(bool preempt)
4601 {
4602 struct task_struct *prev, *next;
4603 unsigned long *switch_count;
4604 unsigned long prev_state;
4605 struct rq_flags rf;
4606 struct rq *rq;
4607 int cpu;
4608 u64 wallclock;
4609
4610 cpu = smp_processor_id();
4611 rq = cpu_rq(cpu);
4612 prev = rq->curr;
4613
4614 schedule_debug(prev, preempt);
4615
4616 if (sched_feat(HRTICK))
4617 hrtick_clear(rq);
4618
4619 local_irq_disable();
4620 rcu_note_context_switch(preempt);
4621
4622 /*
4623 * Make sure that signal_pending_state()->signal_pending() below
4624 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4625 * done by the caller to avoid the race with signal_wake_up():
4626 *
4627 * __set_current_state(@state) signal_wake_up()
4628 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
4629 * wake_up_state(p, state)
4630 * LOCK rq->lock LOCK p->pi_state
4631 * smp_mb__after_spinlock() smp_mb__after_spinlock()
4632 * if (signal_pending_state()) if (p->state & @state)
4633 *
4634 * Also, the membarrier system call requires a full memory barrier
4635 * after coming from user-space, before storing to rq->curr.
4636 */
4637 rq_lock(rq, &rf);
4638 smp_mb__after_spinlock();
4639
4640 /* Promote REQ to ACT */
4641 rq->clock_update_flags <<= 1;
4642 update_rq_clock(rq);
4643
4644 switch_count = &prev->nivcsw;
4645
4646 /*
4647 * We must load prev->state once (task_struct::state is volatile), such
4648 * that:
4649 *
4650 * - we form a control dependency vs deactivate_task() below.
4651 * - ptrace_{,un}freeze_traced() can change ->state underneath us.
4652 */
4653 prev_state = prev->state;
4654 if (!preempt && prev_state) {
4655 if (signal_pending_state(prev_state, prev)) {
4656 prev->state = TASK_RUNNING;
4657 } else {
4658 prev->sched_contributes_to_load =
4659 (prev_state & TASK_UNINTERRUPTIBLE) &&
4660 !(prev_state & TASK_NOLOAD) &&
4661 !(prev->flags & PF_FROZEN);
4662
4663 if (prev->sched_contributes_to_load)
4664 rq->nr_uninterruptible++;
4665
4666 /*
4667 * __schedule() ttwu()
4668 * prev_state = prev->state; if (p->on_rq && ...)
4669 * if (prev_state) goto out;
4670 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
4671 * p->state = TASK_WAKING
4672 *
4673 * Where __schedule() and ttwu() have matching control dependencies.
4674 *
4675 * After this, schedule() must not care about p->state any more.
4676 */
4677 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4678
4679 if (prev->in_iowait) {
4680 atomic_inc(&rq->nr_iowait);
4681 delayacct_blkio_start();
4682 }
4683 }
4684 switch_count = &prev->nvcsw;
4685 }
4686
4687 next = pick_next_task(rq, prev, &rf);
4688 clear_tsk_need_resched(prev);
4689 clear_preempt_need_resched();
4690
4691 wallclock = sched_ktime_clock();
4692 if (likely(prev != next)) {
4693 #ifdef CONFIG_SCHED_WALT
4694 if (!prev->on_rq)
4695 prev->last_sleep_ts = wallclock;
4696 #endif
4697 update_task_ravg(prev, rq, PUT_PREV_TASK, wallclock, 0);
4698 update_task_ravg(next, rq, PICK_NEXT_TASK, wallclock, 0);
4699 rq->nr_switches++;
4700 /*
4701 * RCU users of rcu_dereference(rq->curr) may not see
4702 * changes to task_struct made by pick_next_task().
4703 */
4704 RCU_INIT_POINTER(rq->curr, next);
4705 /*
4706 * The membarrier system call requires each architecture
4707 * to have a full memory barrier after updating
4708 * rq->curr, before returning to user-space.
4709 *
4710 * Here are the schemes providing that barrier on the
4711 * various architectures:
4712 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4713 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4714 * - finish_lock_switch() for weakly-ordered
4715 * architectures where spin_unlock is a full barrier,
4716 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4717 * is a RELEASE barrier),
4718 */
4719 ++*switch_count;
4720
4721 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
4722
4723 trace_sched_switch(preempt, prev, next);
4724
4725 /* Also unlocks the rq: */
4726 rq = context_switch(rq, prev, next, &rf);
4727 } else {
4728 update_task_ravg(prev, rq, TASK_UPDATE, wallclock, 0);
4729 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4730 rq_unlock_irq(rq, &rf);
4731 }
4732
4733 balance_callback(rq);
4734 }
4735
do_task_dead(void)4736 void __noreturn do_task_dead(void)
4737 {
4738 /* Causes final put_task_struct in finish_task_switch(): */
4739 set_special_state(TASK_DEAD);
4740
4741 /* Tell freezer to ignore us: */
4742 current->flags |= PF_NOFREEZE;
4743
4744 __schedule(false);
4745 BUG();
4746
4747 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4748 for (;;)
4749 cpu_relax();
4750 }
4751
sched_submit_work(struct task_struct * tsk)4752 static inline void sched_submit_work(struct task_struct *tsk)
4753 {
4754 unsigned int task_flags;
4755
4756 if (!tsk->state)
4757 return;
4758
4759 task_flags = tsk->flags;
4760 /*
4761 * If a worker went to sleep, notify and ask workqueue whether
4762 * it wants to wake up a task to maintain concurrency.
4763 * As this function is called inside the schedule() context,
4764 * we disable preemption to avoid it calling schedule() again
4765 * in the possible wakeup of a kworker and because wq_worker_sleeping()
4766 * requires it.
4767 */
4768 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4769 preempt_disable();
4770 if (task_flags & PF_WQ_WORKER)
4771 wq_worker_sleeping(tsk);
4772 else
4773 io_wq_worker_sleeping(tsk);
4774 preempt_enable_no_resched();
4775 }
4776
4777 if (tsk_is_pi_blocked(tsk))
4778 return;
4779
4780 /*
4781 * If we are going to sleep and we have plugged IO queued,
4782 * make sure to submit it to avoid deadlocks.
4783 */
4784 if (blk_needs_flush_plug(tsk))
4785 blk_schedule_flush_plug(tsk);
4786 }
4787
sched_update_worker(struct task_struct * tsk)4788 static void sched_update_worker(struct task_struct *tsk)
4789 {
4790 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4791 if (tsk->flags & PF_WQ_WORKER)
4792 wq_worker_running(tsk);
4793 else
4794 io_wq_worker_running(tsk);
4795 }
4796 }
4797
schedule(void)4798 asmlinkage __visible void __sched schedule(void)
4799 {
4800 struct task_struct *tsk = current;
4801
4802 sched_submit_work(tsk);
4803 do {
4804 preempt_disable();
4805 __schedule(false);
4806 sched_preempt_enable_no_resched();
4807 } while (need_resched());
4808 sched_update_worker(tsk);
4809 }
4810 EXPORT_SYMBOL(schedule);
4811
4812 /*
4813 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4814 * state (have scheduled out non-voluntarily) by making sure that all
4815 * tasks have either left the run queue or have gone into user space.
4816 * As idle tasks do not do either, they must not ever be preempted
4817 * (schedule out non-voluntarily).
4818 *
4819 * schedule_idle() is similar to schedule_preempt_disable() except that it
4820 * never enables preemption because it does not call sched_submit_work().
4821 */
schedule_idle(void)4822 void __sched schedule_idle(void)
4823 {
4824 /*
4825 * As this skips calling sched_submit_work(), which the idle task does
4826 * regardless because that function is a nop when the task is in a
4827 * TASK_RUNNING state, make sure this isn't used someplace that the
4828 * current task can be in any other state. Note, idle is always in the
4829 * TASK_RUNNING state.
4830 */
4831 WARN_ON_ONCE(current->state);
4832 do {
4833 __schedule(false);
4834 } while (need_resched());
4835 }
4836
4837 #ifdef CONFIG_CONTEXT_TRACKING
schedule_user(void)4838 asmlinkage __visible void __sched schedule_user(void)
4839 {
4840 /*
4841 * If we come here after a random call to set_need_resched(),
4842 * or we have been woken up remotely but the IPI has not yet arrived,
4843 * we haven't yet exited the RCU idle mode. Do it here manually until
4844 * we find a better solution.
4845 *
4846 * NB: There are buggy callers of this function. Ideally we
4847 * should warn if prev_state != CONTEXT_USER, but that will trigger
4848 * too frequently to make sense yet.
4849 */
4850 enum ctx_state prev_state = exception_enter();
4851 schedule();
4852 exception_exit(prev_state);
4853 }
4854 #endif
4855
4856 /**
4857 * schedule_preempt_disabled - called with preemption disabled
4858 *
4859 * Returns with preemption disabled. Note: preempt_count must be 1
4860 */
schedule_preempt_disabled(void)4861 void __sched schedule_preempt_disabled(void)
4862 {
4863 sched_preempt_enable_no_resched();
4864 schedule();
4865 preempt_disable();
4866 }
4867
preempt_schedule_common(void)4868 static void __sched notrace preempt_schedule_common(void)
4869 {
4870 do {
4871 /*
4872 * Because the function tracer can trace preempt_count_sub()
4873 * and it also uses preempt_enable/disable_notrace(), if
4874 * NEED_RESCHED is set, the preempt_enable_notrace() called
4875 * by the function tracer will call this function again and
4876 * cause infinite recursion.
4877 *
4878 * Preemption must be disabled here before the function
4879 * tracer can trace. Break up preempt_disable() into two
4880 * calls. One to disable preemption without fear of being
4881 * traced. The other to still record the preemption latency,
4882 * which can also be traced by the function tracer.
4883 */
4884 preempt_disable_notrace();
4885 preempt_latency_start(1);
4886 __schedule(true);
4887 preempt_latency_stop(1);
4888 preempt_enable_no_resched_notrace();
4889
4890 /*
4891 * Check again in case we missed a preemption opportunity
4892 * between schedule and now.
4893 */
4894 } while (need_resched());
4895 }
4896
4897 #ifdef CONFIG_PREEMPTION
4898 /*
4899 * This is the entry point to schedule() from in-kernel preemption
4900 * off of preempt_enable.
4901 */
preempt_schedule(void)4902 asmlinkage __visible void __sched notrace preempt_schedule(void)
4903 {
4904 /*
4905 * If there is a non-zero preempt_count or interrupts are disabled,
4906 * we do not want to preempt the current task. Just return..
4907 */
4908 if (likely(!preemptible()))
4909 return;
4910
4911 preempt_schedule_common();
4912 }
4913 NOKPROBE_SYMBOL(preempt_schedule);
4914 EXPORT_SYMBOL(preempt_schedule);
4915
4916 /**
4917 * preempt_schedule_notrace - preempt_schedule called by tracing
4918 *
4919 * The tracing infrastructure uses preempt_enable_notrace to prevent
4920 * recursion and tracing preempt enabling caused by the tracing
4921 * infrastructure itself. But as tracing can happen in areas coming
4922 * from userspace or just about to enter userspace, a preempt enable
4923 * can occur before user_exit() is called. This will cause the scheduler
4924 * to be called when the system is still in usermode.
4925 *
4926 * To prevent this, the preempt_enable_notrace will use this function
4927 * instead of preempt_schedule() to exit user context if needed before
4928 * calling the scheduler.
4929 */
preempt_schedule_notrace(void)4930 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4931 {
4932 enum ctx_state prev_ctx;
4933
4934 if (likely(!preemptible()))
4935 return;
4936
4937 do {
4938 /*
4939 * Because the function tracer can trace preempt_count_sub()
4940 * and it also uses preempt_enable/disable_notrace(), if
4941 * NEED_RESCHED is set, the preempt_enable_notrace() called
4942 * by the function tracer will call this function again and
4943 * cause infinite recursion.
4944 *
4945 * Preemption must be disabled here before the function
4946 * tracer can trace. Break up preempt_disable() into two
4947 * calls. One to disable preemption without fear of being
4948 * traced. The other to still record the preemption latency,
4949 * which can also be traced by the function tracer.
4950 */
4951 preempt_disable_notrace();
4952 preempt_latency_start(1);
4953 /*
4954 * Needs preempt disabled in case user_exit() is traced
4955 * and the tracer calls preempt_enable_notrace() causing
4956 * an infinite recursion.
4957 */
4958 prev_ctx = exception_enter();
4959 __schedule(true);
4960 exception_exit(prev_ctx);
4961
4962 preempt_latency_stop(1);
4963 preempt_enable_no_resched_notrace();
4964 } while (need_resched());
4965 }
4966 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4967
4968 #endif /* CONFIG_PREEMPTION */
4969
4970 /*
4971 * This is the entry point to schedule() from kernel preemption
4972 * off of irq context.
4973 * Note, that this is called and return with irqs disabled. This will
4974 * protect us against recursive calling from irq.
4975 */
preempt_schedule_irq(void)4976 asmlinkage __visible void __sched preempt_schedule_irq(void)
4977 {
4978 enum ctx_state prev_state;
4979
4980 /* Catch callers which need to be fixed */
4981 BUG_ON(preempt_count() || !irqs_disabled());
4982
4983 prev_state = exception_enter();
4984
4985 do {
4986 preempt_disable();
4987 local_irq_enable();
4988 __schedule(true);
4989 local_irq_disable();
4990 sched_preempt_enable_no_resched();
4991 } while (need_resched());
4992
4993 exception_exit(prev_state);
4994 }
4995
default_wake_function(wait_queue_entry_t * curr,unsigned mode,int wake_flags,void * key)4996 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4997 void *key)
4998 {
4999 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
5000 return try_to_wake_up(curr->private, mode, wake_flags);
5001 }
5002 EXPORT_SYMBOL(default_wake_function);
5003
__setscheduler_prio(struct task_struct * p,int prio)5004 static void __setscheduler_prio(struct task_struct *p, int prio)
5005 {
5006 if (dl_prio(prio))
5007 p->sched_class = &dl_sched_class;
5008 else if (rt_prio(prio))
5009 p->sched_class = &rt_sched_class;
5010 else
5011 p->sched_class = &fair_sched_class;
5012
5013 p->prio = prio;
5014 }
5015
5016 #ifdef CONFIG_RT_MUTEXES
5017
__rt_effective_prio(struct task_struct * pi_task,int prio)5018 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
5019 {
5020 if (pi_task)
5021 prio = min(prio, pi_task->prio);
5022
5023 return prio;
5024 }
5025
rt_effective_prio(struct task_struct * p,int prio)5026 static inline int rt_effective_prio(struct task_struct *p, int prio)
5027 {
5028 struct task_struct *pi_task = rt_mutex_get_top_task(p);
5029
5030 return __rt_effective_prio(pi_task, prio);
5031 }
5032
5033 /*
5034 * rt_mutex_setprio - set the current priority of a task
5035 * @p: task to boost
5036 * @pi_task: donor task
5037 *
5038 * This function changes the 'effective' priority of a task. It does
5039 * not touch ->normal_prio like __setscheduler().
5040 *
5041 * Used by the rt_mutex code to implement priority inheritance
5042 * logic. Call site only calls if the priority of the task changed.
5043 */
rt_mutex_setprio(struct task_struct * p,struct task_struct * pi_task)5044 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
5045 {
5046 int prio, oldprio, queued, running, queue_flag =
5047 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5048 const struct sched_class *prev_class;
5049 struct rq_flags rf;
5050 struct rq *rq;
5051
5052 /* XXX used to be waiter->prio, not waiter->task->prio */
5053 prio = __rt_effective_prio(pi_task, p->normal_prio);
5054
5055 /*
5056 * If nothing changed; bail early.
5057 */
5058 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
5059 return;
5060
5061 rq = __task_rq_lock(p, &rf);
5062 update_rq_clock(rq);
5063 /*
5064 * Set under pi_lock && rq->lock, such that the value can be used under
5065 * either lock.
5066 *
5067 * Note that there is loads of tricky to make this pointer cache work
5068 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
5069 * ensure a task is de-boosted (pi_task is set to NULL) before the
5070 * task is allowed to run again (and can exit). This ensures the pointer
5071 * points to a blocked task -- which guaratees the task is present.
5072 */
5073 p->pi_top_task = pi_task;
5074
5075 /*
5076 * For FIFO/RR we only need to set prio, if that matches we're done.
5077 */
5078 if (prio == p->prio && !dl_prio(prio))
5079 goto out_unlock;
5080
5081 /*
5082 * Idle task boosting is a nono in general. There is one
5083 * exception, when PREEMPT_RT and NOHZ is active:
5084 *
5085 * The idle task calls get_next_timer_interrupt() and holds
5086 * the timer wheel base->lock on the CPU and another CPU wants
5087 * to access the timer (probably to cancel it). We can safely
5088 * ignore the boosting request, as the idle CPU runs this code
5089 * with interrupts disabled and will complete the lock
5090 * protected section without being interrupted. So there is no
5091 * real need to boost.
5092 */
5093 if (unlikely(p == rq->idle)) {
5094 WARN_ON(p != rq->curr);
5095 WARN_ON(p->pi_blocked_on);
5096 goto out_unlock;
5097 }
5098
5099 trace_sched_pi_setprio(p, pi_task);
5100 oldprio = p->prio;
5101
5102 if (oldprio == prio)
5103 queue_flag &= ~DEQUEUE_MOVE;
5104
5105 prev_class = p->sched_class;
5106 queued = task_on_rq_queued(p);
5107 running = task_current(rq, p);
5108 if (queued)
5109 dequeue_task(rq, p, queue_flag);
5110 if (running)
5111 put_prev_task(rq, p);
5112
5113 /*
5114 * Boosting condition are:
5115 * 1. -rt task is running and holds mutex A
5116 * --> -dl task blocks on mutex A
5117 *
5118 * 2. -dl task is running and holds mutex A
5119 * --> -dl task blocks on mutex A and could preempt the
5120 * running task
5121 */
5122 if (dl_prio(prio)) {
5123 if (!dl_prio(p->normal_prio) ||
5124 (pi_task && dl_prio(pi_task->prio) &&
5125 dl_entity_preempt(&pi_task->dl, &p->dl))) {
5126 p->dl.pi_se = pi_task->dl.pi_se;
5127 queue_flag |= ENQUEUE_REPLENISH;
5128 } else {
5129 p->dl.pi_se = &p->dl;
5130 }
5131 } else if (rt_prio(prio)) {
5132 if (dl_prio(oldprio))
5133 p->dl.pi_se = &p->dl;
5134 if (oldprio < prio)
5135 queue_flag |= ENQUEUE_HEAD;
5136 } else {
5137 if (dl_prio(oldprio))
5138 p->dl.pi_se = &p->dl;
5139 if (rt_prio(oldprio))
5140 p->rt.timeout = 0;
5141 }
5142
5143 __setscheduler_prio(p, prio);
5144
5145 if (queued)
5146 enqueue_task(rq, p, queue_flag);
5147 if (running)
5148 set_next_task(rq, p);
5149
5150 check_class_changed(rq, p, prev_class, oldprio);
5151 out_unlock:
5152 /* Avoid rq from going away on us: */
5153 preempt_disable();
5154 __task_rq_unlock(rq, &rf);
5155
5156 balance_callback(rq);
5157 preempt_enable();
5158 }
5159 #else
rt_effective_prio(struct task_struct * p,int prio)5160 static inline int rt_effective_prio(struct task_struct *p, int prio)
5161 {
5162 return prio;
5163 }
5164 #endif
5165
set_user_nice(struct task_struct * p,long nice)5166 void set_user_nice(struct task_struct *p, long nice)
5167 {
5168 bool queued, running;
5169 int old_prio;
5170 struct rq_flags rf;
5171 struct rq *rq;
5172
5173 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
5174 return;
5175 /*
5176 * We have to be careful, if called from sys_setpriority(),
5177 * the task might be in the middle of scheduling on another CPU.
