• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
71 #include <linux/padata.h>
72 #include <linux/khugepaged.h>
73 #include <linux/zswapd.h>
74 #ifdef CONFIG_RECLAIM_ACCT
75 #include <linux/reclaim_acct.h>
76 #endif
77 
78 #include <asm/sections.h>
79 #include <asm/tlbflush.h>
80 #include <asm/div64.h>
81 #include "internal.h"
82 #include "shuffle.h"
83 #include "page_reporting.h"
84 
85 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
86 typedef int __bitwise fpi_t;
87 
88 /* No special request */
89 #define FPI_NONE		((__force fpi_t)0)
90 
91 /*
92  * Skip free page reporting notification for the (possibly merged) page.
93  * This does not hinder free page reporting from grabbing the page,
94  * reporting it and marking it "reported" -  it only skips notifying
95  * the free page reporting infrastructure about a newly freed page. For
96  * example, used when temporarily pulling a page from a freelist and
97  * putting it back unmodified.
98  */
99 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
100 
101 /*
102  * Place the (possibly merged) page to the tail of the freelist. Will ignore
103  * page shuffling (relevant code - e.g., memory onlining - is expected to
104  * shuffle the whole zone).
105  *
106  * Note: No code should rely on this flag for correctness - it's purely
107  *       to allow for optimizations when handing back either fresh pages
108  *       (memory onlining) or untouched pages (page isolation, free page
109  *       reporting).
110  */
111 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
112 
113 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
114 static DEFINE_MUTEX(pcp_batch_high_lock);
115 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
116 
117 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
118 DEFINE_PER_CPU(int, numa_node);
119 EXPORT_PER_CPU_SYMBOL(numa_node);
120 #endif
121 
122 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
123 
124 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
125 /*
126  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
127  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
128  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
129  * defined in <linux/topology.h>.
130  */
131 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
132 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
133 #endif
134 
135 /* work_structs for global per-cpu drains */
136 struct pcpu_drain {
137 	struct zone *zone;
138 	struct work_struct work;
139 };
140 static DEFINE_MUTEX(pcpu_drain_mutex);
141 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
142 
143 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
144 volatile unsigned long latent_entropy __latent_entropy;
145 EXPORT_SYMBOL(latent_entropy);
146 #endif
147 
148 /*
149  * Array of node states.
150  */
151 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
152 	[N_POSSIBLE] = NODE_MASK_ALL,
153 	[N_ONLINE] = { { [0] = 1UL } },
154 #ifndef CONFIG_NUMA
155 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
156 #ifdef CONFIG_HIGHMEM
157 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
158 #endif
159 	[N_MEMORY] = { { [0] = 1UL } },
160 	[N_CPU] = { { [0] = 1UL } },
161 #endif	/* NUMA */
162 };
163 EXPORT_SYMBOL(node_states);
164 
165 atomic_long_t _totalram_pages __read_mostly;
166 EXPORT_SYMBOL(_totalram_pages);
167 unsigned long totalreserve_pages __read_mostly;
168 unsigned long totalcma_pages __read_mostly;
169 
170 int percpu_pagelist_fraction;
171 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
172 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
173 DEFINE_STATIC_KEY_TRUE(init_on_alloc);
174 #else
175 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
176 #endif
177 EXPORT_SYMBOL(init_on_alloc);
178 
179 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
180 DEFINE_STATIC_KEY_TRUE(init_on_free);
181 #else
182 DEFINE_STATIC_KEY_FALSE(init_on_free);
183 #endif
184 EXPORT_SYMBOL(init_on_free);
185 
early_init_on_alloc(char * buf)186 static int __init early_init_on_alloc(char *buf)
187 {
188 	int ret;
189 	bool bool_result;
190 
191 	ret = kstrtobool(buf, &bool_result);
192 	if (ret)
193 		return ret;
194 	if (bool_result && page_poisoning_enabled())
195 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
196 	if (bool_result)
197 		static_branch_enable(&init_on_alloc);
198 	else
199 		static_branch_disable(&init_on_alloc);
200 	return 0;
201 }
202 early_param("init_on_alloc", early_init_on_alloc);
203 
early_init_on_free(char * buf)204 static int __init early_init_on_free(char *buf)
205 {
206 	int ret;
207 	bool bool_result;
208 
209 	ret = kstrtobool(buf, &bool_result);
210 	if (ret)
211 		return ret;
212 	if (bool_result && page_poisoning_enabled())
213 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
214 	if (bool_result)
215 		static_branch_enable(&init_on_free);
216 	else
217 		static_branch_disable(&init_on_free);
218 	return 0;
219 }
220 early_param("init_on_free", early_init_on_free);
221 
222 /*
223  * A cached value of the page's pageblock's migratetype, used when the page is
224  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
225  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
226  * Also the migratetype set in the page does not necessarily match the pcplist
227  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
228  * other index - this ensures that it will be put on the correct CMA freelist.
229  */
get_pcppage_migratetype(struct page * page)230 static inline int get_pcppage_migratetype(struct page *page)
231 {
232 	return page->index;
233 }
234 
set_pcppage_migratetype(struct page * page,int migratetype)235 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
236 {
237 	page->index = migratetype;
238 }
239 
240 #ifdef CONFIG_PM_SLEEP
241 /*
242  * The following functions are used by the suspend/hibernate code to temporarily
243  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
244  * while devices are suspended.  To avoid races with the suspend/hibernate code,
245  * they should always be called with system_transition_mutex held
246  * (gfp_allowed_mask also should only be modified with system_transition_mutex
247  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
248  * with that modification).
249  */
250 
251 static gfp_t saved_gfp_mask;
252 
pm_restore_gfp_mask(void)253 void pm_restore_gfp_mask(void)
254 {
255 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
256 	if (saved_gfp_mask) {
257 		gfp_allowed_mask = saved_gfp_mask;
258 		saved_gfp_mask = 0;
259 	}
260 }
261 
pm_restrict_gfp_mask(void)262 void pm_restrict_gfp_mask(void)
263 {
264 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
265 	WARN_ON(saved_gfp_mask);
266 	saved_gfp_mask = gfp_allowed_mask;
267 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
268 }
269 
pm_suspended_storage(void)270 bool pm_suspended_storage(void)
271 {
272 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
273 		return false;
274 	return true;
275 }
276 #endif /* CONFIG_PM_SLEEP */
277 
278 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
279 unsigned int pageblock_order __read_mostly;
280 #endif
281 
282 static void __free_pages_ok(struct page *page, unsigned int order,
283 			    fpi_t fpi_flags);
284 
285 /*
286  * results with 256, 32 in the lowmem_reserve sysctl:
287  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
288  *	1G machine -> (16M dma, 784M normal, 224M high)
289  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
290  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
291  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
292  *
293  * TBD: should special case ZONE_DMA32 machines here - in those we normally
294  * don't need any ZONE_NORMAL reservation
295  */
296 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
297 #ifdef CONFIG_ZONE_DMA
298 	[ZONE_DMA] = 256,
299 #endif
300 #ifdef CONFIG_ZONE_DMA32
301 	[ZONE_DMA32] = 256,
302 #endif
303 	[ZONE_NORMAL] = 32,
304 #ifdef CONFIG_HIGHMEM
305 	[ZONE_HIGHMEM] = 0,
306 #endif
307 	[ZONE_MOVABLE] = 0,
308 };
309 
310 static char * const zone_names[MAX_NR_ZONES] = {
311 #ifdef CONFIG_ZONE_DMA
312 	 "DMA",
313 #endif
314 #ifdef CONFIG_ZONE_DMA32
315 	 "DMA32",
316 #endif
317 	 "Normal",
318 #ifdef CONFIG_HIGHMEM
319 	 "HighMem",
320 #endif
321 	 "Movable",
322 #ifdef CONFIG_ZONE_DEVICE
323 	 "Device",
324 #endif
325 };
326 
327 const char * const migratetype_names[MIGRATE_TYPES] = {
328 	"Unmovable",
329 	"Movable",
330 	"Reclaimable",
331 #ifdef CONFIG_CMA_REUSE
332 	"CMA",
333 #endif
334 	"HighAtomic",
335 #if defined(CONFIG_CMA) && !defined(CONFIG_CMA_REUSE)
336 	"CMA",
337 #endif
338 #ifdef CONFIG_MEMORY_ISOLATION
339 	"Isolate",
340 #endif
341 };
342 
343 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
344 	[NULL_COMPOUND_DTOR] = NULL,
345 	[COMPOUND_PAGE_DTOR] = free_compound_page,
346 #ifdef CONFIG_HUGETLB_PAGE
347 	[HUGETLB_PAGE_DTOR] = free_huge_page,
348 #endif
349 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
350 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
351 #endif
352 };
353 
354 int min_free_kbytes = 1024;
355 int user_min_free_kbytes = -1;
356 #ifdef CONFIG_DISCONTIGMEM
357 /*
358  * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
359  * are not on separate NUMA nodes. Functionally this works but with
360  * watermark_boost_factor, it can reclaim prematurely as the ranges can be
361  * quite small. By default, do not boost watermarks on discontigmem as in
362  * many cases very high-order allocations like THP are likely to be
363  * unsupported and the premature reclaim offsets the advantage of long-term
364  * fragmentation avoidance.
365  */
366 int watermark_boost_factor __read_mostly;
367 #else
368 int watermark_boost_factor __read_mostly = 15000;
369 #endif
370 int watermark_scale_factor = 10;
371 
372 static unsigned long nr_kernel_pages __initdata;
373 static unsigned long nr_all_pages __initdata;
374 static unsigned long dma_reserve __initdata;
375 
376 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
377 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
378 static unsigned long required_kernelcore __initdata;
379 static unsigned long required_kernelcore_percent __initdata;
380 static unsigned long required_movablecore __initdata;
381 static unsigned long required_movablecore_percent __initdata;
382 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
383 static bool mirrored_kernelcore __meminitdata;
384 
385 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
386 int movable_zone;
387 EXPORT_SYMBOL(movable_zone);
388 
389 #if MAX_NUMNODES > 1
390 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
391 unsigned int nr_online_nodes __read_mostly = 1;
392 EXPORT_SYMBOL(nr_node_ids);
393 EXPORT_SYMBOL(nr_online_nodes);
394 #endif
395 
396 int page_group_by_mobility_disabled __read_mostly;
397 
398 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
399 /*
400  * During boot we initialize deferred pages on-demand, as needed, but once
401  * page_alloc_init_late() has finished, the deferred pages are all initialized,
402  * and we can permanently disable that path.
403  */
404 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
405 
406 /*
407  * Calling kasan_free_pages() only after deferred memory initialization
408  * has completed. Poisoning pages during deferred memory init will greatly
409  * lengthen the process and cause problem in large memory systems as the
410  * deferred pages initialization is done with interrupt disabled.
411  *
412  * Assuming that there will be no reference to those newly initialized
413  * pages before they are ever allocated, this should have no effect on
414  * KASAN memory tracking as the poison will be properly inserted at page
415  * allocation time. The only corner case is when pages are allocated by
416  * on-demand allocation and then freed again before the deferred pages
417  * initialization is done, but this is not likely to happen.
418  */
kasan_free_nondeferred_pages(struct page * page,int order)419 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
420 {
421 	if (!static_branch_unlikely(&deferred_pages))
422 		kasan_free_pages(page, order);
423 }
424 
425 /* Returns true if the struct page for the pfn is uninitialised */
early_page_uninitialised(unsigned long pfn)426 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
427 {
428 	int nid = early_pfn_to_nid(pfn);
429 
430 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
431 		return true;
432 
433 	return false;
434 }
435 
436 /*
437  * Returns true when the remaining initialisation should be deferred until
438  * later in the boot cycle when it can be parallelised.
439  */
440 static bool __meminit
defer_init(int nid,unsigned long pfn,unsigned long end_pfn)441 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
442 {
443 	static unsigned long prev_end_pfn, nr_initialised;
444 
445 	/*
446 	 * prev_end_pfn static that contains the end of previous zone
447 	 * No need to protect because called very early in boot before smp_init.
448 	 */
449 	if (prev_end_pfn != end_pfn) {
450 		prev_end_pfn = end_pfn;
451 		nr_initialised = 0;
452 	}
453 
454 	/* Always populate low zones for address-constrained allocations */
455 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
456 		return false;
457 
458 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
459 		return true;
460 	/*
461 	 * We start only with one section of pages, more pages are added as
462 	 * needed until the rest of deferred pages are initialized.
463 	 */
464 	nr_initialised++;
465 	if ((nr_initialised > PAGES_PER_SECTION) &&
466 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
467 		NODE_DATA(nid)->first_deferred_pfn = pfn;
468 		return true;
469 	}
470 	return false;
471 }
472 #else
473 #define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)
474 
early_page_uninitialised(unsigned long pfn)475 static inline bool early_page_uninitialised(unsigned long pfn)
476 {
477 	return false;
478 }
479 
defer_init(int nid,unsigned long pfn,unsigned long end_pfn)480 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
481 {
482 	return false;
483 }
484 #endif
485 
486 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(struct page * page,unsigned long pfn)487 static inline unsigned long *get_pageblock_bitmap(struct page *page,
488 							unsigned long pfn)
489 {
490 #ifdef CONFIG_SPARSEMEM
491 	return section_to_usemap(__pfn_to_section(pfn));
492 #else
493 	return page_zone(page)->pageblock_flags;
494 #endif /* CONFIG_SPARSEMEM */
495 }
496 
pfn_to_bitidx(struct page * page,unsigned long pfn)497 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
498 {
499 #ifdef CONFIG_SPARSEMEM
500 	pfn &= (PAGES_PER_SECTION-1);
501 #else
502 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
503 #endif /* CONFIG_SPARSEMEM */
504 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
505 }
506 
507 /**
508  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
509  * @page: The page within the block of interest
510  * @pfn: The target page frame number
511  * @mask: mask of bits that the caller is interested in
512  *
513  * Return: pageblock_bits flags
514  */
515 static __always_inline
__get_pfnblock_flags_mask(struct page * page,unsigned long pfn,unsigned long mask)516 unsigned long __get_pfnblock_flags_mask(struct page *page,
517 					unsigned long pfn,
518 					unsigned long mask)
519 {
520 	unsigned long *bitmap;
521 	unsigned long bitidx, word_bitidx;
522 	unsigned long word;
523 
524 	bitmap = get_pageblock_bitmap(page, pfn);
525 	bitidx = pfn_to_bitidx(page, pfn);
526 	word_bitidx = bitidx / BITS_PER_LONG;
527 	bitidx &= (BITS_PER_LONG-1);
528 
529 	word = bitmap[word_bitidx];
530 	return (word >> bitidx) & mask;
531 }
532 
get_pfnblock_flags_mask(struct page * page,unsigned long pfn,unsigned long mask)533 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
534 					unsigned long mask)
535 {
536 	return __get_pfnblock_flags_mask(page, pfn, mask);
537 }
538 
get_pfnblock_migratetype(struct page * page,unsigned long pfn)539 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
540 {
541 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
542 }
543 
544 /**
545  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
546  * @page: The page within the block of interest
547  * @flags: The flags to set
548  * @pfn: The target page frame number
549  * @mask: mask of bits that the caller is interested in
550  */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long mask)551 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
552 					unsigned long pfn,
553 					unsigned long mask)
554 {
555 	unsigned long *bitmap;
556 	unsigned long bitidx, word_bitidx;
557 	unsigned long old_word, word;
558 
559 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
560 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
561 
562 	bitmap = get_pageblock_bitmap(page, pfn);
563 	bitidx = pfn_to_bitidx(page, pfn);
564 	word_bitidx = bitidx / BITS_PER_LONG;
565 	bitidx &= (BITS_PER_LONG-1);
566 
567 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
568 
569 	mask <<= bitidx;
570 	flags <<= bitidx;
571 
572 	word = READ_ONCE(bitmap[word_bitidx]);
573 	for (;;) {
574 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
575 		if (word == old_word)
576 			break;
577 		word = old_word;
578 	}
579 }
580 
set_pageblock_migratetype(struct page * page,int migratetype)581 void set_pageblock_migratetype(struct page *page, int migratetype)
582 {
583 	if (unlikely(page_group_by_mobility_disabled &&
584 		     migratetype < MIGRATE_PCPTYPES))
585 		migratetype = MIGRATE_UNMOVABLE;
586 
587 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
588 				page_to_pfn(page), MIGRATETYPE_MASK);
589 }
590 
591 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)592 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
593 {
594 	int ret = 0;
595 	unsigned seq;
596 	unsigned long pfn = page_to_pfn(page);
597 	unsigned long sp, start_pfn;
598 
599 	do {
600 		seq = zone_span_seqbegin(zone);
601 		start_pfn = zone->zone_start_pfn;
602 		sp = zone->spanned_pages;
603 		if (!zone_spans_pfn(zone, pfn))
604 			ret = 1;
605 	} while (zone_span_seqretry(zone, seq));
606 
607 	if (ret)
608 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
609 			pfn, zone_to_nid(zone), zone->name,
610 			start_pfn, start_pfn + sp);
611 
612 	return ret;
613 }
614 
page_is_consistent(struct zone * zone,struct page * page)615 static int page_is_consistent(struct zone *zone, struct page *page)
616 {
617 	if (!pfn_valid_within(page_to_pfn(page)))
618 		return 0;
619 	if (zone != page_zone(page))
620 		return 0;
621 
622 	return 1;
623 }
624 /*
625  * Temporary debugging check for pages not lying within a given zone.
626  */
bad_range(struct zone * zone,struct page * page)627 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
628 {
629 	if (page_outside_zone_boundaries(zone, page))
630 		return 1;
631 	if (!page_is_consistent(zone, page))
632 		return 1;
633 
634 	return 0;
635 }
636 #else
bad_range(struct zone * zone,struct page * page)637 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
638 {
639 	return 0;
640 }
641 #endif
642 
bad_page(struct page * page,const char * reason)643 static void bad_page(struct page *page, const char *reason)
644 {
645 	static unsigned long resume;
646 	static unsigned long nr_shown;
647 	static unsigned long nr_unshown;
648 
649 	/*
650 	 * Allow a burst of 60 reports, then keep quiet for that minute;
651 	 * or allow a steady drip of one report per second.
