• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <linux/bug.h>
22 #include <linux/kthread.h>
23 #include <linux/stop_machine.h>
24 #include <linux/mutex.h>
25 #include <linux/gfp.h>
26 #include <linux/suspend.h>
27 #include <linux/lockdep.h>
28 #include <linux/tick.h>
29 #include <linux/irq.h>
30 #include <linux/nmi.h>
31 #include <linux/smpboot.h>
32 #include <linux/relay.h>
33 #include <linux/slab.h>
34 #include <linux/scs.h>
35 #include <linux/percpu-rwsem.h>
36 #include <linux/cpuset.h>
37 
38 #include <trace/events/power.h>
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/cpuhp.h>
41 
42 #include "smpboot.h"
43 
44 /**
45  * cpuhp_cpu_state - Per cpu hotplug state storage
46  * @state:	The current cpu state
47  * @target:	The target state
48  * @thread:	Pointer to the hotplug thread
49  * @should_run:	Thread should execute
50  * @rollback:	Perform a rollback
51  * @single:	Single callback invocation
52  * @bringup:	Single callback bringup or teardown selector
53  * @cb_state:	The state for a single callback (install/uninstall)
54  * @result:	Result of the operation
55  * @done_up:	Signal completion to the issuer of the task for cpu-up
56  * @done_down:	Signal completion to the issuer of the task for cpu-down
57  */
58 struct cpuhp_cpu_state {
59 	enum cpuhp_state	state;
60 	enum cpuhp_state	target;
61 	enum cpuhp_state	fail;
62 #ifdef CONFIG_SMP
63 	struct task_struct	*thread;
64 	bool			should_run;
65 	bool			rollback;
66 	bool			single;
67 	bool			bringup;
68 	struct hlist_node	*node;
69 	struct hlist_node	*last;
70 	enum cpuhp_state	cb_state;
71 	int			result;
72 	struct completion	done_up;
73 	struct completion	done_down;
74 #endif
75 };
76 
77 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
78 	.fail = CPUHP_INVALID,
79 };
80 
81 #ifdef CONFIG_SMP
82 cpumask_t cpus_booted_once_mask;
83 #endif
84 
85 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
86 static struct lockdep_map cpuhp_state_up_map =
87 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
88 static struct lockdep_map cpuhp_state_down_map =
89 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
90 
91 
cpuhp_lock_acquire(bool bringup)92 static inline void cpuhp_lock_acquire(bool bringup)
93 {
94 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
95 }
96 
cpuhp_lock_release(bool bringup)97 static inline void cpuhp_lock_release(bool bringup)
98 {
99 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
100 }
101 #else
102 
cpuhp_lock_acquire(bool bringup)103 static inline void cpuhp_lock_acquire(bool bringup) { }
cpuhp_lock_release(bool bringup)104 static inline void cpuhp_lock_release(bool bringup) { }
105 
106 #endif
107 
108 /**
109  * cpuhp_step - Hotplug state machine step
110  * @name:	Name of the step
111  * @startup:	Startup function of the step
112  * @teardown:	Teardown function of the step
113  * @cant_stop:	Bringup/teardown can't be stopped at this step
114  */
115 struct cpuhp_step {
116 	const char		*name;
117 	union {
118 		int		(*single)(unsigned int cpu);
119 		int		(*multi)(unsigned int cpu,
120 					 struct hlist_node *node);
121 	} startup;
122 	union {
123 		int		(*single)(unsigned int cpu);
124 		int		(*multi)(unsigned int cpu,
125 					 struct hlist_node *node);
126 	} teardown;
127 	struct hlist_head	list;
128 	bool			cant_stop;
129 	bool			multi_instance;
130 };
131 
132 static DEFINE_MUTEX(cpuhp_state_mutex);
133 static struct cpuhp_step cpuhp_hp_states[];
134 
cpuhp_get_step(enum cpuhp_state state)135 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
136 {
137 	return cpuhp_hp_states + state;
138 }
139 
140 /**
141  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
142  * @cpu:	The cpu for which the callback should be invoked
143  * @state:	The state to do callbacks for
144  * @bringup:	True if the bringup callback should be invoked
145  * @node:	For multi-instance, do a single entry callback for install/remove
146  * @lastp:	For multi-instance rollback, remember how far we got
147  *
148  * Called from cpu hotplug and from the state register machinery.
149  */
cpuhp_invoke_callback(unsigned int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node,struct hlist_node ** lastp)150 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
151 				 bool bringup, struct hlist_node *node,
152 				 struct hlist_node **lastp)
153 {
154 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
155 	struct cpuhp_step *step = cpuhp_get_step(state);
156 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
157 	int (*cb)(unsigned int cpu);
158 	int ret, cnt;
159 
160 	if (st->fail == state) {
161 		st->fail = CPUHP_INVALID;
162 
163 		if (!(bringup ? step->startup.single : step->teardown.single))
164 			return 0;
165 
166 		return -EAGAIN;
167 	}
168 
169 	if (!step->multi_instance) {
170 		WARN_ON_ONCE(lastp && *lastp);
171 		cb = bringup ? step->startup.single : step->teardown.single;
172 		if (!cb)
173 			return 0;
174 		trace_cpuhp_enter(cpu, st->target, state, cb);
175 		ret = cb(cpu);
176 		trace_cpuhp_exit(cpu, st->state, state, ret);
177 		return ret;
178 	}
179 	cbm = bringup ? step->startup.multi : step->teardown.multi;
180 	if (!cbm)
181 		return 0;
182 
183 	/* Single invocation for instance add/remove */
184 	if (node) {
185 		WARN_ON_ONCE(lastp && *lastp);
186 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
187 		ret = cbm(cpu, node);
188 		trace_cpuhp_exit(cpu, st->state, state, ret);
189 		return ret;
190 	}
191 
192 	/* State transition. Invoke on all instances */
193 	cnt = 0;
194 	hlist_for_each(node, &step->list) {
195 		if (lastp && node == *lastp)
196 			break;
197 
198 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
199 		ret = cbm(cpu, node);
200 		trace_cpuhp_exit(cpu, st->state, state, ret);
201 		if (ret) {
202 			if (!lastp)
203 				goto err;
204 
205 			*lastp = node;
206 			return ret;
207 		}
208 		cnt++;
209 	}
210 	if (lastp)
211 		*lastp = NULL;
212 	return 0;
213 err:
214 	/* Rollback the instances if one failed */
215 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
216 	if (!cbm)
217 		return ret;
218 
219 	hlist_for_each(node, &step->list) {
220 		if (!cnt--)
221 			break;
222 
223 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
224 		ret = cbm(cpu, node);
225 		trace_cpuhp_exit(cpu, st->state, state, ret);
226 		/*
227 		 * Rollback must not fail,
228 		 */
229 		WARN_ON_ONCE(ret);
230 	}
231 	return ret;
232 }
233 
234 #ifdef CONFIG_SMP
cpuhp_is_ap_state(enum cpuhp_state state)235 static bool cpuhp_is_ap_state(enum cpuhp_state state)
236 {
237 	/*
238 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
239 	 * purposes as that state is handled explicitly in cpu_down.
240 	 */
241 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
242 }
243 
wait_for_ap_thread(struct cpuhp_cpu_state * st,bool bringup)244 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
245 {
246 	struct completion *done = bringup ? &st->done_up : &st->done_down;
247 	wait_for_completion(done);
248 }
249 
complete_ap_thread(struct cpuhp_cpu_state * st,bool bringup)250 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
251 {
252 	struct completion *done = bringup ? &st->done_up : &st->done_down;
253 	complete(done);
254 }
255 
256 /*
257  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
258  */
cpuhp_is_atomic_state(enum cpuhp_state state)259 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
260 {
261 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
262 }
263 
264 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
265 static DEFINE_MUTEX(cpu_add_remove_lock);
266 bool cpuhp_tasks_frozen;
267 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
268 
269 /*
270  * The following two APIs (cpu_maps_update_begin/done) must be used when
271  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
272  */
cpu_maps_update_begin(void)273 void cpu_maps_update_begin(void)
274 {
275 	mutex_lock(&cpu_add_remove_lock);
276 }
277 
cpu_maps_update_done(void)278 void cpu_maps_update_done(void)
279 {
280 	mutex_unlock(&cpu_add_remove_lock);
281 }
282 
283 /*
284  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
285  * Should always be manipulated under cpu_add_remove_lock
286  */
287 static int cpu_hotplug_disabled;
288 
289 #ifdef CONFIG_HOTPLUG_CPU
290 
291 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
292 
cpus_read_lock(void)293 void cpus_read_lock(void)
294 {
295 	percpu_down_read(&cpu_hotplug_lock);
296 }
297 EXPORT_SYMBOL_GPL(cpus_read_lock);
298 
cpus_read_trylock(void)299 int cpus_read_trylock(void)
300 {
301 	return percpu_down_read_trylock(&cpu_hotplug_lock);
302 }
303 EXPORT_SYMBOL_GPL(cpus_read_trylock);
304 
cpus_read_unlock(void)305 void cpus_read_unlock(void)
306 {
307 	percpu_up_read(&cpu_hotplug_lock);
308 }
309 EXPORT_SYMBOL_GPL(cpus_read_unlock);
310 
cpus_write_lock(void)311 void cpus_write_lock(void)
312 {
313 	percpu_down_write(&cpu_hotplug_lock);
314 }
315 
cpus_write_unlock(void)316 void cpus_write_unlock(void)
317 {
318 	percpu_up_write(&cpu_hotplug_lock);
319 }
320 
lockdep_assert_cpus_held(void)321 void lockdep_assert_cpus_held(void)
322 {
323 	/*
324 	 * We can't have hotplug operations before userspace starts running,
325 	 * and some init codepaths will knowingly not take the hotplug lock.
326 	 * This is all valid, so mute lockdep until it makes sense to report
327 	 * unheld locks.
328 	 */
329 	if (system_state < SYSTEM_RUNNING)
330 		return;
331 
332 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
333 }
334 
lockdep_acquire_cpus_lock(void)335 static void lockdep_acquire_cpus_lock(void)
336 {
337 	rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
338 }
339 
lockdep_release_cpus_lock(void)340 static void lockdep_release_cpus_lock(void)
341 {
342 	rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
343 }
344 
345 /*
346  * Wait for currently running CPU hotplug operations to complete (if any) and
347  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
348  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
349  * hotplug path before performing hotplug operations. So acquiring that lock
350  * guarantees mutual exclusion from any currently running hotplug operations.