5178 */
5179 rq = task_rq_lock(p, &rf);
5180 update_rq_clock(rq);
5181
5182 /*
5183 * The RT priorities are set via sched_setscheduler(), but we still
5184 * allow the 'normal' nice value to be set - but as expected
5185 * it wont have any effect on scheduling until the task is
5186 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
5187 */
5188 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
5189 p->static_prio = NICE_TO_PRIO(nice);
5190 goto out_unlock;
5191 }
5192 queued = task_on_rq_queued(p);
5193 running = task_current(rq, p);
5194 if (queued)
5195 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
5196 if (running)
5197 put_prev_task(rq, p);
5198
5199 p->static_prio = NICE_TO_PRIO(nice);
5200 set_load_weight(p, true);
5201 old_prio = p->prio;
5202 p->prio = effective_prio(p);
5203
5204 if (queued)
5205 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5206 if (running)
5207 set_next_task(rq, p);
5208
5209 /*
5210 * If the task increased its priority or is running and
5211 * lowered its priority, then reschedule its CPU:
5212 */
5213 p->sched_class->prio_changed(rq, p, old_prio);
5214
5215 out_unlock:
5216 task_rq_unlock(rq, p, &rf);
5217 }
5218 EXPORT_SYMBOL(set_user_nice);
5219
5220 /*
5221 * can_nice - check if a task can reduce its nice value
5222 * @p: task
5223 * @nice: nice value
5224 */
can_nice(const struct task_struct * p,const int nice)5225 int can_nice(const struct task_struct *p, const int nice)
5226 {
5227 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
5228 int nice_rlim = nice_to_rlimit(nice);
5229
5230 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
5231 capable(CAP_SYS_NICE));
5232 }
5233
5234 #ifdef __ARCH_WANT_SYS_NICE
5235
5236 /*
5237 * sys_nice - change the priority of the current process.
5238 * @increment: priority increment
5239 *
5240 * sys_setpriority is a more generic, but much slower function that
5241 * does similar things.
5242 */
SYSCALL_DEFINE1(nice,int,increment)5243 SYSCALL_DEFINE1(nice, int, increment)
5244 {
5245 long nice, retval;
5246
5247 /*
5248 * Setpriority might change our priority at the same moment.
5249 * We don't have to worry. Conceptually one call occurs first
5250 * and we have a single winner.
5251 */
5252 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
5253 nice = task_nice(current) + increment;
5254
5255 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
5256 if (increment < 0 && !can_nice(current, nice))
5257 return -EPERM;
5258
5259 retval = security_task_setnice(current, nice);
5260 if (retval)
5261 return retval;
5262
5263 set_user_nice(current, nice);
5264 return 0;
5265 }
5266
5267 #endif
5268
5269 /**
5270 * task_prio - return the priority value of a given task.
5271 * @p: the task in question.
5272 *
5273 * Return: The priority value as seen by users in /proc.
5274 * RT tasks are offset by -200. Normal tasks are centered
5275 * around 0, value goes from -16 to +15.
5276 */
task_prio(const struct task_struct * p)5277 int task_prio(const struct task_struct *p)
5278 {
5279 return p->prio - MAX_RT_PRIO;
5280 }
5281
5282 /**
5283 * idle_cpu - is a given CPU idle currently?
5284 * @cpu: the processor in question.
5285 *
5286 * Return: 1 if the CPU is currently idle. 0 otherwise.
5287 */
idle_cpu(int cpu)5288 int idle_cpu(int cpu)
5289 {
5290 struct rq *rq = cpu_rq(cpu);
5291
5292 if (rq->curr != rq->idle)
5293 return 0;
5294
5295 if (rq->nr_running)
5296 return 0;
5297
5298 #ifdef CONFIG_SMP
5299 if (rq->ttwu_pending)
5300 return 0;
5301 #endif
5302
5303 return 1;
5304 }
5305
5306 /**
5307 * available_idle_cpu - is a given CPU idle for enqueuing work.
5308 * @cpu: the CPU in question.
5309 *
5310 * Return: 1 if the CPU is currently idle. 0 otherwise.
5311 */
available_idle_cpu(int cpu)5312 int available_idle_cpu(int cpu)
5313 {
5314 if (!idle_cpu(cpu))
5315 return 0;
5316
5317 if (vcpu_is_preempted(cpu))
5318 return 0;
5319
5320 return 1;
5321 }
5322
5323 /**
5324 * idle_task - return the idle task for a given CPU.
5325 * @cpu: the processor in question.
5326 *
5327 * Return: The idle task for the CPU @cpu.
5328 */
idle_task(int cpu)5329 struct task_struct *idle_task(int cpu)
5330 {
5331 return cpu_rq(cpu)->idle;
5332 }
5333
5334 /**
5335 * find_process_by_pid - find a process with a matching PID value.
5336 * @pid: the pid in question.
5337 *
5338 * The task of @pid, if found. %NULL otherwise.
5339 */
find_process_by_pid(pid_t pid)5340 static struct task_struct *find_process_by_pid(pid_t pid)
5341 {
5342 return pid ? find_task_by_vpid(pid) : current;
5343 }
5344
5345 /*
5346 * sched_setparam() passes in -1 for its policy, to let the functions
5347 * it calls know not to change it.
5348 */
5349 #define SETPARAM_POLICY -1
5350
__setscheduler_params(struct task_struct * p,const struct sched_attr * attr)5351 static void __setscheduler_params(struct task_struct *p,
5352 const struct sched_attr *attr)
5353 {
5354 int policy = attr->sched_policy;
5355
5356 if (policy == SETPARAM_POLICY)
5357 policy = p->policy;
5358
5359 p->policy = policy;
5360
5361 if (dl_policy(policy))
5362 __setparam_dl(p, attr);
5363 else if (fair_policy(policy))
5364 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
5365
5366 /*
5367 * __sched_setscheduler() ensures attr->sched_priority == 0 when
5368 * !rt_policy. Always setting this ensures that things like
5369 * getparam()/getattr() don't report silly values for !rt tasks.
5370 */
5371 p->rt_priority = attr->sched_priority;
5372 p->normal_prio = normal_prio(p);
5373 set_load_weight(p, true);
5374 }
5375
5376 /*
5377 * Check the target process has a UID that matches the current process's:
5378 */
check_same_owner(struct task_struct * p)5379 static bool check_same_owner(struct task_struct *p)
5380 {
5381 const struct cred *cred = current_cred(), *pcred;
5382 bool match;
5383
5384 rcu_read_lock();
5385 pcred = __task_cred(p);
5386 match = (uid_eq(cred->euid, pcred->euid) ||
5387 uid_eq(cred->euid, pcred->uid));
5388 rcu_read_unlock();
5389 return match;
5390 }
5391
__sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,bool user,bool pi)5392 static int __sched_setscheduler(struct task_struct *p,
5393 const struct sched_attr *attr,
5394 bool user, bool pi)
5395 {
5396 int oldpolicy = -1, policy = attr->sched_policy;
5397 int retval, oldprio, newprio, queued, running;
5398 const struct sched_class *prev_class;
5399 struct rq_flags rf;
5400 int reset_on_fork;
5401 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5402 struct rq *rq;
5403
5404 /* The pi code expects interrupts enabled */
5405 BUG_ON(pi && in_interrupt());
5406 recheck:
5407 /* Double check policy once rq lock held: */
5408 if (policy < 0) {
5409 reset_on_fork = p->sched_reset_on_fork;
5410 policy = oldpolicy = p->policy;
5411 } else {
5412 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
5413
5414 if (!valid_policy(policy))
5415 return -EINVAL;
5416 }
5417
5418 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
5419 return -EINVAL;
5420
5421 /*
5422 * Valid priorities for SCHED_FIFO and SCHED_RR are
5423 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5424 * SCHED_BATCH and SCHED_IDLE is 0.
5425 */
5426 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
5427 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
5428 return -EINVAL;
5429 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
5430 (rt_policy(policy) != (attr->sched_priority != 0)))
5431 return -EINVAL;
5432
5433 /*
5434 * Allow unprivileged RT tasks to decrease priority:
5435 */
5436 if (user && !capable(CAP_SYS_NICE)) {
5437 if (fair_policy(policy)) {
5438 if (attr->sched_nice < task_nice(p) &&
5439 !can_nice(p, attr->sched_nice))
5440 return -EPERM;
5441 }
5442
5443 if (rt_policy(policy)) {
5444 unsigned long rlim_rtprio =
5445 task_rlimit(p, RLIMIT_RTPRIO);
5446
5447 /* Can't set/change the rt policy: */
5448 if (policy != p->policy && !rlim_rtprio)
5449 return -EPERM;
5450
5451 /* Can't increase priority: */
5452 if (attr->sched_priority > p->rt_priority &&
5453 attr->sched_priority > rlim_rtprio)
5454 return -EPERM;
5455 }
5456
5457 /*
5458 * Can't set/change SCHED_DEADLINE policy at all for now
5459 * (safest behavior); in the future we would like to allow
5460 * unprivileged DL tasks to increase their relative deadline
5461 * or reduce their runtime (both ways reducing utilization)
5462 */
5463 if (dl_policy(policy))
5464 return -EPERM;
5465
5466 /*
5467 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5468 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5469 */
5470 if (task_has_idle_policy(p) && !idle_policy(policy)) {
5471 if (!can_nice(p, task_nice(p)))
5472 return -EPERM;
5473 }
5474
5475 /* Can't change other user's priorities: */
5476 if (!check_same_owner(p))
5477 return -EPERM;
5478
5479 /* Normal users shall not reset the sched_reset_on_fork flag: */
5480 if (p->sched_reset_on_fork && !reset_on_fork)
5481 return -EPERM;
5482 }
5483
5484 if (user) {
5485 if (attr->sched_flags & SCHED_FLAG_SUGOV)
5486 return -EINVAL;
5487
5488 retval = security_task_setscheduler(p);
5489 if (retval)
5490 return retval;
5491 }
5492
5493 /* Update task specific "requested" clamps */
5494 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
5495 retval = uclamp_validate(p, attr);
5496 if (retval)
5497 return retval;
5498 }
5499
5500 if (attr->sched_flags & SCHED_FLAG_LATENCY_NICE) {
5501 retval = latency_nice_validate(p, user, attr);
5502 if (retval)
5503 return retval;
5504 }
5505
5506 if (pi)
5507 cpuset_read_lock();
5508
5509 /*
5510 * Make sure no PI-waiters arrive (or leave) while we are
5511 * changing the priority of the task:
5512 *
5513 * To be able to change p->policy safely, the appropriate
5514 * runqueue lock must be held.
5515 */
5516 rq = task_rq_lock(p, &rf);
5517 update_rq_clock(rq);
5518
5519 /*
5520 * Changing the policy of the stop threads its a very bad idea:
5521 */
5522 if (p == rq->stop) {
5523 retval = -EINVAL;
5524 goto unlock;
5525 }
5526
5527 /*
5528 * If not changing anything there's no need to proceed further,
5529 * but store a possible modification of reset_on_fork.
5530 */
5531 if (unlikely(policy == p->policy)) {
5532 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
5533 goto change;
5534 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
5535 goto change;
5536 if (dl_policy(policy) && dl_param_changed(p, attr))
5537 goto change;
5538 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
5539 goto change;
5540 #ifdef CONFIG_SCHED_LATENCY_NICE
5541 if (attr->sched_flags & SCHED_FLAG_LATENCY_NICE &&
5542 attr->sched_latency_nice != LATENCY_TO_NICE(p->latency_prio))
5543 goto change;
5544 #endif
5545
5546 p->sched_reset_on_fork = reset_on_fork;
5547 retval = 0;
5548 goto unlock;
5549 }
5550 change:
5551
5552 if (user) {
5553 #ifdef CONFIG_RT_GROUP_SCHED
5554 /*
5555 * Do not allow realtime tasks into groups that have no runtime
5556 * assigned.
5557 */
5558 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5559 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5560 !task_group_is_autogroup(task_group(p))) {
5561 retval = -EPERM;
5562 goto unlock;
5563 }
5564 #endif
5565 #ifdef CONFIG_SMP
5566 if (dl_bandwidth_enabled() && dl_policy(policy) &&
5567 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
5568 cpumask_t *span = rq->rd->span;
5569
5570 /*
5571 * Don't allow tasks with an affinity mask smaller than
5572 * the entire root_domain to become SCHED_DEADLINE. We
5573 * will also fail if there's no bandwidth available.
5574 */
5575 if (!cpumask_subset(span, p->cpus_ptr) ||
5576 rq->rd->dl_bw.bw == 0) {
5577 retval = -EPERM;
5578 goto unlock;
5579 }
5580 }
5581 #endif
5582 }
5583
5584 /* Re-check policy now with rq lock held: */
5585 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5586 policy = oldpolicy = -1;
5587 task_rq_unlock(rq, p, &rf);
5588 if (pi)
5589 cpuset_read_unlock();
5590 goto recheck;
5591 }
5592
5593 /*
5594 * If setscheduling to SCHED_DEADLINE (or changing the parameters
5595 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
5596 * is available.
5597 */
5598 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
5599 retval = -EBUSY;
5600 goto unlock;
5601 }
5602
5603 p->sched_reset_on_fork = reset_on_fork;
5604 oldprio = p->prio;
5605
5606 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
5607 if (pi) {
5608 /*
5609 * Take priority boosted tasks into account. If the new
5610 * effective priority is unchanged, we just store the new
5611 * normal parameters and do not touch the scheduler class and
5612 * the runqueue. This will be done when the task deboost
5613 * itself.
5614 */
5615 newprio = rt_effective_prio(p, newprio);
5616 if (newprio == oldprio)
5617 queue_flags &= ~DEQUEUE_MOVE;
5618 }
5619
5620 queued = task_on_rq_queued(p);
5621 running = task_current(rq, p);
5622 if (queued)
5623 dequeue_task(rq, p, queue_flags);
5624 if (running)
5625 put_prev_task(rq, p);
5626
5627 prev_class = p->sched_class;
5628
5629 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
5630 __setscheduler_params(p, attr);
5631 __setscheduler_prio(p, newprio);
5632 }
5633 __setscheduler_latency(p, attr);
5634 __setscheduler_uclamp(p, attr);
5635
5636 if (queued) {
5637 /*
5638 * We enqueue to tail when the priority of a task is
5639 * increased (user space view).
5640 */
5641 if (oldprio < p->prio)
5642 queue_flags |= ENQUEUE_HEAD;
5643
5644 enqueue_task(rq, p, queue_flags);
5645 }
5646 if (running)
5647 set_next_task(rq, p);
5648
5649 check_class_changed(rq, p, prev_class, oldprio);
5650
5651 /* Avoid rq from going away on us: */
5652 preempt_disable();
5653 task_rq_unlock(rq, p, &rf);
5654
5655 if (pi) {
5656 cpuset_read_unlock();
5657 rt_mutex_adjust_pi(p);
5658 }
5659
5660 /* Run balance callbacks after we've adjusted the PI chain: */
5661 balance_callback(rq);
5662 preempt_enable();
5663
5664 return 0;
5665
5666 unlock:
5667 task_rq_unlock(rq, p, &rf);
5668 if (pi)
5669 cpuset_read_unlock();
5670 return retval;
5671 }
5672
_sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param,bool check)5673 static int _sched_setscheduler(struct task_struct *p, int policy,
5674 const struct sched_param *param, bool check)
5675 {
5676 struct sched_attr attr = {
5677 .sched_policy = policy,
5678 .sched_priority = param->sched_priority,
5679 .sched_nice = PRIO_TO_NICE(p->static_prio),
5680 };
5681
5682 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5683 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5684 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5685 policy &= ~SCHED_RESET_ON_FORK;
5686 attr.sched_policy = policy;
5687 }
5688
5689 return __sched_setscheduler(p, &attr, check, true);
5690 }
5691 /**
5692 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5693 * @p: the task in question.
5694 * @policy: new policy.
5695 * @param: structure containing the new RT priority.
5696 *
5697 * Use sched_set_fifo(), read its comment.
5698 *
5699 * Return: 0 on success. An error code otherwise.
5700 *
5701 * NOTE that the task may be already dead.
5702 */
sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param)5703 int sched_setscheduler(struct task_struct *p, int policy,
5704 const struct sched_param *param)
5705 {
5706 return _sched_setscheduler(p, policy, param, true);
5707 }
5708
sched_setattr(struct task_struct * p,const struct sched_attr * attr)5709 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5710 {
5711 return __sched_setscheduler(p, attr, true, true);
5712 }
5713
sched_setattr_nocheck(struct task_struct * p,const struct sched_attr * attr)5714 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5715 {
5716 return __sched_setscheduler(p, attr, false, true);
5717 }
5718
5719 /**
5720 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5721 * @p: the task in question.
5722 * @policy: new policy.
5723 * @param: structure containing the new RT priority.
5724 *
5725 * Just like sched_setscheduler, only don't bother checking if the
5726 * current context has permission. For example, this is needed in
5727 * stop_machine(): we create temporary high priority worker threads,
5728 * but our caller might not have that capability.
5729 *
5730 * Return: 0 on success. An error code otherwise.
5731 */
sched_setscheduler_nocheck(struct task_struct * p,int policy,const struct sched_param * param)5732 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5733 const struct sched_param *param)
5734 {
5735 return _sched_setscheduler(p, policy, param, false);
5736 }
5737
5738 /*
5739 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
5740 * incapable of resource management, which is the one thing an OS really should
5741 * be doing.
5742 *
5743 * This is of course the reason it is limited to privileged users only.
5744 *
5745 * Worse still; it is fundamentally impossible to compose static priority
5746 * workloads. You cannot take two correctly working static prio workloads
5747 * and smash them together and still expect them to work.
5748 *
5749 * For this reason 'all' FIFO tasks the kernel creates are basically at:
5750 *
5751 * MAX_RT_PRIO / 2
5752 *
5753 * The administrator _MUST_ configure the system, the kernel simply doesn't
5754 * know enough information to make a sensible choice.