652 	 */
653 	if (nr_shown == 60) {
654 		if (time_before(jiffies, resume)) {
655 			nr_unshown++;
656 			goto out;
657 		}
658 		if (nr_unshown) {
659 			pr_alert(
660 			      "BUG: Bad page state: %lu messages suppressed\n",
661 				nr_unshown);
662 			nr_unshown = 0;
663 		}
664 		nr_shown = 0;
665 	}
666 	if (nr_shown++ == 0)
667 		resume = jiffies + 60 * HZ;
668 
669 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
670 		current->comm, page_to_pfn(page));
671 	__dump_page(page, reason);
672 	dump_page_owner(page);
673 
674 	print_modules();
675 	dump_stack();
676 out:
677 	/* Leave bad fields for debug, except PageBuddy could make trouble */
678 	page_mapcount_reset(page); /* remove PageBuddy */
679 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
680 }
681 
682 /*
683  * Higher-order pages are called "compound pages".  They are structured thusly:
684  *
685  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
686  *
687  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
688  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
689  *
690  * The first tail page's ->compound_dtor holds the offset in array of compound
691  * page destructors. See compound_page_dtors.
692  *
693  * The first tail page's ->compound_order holds the order of allocation.
694  * This usage means that zero-order pages may not be compound.
695  */
696 
free_compound_page(struct page * page)697 void free_compound_page(struct page *page)
698 {
699 	mem_cgroup_uncharge(page);
700 	__free_pages_ok(page, compound_order(page), FPI_NONE);
701 }
702 
prep_compound_page(struct page * page,unsigned int order)703 void prep_compound_page(struct page *page, unsigned int order)
704 {
705 	int i;
706 	int nr_pages = 1 << order;
707 
708 	__SetPageHead(page);
709 	for (i = 1; i < nr_pages; i++) {
710 		struct page *p = page + i;
711 		set_page_count(p, 0);
712 		p->mapping = TAIL_MAPPING;
713 		set_compound_head(p, page);
714 	}
715 
716 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
717 	set_compound_order(page, order);
718 	atomic_set(compound_mapcount_ptr(page), -1);
719 	if (hpage_pincount_available(page))
720 		atomic_set(compound_pincount_ptr(page), 0);
721 }
722 
723 #ifdef CONFIG_DEBUG_PAGEALLOC
724 unsigned int _debug_guardpage_minorder;
725 
726 bool _debug_pagealloc_enabled_early __read_mostly
727 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
728 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
729 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
730 EXPORT_SYMBOL(_debug_pagealloc_enabled);
731 
732 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
733 
early_debug_pagealloc(char * buf)734 static int __init early_debug_pagealloc(char *buf)
735 {
736 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
737 }
738 early_param("debug_pagealloc", early_debug_pagealloc);
739 
init_debug_pagealloc(void)740 void init_debug_pagealloc(void)
741 {
742 	if (!debug_pagealloc_enabled())
743 		return;
744 
745 	static_branch_enable(&_debug_pagealloc_enabled);
746 
747 	if (!debug_guardpage_minorder())
748 		return;
749 
750 	static_branch_enable(&_debug_guardpage_enabled);
751 }
752 
debug_guardpage_minorder_setup(char * buf)753 static int __init debug_guardpage_minorder_setup(char *buf)
754 {
755 	unsigned long res;
756 
757 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
758 		pr_err("Bad debug_guardpage_minorder value\n");
759 		return 0;
760 	}
761 	_debug_guardpage_minorder = res;
762 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
763 	return 0;
764 }
765 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
766 
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)767 static inline bool set_page_guard(struct zone *zone, struct page *page,
768 				unsigned int order, int migratetype)
769 {
770 	if (!debug_guardpage_enabled())
771 		return false;
772 
773 	if (order >= debug_guardpage_minorder())
774 		return false;
775 
776 	__SetPageGuard(page);
777 	INIT_LIST_HEAD(&page->lru);
778 	set_page_private(page, order);
779 	/* Guard pages are not available for any usage */
780 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
781 
782 	return true;
783 }
784 
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)785 static inline void clear_page_guard(struct zone *zone, struct page *page,
786 				unsigned int order, int migratetype)
787 {
788 	if (!debug_guardpage_enabled())
789 		return;
790 
791 	__ClearPageGuard(page);
792 
793 	set_page_private(page, 0);
794 	if (!is_migrate_isolate(migratetype))
795 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
796 }
797 #else
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)798 static inline bool set_page_guard(struct zone *zone, struct page *page,
799 			unsigned int order, int migratetype) { return false; }
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)800 static inline void clear_page_guard(struct zone *zone, struct page *page,
801 				unsigned int order, int migratetype) {}
802 #endif
803 
set_buddy_order(struct page * page,unsigned int order)804 static inline void set_buddy_order(struct page *page, unsigned int order)
805 {
806 	set_page_private(page, order);
807 	__SetPageBuddy(page);
808 }
809 
810 /*
811  * This function checks whether a page is free && is the buddy
812  * we can coalesce a page and its buddy if
813  * (a) the buddy is not in a hole (check before calling!) &&
814  * (b) the buddy is in the buddy system &&
815  * (c) a page and its buddy have the same order &&
816  * (d) a page and its buddy are in the same zone.
817  *
818  * For recording whether a page is in the buddy system, we set PageBuddy.
819  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
820  *
821  * For recording page's order, we use page_private(page).
822  */
page_is_buddy(struct page * page,struct page * buddy,unsigned int order)823 static inline bool page_is_buddy(struct page *page, struct page *buddy,
824 							unsigned int order)
825 {
826 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
827 		return false;
828 
829 	if (buddy_order(buddy) != order)
830 		return false;
831 
832 	/*
833 	 * zone check is done late to avoid uselessly calculating
834 	 * zone/node ids for pages that could never merge.
835 	 */
836 	if (page_zone_id(page) != page_zone_id(buddy))
837 		return false;
838 
839 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
840 
841 	return true;
842 }
843 
844 #ifdef CONFIG_COMPACTION
task_capc(struct zone * zone)845 static inline struct capture_control *task_capc(struct zone *zone)
846 {
847 	struct capture_control *capc = current->capture_control;
848 
849 	return unlikely(capc) &&
850 		!(current->flags & PF_KTHREAD) &&
851 		!capc->page &&
852 		capc->cc->zone == zone ? capc : NULL;
853 }
854 
855 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)856 compaction_capture(struct capture_control *capc, struct page *page,
857 		   int order, int migratetype)
858 {
859 	if (!capc || order != capc->cc->order)
860 		return false;
861 
862 	/* Do not accidentally pollute CMA or isolated regions*/
863 	if (is_migrate_cma(migratetype) ||
864 	    is_migrate_isolate(migratetype))
865 		return false;
866 
867 	/*
868 	 * Do not let lower order allocations polluate a movable pageblock.
869 	 * This might let an unmovable request use a reclaimable pageblock
870 	 * and vice-versa but no more than normal fallback logic which can
871 	 * have trouble finding a high-order free page.
872 	 */
873 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
874 		return false;
875 
876 	capc->page = page;
877 	return true;
878 }
879 
880 #else
task_capc(struct zone * zone)881 static inline struct capture_control *task_capc(struct zone *zone)
882 {
883 	return NULL;
884 }
885 
886 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)887 compaction_capture(struct capture_control *capc, struct page *page,
888 		   int order, int migratetype)
889 {
890 	return false;
891 }
892 #endif /* CONFIG_COMPACTION */
893 
894 /* Used for pages not on another list */
add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)895 static inline void add_to_free_list(struct page *page, struct zone *zone,
896 				    unsigned int order, int migratetype)
897 {
898 	struct free_area *area = &zone->free_area[order];
899 
900 	list_add(&page->lru, &area->free_list[migratetype]);
901 	area->nr_free++;
902 }
903 
904 /* Used for pages not on another list */
add_to_free_list_tail(struct page * page,struct zone * zone,unsigned int order,int migratetype)905 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
906 					 unsigned int order, int migratetype)
907 {
908 	struct free_area *area = &zone->free_area[order];
909 
910 	list_add_tail(&page->lru, &area->free_list[migratetype]);
911 	area->nr_free++;
912 }
913 
914 /*
915  * Used for pages which are on another list. Move the pages to the tail
916  * of the list - so the moved pages won't immediately be considered for
917  * allocation again (e.g., optimization for memory onlining).
918  */
move_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)919 static inline void move_to_free_list(struct page *page, struct zone *zone,
920 				     unsigned int order, int migratetype)
921 {
922 	struct free_area *area = &zone->free_area[order];
923 
924 	list_move_tail(&page->lru, &area->free_list[migratetype]);
925 }
926 
del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order)927 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
928 					   unsigned int order)
929 {
930 	/* clear reported state and update reported page count */
931 	if (page_reported(page))
932 		__ClearPageReported(page);
933 
934 	list_del(&page->lru);
935 	__ClearPageBuddy(page);
936 	set_page_private(page, 0);
937 	zone->free_area[order].nr_free--;
938 }
939 
940 /*
941  * If this is not the largest possible page, check if the buddy
942  * of the next-highest order is free. If it is, it's possible
943  * that pages are being freed that will coalesce soon. In case,
944  * that is happening, add the free page to the tail of the list
945  * so it's less likely to be used soon and more likely to be merged
946  * as a higher order page
947  */
948 static inline bool
buddy_merge_likely(unsigned long pfn,unsigned long buddy_pfn,struct page * page,unsigned int order)949 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
950 		   struct page *page, unsigned int order)
951 {
952 	struct page *higher_page, *higher_buddy;
953 	unsigned long combined_pfn;
954 
955 	if (order >= MAX_ORDER - 2)
956 		return false;
957 
958 	if (!pfn_valid_within(buddy_pfn))
959 		return false;
960 
961 	combined_pfn = buddy_pfn & pfn;
962 	higher_page = page + (combined_pfn - pfn);
963 	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
964 	higher_buddy = higher_page + (buddy_pfn - combined_pfn);
965 
966 	return pfn_valid_within(buddy_pfn) &&
967 	       page_is_buddy(higher_page, higher_buddy, order + 1);
968 }
969 
970 /*
971  * Freeing function for a buddy system allocator.
972  *
973  * The concept of a buddy system is to maintain direct-mapped table
974  * (containing bit values) for memory blocks of various "orders".
975  * The bottom level table contains the map for the smallest allocatable
976  * units of memory (here, pages), and each level above it describes
977  * pairs of units from the levels below, hence, "buddies".
978  * At a high level, all that happens here is marking the table entry
979  * at the bottom level available, and propagating the changes upward
980  * as necessary, plus some accounting needed to play nicely with other
981  * parts of the VM system.
982  * At each level, we keep a list of pages, which are heads of continuous
983  * free pages of length of (1 << order) and marked with PageBuddy.
984  * Page's order is recorded in page_private(page) field.
985  * So when we are allocating or freeing one, we can derive the state of the
986  * other.  That is, if we allocate a small block, and both were
987  * free, the remainder of the region must be split into blocks.
988  * If a block is freed, and its buddy is also free, then this
989  * triggers coalescing into a block of larger size.
990  *
991  * -- nyc
992  */
993 
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype,fpi_t fpi_flags)994 static inline void __free_one_page(struct page *page,
995 		unsigned long pfn,
996 		struct zone *zone, unsigned int order,
997 		int migratetype, fpi_t fpi_flags)
998 {
999 	struct capture_control *capc = task_capc(zone);
1000 	unsigned long buddy_pfn;
1001 	unsigned long combined_pfn;
1002 	unsigned int max_order;
1003 	struct page *buddy;
1004 	bool to_tail;
1005 
1006 	max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1007 
1008 	VM_BUG_ON(!zone_is_initialized(zone));
1009 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1010 
1011 	VM_BUG_ON(migratetype == -1);
1012 	if (likely(!is_migrate_isolate(migratetype)))
1013 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1014 
1015 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1016 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1017 
1018 continue_merging:
1019 	while (order < max_order) {
1020 		if (compaction_capture(capc, page, order, migratetype)) {
1021 			__mod_zone_freepage_state(zone, -(1 << order),
1022 								migratetype);
1023 			return;
1024 		}
1025 		buddy_pfn = __find_buddy_pfn(pfn, order);
1026 		buddy = page + (buddy_pfn - pfn);
1027 
1028 		if (!pfn_valid_within(buddy_pfn))
1029 			goto done_merging;
1030 		if (!page_is_buddy(page, buddy, order))
1031 			goto done_merging;
1032 		/*
1033 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1034 		 * merge with it and move up one order.
1035 		 */
1036 		if (page_is_guard(buddy))
1037 			clear_page_guard(zone, buddy, order, migratetype);
1038 		else
1039 			del_page_from_free_list(buddy, zone, order);
1040 		combined_pfn = buddy_pfn & pfn;
1041 		page = page + (combined_pfn - pfn);
1042 		pfn = combined_pfn;
1043 		order++;
1044 	}
1045 	if (order < MAX_ORDER - 1) {
1046 		/* If we are here, it means order is >= pageblock_order.
1047 		 * We want to prevent merge between freepages on isolate
1048 		 * pageblock and normal pageblock. Without this, pageblock
1049 		 * isolation could cause incorrect freepage or CMA accounting.
1050 		 *
1051 		 * We don't want to hit this code for the more frequent
1052 		 * low-order merging.
1053 		 */
1054 		if (unlikely(has_isolate_pageblock(zone))) {
1055 			int buddy_mt;
1056 
1057 			buddy_pfn = __find_buddy_pfn(pfn, order);
1058 			buddy = page + (buddy_pfn - pfn);
1059 			buddy_mt = get_pageblock_migratetype(buddy);
1060 
1061 			if (migratetype != buddy_mt
1062 					&& (is_migrate_isolate(migratetype) ||
1063 						is_migrate_isolate(buddy_mt)))
1064 				goto done_merging;
1065 		}
1066 		max_order = order + 1;
1067 		goto continue_merging;
1068 	}
1069 
1070 done_merging:
1071 	set_buddy_order(page, order);
1072 
1073 	if (fpi_flags & FPI_TO_TAIL)
1074 		to_tail = true;
1075 	else if (is_shuffle_order(order))
1076 		to_tail = shuffle_pick_tail();
1077 	else
1078 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1079 
1080 	if (to_tail)
1081 		add_to_free_list_tail(page, zone, order, migratetype);
1082 	else
1083 		add_to_free_list(page, zone, order, migratetype);
1084 
1085 	/* Notify page reporting subsystem of freed page */
1086 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1087 		page_reporting_notify_free(order);
1088 }
1089 
1090 /*
1091  * A bad page could be due to a number of fields. Instead of multiple branches,
1092  * try and check multiple fields with one check. The caller must do a detailed
1093  * check if necessary.
1094  */
page_expected_state(struct page * page,unsigned long check_flags)1095 static inline bool page_expected_state(struct page *page,
1096 					unsigned long check_flags)
1097 {
1098 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1099 		return false;
1100 
1101 	if (unlikely((unsigned long)page->mapping |
1102 			page_ref_count(page) |
1103 #ifdef CONFIG_MEMCG
1104 			(unsigned long)page->mem_cgroup |
1105 #endif
1106 			(page->flags & check_flags)))
1107 		return false;
1108 
1109 	return true;
1110 }
1111 
page_bad_reason(struct page * page,unsigned long flags)1112 static const char *page_bad_reason(struct page *page, unsigned long flags)
1113 {
1114 	const char *bad_reason = NULL;
1115 
1116 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1117 		bad_reason = "nonzero mapcount";
1118 	if (unlikely(page->mapping != NULL))
1119 		bad_reason = "non-NULL mapping";
1120 	if (unlikely(page_ref_count(page) != 0))
1121 		bad_reason = "nonzero _refcount";
1122 	if (unlikely(page->flags & flags)) {
1123 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1124 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1125 		else
1126 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1127 	}
1128 #ifdef CONFIG_MEMCG
1129 	if (unlikely(page->mem_cgroup))
1130 		bad_reason = "page still charged to cgroup";
1131 #endif
1132 	return bad_reason;
1133 }
1134 
check_free_page_bad(struct page * page)1135 static void check_free_page_bad(struct page *page)
1136 {
1137 	bad_page(page,
1138 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1139 }
1140 
check_free_page(struct page * page)1141 static inline int check_free_page(struct page *page)
1142 {
1143 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1144 		return 0;
1145 
1146 	/* Something has gone sideways, find it */
1147 	check_free_page_bad(page);
1148 	return 1;
1149 }
1150 
free_tail_pages_check(struct page * head_page,struct page * page)1151 static int free_tail_pages_check(struct page *head_page, struct page *page)
1152 {
1153 	int ret = 1;
1154 
1155 	/*
1156 	 * We rely page->lru.next never has bit 0 set, unless the page
1157 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1158 	 */
1159 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1160 
1161 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1162 		ret = 0;
1163 		goto out;
1164 	}
1165 	switch (page - head_page) {
1166 	case 1:
1167 		/* the first tail page: ->mapping may be compound_mapcount() */
1168 		if (unlikely(compound_mapcount(page))) {
1169 			bad_page(page, "nonzero compound_mapcount");
1170 			goto out;
1171 		}
1172 		break;
1173 	case 2:
1174 		/*
1175 		 * the second tail page: ->mapping is
1176 		 * deferred_list.next -- ignore value.