351  */
cpu_hotplug_disable(void)352 void cpu_hotplug_disable(void)
353 {
354 	cpu_maps_update_begin();
355 	cpu_hotplug_disabled++;
356 	cpu_maps_update_done();
357 }
358 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
359 
__cpu_hotplug_enable(void)360 static void __cpu_hotplug_enable(void)
361 {
362 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
363 		return;
364 	cpu_hotplug_disabled--;
365 }
366 
cpu_hotplug_enable(void)367 void cpu_hotplug_enable(void)
368 {
369 	cpu_maps_update_begin();
370 	__cpu_hotplug_enable();
371 	cpu_maps_update_done();
372 }
373 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
374 
375 #else
376 
lockdep_acquire_cpus_lock(void)377 static void lockdep_acquire_cpus_lock(void)
378 {
379 }
380 
lockdep_release_cpus_lock(void)381 static void lockdep_release_cpus_lock(void)
382 {
383 }
384 
385 #endif	/* CONFIG_HOTPLUG_CPU */
386 
387 /*
388  * Architectures that need SMT-specific errata handling during SMT hotplug
389  * should override this.
390  */
arch_smt_update(void)391 void __weak arch_smt_update(void) { }
392 
393 #ifdef CONFIG_HOTPLUG_SMT
394 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
395 
cpu_smt_disable(bool force)396 void __init cpu_smt_disable(bool force)
397 {
398 	if (!cpu_smt_possible())
399 		return;
400 
401 	if (force) {
402 		pr_info("SMT: Force disabled\n");
403 		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
404 	} else {
405 		pr_info("SMT: disabled\n");
406 		cpu_smt_control = CPU_SMT_DISABLED;
407 	}
408 }
409 
410 /*
411  * The decision whether SMT is supported can only be done after the full
412  * CPU identification. Called from architecture code.
413  */
cpu_smt_check_topology(void)414 void __init cpu_smt_check_topology(void)
415 {
416 	if (!topology_smt_supported())
417 		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
418 }
419 
smt_cmdline_disable(char * str)420 static int __init smt_cmdline_disable(char *str)
421 {
422 	cpu_smt_disable(str && !strcmp(str, "force"));
423 	return 0;
424 }
425 early_param("nosmt", smt_cmdline_disable);
426 
cpu_smt_allowed(unsigned int cpu)427 static inline bool cpu_smt_allowed(unsigned int cpu)
428 {
429 	if (cpu_smt_control == CPU_SMT_ENABLED)
430 		return true;
431 
432 	if (topology_is_primary_thread(cpu))
433 		return true;
434 
435 	/*
436 	 * On x86 it's required to boot all logical CPUs at least once so
437 	 * that the init code can get a chance to set CR4.MCE on each
438 	 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
439 	 * core will shutdown the machine.
440 	 */
441 	return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
442 }
443 
444 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
cpu_smt_possible(void)445 bool cpu_smt_possible(void)
446 {
447 	return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
448 		cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
449 }
450 EXPORT_SYMBOL_GPL(cpu_smt_possible);
451 #else
cpu_smt_allowed(unsigned int cpu)452 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
453 #endif
454 
455 static inline enum cpuhp_state
cpuhp_set_state(struct cpuhp_cpu_state * st,enum cpuhp_state target)456 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
457 {
458 	enum cpuhp_state prev_state = st->state;
459 
460 	st->rollback = false;
461 	st->last = NULL;
462 
463 	st->target = target;
464 	st->single = false;
465 	st->bringup = st->state < target;
466 
467 	return prev_state;
468 }
469 
470 static inline void
cpuhp_reset_state(struct cpuhp_cpu_state * st,enum cpuhp_state prev_state)471 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
472 {
473 	st->rollback = true;
474 
475 	/*
476 	 * If we have st->last we need to undo partial multi_instance of this
477 	 * state first. Otherwise start undo at the previous state.
478 	 */
479 	if (!st->last) {
480 		if (st->bringup)
481 			st->state--;
482 		else
483 			st->state++;
484 	}
485 
486 	st->target = prev_state;
487 	st->bringup = !st->bringup;
488 }
489 
490 /* Regular hotplug invocation of the AP hotplug thread */
__cpuhp_kick_ap(struct cpuhp_cpu_state * st)491 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
492 {
493 	if (!st->single && st->state == st->target)
494 		return;
495 
496 	st->result = 0;
497 	/*
498 	 * Make sure the above stores are visible before should_run becomes
499 	 * true. Paired with the mb() above in cpuhp_thread_fun()
500 	 */
501 	smp_mb();
502 	st->should_run = true;
503 	wake_up_process(st->thread);
504 	wait_for_ap_thread(st, st->bringup);
505 }
506 
cpuhp_kick_ap(struct cpuhp_cpu_state * st,enum cpuhp_state target)507 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
508 {
509 	enum cpuhp_state prev_state;
510 	int ret;
511 
512 	prev_state = cpuhp_set_state(st, target);
513 	__cpuhp_kick_ap(st);
514 	if ((ret = st->result)) {
515 		cpuhp_reset_state(st, prev_state);
516 		__cpuhp_kick_ap(st);
517 	}
518 
519 	return ret;
520 }
521 
bringup_wait_for_ap(unsigned int cpu)522 static int bringup_wait_for_ap(unsigned int cpu)
523 {
524 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
525 
526 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
527 	wait_for_ap_thread(st, true);
528 	if (WARN_ON_ONCE((!cpu_online(cpu))))
529 		return -ECANCELED;
530 
531 	/* Unpark the hotplug thread of the target cpu */
532 	kthread_unpark(st->thread);
533 
534 	/*
535 	 * SMT soft disabling on X86 requires to bring the CPU out of the
536 	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
537 	 * CPU marked itself as booted_once in notify_cpu_starting() so the
538 	 * cpu_smt_allowed() check will now return false if this is not the
539 	 * primary sibling.
540 	 */
541 	if (!cpu_smt_allowed(cpu))
542 		return -ECANCELED;
543 
544 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
545 		return 0;
546 
547 	return cpuhp_kick_ap(st, st->target);
548 }
549 
bringup_cpu(unsigned int cpu)550 static int bringup_cpu(unsigned int cpu)
551 {
552 	struct task_struct *idle = idle_thread_get(cpu);
553 	int ret;
554 
555 	/*
556 	 * Reset stale stack state from the last time this CPU was online.
557 	 */
558 	scs_task_reset(idle);
559 	kasan_unpoison_task_stack(idle);
560 
561 	/*
562 	 * Some architectures have to walk the irq descriptors to
563 	 * setup the vector space for the cpu which comes online.
564 	 * Prevent irq alloc/free across the bringup.
565 	 */
566 	irq_lock_sparse();
567 
568 	/* Arch-specific enabling code. */
569 	ret = __cpu_up(cpu, idle);
570 	irq_unlock_sparse();
571 	if (ret)
572 		return ret;
573 	return bringup_wait_for_ap(cpu);
574 }
575 
finish_cpu(unsigned int cpu)576 static int finish_cpu(unsigned int cpu)
577 {
578 	struct task_struct *idle = idle_thread_get(cpu);
579 	struct mm_struct *mm = idle->active_mm;
580 
581 	/*
582 	 * idle_task_exit() will have switched to &init_mm, now
583 	 * clean up any remaining active_mm state.
584 	 */
585 	if (mm != &init_mm)
586 		idle->active_mm = &init_mm;
587 	mmdrop(mm);
588 	return 0;
589 }
590 
591 /*
592  * Hotplug state machine related functions
593  */
594 
undo_cpu_up(unsigned int cpu,struct cpuhp_cpu_state * st)595 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
596 {
597 	for (st->state--; st->state > st->target; st->state--)
598 		cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
599 }
600 
can_rollback_cpu(struct cpuhp_cpu_state * st)601 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
602 {
603 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
604 		return true;
605 	/*
606 	 * When CPU hotplug is disabled, then taking the CPU down is not
607 	 * possible because takedown_cpu() and the architecture and
608 	 * subsystem specific mechanisms are not available. So the CPU
609 	 * which would be completely unplugged again needs to stay around
610 	 * in the current state.
611 	 */
612 	return st->state <= CPUHP_BRINGUP_CPU;
613 }
614 
cpuhp_up_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)615 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
616 			      enum cpuhp_state target)
617 {
618 	enum cpuhp_state prev_state = st->state;
619 	int ret = 0;
620 
621 	while (st->state < target) {
622 		st->state++;
623 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
624 		if (ret) {
625 			if (can_rollback_cpu(st)) {
626 				st->target = prev_state;
627 				undo_cpu_up(cpu, st);
628 			}
629 			break;
630 		}
631 	}
632 	return ret;
633 }
634 
635 /*
636  * The cpu hotplug threads manage the bringup and teardown of the cpus
637  */
cpuhp_create(unsigned int cpu)638 static void cpuhp_create(unsigned int cpu)
639 {
640 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
641 
642 	init_completion(&st->done_up);
643 	init_completion(&st->done_down);
644 }
645 
cpuhp_should_run(unsigned int cpu)646 static int cpuhp_should_run(unsigned int cpu)
647 {
648 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
649 
650 	return st->should_run;
651 }
652 
653 /*
654  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
655  * callbacks when a state gets [un]installed at runtime.
656  *
657  * Each invocation of this function by the smpboot thread does a single AP
658  * state callback.
659  *
660  * It has 3 modes of operation:
661  *  - single: runs st->cb_state
662  *  - up:     runs ++st->state, while st->state < st->target
663  *  - down:   runs st->state--, while st->state > st->target
664  *
665  * When complete or on error, should_run is cleared and the completion is fired.
666  */
cpuhp_thread_fun(unsigned int cpu)667 static void cpuhp_thread_fun(unsigned int cpu)
668 {
669 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
670 	bool bringup = st->bringup;
671 	enum cpuhp_state state;
672 
673 	if (WARN_ON_ONCE(!st->should_run))
674 		return;
675 
676 	/*
677 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
678 	 * that if we see ->should_run we also see the rest of the state.
679 	 */
680 	smp_mb();
681 
682 	/*
683 	 * The BP holds the hotplug lock, but we're now running on the AP,
684 	 * ensure that anybody asserting the lock is held, will actually find
685 	 * it so.
686 	 */
687 	lockdep_acquire_cpus_lock();
688 	cpuhp_lock_acquire(bringup);
689 
690 	if (st->single) {
691 		state = st->cb_state;
692 		st->should_run = false;
693 	} else {
694 		if (bringup) {
695 			st->state++;
696 			state = st->state;
697 			st->should_run = (st->state < st->target);
698 			WARN_ON_ONCE(st->state > st->target);
699 		} else {
700 			state = st->state;
701 			st->state--;
702 			st->should_run = (st->state > st->target);
703 			WARN_ON_ONCE(st->state < st->target);
704 		}
705 	}
706 
707 	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
708 
709 	if (cpuhp_is_atomic_state(state)) {
710 		local_irq_disable();
711 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
712 		local_irq_enable();
713 
714 		/*
715 		 * STARTING/DYING must not fail!