5755 */
sched_set_fifo(struct task_struct * p)5756 void sched_set_fifo(struct task_struct *p)
5757 {
5758 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
5759 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
5760 }
5761 EXPORT_SYMBOL_GPL(sched_set_fifo);
5762
5763 /*
5764 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
5765 */
sched_set_fifo_low(struct task_struct * p)5766 void sched_set_fifo_low(struct task_struct *p)
5767 {
5768 struct sched_param sp = { .sched_priority = 1 };
5769 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
5770 }
5771 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
5772
sched_set_normal(struct task_struct * p,int nice)5773 void sched_set_normal(struct task_struct *p, int nice)
5774 {
5775 struct sched_attr attr = {
5776 .sched_policy = SCHED_NORMAL,
5777 .sched_nice = nice,
5778 };
5779 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
5780 }
5781 EXPORT_SYMBOL_GPL(sched_set_normal);
5782
5783 static int
do_sched_setscheduler(pid_t pid,int policy,struct sched_param __user * param)5784 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5785 {
5786 struct sched_param lparam;
5787 struct task_struct *p;
5788 int retval;
5789
5790 if (!param || pid < 0)
5791 return -EINVAL;
5792 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5793 return -EFAULT;
5794
5795 rcu_read_lock();
5796 retval = -ESRCH;
5797 p = find_process_by_pid(pid);
5798 if (likely(p))
5799 get_task_struct(p);
5800 rcu_read_unlock();
5801
5802 if (likely(p)) {
5803 retval = sched_setscheduler(p, policy, &lparam);
5804 put_task_struct(p);
5805 }
5806
5807 return retval;
5808 }
5809
5810 /*
5811 * Mimics kernel/events/core.c perf_copy_attr().
5812 */
sched_copy_attr(struct sched_attr __user * uattr,struct sched_attr * attr)5813 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5814 {
5815 u32 size;
5816 int ret;
5817
5818 /* Zero the full structure, so that a short copy will be nice: */
5819 memset(attr, 0, sizeof(*attr));
5820
5821 ret = get_user(size, &uattr->size);
5822 if (ret)
5823 return ret;
5824
5825 /* ABI compatibility quirk: */
5826 if (!size)
5827 size = SCHED_ATTR_SIZE_VER0;
5828 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5829 goto err_size;
5830
5831 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5832 if (ret) {
5833 if (ret == -E2BIG)
5834 goto err_size;
5835 return ret;
5836 }
5837
5838 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5839 size < SCHED_ATTR_SIZE_VER1)
5840 return -EINVAL;
5841
5842 #ifdef CONFIG_SCHED_LATENCY_NICE
5843 if ((attr->sched_flags & SCHED_FLAG_LATENCY_NICE) &&
5844 size < SCHED_ATTR_SIZE_VER2)
5845 return -EINVAL;
5846 #endif
5847 /*
5848 * XXX: Do we want to be lenient like existing syscalls; or do we want
5849 * to be strict and return an error on out-of-bounds values?
5850 */
5851 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5852
5853 return 0;
5854
5855 err_size:
5856 put_user(sizeof(*attr), &uattr->size);
5857 return -E2BIG;
5858 }
5859
5860 /**
5861 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5862 * @pid: the pid in question.
5863 * @policy: new policy.
5864 * @param: structure containing the new RT priority.
5865 *
5866 * Return: 0 on success. An error code otherwise.
5867 */
SYSCALL_DEFINE3(sched_setscheduler,pid_t,pid,int,policy,struct sched_param __user *,param)5868 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5869 {
5870 if (policy < 0)
5871 return -EINVAL;
5872
5873 return do_sched_setscheduler(pid, policy, param);
5874 }
5875
5876 /**
5877 * sys_sched_setparam - set/change the RT priority of a thread
5878 * @pid: the pid in question.
5879 * @param: structure containing the new RT priority.
5880 *
5881 * Return: 0 on success. An error code otherwise.
5882 */
SYSCALL_DEFINE2(sched_setparam,pid_t,pid,struct sched_param __user *,param)5883 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5884 {
5885 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5886 }
5887
5888 /**
5889 * sys_sched_setattr - same as above, but with extended sched_attr
5890 * @pid: the pid in question.
5891 * @uattr: structure containing the extended parameters.
5892 * @flags: for future extension.
5893 */
SYSCALL_DEFINE3(sched_setattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,flags)5894 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5895 unsigned int, flags)
5896 {
5897 struct sched_attr attr;
5898 struct task_struct *p;
5899 int retval;
5900
5901 if (!uattr || pid < 0 || flags)
5902 return -EINVAL;
5903
5904 retval = sched_copy_attr(uattr, &attr);
5905 if (retval)
5906 return retval;
5907
5908 if ((int)attr.sched_policy < 0)
5909 return -EINVAL;
5910 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5911 attr.sched_policy = SETPARAM_POLICY;
5912
5913 rcu_read_lock();
5914 retval = -ESRCH;
5915 p = find_process_by_pid(pid);
5916 if (likely(p))
5917 get_task_struct(p);
5918 rcu_read_unlock();
5919
5920 if (likely(p)) {
5921 retval = sched_setattr(p, &attr);
5922 put_task_struct(p);
5923 }
5924
5925 return retval;
5926 }
5927
5928 /**
5929 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5930 * @pid: the pid in question.
5931 *
5932 * Return: On success, the policy of the thread. Otherwise, a negative error
5933 * code.
5934 */
SYSCALL_DEFINE1(sched_getscheduler,pid_t,pid)5935 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5936 {
5937 struct task_struct *p;
5938 int retval;
5939
5940 if (pid < 0)
5941 return -EINVAL;
5942
5943 retval = -ESRCH;
5944 rcu_read_lock();
5945 p = find_process_by_pid(pid);
5946 if (p) {
5947 retval = security_task_getscheduler(p);
5948 if (!retval)
5949 retval = p->policy
5950 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5951 }
5952 rcu_read_unlock();
5953 return retval;
5954 }
5955
5956 /**
5957 * sys_sched_getparam - get the RT priority of a thread
5958 * @pid: the pid in question.
5959 * @param: structure containing the RT priority.
5960 *
5961 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5962 * code.
5963 */
SYSCALL_DEFINE2(sched_getparam,pid_t,pid,struct sched_param __user *,param)5964 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5965 {
5966 struct sched_param lp = { .sched_priority = 0 };
5967 struct task_struct *p;
5968 int retval;
5969
5970 if (!param || pid < 0)
5971 return -EINVAL;
5972
5973 rcu_read_lock();
5974 p = find_process_by_pid(pid);
5975 retval = -ESRCH;
5976 if (!p)
5977 goto out_unlock;
5978
5979 retval = security_task_getscheduler(p);
5980 if (retval)
5981 goto out_unlock;
5982
5983 if (task_has_rt_policy(p))
5984 lp.sched_priority = p->rt_priority;
5985 rcu_read_unlock();
5986
5987 /*
5988 * This one might sleep, we cannot do it with a spinlock held ...
5989 */
5990 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5991
5992 return retval;
5993
5994 out_unlock:
5995 rcu_read_unlock();
5996 return retval;
5997 }
5998
5999 /*
6000 * Copy the kernel size attribute structure (which might be larger
6001 * than what user-space knows about) to user-space.
6002 *
6003 * Note that all cases are valid: user-space buffer can be larger or
6004 * smaller than the kernel-space buffer. The usual case is that both
6005 * have the same size.
6006 */
6007 static int
sched_attr_copy_to_user(struct sched_attr __user * uattr,struct sched_attr * kattr,unsigned int usize)6008 sched_attr_copy_to_user(struct sched_attr __user *uattr,
6009 struct sched_attr *kattr,
6010 unsigned int usize)
6011 {
6012 unsigned int ksize = sizeof(*kattr);
6013
6014 if (!access_ok(uattr, usize))
6015 return -EFAULT;
6016
6017 /*
6018 * sched_getattr() ABI forwards and backwards compatibility:
6019 *
6020 * If usize == ksize then we just copy everything to user-space and all is good.
6021 *
6022 * If usize < ksize then we only copy as much as user-space has space for,
6023 * this keeps ABI compatibility as well. We skip the rest.
6024 *
6025 * If usize > ksize then user-space is using a newer version of the ABI,
6026 * which part the kernel doesn't know about. Just ignore it - tooling can
6027 * detect the kernel's knowledge of attributes from the attr->size value
6028 * which is set to ksize in this case.
6029 */
6030 kattr->size = min(usize, ksize);
6031
6032 if (copy_to_user(uattr, kattr, kattr->size))
6033 return -EFAULT;
6034
6035 return 0;
6036 }
6037
6038 /**
6039 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
6040 * @pid: the pid in question.
6041 * @uattr: structure containing the extended parameters.
6042 * @usize: sizeof(attr) for fwd/bwd comp.
6043 * @flags: for future extension.
6044 */
SYSCALL_DEFINE4(sched_getattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,usize,unsigned int,flags)6045 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
6046 unsigned int, usize, unsigned int, flags)
6047 {
6048 struct sched_attr kattr = { };
6049 struct task_struct *p;
6050 int retval;
6051
6052 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
6053 usize < SCHED_ATTR_SIZE_VER0 || flags)
6054 return -EINVAL;
6055
6056 rcu_read_lock();
6057 p = find_process_by_pid(pid);
6058 retval = -ESRCH;
6059 if (!p)
6060 goto out_unlock;
6061
6062 retval = security_task_getscheduler(p);
6063 if (retval)
6064 goto out_unlock;
6065
6066 kattr.sched_policy = p->policy;
6067 if (p->sched_reset_on_fork)
6068 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
6069 if (task_has_dl_policy(p))
6070 __getparam_dl(p, &kattr);
6071 else if (task_has_rt_policy(p))
6072 kattr.sched_priority = p->rt_priority;
6073 else
6074 kattr.sched_nice = task_nice(p);
6075
6076 #ifdef CONFIG_SCHED_LATENCY_NICE
6077 kattr.sched_latency_nice = LATENCY_TO_NICE(p->latency_prio);
6078 #endif
6079
6080 #ifdef CONFIG_UCLAMP_TASK
6081 /*
6082 * This could race with another potential updater, but this is fine
6083 * because it'll correctly read the old or the new value. We don't need
6084 * to guarantee who wins the race as long as it doesn't return garbage.
6085 */
6086 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
6087 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
6088 #endif
6089
6090 rcu_read_unlock();
6091
6092 return sched_attr_copy_to_user(uattr, &kattr, usize);
6093
6094 out_unlock:
6095 rcu_read_unlock();
6096 return retval;
6097 }
6098
sched_setaffinity(pid_t pid,const struct cpumask * in_mask)6099 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6100 {
6101 cpumask_var_t cpus_allowed, new_mask;
6102 struct task_struct *p;
6103 int retval;
6104 #ifdef CONFIG_CPU_ISOLATION_OPT
6105 int dest_cpu;
6106 cpumask_t allowed_mask;
6107 #endif
6108
6109 rcu_read_lock();
6110
6111 p = find_process_by_pid(pid);
6112 if (!p) {
6113 rcu_read_unlock();
6114 return -ESRCH;
6115 }
6116
6117 /* Prevent p going away */
6118 get_task_struct(p);
6119 rcu_read_unlock();
6120
6121 if (p->flags & PF_NO_SETAFFINITY) {
6122 retval = -EINVAL;
6123 goto out_put_task;
6124 }
6125 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6126 retval = -ENOMEM;
6127 goto out_put_task;
6128 }
6129 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6130 retval = -ENOMEM;
6131 goto out_free_cpus_allowed;
6132 }
6133 retval = -EPERM;
6134 if (!check_same_owner(p)) {
6135 rcu_read_lock();
6136 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
6137 rcu_read_unlock();
6138 goto out_free_new_mask;
6139 }
6140 rcu_read_unlock();
6141 }
6142
6143 retval = security_task_setscheduler(p);
6144 if (retval)
6145 goto out_free_new_mask;
6146
6147
6148 cpuset_cpus_allowed(p, cpus_allowed);
6149 cpumask_and(new_mask, in_mask, cpus_allowed);
6150
6151 /*
6152 * Since bandwidth control happens on root_domain basis,
6153 * if admission test is enabled, we only admit -deadline
6154 * tasks allowed to run on all the CPUs in the task's
6155 * root_domain.
6156 */
6157 #ifdef CONFIG_SMP
6158 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
6159 rcu_read_lock();
6160 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
6161 retval = -EBUSY;
6162 rcu_read_unlock();
6163 goto out_free_new_mask;
6164 }
6165 rcu_read_unlock();
6166 }
6167 #endif
6168 again:
6169 #ifdef CONFIG_CPU_ISOLATION_OPT
6170 cpumask_andnot(&allowed_mask, new_mask, cpu_isolated_mask);
6171 dest_cpu = cpumask_any_and(cpu_active_mask, &allowed_mask);
6172 if (dest_cpu < nr_cpu_ids) {
6173 #endif
6174 retval = __set_cpus_allowed_ptr(p, new_mask, true);
6175 if (!retval) {
6176 cpuset_cpus_allowed(p, cpus_allowed);
6177 if (!cpumask_subset(new_mask, cpus_allowed)) {
6178 /*
6179 * We must have raced with a concurrent cpuset
6180 * update. Just reset the cpus_allowed to the
6181 * cpuset's cpus_allowed
6182 */
6183 cpumask_copy(new_mask, cpus_allowed);
6184 goto again;
6185 }
6186 }
6187 #ifdef CONFIG_CPU_ISOLATION_OPT
6188 } else {
6189 retval = -EINVAL;
6190 }
6191 #endif
6192
6193 out_free_new_mask:
6194 free_cpumask_var(new_mask);
6195 out_free_cpus_allowed:
6196 free_cpumask_var(cpus_allowed);
6197 out_put_task:
6198 put_task_struct(p);
6199 return retval;
6200 }
6201
get_user_cpu_mask(unsigned long __user * user_mask_ptr,unsigned len,struct cpumask * new_mask)6202 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6203 struct cpumask *new_mask)
6204 {
6205 if (len < cpumask_size())
6206 cpumask_clear(new_mask);
6207 else if (len > cpumask_size())
6208 len = cpumask_size();
6209
6210 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6211 }
6212
6213 /**
6214 * sys_sched_setaffinity - set the CPU affinity of a process
6215 * @pid: pid of the process
6216 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6217 * @user_mask_ptr: user-space pointer to the new CPU mask
6218 *
6219 * Return: 0 on success. An error code otherwise.
6220 */
SYSCALL_DEFINE3(sched_setaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)6221 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6222 unsigned long __user *, user_mask_ptr)
6223 {
6224 cpumask_var_t new_mask;
6225 int retval;
6226
6227 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6228 return -ENOMEM;
6229
6230 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6231 if (retval == 0)
6232 retval = sched_setaffinity(pid, new_mask);
6233 free_cpumask_var(new_mask);
6234 return retval;
6235 }
6236
sched_getaffinity(pid_t pid,struct cpumask * mask)6237 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6238 {
6239 struct task_struct *p;
6240 unsigned long flags;
6241 int retval;
6242
6243 rcu_read_lock();
6244
6245 retval = -ESRCH;
6246 p = find_process_by_pid(pid);
6247 if (!p)
6248 goto out_unlock;
6249
6250 retval = security_task_getscheduler(p);
6251 if (retval)
6252 goto out_unlock;
6253
6254 raw_spin_lock_irqsave(&p->pi_lock, flags);
6255 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
6256
6257 #ifdef CONFIG_CPU_ISOLATION_OPT
6258 /* The userspace tasks are forbidden to run on
6259 * isolated CPUs. So exclude isolated CPUs from
6260 * the getaffinity.
6261 */
6262 if (!(p->flags & PF_KTHREAD))
6263 cpumask_andnot(mask, mask, cpu_isolated_mask);
6264 #endif
6265
6266 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6267
6268 out_unlock:
6269 rcu_read_unlock();
6270
6271 return retval;
6272 }
6273
6274 /**
6275 * sys_sched_getaffinity - get the CPU affinity of a process
6276 * @pid: pid of the process
6277 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6278 * @user_mask_ptr: user-space pointer to hold the current CPU mask
6279 *
6280 * Return: size of CPU mask copied to user_mask_ptr on success. An
6281 * error code otherwise.
6282 */
SYSCALL_DEFINE3(sched_getaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)6283 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6284 unsigned long __user *, user_mask_ptr)
6285 {
6286 int ret;
6287 cpumask_var_t mask;
6288
6289 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
6290 return -EINVAL;
6291 if (len & (sizeof(unsigned long)-1))
6292 return -EINVAL;
6293
6294 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6295 return -ENOMEM;
6296
6297 ret = sched_getaffinity(pid, mask);
6298 if (ret == 0) {
6299 unsigned int retlen = min(len, cpumask_size());
6300
6301 if (copy_to_user(user_mask_ptr, mask, retlen))
6302 ret = -EFAULT;
6303 else
6304 ret = retlen;
6305 }
6306 free_cpumask_var(mask);
6307
6308 return ret;
6309 }
6310
6311 /**
6312 * sys_sched_yield - yield the current processor to other threads.
6313 *
6314 * This function yields the current CPU to other tasks. If there are no
6315 * other threads running on this CPU then this function will return.
6316 *
6317 * Return: 0.
6318 */
do_sched_yield(void)6319 static void do_sched_yield(void)
6320 {
6321 struct rq_flags rf;
6322 struct rq *rq;
6323
6324 rq = this_rq_lock_irq(&rf);
6325
6326 schedstat_inc(rq->yld_count);
6327 current->sched_class->yield_task(rq);
6328
6329 preempt_disable();
6330 rq_unlock_irq(rq, &rf);
6331 sched_preempt_enable_no_resched();
6332
6333 schedule();
6334 }
6335
SYSCALL_DEFINE0(sched_yield)6336 SYSCALL_DEFINE0(sched_yield)
6337 {
6338 do_sched_yield();
6339 return 0;
6340 }
6341
6342 #ifndef CONFIG_PREEMPTION
_cond_resched(void)6343 int __sched _cond_resched(void)
6344 {
6345 if (should_resched(0)) {
6346 preempt_schedule_common();
6347 return 1;
6348 }
6349 rcu_all_qs();
6350 return 0;
6351 }
6352 EXPORT_SYMBOL(_cond_resched);
6353 #endif
6354
6355 /*
6356 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6357 * call schedule, and on return reacquire the lock.
6358 *
6359 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
6360 * operations here to prevent schedule() from being called twice (once via
6361 * spin_unlock(), once by hand).
6362 */
__cond_resched_lock(spinlock_t * lock)6363 int __cond_resched_lock(spinlock_t *lock)
6364 {
6365 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6366 int ret = 0;
6367
6368 lockdep_assert_held(lock);
6369
6370 if (spin_needbreak(lock) || resched) {
6371 spin_unlock(lock);
6372 if (resched)
6373 preempt_schedule_common();
6374 else
6375 cpu_relax();
6376 ret = 1;
6377 spin_lock(lock);
6378 }
6379 return ret;
6380 }
6381 EXPORT_SYMBOL(__cond_resched_lock);
6382
6383 /**
6384 * yield - yield the current processor to other threads.