1177 		 */
1178 		break;
1179 	default:
1180 		if (page->mapping != TAIL_MAPPING) {
1181 			bad_page(page, "corrupted mapping in tail page");
1182 			goto out;
1183 		}
1184 		break;
1185 	}
1186 	if (unlikely(!PageTail(page))) {
1187 		bad_page(page, "PageTail not set");
1188 		goto out;
1189 	}
1190 	if (unlikely(compound_head(page) != head_page)) {
1191 		bad_page(page, "compound_head not consistent");
1192 		goto out;
1193 	}
1194 	ret = 0;
1195 out:
1196 	page->mapping = NULL;
1197 	clear_compound_head(page);
1198 	return ret;
1199 }
1200 
kernel_init_free_pages(struct page * page,int numpages)1201 static void kernel_init_free_pages(struct page *page, int numpages)
1202 {
1203 	int i;
1204 
1205 	/* s390's use of memset() could override KASAN redzones. */
1206 	kasan_disable_current();
1207 	for (i = 0; i < numpages; i++)
1208 		clear_highpage(page + i);
1209 	kasan_enable_current();
1210 }
1211 
free_pages_prepare(struct page * page,unsigned int order,bool check_free)1212 static __always_inline bool free_pages_prepare(struct page *page,
1213 					unsigned int order, bool check_free)
1214 {
1215 	int bad = 0;
1216 
1217 	VM_BUG_ON_PAGE(PageTail(page), page);
1218 
1219 	trace_mm_page_free(page, order);
1220 
1221 	if (unlikely(PageHWPoison(page)) && !order) {
1222 		/*
1223 		 * Do not let hwpoison pages hit pcplists/buddy
1224 		 * Untie memcg state and reset page's owner
1225 		 */
1226 		if (memcg_kmem_enabled() && PageKmemcg(page))
1227 			__memcg_kmem_uncharge_page(page, order);
1228 		reset_page_owner(page, order);
1229 		return false;
1230 	}
1231 
1232 	/*
1233 	 * Check tail pages before head page information is cleared to
1234 	 * avoid checking PageCompound for order-0 pages.
1235 	 */
1236 	if (unlikely(order)) {
1237 		bool compound = PageCompound(page);
1238 		int i;
1239 
1240 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1241 
1242 		if (compound)
1243 			ClearPageDoubleMap(page);
1244 		for (i = 1; i < (1 << order); i++) {
1245 			if (compound)
1246 				bad += free_tail_pages_check(page, page + i);
1247 			if (unlikely(check_free_page(page + i))) {
1248 				bad++;
1249 				continue;
1250 			}
1251 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1252 		}
1253 	}
1254 	if (PageMappingFlags(page))
1255 		page->mapping = NULL;
1256 	if (memcg_kmem_enabled() && PageKmemcg(page))
1257 		__memcg_kmem_uncharge_page(page, order);
1258 	if (check_free)
1259 		bad += check_free_page(page);
1260 	if (bad)
1261 		return false;
1262 
1263 	page_cpupid_reset_last(page);
1264 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1265 	reset_page_owner(page, order);
1266 
1267 	if (!PageHighMem(page)) {
1268 		debug_check_no_locks_freed(page_address(page),
1269 					   PAGE_SIZE << order);
1270 		debug_check_no_obj_freed(page_address(page),
1271 					   PAGE_SIZE << order);
1272 	}
1273 	if (want_init_on_free())
1274 		kernel_init_free_pages(page, 1 << order);
1275 
1276 	kernel_poison_pages(page, 1 << order, 0);
1277 	/*
1278 	 * arch_free_page() can make the page's contents inaccessible.  s390
1279 	 * does this.  So nothing which can access the page's contents should
1280 	 * happen after this.
1281 	 */
1282 	arch_free_page(page, order);
1283 
1284 	if (debug_pagealloc_enabled_static())
1285 		kernel_map_pages(page, 1 << order, 0);
1286 
1287 	kasan_free_nondeferred_pages(page, order);
1288 
1289 	return true;
1290 }
1291 
1292 #ifdef CONFIG_DEBUG_VM
1293 /*
1294  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1295  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1296  * moved from pcp lists to free lists.
1297  */
free_pcp_prepare(struct page * page)1298 static bool free_pcp_prepare(struct page *page)
1299 {
1300 	return free_pages_prepare(page, 0, true);
1301 }
1302 
bulkfree_pcp_prepare(struct page * page)1303 static bool bulkfree_pcp_prepare(struct page *page)
1304 {
1305 	if (debug_pagealloc_enabled_static())
1306 		return check_free_page(page);
1307 	else
1308 		return false;
1309 }
1310 #else
1311 /*
1312  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1313  * moving from pcp lists to free list in order to reduce overhead. With
1314  * debug_pagealloc enabled, they are checked also immediately when being freed
1315  * to the pcp lists.
1316  */
free_pcp_prepare(struct page * page)1317 static bool free_pcp_prepare(struct page *page)
1318 {
1319 	if (debug_pagealloc_enabled_static())
1320 		return free_pages_prepare(page, 0, true);
1321 	else
1322 		return free_pages_prepare(page, 0, false);
1323 }
1324 
bulkfree_pcp_prepare(struct page * page)1325 static bool bulkfree_pcp_prepare(struct page *page)
1326 {
1327 	return check_free_page(page);
1328 }
1329 #endif /* CONFIG_DEBUG_VM */
1330 
prefetch_buddy(struct page * page)1331 static inline void prefetch_buddy(struct page *page)
1332 {
1333 	unsigned long pfn = page_to_pfn(page);
1334 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1335 	struct page *buddy = page + (buddy_pfn - pfn);
1336 
1337 	prefetch(buddy);
1338 }
1339 
1340 /*
1341  * Frees a number of pages from the PCP lists
1342  * Assumes all pages on list are in same zone, and of same order.
1343  * count is the number of pages to free.
1344  *
1345  * If the zone was previously in an "all pages pinned" state then look to
1346  * see if this freeing clears that state.
1347  *
1348  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1349  * pinned" detection logic.
1350  */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp)1351 static void free_pcppages_bulk(struct zone *zone, int count,
1352 					struct per_cpu_pages *pcp)
1353 {
1354 	int migratetype = 0;
1355 	int batch_free = 0;
1356 	int prefetch_nr = 0;
1357 	bool isolated_pageblocks;
1358 	struct page *page, *tmp;
1359 	LIST_HEAD(head);
1360 
1361 	/*
1362 	 * Ensure proper count is passed which otherwise would stuck in the
1363 	 * below while (list_empty(list)) loop.
1364 	 */
1365 	count = min(pcp->count, count);
1366 	while (count) {
1367 		struct list_head *list;
1368 
1369 		/*
1370 		 * Remove pages from lists in a round-robin fashion. A
1371 		 * batch_free count is maintained that is incremented when an
1372 		 * empty list is encountered.  This is so more pages are freed
1373 		 * off fuller lists instead of spinning excessively around empty
1374 		 * lists
1375 		 */
1376 		do {
1377 			batch_free++;
1378 			if (++migratetype == MIGRATE_PCPTYPES)
1379 				migratetype = 0;
1380 			list = &pcp->lists[migratetype];
1381 		} while (list_empty(list));
1382 
1383 		/* This is the only non-empty list. Free them all. */
1384 		if (batch_free == MIGRATE_PCPTYPES)
1385 			batch_free = count;
1386 
1387 		do {
1388 			page = list_last_entry(list, struct page, lru);
1389 			/* must delete to avoid corrupting pcp list */
1390 			list_del(&page->lru);
1391 			pcp->count--;
1392 
1393 			if (bulkfree_pcp_prepare(page))
1394 				continue;
1395 
1396 			list_add_tail(&page->lru, &head);
1397 
1398 			/*
1399 			 * We are going to put the page back to the global
1400 			 * pool, prefetch its buddy to speed up later access
1401 			 * under zone->lock. It is believed the overhead of
1402 			 * an additional test and calculating buddy_pfn here
1403 			 * can be offset by reduced memory latency later. To
1404 			 * avoid excessive prefetching due to large count, only
1405 			 * prefetch buddy for the first pcp->batch nr of pages.
1406 			 */
1407 			if (prefetch_nr++ < pcp->batch)
1408 				prefetch_buddy(page);
1409 		} while (--count && --batch_free && !list_empty(list));
1410 	}
1411 
1412 	spin_lock(&zone->lock);
1413 	isolated_pageblocks = has_isolate_pageblock(zone);
1414 
1415 	/*
1416 	 * Use safe version since after __free_one_page(),
1417 	 * page->lru.next will not point to original list.
1418 	 */
1419 	list_for_each_entry_safe(page, tmp, &head, lru) {
1420 		int mt = get_pcppage_migratetype(page);
1421 		/* MIGRATE_ISOLATE page should not go to pcplists */
1422 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1423 		/* Pageblock could have been isolated meanwhile */
1424 		if (unlikely(isolated_pageblocks))
1425 			mt = get_pageblock_migratetype(page);
1426 
1427 		__free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
1428 		trace_mm_page_pcpu_drain(page, 0, mt);
1429 	}
1430 	spin_unlock(&zone->lock);
1431 }
1432 
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,int migratetype,fpi_t fpi_flags)1433 static void free_one_page(struct zone *zone,
1434 				struct page *page, unsigned long pfn,
1435 				unsigned int order,
1436 				int migratetype, fpi_t fpi_flags)
1437 {
1438 	spin_lock(&zone->lock);
1439 	if (unlikely(has_isolate_pageblock(zone) ||
1440 		is_migrate_isolate(migratetype))) {
1441 		migratetype = get_pfnblock_migratetype(page, pfn);
1442 	}
1443 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1444 	spin_unlock(&zone->lock);
1445 }
1446 
__init_single_page(struct page * page,unsigned long pfn,unsigned long zone,int nid)1447 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1448 				unsigned long zone, int nid)
1449 {
1450 	mm_zero_struct_page(page);
1451 	set_page_links(page, zone, nid, pfn);
1452 	init_page_count(page);
1453 	page_mapcount_reset(page);
1454 	page_cpupid_reset_last(page);
1455 	page_kasan_tag_reset(page);
1456 
1457 	INIT_LIST_HEAD(&page->lru);
1458 #ifdef WANT_PAGE_VIRTUAL
1459 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1460 	if (!is_highmem_idx(zone))
1461 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1462 #endif
1463 }
1464 
1465 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
init_reserved_page(unsigned long pfn)1466 static void __meminit init_reserved_page(unsigned long pfn)
1467 {
1468 	pg_data_t *pgdat;
1469 	int nid, zid;
1470 
1471 	if (!early_page_uninitialised(pfn))
1472 		return;
1473 
1474 	nid = early_pfn_to_nid(pfn);
1475 	pgdat = NODE_DATA(nid);
1476 
1477 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1478 		struct zone *zone = &pgdat->node_zones[zid];
1479 
1480 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1481 			break;
1482 	}
1483 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1484 }
1485 #else
init_reserved_page(unsigned long pfn)1486 static inline void init_reserved_page(unsigned long pfn)
1487 {
1488 }
1489 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1490 
1491 /*
1492  * Initialised pages do not have PageReserved set. This function is
1493  * called for each range allocated by the bootmem allocator and
1494  * marks the pages PageReserved. The remaining valid pages are later
1495  * sent to the buddy page allocator.
1496  */
reserve_bootmem_region(phys_addr_t start,phys_addr_t end)1497 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1498 {
1499 	unsigned long start_pfn = PFN_DOWN(start);
1500 	unsigned long end_pfn = PFN_UP(end);
1501 
1502 	for (; start_pfn < end_pfn; start_pfn++) {
1503 		if (pfn_valid(start_pfn)) {
1504 			struct page *page = pfn_to_page(start_pfn);
1505 
1506 			init_reserved_page(start_pfn);
1507 
1508 			/* Avoid false-positive PageTail() */
1509 			INIT_LIST_HEAD(&page->lru);
1510 
1511 			/*
1512 			 * no need for atomic set_bit because the struct
1513 			 * page is not visible yet so nobody should
1514 			 * access it yet.
1515 			 */
1516 			__SetPageReserved(page);
1517 		}
1518 	}
1519 }
1520 
__free_pages_ok(struct page * page,unsigned int order,fpi_t fpi_flags)1521 static void __free_pages_ok(struct page *page, unsigned int order,
1522 			    fpi_t fpi_flags)
1523 {
1524 	unsigned long flags;
1525 	int migratetype;
1526 	unsigned long pfn = page_to_pfn(page);
1527 
1528 	if (!free_pages_prepare(page, order, true))
1529 		return;
1530 
1531 	migratetype = get_pfnblock_migratetype(page, pfn);
1532 	local_irq_save(flags);
1533 	__count_vm_events(PGFREE, 1 << order);
1534 	free_one_page(page_zone(page), page, pfn, order, migratetype,
1535 		      fpi_flags);
1536 	local_irq_restore(flags);
1537 }
1538 
__free_pages_core(struct page * page,unsigned int order)1539 void __free_pages_core(struct page *page, unsigned int order)
1540 {
1541 	unsigned int nr_pages = 1 << order;
1542 	struct page *p = page;
1543 	unsigned int loop;
1544 
1545 	/*
1546 	 * When initializing the memmap, __init_single_page() sets the refcount
1547 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1548 	 * refcount of all involved pages to 0.
1549 	 */
1550 	prefetchw(p);
1551 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1552 		prefetchw(p + 1);
1553 		__ClearPageReserved(p);
1554 		set_page_count(p, 0);
1555 	}
1556 	__ClearPageReserved(p);
1557 	set_page_count(p, 0);
1558 
1559 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1560 
1561 	/*
1562 	 * Bypass PCP and place fresh pages right to the tail, primarily
1563 	 * relevant for memory onlining.
1564 	 */
1565 	__free_pages_ok(page, order, FPI_TO_TAIL);
1566 }
1567 
1568 #ifdef CONFIG_NEED_MULTIPLE_NODES
1569 
1570 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1571 
1572 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1573 
1574 /*
1575  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1576  */
__early_pfn_to_nid(unsigned long pfn,struct mminit_pfnnid_cache * state)1577 int __meminit __early_pfn_to_nid(unsigned long pfn,
1578 					struct mminit_pfnnid_cache *state)
1579 {
1580 	unsigned long start_pfn, end_pfn;
1581 	int nid;
1582 
1583 	if (state->last_start <= pfn && pfn < state->last_end)
1584 		return state->last_nid;
1585 
1586 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1587 	if (nid != NUMA_NO_NODE) {
1588 		state->last_start = start_pfn;
1589 		state->last_end = end_pfn;
1590 		state->last_nid = nid;
1591 	}
1592 
1593 	return nid;
1594 }
1595 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1596 
early_pfn_to_nid(unsigned long pfn)1597 int __meminit early_pfn_to_nid(unsigned long pfn)
1598 {
1599 	static DEFINE_SPINLOCK(early_pfn_lock);
1600 	int nid;
1601 
1602 	spin_lock(&early_pfn_lock);
1603 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1604 	if (nid < 0)
1605 		nid = first_online_node;
1606 	spin_unlock(&early_pfn_lock);
1607 
1608 	return nid;
1609 }
1610 #endif /* CONFIG_NEED_MULTIPLE_NODES */
1611 
memblock_free_pages(struct page * page,unsigned long pfn,unsigned int order)1612 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1613 							unsigned int order)
1614 {
1615 	if (early_page_uninitialised(pfn))
1616 		return;
1617 	__free_pages_core(page, order);
1618 }
1619 
1620 /*
1621  * Check that the whole (or subset of) a pageblock given by the interval of
1622  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1623  * with the migration of free compaction scanner. The scanners then need to
1624  * use only pfn_valid_within() check for arches that allow holes within
1625  * pageblocks.
1626  *
1627  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1628  *
1629  * It's possible on some configurations to have a setup like node0 node1 node0
1630  * i.e. it's possible that all pages within a zones range of pages do not
1631  * belong to a single zone. We assume that a border between node0 and node1
1632  * can occur within a single pageblock, but not a node0 node1 node0
1633  * interleaving within a single pageblock. It is therefore sufficient to check
1634  * the first and last page of a pageblock and avoid checking each individual
1635  * page in a pageblock.
1636  */
__pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)1637 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1638 				     unsigned long end_pfn, struct zone *zone)
1639 {
1640 	struct page *start_page;
1641 	struct page *end_page;
1642 
1643 	/* end_pfn is one past the range we are checking */
1644 	end_pfn--;
1645 
1646 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1647 		return NULL;
1648 
1649 	start_page = pfn_to_online_page(start_pfn);
1650 	if (!start_page)
1651 		return NULL;
1652 
1653 	if (page_zone(start_page) != zone)
1654 		return NULL;
1655 
1656 	end_page = pfn_to_page(end_pfn);
1657 
1658 	/* This gives a shorter code than deriving page_zone(end_page) */
1659 	if (page_zone_id(start_page) != page_zone_id(end_page))
1660 		return NULL;
1661 
1662 	return start_page;
1663 }
1664 
set_zone_contiguous(struct zone * zone)1665 void set_zone_contiguous(struct zone *zone)
1666 {
1667 	unsigned long block_start_pfn = zone->zone_start_pfn;
1668 	unsigned long block_end_pfn;
1669 
1670 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1671 	for (; block_start_pfn < zone_end_pfn(zone);
1672 			block_start_pfn = block_end_pfn,
1673 			 block_end_pfn += pageblock_nr_pages) {
1674 
1675 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1676 
1677 		if (!__pageblock_pfn_to_page(block_start_pfn,
1678 					     block_end_pfn, zone))
1679 			return;
1680 		cond_resched();
1681 	}
1682 
1683 	/* We confirm that there is no hole */
1684 	zone->contiguous = true;
1685 }
1686 
clear_zone_contiguous(struct zone * zone)1687 void clear_zone_contiguous(struct zone *zone)
1688 {
1689 	zone->contiguous = false;
1690 }
1691 
1692 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
deferred_free_range(unsigned long pfn,unsigned long nr_pages)1693 static void __init deferred_free_range(unsigned long pfn,
1694 				       unsigned long nr_pages)
1695 {
1696 	struct page *page;
1697 	unsigned long i;
1698 
1699 	if (!nr_pages)
1700 		return;
1701 
1702 	page = pfn_to_page(pfn);
1703 
1704 	/* Free a large naturally-aligned chunk if possible */
1705 	if (nr_pages == pageblock_nr_pages &&
1706 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1707 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1708 		__free_pages_core(page, pageblock_order);
1709 		return;
1710 	}
1711 
1712 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1713 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1714 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1715 		__free_pages_core(page, 0);
1716 	}
1717 }
1718 
1719 /* Completion tracking for deferred_init_memmap() threads */
1720 static atomic_t pgdat_init_n_undone __initdata;
1721 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1722 
pgdat_init_report_one_done(void)1723 static inline void __init pgdat_init_report_one_done(void)
1724 {
1725 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1726 		complete(&pgdat_init_all_done_comp);
1727 }
1728 
1729 /*
1730  * Returns true if page needs to be initialized or freed to buddy allocator.