716 		 */
717 		WARN_ON_ONCE(st->result);
718 	} else {
719 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
720 	}
721 
722 	if (st->result) {
723 		/*
724 		 * If we fail on a rollback, we're up a creek without no
725 		 * paddle, no way forward, no way back. We loose, thanks for
726 		 * playing.
727 		 */
728 		WARN_ON_ONCE(st->rollback);
729 		st->should_run = false;
730 	}
731 
732 	cpuhp_lock_release(bringup);
733 	lockdep_release_cpus_lock();
734 
735 	if (!st->should_run)
736 		complete_ap_thread(st, bringup);
737 }
738 
739 /* Invoke a single callback on a remote cpu */
740 static int
cpuhp_invoke_ap_callback(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)741 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
742 			 struct hlist_node *node)
743 {
744 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
745 	int ret;
746 
747 	if (!cpu_online(cpu))
748 		return 0;
749 
750 	cpuhp_lock_acquire(false);
751 	cpuhp_lock_release(false);
752 
753 	cpuhp_lock_acquire(true);
754 	cpuhp_lock_release(true);
755 
756 	/*
757 	 * If we are up and running, use the hotplug thread. For early calls
758 	 * we invoke the thread function directly.
759 	 */
760 	if (!st->thread)
761 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
762 
763 	st->rollback = false;
764 	st->last = NULL;
765 
766 	st->node = node;
767 	st->bringup = bringup;
768 	st->cb_state = state;
769 	st->single = true;
770 
771 	__cpuhp_kick_ap(st);
772 
773 	/*
774 	 * If we failed and did a partial, do a rollback.
775 	 */
776 	if ((ret = st->result) && st->last) {
777 		st->rollback = true;
778 		st->bringup = !bringup;
779 
780 		__cpuhp_kick_ap(st);
781 	}
782 
783 	/*
784 	 * Clean up the leftovers so the next hotplug operation wont use stale
785 	 * data.
786 	 */
787 	st->node = st->last = NULL;
788 	return ret;
789 }
790 
cpuhp_kick_ap_work(unsigned int cpu)791 static int cpuhp_kick_ap_work(unsigned int cpu)
792 {
793 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
794 	enum cpuhp_state prev_state = st->state;
795 	int ret;
796 
797 	cpuhp_lock_acquire(false);
798 	cpuhp_lock_release(false);
799 
800 	cpuhp_lock_acquire(true);
801 	cpuhp_lock_release(true);
802 
803 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
804 	ret = cpuhp_kick_ap(st, st->target);
805 	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
806 
807 	return ret;
808 }
809 
810 static struct smp_hotplug_thread cpuhp_threads = {
811 	.store			= &cpuhp_state.thread,
812 	.create			= &cpuhp_create,
813 	.thread_should_run	= cpuhp_should_run,
814 	.thread_fn		= cpuhp_thread_fun,
815 	.thread_comm		= "cpuhp/%u",
816 	.selfparking		= true,
817 };
818 
cpuhp_threads_init(void)819 void __init cpuhp_threads_init(void)
820 {
821 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
822 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
823 }
824 
825 /*
826  *
827  * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
828  * protected region.
829  *
830  * The operation is still serialized against concurrent CPU hotplug via
831  * cpu_add_remove_lock, i.e. CPU map protection.  But it is _not_
832  * serialized against other hotplug related activity like adding or
833  * removing of state callbacks and state instances, which invoke either the
834  * startup or the teardown callback of the affected state.
835  *
836  * This is required for subsystems which are unfixable vs. CPU hotplug and
837  * evade lock inversion problems by scheduling work which has to be
838  * completed _before_ cpu_up()/_cpu_down() returns.
839  *
840  * Don't even think about adding anything to this for any new code or even
841  * drivers. It's only purpose is to keep existing lock order trainwrecks
842  * working.
843  *
844  * For cpu_down() there might be valid reasons to finish cleanups which are
845  * not required to be done under cpu_hotplug_lock, but that's a different
846  * story and would be not invoked via this.
847  */
cpu_up_down_serialize_trainwrecks(bool tasks_frozen)848 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
849 {
850 	/*
851 	 * cpusets delegate hotplug operations to a worker to "solve" the
852 	 * lock order problems. Wait for the worker, but only if tasks are
853 	 * _not_ frozen (suspend, hibernate) as that would wait forever.
854 	 *
855 	 * The wait is required because otherwise the hotplug operation
856 	 * returns with inconsistent state, which could even be observed in
857 	 * user space when a new CPU is brought up. The CPU plug uevent
858 	 * would be delivered and user space reacting on it would fail to
859 	 * move tasks to the newly plugged CPU up to the point where the
860 	 * work has finished because up to that point the newly plugged CPU
861 	 * is not assignable in cpusets/cgroups. On unplug that's not
862 	 * necessarily a visible issue, but it is still inconsistent state,
863 	 * which is the real problem which needs to be "fixed". This can't
864 	 * prevent the transient state between scheduling the work and
865 	 * returning from waiting for it.
866 	 */
867 	if (!tasks_frozen)
868 		cpuset_wait_for_hotplug();
869 }
870 
871 #ifdef CONFIG_HOTPLUG_CPU
872 #ifndef arch_clear_mm_cpumask_cpu
873 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
874 #endif
875 
876 /**
877  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
878  * @cpu: a CPU id
879  *
880  * This function walks all processes, finds a valid mm struct for each one and
881  * then clears a corresponding bit in mm's cpumask.  While this all sounds
882  * trivial, there are various non-obvious corner cases, which this function
883  * tries to solve in a safe manner.
884  *
885  * Also note that the function uses a somewhat relaxed locking scheme, so it may
886  * be called only for an already offlined CPU.
887  */
clear_tasks_mm_cpumask(int cpu)888 void clear_tasks_mm_cpumask(int cpu)
889 {
890 	struct task_struct *p;
891 
892 	/*
893 	 * This function is called after the cpu is taken down and marked
894 	 * offline, so its not like new tasks will ever get this cpu set in
895 	 * their mm mask. -- Peter Zijlstra
896 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
897 	 * full-fledged tasklist_lock.
898 	 */
899 	WARN_ON(cpu_online(cpu));
900 	rcu_read_lock();
901 	for_each_process(p) {
902 		struct task_struct *t;
903 
904 		/*
905 		 * Main thread might exit, but other threads may still have
906 		 * a valid mm. Find one.
907 		 */
908 		t = find_lock_task_mm(p);
909 		if (!t)
910 			continue;
911 		arch_clear_mm_cpumask_cpu(cpu, t->mm);
912 		task_unlock(t);
913 	}
914 	rcu_read_unlock();
915 }
916 
917 /* Take this CPU down. */
take_cpu_down(void * _param)918 static int take_cpu_down(void *_param)
919 {
920 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
921 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
922 	int err, cpu = smp_processor_id();
923 	int ret;
924 
925 	/* Ensure this CPU doesn't handle any more interrupts. */
926 	err = __cpu_disable();
927 	if (err < 0)
928 		return err;
929 
930 	/*
931 	 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
932 	 * do this step again.
933 	 */
934 	WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
935 	st->state--;
936 	/* Invoke the former CPU_DYING callbacks */
937 	for (; st->state > target; st->state--) {
938 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
939 		/*
940 		 * DYING must not fail!
941 		 */
942 		WARN_ON_ONCE(ret);
943 	}
944 
945 	/* Give up timekeeping duties */
946 	tick_handover_do_timer();
947 	/* Remove CPU from timer broadcasting */
948 	tick_offline_cpu(cpu);
949 	/* Park the stopper thread */
950 	stop_machine_park(cpu);
951 	return 0;
952 }
953 
takedown_cpu(unsigned int cpu)954 static int takedown_cpu(unsigned int cpu)
955 {
956 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
957 	int err;
958 
959 	/* Park the smpboot threads */
960 	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
961 
962 	/*
963 	 * Prevent irq alloc/free while the dying cpu reorganizes the
964 	 * interrupt affinities.
965 	 */
966 	irq_lock_sparse();
967 
968 	/*
969 	 * So now all preempt/rcu users must observe !cpu_active().
970 	 */
971 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
972 	if (err) {
973 		/* CPU refused to die */
974 		irq_unlock_sparse();
975 		/* Unpark the hotplug thread so we can rollback there */
976 		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
977 		return err;
978 	}
979 	BUG_ON(cpu_online(cpu));
980 
981 	/*
982 	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
983 	 * all runnable tasks from the CPU, there's only the idle task left now
984 	 * that the migration thread is done doing the stop_machine thing.
985 	 *
986 	 * Wait for the stop thread to go away.
987 	 */
988 	wait_for_ap_thread(st, false);
989 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
990 
991 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
992 	irq_unlock_sparse();
993 
994 	hotplug_cpu__broadcast_tick_pull(cpu);
995 	/* This actually kills the CPU. */
996 	__cpu_die(cpu);
997 
998 	tick_cleanup_dead_cpu(cpu);
999 	rcutree_migrate_callbacks(cpu);
1000 	return 0;
1001 }
1002 
cpuhp_complete_idle_dead(void * arg)1003 static void cpuhp_complete_idle_dead(void *arg)
1004 {
1005 	struct cpuhp_cpu_state *st = arg;
1006 
1007 	complete_ap_thread(st, false);
1008 }
1009 
cpuhp_report_idle_dead(void)1010 void cpuhp_report_idle_dead(void)
1011 {
1012 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1013 
1014 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
1015 	rcu_report_dead(smp_processor_id());
1016 	st->state = CPUHP_AP_IDLE_DEAD;
1017 	/*
1018 	 * We cannot call complete after rcu_report_dead() so we delegate it
1019 	 * to an online cpu.
1020 	 */
1021 	smp_call_function_single(cpumask_first(cpu_online_mask),
1022 				 cpuhp_complete_idle_dead, st, 0);
1023 }
1024 
undo_cpu_down(unsigned int cpu,struct cpuhp_cpu_state * st)1025 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
1026 {
1027 	for (st->state++; st->state < st->target; st->state++)
1028 		cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1029 }
1030 
cpuhp_down_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)1031 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1032 				enum cpuhp_state target)
1033 {
1034 	enum cpuhp_state prev_state = st->state;
1035 	int ret = 0;
1036 
1037 	for (; st->state > target; st->state--) {
1038 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
1039 		if (ret) {
1040 			st->target = prev_state;
1041 			if (st->state < prev_state)
1042 				undo_cpu_down(cpu, st);
1043 			break;
1044 		}
1045 	}
1046 	return ret;
1047 }
1048 
1049 /* Requires cpu_add_remove_lock to be held */
_cpu_down(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1050 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1051 			   enum cpuhp_state target)
1052 {
1053 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1054 	int prev_state, ret = 0;
1055 
1056 	if (num_online_cpus() == 1)
1057 		return -EBUSY;
1058 
1059 	if (!cpu_present(cpu))
1060 		return -EINVAL;
1061 
1062 #ifdef CONFIG_CPU_ISOLATION_OPT
1063 	if (!tasks_frozen && !cpu_isolated(cpu) && num_online_uniso_cpus() == 1)
1064 		return -EBUSY;
1065 #endif
1066 
1067 	cpus_write_lock();
1068 
1069 	cpuhp_tasks_frozen = tasks_frozen;
1070 
1071 	prev_state = cpuhp_set_state(st, target);
1072 	/*
1073 	 * If the current CPU state is in the range of the AP hotplug thread,
1074 	 * then we need to kick the thread.