6385 *
6386 * Do not ever use this function, there's a 99% chance you're doing it wrong.
6387 *
6388 * The scheduler is at all times free to pick the calling task as the most
6389 * eligible task to run, if removing the yield() call from your code breaks
6390 * it, its already broken.
6391 *
6392 * Typical broken usage is:
6393 *
6394 * while (!event)
6395 * yield();
6396 *
6397 * where one assumes that yield() will let 'the other' process run that will
6398 * make event true. If the current task is a SCHED_FIFO task that will never
6399 * happen. Never use yield() as a progress guarantee!!
6400 *
6401 * If you want to use yield() to wait for something, use wait_event().
6402 * If you want to use yield() to be 'nice' for others, use cond_resched().
6403 * If you still want to use yield(), do not!
6404 */
yield(void)6405 void __sched yield(void)
6406 {
6407 set_current_state(TASK_RUNNING);
6408 do_sched_yield();
6409 }
6410 EXPORT_SYMBOL(yield);
6411
6412 /**
6413 * yield_to - yield the current processor to another thread in
6414 * your thread group, or accelerate that thread toward the
6415 * processor it's on.
6416 * @p: target task
6417 * @preempt: whether task preemption is allowed or not
6418 *
6419 * It's the caller's job to ensure that the target task struct
6420 * can't go away on us before we can do any checks.
6421 *
6422 * Return:
6423 * true (>0) if we indeed boosted the target task.
6424 * false (0) if we failed to boost the target.
6425 * -ESRCH if there's no task to yield to.
6426 */
yield_to(struct task_struct * p,bool preempt)6427 int __sched yield_to(struct task_struct *p, bool preempt)
6428 {
6429 struct task_struct *curr = current;
6430 struct rq *rq, *p_rq;
6431 unsigned long flags;
6432 int yielded = 0;
6433
6434 local_irq_save(flags);
6435 rq = this_rq();
6436
6437 again:
6438 p_rq = task_rq(p);
6439 /*
6440 * If we're the only runnable task on the rq and target rq also
6441 * has only one task, there's absolutely no point in yielding.
6442 */
6443 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
6444 yielded = -ESRCH;
6445 goto out_irq;
6446 }
6447
6448 double_rq_lock(rq, p_rq);
6449 if (task_rq(p) != p_rq) {
6450 double_rq_unlock(rq, p_rq);
6451 goto again;
6452 }
6453
6454 if (!curr->sched_class->yield_to_task)
6455 goto out_unlock;
6456
6457 if (curr->sched_class != p->sched_class)
6458 goto out_unlock;
6459
6460 if (task_running(p_rq, p) || p->state)
6461 goto out_unlock;
6462
6463 yielded = curr->sched_class->yield_to_task(rq, p);
6464 if (yielded) {
6465 schedstat_inc(rq->yld_count);
6466 /*
6467 * Make p's CPU reschedule; pick_next_entity takes care of
6468 * fairness.
6469 */
6470 if (preempt && rq != p_rq)
6471 resched_curr(p_rq);
6472 }
6473
6474 out_unlock:
6475 double_rq_unlock(rq, p_rq);
6476 out_irq:
6477 local_irq_restore(flags);
6478
6479 if (yielded > 0)
6480 schedule();
6481
6482 return yielded;
6483 }
6484 EXPORT_SYMBOL_GPL(yield_to);
6485
io_schedule_prepare(void)6486 int io_schedule_prepare(void)
6487 {
6488 int old_iowait = current->in_iowait;
6489
6490 current->in_iowait = 1;
6491 blk_schedule_flush_plug(current);
6492
6493 return old_iowait;
6494 }
6495
io_schedule_finish(int token)6496 void io_schedule_finish(int token)
6497 {
6498 current->in_iowait = token;
6499 }
6500
6501 /*
6502 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6503 * that process accounting knows that this is a task in IO wait state.
6504 */
io_schedule_timeout(long timeout)6505 long __sched io_schedule_timeout(long timeout)
6506 {
6507 int token;
6508 long ret;
6509
6510 token = io_schedule_prepare();
6511 ret = schedule_timeout(timeout);
6512 io_schedule_finish(token);
6513
6514 return ret;
6515 }
6516 EXPORT_SYMBOL(io_schedule_timeout);
6517
io_schedule(void)6518 void __sched io_schedule(void)
6519 {
6520 int token;
6521
6522 token = io_schedule_prepare();
6523 schedule();
6524 io_schedule_finish(token);
6525 }
6526 EXPORT_SYMBOL(io_schedule);
6527
6528 /**
6529 * sys_sched_get_priority_max - return maximum RT priority.
6530 * @policy: scheduling class.
6531 *
6532 * Return: On success, this syscall returns the maximum
6533 * rt_priority that can be used by a given scheduling class.
6534 * On failure, a negative error code is returned.
6535 */
SYSCALL_DEFINE1(sched_get_priority_max,int,policy)6536 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6537 {
6538 int ret = -EINVAL;
6539
6540 switch (policy) {
6541 case SCHED_FIFO:
6542 case SCHED_RR:
6543 ret = MAX_USER_RT_PRIO-1;
6544 break;
6545 case SCHED_DEADLINE:
6546 case SCHED_NORMAL:
6547 case SCHED_BATCH:
6548 case SCHED_IDLE:
6549 ret = 0;
6550 break;
6551 }
6552 return ret;
6553 }
6554
6555 /**
6556 * sys_sched_get_priority_min - return minimum RT priority.
6557 * @policy: scheduling class.
6558 *
6559 * Return: On success, this syscall returns the minimum
6560 * rt_priority that can be used by a given scheduling class.
6561 * On failure, a negative error code is returned.
6562 */
SYSCALL_DEFINE1(sched_get_priority_min,int,policy)6563 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6564 {
6565 int ret = -EINVAL;
6566
6567 switch (policy) {
6568 case SCHED_FIFO:
6569 case SCHED_RR:
6570 ret = 1;
6571 break;
6572 case SCHED_DEADLINE:
6573 case SCHED_NORMAL:
6574 case SCHED_BATCH:
6575 case SCHED_IDLE:
6576 ret = 0;
6577 }
6578 return ret;
6579 }
6580
sched_rr_get_interval(pid_t pid,struct timespec64 * t)6581 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
6582 {
6583 struct task_struct *p;
6584 unsigned int time_slice;
6585 struct rq_flags rf;
6586 struct rq *rq;
6587 int retval;
6588
6589 if (pid < 0)
6590 return -EINVAL;
6591
6592 retval = -ESRCH;
6593 rcu_read_lock();
6594 p = find_process_by_pid(pid);
6595 if (!p)
6596 goto out_unlock;
6597
6598 retval = security_task_getscheduler(p);
6599 if (retval)
6600 goto out_unlock;
6601
6602 rq = task_rq_lock(p, &rf);
6603 time_slice = 0;
6604 if (p->sched_class->get_rr_interval)
6605 time_slice = p->sched_class->get_rr_interval(rq, p);
6606 task_rq_unlock(rq, p, &rf);
6607
6608 rcu_read_unlock();
6609 jiffies_to_timespec64(time_slice, t);
6610 return 0;
6611
6612 out_unlock:
6613 rcu_read_unlock();
6614 return retval;
6615 }
6616
6617 /**
6618 * sys_sched_rr_get_interval - return the default timeslice of a process.
6619 * @pid: pid of the process.
6620 * @interval: userspace pointer to the timeslice value.
6621 *
6622 * this syscall writes the default timeslice value of a given process
6623 * into the user-space timespec buffer. A value of '0' means infinity.
6624 *
6625 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
6626 * an error code.
6627 */
SYSCALL_DEFINE2(sched_rr_get_interval,pid_t,pid,struct __kernel_timespec __user *,interval)6628 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6629 struct __kernel_timespec __user *, interval)
6630 {
6631 struct timespec64 t;
6632 int retval = sched_rr_get_interval(pid, &t);
6633
6634 if (retval == 0)
6635 retval = put_timespec64(&t, interval);
6636
6637 return retval;
6638 }
6639
6640 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE2(sched_rr_get_interval_time32,pid_t,pid,struct old_timespec32 __user *,interval)6641 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
6642 struct old_timespec32 __user *, interval)
6643 {
6644 struct timespec64 t;
6645 int retval = sched_rr_get_interval(pid, &t);
6646
6647 if (retval == 0)
6648 retval = put_old_timespec32(&t, interval);
6649 return retval;
6650 }
6651 #endif
6652
sched_show_task(struct task_struct * p)6653 void sched_show_task(struct task_struct *p)
6654 {
6655 unsigned long free = 0;
6656 int ppid;
6657
6658 if (!try_get_task_stack(p))
6659 return;
6660
6661 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
6662
6663 if (p->state == TASK_RUNNING)
6664 pr_cont(" running task ");
6665 #ifdef CONFIG_DEBUG_STACK_USAGE
6666 free = stack_not_used(p);
6667 #endif
6668 ppid = 0;
6669 rcu_read_lock();
6670 if (pid_alive(p))
6671 ppid = task_pid_nr(rcu_dereference(p->real_parent));
6672 rcu_read_unlock();
6673 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
6674 free, task_pid_nr(p), ppid,
6675 (unsigned long)task_thread_info(p)->flags);
6676
6677 print_worker_info(KERN_INFO, p);
6678 show_stack(p, NULL, KERN_INFO);
6679 put_task_stack(p);
6680 }
6681 EXPORT_SYMBOL_GPL(sched_show_task);
6682
6683 static inline bool
state_filter_match(unsigned long state_filter,struct task_struct * p)6684 state_filter_match(unsigned long state_filter, struct task_struct *p)
6685 {
6686 /* no filter, everything matches */
6687 if (!state_filter)
6688 return true;
6689
6690 /* filter, but doesn't match */
6691 if (!(p->state & state_filter))
6692 return false;
6693
6694 /*
6695 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
6696 * TASK_KILLABLE).
6697 */
6698 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
6699 return false;
6700
6701 return true;
6702 }
6703
6704
show_state_filter(unsigned long state_filter)6705 void show_state_filter(unsigned long state_filter)
6706 {
6707 struct task_struct *g, *p;
6708
6709 rcu_read_lock();
6710 for_each_process_thread(g, p) {
6711 /*
6712 * reset the NMI-timeout, listing all files on a slow
6713 * console might take a lot of time:
6714 * Also, reset softlockup watchdogs on all CPUs, because
6715 * another CPU might be blocked waiting for us to process
6716 * an IPI.
6717 */
6718 touch_nmi_watchdog();
6719 touch_all_softlockup_watchdogs();
6720 if (state_filter_match(state_filter, p))
6721 sched_show_task(p);
6722 }
6723
6724 #ifdef CONFIG_SCHED_DEBUG
6725 if (!state_filter)
6726 sysrq_sched_debug_show();
6727 #endif
6728 rcu_read_unlock();
6729 /*
6730 * Only show locks if all tasks are dumped:
6731 */
6732 if (!state_filter)
6733 debug_show_all_locks();
6734 }
6735
6736 /**
6737 * init_idle - set up an idle thread for a given CPU
6738 * @idle: task in question
6739 * @cpu: CPU the idle task belongs to
6740 *
6741 * NOTE: this function does not set the idle thread's NEED_RESCHED
6742 * flag, to make booting more robust.
6743 */
init_idle(struct task_struct * idle,int cpu)6744 void __init init_idle(struct task_struct *idle, int cpu)
6745 {
6746 struct rq *rq = cpu_rq(cpu);
6747 unsigned long flags;
6748
6749 __sched_fork(0, idle);
6750
6751 raw_spin_lock_irqsave(&idle->pi_lock, flags);
6752 raw_spin_lock(&rq->lock);
6753
6754 idle->state = TASK_RUNNING;
6755 idle->se.exec_start = sched_clock();
6756 idle->flags |= PF_IDLE;
6757
6758 #ifdef CONFIG_SMP
6759 /*
6760 * Its possible that init_idle() gets called multiple times on a task,
6761 * in that case do_set_cpus_allowed() will not do the right thing.
6762 *
6763 * And since this is boot we can forgo the serialization.
6764 */
6765 set_cpus_allowed_common(idle, cpumask_of(cpu));
6766 #endif
6767 /*
6768 * We're having a chicken and egg problem, even though we are
6769 * holding rq->lock, the CPU isn't yet set to this CPU so the
6770 * lockdep check in task_group() will fail.
6771 *
6772 * Similar case to sched_fork(). / Alternatively we could
6773 * use task_rq_lock() here and obtain the other rq->lock.
6774 *
6775 * Silence PROVE_RCU
6776 */
6777 rcu_read_lock();
6778 __set_task_cpu(idle, cpu);
6779 rcu_read_unlock();
6780
6781 rq->idle = idle;
6782 rcu_assign_pointer(rq->curr, idle);
6783 idle->on_rq = TASK_ON_RQ_QUEUED;
6784 #ifdef CONFIG_SMP
6785 idle->on_cpu = 1;
6786 #endif
6787 raw_spin_unlock(&rq->lock);
6788 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6789
6790 /* Set the preempt count _outside_ the spinlocks! */
6791 init_idle_preempt_count(idle, cpu);
6792
6793 /*
6794 * The idle tasks have their own, simple scheduling class:
6795 */
6796 idle->sched_class = &idle_sched_class;
6797 ftrace_graph_init_idle_task(idle, cpu);
6798 vtime_init_idle(idle, cpu);
6799 #ifdef CONFIG_SMP
6800 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6801 #endif
6802 }
6803
6804 #ifdef CONFIG_SMP
6805
cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)6806 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6807 const struct cpumask *trial)
6808 {
6809 int ret = 1;
6810
6811 if (!cpumask_weight(cur))
6812 return ret;
6813
6814 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6815
6816 return ret;
6817 }
6818
task_can_attach(struct task_struct * p,const struct cpumask * cs_cpus_allowed)6819 int task_can_attach(struct task_struct *p,
6820 const struct cpumask *cs_cpus_allowed)
6821 {
6822 int ret = 0;
6823
6824 /*
6825 * Kthreads which disallow setaffinity shouldn't be moved
6826 * to a new cpuset; we don't want to change their CPU
6827 * affinity and isolating such threads by their set of
6828 * allowed nodes is unnecessary. Thus, cpusets are not
6829 * applicable for such threads. This prevents checking for
6830 * success of set_cpus_allowed_ptr() on all attached tasks
6831 * before cpus_mask may be changed.
6832 */
6833 if (p->flags & PF_NO_SETAFFINITY) {
6834 ret = -EINVAL;
6835 goto out;
6836 }
6837
6838 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6839 cs_cpus_allowed))
6840 ret = dl_task_can_attach(p, cs_cpus_allowed);
6841
6842 out:
6843 return ret;
6844 }
6845
6846 bool sched_smp_initialized __read_mostly;
6847
6848 #ifdef CONFIG_NUMA_BALANCING
6849 /* Migrate current task p to target_cpu */
migrate_task_to(struct task_struct * p,int target_cpu)6850 int migrate_task_to(struct task_struct *p, int target_cpu)
6851 {
6852 struct migration_arg arg = { p, target_cpu };
6853 int curr_cpu = task_cpu(p);
6854
6855 if (curr_cpu == target_cpu)
6856 return 0;
6857
6858 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6859 return -EINVAL;
6860
6861 /* TODO: This is not properly updating schedstats */
6862
6863 trace_sched_move_numa(p, curr_cpu, target_cpu);
6864 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6865 }
6866
6867 /*
6868 * Requeue a task on a given node and accurately track the number of NUMA
6869 * tasks on the runqueues
6870 */
sched_setnuma(struct task_struct * p,int nid)6871 void sched_setnuma(struct task_struct *p, int nid)
6872 {
6873 bool queued, running;
6874 struct rq_flags rf;
6875 struct rq *rq;
6876
6877 rq = task_rq_lock(p, &rf);
6878 queued = task_on_rq_queued(p);
6879 running = task_current(rq, p);
6880
6881 if (queued)
6882 dequeue_task(rq, p, DEQUEUE_SAVE);
6883 if (running)
6884 put_prev_task(rq, p);
6885
6886 p->numa_preferred_nid = nid;
6887
6888 if (queued)
6889 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6890 if (running)
6891 set_next_task(rq, p);
6892 task_rq_unlock(rq, p, &rf);
6893 }
6894 #endif /* CONFIG_NUMA_BALANCING */
6895
6896 #ifdef CONFIG_HOTPLUG_CPU
6897 /*
6898 * Ensure that the idle task is using init_mm right before its CPU goes
6899 * offline.
6900 */
idle_task_exit(void)6901 void idle_task_exit(void)
6902 {
6903 struct mm_struct *mm = current->active_mm;
6904
6905 BUG_ON(cpu_online(smp_processor_id()));
6906 BUG_ON(current != this_rq()->idle);
6907
6908 if (mm != &init_mm) {
6909 switch_mm(mm, &init_mm, current);
6910 finish_arch_post_lock_switch();
6911 }
6912
6913 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
6914 }
6915
6916 /*
6917 * Since this CPU is going 'away' for a while, fold any nr_active delta
6918 * we might have. Assumes we're called after migrate_tasks() so that the
6919 * nr_active count is stable. We need to take the teardown thread which
6920 * is calling this into account, so we hand in adjust = 1 to the load
6921 * calculation.
6922 *
6923 * Also see the comment "Global load-average calculations".
6924 */
calc_load_migrate(struct rq * rq)6925 static void calc_load_migrate(struct rq *rq)
6926 {
6927 long delta = calc_load_fold_active(rq, 1);
6928 if (delta)
6929 atomic_long_add(delta, &calc_load_tasks);
6930 }
6931
__pick_migrate_task(struct rq * rq)6932 static struct task_struct *__pick_migrate_task(struct rq *rq)
6933 {
6934 const struct sched_class *class;
6935 struct task_struct *next;
6936
6937 for_each_class(class) {
6938 next = class->pick_next_task(rq);
6939 if (next) {
6940 next->sched_class->put_prev_task(rq, next);
6941 return next;
6942 }
6943 }
6944
6945 /* The idle class should always have a runnable task */
6946 BUG();
6947 }
6948
6949 #ifdef CONFIG_CPU_ISOLATION_OPT
6950 /*
6951 * Remove a task from the runqueue and pretend that it's migrating. This
6952 * should prevent migrations for the detached task and disallow further
6953 * changes to tsk_cpus_allowed.