1731  *
1732  * First we check if pfn is valid on architectures where it is possible to have
1733  * holes within pageblock_nr_pages. On systems where it is not possible, this
1734  * function is optimized out.
1735  *
1736  * Then, we check if a current large page is valid by only checking the validity
1737  * of the head pfn.
1738  */
deferred_pfn_valid(unsigned long pfn)1739 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1740 {
1741 	if (!pfn_valid_within(pfn))
1742 		return false;
1743 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1744 		return false;
1745 	return true;
1746 }
1747 
1748 /*
1749  * Free pages to buddy allocator. Try to free aligned pages in
1750  * pageblock_nr_pages sizes.
1751  */
deferred_free_pages(unsigned long pfn,unsigned long end_pfn)1752 static void __init deferred_free_pages(unsigned long pfn,
1753 				       unsigned long end_pfn)
1754 {
1755 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1756 	unsigned long nr_free = 0;
1757 
1758 	for (; pfn < end_pfn; pfn++) {
1759 		if (!deferred_pfn_valid(pfn)) {
1760 			deferred_free_range(pfn - nr_free, nr_free);
1761 			nr_free = 0;
1762 		} else if (!(pfn & nr_pgmask)) {
1763 			deferred_free_range(pfn - nr_free, nr_free);
1764 			nr_free = 1;
1765 		} else {
1766 			nr_free++;
1767 		}
1768 	}
1769 	/* Free the last block of pages to allocator */
1770 	deferred_free_range(pfn - nr_free, nr_free);
1771 }
1772 
1773 /*
1774  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1775  * by performing it only once every pageblock_nr_pages.
1776  * Return number of pages initialized.
1777  */
deferred_init_pages(struct zone * zone,unsigned long pfn,unsigned long end_pfn)1778 static unsigned long  __init deferred_init_pages(struct zone *zone,
1779 						 unsigned long pfn,
1780 						 unsigned long end_pfn)
1781 {
1782 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1783 	int nid = zone_to_nid(zone);
1784 	unsigned long nr_pages = 0;
1785 	int zid = zone_idx(zone);
1786 	struct page *page = NULL;
1787 
1788 	for (; pfn < end_pfn; pfn++) {
1789 		if (!deferred_pfn_valid(pfn)) {
1790 			page = NULL;
1791 			continue;
1792 		} else if (!page || !(pfn & nr_pgmask)) {
1793 			page = pfn_to_page(pfn);
1794 		} else {
1795 			page++;
1796 		}
1797 		__init_single_page(page, pfn, zid, nid);
1798 		nr_pages++;
1799 	}
1800 	return (nr_pages);
1801 }
1802 
1803 /*
1804  * This function is meant to pre-load the iterator for the zone init.
1805  * Specifically it walks through the ranges until we are caught up to the
1806  * first_init_pfn value and exits there. If we never encounter the value we
1807  * return false indicating there are no valid ranges left.
1808  */
1809 static bool __init
deferred_init_mem_pfn_range_in_zone(u64 * i,struct zone * zone,unsigned long * spfn,unsigned long * epfn,unsigned long first_init_pfn)1810 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1811 				    unsigned long *spfn, unsigned long *epfn,
1812 				    unsigned long first_init_pfn)
1813 {
1814 	u64 j;
1815 
1816 	/*
1817 	 * Start out by walking through the ranges in this zone that have
1818 	 * already been initialized. We don't need to do anything with them
1819 	 * so we just need to flush them out of the system.
1820 	 */
1821 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1822 		if (*epfn <= first_init_pfn)
1823 			continue;
1824 		if (*spfn < first_init_pfn)
1825 			*spfn = first_init_pfn;
1826 		*i = j;
1827 		return true;
1828 	}
1829 
1830 	return false;
1831 }
1832 
1833 /*
1834  * Initialize and free pages. We do it in two loops: first we initialize
1835  * struct page, then free to buddy allocator, because while we are
1836  * freeing pages we can access pages that are ahead (computing buddy
1837  * page in __free_one_page()).
1838  *
1839  * In order to try and keep some memory in the cache we have the loop
1840  * broken along max page order boundaries. This way we will not cause
1841  * any issues with the buddy page computation.
1842  */
1843 static unsigned long __init
deferred_init_maxorder(u64 * i,struct zone * zone,unsigned long * start_pfn,unsigned long * end_pfn)1844 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1845 		       unsigned long *end_pfn)
1846 {
1847 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1848 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1849 	unsigned long nr_pages = 0;
1850 	u64 j = *i;
1851 
1852 	/* First we loop through and initialize the page values */
1853 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1854 		unsigned long t;
1855 
1856 		if (mo_pfn <= *start_pfn)
1857 			break;
1858 
1859 		t = min(mo_pfn, *end_pfn);
1860 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1861 
1862 		if (mo_pfn < *end_pfn) {
1863 			*start_pfn = mo_pfn;
1864 			break;
1865 		}
1866 	}
1867 
1868 	/* Reset values and now loop through freeing pages as needed */
1869 	swap(j, *i);
1870 
1871 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1872 		unsigned long t;
1873 
1874 		if (mo_pfn <= spfn)
1875 			break;
1876 
1877 		t = min(mo_pfn, epfn);
1878 		deferred_free_pages(spfn, t);
1879 
1880 		if (mo_pfn <= epfn)
1881 			break;
1882 	}
1883 
1884 	return nr_pages;
1885 }
1886 
1887 static void __init
deferred_init_memmap_chunk(unsigned long start_pfn,unsigned long end_pfn,void * arg)1888 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1889 			   void *arg)
1890 {
1891 	unsigned long spfn, epfn;
1892 	struct zone *zone = arg;
1893 	u64 i;
1894 
1895 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1896 
1897 	/*
1898 	 * Initialize and free pages in MAX_ORDER sized increments so that we
1899 	 * can avoid introducing any issues with the buddy allocator.
1900 	 */
1901 	while (spfn < end_pfn) {
1902 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
1903 		cond_resched();
1904 	}
1905 }
1906 
1907 /* An arch may override for more concurrency. */
1908 __weak int __init
deferred_page_init_max_threads(const struct cpumask * node_cpumask)1909 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1910 {
1911 	return 1;
1912 }
1913 
1914 /* Initialise remaining memory on a node */
deferred_init_memmap(void * data)1915 static int __init deferred_init_memmap(void *data)
1916 {
1917 	pg_data_t *pgdat = data;
1918 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1919 	unsigned long spfn = 0, epfn = 0;
1920 	unsigned long first_init_pfn, flags;
1921 	unsigned long start = jiffies;
1922 	struct zone *zone;
1923 	int zid, max_threads;
1924 	u64 i;
1925 
1926 	/* Bind memory initialisation thread to a local node if possible */
1927 	if (!cpumask_empty(cpumask))
1928 		set_cpus_allowed_ptr(current, cpumask);
1929 
1930 	pgdat_resize_lock(pgdat, &flags);
1931 	first_init_pfn = pgdat->first_deferred_pfn;
1932 	if (first_init_pfn == ULONG_MAX) {
1933 		pgdat_resize_unlock(pgdat, &flags);
1934 		pgdat_init_report_one_done();
1935 		return 0;
1936 	}
1937 
1938 	/* Sanity check boundaries */
1939 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1940 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1941 	pgdat->first_deferred_pfn = ULONG_MAX;
1942 
1943 	/*
1944 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
1945 	 * interrupt thread must allocate this early in boot, zone must be
1946 	 * pre-grown prior to start of deferred page initialization.
1947 	 */
1948 	pgdat_resize_unlock(pgdat, &flags);
1949 
1950 	/* Only the highest zone is deferred so find it */
1951 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1952 		zone = pgdat->node_zones + zid;
1953 		if (first_init_pfn < zone_end_pfn(zone))
1954 			break;
1955 	}
1956 
1957 	/* If the zone is empty somebody else may have cleared out the zone */
1958 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1959 						 first_init_pfn))
1960 		goto zone_empty;
1961 
1962 	max_threads = deferred_page_init_max_threads(cpumask);
1963 
1964 	while (spfn < epfn) {
1965 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1966 		struct padata_mt_job job = {
1967 			.thread_fn   = deferred_init_memmap_chunk,
1968 			.fn_arg      = zone,
1969 			.start       = spfn,
1970 			.size        = epfn_align - spfn,
1971 			.align       = PAGES_PER_SECTION,
1972 			.min_chunk   = PAGES_PER_SECTION,
1973 			.max_threads = max_threads,
1974 		};
1975 
1976 		padata_do_multithreaded(&job);
1977 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1978 						    epfn_align);
1979 	}
1980 zone_empty:
1981 	/* Sanity check that the next zone really is unpopulated */
1982 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1983 
1984 	pr_info("node %d deferred pages initialised in %ums\n",
1985 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
1986 
1987 	pgdat_init_report_one_done();
1988 	return 0;
1989 }
1990 
1991 /*
1992  * If this zone has deferred pages, try to grow it by initializing enough
1993  * deferred pages to satisfy the allocation specified by order, rounded up to
1994  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1995  * of SECTION_SIZE bytes by initializing struct pages in increments of
1996  * PAGES_PER_SECTION * sizeof(struct page) bytes.
1997  *
1998  * Return true when zone was grown, otherwise return false. We return true even
1999  * when we grow less than requested, to let the caller decide if there are
2000  * enough pages to satisfy the allocation.
2001  *
2002  * Note: We use noinline because this function is needed only during boot, and
2003  * it is called from a __ref function _deferred_grow_zone. This way we are
2004  * making sure that it is not inlined into permanent text section.
2005  */
2006 static noinline bool __init
deferred_grow_zone(struct zone * zone,unsigned int order)2007 deferred_grow_zone(struct zone *zone, unsigned int order)
2008 {
2009 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2010 	pg_data_t *pgdat = zone->zone_pgdat;
2011 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2012 	unsigned long spfn, epfn, flags;
2013 	unsigned long nr_pages = 0;
2014 	u64 i;
2015 
2016 	/* Only the last zone may have deferred pages */
2017 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2018 		return false;
2019 
2020 	pgdat_resize_lock(pgdat, &flags);
2021 
2022 	/*
2023 	 * If someone grew this zone while we were waiting for spinlock, return
2024 	 * true, as there might be enough pages already.
2025 	 */
2026 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2027 		pgdat_resize_unlock(pgdat, &flags);
2028 		return true;
2029 	}
2030 
2031 	/* If the zone is empty somebody else may have cleared out the zone */
2032 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2033 						 first_deferred_pfn)) {
2034 		pgdat->first_deferred_pfn = ULONG_MAX;
2035 		pgdat_resize_unlock(pgdat, &flags);
2036 		/* Retry only once. */
2037 		return first_deferred_pfn != ULONG_MAX;
2038 	}
2039 
2040 	/*
2041 	 * Initialize and free pages in MAX_ORDER sized increments so
2042 	 * that we can avoid introducing any issues with the buddy
2043 	 * allocator.
2044 	 */
2045 	while (spfn < epfn) {
2046 		/* update our first deferred PFN for this section */
2047 		first_deferred_pfn = spfn;
2048 
2049 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2050 		touch_nmi_watchdog();
2051 
2052 		/* We should only stop along section boundaries */
2053 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2054 			continue;
2055 
2056 		/* If our quota has been met we can stop here */
2057 		if (nr_pages >= nr_pages_needed)
2058 			break;
2059 	}
2060 
2061 	pgdat->first_deferred_pfn = spfn;
2062 	pgdat_resize_unlock(pgdat, &flags);
2063 
2064 	return nr_pages > 0;
2065 }
2066 
2067 /*
2068  * deferred_grow_zone() is __init, but it is called from
2069  * get_page_from_freelist() during early boot until deferred_pages permanently
2070  * disables this call. This is why we have refdata wrapper to avoid warning,
2071  * and to ensure that the function body gets unloaded.
2072  */
2073 static bool __ref
_deferred_grow_zone(struct zone * zone,unsigned int order)2074 _deferred_grow_zone(struct zone *zone, unsigned int order)
2075 {
2076 	return deferred_grow_zone(zone, order);
2077 }
2078 
2079 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2080 
page_alloc_init_late(void)2081 void __init page_alloc_init_late(void)
2082 {
2083 	struct zone *zone;
2084 	int nid;
2085 
2086 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2087 
2088 	/* There will be num_node_state(N_MEMORY) threads */
2089 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2090 	for_each_node_state(nid, N_MEMORY) {
2091 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2092 	}
2093 
2094 	/* Block until all are initialised */
2095 	wait_for_completion(&pgdat_init_all_done_comp);
2096 
2097 	/*
2098 	 * The number of managed pages has changed due to the initialisation
2099 	 * so the pcpu batch and high limits needs to be updated or the limits
2100 	 * will be artificially small.
2101 	 */
2102 	for_each_populated_zone(zone)
2103 		zone_pcp_update(zone);
2104 
2105 	/*
2106 	 * We initialized the rest of the deferred pages.  Permanently disable
2107 	 * on-demand struct page initialization.
2108 	 */
2109 	static_branch_disable(&deferred_pages);
2110 
2111 	/* Reinit limits that are based on free pages after the kernel is up */
2112 	files_maxfiles_init();
2113 #endif
2114 
2115 	/* Discard memblock private memory */
2116 	memblock_discard();
2117 
2118 	for_each_node_state(nid, N_MEMORY)
2119 		shuffle_free_memory(NODE_DATA(nid));
2120 
2121 	for_each_populated_zone(zone)
2122 		set_zone_contiguous(zone);
2123 }
2124 
2125 #ifdef CONFIG_CMA
2126 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
init_cma_reserved_pageblock(struct page * page)2127 void __init init_cma_reserved_pageblock(struct page *page)
2128 {
2129 	unsigned i = pageblock_nr_pages;
2130 	struct page *p = page;
2131 
2132 	do {
2133 		__ClearPageReserved(p);
2134 		set_page_count(p, 0);
2135 	} while (++p, --i);
2136 
2137 	set_pageblock_migratetype(page, MIGRATE_CMA);
2138 
2139 	if (pageblock_order >= MAX_ORDER) {
2140 		i = pageblock_nr_pages;
2141 		p = page;
2142 		do {
2143 			set_page_refcounted(p);
2144 			__free_pages(p, MAX_ORDER - 1);
2145 			p += MAX_ORDER_NR_PAGES;
2146 		} while (i -= MAX_ORDER_NR_PAGES);
2147 	} else {
2148 		set_page_refcounted(page);
2149 		__free_pages(page, pageblock_order);
2150 	}
2151 
2152 	adjust_managed_page_count(page, pageblock_nr_pages);
2153 }
2154 #endif
2155 
2156 /*
2157  * The order of subdivision here is critical for the IO subsystem.
2158  * Please do not alter this order without good reasons and regression
2159  * testing. Specifically, as large blocks of memory are subdivided,
2160  * the order in which smaller blocks are delivered depends on the order
2161  * they're subdivided in this function. This is the primary factor
2162  * influencing the order in which pages are delivered to the IO
2163  * subsystem according to empirical testing, and this is also justified
2164  * by considering the behavior of a buddy system containing a single
2165  * large block of memory acted on by a series of small allocations.
2166  * This behavior is a critical factor in sglist merging's success.
2167  *
2168  * -- nyc
2169  */
expand(struct zone * zone,struct page * page,int low,int high,int migratetype)2170 static inline void expand(struct zone *zone, struct page *page,
2171 	int low, int high, int migratetype)
2172 {
2173 	unsigned long size = 1 << high;
2174 
2175 	while (high > low) {
2176 		high--;
2177 		size >>= 1;
2178 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2179 
2180 		/*
2181 		 * Mark as guard pages (or page), that will allow to
2182 		 * merge back to allocator when buddy will be freed.
2183 		 * Corresponding page table entries will not be touched,
2184 		 * pages will stay not present in virtual address space
2185 		 */
2186 		if (set_page_guard(zone, &page[size], high, migratetype))
2187 			continue;
2188 
2189 		add_to_free_list(&page[size], zone, high, migratetype);
2190 		set_buddy_order(&page[size], high);
2191 	}
2192 }
2193 
check_new_page_bad(struct page * page)2194 static void check_new_page_bad(struct page *page)
2195 {
2196 	if (unlikely(page->flags & __PG_HWPOISON)) {
2197 		/* Don't complain about hwpoisoned pages */
2198 		page_mapcount_reset(page); /* remove PageBuddy */
2199 		return;
2200 	}
2201 
2202 	bad_page(page,
2203 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2204 }
2205 
2206 /*
2207  * This page is about to be returned from the page allocator
2208  */
check_new_page(struct page * page)2209 static inline int check_new_page(struct page *page)
2210 {
2211 	if (likely(page_expected_state(page,
2212 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2213 		return 0;
2214 
2215 	check_new_page_bad(page);
2216 	return 1;
2217 }
2218 
free_pages_prezeroed(void)2219 static inline bool free_pages_prezeroed(void)
2220 {
2221 	return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2222 		page_poisoning_enabled()) || want_init_on_free();
2223 }
2224 
2225 #ifdef CONFIG_DEBUG_VM
2226 /*
2227  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2228  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2229  * also checked when pcp lists are refilled from the free lists.