1075 	 */
1076 	if (st->state > CPUHP_TEARDOWN_CPU) {
1077 		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1078 		ret = cpuhp_kick_ap_work(cpu);
1079 		/*
1080 		 * The AP side has done the error rollback already. Just
1081 		 * return the error code..
1082 		 */
1083 		if (ret)
1084 			goto out;
1085 
1086 		/*
1087 		 * We might have stopped still in the range of the AP hotplug
1088 		 * thread. Nothing to do anymore.
1089 		 */
1090 		if (st->state > CPUHP_TEARDOWN_CPU)
1091 			goto out;
1092 
1093 		st->target = target;
1094 	}
1095 	/*
1096 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1097 	 * to do the further cleanups.
1098 	 */
1099 	ret = cpuhp_down_callbacks(cpu, st, target);
1100 	if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
1101 		cpuhp_reset_state(st, prev_state);
1102 		__cpuhp_kick_ap(st);
1103 	}
1104 
1105 out:
1106 	cpus_write_unlock();
1107 	/*
1108 	 * Do post unplug cleanup. This is still protected against
1109 	 * concurrent CPU hotplug via cpu_add_remove_lock.
1110 	 */
1111 	lockup_detector_cleanup();
1112 	arch_smt_update();
1113 	cpu_up_down_serialize_trainwrecks(tasks_frozen);
1114 	return ret;
1115 }
1116 
cpu_down_maps_locked(unsigned int cpu,enum cpuhp_state target)1117 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1118 {
1119 	if (cpu_hotplug_disabled)
1120 		return -EBUSY;
1121 	return _cpu_down(cpu, 0, target);
1122 }
1123 
cpu_down(unsigned int cpu,enum cpuhp_state target)1124 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1125 {
1126 	int err;
1127 
1128 	cpu_maps_update_begin();
1129 	err = cpu_down_maps_locked(cpu, target);
1130 	cpu_maps_update_done();
1131 	return err;
1132 }
1133 
1134 /**
1135  * cpu_device_down - Bring down a cpu device
1136  * @dev: Pointer to the cpu device to offline
1137  *
1138  * This function is meant to be used by device core cpu subsystem only.
1139  *
1140  * Other subsystems should use remove_cpu() instead.
1141  */
cpu_device_down(struct device * dev)1142 int cpu_device_down(struct device *dev)
1143 {
1144 	return cpu_down(dev->id, CPUHP_OFFLINE);
1145 }
1146 
remove_cpu(unsigned int cpu)1147 int remove_cpu(unsigned int cpu)
1148 {
1149 	int ret;
1150 
1151 	lock_device_hotplug();
1152 	ret = device_offline(get_cpu_device(cpu));
1153 	unlock_device_hotplug();
1154 
1155 	return ret;
1156 }
1157 EXPORT_SYMBOL_GPL(remove_cpu);
1158 
smp_shutdown_nonboot_cpus(unsigned int primary_cpu)1159 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1160 {
1161 	unsigned int cpu;
1162 	int error;
1163 
1164 	cpu_maps_update_begin();
1165 
1166 	/*
1167 	 * Make certain the cpu I'm about to reboot on is online.
1168 	 *
1169 	 * This is inline to what migrate_to_reboot_cpu() already do.
1170 	 */
1171 	if (!cpu_online(primary_cpu))
1172 		primary_cpu = cpumask_first(cpu_online_mask);
1173 
1174 	for_each_online_cpu(cpu) {
1175 		if (cpu == primary_cpu)
1176 			continue;
1177 
1178 		error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1179 		if (error) {
1180 			pr_err("Failed to offline CPU%d - error=%d",
1181 				cpu, error);
1182 			break;
1183 		}
1184 	}
1185 
1186 	/*
1187 	 * Ensure all but the reboot CPU are offline.
1188 	 */
1189 	BUG_ON(num_online_cpus() > 1);
1190 
1191 	/*
1192 	 * Make sure the CPUs won't be enabled by someone else after this
1193 	 * point. Kexec will reboot to a new kernel shortly resetting
1194 	 * everything along the way.
1195 	 */
1196 	cpu_hotplug_disabled++;
1197 
1198 	cpu_maps_update_done();
1199 }
1200 
1201 #else
1202 #define takedown_cpu		NULL
1203 #endif /*CONFIG_HOTPLUG_CPU*/
1204 
1205 /**
1206  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1207  * @cpu: cpu that just started
1208  *
1209  * It must be called by the arch code on the new cpu, before the new cpu
1210  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1211  */
notify_cpu_starting(unsigned int cpu)1212 void notify_cpu_starting(unsigned int cpu)
1213 {
1214 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1215 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1216 	int ret;
1217 
1218 	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1219 	cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1220 	while (st->state < target) {
1221 		st->state++;
1222 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1223 		/*
1224 		 * STARTING must not fail!
1225 		 */
1226 		WARN_ON_ONCE(ret);
1227 	}
1228 }
1229 
1230 /*
1231  * Called from the idle task. Wake up the controlling task which brings the
1232  * hotplug thread of the upcoming CPU up and then delegates the rest of the
1233  * online bringup to the hotplug thread.
1234  */
cpuhp_online_idle(enum cpuhp_state state)1235 void cpuhp_online_idle(enum cpuhp_state state)
1236 {
1237 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1238 
1239 	/* Happens for the boot cpu */
1240 	if (state != CPUHP_AP_ONLINE_IDLE)
1241 		return;
1242 
1243 	/*
1244 	 * Unpart the stopper thread before we start the idle loop (and start
1245 	 * scheduling); this ensures the stopper task is always available.
1246 	 */
1247 	stop_machine_unpark(smp_processor_id());
1248 
1249 	st->state = CPUHP_AP_ONLINE_IDLE;
1250 	complete_ap_thread(st, true);
1251 }
1252 
1253 /* Requires cpu_add_remove_lock to be held */
_cpu_up(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1254 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1255 {
1256 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1257 	struct task_struct *idle;
1258 	int ret = 0;
1259 
1260 	cpus_write_lock();
1261 
1262 	if (!cpu_present(cpu)) {
1263 		ret = -EINVAL;
1264 		goto out;
1265 	}
1266 
1267 	/*
1268 	 * The caller of cpu_up() might have raced with another
1269 	 * caller. Nothing to do.
1270 	 */
1271 	if (st->state >= target)
1272 		goto out;
1273 
1274 	if (st->state == CPUHP_OFFLINE) {
1275 		/* Let it fail before we try to bring the cpu up */
1276 		idle = idle_thread_get(cpu);
1277 		if (IS_ERR(idle)) {
1278 			ret = PTR_ERR(idle);
1279 			goto out;
1280 		}
1281 	}
1282 
1283 	cpuhp_tasks_frozen = tasks_frozen;
1284 
1285 	cpuhp_set_state(st, target);
1286 	/*
1287 	 * If the current CPU state is in the range of the AP hotplug thread,
1288 	 * then we need to kick the thread once more.
1289 	 */
1290 	if (st->state > CPUHP_BRINGUP_CPU) {
1291 		ret = cpuhp_kick_ap_work(cpu);
1292 		/*
1293 		 * The AP side has done the error rollback already. Just
1294 		 * return the error code..
1295 		 */
1296 		if (ret)
1297 			goto out;
1298 	}
1299 
1300 	/*
1301 	 * Try to reach the target state. We max out on the BP at
1302 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1303 	 * responsible for bringing it up to the target state.
1304 	 */
1305 	target = min((int)target, CPUHP_BRINGUP_CPU);
1306 	ret = cpuhp_up_callbacks(cpu, st, target);
1307 out:
1308 	cpus_write_unlock();
1309 	arch_smt_update();
1310 	cpu_up_down_serialize_trainwrecks(tasks_frozen);
1311 	return ret;
1312 }
1313 
cpu_up(unsigned int cpu,enum cpuhp_state target)1314 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1315 {
1316 	int err = 0;
1317 
1318 	if (!cpu_possible(cpu)) {
1319 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1320 		       cpu);
1321 #if defined(CONFIG_IA64)
1322 		pr_err("please check additional_cpus= boot parameter\n");
1323 #endif
1324 		return -EINVAL;
1325 	}
1326 
1327 	err = try_online_node(cpu_to_node(cpu));
1328 	if (err)
1329 		return err;
1330 
1331 	cpu_maps_update_begin();
1332 
1333 	if (cpu_hotplug_disabled) {
1334 		err = -EBUSY;
1335 		goto out;
1336 	}
1337 	if (!cpu_smt_allowed(cpu)) {
1338 		err = -EPERM;
1339 		goto out;
1340 	}
1341 
1342 	err = _cpu_up(cpu, 0, target);
1343 out:
1344 	cpu_maps_update_done();
1345 	return err;
1346 }
1347 
1348 /**
1349  * cpu_device_up - Bring up a cpu device
1350  * @dev: Pointer to the cpu device to online
1351  *
1352  * This function is meant to be used by device core cpu subsystem only.
1353  *
1354  * Other subsystems should use add_cpu() instead.
1355  */
cpu_device_up(struct device * dev)1356 int cpu_device_up(struct device *dev)
1357 {
1358 	return cpu_up(dev->id, CPUHP_ONLINE);
1359 }
1360 
add_cpu(unsigned int cpu)1361 int add_cpu(unsigned int cpu)
1362 {
1363 	int ret;
1364 
1365 	lock_device_hotplug();
1366 	ret = device_online(get_cpu_device(cpu));
1367 	unlock_device_hotplug();
1368 
1369 	return ret;
1370 }
1371 EXPORT_SYMBOL_GPL(add_cpu);
1372 
1373 /**
1374  * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1375  * @sleep_cpu: The cpu we hibernated on and should be brought up.
1376  *
1377  * On some architectures like arm64, we can hibernate on any CPU, but on
1378  * wake up the CPU we hibernated on might be offline as a side effect of
1379  * using maxcpus= for example.