6954 */
6955 static void
detach_one_task_core(struct task_struct * p,struct rq * rq,struct list_head * tasks)6956 detach_one_task_core(struct task_struct *p, struct rq *rq,
6957 struct list_head *tasks)
6958 {
6959 lockdep_assert_held(&rq->lock);
6960
6961 p->on_rq = TASK_ON_RQ_MIGRATING;
6962 deactivate_task(rq, p, 0);
6963 list_add(&p->se.group_node, tasks);
6964 }
6965
attach_tasks_core(struct list_head * tasks,struct rq * rq)6966 static void attach_tasks_core(struct list_head *tasks, struct rq *rq)
6967 {
6968 struct task_struct *p;
6969
6970 lockdep_assert_held(&rq->lock);
6971
6972 while (!list_empty(tasks)) {
6973 p = list_first_entry(tasks, struct task_struct, se.group_node);
6974 list_del_init(&p->se.group_node);
6975
6976 BUG_ON(task_rq(p) != rq);
6977 activate_task(rq, p, 0);
6978 p->on_rq = TASK_ON_RQ_QUEUED;
6979 }
6980 }
6981
6982 #else
6983
6984 static void
detach_one_task_core(struct task_struct * p,struct rq * rq,struct list_head * tasks)6985 detach_one_task_core(struct task_struct *p, struct rq *rq,
6986 struct list_head *tasks)
6987 {
6988 }
6989
attach_tasks_core(struct list_head * tasks,struct rq * rq)6990 static void attach_tasks_core(struct list_head *tasks, struct rq *rq)
6991 {
6992 }
6993
6994 #endif /* CONFIG_CPU_ISOLATION_OPT */
6995
6996 /*
6997 * Migrate all tasks (not pinned if pinned argument say so) from the rq,
6998 * sleeping tasks will be migrated by try_to_wake_up()->select_task_rq().
6999 *
7000 * Called with rq->lock held even though we'er in stop_machine() and
7001 * there's no concurrency possible, we hold the required locks anyway
7002 * because of lock validation efforts.
7003 */
migrate_tasks(struct rq * dead_rq,struct rq_flags * rf,bool migrate_pinned_tasks)7004 void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf,
7005 bool migrate_pinned_tasks)
7006 {
7007 struct rq *rq = dead_rq;
7008 struct task_struct *next, *stop = rq->stop;
7009 struct rq_flags orf = *rf;
7010 int dest_cpu;
7011 unsigned int num_pinned_kthreads = 1; /* this thread */
7012 LIST_HEAD(tasks);
7013 cpumask_t avail_cpus;
7014
7015 #ifdef CONFIG_CPU_ISOLATION_OPT
7016 cpumask_andnot(&avail_cpus, cpu_online_mask, cpu_isolated_mask);
7017 #else
7018 cpumask_copy(&avail_cpus, cpu_online_mask);
7019 #endif
7020
7021 /*
7022 * Fudge the rq selection such that the below task selection loop
7023 * doesn't get stuck on the currently eligible stop task.
7024 *
7025 * We're currently inside stop_machine() and the rq is either stuck
7026 * in the stop_machine_cpu_stop() loop, or we're executing this code,
7027 * either way we should never end up calling schedule() until we're
7028 * done here.
7029 */
7030 rq->stop = NULL;
7031
7032 /*
7033 * put_prev_task() and pick_next_task() sched
7034 * class method both need to have an up-to-date
7035 * value of rq->clock[_task]
7036 */
7037 update_rq_clock(rq);
7038
7039 for (;;) {
7040 /*
7041 * There's this thread running, bail when that's the only
7042 * remaining thread.
7043 */
7044 if (rq->nr_running == 1)
7045 break;
7046
7047 next = __pick_migrate_task(rq);
7048
7049 if (!migrate_pinned_tasks && next->flags & PF_KTHREAD &&
7050 !cpumask_intersects(&avail_cpus, &next->cpus_mask)) {
7051 detach_one_task_core(next, rq, &tasks);
7052 num_pinned_kthreads += 1;
7053 continue;
7054 }
7055
7056 /*
7057 * Rules for changing task_struct::cpus_mask are holding
7058 * both pi_lock and rq->lock, such that holding either
7059 * stabilizes the mask.
7060 *
7061 * Drop rq->lock is not quite as disastrous as it usually is
7062 * because !cpu_active at this point, which means load-balance
7063 * will not interfere. Also, stop-machine.
7064 */
7065 rq_unlock(rq, rf);
7066 raw_spin_lock(&next->pi_lock);
7067 rq_relock(rq, rf);
7068 if (!(rq->clock_update_flags & RQCF_UPDATED))
7069 update_rq_clock(rq);
7070
7071 /*
7072 * Since we're inside stop-machine, _nothing_ should have
7073 * changed the task, WARN if weird stuff happened, because in
7074 * that case the above rq->lock drop is a fail too.
7075 * However, during cpu isolation the load balancer might have
7076 * interferred since we don't stop all CPUs. Ignore warning for
7077 * this case.
7078 */
7079 if (task_rq(next) != rq || !task_on_rq_queued(next)) {
7080 WARN_ON(migrate_pinned_tasks);
7081 raw_spin_unlock(&next->pi_lock);
7082 continue;
7083 }
7084
7085 /* Find suitable destination for @next, with force if needed. */
7086 #ifdef CONFIG_CPU_ISOLATION_OPT
7087 dest_cpu = select_fallback_rq(dead_rq->cpu, next, false);
7088 #else
7089 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
7090 #endif
7091 rq = __migrate_task(rq, rf, next, dest_cpu);
7092 if (rq != dead_rq) {
7093 rq_unlock(rq, rf);
7094 rq = dead_rq;
7095 *rf = orf;
7096 rq_relock(rq, rf);
7097 if (!(rq->clock_update_flags & RQCF_UPDATED))
7098 update_rq_clock(rq);
7099 }
7100 raw_spin_unlock(&next->pi_lock);
7101 }
7102
7103 rq->stop = stop;
7104
7105 if (num_pinned_kthreads > 1)
7106 attach_tasks_core(&tasks, rq);
7107 }
7108
7109 #ifdef CONFIG_SCHED_EAS
clear_eas_migration_request(int cpu)7110 static void clear_eas_migration_request(int cpu)
7111 {
7112 struct rq *rq = cpu_rq(cpu);
7113 unsigned long flags;
7114
7115 clear_reserved(cpu);
7116 if (rq->push_task) {
7117 struct task_struct *push_task = NULL;
7118
7119 raw_spin_lock_irqsave(&rq->lock, flags);
7120 if (rq->push_task) {
7121 clear_reserved(rq->push_cpu);
7122 push_task = rq->push_task;
7123 rq->push_task = NULL;
7124 }
7125 rq->active_balance = 0;
7126 raw_spin_unlock_irqrestore(&rq->lock, flags);
7127 if (push_task)
7128 put_task_struct(push_task);
7129 }
7130 }
7131 #else
clear_eas_migration_request(int cpu)7132 static inline void clear_eas_migration_request(int cpu) {}
7133 #endif
7134
7135 #ifdef CONFIG_CPU_ISOLATION_OPT
do_isolation_work_cpu_stop(void * data)7136 int do_isolation_work_cpu_stop(void *data)
7137 {
7138 unsigned int cpu = smp_processor_id();
7139 struct rq *rq = cpu_rq(cpu);
7140 struct rq_flags rf;
7141
7142 watchdog_disable(cpu);
7143
7144 local_irq_disable();
7145
7146 irq_migrate_all_off_this_cpu();
7147
7148 flush_smp_call_function_from_idle();
7149
7150 /* Update our root-domain */
7151 rq_lock(rq, &rf);
7152
7153 /*
7154 * Temporarily mark the rq as offline. This will allow us to
7155 * move tasks off the CPU.
7156 */
7157 if (rq->rd) {
7158 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7159 set_rq_offline(rq);
7160 }
7161
7162 migrate_tasks(rq, &rf, false);
7163
7164 if (rq->rd)
7165 set_rq_online(rq);
7166 rq_unlock(rq, &rf);
7167
7168 clear_eas_migration_request(cpu);
7169 local_irq_enable();
7170 return 0;
7171 }
7172
do_unisolation_work_cpu_stop(void * data)7173 int do_unisolation_work_cpu_stop(void *data)
7174 {
7175 watchdog_enable(smp_processor_id());
7176 return 0;
7177 }
7178
sched_update_group_capacities(int cpu)7179 static void sched_update_group_capacities(int cpu)
7180 {
7181 struct sched_domain *sd;
7182
7183 mutex_lock(&sched_domains_mutex);
7184 rcu_read_lock();
7185
7186 for_each_domain(cpu, sd) {
7187 int balance_cpu = group_balance_cpu(sd->groups);
7188
7189 init_sched_groups_capacity(cpu, sd);
7190 /*
7191 * Need to ensure this is also called with balancing
7192 * cpu.
7193 */
7194 if (cpu != balance_cpu)
7195 init_sched_groups_capacity(balance_cpu, sd);
7196 }
7197
7198 rcu_read_unlock();
7199 mutex_unlock(&sched_domains_mutex);
7200 }
7201
7202 static unsigned int cpu_isolation_vote[NR_CPUS];
7203
sched_isolate_count(const cpumask_t * mask,bool include_offline)7204 int sched_isolate_count(const cpumask_t *mask, bool include_offline)
7205 {
7206 cpumask_t count_mask = CPU_MASK_NONE;
7207
7208 if (include_offline) {
7209 cpumask_complement(&count_mask, cpu_online_mask);
7210 cpumask_or(&count_mask, &count_mask, cpu_isolated_mask);
7211 cpumask_and(&count_mask, &count_mask, mask);
7212 } else {
7213 cpumask_and(&count_mask, mask, cpu_isolated_mask);
7214 }
7215
7216 return cpumask_weight(&count_mask);
7217 }
7218
7219 /*
7220 * 1) CPU is isolated and cpu is offlined:
7221 * Unisolate the core.
7222 * 2) CPU is not isolated and CPU is offlined:
7223 * No action taken.
7224 * 3) CPU is offline and request to isolate
7225 * Request ignored.
7226 * 4) CPU is offline and isolated:
7227 * Not a possible state.
7228 * 5) CPU is online and request to isolate
7229 * Normal case: Isolate the CPU
7230 * 6) CPU is not isolated and comes back online
7231 * Nothing to do
7232 *
7233 * Note: The client calling sched_isolate_cpu() is repsonsible for ONLY
7234 * calling sched_unisolate_cpu() on a CPU that the client previously isolated.
7235 * Client is also responsible for unisolating when a core goes offline
7236 * (after CPU is marked offline).
7237 */
sched_isolate_cpu(int cpu)7238 int sched_isolate_cpu(int cpu)
7239 {
7240 struct rq *rq;
7241 cpumask_t avail_cpus;
7242 int ret_code = 0;
7243 u64 start_time = 0;
7244
7245 if (trace_sched_isolate_enabled())
7246 start_time = sched_clock();
7247
7248 cpu_maps_update_begin();
7249
7250 cpumask_andnot(&avail_cpus, cpu_online_mask, cpu_isolated_mask);
7251
7252 if (cpu < 0 || cpu >= nr_cpu_ids || !cpu_possible(cpu) ||
7253 !cpu_online(cpu) || cpu >= NR_CPUS) {
7254 ret_code = -EINVAL;
7255 goto out;
7256 }
7257
7258 rq = cpu_rq(cpu);
7259
7260 if (++cpu_isolation_vote[cpu] > 1)
7261 goto out;
7262
7263 /* We cannot isolate ALL cpus in the system */
7264 if (cpumask_weight(&avail_cpus) == 1) {
7265 --cpu_isolation_vote[cpu];
7266 ret_code = -EINVAL;
7267 goto out;
7268 }
7269
7270 /*
7271 * There is a race between watchdog being enabled by hotplug and
7272 * core isolation disabling the watchdog. When a CPU is hotplugged in
7273 * and the hotplug lock has been released the watchdog thread might
7274 * not have run yet to enable the watchdog.
7275 * We have to wait for the watchdog to be enabled before proceeding.
7276 */
7277 if (!watchdog_configured(cpu)) {
7278 msleep(20);
7279 if (!watchdog_configured(cpu)) {
7280 --cpu_isolation_vote[cpu];
7281 ret_code = -EBUSY;
7282 goto out;
7283 }
7284 }
7285
7286 set_cpu_isolated(cpu, true);
7287 cpumask_clear_cpu(cpu, &avail_cpus);
7288
7289 /* Migrate timers */
7290 smp_call_function_any(&avail_cpus, hrtimer_quiesce_cpu, &cpu, 1);
7291 smp_call_function_any(&avail_cpus, timer_quiesce_cpu, &cpu, 1);
7292
7293 watchdog_disable(cpu);
7294 irq_lock_sparse();
7295 stop_cpus(cpumask_of(cpu), do_isolation_work_cpu_stop, 0);
7296 irq_unlock_sparse();
7297
7298 calc_load_migrate(rq);
7299 update_max_interval();
7300 sched_update_group_capacities(cpu);
7301
7302 out:
7303 cpu_maps_update_done();
7304 trace_sched_isolate(cpu, cpumask_bits(cpu_isolated_mask)[0],
7305 start_time, 1);
7306 return ret_code;
7307 }
7308
7309 /*
7310 * Note: The client calling sched_isolate_cpu() is repsonsible for ONLY
7311 * calling sched_unisolate_cpu() on a CPU that the client previously isolated.
7312 * Client is also responsible for unisolating when a core goes offline
7313 * (after CPU is marked offline).
7314 */
sched_unisolate_cpu_unlocked(int cpu)7315 int sched_unisolate_cpu_unlocked(int cpu)
7316 {
7317 int ret_code = 0;
7318 u64 start_time = 0;
7319
7320 if (cpu < 0 || cpu >= nr_cpu_ids || !cpu_possible(cpu)
7321 || cpu >= NR_CPUS) {
7322 ret_code = -EINVAL;
7323 goto out;
7324 }
7325
7326 if (trace_sched_isolate_enabled())
7327 start_time = sched_clock();
7328
7329 if (!cpu_isolation_vote[cpu]) {
7330 ret_code = -EINVAL;
7331 goto out;
7332 }
7333
7334 if (--cpu_isolation_vote[cpu])
7335 goto out;
7336
7337 set_cpu_isolated(cpu, false);
7338 update_max_interval();
7339 sched_update_group_capacities(cpu);
7340
7341 if (cpu_online(cpu)) {
7342 stop_cpus(cpumask_of(cpu), do_unisolation_work_cpu_stop, 0);
7343
7344 /* Kick CPU to immediately do load balancing */
7345 if (!atomic_fetch_or(NOHZ_KICK_MASK, nohz_flags(cpu)))
7346 smp_send_reschedule(cpu);
7347 }
7348
7349 out:
7350 trace_sched_isolate(cpu, cpumask_bits(cpu_isolated_mask)[0],
7351 start_time, 0);
7352 return ret_code;
7353 }
7354
sched_unisolate_cpu(int cpu)7355 int sched_unisolate_cpu(int cpu)
7356 {
7357 int ret_code;
7358
7359 cpu_maps_update_begin();
7360 ret_code = sched_unisolate_cpu_unlocked(cpu);
7361 cpu_maps_update_done();
7362 return ret_code;
7363 }
7364
7365 #endif /* CONFIG_CPU_ISOLATION_OPT */
7366
7367 #endif /* CONFIG_HOTPLUG_CPU */
7368
set_rq_online(struct rq * rq)7369 void set_rq_online(struct rq *rq)
7370 {
7371 if (!rq->online) {
7372 const struct sched_class *class;
7373
7374 cpumask_set_cpu(rq->cpu, rq->rd->online);
7375 rq->online = 1;
7376
7377 for_each_class(class) {
7378 if (class->rq_online)
7379 class->rq_online(rq);
7380 }
7381 }
7382 }
7383
set_rq_offline(struct rq * rq)7384 void set_rq_offline(struct rq *rq)
7385 {
7386 if (rq->online) {
7387 const struct sched_class *class;
7388
7389 for_each_class(class) {
7390 if (class->rq_offline)
7391 class->rq_offline(rq);
7392 }
7393
7394 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7395 rq->online = 0;
7396 }
7397 }
7398
7399 /*
7400 * used to mark begin/end of suspend/resume:
7401 */
7402 static int num_cpus_frozen;
7403
7404 /*
7405 * Update cpusets according to cpu_active mask. If cpusets are
7406 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7407 * around partition_sched_domains().
7408 *
7409 * If we come here as part of a suspend/resume, don't touch cpusets because we
7410 * want to restore it back to its original state upon resume anyway.
7411 */
cpuset_cpu_active(void)7412 static void cpuset_cpu_active(void)
7413 {
7414 if (cpuhp_tasks_frozen) {
7415 /*
7416 * num_cpus_frozen tracks how many CPUs are involved in suspend
7417 * resume sequence. As long as this is not the last online
7418 * operation in the resume sequence, just build a single sched
7419 * domain, ignoring cpusets.
7420 */
7421 partition_sched_domains(1, NULL, NULL);
7422 if (--num_cpus_frozen)
7423 return;
7424 /*
7425 * This is the last CPU online operation. So fall through and
7426 * restore the original sched domains by considering the
7427 * cpuset configurations.
7428 */
7429 cpuset_force_rebuild();
7430 }
7431 cpuset_update_active_cpus();
7432 }
7433
cpuset_cpu_inactive(unsigned int cpu)7434 static int cpuset_cpu_inactive(unsigned int cpu)
7435 {
7436 if (!cpuhp_tasks_frozen) {
7437 if (dl_cpu_busy(cpu))
7438 return -EBUSY;
7439 cpuset_update_active_cpus();
7440 } else {
7441 num_cpus_frozen++;
7442 partition_sched_domains(1, NULL, NULL);
7443 }
7444 return 0;
7445 }
7446
sched_cpu_activate(unsigned int cpu)7447 int sched_cpu_activate(unsigned int cpu)
7448 {
7449 struct rq *rq = cpu_rq(cpu);
7450 struct rq_flags rf;
7451
7452 #ifdef CONFIG_SCHED_SMT
7453 /*
7454 * When going up, increment the number of cores with SMT present.
7455 */
7456 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7457 static_branch_inc_cpuslocked(&sched_smt_present);
7458 #endif
7459 set_cpu_active(cpu, true);
7460
7461 if (sched_smp_initialized) {
7462 sched_domains_numa_masks_set(cpu);
7463 cpuset_cpu_active();
7464 }
7465
7466 /*
7467 * Put the rq online, if not already. This happens:
7468 *
7469 * 1) In the early boot process, because we build the real domains
7470 * after all CPUs have been brought up.
7471 *
7472 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7473 * domains.
7474 */
7475 rq_lock_irqsave(rq, &rf);
7476 if (rq->rd) {
7477 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7478 set_rq_online(rq);
7479 }
7480 rq_unlock_irqrestore(rq, &rf);
7481
7482 return 0;
7483 }
7484
sched_cpu_deactivate(unsigned int cpu)7485 int sched_cpu_deactivate(unsigned int cpu)
7486 {
7487 int ret;
7488
7489 set_cpu_active(cpu, false);
7490 /*
7491 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7492 * users of this state to go away such that all new such users will
7493 * observe it.
7494 *
7495 * Do sync before park smpboot threads to take care the rcu boost case.