2230  */
check_pcp_refill(struct page * page)2231 static inline bool check_pcp_refill(struct page *page)
2232 {
2233 	if (debug_pagealloc_enabled_static())
2234 		return check_new_page(page);
2235 	else
2236 		return false;
2237 }
2238 
check_new_pcp(struct page * page)2239 static inline bool check_new_pcp(struct page *page)
2240 {
2241 	return check_new_page(page);
2242 }
2243 #else
2244 /*
2245  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2246  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2247  * enabled, they are also checked when being allocated from the pcp lists.
2248  */
check_pcp_refill(struct page * page)2249 static inline bool check_pcp_refill(struct page *page)
2250 {
2251 	return check_new_page(page);
2252 }
check_new_pcp(struct page * page)2253 static inline bool check_new_pcp(struct page *page)
2254 {
2255 	if (debug_pagealloc_enabled_static())
2256 		return check_new_page(page);
2257 	else
2258 		return false;
2259 }
2260 #endif /* CONFIG_DEBUG_VM */
2261 
check_new_pages(struct page * page,unsigned int order)2262 static bool check_new_pages(struct page *page, unsigned int order)
2263 {
2264 	int i;
2265 	for (i = 0; i < (1 << order); i++) {
2266 		struct page *p = page + i;
2267 
2268 		if (unlikely(check_new_page(p)))
2269 			return true;
2270 	}
2271 
2272 	return false;
2273 }
2274 
post_alloc_hook(struct page * page,unsigned int order,gfp_t gfp_flags)2275 inline void post_alloc_hook(struct page *page, unsigned int order,
2276 				gfp_t gfp_flags)
2277 {
2278 	set_page_private(page, 0);
2279 	set_page_refcounted(page);
2280 
2281 	arch_alloc_page(page, order);
2282 	if (debug_pagealloc_enabled_static())
2283 		kernel_map_pages(page, 1 << order, 1);
2284 	kasan_alloc_pages(page, order);
2285 	kernel_poison_pages(page, 1 << order, 1);
2286 	set_page_owner(page, order, gfp_flags);
2287 }
2288 
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags)2289 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2290 							unsigned int alloc_flags)
2291 {
2292 	post_alloc_hook(page, order, gfp_flags);
2293 
2294 	if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2295 		kernel_init_free_pages(page, 1 << order);
2296 
2297 	if (order && (gfp_flags & __GFP_COMP))
2298 		prep_compound_page(page, order);
2299 
2300 	/*
2301 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2302 	 * allocate the page. The expectation is that the caller is taking
2303 	 * steps that will free more memory. The caller should avoid the page
2304 	 * being used for !PFMEMALLOC purposes.
2305 	 */
2306 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2307 		set_page_pfmemalloc(page);
2308 	else
2309 		clear_page_pfmemalloc(page);
2310 }
2311 
2312 /*
2313  * Go through the free lists for the given migratetype and remove
2314  * the smallest available page from the freelists
2315  */
2316 static __always_inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)2317 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2318 						int migratetype)
2319 {
2320 	unsigned int current_order;
2321 	struct free_area *area;
2322 	struct page *page;
2323 
2324 	/* Find a page of the appropriate size in the preferred list */
2325 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2326 		area = &(zone->free_area[current_order]);
2327 		page = get_page_from_free_area(area, migratetype);
2328 		if (!page)
2329 			continue;
2330 		del_page_from_free_list(page, zone, current_order);
2331 		expand(zone, page, order, current_order, migratetype);
2332 		set_pcppage_migratetype(page, migratetype);
2333 		return page;
2334 	}
2335 
2336 	return NULL;
2337 }
2338 
2339 
2340 /*
2341  * This array describes the order lists are fallen back to when
2342  * the free lists for the desirable migrate type are depleted
2343  */
2344 static int fallbacks[MIGRATE_TYPES][3] = {
2345 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2346 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2347 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2348 #ifdef CONFIG_CMA
2349 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2350 #endif
2351 #ifdef CONFIG_MEMORY_ISOLATION
2352 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2353 #endif
2354 };
2355 
2356 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)2357 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2358 					unsigned int order)
2359 {
2360 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2361 }
2362 #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)2363 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2364 					unsigned int order) { return NULL; }
2365 #endif
2366 
2367 /*
2368  * Move the free pages in a range to the freelist tail of the requested type.
2369  * Note that start_page and end_pages are not aligned on a pageblock
2370  * boundary. If alignment is required, use move_freepages_block()
2371  */
move_freepages(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn,int migratetype,int * num_movable)2372 static int move_freepages(struct zone *zone,
2373 			  unsigned long start_pfn, unsigned long end_pfn,
2374 			  int migratetype, int *num_movable)
2375 {
2376 	struct page *page;
2377 	unsigned long pfn;
2378 	unsigned int order;
2379 	int pages_moved = 0;
2380 
2381 	for (pfn = start_pfn; pfn <= end_pfn;) {
2382 		if (!pfn_valid_within(pfn)) {
2383 			pfn++;
2384 			continue;
2385 		}
2386 
2387 		page = pfn_to_page(pfn);
2388 		if (!PageBuddy(page)) {
2389 			/*
2390 			 * We assume that pages that could be isolated for
2391 			 * migration are movable. But we don't actually try
2392 			 * isolating, as that would be expensive.
2393 			 */
2394 			if (num_movable &&
2395 					(PageLRU(page) || __PageMovable(page)))
2396 				(*num_movable)++;
2397 			pfn++;
2398 			continue;
2399 		}
2400 
2401 		/* Make sure we are not inadvertently changing nodes */
2402 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2403 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2404 
2405 		order = buddy_order(page);
2406 		move_to_free_list(page, zone, order, migratetype);
2407 		pfn += 1 << order;
2408 		pages_moved += 1 << order;
2409 	}
2410 
2411 	return pages_moved;
2412 }
2413 
move_freepages_block(struct zone * zone,struct page * page,int migratetype,int * num_movable)2414 int move_freepages_block(struct zone *zone, struct page *page,
2415 				int migratetype, int *num_movable)
2416 {
2417 	unsigned long start_pfn, end_pfn, pfn;
2418 
2419 	if (num_movable)
2420 		*num_movable = 0;
2421 
2422 	pfn = page_to_pfn(page);
2423 	start_pfn = pfn & ~(pageblock_nr_pages - 1);
2424 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2425 
2426 	/* Do not cross zone boundaries */
2427 	if (!zone_spans_pfn(zone, start_pfn))
2428 		start_pfn = pfn;
2429 	if (!zone_spans_pfn(zone, end_pfn))
2430 		return 0;
2431 
2432 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
2433 								num_movable);
2434 }
2435 
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)2436 static void change_pageblock_range(struct page *pageblock_page,
2437 					int start_order, int migratetype)
2438 {
2439 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2440 
2441 	while (nr_pageblocks--) {
2442 		set_pageblock_migratetype(pageblock_page, migratetype);
2443 		pageblock_page += pageblock_nr_pages;
2444 	}
2445 }
2446 
2447 /*
2448  * When we are falling back to another migratetype during allocation, try to
2449  * steal extra free pages from the same pageblocks to satisfy further
2450  * allocations, instead of polluting multiple pageblocks.
2451  *
2452  * If we are stealing a relatively large buddy page, it is likely there will
2453  * be more free pages in the pageblock, so try to steal them all. For
2454  * reclaimable and unmovable allocations, we steal regardless of page size,
2455  * as fragmentation caused by those allocations polluting movable pageblocks
2456  * is worse than movable allocations stealing from unmovable and reclaimable
2457  * pageblocks.
2458  */
can_steal_fallback(unsigned int order,int start_mt)2459 static bool can_steal_fallback(unsigned int order, int start_mt)
2460 {
2461 	/*
2462 	 * Leaving this order check is intended, although there is
2463 	 * relaxed order check in next check. The reason is that
2464 	 * we can actually steal whole pageblock if this condition met,
2465 	 * but, below check doesn't guarantee it and that is just heuristic
2466 	 * so could be changed anytime.
2467 	 */
2468 	if (order >= pageblock_order)
2469 		return true;
2470 
2471 	if (order >= pageblock_order / 2 ||
2472 		start_mt == MIGRATE_RECLAIMABLE ||
2473 		start_mt == MIGRATE_UNMOVABLE ||
2474 		page_group_by_mobility_disabled)
2475 		return true;
2476 
2477 	return false;
2478 }
2479 
boost_watermark(struct zone * zone)2480 static inline bool boost_watermark(struct zone *zone)
2481 {
2482 	unsigned long max_boost;
2483 
2484 	if (!watermark_boost_factor)
2485 		return false;
2486 	/*
2487 	 * Don't bother in zones that are unlikely to produce results.
2488 	 * On small machines, including kdump capture kernels running
2489 	 * in a small area, boosting the watermark can cause an out of
2490 	 * memory situation immediately.
2491 	 */
2492 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2493 		return false;
2494 
2495 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2496 			watermark_boost_factor, 10000);
2497 
2498 	/*
2499 	 * high watermark may be uninitialised if fragmentation occurs
2500 	 * very early in boot so do not boost. We do not fall
2501 	 * through and boost by pageblock_nr_pages as failing
2502 	 * allocations that early means that reclaim is not going
2503 	 * to help and it may even be impossible to reclaim the
2504 	 * boosted watermark resulting in a hang.
2505 	 */
2506 	if (!max_boost)
2507 		return false;
2508 
2509 	max_boost = max(pageblock_nr_pages, max_boost);
2510 
2511 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2512 		max_boost);
2513 
2514 	return true;
2515 }
2516 
2517 /*
2518  * This function implements actual steal behaviour. If order is large enough,
2519  * we can steal whole pageblock. If not, we first move freepages in this
2520  * pageblock to our migratetype and determine how many already-allocated pages
2521  * are there in the pageblock with a compatible migratetype. If at least half
2522  * of pages are free or compatible, we can change migratetype of the pageblock
2523  * itself, so pages freed in the future will be put on the correct free list.
2524  */
steal_suitable_fallback(struct zone * zone,struct page * page,unsigned int alloc_flags,int start_type,bool whole_block)2525 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2526 		unsigned int alloc_flags, int start_type, bool whole_block)
2527 {
2528 	unsigned int current_order = buddy_order(page);
2529 	int free_pages, movable_pages, alike_pages;
2530 	int old_block_type;
2531 
2532 	old_block_type = get_pageblock_migratetype(page);
2533 
2534 	/*
2535 	 * This can happen due to races and we want to prevent broken
2536 	 * highatomic accounting.
2537 	 */
2538 	if (is_migrate_highatomic(old_block_type))
2539 		goto single_page;
2540 
2541 	/* Take ownership for orders >= pageblock_order */
2542 	if (current_order >= pageblock_order) {
2543 		change_pageblock_range(page, current_order, start_type);
2544 		goto single_page;
2545 	}
2546 
2547 	/*
2548 	 * Boost watermarks to increase reclaim pressure to reduce the
2549 	 * likelihood of future fallbacks. Wake kswapd now as the node
2550 	 * may be balanced overall and kswapd will not wake naturally.
2551 	 */
2552 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2553 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2554 
2555 	/* We are not allowed to try stealing from the whole block */
2556 	if (!whole_block)
2557 		goto single_page;
2558 
2559 	free_pages = move_freepages_block(zone, page, start_type,
2560 						&movable_pages);
2561 	/*
2562 	 * Determine how many pages are compatible with our allocation.
2563 	 * For movable allocation, it's the number of movable pages which
2564 	 * we just obtained. For other types it's a bit more tricky.
2565 	 */
2566 	if (start_type == MIGRATE_MOVABLE) {
2567 		alike_pages = movable_pages;
2568 	} else {
2569 		/*
2570 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2571 		 * to MOVABLE pageblock, consider all non-movable pages as
2572 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2573 		 * vice versa, be conservative since we can't distinguish the
2574 		 * exact migratetype of non-movable pages.
2575 		 */
2576 		if (old_block_type == MIGRATE_MOVABLE)
2577 			alike_pages = pageblock_nr_pages
2578 						- (free_pages + movable_pages);
2579 		else
2580 			alike_pages = 0;
2581 	}
2582 
2583 	/* moving whole block can fail due to zone boundary conditions */
2584 	if (!free_pages)
2585 		goto single_page;
2586 
2587 	/*
2588 	 * If a sufficient number of pages in the block are either free or of
2589 	 * comparable migratability as our allocation, claim the whole block.
2590 	 */
2591 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2592 			page_group_by_mobility_disabled)
2593 		set_pageblock_migratetype(page, start_type);
2594 
2595 	return;
2596 
2597 single_page:
2598 	move_to_free_list(page, zone, current_order, start_type);
2599 }
2600 
2601 /*
2602  * Check whether there is a suitable fallback freepage with requested order.
2603  * If only_stealable is true, this function returns fallback_mt only if
2604  * we can steal other freepages all together. This would help to reduce
2605  * fragmentation due to mixed migratetype pages in one pageblock.
2606  */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool only_stealable,bool * can_steal)2607 int find_suitable_fallback(struct free_area *area, unsigned int order,
2608 			int migratetype, bool only_stealable, bool *can_steal)
2609 {
2610 	int i;
2611 	int fallback_mt;
2612 
2613 	if (area->nr_free == 0)
2614 		return -1;
2615 
2616 	*can_steal = false;
2617 	for (i = 0;; i++) {
2618 		fallback_mt = fallbacks[migratetype][i];
2619 		if (fallback_mt == MIGRATE_TYPES)
2620 			break;
2621 
2622 		if (free_area_empty(area, fallback_mt))
2623 			continue;
2624 
2625 		if (can_steal_fallback(order, migratetype))
2626 			*can_steal = true;
2627 
2628 		if (!only_stealable)
2629 			return fallback_mt;
2630 
2631 		if (*can_steal)
2632 			return fallback_mt;
2633 	}
2634 
2635 	return -1;
2636 }
2637 
2638 /*
2639  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2640  * there are no empty page blocks that contain a page with a suitable order
2641  */
reserve_highatomic_pageblock(struct page * page,struct zone * zone,unsigned int alloc_order)2642 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2643 				unsigned int alloc_order)
2644 {
2645 	int mt;
2646 	unsigned long max_managed, flags;
2647 
2648 	/*
2649 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2650 	 * Check is race-prone but harmless.
2651 	 */
2652 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2653 	if (zone->nr_reserved_highatomic >= max_managed)
2654 		return;
2655 
2656 	spin_lock_irqsave(&zone->lock, flags);
2657 
2658 	/* Recheck the nr_reserved_highatomic limit under the lock */
2659 	if (zone->nr_reserved_highatomic >= max_managed)
2660 		goto out_unlock;
2661 
2662 	/* Yoink! */
2663 	mt = get_pageblock_migratetype(page);
2664 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2665 	    && !is_migrate_cma(mt)) {
2666 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2667 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2668 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2669 	}
2670 
2671 out_unlock:
2672 	spin_unlock_irqrestore(&zone->lock, flags);
2673 }
2674 
2675 /*
2676  * Used when an allocation is about to fail under memory pressure. This
2677  * potentially hurts the reliability of high-order allocations when under
2678  * intense memory pressure but failed atomic allocations should be easier
2679  * to recover from than an OOM.
2680  *
2681  * If @force is true, try to unreserve a pageblock even though highatomic
2682  * pageblock is exhausted.
2683  */
unreserve_highatomic_pageblock(const struct alloc_context * ac,bool force)2684 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2685 						bool force)
2686 {
2687 	struct zonelist *zonelist = ac->zonelist;
2688 	unsigned long flags;
2689 	struct zoneref *z;
2690 	struct zone *zone;
2691 	struct page *page;
2692 	int order;
2693 	bool ret;
2694 
2695 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2696 								ac->nodemask) {
2697 		/*
2698 		 * Preserve at least one pageblock unless memory pressure
2699 		 * is really high.
2700 		 */
2701 		if (!force && zone->nr_reserved_highatomic <=
2702 					pageblock_nr_pages)
2703 			continue;
2704 
2705 		spin_lock_irqsave(&zone->lock, flags);
2706 		for (order = 0; order < MAX_ORDER; order++) {
2707 			struct free_area *area = &(zone->free_area[order]);
2708 
2709 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2710 			if (!page)
2711 				continue;
2712 
2713 			/*
2714 			 * In page freeing path, migratetype change is racy so
2715 			 * we can counter several free pages in a pageblock
2716 			 * in this loop althoug we changed the pageblock type
2717 			 * from highatomic to ac->migratetype. So we should
2718 			 * adjust the count once.
2719 			 */
2720 			if (is_migrate_highatomic_page(page)) {
2721 				/*
2722 				 * It should never happen but changes to
2723 				 * locking could inadvertently allow a per-cpu
2724 				 * drain to add pages to MIGRATE_HIGHATOMIC
2725 				 * while unreserving so be safe and watch for
2726 				 * underflows.
2727 				 */
2728 				zone->nr_reserved_highatomic -= min(
2729 						pageblock_nr_pages,
2730 						zone->nr_reserved_highatomic);
2731 			}
2732 
2733 			/*
2734 			 * Convert to ac->migratetype and avoid the normal
2735 			 * pageblock stealing heuristics. Minimally, the caller
2736 			 * is doing the work and needs the pages. More
2737 			 * importantly, if the block was always converted to
2738 			 * MIGRATE_UNMOVABLE or another type then the number
2739 			 * of pageblocks that cannot be completely freed
2740 			 * may increase.