1380  */
bringup_hibernate_cpu(unsigned int sleep_cpu)1381 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1382 {
1383 	int ret;
1384 
1385 	if (!cpu_online(sleep_cpu)) {
1386 		pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1387 		ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1388 		if (ret) {
1389 			pr_err("Failed to bring hibernate-CPU up!\n");
1390 			return ret;
1391 		}
1392 	}
1393 	return 0;
1394 }
1395 
bringup_nonboot_cpus(unsigned int setup_max_cpus)1396 void bringup_nonboot_cpus(unsigned int setup_max_cpus)
1397 {
1398 	unsigned int cpu;
1399 
1400 	for_each_present_cpu(cpu) {
1401 		if (num_online_cpus() >= setup_max_cpus)
1402 			break;
1403 		if (!cpu_online(cpu))
1404 			cpu_up(cpu, CPUHP_ONLINE);
1405 	}
1406 }
1407 
1408 #ifdef CONFIG_PM_SLEEP_SMP
1409 static cpumask_var_t frozen_cpus;
1410 
freeze_secondary_cpus(int primary)1411 int freeze_secondary_cpus(int primary)
1412 {
1413 	int cpu, error = 0;
1414 
1415 	cpu_maps_update_begin();
1416 	if (primary == -1) {
1417 		primary = cpumask_first(cpu_online_mask);
1418 		if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1419 			primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1420 	} else {
1421 		if (!cpu_online(primary))
1422 			primary = cpumask_first(cpu_online_mask);
1423 	}
1424 
1425 	/*
1426 	 * We take down all of the non-boot CPUs in one shot to avoid races
1427 	 * with the userspace trying to use the CPU hotplug at the same time
1428 	 */
1429 	cpumask_clear(frozen_cpus);
1430 
1431 	pr_info("Disabling non-boot CPUs ...\n");
1432 	for_each_online_cpu(cpu) {
1433 		if (cpu == primary)
1434 			continue;
1435 
1436 		if (pm_wakeup_pending()) {
1437 			pr_info("Wakeup pending. Abort CPU freeze\n");
1438 			error = -EBUSY;
1439 			break;
1440 		}
1441 
1442 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1443 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1444 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1445 		if (!error)
1446 			cpumask_set_cpu(cpu, frozen_cpus);
1447 		else {
1448 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1449 			break;
1450 		}
1451 	}
1452 
1453 	if (!error)
1454 		BUG_ON(num_online_cpus() > 1);
1455 	else
1456 		pr_err("Non-boot CPUs are not disabled\n");
1457 
1458 	/*
1459 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1460 	 * this even in case of failure as all freeze_secondary_cpus() users are
1461 	 * supposed to do thaw_secondary_cpus() on the failure path.
1462 	 */
1463 	cpu_hotplug_disabled++;
1464 
1465 	cpu_maps_update_done();
1466 	return error;
1467 }
1468 
arch_thaw_secondary_cpus_begin(void)1469 void __weak arch_thaw_secondary_cpus_begin(void)
1470 {
1471 }
1472 
arch_thaw_secondary_cpus_end(void)1473 void __weak arch_thaw_secondary_cpus_end(void)
1474 {
1475 }
1476 
thaw_secondary_cpus(void)1477 void thaw_secondary_cpus(void)
1478 {
1479 	int cpu, error;
1480 
1481 	/* Allow everyone to use the CPU hotplug again */
1482 	cpu_maps_update_begin();
1483 	__cpu_hotplug_enable();
1484 	if (cpumask_empty(frozen_cpus))
1485 		goto out;
1486 
1487 	pr_info("Enabling non-boot CPUs ...\n");
1488 
1489 	arch_thaw_secondary_cpus_begin();
1490 
1491 	for_each_cpu(cpu, frozen_cpus) {
1492 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1493 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1494 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1495 		if (!error) {
1496 			pr_info("CPU%d is up\n", cpu);
1497 			continue;
1498 		}
1499 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1500 	}
1501 
1502 	arch_thaw_secondary_cpus_end();
1503 
1504 	cpumask_clear(frozen_cpus);
1505 out:
1506 	cpu_maps_update_done();
1507 }
1508 
alloc_frozen_cpus(void)1509 static int __init alloc_frozen_cpus(void)
1510 {
1511 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1512 		return -ENOMEM;
1513 	return 0;
1514 }
1515 core_initcall(alloc_frozen_cpus);
1516 
1517 /*
1518  * When callbacks for CPU hotplug notifications are being executed, we must
1519  * ensure that the state of the system with respect to the tasks being frozen
1520  * or not, as reported by the notification, remains unchanged *throughout the
1521  * duration* of the execution of the callbacks.
1522  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1523  *
1524  * This synchronization is implemented by mutually excluding regular CPU
1525  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1526  * Hibernate notifications.
1527  */
1528 static int
cpu_hotplug_pm_callback(struct notifier_block * nb,unsigned long action,void * ptr)1529 cpu_hotplug_pm_callback(struct notifier_block *nb,
1530 			unsigned long action, void *ptr)
1531 {
1532 	switch (action) {
1533 
1534 	case PM_SUSPEND_PREPARE:
1535 	case PM_HIBERNATION_PREPARE:
1536 		cpu_hotplug_disable();
1537 		break;
1538 
1539 	case PM_POST_SUSPEND:
1540 	case PM_POST_HIBERNATION:
1541 		cpu_hotplug_enable();
1542 		break;
1543 
1544 	default:
1545 		return NOTIFY_DONE;
1546 	}
1547 
1548 	return NOTIFY_OK;
1549 }
1550 
1551 
cpu_hotplug_pm_sync_init(void)1552 static int __init cpu_hotplug_pm_sync_init(void)
1553 {
1554 	/*
1555 	 * cpu_hotplug_pm_callback has higher priority than x86
1556 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1557 	 * to disable cpu hotplug to avoid cpu hotplug race.
1558 	 */
1559 	pm_notifier(cpu_hotplug_pm_callback, 0);
1560 	return 0;
1561 }
1562 core_initcall(cpu_hotplug_pm_sync_init);
1563 
1564 #endif /* CONFIG_PM_SLEEP_SMP */
1565 
1566 int __boot_cpu_id;
1567 
1568 #endif /* CONFIG_SMP */
1569 
1570 /* Boot processor state steps */
1571 static struct cpuhp_step cpuhp_hp_states[] = {
1572 	[CPUHP_OFFLINE] = {
1573 		.name			= "offline",
1574 		.startup.single		= NULL,
1575 		.teardown.single	= NULL,
1576 	},
1577 #ifdef CONFIG_SMP
1578 	[CPUHP_CREATE_THREADS]= {
1579 		.name			= "threads:prepare",
1580 		.startup.single		= smpboot_create_threads,
1581 		.teardown.single	= NULL,
1582 		.cant_stop		= true,
1583 	},
1584 	[CPUHP_PERF_PREPARE] = {
1585 		.name			= "perf:prepare",
1586 		.startup.single		= perf_event_init_cpu,
1587 		.teardown.single	= perf_event_exit_cpu,
1588 	},
1589 	[CPUHP_WORKQUEUE_PREP] = {
1590 		.name			= "workqueue:prepare",
1591 		.startup.single		= workqueue_prepare_cpu,
1592 		.teardown.single	= NULL,
1593 	},
1594 	[CPUHP_HRTIMERS_PREPARE] = {
1595 		.name			= "hrtimers:prepare",
1596 		.startup.single		= hrtimers_prepare_cpu,
1597 		.teardown.single	= hrtimers_dead_cpu,
1598 	},
1599 	[CPUHP_SMPCFD_PREPARE] = {
1600 		.name			= "smpcfd:prepare",
1601 		.startup.single		= smpcfd_prepare_cpu,
1602 		.teardown.single	= smpcfd_dead_cpu,
1603 	},
1604 	[CPUHP_RELAY_PREPARE] = {
1605 		.name			= "relay:prepare",
1606 		.startup.single		= relay_prepare_cpu,
1607 		.teardown.single	= NULL,
1608 	},
1609 	[CPUHP_SLAB_PREPARE] = {
1610 		.name			= "slab:prepare",
1611 		.startup.single		= slab_prepare_cpu,
1612 		.teardown.single	= slab_dead_cpu,
1613 	},
1614 	[CPUHP_RCUTREE_PREP] = {
1615 		.name			= "RCU/tree:prepare",
1616 		.startup.single		= rcutree_prepare_cpu,
1617 		.teardown.single	= rcutree_dead_cpu,
1618 	},
1619 	/*
1620 	 * On the tear-down path, timers_dead_cpu() must be invoked
1621 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1622 	 * otherwise a RCU stall occurs.
1623 	 */
1624 	[CPUHP_TIMERS_PREPARE] = {
1625 		.name			= "timers:prepare",
1626 		.startup.single		= timers_prepare_cpu,
1627 		.teardown.single	= timers_dead_cpu,
1628 	},
1629 	/* Kicks the plugged cpu into life */
1630 	[CPUHP_BRINGUP_CPU] = {
1631 		.name			= "cpu:bringup",
1632 		.startup.single		= bringup_cpu,
1633 		.teardown.single	= finish_cpu,
1634 		.cant_stop		= true,
1635 	},
1636 	/* Final state before CPU kills itself */
1637 	[CPUHP_AP_IDLE_DEAD] = {
1638 		.name			= "idle:dead",
1639 	},
1640 	/*
1641 	 * Last state before CPU enters the idle loop to die. Transient state
1642 	 * for synchronization.
1643 	 */
1644 	[CPUHP_AP_OFFLINE] = {
1645 		.name			= "ap:offline",
1646 		.cant_stop		= true,
1647 	},
1648 	/* First state is scheduler control. Interrupts are disabled */
1649 	[CPUHP_AP_SCHED_STARTING] = {
1650 		.name			= "sched:starting",
1651 		.startup.single		= sched_cpu_starting,
1652 		.teardown.single	= sched_cpu_dying,
1653 	},
1654 	[CPUHP_AP_RCUTREE_DYING] = {
1655 		.name			= "RCU/tree:dying",
1656 		.startup.single		= NULL,
1657 		.teardown.single	= rcutree_dying_cpu,
1658 	},
1659 	[CPUHP_AP_SMPCFD_DYING] = {
1660 		.name			= "smpcfd:dying",
1661 		.startup.single		= NULL,
1662 		.teardown.single	= smpcfd_dying_cpu,
1663 	},
1664 	/* Entry state on starting. Interrupts enabled from here on. Transient
1665 	 * state for synchronsization */
1666 	[CPUHP_AP_ONLINE] = {
1667 		.name			= "ap:online",
1668 	},
1669 	/*
1670 	 * Handled on controll processor until the plugged processor manages
1671 	 * this itself.