7496 */
7497 synchronize_rcu();
7498
7499 #ifdef CONFIG_SCHED_SMT
7500 /*
7501 * When going down, decrement the number of cores with SMT present.
7502 */
7503 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7504 static_branch_dec_cpuslocked(&sched_smt_present);
7505 #endif
7506
7507 if (!sched_smp_initialized)
7508 return 0;
7509
7510 ret = cpuset_cpu_inactive(cpu);
7511 if (ret) {
7512 set_cpu_active(cpu, true);
7513 return ret;
7514 }
7515 sched_domains_numa_masks_clear(cpu);
7516 return 0;
7517 }
7518
sched_rq_cpu_starting(unsigned int cpu)7519 static void sched_rq_cpu_starting(unsigned int cpu)
7520 {
7521 struct rq *rq = cpu_rq(cpu);
7522 unsigned long flags;
7523
7524 raw_spin_lock_irqsave(&rq->lock, flags);
7525 set_window_start(rq);
7526 raw_spin_unlock_irqrestore(&rq->lock, flags);
7527
7528 rq->calc_load_update = calc_load_update;
7529 update_max_interval();
7530 }
7531
sched_cpu_starting(unsigned int cpu)7532 int sched_cpu_starting(unsigned int cpu)
7533 {
7534 sched_rq_cpu_starting(cpu);
7535 sched_tick_start(cpu);
7536 clear_eas_migration_request(cpu);
7537 return 0;
7538 }
7539
7540 #ifdef CONFIG_HOTPLUG_CPU
sched_cpu_dying(unsigned int cpu)7541 int sched_cpu_dying(unsigned int cpu)
7542 {
7543 struct rq *rq = cpu_rq(cpu);
7544 struct rq_flags rf;
7545
7546 /* Handle pending wakeups and then migrate everything off */
7547 sched_tick_stop(cpu);
7548
7549 rq_lock_irqsave(rq, &rf);
7550
7551 if (rq->rd) {
7552 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7553 set_rq_offline(rq);
7554 }
7555 migrate_tasks(rq, &rf, true);
7556 BUG_ON(rq->nr_running != 1);
7557 rq_unlock_irqrestore(rq, &rf);
7558
7559 clear_eas_migration_request(cpu);
7560
7561 calc_load_migrate(rq);
7562 update_max_interval();
7563 nohz_balance_exit_idle(rq);
7564 hrtick_clear(rq);
7565 return 0;
7566 }
7567 #endif
7568
sched_init_smp(void)7569 void __init sched_init_smp(void)
7570 {
7571 sched_init_numa();
7572
7573 /*
7574 * There's no userspace yet to cause hotplug operations; hence all the
7575 * CPU masks are stable and all blatant races in the below code cannot
7576 * happen.
7577 */
7578 mutex_lock(&sched_domains_mutex);
7579 sched_init_domains(cpu_active_mask);
7580 mutex_unlock(&sched_domains_mutex);
7581
7582 update_cluster_topology();
7583
7584 /* Move init over to a non-isolated CPU */
7585 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
7586 BUG();
7587 sched_init_granularity();
7588
7589 init_sched_rt_class();
7590 init_sched_dl_class();
7591
7592 sched_smp_initialized = true;
7593 }
7594
migration_init(void)7595 static int __init migration_init(void)
7596 {
7597 sched_cpu_starting(smp_processor_id());
7598 return 0;
7599 }
7600 early_initcall(migration_init);
7601
7602 #else
sched_init_smp(void)7603 void __init sched_init_smp(void)
7604 {
7605 sched_init_granularity();
7606 }
7607 #endif /* CONFIG_SMP */
7608
in_sched_functions(unsigned long addr)7609 int in_sched_functions(unsigned long addr)
7610 {
7611 return in_lock_functions(addr) ||
7612 (addr >= (unsigned long)__sched_text_start
7613 && addr < (unsigned long)__sched_text_end);
7614 }
7615
7616 #ifdef CONFIG_CGROUP_SCHED
7617 /*
7618 * Default task group.
7619 * Every task in system belongs to this group at bootup.
7620 */
7621 struct task_group root_task_group;
7622 LIST_HEAD(task_groups);
7623
7624 /* Cacheline aligned slab cache for task_group */
7625 static struct kmem_cache *task_group_cache __read_mostly;
7626 #endif
7627
7628 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7629 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
7630
sched_init(void)7631 void __init sched_init(void)
7632 {
7633 unsigned long ptr = 0;
7634 int i;
7635
7636 /* Make sure the linker didn't screw up */
7637 BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
7638 &fair_sched_class + 1 != &rt_sched_class ||
7639 &rt_sched_class + 1 != &dl_sched_class);
7640 #ifdef CONFIG_SMP
7641 BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
7642 #endif
7643
7644 wait_bit_init();
7645
7646 init_clusters();
7647
7648 #ifdef CONFIG_FAIR_GROUP_SCHED
7649 ptr += 2 * nr_cpu_ids * sizeof(void **);
7650 #endif
7651 #ifdef CONFIG_RT_GROUP_SCHED
7652 ptr += 2 * nr_cpu_ids * sizeof(void **);
7653 #endif
7654 if (ptr) {
7655 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
7656
7657 #ifdef CONFIG_FAIR_GROUP_SCHED
7658 root_task_group.se = (struct sched_entity **)ptr;
7659 ptr += nr_cpu_ids * sizeof(void **);
7660
7661 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7662 ptr += nr_cpu_ids * sizeof(void **);
7663
7664 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7665 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7666 #endif /* CONFIG_FAIR_GROUP_SCHED */
7667 #ifdef CONFIG_RT_GROUP_SCHED
7668 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7669 ptr += nr_cpu_ids * sizeof(void **);
7670
7671 root_task_group.rt_rq = (struct rt_rq **)ptr;
7672 ptr += nr_cpu_ids * sizeof(void **);
7673
7674 #endif /* CONFIG_RT_GROUP_SCHED */
7675 }
7676 #ifdef CONFIG_CPUMASK_OFFSTACK
7677 for_each_possible_cpu(i) {
7678 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7679 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7680 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7681 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7682 }
7683 #endif /* CONFIG_CPUMASK_OFFSTACK */
7684
7685 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
7686 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
7687
7688 #ifdef CONFIG_SMP
7689 init_defrootdomain();
7690 #endif
7691
7692 #ifdef CONFIG_RT_GROUP_SCHED
7693 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7694 global_rt_period(), global_rt_runtime());
7695 #endif /* CONFIG_RT_GROUP_SCHED */
7696
7697 #ifdef CONFIG_CGROUP_SCHED
7698 task_group_cache = KMEM_CACHE(task_group, 0);
7699
7700 list_add(&root_task_group.list, &task_groups);
7701 INIT_LIST_HEAD(&root_task_group.children);
7702 INIT_LIST_HEAD(&root_task_group.siblings);
7703 autogroup_init(&init_task);
7704 #endif /* CONFIG_CGROUP_SCHED */
7705
7706 for_each_possible_cpu(i) {
7707 struct rq *rq;
7708
7709 rq = cpu_rq(i);
7710 raw_spin_lock_init(&rq->lock);
7711 rq->nr_running = 0;
7712 rq->calc_load_active = 0;
7713 rq->calc_load_update = jiffies + LOAD_FREQ;
7714 init_cfs_rq(&rq->cfs);
7715 init_rt_rq(&rq->rt);
7716 init_dl_rq(&rq->dl);
7717 #ifdef CONFIG_FAIR_GROUP_SCHED
7718 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7719 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
7720 /*
7721 * How much CPU bandwidth does root_task_group get?
7722 *
7723 * In case of task-groups formed thr' the cgroup filesystem, it
7724 * gets 100% of the CPU resources in the system. This overall
7725 * system CPU resource is divided among the tasks of
7726 * root_task_group and its child task-groups in a fair manner,
7727 * based on each entity's (task or task-group's) weight
7728 * (se->load.weight).
7729 *
7730 * In other words, if root_task_group has 10 tasks of weight
7731 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7732 * then A0's share of the CPU resource is:
7733 *
7734 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7735 *
7736 * We achieve this by letting root_task_group's tasks sit
7737 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7738 */
7739 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7740 #endif /* CONFIG_FAIR_GROUP_SCHED */
7741
7742 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7743 #ifdef CONFIG_RT_GROUP_SCHED
7744 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7745 #endif
7746 #ifdef CONFIG_SMP
7747 rq->sd = NULL;
7748 rq->rd = NULL;
7749 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7750 rq->balance_callback = NULL;
7751 rq->active_balance = 0;
7752 rq->next_balance = jiffies;
7753 rq->push_cpu = 0;
7754 rq->cpu = i;
7755 rq->online = 0;
7756 rq->idle_stamp = 0;
7757 rq->avg_idle = 2*sysctl_sched_migration_cost;
7758 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7759 walt_sched_init_rq(rq);
7760
7761 INIT_LIST_HEAD(&rq->cfs_tasks);
7762
7763 rq_attach_root(rq, &def_root_domain);
7764 #ifdef CONFIG_NO_HZ_COMMON
7765 rq->last_blocked_load_update_tick = jiffies;
7766 atomic_set(&rq->nohz_flags, 0);
7767
7768 rq_csd_init(rq, &rq->nohz_csd, nohz_csd_func);
7769 #endif
7770 #endif /* CONFIG_SMP */
7771 hrtick_rq_init(rq);
7772 atomic_set(&rq->nr_iowait, 0);
7773 }
7774
7775 BUG_ON(alloc_related_thread_groups());
7776 set_load_weight(&init_task, false);
7777
7778 /*
7779 * The boot idle thread does lazy MMU switching as well:
7780 */
7781 mmgrab(&init_mm);
7782 enter_lazy_tlb(&init_mm, current);
7783
7784 /*
7785 * Make us the idle thread. Technically, schedule() should not be
7786 * called from this thread, however somewhere below it might be,
7787 * but because we are the idle thread, we just pick up running again
7788 * when this runqueue becomes "idle".
7789 */
7790 init_idle(current, smp_processor_id());
7791 init_new_task_load(current);
7792
7793 calc_load_update = jiffies + LOAD_FREQ;
7794
7795 #ifdef CONFIG_SMP
7796 idle_thread_set_boot_cpu();
7797 #endif
7798 init_sched_fair_class();
7799
7800 init_schedstats();
7801
7802 psi_init();
7803
7804 init_uclamp();
7805
7806 scheduler_running = 1;
7807 }
7808
7809 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
preempt_count_equals(int preempt_offset)7810 static inline int preempt_count_equals(int preempt_offset)
7811 {
7812 int nested = preempt_count() + rcu_preempt_depth();
7813
7814 return (nested == preempt_offset);
7815 }
7816
__might_sleep(const char * file,int line,int preempt_offset)7817 void __might_sleep(const char *file, int line, int preempt_offset)
7818 {
7819 /*
7820 * Blocking primitives will set (and therefore destroy) current->state,
7821 * since we will exit with TASK_RUNNING make sure we enter with it,
7822 * otherwise we will destroy state.
7823 */
7824 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7825 "do not call blocking ops when !TASK_RUNNING; "
7826 "state=%lx set at [<%p>] %pS\n",
7827 current->state,
7828 (void *)current->task_state_change,
7829 (void *)current->task_state_change);
7830
7831 ___might_sleep(file, line, preempt_offset);
7832 }
7833 EXPORT_SYMBOL(__might_sleep);
7834
___might_sleep(const char * file,int line,int preempt_offset)7835 void ___might_sleep(const char *file, int line, int preempt_offset)
7836 {
7837 /* Ratelimiting timestamp: */
7838 static unsigned long prev_jiffy;
7839
7840 unsigned long preempt_disable_ip;
7841
7842 /* WARN_ON_ONCE() by default, no rate limit required: */
7843 rcu_sleep_check();
7844
7845 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7846 !is_idle_task(current) && !current->non_block_count) ||
7847 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
7848 oops_in_progress)
7849 return;
7850
7851 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7852 return;
7853 prev_jiffy = jiffies;
7854
7855 /* Save this before calling printk(), since that will clobber it: */
7856 preempt_disable_ip = get_preempt_disable_ip(current);
7857
7858 printk(KERN_ERR
7859 "BUG: sleeping function called from invalid context at %s:%d\n",
7860 file, line);
7861 printk(KERN_ERR
7862 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
7863 in_atomic(), irqs_disabled(), current->non_block_count,
7864 current->pid, current->comm);
7865
7866 if (task_stack_end_corrupted(current))
7867 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7868
7869 debug_show_held_locks(current);
7870 if (irqs_disabled())
7871 print_irqtrace_events(current);
7872 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7873 && !preempt_count_equals(preempt_offset)) {
7874 pr_err("Preemption disabled at:");
7875 print_ip_sym(KERN_ERR, preempt_disable_ip);
7876 }
7877 dump_stack();
7878 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7879 }
7880 EXPORT_SYMBOL(___might_sleep);
7881
__cant_sleep(const char * file,int line,int preempt_offset)7882 void __cant_sleep(const char *file, int line, int preempt_offset)
7883 {
7884 static unsigned long prev_jiffy;
7885
7886 if (irqs_disabled())
7887 return;
7888
7889 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
7890 return;
7891
7892 if (preempt_count() > preempt_offset)
7893 return;
7894
7895 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7896 return;
7897 prev_jiffy = jiffies;
7898
7899 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
7900 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7901 in_atomic(), irqs_disabled(),
7902 current->pid, current->comm);
7903
7904 debug_show_held_locks(current);
7905 dump_stack();
7906 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7907 }
7908 EXPORT_SYMBOL_GPL(__cant_sleep);
7909 #endif
7910
7911 #ifdef CONFIG_MAGIC_SYSRQ
normalize_rt_tasks(void)7912 void normalize_rt_tasks(void)
7913 {
7914 struct task_struct *g, *p;
7915 struct sched_attr attr = {
7916 .sched_policy = SCHED_NORMAL,
7917 };
7918
7919 read_lock(&tasklist_lock);
7920 for_each_process_thread(g, p) {
7921 /*
7922 * Only normalize user tasks:
7923 */
7924 if (p->flags & PF_KTHREAD)
7925 continue;
7926
7927 p->se.exec_start = 0;
7928 schedstat_set(p->se.statistics.wait_start, 0);
7929 schedstat_set(p->se.statistics.sleep_start, 0);
7930 schedstat_set(p->se.statistics.block_start, 0);
7931
7932 if (!dl_task(p) && !rt_task(p)) {
7933 /*
7934 * Renice negative nice level userspace
7935 * tasks back to 0:
7936 */
7937 if (task_nice(p) < 0)
7938 set_user_nice(p, 0);
7939 continue;
7940 }
7941
7942 __sched_setscheduler(p, &attr, false, false);
7943 }
7944 read_unlock(&tasklist_lock);
7945 }
7946
7947 #endif /* CONFIG_MAGIC_SYSRQ */
7948
7949 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7950 /*
7951 * These functions are only useful for the IA64 MCA handling, or kdb.
7952 *
7953 * They can only be called when the whole system has been
7954 * stopped - every CPU needs to be quiescent, and no scheduling
7955 * activity can take place. Using them for anything else would
7956 * be a serious bug, and as a result, they aren't even visible
7957 * under any other configuration.
7958 */
7959
7960 /**
7961 * curr_task - return the current task for a given CPU.
7962 * @cpu: the processor in question.
7963 *
7964 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7965 *
7966 * Return: The current task for @cpu.
7967 */
curr_task(int cpu)7968 struct task_struct *curr_task(int cpu)
7969 {
7970 return cpu_curr(cpu);
7971 }
7972
7973 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7974
7975 #ifdef CONFIG_IA64
7976 /**
7977 * ia64_set_curr_task - set the current task for a given CPU.
7978 * @cpu: the processor in question.
7979 * @p: the task pointer to set.
7980 *
7981 * Description: This function must only be used when non-maskable interrupts
7982 * are serviced on a separate stack. It allows the architecture to switch the
7983 * notion of the current task on a CPU in a non-blocking manner. This function
7984 * must be called with all CPU's synchronized, and interrupts disabled, the
7985 * and caller must save the original value of the current task (see
7986 * curr_task() above) and restore that value before reenabling interrupts and
7987 * re-starting the system.
7988 *
7989 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7990 */
ia64_set_curr_task(int cpu,struct task_struct * p)7991 void ia64_set_curr_task(int cpu, struct task_struct *p)
7992 {
7993 cpu_curr(cpu) = p;
7994 }
7995
7996 #endif
7997
7998 #ifdef CONFIG_CGROUP_SCHED
7999 /* task_group_lock serializes the addition/removal of task groups */
8000 static DEFINE_SPINLOCK(task_group_lock);
8001
alloc_uclamp_sched_group(struct task_group * tg,struct task_group * parent)8002 static inline void alloc_uclamp_sched_group(struct task_group *tg,
8003 struct task_group *parent)
8004 {
8005 #ifdef CONFIG_UCLAMP_TASK_GROUP
8006 enum uclamp_id clamp_id;
8007
8008 for_each_clamp_id(clamp_id) {
8009 uclamp_se_set(&tg->uclamp_req[clamp_id],
8010 uclamp_none(clamp_id), false);
8011 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
8012 }
8013 #endif
8014 }
8015
sched_free_group(struct task_group * tg)8016 static void sched_free_group(struct task_group *tg)
8017 {
8018 free_fair_sched_group(tg);
8019 free_rt_sched_group(tg);
8020 autogroup_free(tg);
8021 kmem_cache_free(task_group_cache, tg);
8022 }
8023
8024 /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)8025 struct task_group *sched_create_group(struct task_group *parent)
8026 {
8027 struct task_group *tg;
8028
8029 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
8030 if (!tg)
8031 return ERR_PTR(-ENOMEM);
8032
8033 if (!alloc_fair_sched_group(tg, parent))
8034 goto err;
8035
8036 if (!alloc_rt_sched_group(tg, parent))
8037 goto err;
8038
8039 alloc_uclamp_sched_group(tg, parent);
8040
8041 return tg;
8042
8043 err:
8044 sched_free_group(tg);
8045 return ERR_PTR(-ENOMEM);
8046 }
8047
sched_online_group(struct task_group * tg,struct task_group * parent)8048 void sched_online_group(struct task_group *tg, struct task_group *parent)
8049 {
8050 unsigned long flags;
8051
8052 spin_lock_irqsave(&task_group_lock, flags);
8053 list_add_rcu(&tg->list, &task_groups);
8054
8055 /* Root should already exist: */
8056 WARN_ON(!parent);
8057
8058 tg->parent = parent;
8059 INIT_LIST_HEAD(&tg->children);
8060 list_add_rcu(&tg->siblings, &parent->children);
8061 spin_unlock_irqrestore(&task_group_lock, flags);
8062
8063 online_fair_sched_group(tg);
8064 }
8065
8066 /* rcu callback to free various structures associated with a task group */
sched_free_group_rcu(struct rcu_head * rhp)8067 static void sched_free_group_rcu(struct rcu_head *rhp)
8068 {
8069 /* Now it should be safe to free those cfs_rqs: */
8070 sched_free_group(container_of(rhp, struct task_group, rcu));
8071 }
8072
sched_destroy_group(struct task_group * tg)8073 void sched_destroy_group(struct task_group *tg)
8074 {
8075 /* Wait for possible concurrent references to cfs_rqs complete: */
8076 call_rcu(&tg->rcu, sched_free_group_rcu);
8077 }
8078
sched_offline_group(struct task_group * tg)8079 void sched_offline_group(struct task_group *tg)
8080 {
8081 unsigned long flags;
8082
8083 /* End participation in shares distribution: */
8084 unregister_fair_sched_group(tg);
8085
8086 spin_lock_irqsave(&task_group_lock, flags);
8087 list_del_rcu(&tg->list);
8088 list_del_rcu(&tg->siblings);
8089 spin_unlock_irqrestore(&task_group_lock, flags);
8090 }
8091
sched_change_group(struct task_struct * tsk,int type)8092 static void sched_change_group(struct task_struct *tsk, int type)
8093 {
8094 struct task_group *tg;
8095
8096 /*
8097 * All callers are synchronized by task_rq_lock(); we do not use RCU
8098 * which is pointless here. Thus, we pass "true" to task_css_check()
8099 * to prevent lockdep warnings.