2741 			 */
2742 			set_pageblock_migratetype(page, ac->migratetype);
2743 			ret = move_freepages_block(zone, page, ac->migratetype,
2744 									NULL);
2745 			if (ret) {
2746 				spin_unlock_irqrestore(&zone->lock, flags);
2747 				return ret;
2748 			}
2749 		}
2750 		spin_unlock_irqrestore(&zone->lock, flags);
2751 	}
2752 
2753 	return false;
2754 }
2755 
2756 /*
2757  * Try finding a free buddy page on the fallback list and put it on the free
2758  * list of requested migratetype, possibly along with other pages from the same
2759  * block, depending on fragmentation avoidance heuristics. Returns true if
2760  * fallback was found so that __rmqueue_smallest() can grab it.
2761  *
2762  * The use of signed ints for order and current_order is a deliberate
2763  * deviation from the rest of this file, to make the for loop
2764  * condition simpler.
2765  */
2766 static __always_inline bool
__rmqueue_fallback(struct zone * zone,int order,int start_migratetype,unsigned int alloc_flags)2767 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2768 						unsigned int alloc_flags)
2769 {
2770 	struct free_area *area;
2771 	int current_order;
2772 	int min_order = order;
2773 	struct page *page;
2774 	int fallback_mt;
2775 	bool can_steal;
2776 
2777 	/*
2778 	 * Do not steal pages from freelists belonging to other pageblocks
2779 	 * i.e. orders < pageblock_order. If there are no local zones free,
2780 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2781 	 */
2782 	if (alloc_flags & ALLOC_NOFRAGMENT)
2783 		min_order = pageblock_order;
2784 
2785 	/*
2786 	 * Find the largest available free page in the other list. This roughly
2787 	 * approximates finding the pageblock with the most free pages, which
2788 	 * would be too costly to do exactly.
2789 	 */
2790 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2791 				--current_order) {
2792 		area = &(zone->free_area[current_order]);
2793 		fallback_mt = find_suitable_fallback(area, current_order,
2794 				start_migratetype, false, &can_steal);
2795 		if (fallback_mt == -1)
2796 			continue;
2797 
2798 		/*
2799 		 * We cannot steal all free pages from the pageblock and the
2800 		 * requested migratetype is movable. In that case it's better to
2801 		 * steal and split the smallest available page instead of the
2802 		 * largest available page, because even if the next movable
2803 		 * allocation falls back into a different pageblock than this
2804 		 * one, it won't cause permanent fragmentation.
2805 		 */
2806 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2807 					&& current_order > order)
2808 			goto find_smallest;
2809 
2810 		goto do_steal;
2811 	}
2812 
2813 	return false;
2814 
2815 find_smallest:
2816 	for (current_order = order; current_order < MAX_ORDER;
2817 							current_order++) {
2818 		area = &(zone->free_area[current_order]);
2819 		fallback_mt = find_suitable_fallback(area, current_order,
2820 				start_migratetype, false, &can_steal);
2821 		if (fallback_mt != -1)
2822 			break;
2823 	}
2824 
2825 	/*
2826 	 * This should not happen - we already found a suitable fallback
2827 	 * when looking for the largest page.
2828 	 */
2829 	VM_BUG_ON(current_order == MAX_ORDER);
2830 
2831 do_steal:
2832 	page = get_page_from_free_area(area, fallback_mt);
2833 
2834 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2835 								can_steal);
2836 
2837 	trace_mm_page_alloc_extfrag(page, order, current_order,
2838 		start_migratetype, fallback_mt);
2839 
2840 	return true;
2841 
2842 }
2843 
2844 static __always_inline struct page *
__rmqueue_with_cma_reuse(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2845 __rmqueue_with_cma_reuse(struct zone *zone, unsigned int order,
2846 					int migratetype, unsigned int alloc_flags)
2847 {
2848 	struct page *page = NULL;
2849 retry:
2850 	page = __rmqueue_smallest(zone, order, migratetype);
2851 
2852 	if (unlikely(!page) && is_migrate_cma(migratetype)) {
2853 		migratetype = MIGRATE_MOVABLE;
2854 		alloc_flags &= ~ALLOC_CMA;
2855 		page = __rmqueue_smallest(zone, order, migratetype);
2856 	}
2857 
2858 	if (unlikely(!page) &&
2859 		__rmqueue_fallback(zone, order, migratetype, alloc_flags))
2860 		goto retry;
2861 
2862 	return page;
2863 }
2864 
2865 /*
2866  * Do the hard work of removing an element from the buddy allocator.
2867  * Call me with the zone->lock already held.
2868  */
2869 static __always_inline struct page *
__rmqueue(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2870 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2871 						unsigned int alloc_flags)
2872 {
2873 	struct page *page;
2874 
2875 #ifdef CONFIG_CMA_REUSE
2876 	page = __rmqueue_with_cma_reuse(zone, order, migratetype, alloc_flags);
2877 	goto out;
2878 #endif
2879 
2880 	if (IS_ENABLED(CONFIG_CMA)) {
2881 		/*
2882 		 * Balance movable allocations between regular and CMA areas by
2883 		 * allocating from CMA when over half of the zone's free memory
2884 		 * is in the CMA area.
2885 		 */
2886 		if (alloc_flags & ALLOC_CMA &&
2887 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2888 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2889 			page = __rmqueue_cma_fallback(zone, order);
2890 			if (page)
2891 				goto out;
2892 		}
2893 	}
2894 retry:
2895 	page = __rmqueue_smallest(zone, order, migratetype);
2896 	if (unlikely(!page)) {
2897 		if (alloc_flags & ALLOC_CMA)
2898 			page = __rmqueue_cma_fallback(zone, order);
2899 
2900 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2901 								alloc_flags))
2902 			goto retry;
2903 	}
2904 out:
2905 	if (page)
2906 		trace_mm_page_alloc_zone_locked(page, order, migratetype);
2907 	return page;
2908 }
2909 
2910 /*
2911  * Obtain a specified number of elements from the buddy allocator, all under
2912  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2913  * Returns the number of new pages which were placed at *list.
2914  */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,unsigned int alloc_flags)2915 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2916 			unsigned long count, struct list_head *list,
2917 			int migratetype, unsigned int alloc_flags)
2918 {
2919 	int i, alloced = 0;
2920 
2921 	spin_lock(&zone->lock);
2922 	for (i = 0; i < count; ++i) {
2923 		struct page *page = __rmqueue(zone, order, migratetype,
2924 								alloc_flags);
2925 		if (unlikely(page == NULL))
2926 			break;
2927 
2928 		if (unlikely(check_pcp_refill(page)))
2929 			continue;
2930 
2931 		/*
2932 		 * Split buddy pages returned by expand() are received here in
2933 		 * physical page order. The page is added to the tail of
2934 		 * caller's list. From the callers perspective, the linked list
2935 		 * is ordered by page number under some conditions. This is
2936 		 * useful for IO devices that can forward direction from the
2937 		 * head, thus also in the physical page order. This is useful
2938 		 * for IO devices that can merge IO requests if the physical
2939 		 * pages are ordered properly.
2940 		 */
2941 		list_add_tail(&page->lru, list);
2942 		alloced++;
2943 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2944 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2945 					      -(1 << order));
2946 	}
2947 
2948 	/*
2949 	 * i pages were removed from the buddy list even if some leak due
2950 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2951 	 * on i. Do not confuse with 'alloced' which is the number of
2952 	 * pages added to the pcp list.
2953 	 */
2954 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2955 	spin_unlock(&zone->lock);
2956 	return alloced;
2957 }
2958 
2959 #ifdef CONFIG_NUMA
2960 /*
2961  * Called from the vmstat counter updater to drain pagesets of this
2962  * currently executing processor on remote nodes after they have
2963  * expired.
2964  *
2965  * Note that this function must be called with the thread pinned to
2966  * a single processor.
2967  */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)2968 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2969 {
2970 	unsigned long flags;
2971 	int to_drain, batch;
2972 
2973 	local_irq_save(flags);
2974 	batch = READ_ONCE(pcp->batch);
2975 	to_drain = min(pcp->count, batch);
2976 	if (to_drain > 0)
2977 		free_pcppages_bulk(zone, to_drain, pcp);
2978 	local_irq_restore(flags);
2979 }
2980 #endif
2981 
2982 /*
2983  * Drain pcplists of the indicated processor and zone.
2984  *
2985  * The processor must either be the current processor and the
2986  * thread pinned to the current processor or a processor that
2987  * is not online.
2988  */
drain_pages_zone(unsigned int cpu,struct zone * zone)2989 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2990 {
2991 	unsigned long flags;
2992 	struct per_cpu_pageset *pset;
2993 	struct per_cpu_pages *pcp;
2994 
2995 	local_irq_save(flags);
2996 	pset = per_cpu_ptr(zone->pageset, cpu);
2997 
2998 	pcp = &pset->pcp;
2999 	if (pcp->count)
3000 		free_pcppages_bulk(zone, pcp->count, pcp);
3001 	local_irq_restore(flags);
3002 }
3003 
3004 /*
3005  * Drain pcplists of all zones on the indicated processor.
3006  *
3007  * The processor must either be the current processor and the
3008  * thread pinned to the current processor or a processor that
3009  * is not online.
3010  */
drain_pages(unsigned int cpu)3011 static void drain_pages(unsigned int cpu)
3012 {
3013 	struct zone *zone;
3014 
3015 	for_each_populated_zone(zone) {
3016 		drain_pages_zone(cpu, zone);
3017 	}
3018 }
3019 
3020 /*
3021  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3022  *
3023  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3024  * the single zone's pages.
3025  */
drain_local_pages(struct zone * zone)3026 void drain_local_pages(struct zone *zone)
3027 {
3028 	int cpu = smp_processor_id();
3029 
3030 	if (zone)
3031 		drain_pages_zone(cpu, zone);
3032 	else
3033 		drain_pages(cpu);
3034 }
3035 
drain_local_pages_wq(struct work_struct * work)3036 static void drain_local_pages_wq(struct work_struct *work)
3037 {
3038 	struct pcpu_drain *drain;
3039 
3040 	drain = container_of(work, struct pcpu_drain, work);
3041 
3042 	/*
3043 	 * drain_all_pages doesn't use proper cpu hotplug protection so
3044 	 * we can race with cpu offline when the WQ can move this from
3045 	 * a cpu pinned worker to an unbound one. We can operate on a different
3046 	 * cpu which is allright but we also have to make sure to not move to
3047 	 * a different one.
3048 	 */
3049 	preempt_disable();
3050 	drain_local_pages(drain->zone);
3051 	preempt_enable();
3052 }
3053 
3054 /*
3055  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3056  *
3057  * When zone parameter is non-NULL, spill just the single zone's pages.
3058  *
3059  * Note that this can be extremely slow as the draining happens in a workqueue.
3060  */
drain_all_pages(struct zone * zone)3061 void drain_all_pages(struct zone *zone)
3062 {
3063 	int cpu;
3064 
3065 	/*
3066 	 * Allocate in the BSS so we wont require allocation in
3067 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3068 	 */
3069 	static cpumask_t cpus_with_pcps;
3070 
3071 	/*
3072 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
3073 	 * initialized.
3074 	 */
3075 	if (WARN_ON_ONCE(!mm_percpu_wq))
3076 		return;
3077 
3078 	/*
3079 	 * Do not drain if one is already in progress unless it's specific to
3080 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3081 	 * the drain to be complete when the call returns.
3082 	 */
3083 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3084 		if (!zone)
3085 			return;
3086 		mutex_lock(&pcpu_drain_mutex);
3087 	}
3088 
3089 	/*
3090 	 * We don't care about racing with CPU hotplug event
3091 	 * as offline notification will cause the notified
3092 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3093 	 * disables preemption as part of its processing
3094 	 */
3095 	for_each_online_cpu(cpu) {
3096 		struct per_cpu_pageset *pcp;
3097 		struct zone *z;
3098 		bool has_pcps = false;
3099 
3100 		if (zone) {
3101 			pcp = per_cpu_ptr(zone->pageset, cpu);
3102 			if (pcp->pcp.count)
3103 				has_pcps = true;
3104 		} else {
3105 			for_each_populated_zone(z) {
3106 				pcp = per_cpu_ptr(z->pageset, cpu);
3107 				if (pcp->pcp.count) {
3108 					has_pcps = true;
3109 					break;
3110 				}
3111 			}
3112 		}
3113 
3114 		if (has_pcps)
3115 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3116 		else
3117 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3118 	}
3119 
3120 	for_each_cpu(cpu, &cpus_with_pcps) {
3121 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3122 
3123 		drain->zone = zone;
3124 		INIT_WORK(&drain->work, drain_local_pages_wq);
3125 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3126 	}
3127 	for_each_cpu(cpu, &cpus_with_pcps)
3128 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3129 
3130 	mutex_unlock(&pcpu_drain_mutex);
3131 }
3132 
3133 #ifdef CONFIG_HIBERNATION
3134 
3135 /*
3136  * Touch the watchdog for every WD_PAGE_COUNT pages.
3137  */
3138 #define WD_PAGE_COUNT	(128*1024)
3139 
mark_free_pages(struct zone * zone)3140 void mark_free_pages(struct zone *zone)
3141 {
3142 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3143 	unsigned long flags;
3144 	unsigned int order, t;
3145 	struct page *page;
3146 
3147 	if (zone_is_empty(zone))
3148 		return;
3149 
3150 	spin_lock_irqsave(&zone->lock, flags);
3151 
3152 	max_zone_pfn = zone_end_pfn(zone);
3153 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3154 		if (pfn_valid(pfn)) {
3155 			page = pfn_to_page(pfn);
3156 
3157 			if (!--page_count) {
3158 				touch_nmi_watchdog();
3159 				page_count = WD_PAGE_COUNT;
3160 			}
3161 
3162 			if (page_zone(page) != zone)
3163 				continue;
3164 
3165 			if (!swsusp_page_is_forbidden(page))
3166 				swsusp_unset_page_free(page);
3167 		}
3168 
3169 	for_each_migratetype_order(order, t) {
3170 		list_for_each_entry(page,
3171 				&zone->free_area[order].free_list[t], lru) {
3172 			unsigned long i;
3173 
3174 			pfn = page_to_pfn(page);
3175 			for (i = 0; i < (1UL << order); i++) {
3176 				if (!--page_count) {
3177 					touch_nmi_watchdog();
3178 					page_count = WD_PAGE_COUNT;
3179 				}
3180 				swsusp_set_page_free(pfn_to_page(pfn + i));
3181 			}
3182 		}
3183 	}
3184 	spin_unlock_irqrestore(&zone->lock, flags);
3185 }
3186 #endif /* CONFIG_PM */
3187 
free_unref_page_prepare(struct page * page,unsigned long pfn)3188 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3189 {
3190 	int migratetype;
3191 
3192 	if (!free_pcp_prepare(page))
3193 		return false;
3194 
3195 	migratetype = get_pfnblock_migratetype(page, pfn);
3196 	set_pcppage_migratetype(page, migratetype);
3197 	return true;
3198 }
3199 
free_unref_page_commit(struct page * page,unsigned long pfn)3200 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3201 {
3202 	struct zone *zone = page_zone(page);
3203 	struct per_cpu_pages *pcp;
3204 	int migratetype;
3205 
3206 	migratetype = get_pcppage_migratetype(page);
3207 	__count_vm_event(PGFREE);
3208 
3209 	/*
3210 	 * We only track unmovable, reclaimable and movable on pcp lists.
3211 	 * Free ISOLATE pages back to the allocator because they are being
3212 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3213 	 * areas back if necessary. Otherwise, we may have to free
3214 	 * excessively into the page allocator
3215 	 */
3216 	if (migratetype >= MIGRATE_PCPTYPES) {
3217 		if (unlikely(is_migrate_isolate(migratetype))) {
3218 			free_one_page(zone, page, pfn, 0, migratetype,
3219 				      FPI_NONE);
3220 			return;
3221 		}
3222 		migratetype = MIGRATE_MOVABLE;
3223 	}
3224 
3225 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3226 	list_add(&page->lru, &pcp->lists[migratetype]);
3227 	pcp->count++;
3228 	if (pcp->count >= pcp->high) {
3229 		unsigned long batch = READ_ONCE(pcp->batch);
3230 		free_pcppages_bulk(zone, batch, pcp);
3231 	}
3232 }
3233 
3234 /*
3235  * Free a 0-order page
3236  */
free_unref_page(struct page * page)3237 void free_unref_page(struct page *page)
3238 {
3239 	unsigned long flags;
3240 	unsigned long pfn = page_to_pfn(page);
3241 
3242 	if (!free_unref_page_prepare(page, pfn))
3243 		return;
3244 
3245 	local_irq_save(flags);
3246 	free_unref_page_commit(page, pfn);
3247 	local_irq_restore(flags);
3248 }
3249 
3250 /*
3251  * Free a list of 0-order pages
3252  */
free_unref_page_list(struct list_head * list)3253 void free_unref_page_list(struct list_head *list)
3254 {
3255 	struct page *page, *next;
3256 	unsigned long flags, pfn;
3257 	int batch_count = 0;
3258 
3259 	/* Prepare pages for freeing */
3260 	list_for_each_entry_safe(page, next, list, lru) {
3261 		pfn = page_to_pfn(page);
3262 		if (!free_unref_page_prepare(page, pfn))
3263 			list_del(&page->lru);
3264 		set_page_private(page, pfn);
3265 	}
3266 
3267 	local_irq_save(flags);
3268 	list_for_each_entry_safe(page, next, list, lru) {
3269 		unsigned long pfn = page_private(page);
3270 
3271 		set_page_private(page, 0);
3272 		trace_mm_page_free_batched(page);
3273 		free_unref_page_commit(page, pfn);
3274 
3275 		/*
3276 		 * Guard against excessive IRQ disabled times when we get
3277 		 * a large list of pages to free.