1672 	 */
1673 	[CPUHP_TEARDOWN_CPU] = {
1674 		.name			= "cpu:teardown",
1675 		.startup.single		= NULL,
1676 		.teardown.single	= takedown_cpu,
1677 		.cant_stop		= true,
1678 	},
1679 	/* Handle smpboot threads park/unpark */
1680 	[CPUHP_AP_SMPBOOT_THREADS] = {
1681 		.name			= "smpboot/threads:online",
1682 		.startup.single		= smpboot_unpark_threads,
1683 		.teardown.single	= smpboot_park_threads,
1684 	},
1685 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1686 		.name			= "irq/affinity:online",
1687 		.startup.single		= irq_affinity_online_cpu,
1688 		.teardown.single	= NULL,
1689 	},
1690 	[CPUHP_AP_PERF_ONLINE] = {
1691 		.name			= "perf:online",
1692 		.startup.single		= perf_event_init_cpu,
1693 		.teardown.single	= perf_event_exit_cpu,
1694 	},
1695 	[CPUHP_AP_WATCHDOG_ONLINE] = {
1696 		.name			= "lockup_detector:online",
1697 		.startup.single		= lockup_detector_online_cpu,
1698 		.teardown.single	= lockup_detector_offline_cpu,
1699 	},
1700 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1701 		.name			= "workqueue:online",
1702 		.startup.single		= workqueue_online_cpu,
1703 		.teardown.single	= workqueue_offline_cpu,
1704 	},
1705 	[CPUHP_AP_RCUTREE_ONLINE] = {
1706 		.name			= "RCU/tree:online",
1707 		.startup.single		= rcutree_online_cpu,
1708 		.teardown.single	= rcutree_offline_cpu,
1709 	},
1710 #endif
1711 	/*
1712 	 * The dynamically registered state space is here
1713 	 */
1714 
1715 #ifdef CONFIG_SMP
1716 	/* Last state is scheduler control setting the cpu active */
1717 	[CPUHP_AP_ACTIVE] = {
1718 		.name			= "sched:active",
1719 		.startup.single		= sched_cpu_activate,
1720 		.teardown.single	= sched_cpu_deactivate,
1721 	},
1722 #endif
1723 
1724 	/* CPU is fully up and running. */
1725 	[CPUHP_ONLINE] = {
1726 		.name			= "online",
1727 		.startup.single		= NULL,
1728 		.teardown.single	= NULL,
1729 	},
1730 };
1731 
1732 /* Sanity check for callbacks */
cpuhp_cb_check(enum cpuhp_state state)1733 static int cpuhp_cb_check(enum cpuhp_state state)
1734 {
1735 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1736 		return -EINVAL;
1737 	return 0;
1738 }
1739 
1740 /*
1741  * Returns a free for dynamic slot assignment of the Online state. The states
1742  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1743  * by having no name assigned.
1744  */
cpuhp_reserve_state(enum cpuhp_state state)1745 static int cpuhp_reserve_state(enum cpuhp_state state)
1746 {
1747 	enum cpuhp_state i, end;
1748 	struct cpuhp_step *step;
1749 
1750 	switch (state) {
1751 	case CPUHP_AP_ONLINE_DYN:
1752 		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1753 		end = CPUHP_AP_ONLINE_DYN_END;
1754 		break;
1755 	case CPUHP_BP_PREPARE_DYN:
1756 		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1757 		end = CPUHP_BP_PREPARE_DYN_END;
1758 		break;
1759 	default:
1760 		return -EINVAL;
1761 	}
1762 
1763 	for (i = state; i <= end; i++, step++) {
1764 		if (!step->name)
1765 			return i;
1766 	}
1767 	WARN(1, "No more dynamic states available for CPU hotplug\n");
1768 	return -ENOSPC;
1769 }
1770 
cpuhp_store_callbacks(enum cpuhp_state state,const char * name,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)1771 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1772 				 int (*startup)(unsigned int cpu),
1773 				 int (*teardown)(unsigned int cpu),
1774 				 bool multi_instance)
1775 {
1776 	/* (Un)Install the callbacks for further cpu hotplug operations */
1777 	struct cpuhp_step *sp;
1778 	int ret = 0;
1779 
1780 	/*
1781 	 * If name is NULL, then the state gets removed.
1782 	 *
1783 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1784 	 * the first allocation from these dynamic ranges, so the removal
1785 	 * would trigger a new allocation and clear the wrong (already
1786 	 * empty) state, leaving the callbacks of the to be cleared state
1787 	 * dangling, which causes wreckage on the next hotplug operation.
1788 	 */
1789 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
1790 		     state == CPUHP_BP_PREPARE_DYN)) {
1791 		ret = cpuhp_reserve_state(state);
1792 		if (ret < 0)
1793 			return ret;
1794 		state = ret;
1795 	}
1796 	sp = cpuhp_get_step(state);
1797 	if (name && sp->name)
1798 		return -EBUSY;
1799 
1800 	sp->startup.single = startup;
1801 	sp->teardown.single = teardown;
1802 	sp->name = name;
1803 	sp->multi_instance = multi_instance;
1804 	INIT_HLIST_HEAD(&sp->list);
1805 	return ret;
1806 }
1807 
cpuhp_get_teardown_cb(enum cpuhp_state state)1808 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1809 {
1810 	return cpuhp_get_step(state)->teardown.single;
1811 }
1812 
1813 /*
1814  * Call the startup/teardown function for a step either on the AP or
1815  * on the current CPU.
1816  */
cpuhp_issue_call(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)1817 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1818 			    struct hlist_node *node)
1819 {
1820 	struct cpuhp_step *sp = cpuhp_get_step(state);
1821 	int ret;
1822 
1823 	/*
1824 	 * If there's nothing to do, we done.
1825 	 * Relies on the union for multi_instance.
1826 	 */
1827 	if ((bringup && !sp->startup.single) ||
1828 	    (!bringup && !sp->teardown.single))
1829 		return 0;
1830 	/*
1831 	 * The non AP bound callbacks can fail on bringup. On teardown
1832 	 * e.g. module removal we crash for now.
1833 	 */
1834 #ifdef CONFIG_SMP
1835 	if (cpuhp_is_ap_state(state))
1836 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1837 	else
1838 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1839 #else
1840 	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1841 #endif
1842 	BUG_ON(ret && !bringup);
1843 	return ret;
1844 }
1845 
1846 /*
1847  * Called from __cpuhp_setup_state on a recoverable failure.
1848  *
1849  * Note: The teardown callbacks for rollback are not allowed to fail!
1850  */
cpuhp_rollback_install(int failedcpu,enum cpuhp_state state,struct hlist_node * node)1851 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1852 				   struct hlist_node *node)
1853 {
1854 	int cpu;
1855 
1856 	/* Roll back the already executed steps on the other cpus */
1857 	for_each_present_cpu(cpu) {
1858 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1859 		int cpustate = st->state;
1860 
1861 		if (cpu >= failedcpu)
1862 			break;
1863 
1864 		/* Did we invoke the startup call on that cpu ? */
1865 		if (cpustate >= state)
1866 			cpuhp_issue_call(cpu, state, false, node);
1867 	}
1868 }
1869 
__cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,struct hlist_node * node,bool invoke)1870 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1871 					  struct hlist_node *node,
1872 					  bool invoke)
1873 {
1874 	struct cpuhp_step *sp;
1875 	int cpu;
1876 	int ret;
1877 
1878 	lockdep_assert_cpus_held();
1879 
1880 	sp = cpuhp_get_step(state);
1881 	if (sp->multi_instance == false)
1882 		return -EINVAL;
1883 
1884 	mutex_lock(&cpuhp_state_mutex);
1885 
1886 	if (!invoke || !sp->startup.multi)
1887 		goto add_node;
1888 
1889 	/*
1890 	 * Try to call the startup callback for each present cpu
1891 	 * depending on the hotplug state of the cpu.
1892 	 */
1893 	for_each_present_cpu(cpu) {
1894 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1895 		int cpustate = st->state;
1896 
1897 		if (cpustate < state)
1898 			continue;
1899 
1900 		ret = cpuhp_issue_call(cpu, state, true, node);
1901 		if (ret) {
1902 			if (sp->teardown.multi)
1903 				cpuhp_rollback_install(cpu, state, node);
1904 			goto unlock;
1905 		}
1906 	}
1907 add_node:
1908 	ret = 0;
1909 	hlist_add_head(node, &sp->list);
1910 unlock:
1911 	mutex_unlock(&cpuhp_state_mutex);
1912 	return ret;
1913 }
1914 
__cpuhp_state_add_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)1915 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1916 			       bool invoke)
1917 {
1918 	int ret;
1919 
1920 	cpus_read_lock();
1921 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1922 	cpus_read_unlock();
1923 	return ret;
1924 }
1925 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1926 
1927 /**
1928  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1929  * @state:		The state to setup
1930  * @invoke:		If true, the startup function is invoked for cpus where
1931  *			cpu state >= @state
1932  * @startup:		startup callback function
1933  * @teardown:		teardown callback function
1934  * @multi_instance:	State is set up for multiple instances which get
1935  *			added afterwards.
1936  *
1937  * The caller needs to hold cpus read locked while calling this function.
1938  * Returns:
1939  *   On success:
1940  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1941  *      0 for all other states
1942  *   On failure: proper (negative) error code
1943  */
__cpuhp_setup_state_cpuslocked(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)1944 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1945 				   const char *name, bool invoke,
1946 				   int (*startup)(unsigned int cpu),
1947 				   int (*teardown)(unsigned int cpu),
1948 				   bool multi_instance)
1949 {
1950 	int cpu, ret = 0;
1951 	bool dynstate;
1952 
1953 	lockdep_assert_cpus_held();
1954 
1955 	if (cpuhp_cb_check(state) || !name)
1956 		return -EINVAL;
1957 
1958 	mutex_lock(&cpuhp_state_mutex);
1959 
1960 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
1961 				    multi_instance);
1962 
1963 	dynstate = state == CPUHP_AP_ONLINE_DYN;
1964 	if (ret > 0 && dynstate) {
1965 		state = ret;
1966 		ret = 0;
1967 	}
1968 
1969 	if (ret || !invoke || !startup)
1970 		goto out;
1971 
1972 	/*
1973 	 * Try to call the startup callback for each present cpu
1974 	 * depending on the hotplug state of the cpu.
1975 	 */
1976 	for_each_present_cpu(cpu) {
1977 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1978 		int cpustate = st->state;
1979 
1980 		if (cpustate < state)
1981 			continue;
1982 
1983 		ret = cpuhp_issue_call(cpu, state, true, NULL);
1984 		if (ret) {
1985 			if (teardown)
1986 				cpuhp_rollback_install(cpu, state, NULL);
1987 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1988 			goto out;
1989 		}
1990 	}
1991 out:
1992 	mutex_unlock(&cpuhp_state_mutex);
1993 	/*
1994 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1995 	 * dynamically allocated state in case of success.