8100 */
8101 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8102 struct task_group, css);
8103 tg = autogroup_task_group(tsk, tg);
8104 tsk->sched_task_group = tg;
8105
8106 #ifdef CONFIG_FAIR_GROUP_SCHED
8107 if (tsk->sched_class->task_change_group)
8108 tsk->sched_class->task_change_group(tsk, type);
8109 else
8110 #endif
8111 set_task_rq(tsk, task_cpu(tsk));
8112 }
8113
8114 /*
8115 * Change task's runqueue when it moves between groups.
8116 *
8117 * The caller of this function should have put the task in its new group by
8118 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
8119 * its new group.
8120 */
sched_move_task(struct task_struct * tsk)8121 void sched_move_task(struct task_struct *tsk)
8122 {
8123 int queued, running, queue_flags =
8124 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
8125 struct rq_flags rf;
8126 struct rq *rq;
8127
8128 rq = task_rq_lock(tsk, &rf);
8129 update_rq_clock(rq);
8130
8131 running = task_current(rq, tsk);
8132 queued = task_on_rq_queued(tsk);
8133
8134 if (queued)
8135 dequeue_task(rq, tsk, queue_flags);
8136 if (running)
8137 put_prev_task(rq, tsk);
8138
8139 sched_change_group(tsk, TASK_MOVE_GROUP);
8140
8141 if (queued)
8142 enqueue_task(rq, tsk, queue_flags);
8143 if (running) {
8144 set_next_task(rq, tsk);
8145 /*
8146 * After changing group, the running task may have joined a
8147 * throttled one but it's still the running task. Trigger a
8148 * resched to make sure that task can still run.
8149 */
8150 resched_curr(rq);
8151 }
8152
8153 task_rq_unlock(rq, tsk, &rf);
8154 }
8155
css_tg(struct cgroup_subsys_state * css)8156 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8157 {
8158 return css ? container_of(css, struct task_group, css) : NULL;
8159 }
8160
8161 static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)8162 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8163 {
8164 struct task_group *parent = css_tg(parent_css);
8165 struct task_group *tg;
8166
8167 if (!parent) {
8168 /* This is early initialization for the top cgroup */
8169 return &root_task_group.css;
8170 }
8171
8172 tg = sched_create_group(parent);
8173 if (IS_ERR(tg))
8174 return ERR_PTR(-ENOMEM);
8175
8176 #ifdef CONFIG_SCHED_RTG_CGROUP
8177 tg->colocate = false;
8178 tg->colocate_update_disabled = false;
8179 #endif
8180
8181 return &tg->css;
8182 }
8183
8184 /* Expose task group only after completing cgroup initialization */
cpu_cgroup_css_online(struct cgroup_subsys_state * css)8185 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8186 {
8187 struct task_group *tg = css_tg(css);
8188 struct task_group *parent = css_tg(css->parent);
8189
8190 if (parent)
8191 sched_online_group(tg, parent);
8192
8193 #ifdef CONFIG_UCLAMP_TASK_GROUP
8194 /* Propagate the effective uclamp value for the new group */
8195 mutex_lock(&uclamp_mutex);
8196 rcu_read_lock();
8197 cpu_util_update_eff(css);
8198 rcu_read_unlock();
8199 mutex_unlock(&uclamp_mutex);
8200 #endif
8201
8202 return 0;
8203 }
8204
cpu_cgroup_css_released(struct cgroup_subsys_state * css)8205 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8206 {
8207 struct task_group *tg = css_tg(css);
8208
8209 sched_offline_group(tg);
8210 }
8211
cpu_cgroup_css_free(struct cgroup_subsys_state * css)8212 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8213 {
8214 struct task_group *tg = css_tg(css);
8215
8216 /*
8217 * Relies on the RCU grace period between css_released() and this.
8218 */
8219 sched_free_group(tg);
8220 }
8221
8222 /*
8223 * This is called before wake_up_new_task(), therefore we really only
8224 * have to set its group bits, all the other stuff does not apply.
8225 */
cpu_cgroup_fork(struct task_struct * task)8226 static void cpu_cgroup_fork(struct task_struct *task)
8227 {
8228 struct rq_flags rf;
8229 struct rq *rq;
8230
8231 rq = task_rq_lock(task, &rf);
8232
8233 update_rq_clock(rq);
8234 sched_change_group(task, TASK_SET_GROUP);
8235
8236 task_rq_unlock(rq, task, &rf);
8237 }
8238
cpu_cgroup_can_attach(struct cgroup_taskset * tset)8239 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8240 {
8241 struct task_struct *task;
8242 struct cgroup_subsys_state *css;
8243 int ret = 0;
8244
8245 cgroup_taskset_for_each(task, css, tset) {
8246 #ifdef CONFIG_RT_GROUP_SCHED
8247 if (!sched_rt_can_attach(css_tg(css), task))
8248 return -EINVAL;
8249 #endif
8250 /*
8251 * Serialize against wake_up_new_task() such that if its
8252 * running, we're sure to observe its full state.
8253 */
8254 raw_spin_lock_irq(&task->pi_lock);
8255 /*
8256 * Avoid calling sched_move_task() before wake_up_new_task()
8257 * has happened. This would lead to problems with PELT, due to
8258 * move wanting to detach+attach while we're not attached yet.
8259 */
8260 if (task->state == TASK_NEW)
8261 ret = -EINVAL;
8262 raw_spin_unlock_irq(&task->pi_lock);
8263
8264 if (ret)
8265 break;
8266 }
8267 return ret;
8268 }
8269
8270 #if defined(CONFIG_UCLAMP_TASK_GROUP) && defined(CONFIG_SCHED_RTG_CGROUP)
schedgp_attach(struct cgroup_taskset * tset)8271 static void schedgp_attach(struct cgroup_taskset *tset)
8272 {
8273 struct task_struct *task;
8274 struct cgroup_subsys_state *css;
8275 bool colocate;
8276 struct task_group *tg;
8277
8278 cgroup_taskset_first(tset, &css);
8279 tg = css_tg(css);
8280
8281 colocate = tg->colocate;
8282
8283 cgroup_taskset_for_each(task, css, tset)
8284 sync_cgroup_colocation(task, colocate);
8285 }
8286 #else
schedgp_attach(struct cgroup_taskset * tset)8287 static void schedgp_attach(struct cgroup_taskset *tset) { }
8288 #endif
cpu_cgroup_attach(struct cgroup_taskset * tset)8289 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8290 {
8291 struct task_struct *task;
8292 struct cgroup_subsys_state *css;
8293
8294 cgroup_taskset_for_each(task, css, tset)
8295 sched_move_task(task);
8296
8297 schedgp_attach(tset);
8298 }
8299
8300 #ifdef CONFIG_UCLAMP_TASK_GROUP
cpu_util_update_eff(struct cgroup_subsys_state * css)8301 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
8302 {
8303 struct cgroup_subsys_state *top_css = css;
8304 struct uclamp_se *uc_parent = NULL;
8305 struct uclamp_se *uc_se = NULL;
8306 unsigned int eff[UCLAMP_CNT];
8307 enum uclamp_id clamp_id;
8308 unsigned int clamps;
8309
8310 lockdep_assert_held(&uclamp_mutex);
8311 SCHED_WARN_ON(!rcu_read_lock_held());
8312
8313 css_for_each_descendant_pre(css, top_css) {
8314 uc_parent = css_tg(css)->parent
8315 ? css_tg(css)->parent->uclamp : NULL;
8316
8317 for_each_clamp_id(clamp_id) {
8318 /* Assume effective clamps matches requested clamps */
8319 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
8320 /* Cap effective clamps with parent's effective clamps */
8321 if (uc_parent &&
8322 eff[clamp_id] > uc_parent[clamp_id].value) {
8323 eff[clamp_id] = uc_parent[clamp_id].value;
8324 }
8325 }
8326 /* Ensure protection is always capped by limit */
8327 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
8328
8329 /* Propagate most restrictive effective clamps */
8330 clamps = 0x0;
8331 uc_se = css_tg(css)->uclamp;
8332 for_each_clamp_id(clamp_id) {
8333 if (eff[clamp_id] == uc_se[clamp_id].value)
8334 continue;
8335 uc_se[clamp_id].value = eff[clamp_id];
8336 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
8337 clamps |= (0x1 << clamp_id);
8338 }
8339 if (!clamps) {
8340 css = css_rightmost_descendant(css);
8341 continue;
8342 }
8343
8344 /* Immediately update descendants RUNNABLE tasks */
8345 uclamp_update_active_tasks(css);
8346 }
8347 }
8348
8349 /*
8350 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
8351 * C expression. Since there is no way to convert a macro argument (N) into a
8352 * character constant, use two levels of macros.
8353 */
8354 #define _POW10(exp) ((unsigned int)1e##exp)
8355 #define POW10(exp) _POW10(exp)
8356
8357 struct uclamp_request {
8358 #define UCLAMP_PERCENT_SHIFT 2
8359 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
8360 s64 percent;
8361 u64 util;
8362 int ret;
8363 };
8364
8365 static inline struct uclamp_request
capacity_from_percent(char * buf)8366 capacity_from_percent(char *buf)
8367 {
8368 struct uclamp_request req = {
8369 .percent = UCLAMP_PERCENT_SCALE,
8370 .util = SCHED_CAPACITY_SCALE,
8371 .ret = 0,
8372 };
8373
8374 buf = strim(buf);
8375 if (strcmp(buf, "max")) {
8376 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
8377 &req.percent);
8378 if (req.ret)
8379 return req;
8380 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
8381 req.ret = -ERANGE;
8382 return req;
8383 }
8384
8385 req.util = req.percent << SCHED_CAPACITY_SHIFT;
8386 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
8387 }
8388
8389 return req;
8390 }
8391
cpu_uclamp_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,enum uclamp_id clamp_id)8392 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
8393 size_t nbytes, loff_t off,
8394 enum uclamp_id clamp_id)
8395 {
8396 struct uclamp_request req;
8397 struct task_group *tg;
8398
8399 req = capacity_from_percent(buf);
8400 if (req.ret)
8401 return req.ret;
8402
8403 static_branch_enable(&sched_uclamp_used);
8404
8405 mutex_lock(&uclamp_mutex);
8406 rcu_read_lock();
8407
8408 tg = css_tg(of_css(of));
8409 if (tg->uclamp_req[clamp_id].value != req.util)
8410 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
8411
8412 /*
8413 * Because of not recoverable conversion rounding we keep track of the
8414 * exact requested value
8415 */
8416 tg->uclamp_pct[clamp_id] = req.percent;
8417
8418 /* Update effective clamps to track the most restrictive value */
8419 cpu_util_update_eff(of_css(of));
8420
8421 rcu_read_unlock();
8422 mutex_unlock(&uclamp_mutex);
8423
8424 return nbytes;
8425 }
8426
cpu_uclamp_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)8427 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
8428 char *buf, size_t nbytes,
8429 loff_t off)
8430 {
8431 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
8432 }
8433
cpu_uclamp_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)8434 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
8435 char *buf, size_t nbytes,
8436 loff_t off)
8437 {
8438 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
8439 }
8440
cpu_uclamp_print(struct seq_file * sf,enum uclamp_id clamp_id)8441 static inline void cpu_uclamp_print(struct seq_file *sf,
8442 enum uclamp_id clamp_id)
8443 {
8444 struct task_group *tg;
8445 u64 util_clamp;
8446 u64 percent;
8447 u32 rem;
8448
8449 rcu_read_lock();
8450 tg = css_tg(seq_css(sf));
8451 util_clamp = tg->uclamp_req[clamp_id].value;
8452 rcu_read_unlock();
8453
8454 if (util_clamp == SCHED_CAPACITY_SCALE) {
8455 seq_puts(sf, "max\n");
8456 return;
8457 }
8458
8459 percent = tg->uclamp_pct[clamp_id];
8460 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
8461 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
8462 }
8463
cpu_uclamp_min_show(struct seq_file * sf,void * v)8464 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
8465 {
8466 cpu_uclamp_print(sf, UCLAMP_MIN);
8467 return 0;
8468 }
8469
cpu_uclamp_max_show(struct seq_file * sf,void * v)8470 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
8471 {
8472 cpu_uclamp_print(sf, UCLAMP_MAX);
8473 return 0;
8474 }
8475
8476 #ifdef CONFIG_SCHED_RTG_CGROUP
sched_colocate_read(struct cgroup_subsys_state * css,struct cftype * cft)8477 static u64 sched_colocate_read(struct cgroup_subsys_state *css,
8478 struct cftype *cft)
8479 {
8480 struct task_group *tg = css_tg(css);
8481
8482 return (u64) tg->colocate;
8483 }
8484
sched_colocate_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 colocate)8485 static int sched_colocate_write(struct cgroup_subsys_state *css,
8486 struct cftype *cft, u64 colocate)
8487 {
8488 struct task_group *tg = css_tg(css);
8489
8490 if (tg->colocate_update_disabled)
8491 return -EPERM;
8492
8493 tg->colocate = !!colocate;
8494 tg->colocate_update_disabled = true;
8495
8496 return 0;
8497 }
8498 #endif /* CONFIG_SCHED_RTG_CGROUP */
8499 #endif /* CONFIG_UCLAMP_TASK_GROUP */
8500
8501 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_shares_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 shareval)8502 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8503 struct cftype *cftype, u64 shareval)
8504 {
8505 if (shareval > scale_load_down(ULONG_MAX))
8506 shareval = MAX_SHARES;
8507 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8508 }
8509
cpu_shares_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)8510 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8511 struct cftype *cft)
8512 {
8513 struct task_group *tg = css_tg(css);
8514
8515 return (u64) scale_load_down(tg->shares);
8516 }
8517
8518 #ifdef CONFIG_CFS_BANDWIDTH
8519 static DEFINE_MUTEX(cfs_constraints_mutex);
8520
8521 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8522 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8523 /* More than 203 days if BW_SHIFT equals 20. */
8524 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
8525
8526 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8527
tg_set_cfs_bandwidth(struct task_group * tg,u64 period,u64 quota)8528 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8529 {
8530 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8531 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8532
8533 if (tg == &root_task_group)
8534 return -EINVAL;
8535
8536 /*
8537 * Ensure we have at some amount of bandwidth every period. This is
8538 * to prevent reaching a state of large arrears when throttled via
8539 * entity_tick() resulting in prolonged exit starvation.
8540 */
8541 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8542 return -EINVAL;
8543
8544 /*
8545 * Likewise, bound things on the otherside by preventing insane quota
8546 * periods. This also allows us to normalize in computing quota
8547 * feasibility.
8548 */
8549 if (period > max_cfs_quota_period)
8550 return -EINVAL;
8551
8552 /*
8553 * Bound quota to defend quota against overflow during bandwidth shift.
8554 */
8555 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
8556 return -EINVAL;
8557
8558 /*
8559 * Prevent race between setting of cfs_rq->runtime_enabled and
8560 * unthrottle_offline_cfs_rqs().