3278 		 */
3279 		if (++batch_count == SWAP_CLUSTER_MAX) {
3280 			local_irq_restore(flags);
3281 			batch_count = 0;
3282 			local_irq_save(flags);
3283 		}
3284 	}
3285 	local_irq_restore(flags);
3286 }
3287 
3288 /*
3289  * split_page takes a non-compound higher-order page, and splits it into
3290  * n (1<<order) sub-pages: page[0..n]
3291  * Each sub-page must be freed individually.
3292  *
3293  * Note: this is probably too low level an operation for use in drivers.
3294  * Please consult with lkml before using this in your driver.
3295  */
split_page(struct page * page,unsigned int order)3296 void split_page(struct page *page, unsigned int order)
3297 {
3298 	int i;
3299 
3300 	VM_BUG_ON_PAGE(PageCompound(page), page);
3301 	VM_BUG_ON_PAGE(!page_count(page), page);
3302 
3303 	for (i = 1; i < (1 << order); i++)
3304 		set_page_refcounted(page + i);
3305 	split_page_owner(page, 1 << order);
3306 	split_page_memcg(page, 1 << order);
3307 }
3308 EXPORT_SYMBOL_GPL(split_page);
3309 
__isolate_free_page(struct page * page,unsigned int order)3310 int __isolate_free_page(struct page *page, unsigned int order)
3311 {
3312 	unsigned long watermark;
3313 	struct zone *zone;
3314 	int mt;
3315 
3316 	BUG_ON(!PageBuddy(page));
3317 
3318 	zone = page_zone(page);
3319 	mt = get_pageblock_migratetype(page);
3320 
3321 	if (!is_migrate_isolate(mt)) {
3322 		/*
3323 		 * Obey watermarks as if the page was being allocated. We can
3324 		 * emulate a high-order watermark check with a raised order-0
3325 		 * watermark, because we already know our high-order page
3326 		 * exists.
3327 		 */
3328 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3329 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3330 			return 0;
3331 
3332 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3333 	}
3334 
3335 	/* Remove page from free list */
3336 
3337 	del_page_from_free_list(page, zone, order);
3338 
3339 	/*
3340 	 * Set the pageblock if the isolated page is at least half of a
3341 	 * pageblock
3342 	 */
3343 	if (order >= pageblock_order - 1) {
3344 		struct page *endpage = page + (1 << order) - 1;
3345 		for (; page < endpage; page += pageblock_nr_pages) {
3346 			int mt = get_pageblock_migratetype(page);
3347 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3348 			    && !is_migrate_highatomic(mt))
3349 				set_pageblock_migratetype(page,
3350 							  MIGRATE_MOVABLE);
3351 		}
3352 	}
3353 
3354 
3355 	return 1UL << order;
3356 }
3357 
3358 /**
3359  * __putback_isolated_page - Return a now-isolated page back where we got it
3360  * @page: Page that was isolated
3361  * @order: Order of the isolated page
3362  * @mt: The page's pageblock's migratetype
3363  *
3364  * This function is meant to return a page pulled from the free lists via
3365  * __isolate_free_page back to the free lists they were pulled from.
3366  */
__putback_isolated_page(struct page * page,unsigned int order,int mt)3367 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3368 {
3369 	struct zone *zone = page_zone(page);
3370 
3371 	/* zone lock should be held when this function is called */
3372 	lockdep_assert_held(&zone->lock);
3373 
3374 	/* Return isolated page to tail of freelist. */
3375 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3376 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3377 }
3378 
3379 /*
3380  * Update NUMA hit/miss statistics
3381  *
3382  * Must be called with interrupts disabled.
3383  */
zone_statistics(struct zone * preferred_zone,struct zone * z)3384 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3385 {
3386 #ifdef CONFIG_NUMA
3387 	enum numa_stat_item local_stat = NUMA_LOCAL;
3388 
3389 	/* skip numa counters update if numa stats is disabled */
3390 	if (!static_branch_likely(&vm_numa_stat_key))
3391 		return;
3392 
3393 	if (zone_to_nid(z) != numa_node_id())
3394 		local_stat = NUMA_OTHER;
3395 
3396 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3397 		__inc_numa_state(z, NUMA_HIT);
3398 	else {
3399 		__inc_numa_state(z, NUMA_MISS);
3400 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3401 	}
3402 	__inc_numa_state(z, local_stat);
3403 #endif
3404 }
3405 
3406 /* Remove page from the per-cpu list, caller must protect the list */
__rmqueue_pcplist(struct zone * zone,int migratetype,unsigned int alloc_flags,struct per_cpu_pages * pcp,struct list_head * list)3407 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3408 			unsigned int alloc_flags,
3409 			struct per_cpu_pages *pcp,
3410 			struct list_head *list)
3411 {
3412 	struct page *page;
3413 
3414 	do {
3415 		if (list_empty(list)) {
3416 			pcp->count += rmqueue_bulk(zone, 0,
3417 					pcp->batch, list,
3418 					migratetype, alloc_flags);
3419 			if (unlikely(list_empty(list)))
3420 				return NULL;
3421 		}
3422 
3423 		page = list_first_entry(list, struct page, lru);
3424 		list_del(&page->lru);
3425 		pcp->count--;
3426 	} while (check_new_pcp(page));
3427 
3428 	return page;
3429 }
3430 
3431 /* Lock and remove page from the per-cpu list */
rmqueue_pcplist(struct zone * preferred_zone,struct zone * zone,gfp_t gfp_flags,int migratetype,unsigned int alloc_flags)3432 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3433 			struct zone *zone, gfp_t gfp_flags,
3434 			int migratetype, unsigned int alloc_flags)
3435 {
3436 	struct per_cpu_pages *pcp;
3437 	struct list_head *list;
3438 	struct page *page;
3439 	unsigned long flags;
3440 
3441 	local_irq_save(flags);
3442 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3443 	list = &pcp->lists[migratetype];
3444 	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3445 	if (page) {
3446 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3447 		zone_statistics(preferred_zone, zone);
3448 	}
3449 	local_irq_restore(flags);
3450 	return page;
3451 }
3452 
3453 /*
3454  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3455  */
3456 static inline
rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags,int migratetype)3457 struct page *rmqueue(struct zone *preferred_zone,
3458 			struct zone *zone, unsigned int order,
3459 			gfp_t gfp_flags, unsigned int alloc_flags,
3460 			int migratetype)
3461 {
3462 	unsigned long flags;
3463 	struct page *page;
3464 
3465 	if (likely(order == 0)) {
3466 		/*
3467 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3468 		 * we need to skip it when CMA area isn't allowed.
3469 		 */
3470 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3471 				migratetype != MIGRATE_MOVABLE ||
3472 				IS_ENABLED(CONFIG_CMA_REUSE)) {
3473 			page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3474 					migratetype, alloc_flags);
3475 			goto out;
3476 		}
3477 	}
3478 
3479 	/*
3480 	 * We most definitely don't want callers attempting to
3481 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3482 	 */
3483 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3484 	spin_lock_irqsave(&zone->lock, flags);
3485 
3486 	do {
3487 		page = NULL;
3488 		/*
3489 		 * order-0 request can reach here when the pcplist is skipped
3490 		 * due to non-CMA allocation context. HIGHATOMIC area is
3491 		 * reserved for high-order atomic allocation, so order-0
3492 		 * request should skip it.
3493 		 */
3494 		if (order > 0 && alloc_flags & ALLOC_HARDER) {
3495 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3496 			if (page)
3497 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3498 		}
3499 		if (!page)
3500 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3501 	} while (page && check_new_pages(page, order));
3502 	spin_unlock(&zone->lock);
3503 	if (!page)
3504 		goto failed;
3505 	__mod_zone_freepage_state(zone, -(1 << order),
3506 				  get_pcppage_migratetype(page));
3507 
3508 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3509 	zone_statistics(preferred_zone, zone);
3510 	local_irq_restore(flags);
3511 
3512 out:
3513 	/* Separate test+clear to avoid unnecessary atomics */
3514 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3515 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3516 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3517 	}
3518 
3519 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3520 	return page;
3521 
3522 failed:
3523 	local_irq_restore(flags);
3524 	return NULL;
3525 }
3526 
3527 #ifdef CONFIG_FAIL_PAGE_ALLOC
3528 
3529 static struct {
3530 	struct fault_attr attr;
3531 
3532 	bool ignore_gfp_highmem;
3533 	bool ignore_gfp_reclaim;
3534 	u32 min_order;
3535 } fail_page_alloc = {
3536 	.attr = FAULT_ATTR_INITIALIZER,
3537 	.ignore_gfp_reclaim = true,
3538 	.ignore_gfp_highmem = true,
3539 	.min_order = 1,
3540 };
3541 
setup_fail_page_alloc(char * str)3542 static int __init setup_fail_page_alloc(char *str)
3543 {
3544 	return setup_fault_attr(&fail_page_alloc.attr, str);
3545 }
3546 __setup("fail_page_alloc=", setup_fail_page_alloc);
3547 
__should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)3548 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3549 {
3550 	if (order < fail_page_alloc.min_order)
3551 		return false;
3552 	if (gfp_mask & __GFP_NOFAIL)
3553 		return false;
3554 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3555 		return false;
3556 	if (fail_page_alloc.ignore_gfp_reclaim &&
3557 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3558 		return false;
3559 
3560 	return should_fail(&fail_page_alloc.attr, 1 << order);
3561 }
3562 
3563 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3564 
fail_page_alloc_debugfs(void)3565 static int __init fail_page_alloc_debugfs(void)
3566 {
3567 	umode_t mode = S_IFREG | 0600;
3568 	struct dentry *dir;
3569 
3570 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3571 					&fail_page_alloc.attr);
3572 
3573 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3574 			    &fail_page_alloc.ignore_gfp_reclaim);
3575 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3576 			    &fail_page_alloc.ignore_gfp_highmem);
3577 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3578 
3579 	return 0;
3580 }
3581 
3582 late_initcall(fail_page_alloc_debugfs);
3583 
3584 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3585 
3586 #else /* CONFIG_FAIL_PAGE_ALLOC */
3587 
__should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)3588 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3589 {
3590 	return false;
3591 }
3592 
3593 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3594 
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)3595 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3596 {
3597 	return __should_fail_alloc_page(gfp_mask, order);
3598 }
3599 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3600 
__zone_watermark_unusable_free(struct zone * z,unsigned int order,unsigned int alloc_flags)3601 static inline long __zone_watermark_unusable_free(struct zone *z,
3602 				unsigned int order, unsigned int alloc_flags)
3603 {
3604 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3605 	long unusable_free = (1 << order) - 1;
3606 
3607 	/*
3608 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3609 	 * the high-atomic reserves. This will over-estimate the size of the
3610 	 * atomic reserve but it avoids a search.
3611 	 */
3612 	if (likely(!alloc_harder))
3613 		unusable_free += z->nr_reserved_highatomic;
3614 
3615 #ifdef CONFIG_CMA
3616 	/* If allocation can't use CMA areas don't use free CMA pages */
3617 	if (!(alloc_flags & ALLOC_CMA))
3618 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3619 #endif
3620 
3621 	return unusable_free;
3622 }
3623 
3624 /*
3625  * Return true if free base pages are above 'mark'. For high-order checks it
3626  * will return true of the order-0 watermark is reached and there is at least
3627  * one free page of a suitable size. Checking now avoids taking the zone lock
3628  * to check in the allocation paths if no pages are free.
3629  */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,long free_pages)3630 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3631 			 int highest_zoneidx, unsigned int alloc_flags,
3632 			 long free_pages)
3633 {
3634 	long min = mark;
3635 	int o;
3636 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3637 
3638 	/* free_pages may go negative - that's OK */
3639 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3640 
3641 	if (alloc_flags & ALLOC_HIGH)
3642 		min -= min / 2;
3643 
3644 	if (unlikely(alloc_harder)) {
3645 		/*
3646 		 * OOM victims can try even harder than normal ALLOC_HARDER
3647 		 * users on the grounds that it's definitely going to be in
3648 		 * the exit path shortly and free memory. Any allocation it
3649 		 * makes during the free path will be small and short-lived.
3650 		 */
3651 		if (alloc_flags & ALLOC_OOM)
3652 			min -= min / 2;
3653 		else
3654 			min -= min / 4;
3655 	}
3656 
3657 	/*
3658 	 * Check watermarks for an order-0 allocation request. If these
3659 	 * are not met, then a high-order request also cannot go ahead
3660 	 * even if a suitable page happened to be free.
3661 	 */
3662 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3663 		return false;
3664 
3665 	/* If this is an order-0 request then the watermark is fine */
3666 	if (!order)
3667 		return true;
3668 
3669 	/* For a high-order request, check at least one suitable page is free */
3670 	for (o = order; o < MAX_ORDER; o++) {
3671 		struct free_area *area = &z->free_area[o];
3672 		int mt;
3673 
3674 		if (!area->nr_free)
3675 			continue;
3676 
3677 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3678 			if (!free_area_empty(area, mt))
3679 				return true;
3680 		}
3681 
3682 #ifdef CONFIG_CMA
3683 		if ((alloc_flags & ALLOC_CMA) &&
3684 		    !free_area_empty(area, MIGRATE_CMA)) {
3685 			return true;
3686 		}
3687 #endif
3688 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3689 			return true;
3690 	}
3691 	return false;
3692 }
3693 
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags)3694 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3695 		      int highest_zoneidx, unsigned int alloc_flags)
3696 {
3697 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3698 					zone_page_state(z, NR_FREE_PAGES));
3699 }
3700 
zone_watermark_fast(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,gfp_t gfp_mask)3701 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3702 				unsigned long mark, int highest_zoneidx,
3703 				unsigned int alloc_flags, gfp_t gfp_mask)
3704 {
3705 	long free_pages;
3706 
3707 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3708 
3709 	/*
3710 	 * Fast check for order-0 only. If this fails then the reserves
3711 	 * need to be calculated.
3712 	 */
3713 	if (!order) {
3714 		long fast_free;
3715 
3716 		fast_free = free_pages;
3717 		fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3718 		if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3719 			return true;
3720 	}
3721 
3722 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3723 					free_pages))
3724 		return true;
3725 	/*
3726 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3727 	 * when checking the min watermark. The min watermark is the
3728 	 * point where boosting is ignored so that kswapd is woken up
3729 	 * when below the low watermark.
3730 	 */
3731 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3732 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3733 		mark = z->_watermark[WMARK_MIN];
3734 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3735 					alloc_flags, free_pages);
3736 	}
3737 
3738 	return false;
3739 }
3740 
zone_watermark_ok_safe(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx)3741 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3742 			unsigned long mark, int highest_zoneidx)
3743 {
3744 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3745 
3746 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3747 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3748 
3749 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3750 								free_pages);
3751 }
3752 
3753 #ifdef CONFIG_NUMA
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3754 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3755 {
3756 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3757 				node_reclaim_distance;
3758 }
3759 #else	/* CONFIG_NUMA */
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3760 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3761 {
3762 	return true;
3763 }
3764 #endif	/* CONFIG_NUMA */
3765 
3766 /*
3767  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3768  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3769  * premature use of a lower zone may cause lowmem pressure problems that
3770  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3771  * probably too small. It only makes sense to spread allocations to avoid
3772  * fragmentation between the Normal and DMA32 zones.
3773  */
3774 static inline unsigned int
alloc_flags_nofragment(struct zone * zone,gfp_t gfp_mask)3775 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3776 {
3777 	unsigned int alloc_flags;
3778 
3779 	/*
3780 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3781 	 * to save a branch.
3782 	 */
3783 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3784 
3785 #ifdef CONFIG_ZONE_DMA32
3786 	if (!zone)
3787 		return alloc_flags;
3788 
3789 	if (zone_idx(zone) != ZONE_NORMAL)
3790 		return alloc_flags;
3791 
3792 	/*
3793 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3794 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3795 	 * on UMA that if Normal is populated then so is DMA32.
3796 	 */
3797 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3798 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3799 		return alloc_flags;
3800 
3801 	alloc_flags |= ALLOC_NOFRAGMENT;
3802 #endif /* CONFIG_ZONE_DMA32 */
3803 	return alloc_flags;
3804 }
3805 
current_alloc_flags(gfp_t gfp_mask,unsigned int alloc_flags)3806 static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3807 					unsigned int alloc_flags)
3808 {
3809 #ifdef CONFIG_CMA
3810 	unsigned int pflags = current->flags;
3811 
3812 	if (!(pflags & PF_MEMALLOC_NOCMA) &&
3813 			gfp_migratetype(gfp_mask) == get_cma_migratetype())
3814 		alloc_flags |= ALLOC_CMA;
3815 
3816 #endif
3817 	return alloc_flags;
3818 }
3819 
3820 /*
3821  * get_page_from_freelist goes through the zonelist trying to allocate
3822  * a page.
3823  */
3824 static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)3825 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3826 						const struct alloc_context *ac)
3827 {
3828 	struct zoneref *z;
3829 	struct zone *zone;
3830 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3831 	bool no_fallback;
3832 
3833 retry:
3834 	/*
3835 	 * Scan zonelist, looking for a zone with enough free.
3836 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3837 	 */
3838 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3839 	z = ac->preferred_zoneref;
3840 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3841 					ac->nodemask) {
3842 		struct page *page;
3843 		unsigned long mark;
3844 
3845 		if (cpusets_enabled() &&
3846 			(alloc_flags & ALLOC_CPUSET) &&
3847 			!__cpuset_zone_allowed(zone, gfp_mask))
3848 				continue;
3849 		/*
3850 		 * When allocating a page cache page for writing, we
3851 		 * want to get it from a node that is within its dirty
3852 		 * limit, such that no single node holds more than its
3853 		 * proportional share of globally allowed dirty pages.
3854 		 * The dirty limits take into account the node's
3855 		 * lowmem reserves and high watermark so that kswapd
3856 		 * should be able to balance it without having to
3857 		 * write pages from its LRU list.