1996 	 */
1997 	if (!ret && dynstate)
1998 		return state;
1999 	return ret;
2000 }
2001 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2002 
__cpuhp_setup_state(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)2003 int __cpuhp_setup_state(enum cpuhp_state state,
2004 			const char *name, bool invoke,
2005 			int (*startup)(unsigned int cpu),
2006 			int (*teardown)(unsigned int cpu),
2007 			bool multi_instance)
2008 {
2009 	int ret;
2010 
2011 	cpus_read_lock();
2012 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2013 					     teardown, multi_instance);
2014 	cpus_read_unlock();
2015 	return ret;
2016 }
2017 EXPORT_SYMBOL(__cpuhp_setup_state);
2018 
__cpuhp_state_remove_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)2019 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2020 				  struct hlist_node *node, bool invoke)
2021 {
2022 	struct cpuhp_step *sp = cpuhp_get_step(state);
2023 	int cpu;
2024 
2025 	BUG_ON(cpuhp_cb_check(state));
2026 
2027 	if (!sp->multi_instance)
2028 		return -EINVAL;
2029 
2030 	cpus_read_lock();
2031 	mutex_lock(&cpuhp_state_mutex);
2032 
2033 	if (!invoke || !cpuhp_get_teardown_cb(state))
2034 		goto remove;
2035 	/*
2036 	 * Call the teardown callback for each present cpu depending
2037 	 * on the hotplug state of the cpu. This function is not
2038 	 * allowed to fail currently!
2039 	 */
2040 	for_each_present_cpu(cpu) {
2041 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2042 		int cpustate = st->state;
2043 
2044 		if (cpustate >= state)
2045 			cpuhp_issue_call(cpu, state, false, node);
2046 	}
2047 
2048 remove:
2049 	hlist_del(node);
2050 	mutex_unlock(&cpuhp_state_mutex);
2051 	cpus_read_unlock();
2052 
2053 	return 0;
2054 }
2055 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2056 
2057 /**
2058  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2059  * @state:	The state to remove
2060  * @invoke:	If true, the teardown function is invoked for cpus where
2061  *		cpu state >= @state
2062  *
2063  * The caller needs to hold cpus read locked while calling this function.
2064  * The teardown callback is currently not allowed to fail. Think
2065  * about module removal!
2066  */
__cpuhp_remove_state_cpuslocked(enum cpuhp_state state,bool invoke)2067 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2068 {
2069 	struct cpuhp_step *sp = cpuhp_get_step(state);
2070 	int cpu;
2071 
2072 	BUG_ON(cpuhp_cb_check(state));
2073 
2074 	lockdep_assert_cpus_held();
2075 
2076 	mutex_lock(&cpuhp_state_mutex);
2077 	if (sp->multi_instance) {
2078 		WARN(!hlist_empty(&sp->list),
2079 		     "Error: Removing state %d which has instances left.\n",
2080 		     state);
2081 		goto remove;
2082 	}
2083 
2084 	if (!invoke || !cpuhp_get_teardown_cb(state))
2085 		goto remove;
2086 
2087 	/*
2088 	 * Call the teardown callback for each present cpu depending
2089 	 * on the hotplug state of the cpu. This function is not
2090 	 * allowed to fail currently!
2091 	 */
2092 	for_each_present_cpu(cpu) {
2093 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2094 		int cpustate = st->state;
2095 
2096 		if (cpustate >= state)
2097 			cpuhp_issue_call(cpu, state, false, NULL);
2098 	}
2099 remove:
2100 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2101 	mutex_unlock(&cpuhp_state_mutex);
2102 }
2103 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2104 
__cpuhp_remove_state(enum cpuhp_state state,bool invoke)2105 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2106 {
2107 	cpus_read_lock();
2108 	__cpuhp_remove_state_cpuslocked(state, invoke);
2109 	cpus_read_unlock();
2110 }
2111 EXPORT_SYMBOL(__cpuhp_remove_state);
2112 
2113 #ifdef CONFIG_HOTPLUG_SMT
cpuhp_offline_cpu_device(unsigned int cpu)2114 static void cpuhp_offline_cpu_device(unsigned int cpu)
2115 {
2116 	struct device *dev = get_cpu_device(cpu);
2117 
2118 	dev->offline = true;
2119 	/* Tell user space about the state change */
2120 	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2121 }
2122 
cpuhp_online_cpu_device(unsigned int cpu)2123 static void cpuhp_online_cpu_device(unsigned int cpu)
2124 {
2125 	struct device *dev = get_cpu_device(cpu);
2126 
2127 	dev->offline = false;
2128 	/* Tell user space about the state change */
2129 	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2130 }
2131 
cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)2132 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2133 {
2134 	int cpu, ret = 0;
2135 
2136 	cpu_maps_update_begin();
2137 	for_each_online_cpu(cpu) {
2138 		if (topology_is_primary_thread(cpu))
2139 			continue;
2140 		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2141 		if (ret)
2142 			break;
2143 		/*
2144 		 * As this needs to hold the cpu maps lock it's impossible
2145 		 * to call device_offline() because that ends up calling
2146 		 * cpu_down() which takes cpu maps lock. cpu maps lock
2147 		 * needs to be held as this might race against in kernel
2148 		 * abusers of the hotplug machinery (thermal management).
2149 		 *
2150 		 * So nothing would update device:offline state. That would
2151 		 * leave the sysfs entry stale and prevent onlining after
2152 		 * smt control has been changed to 'off' again. This is
2153 		 * called under the sysfs hotplug lock, so it is properly
2154 		 * serialized against the regular offline usage.
2155 		 */
2156 		cpuhp_offline_cpu_device(cpu);
2157 	}
2158 	if (!ret)
2159 		cpu_smt_control = ctrlval;
2160 	cpu_maps_update_done();
2161 	return ret;
2162 }
2163 
cpuhp_smt_enable(void)2164 int cpuhp_smt_enable(void)
2165 {
2166 	int cpu, ret = 0;
2167 
2168 	cpu_maps_update_begin();
2169 	cpu_smt_control = CPU_SMT_ENABLED;
2170 	for_each_present_cpu(cpu) {
2171 		/* Skip online CPUs and CPUs on offline nodes */
2172 		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2173 			continue;
2174 		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2175 		if (ret)
2176 			break;
2177 		/* See comment in cpuhp_smt_disable() */
2178 		cpuhp_online_cpu_device(cpu);
2179 	}
2180 	cpu_maps_update_done();
2181 	return ret;
2182 }
2183 #endif
2184 
2185 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
show_cpuhp_state(struct device * dev,struct device_attribute * attr,char * buf)2186 static ssize_t show_cpuhp_state(struct device *dev,
2187 				struct device_attribute *attr, char *buf)
2188 {
2189 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2190 
2191 	return sprintf(buf, "%d\n", st->state);
2192 }
2193 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
2194 
write_cpuhp_target(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2195 static ssize_t write_cpuhp_target(struct device *dev,
2196 				  struct device_attribute *attr,
2197 				  const char *buf, size_t count)
2198 {
2199 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2200 	struct cpuhp_step *sp;
2201 	int target, ret;
2202 
2203 	ret = kstrtoint(buf, 10, &target);
2204 	if (ret)
2205 		return ret;
2206 
2207 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2208 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2209 		return -EINVAL;
2210 #else
2211 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2212 		return -EINVAL;
2213 #endif
2214 
2215 	ret = lock_device_hotplug_sysfs();
2216 	if (ret)
2217 		return ret;
2218 
2219 	mutex_lock(&cpuhp_state_mutex);
2220 	sp = cpuhp_get_step(target);
2221 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2222 	mutex_unlock(&cpuhp_state_mutex);
2223 	if (ret)
2224 		goto out;
2225 
2226 	if (st->state < target)
2227 		ret = cpu_up(dev->id, target);
2228 	else
2229 		ret = cpu_down(dev->id, target);
2230 out:
2231 	unlock_device_hotplug();
2232 	return ret ? ret : count;
2233 }
2234 
show_cpuhp_target(struct device * dev,struct device_attribute * attr,char * buf)2235 static ssize_t show_cpuhp_target(struct device *dev,
2236 				 struct device_attribute *attr, char *buf)
2237 {
2238 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2239 
2240 	return sprintf(buf, "%d\n", st->target);
2241 }
2242 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
2243 
2244 
write_cpuhp_fail(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2245 static ssize_t write_cpuhp_fail(struct device *dev,
2246 				struct device_attribute *attr,
2247 				const char *buf, size_t count)
2248 {
2249 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2250 	struct cpuhp_step *sp;
2251 	int fail, ret;
2252 
2253 	ret = kstrtoint(buf, 10, &fail);
2254 	if (ret)
2255 		return ret;
2256 
2257 	if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2258 		return -EINVAL;
2259 
2260 	/*
2261 	 * Cannot fail STARTING/DYING callbacks.
2262 	 */
2263 	if (cpuhp_is_atomic_state(fail))
2264 		return -EINVAL;
2265 
2266 	/*
2267 	 * Cannot fail anything that doesn't have callbacks.