8561 */
8562 get_online_cpus();
8563 mutex_lock(&cfs_constraints_mutex);
8564 ret = __cfs_schedulable(tg, period, quota);
8565 if (ret)
8566 goto out_unlock;
8567
8568 runtime_enabled = quota != RUNTIME_INF;
8569 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8570 /*
8571 * If we need to toggle cfs_bandwidth_used, off->on must occur
8572 * before making related changes, and on->off must occur afterwards
8573 */
8574 if (runtime_enabled && !runtime_was_enabled)
8575 cfs_bandwidth_usage_inc();
8576 raw_spin_lock_irq(&cfs_b->lock);
8577 cfs_b->period = ns_to_ktime(period);
8578 cfs_b->quota = quota;
8579
8580 __refill_cfs_bandwidth_runtime(cfs_b);
8581
8582 /* Restart the period timer (if active) to handle new period expiry: */
8583 if (runtime_enabled)
8584 start_cfs_bandwidth(cfs_b);
8585
8586 raw_spin_unlock_irq(&cfs_b->lock);
8587
8588 for_each_online_cpu(i) {
8589 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8590 struct rq *rq = cfs_rq->rq;
8591 struct rq_flags rf;
8592
8593 rq_lock_irq(rq, &rf);
8594 cfs_rq->runtime_enabled = runtime_enabled;
8595 cfs_rq->runtime_remaining = 0;
8596
8597 if (cfs_rq->throttled)
8598 unthrottle_cfs_rq(cfs_rq);
8599 rq_unlock_irq(rq, &rf);
8600 }
8601 if (runtime_was_enabled && !runtime_enabled)
8602 cfs_bandwidth_usage_dec();
8603 out_unlock:
8604 mutex_unlock(&cfs_constraints_mutex);
8605 put_online_cpus();
8606
8607 return ret;
8608 }
8609
tg_set_cfs_quota(struct task_group * tg,long cfs_quota_us)8610 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8611 {
8612 u64 quota, period;
8613
8614 period = ktime_to_ns(tg->cfs_bandwidth.period);
8615 if (cfs_quota_us < 0)
8616 quota = RUNTIME_INF;
8617 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
8618 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8619 else
8620 return -EINVAL;
8621
8622 return tg_set_cfs_bandwidth(tg, period, quota);
8623 }
8624
tg_get_cfs_quota(struct task_group * tg)8625 static long tg_get_cfs_quota(struct task_group *tg)
8626 {
8627 u64 quota_us;
8628
8629 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8630 return -1;
8631
8632 quota_us = tg->cfs_bandwidth.quota;
8633 do_div(quota_us, NSEC_PER_USEC);
8634
8635 return quota_us;
8636 }
8637
tg_set_cfs_period(struct task_group * tg,long cfs_period_us)8638 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8639 {
8640 u64 quota, period;
8641
8642 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
8643 return -EINVAL;
8644
8645 period = (u64)cfs_period_us * NSEC_PER_USEC;
8646 quota = tg->cfs_bandwidth.quota;
8647
8648 return tg_set_cfs_bandwidth(tg, period, quota);
8649 }
8650
tg_get_cfs_period(struct task_group * tg)8651 static long tg_get_cfs_period(struct task_group *tg)
8652 {
8653 u64 cfs_period_us;
8654
8655 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8656 do_div(cfs_period_us, NSEC_PER_USEC);
8657
8658 return cfs_period_us;
8659 }
8660
cpu_cfs_quota_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)8661 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8662 struct cftype *cft)
8663 {
8664 return tg_get_cfs_quota(css_tg(css));
8665 }
8666
cpu_cfs_quota_write_s64(struct cgroup_subsys_state * css,struct cftype * cftype,s64 cfs_quota_us)8667 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8668 struct cftype *cftype, s64 cfs_quota_us)
8669 {
8670 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8671 }
8672
cpu_cfs_period_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)8673 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8674 struct cftype *cft)
8675 {
8676 return tg_get_cfs_period(css_tg(css));
8677 }
8678
cpu_cfs_period_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_period_us)8679 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8680 struct cftype *cftype, u64 cfs_period_us)
8681 {
8682 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8683 }
8684
8685 struct cfs_schedulable_data {
8686 struct task_group *tg;
8687 u64 period, quota;
8688 };
8689
8690 /*
8691 * normalize group quota/period to be quota/max_period
8692 * note: units are usecs
8693 */
normalize_cfs_quota(struct task_group * tg,struct cfs_schedulable_data * d)8694 static u64 normalize_cfs_quota(struct task_group *tg,
8695 struct cfs_schedulable_data *d)
8696 {
8697 u64 quota, period;
8698
8699 if (tg == d->tg) {
8700 period = d->period;
8701 quota = d->quota;
8702 } else {
8703 period = tg_get_cfs_period(tg);
8704 quota = tg_get_cfs_quota(tg);
8705 }
8706
8707 /* note: these should typically be equivalent */
8708 if (quota == RUNTIME_INF || quota == -1)
8709 return RUNTIME_INF;
8710
8711 return to_ratio(period, quota);
8712 }
8713
tg_cfs_schedulable_down(struct task_group * tg,void * data)8714 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8715 {
8716 struct cfs_schedulable_data *d = data;
8717 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8718 s64 quota = 0, parent_quota = -1;
8719
8720 if (!tg->parent) {
8721 quota = RUNTIME_INF;
8722 } else {
8723 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8724
8725 quota = normalize_cfs_quota(tg, d);
8726 parent_quota = parent_b->hierarchical_quota;
8727
8728 /*
8729 * Ensure max(child_quota) <= parent_quota. On cgroup2,
8730 * always take the min. On cgroup1, only inherit when no
8731 * limit is set:
8732 */
8733 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
8734 quota = min(quota, parent_quota);
8735 } else {
8736 if (quota == RUNTIME_INF)
8737 quota = parent_quota;
8738 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8739 return -EINVAL;
8740 }
8741 }
8742 cfs_b->hierarchical_quota = quota;
8743
8744 return 0;
8745 }
8746
__cfs_schedulable(struct task_group * tg,u64 period,u64 quota)8747 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8748 {
8749 int ret;
8750 struct cfs_schedulable_data data = {
8751 .tg = tg,
8752 .period = period,
8753 .quota = quota,
8754 };
8755
8756 if (quota != RUNTIME_INF) {
8757 do_div(data.period, NSEC_PER_USEC);
8758 do_div(data.quota, NSEC_PER_USEC);
8759 }
8760
8761 rcu_read_lock();
8762 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8763 rcu_read_unlock();
8764
8765 return ret;
8766 }
8767
cpu_cfs_stat_show(struct seq_file * sf,void * v)8768 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
8769 {
8770 struct task_group *tg = css_tg(seq_css(sf));
8771 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8772
8773 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8774 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8775 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8776
8777 if (schedstat_enabled() && tg != &root_task_group) {
8778 u64 ws = 0;
8779 int i;
8780
8781 for_each_possible_cpu(i)
8782 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
8783
8784 seq_printf(sf, "wait_sum %llu\n", ws);
8785 }
8786
8787 return 0;
8788 }
8789 #endif /* CONFIG_CFS_BANDWIDTH */
8790 #endif /* CONFIG_FAIR_GROUP_SCHED */
8791
8792 #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)8793 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8794 struct cftype *cft, s64 val)
8795 {
8796 return sched_group_set_rt_runtime(css_tg(css), val);
8797 }
8798
cpu_rt_runtime_read(struct cgroup_subsys_state * css,struct cftype * cft)8799 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8800 struct cftype *cft)
8801 {
8802 return sched_group_rt_runtime(css_tg(css));
8803 }
8804
cpu_rt_period_write_uint(struct cgroup_subsys_state * css,struct cftype * cftype,u64 rt_period_us)8805 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8806 struct cftype *cftype, u64 rt_period_us)
8807 {
8808 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8809 }
8810
cpu_rt_period_read_uint(struct cgroup_subsys_state * css,struct cftype * cft)8811 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8812 struct cftype *cft)
8813 {
8814 return sched_group_rt_period(css_tg(css));
8815 }
8816 #endif /* CONFIG_RT_GROUP_SCHED */
8817
8818 static struct cftype cpu_legacy_files[] = {
8819 #ifdef CONFIG_FAIR_GROUP_SCHED
8820 {
8821 .name = "shares",
8822 .read_u64 = cpu_shares_read_u64,
8823 .write_u64 = cpu_shares_write_u64,
8824 },
8825 #endif
8826 #ifdef CONFIG_CFS_BANDWIDTH
8827 {
8828 .name = "cfs_quota_us",
8829 .read_s64 = cpu_cfs_quota_read_s64,
8830 .write_s64 = cpu_cfs_quota_write_s64,
8831 },
8832 {
8833 .name = "cfs_period_us",
8834 .read_u64 = cpu_cfs_period_read_u64,
8835 .write_u64 = cpu_cfs_period_write_u64,
8836 },
8837 {
8838 .name = "stat",
8839 .seq_show = cpu_cfs_stat_show,
8840 },
8841 #endif
8842 #ifdef CONFIG_RT_GROUP_SCHED
8843 {
8844 .name = "rt_runtime_us",
8845 .read_s64 = cpu_rt_runtime_read,
8846 .write_s64 = cpu_rt_runtime_write,
8847 },
8848 {
8849 .name = "rt_period_us",
8850 .read_u64 = cpu_rt_period_read_uint,
8851 .write_u64 = cpu_rt_period_write_uint,
8852 },
8853 #endif
8854 #ifdef CONFIG_UCLAMP_TASK_GROUP
8855 {
8856 .name = "uclamp.min",
8857 .flags = CFTYPE_NOT_ON_ROOT,
8858 .seq_show = cpu_uclamp_min_show,
8859 .write = cpu_uclamp_min_write,
8860 },
8861 {
8862 .name = "uclamp.max",
8863 .flags = CFTYPE_NOT_ON_ROOT,
8864 .seq_show = cpu_uclamp_max_show,
8865 .write = cpu_uclamp_max_write,
8866 },
8867 #ifdef CONFIG_SCHED_RTG_CGROUP
8868 {
8869 .name = "uclamp.colocate",
8870 .flags = CFTYPE_NOT_ON_ROOT,
8871 .read_u64 = sched_colocate_read,
8872 .write_u64 = sched_colocate_write,
8873 },
8874 #endif
8875 #endif
8876 { } /* Terminate */
8877 };
8878
cpu_extra_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)8879 static int cpu_extra_stat_show(struct seq_file *sf,
8880 struct cgroup_subsys_state *css)
8881 {
8882 #ifdef CONFIG_CFS_BANDWIDTH
8883 {
8884 struct task_group *tg = css_tg(css);
8885 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8886 u64 throttled_usec;
8887
8888 throttled_usec = cfs_b->throttled_time;
8889 do_div(throttled_usec, NSEC_PER_USEC);
8890
8891 seq_printf(sf, "nr_periods %d\n"
8892 "nr_throttled %d\n"
8893 "throttled_usec %llu\n",
8894 cfs_b->nr_periods, cfs_b->nr_throttled,
8895 throttled_usec);
8896 }
8897 #endif
8898 return 0;
8899 }
8900
8901 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_weight_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)8902 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
8903 struct cftype *cft)
8904 {
8905 struct task_group *tg = css_tg(css);
8906 u64 weight = scale_load_down(tg->shares);
8907
8908 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
8909 }
8910
cpu_weight_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 weight)8911 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
8912 struct cftype *cft, u64 weight)
8913 {
8914 /*
8915 * cgroup weight knobs should use the common MIN, DFL and MAX
8916 * values which are 1, 100 and 10000 respectively. While it loses
8917 * a bit of range on both ends, it maps pretty well onto the shares
8918 * value used by scheduler and the round-trip conversions preserve
8919 * the original value over the entire range.
8920 */
8921 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
8922 return -ERANGE;
8923
8924 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
8925
8926 return sched_group_set_shares(css_tg(css), scale_load(weight));
8927 }
8928
cpu_weight_nice_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)8929 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
8930 struct cftype *cft)
8931 {
8932 unsigned long weight = scale_load_down(css_tg(css)->shares);
8933 int last_delta = INT_MAX;
8934 int prio, delta;
8935
8936 /* find the closest nice value to the current weight */
8937 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
8938 delta = abs(sched_prio_to_weight[prio] - weight);
8939 if (delta >= last_delta)
8940 break;
8941 last_delta = delta;
8942 }
8943
8944 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
8945 }
8946
cpu_weight_nice_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 nice)8947 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
8948 struct cftype *cft, s64 nice)
8949 {
8950 unsigned long weight;
8951 int idx;
8952
8953 if (nice < MIN_NICE || nice > MAX_NICE)
8954 return -ERANGE;
8955
8956 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
8957 idx = array_index_nospec(idx, 40);
8958 weight = sched_prio_to_weight[idx];
8959
8960 return sched_group_set_shares(css_tg(css), scale_load(weight));
8961 }
8962 #endif
8963
cpu_period_quota_print(struct seq_file * sf,long period,long quota)8964 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
8965 long period, long quota)
8966 {
8967 if (quota < 0)
8968 seq_puts(sf, "max");
8969 else
8970 seq_printf(sf, "%ld", quota);
8971
8972 seq_printf(sf, " %ld\n", period);
8973 }
8974
8975 /* caller should put the current value in *@periodp before calling */
cpu_period_quota_parse(char * buf,u64 * periodp,u64 * quotap)8976 static int __maybe_unused cpu_period_quota_parse(char *buf,
8977 u64 *periodp, u64 *quotap)
8978 {
8979 char tok[21]; /* U64_MAX */
8980
8981 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
8982 return -EINVAL;
8983
8984 *periodp *= NSEC_PER_USEC;
8985
8986 if (sscanf(tok, "%llu", quotap))
8987 *quotap *= NSEC_PER_USEC;
8988 else if (!strcmp(tok, "max"))
8989 *quotap = RUNTIME_INF;
8990 else
8991 return -EINVAL;
8992
8993 return 0;
8994 }
8995
8996 #ifdef CONFIG_CFS_BANDWIDTH
cpu_max_show(struct seq_file * sf,void * v)8997 static int cpu_max_show(struct seq_file *sf, void *v)
8998 {
8999 struct task_group *tg = css_tg(seq_css(sf));
9000
9001 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
9002 return 0;
9003 }
9004
cpu_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)9005 static ssize_t cpu_max_write(struct kernfs_open_file *of,
9006 char *buf, size_t nbytes, loff_t off)
9007 {
9008 struct task_group *tg = css_tg(of_css(of));
9009 u64 period = tg_get_cfs_period(tg);
9010 u64 quota;
9011 int ret;
9012
9013 ret = cpu_period_quota_parse(buf, &period, "a);
9014 if (!ret)
9015 ret = tg_set_cfs_bandwidth(tg, period, quota);
9016 return ret ?: nbytes;
9017 }
9018 #endif
9019
9020 static struct cftype cpu_files[] = {
9021 #ifdef CONFIG_FAIR_GROUP_SCHED
9022 {
9023 .name = "weight",
9024 .flags = CFTYPE_NOT_ON_ROOT,
9025 .read_u64 = cpu_weight_read_u64,
9026 .write_u64 = cpu_weight_write_u64,
9027 },
9028 {
9029 .name = "weight.nice",
9030 .flags = CFTYPE_NOT_ON_ROOT,
9031 .read_s64 = cpu_weight_nice_read_s64,
9032 .write_s64 = cpu_weight_nice_write_s64,
9033 },
9034 #endif
9035 #ifdef CONFIG_CFS_BANDWIDTH
9036 {
9037 .name = "max",
9038 .flags = CFTYPE_NOT_ON_ROOT,
9039 .seq_show = cpu_max_show,
9040 .write = cpu_max_write,
9041 },
9042 #endif
9043 #ifdef CONFIG_UCLAMP_TASK_GROUP
9044 {
9045 .name = "uclamp.min",
9046 .flags = CFTYPE_NOT_ON_ROOT,
9047 .seq_show = cpu_uclamp_min_show,
9048 .write = cpu_uclamp_min_write,
9049 },
9050 {
9051 .name = "uclamp.max",
9052 .flags = CFTYPE_NOT_ON_ROOT,
9053 .seq_show = cpu_uclamp_max_show,
9054 .write = cpu_uclamp_max_write,
9055 },
9056 #endif
9057 { } /* terminate */
9058 };
9059
9060 struct cgroup_subsys cpu_cgrp_subsys = {
9061 .css_alloc = cpu_cgroup_css_alloc,
9062 .css_online = cpu_cgroup_css_online,
9063 .css_released = cpu_cgroup_css_released,
9064 .css_free = cpu_cgroup_css_free,
9065 .css_extra_stat_show = cpu_extra_stat_show,
9066 .fork = cpu_cgroup_fork,
9067 .can_attach = cpu_cgroup_can_attach,
9068 .attach = cpu_cgroup_attach,
9069 .legacy_cftypes = cpu_legacy_files,
9070 .dfl_cftypes = cpu_files,
9071 .early_init = true,
9072 .threaded = true,
9073 };
9074
9075 #endif /* CONFIG_CGROUP_SCHED */
9076
dump_cpu_task(int cpu)9077 void dump_cpu_task(int cpu)
9078 {
9079 pr_info("Task dump for CPU %d:\n", cpu);
9080 sched_show_task(cpu_curr(cpu));
9081 }
9082
9083 /*
9084 * Nice levels are multiplicative, with a gentle 10% change for every
9085 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
9086 * nice 1, it will get ~10% less CPU time than another CPU-bound task
9087 * that remained on nice 0.
9088 *
9089 * The "10% effect" is relative and cumulative: from _any_ nice level,
9090 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
9091 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
9092 * If a task goes up by ~10% and another task goes down by ~10% then
9093 * the relative distance between them is ~25%.)
9094 */
9095 const int sched_prio_to_weight[40] = {
9096 /* -20 */ 88761, 71755, 56483, 46273, 36291,
9097 /* -15 */ 29154, 23254, 18705, 14949, 11916,
9098 /* -10 */ 9548, 7620, 6100, 4904, 3906,
9099 /* -5 */ 3121, 2501, 1991, 1586, 1277,
9100 /* 0 */ 1024, 820, 655, 526, 423,
9101 /* 5 */ 335, 272, 215, 172, 137,
9102 /* 10 */ 110, 87, 70, 56, 45,
9103 /* 15 */ 36, 29, 23, 18, 15,
9104 };
9105
9106 /*
9107 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
9108 *
9109 * In cases where the weight does not change often, we can use the
9110 * precalculated inverse to speed up arithmetics by turning divisions
9111 * into multiplications:
9112 */
9113 const u32 sched_prio_to_wmult[40] = {
9114 /* -20 */ 48388, 59856, 76040, 92818, 118348,
9115 /* -15 */ 147320, 184698, 229616, 287308, 360437,
9116 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
9117 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
9118 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
9119 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
9120 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
9121 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
9122 };
9123
9124 #ifdef CONFIG_SCHED_LATENCY_NICE
9125 /*
9126 * latency weight for wakeup preemption
9127 */
9128 const int sched_latency_to_weight[40] = {
9129 /* -20 */ 1024, 973, 922, 870, 819,
9130 /* -15 */ 768, 717, 666, 614, 563,
9131 /* -10 */ 512, 461, 410, 358, 307,
9132 /* -5 */ 256, 205, 154, 102, 51,
9133 /* 0 */ 0, -51, -102, -154, -205,
9134 /* 5 */ -256, -307, -358, -410, -461,
9135 /* 10 */ -512, -563, -614, -666, -717,
9136 /* 15 */ -768, -819, -870, -922, -973,
9137 };
9138 #endif
9139
call_trace_sched_update_nr_running(struct rq * rq,int count)9140 void call_trace_sched_update_nr_running(struct rq *rq, int count)
9141 {
9142 trace_sched_update_nr_running_tp(rq, count);
9143 }
9144
9145 #ifdef CONFIG_SCHED_WALT
9146 /*
9147 * sched_exit() - Set EXITING_TASK_MARKER in task's ravg.demand field
9148 *
9149 * Stop accounting (exiting) task's future cpu usage
9150 *
9151 * We need this so that reset_all_windows_stats() can function correctly.
9152 * reset_all_window_stats() depends on do_each_thread/for_each_thread task
9153 * iterators to reset *all* task's statistics. Exiting tasks however become
9154 * invisible to those iterators. sched_exit() is called on a exiting task prior
9155 * to being removed from task_list, which will let reset_all_window_stats()
9156 * function correctly.
9157 */
sched_exit(struct task_struct * p)9158 void sched_exit(struct task_struct *p)
9159 {
9160 struct rq_flags rf;
9161 struct rq *rq;
9162 u64 wallclock;
9163
9164 #ifdef CONFIG_SCHED_RTG
9165 sched_set_group_id(p, 0);
9166 #endif
9167
9168 rq = task_rq_lock(p, &rf);
9169
9170 /* rq->curr == p */
9171 wallclock = sched_ktime_clock();
9172 update_task_ravg(rq->curr, rq, TASK_UPDATE, wallclock, 0);
9173 dequeue_task(rq, p, 0);
9174 /*
9175 * task's contribution is already removed from the
9176 * cumulative window demand in dequeue. As the
9177 * task's stats are reset, the next enqueue does
9178 * not change the cumulative window demand.
9179 */
9180 reset_task_stats(p);
9181 p->ravg.mark_start = wallclock;
9182 p->ravg.sum_history[0] = EXITING_TASK_MARKER;
9183
9184 enqueue_task(rq, p, 0);
9185 task_rq_unlock(rq, p, &rf);
9186 free_task_load_ptrs(p);
9187 }
9188 #endif /* CONFIG_SCHED_WALT */
9189