2268 	 */
2269 	mutex_lock(&cpuhp_state_mutex);
2270 	sp = cpuhp_get_step(fail);
2271 	if (!sp->startup.single && !sp->teardown.single)
2272 		ret = -EINVAL;
2273 	mutex_unlock(&cpuhp_state_mutex);
2274 	if (ret)
2275 		return ret;
2276 
2277 	st->fail = fail;
2278 
2279 	return count;
2280 }
2281 
show_cpuhp_fail(struct device * dev,struct device_attribute * attr,char * buf)2282 static ssize_t show_cpuhp_fail(struct device *dev,
2283 			       struct device_attribute *attr, char *buf)
2284 {
2285 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2286 
2287 	return sprintf(buf, "%d\n", st->fail);
2288 }
2289 
2290 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
2291 
2292 static struct attribute *cpuhp_cpu_attrs[] = {
2293 	&dev_attr_state.attr,
2294 	&dev_attr_target.attr,
2295 	&dev_attr_fail.attr,
2296 	NULL
2297 };
2298 
2299 static const struct attribute_group cpuhp_cpu_attr_group = {
2300 	.attrs = cpuhp_cpu_attrs,
2301 	.name = "hotplug",
2302 	NULL
2303 };
2304 
show_cpuhp_states(struct device * dev,struct device_attribute * attr,char * buf)2305 static ssize_t show_cpuhp_states(struct device *dev,
2306 				 struct device_attribute *attr, char *buf)
2307 {
2308 	ssize_t cur, res = 0;
2309 	int i;
2310 
2311 	mutex_lock(&cpuhp_state_mutex);
2312 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2313 		struct cpuhp_step *sp = cpuhp_get_step(i);
2314 
2315 		if (sp->name) {
2316 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2317 			buf += cur;
2318 			res += cur;
2319 		}
2320 	}
2321 	mutex_unlock(&cpuhp_state_mutex);
2322 	return res;
2323 }
2324 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2325 
2326 static struct attribute *cpuhp_cpu_root_attrs[] = {
2327 	&dev_attr_states.attr,
2328 	NULL
2329 };
2330 
2331 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2332 	.attrs = cpuhp_cpu_root_attrs,
2333 	.name = "hotplug",
2334 	NULL
2335 };
2336 
2337 #ifdef CONFIG_HOTPLUG_SMT
2338 
2339 static ssize_t
__store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2340 __store_smt_control(struct device *dev, struct device_attribute *attr,
2341 		    const char *buf, size_t count)
2342 {
2343 	int ctrlval, ret;
2344 
2345 	if (sysfs_streq(buf, "on"))
2346 		ctrlval = CPU_SMT_ENABLED;
2347 	else if (sysfs_streq(buf, "off"))
2348 		ctrlval = CPU_SMT_DISABLED;
2349 	else if (sysfs_streq(buf, "forceoff"))
2350 		ctrlval = CPU_SMT_FORCE_DISABLED;
2351 	else
2352 		return -EINVAL;
2353 
2354 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2355 		return -EPERM;
2356 
2357 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2358 		return -ENODEV;
2359 
2360 	ret = lock_device_hotplug_sysfs();
2361 	if (ret)
2362 		return ret;
2363 
2364 	if (ctrlval != cpu_smt_control) {
2365 		switch (ctrlval) {
2366 		case CPU_SMT_ENABLED:
2367 			ret = cpuhp_smt_enable();
2368 			break;
2369 		case CPU_SMT_DISABLED:
2370 		case CPU_SMT_FORCE_DISABLED:
2371 			ret = cpuhp_smt_disable(ctrlval);
2372 			break;
2373 		}
2374 	}
2375 
2376 	unlock_device_hotplug();
2377 	return ret ? ret : count;
2378 }
2379 
2380 #else /* !CONFIG_HOTPLUG_SMT */
2381 static ssize_t
__store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2382 __store_smt_control(struct device *dev, struct device_attribute *attr,
2383 		    const char *buf, size_t count)
2384 {
2385 	return -ENODEV;
2386 }
2387 #endif /* CONFIG_HOTPLUG_SMT */
2388 
2389 static const char *smt_states[] = {
2390 	[CPU_SMT_ENABLED]		= "on",
2391 	[CPU_SMT_DISABLED]		= "off",
2392 	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2393 	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2394 	[CPU_SMT_NOT_IMPLEMENTED]	= "notimplemented",
2395 };
2396 
2397 static ssize_t
show_smt_control(struct device * dev,struct device_attribute * attr,char * buf)2398 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2399 {
2400 	const char *state = smt_states[cpu_smt_control];
2401 
2402 	return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2403 }
2404 
2405 static ssize_t
store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2406 store_smt_control(struct device *dev, struct device_attribute *attr,
2407 		  const char *buf, size_t count)
2408 {
2409 	return __store_smt_control(dev, attr, buf, count);
2410 }
2411 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2412 
2413 static ssize_t
show_smt_active(struct device * dev,struct device_attribute * attr,char * buf)2414 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2415 {
2416 	return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2417 }
2418 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2419 
2420 static struct attribute *cpuhp_smt_attrs[] = {
2421 	&dev_attr_control.attr,
2422 	&dev_attr_active.attr,
2423 	NULL
2424 };
2425 
2426 static const struct attribute_group cpuhp_smt_attr_group = {
2427 	.attrs = cpuhp_smt_attrs,
2428 	.name = "smt",
2429 	NULL
2430 };
2431 
cpu_smt_sysfs_init(void)2432 static int __init cpu_smt_sysfs_init(void)
2433 {
2434 	return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2435 				  &cpuhp_smt_attr_group);
2436 }
2437 
cpuhp_sysfs_init(void)2438 static int __init cpuhp_sysfs_init(void)
2439 {
2440 	int cpu, ret;
2441 
2442 	ret = cpu_smt_sysfs_init();
2443 	if (ret)
2444 		return ret;
2445 
2446 	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2447 				 &cpuhp_cpu_root_attr_group);
2448 	if (ret)
2449 		return ret;
2450 
2451 	for_each_possible_cpu(cpu) {
2452 		struct device *dev = get_cpu_device(cpu);
2453 
2454 		if (!dev)
2455 			continue;
2456 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2457 		if (ret)
2458 			return ret;
2459 	}
2460 	return 0;
2461 }
2462 device_initcall(cpuhp_sysfs_init);
2463 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2464 
2465 /*
2466  * cpu_bit_bitmap[] is a special, "compressed" data structure that
2467  * represents all NR_CPUS bits binary values of 1<<nr.
2468  *
2469  * It is used by cpumask_of() to get a constant address to a CPU
2470  * mask value that has a single bit set only.
2471  */
2472 
2473 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2474 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
2475 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2476 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2477 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2478 
2479 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2480 
2481 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
2482 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
2483 #if BITS_PER_LONG > 32
2484 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
2485 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
2486 #endif
2487 };
2488 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2489 
2490 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2491 EXPORT_SYMBOL(cpu_all_bits);
2492 
2493 #ifdef CONFIG_INIT_ALL_POSSIBLE
2494 struct cpumask __cpu_possible_mask __read_mostly
2495 	= {CPU_BITS_ALL};
2496 #else
2497 struct cpumask __cpu_possible_mask __read_mostly;
2498 #endif
2499 EXPORT_SYMBOL(__cpu_possible_mask);
2500 
2501 struct cpumask __cpu_online_mask __read_mostly;
2502 EXPORT_SYMBOL(__cpu_online_mask);
2503 
2504 struct cpumask __cpu_present_mask __read_mostly;
2505 EXPORT_SYMBOL(__cpu_present_mask);
2506 
2507 struct cpumask __cpu_active_mask __read_mostly;
2508 EXPORT_SYMBOL(__cpu_active_mask);
2509 
2510 #ifdef CONFIG_CPU_ISOLATION_OPT
2511 struct cpumask __cpu_isolated_mask __read_mostly;
2512 EXPORT_SYMBOL(__cpu_isolated_mask);
2513 #endif
2514 
2515 atomic_t __num_online_cpus __read_mostly;
2516 EXPORT_SYMBOL(__num_online_cpus);
2517 
init_cpu_present(const struct cpumask * src)2518 void init_cpu_present(const struct cpumask *src)
2519 {
2520 	cpumask_copy(&__cpu_present_mask, src);
2521 }
2522 
init_cpu_possible(const struct cpumask * src)2523 void init_cpu_possible(const struct cpumask *src)
2524 {
2525 	cpumask_copy(&__cpu_possible_mask, src);
2526 }
2527 
init_cpu_online(const struct cpumask * src)2528 void init_cpu_online(const struct cpumask *src)
2529 {
2530 	cpumask_copy(&__cpu_online_mask, src);
2531 }
2532 
2533 #ifdef CONFIG_CPU_ISOLATION_OPT
init_cpu_isolated(const struct cpumask * src)2534 void init_cpu_isolated(const struct cpumask *src)
2535 {
2536 	cpumask_copy(&__cpu_isolated_mask, src);
2537 }
2538 #endif
2539 
set_cpu_online(unsigned int cpu,bool online)2540 void set_cpu_online(unsigned int cpu, bool online)
2541 {
2542 	/*
2543 	 * atomic_inc/dec() is required to handle the horrid abuse of this
2544 	 * function by the reboot and kexec code which invoke it from
2545 	 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2546 	 * regular CPU hotplug is properly serialized.
2547 	 *
2548 	 * Note, that the fact that __num_online_cpus is of type atomic_t
2549 	 * does not protect readers which are not serialized against
2550 	 * concurrent hotplug operations.
2551 	 */
2552 	if (online) {
2553 		if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2554 			atomic_inc(&__num_online_cpus);
2555 	} else {
2556 		if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2557 			atomic_dec(&__num_online_cpus);
2558 	}
2559 }
2560 
2561 /*
2562  * Activate the first processor.
2563  */
boot_cpu_init(void)2564 void __init boot_cpu_init(void)
2565 {
2566 	int cpu = smp_processor_id();
2567 
2568 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
2569 	set_cpu_online(cpu, true);
2570 	set_cpu_active(cpu, true);
2571 	set_cpu_present(cpu, true);
2572 	set_cpu_possible(cpu, true);
2573 
2574 #ifdef CONFIG_SMP
2575 	__boot_cpu_id = cpu;
2576 #endif
2577 }
2578 
2579 /*
2580  * Must be called _AFTER_ setting up the per_cpu areas
2581  */
boot_cpu_hotplug_init(void)2582 void __init boot_cpu_hotplug_init(void)
2583 {
2584 #ifdef CONFIG_SMP
2585 	cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2586 #endif
2587 	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2588 }
2589 
2590 /*
2591  * These are used for a global "mitigations=" cmdline option for toggling
2592  * optional CPU mitigations.
2593  */
2594 enum cpu_mitigations {
2595 	CPU_MITIGATIONS_OFF,
2596 	CPU_MITIGATIONS_AUTO,
2597 	CPU_MITIGATIONS_AUTO_NOSMT,
2598 };
2599 
2600 static enum cpu_mitigations cpu_mitigations __ro_after_init =
2601 	CPU_MITIGATIONS_AUTO;
2602 
mitigations_parse_cmdline(char * arg)2603 static int __init mitigations_parse_cmdline(char *arg)
2604 {
2605 	if (!strcmp(arg, "off"))
2606 		cpu_mitigations = CPU_MITIGATIONS_OFF;
2607 	else if (!strcmp(arg, "auto"))
2608 		cpu_mitigations = CPU_MITIGATIONS_AUTO;
2609 	else if (!strcmp(arg, "auto,nosmt"))
2610 		cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2611 	else
2612 		pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2613 			arg);
2614 
2615 	return 0;
2616 }
2617 early_param("mitigations", mitigations_parse_cmdline);
2618 
2619 /* mitigations=off */
cpu_mitigations_off(void)2620 bool cpu_mitigations_off(void)
2621 {
2622 	return cpu_mitigations == CPU_MITIGATIONS_OFF;
2623 }
2624 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2625 
2626 /* mitigations=auto,nosmt */
cpu_mitigations_auto_nosmt(void)2627 bool cpu_mitigations_auto_nosmt(void)
2628 {
2629 	return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2630 }
2631 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
2632