3858 		 *
3859 		 * XXX: For now, allow allocations to potentially
3860 		 * exceed the per-node dirty limit in the slowpath
3861 		 * (spread_dirty_pages unset) before going into reclaim,
3862 		 * which is important when on a NUMA setup the allowed
3863 		 * nodes are together not big enough to reach the
3864 		 * global limit.  The proper fix for these situations
3865 		 * will require awareness of nodes in the
3866 		 * dirty-throttling and the flusher threads.
3867 		 */
3868 		if (ac->spread_dirty_pages) {
3869 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3870 				continue;
3871 
3872 			if (!node_dirty_ok(zone->zone_pgdat)) {
3873 				last_pgdat_dirty_limit = zone->zone_pgdat;
3874 				continue;
3875 			}
3876 		}
3877 
3878 		if (no_fallback && nr_online_nodes > 1 &&
3879 		    zone != ac->preferred_zoneref->zone) {
3880 			int local_nid;
3881 
3882 			/*
3883 			 * If moving to a remote node, retry but allow
3884 			 * fragmenting fallbacks. Locality is more important
3885 			 * than fragmentation avoidance.
3886 			 */
3887 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3888 			if (zone_to_nid(zone) != local_nid) {
3889 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3890 				goto retry;
3891 			}
3892 		}
3893 
3894 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3895 		if (!zone_watermark_fast(zone, order, mark,
3896 				       ac->highest_zoneidx, alloc_flags,
3897 				       gfp_mask)) {
3898 			int ret;
3899 
3900 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3901 			/*
3902 			 * Watermark failed for this zone, but see if we can
3903 			 * grow this zone if it contains deferred pages.
3904 			 */
3905 			if (static_branch_unlikely(&deferred_pages)) {
3906 				if (_deferred_grow_zone(zone, order))
3907 					goto try_this_zone;
3908 			}
3909 #endif
3910 			/* Checked here to keep the fast path fast */
3911 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3912 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3913 				goto try_this_zone;
3914 
3915 			if (node_reclaim_mode == 0 ||
3916 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3917 				continue;
3918 
3919 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3920 			switch (ret) {
3921 			case NODE_RECLAIM_NOSCAN:
3922 				/* did not scan */
3923 				continue;
3924 			case NODE_RECLAIM_FULL:
3925 				/* scanned but unreclaimable */
3926 				continue;
3927 			default:
3928 				/* did we reclaim enough */
3929 				if (zone_watermark_ok(zone, order, mark,
3930 					ac->highest_zoneidx, alloc_flags))
3931 					goto try_this_zone;
3932 
3933 				continue;
3934 			}
3935 		}
3936 
3937 try_this_zone:
3938 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3939 				gfp_mask, alloc_flags, ac->migratetype);
3940 		if (page) {
3941 			prep_new_page(page, order, gfp_mask, alloc_flags);
3942 
3943 			/*
3944 			 * If this is a high-order atomic allocation then check
3945 			 * if the pageblock should be reserved for the future
3946 			 */
3947 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3948 				reserve_highatomic_pageblock(page, zone, order);
3949 
3950 			return page;
3951 		} else {
3952 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3953 			/* Try again if zone has deferred pages */
3954 			if (static_branch_unlikely(&deferred_pages)) {
3955 				if (_deferred_grow_zone(zone, order))
3956 					goto try_this_zone;
3957 			}
3958 #endif
3959 		}
3960 	}
3961 
3962 	/*
3963 	 * It's possible on a UMA machine to get through all zones that are
3964 	 * fragmented. If avoiding fragmentation, reset and try again.
3965 	 */
3966 	if (no_fallback) {
3967 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3968 		goto retry;
3969 	}
3970 
3971 	return NULL;
3972 }
3973 
warn_alloc_show_mem(gfp_t gfp_mask,nodemask_t * nodemask)3974 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3975 {
3976 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3977 
3978 	/*
3979 	 * This documents exceptions given to allocations in certain
3980 	 * contexts that are allowed to allocate outside current's set
3981 	 * of allowed nodes.
3982 	 */
3983 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3984 		if (tsk_is_oom_victim(current) ||
3985 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3986 			filter &= ~SHOW_MEM_FILTER_NODES;
3987 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3988 		filter &= ~SHOW_MEM_FILTER_NODES;
3989 
3990 	show_mem(filter, nodemask);
3991 }
3992 
warn_alloc(gfp_t gfp_mask,nodemask_t * nodemask,const char * fmt,...)3993 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3994 {
3995 	struct va_format vaf;
3996 	va_list args;
3997 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3998 
3999 	if ((gfp_mask & __GFP_NOWARN) ||
4000 	     !__ratelimit(&nopage_rs) ||
4001 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4002 		return;
4003 
4004 	va_start(args, fmt);
4005 	vaf.fmt = fmt;
4006 	vaf.va = &args;
4007 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4008 			current->comm, &vaf, gfp_mask, &gfp_mask,
4009 			nodemask_pr_args(nodemask));
4010 	va_end(args);
4011 
4012 	cpuset_print_current_mems_allowed();
4013 	pr_cont("\n");
4014 	dump_stack();
4015 	warn_alloc_show_mem(gfp_mask, nodemask);
4016 }
4017 
4018 static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac)4019 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4020 			      unsigned int alloc_flags,
4021 			      const struct alloc_context *ac)
4022 {
4023 	struct page *page;
4024 
4025 	page = get_page_from_freelist(gfp_mask, order,
4026 			alloc_flags|ALLOC_CPUSET, ac);
4027 	/*
4028 	 * fallback to ignore cpuset restriction if our nodes
4029 	 * are depleted
4030 	 */
4031 	if (!page)
4032 		page = get_page_from_freelist(gfp_mask, order,
4033 				alloc_flags, ac);
4034 
4035 	return page;
4036 }
4037 
4038 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)4039 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4040 	const struct alloc_context *ac, unsigned long *did_some_progress)
4041 {
4042 	struct oom_control oc = {
4043 		.zonelist = ac->zonelist,
4044 		.nodemask = ac->nodemask,
4045 		.memcg = NULL,
4046 		.gfp_mask = gfp_mask,
4047 		.order = order,
4048 	};
4049 	struct page *page;
4050 
4051 	*did_some_progress = 0;
4052 
4053 	/*
4054 	 * Acquire the oom lock.  If that fails, somebody else is
4055 	 * making progress for us.
4056 	 */
4057 	if (!mutex_trylock(&oom_lock)) {
4058 		*did_some_progress = 1;
4059 		schedule_timeout_uninterruptible(1);
4060 		return NULL;
4061 	}
4062 
4063 	/*
4064 	 * Go through the zonelist yet one more time, keep very high watermark
4065 	 * here, this is only to catch a parallel oom killing, we must fail if
4066 	 * we're still under heavy pressure. But make sure that this reclaim
4067 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4068 	 * allocation which will never fail due to oom_lock already held.
4069 	 */
4070 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4071 				      ~__GFP_DIRECT_RECLAIM, order,
4072 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4073 	if (page)
4074 		goto out;
4075 
4076 	/* Coredumps can quickly deplete all memory reserves */
4077 	if (current->flags & PF_DUMPCORE)
4078 		goto out;
4079 	/* The OOM killer will not help higher order allocs */
4080 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4081 		goto out;
4082 	/*
4083 	 * We have already exhausted all our reclaim opportunities without any
4084 	 * success so it is time to admit defeat. We will skip the OOM killer
4085 	 * because it is very likely that the caller has a more reasonable
4086 	 * fallback than shooting a random task.
4087 	 *
4088 	 * The OOM killer may not free memory on a specific node.
4089 	 */
4090 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4091 		goto out;
4092 	/* The OOM killer does not needlessly kill tasks for lowmem */
4093 	if (ac->highest_zoneidx < ZONE_NORMAL)
4094 		goto out;
4095 	if (pm_suspended_storage())
4096 		goto out;
4097 	/*
4098 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4099 	 * other request to make a forward progress.
4100 	 * We are in an unfortunate situation where out_of_memory cannot
4101 	 * do much for this context but let's try it to at least get
4102 	 * access to memory reserved if the current task is killed (see
4103 	 * out_of_memory). Once filesystems are ready to handle allocation
4104 	 * failures more gracefully we should just bail out here.
4105 	 */
4106 
4107 	/* Exhausted what can be done so it's blame time */
4108 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4109 		*did_some_progress = 1;
4110 
4111 		/*
4112 		 * Help non-failing allocations by giving them access to memory
4113 		 * reserves
4114 		 */
4115 		if (gfp_mask & __GFP_NOFAIL)
4116 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4117 					ALLOC_NO_WATERMARKS, ac);
4118 	}
4119 out:
4120 	mutex_unlock(&oom_lock);
4121 	return page;
4122 }
4123 
4124 /*
4125  * Maximum number of compaction retries wit a progress before OOM
4126  * killer is consider as the only way to move forward.
4127  */
4128 #define MAX_COMPACT_RETRIES 16
4129 
4130 #ifdef CONFIG_COMPACTION
4131 /* Try memory compaction for high-order allocations before reclaim */
4132 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)4133 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4134 		unsigned int alloc_flags, const struct alloc_context *ac,
4135 		enum compact_priority prio, enum compact_result *compact_result)
4136 {
4137 	struct page *page = NULL;
4138 	unsigned long pflags;
4139 	unsigned int noreclaim_flag;
4140 
4141 	if (!order)
4142 		return NULL;
4143 
4144 	psi_memstall_enter(&pflags);
4145 	noreclaim_flag = memalloc_noreclaim_save();
4146 
4147 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4148 								prio, &page);
4149 
4150 	memalloc_noreclaim_restore(noreclaim_flag);
4151 	psi_memstall_leave(&pflags);
4152 
4153 	/*
4154 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4155 	 * count a compaction stall
4156 	 */
4157 	count_vm_event(COMPACTSTALL);
4158 
4159 	/* Prep a captured page if available */
4160 	if (page)
4161 		prep_new_page(page, order, gfp_mask, alloc_flags);
4162 
4163 	/* Try get a page from the freelist if available */
4164 	if (!page)
4165 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4166 
4167 	if (page) {
4168 		struct zone *zone = page_zone(page);
4169 
4170 		zone->compact_blockskip_flush = false;
4171 		compaction_defer_reset(zone, order, true);
4172 		count_vm_event(COMPACTSUCCESS);
4173 		return page;
4174 	}
4175 
4176 	/*
4177 	 * It's bad if compaction run occurs and fails. The most likely reason
4178 	 * is that pages exist, but not enough to satisfy watermarks.
4179 	 */
4180 	count_vm_event(COMPACTFAIL);
4181 
4182 	cond_resched();
4183 
4184 	return NULL;
4185 }
4186 
4187 static inline bool
should_compact_retry(struct alloc_context * ac,int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)4188 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4189 		     enum compact_result compact_result,
4190 		     enum compact_priority *compact_priority,
4191 		     int *compaction_retries)
4192 {
4193 	int max_retries = MAX_COMPACT_RETRIES;
4194 	int min_priority;
4195 	bool ret = false;
4196 	int retries = *compaction_retries;
4197 	enum compact_priority priority = *compact_priority;
4198 
4199 	if (!order)
4200 		return false;
4201 
4202 	if (compaction_made_progress(compact_result))
4203 		(*compaction_retries)++;
4204 
4205 	/*
4206 	 * compaction considers all the zone as desperately out of memory
4207 	 * so it doesn't really make much sense to retry except when the
4208 	 * failure could be caused by insufficient priority
4209 	 */
4210 	if (compaction_failed(compact_result))
4211 		goto check_priority;
4212 
4213 	/*
4214 	 * compaction was skipped because there are not enough order-0 pages
4215 	 * to work with, so we retry only if it looks like reclaim can help.
4216 	 */
4217 	if (compaction_needs_reclaim(compact_result)) {
4218 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4219 		goto out;
4220 	}
4221 
4222 	/*
4223 	 * make sure the compaction wasn't deferred or didn't bail out early
4224 	 * due to locks contention before we declare that we should give up.
4225 	 * But the next retry should use a higher priority if allowed, so
4226 	 * we don't just keep bailing out endlessly.
4227 	 */
4228 	if (compaction_withdrawn(compact_result)) {
4229 		goto check_priority;
4230 	}
4231 
4232 	/*
4233 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4234 	 * costly ones because they are de facto nofail and invoke OOM
4235 	 * killer to move on while costly can fail and users are ready
4236 	 * to cope with that. 1/4 retries is rather arbitrary but we
4237 	 * would need much more detailed feedback from compaction to
4238 	 * make a better decision.
4239 	 */
4240 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4241 		max_retries /= 4;
4242 	if (*compaction_retries <= max_retries) {
4243 		ret = true;
4244 		goto out;
4245 	}
4246 
4247 	/*
4248 	 * Make sure there are attempts at the highest priority if we exhausted
4249 	 * all retries or failed at the lower priorities.
4250 	 */
4251 check_priority:
4252 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4253 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4254 
4255 	if (*compact_priority > min_priority) {
4256 		(*compact_priority)--;
4257 		*compaction_retries = 0;
4258 		ret = true;
4259 	}
4260 out:
4261 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4262 	return ret;
4263 }
4264 #else
4265 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)4266 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4267 		unsigned int alloc_flags, const struct alloc_context *ac,
4268 		enum compact_priority prio, enum compact_result *compact_result)
4269 {
4270 	*compact_result = COMPACT_SKIPPED;
4271 	return NULL;
4272 }
4273 
4274 static inline bool
should_compact_retry(struct alloc_context * ac,unsigned int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)4275 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4276 		     enum compact_result compact_result,
4277 		     enum compact_priority *compact_priority,
4278 		     int *compaction_retries)
4279 {
4280 	struct zone *zone;
4281 	struct zoneref *z;
4282 
4283 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4284 		return false;
4285 
4286 	/*
4287 	 * There are setups with compaction disabled which would prefer to loop
4288 	 * inside the allocator rather than hit the oom killer prematurely.
4289 	 * Let's give them a good hope and keep retrying while the order-0
4290 	 * watermarks are OK.
4291 	 */
4292 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4293 				ac->highest_zoneidx, ac->nodemask) {
4294 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4295 					ac->highest_zoneidx, alloc_flags))
4296 			return true;
4297 	}
4298 	return false;
4299 }
4300 #endif /* CONFIG_COMPACTION */
4301 
4302 #ifdef CONFIG_LOCKDEP
4303 static struct lockdep_map __fs_reclaim_map =
4304 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4305 
__need_fs_reclaim(gfp_t gfp_mask)4306 static bool __need_fs_reclaim(gfp_t gfp_mask)
4307 {
4308 	gfp_mask = current_gfp_context(gfp_mask);
4309 
4310 	/* no reclaim without waiting on it */
4311 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4312 		return false;
4313 
4314 	/* this guy won't enter reclaim */
4315 	if (current->flags & PF_MEMALLOC)
4316 		return false;
4317 
4318 	/* We're only interested __GFP_FS allocations for now */
4319 	if (!(gfp_mask & __GFP_FS))
4320 		return false;
4321 
4322 	if (gfp_mask & __GFP_NOLOCKDEP)
4323 		return false;
4324 
4325 	return true;
4326 }
4327 
__fs_reclaim_acquire(void)4328 void __fs_reclaim_acquire(void)
4329 {
4330 	lock_map_acquire(&__fs_reclaim_map);
4331 }
4332 
__fs_reclaim_release(void)4333 void __fs_reclaim_release(void)
4334 {
4335 	lock_map_release(&__fs_reclaim_map);
4336 }
4337 
fs_reclaim_acquire(gfp_t gfp_mask)4338 void fs_reclaim_acquire(gfp_t gfp_mask)
4339 {
4340 	if (__need_fs_reclaim(gfp_mask))
4341 		__fs_reclaim_acquire();
4342 }
4343 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4344 
fs_reclaim_release(gfp_t gfp_mask)4345 void fs_reclaim_release(gfp_t gfp_mask)
4346 {
4347 	if (__need_fs_reclaim(gfp_mask))
4348 		__fs_reclaim_release();
4349 }
4350 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4351 #endif
4352 
4353 /* Perform direct synchronous page reclaim */
4354 static unsigned long
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)4355 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4356 					const struct alloc_context *ac)
4357 {
4358 	unsigned int noreclaim_flag;
4359 	unsigned long pflags, progress;
4360 
4361 	cond_resched();
4362 
4363 	/* We now go into synchronous reclaim */
4364 	cpuset_memory_pressure_bump();
4365 	psi_memstall_enter(&pflags);
4366 	fs_reclaim_acquire(gfp_mask);
4367 	noreclaim_flag = memalloc_noreclaim_save();
4368 
4369 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4370 								ac->nodemask);
4371 
4372 	memalloc_noreclaim_restore(noreclaim_flag);
4373 	fs_reclaim_release(gfp_mask);
4374 	psi_memstall_leave(&pflags);
4375 
4376 	cond_resched();
4377 
4378 	return progress;
4379 }
4380 
4381 /* The really slow allocator path where we enter direct reclaim */
4382 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)4383 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4384 		unsigned int alloc_flags, const struct alloc_context *ac,
4385 		unsigned long *did_some_progress)
4386 {
4387 	struct page *page = NULL;
4388 	bool drained = false;
4389 
4390 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4391 	if (unlikely(!(*did_some_progress)))
4392 		return NULL;
4393 
4394 retry:
4395 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4396 
4397 	/*
4398 	 * If an allocation failed after direct reclaim, it could be because
4399 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4400 	 * Shrink them and try again
4401 	 */
4402 	if (!page && !drained) {
4403 		unreserve_highatomic_pageblock(ac, false);
4404 #ifdef CONFIG_RECLAIM_ACCT
4405 		reclaimacct_substage_start(RA_DRAINALLPAGES);
4406 #endif
4407 		drain_all_pages(NULL);
4408 #ifdef CONFIG_RECLAIM_ACCT
4409 		reclaimacct_substage_end(RA_DRAINALLPAGES, 0, NULL);
4410 #endif
4411 		drained = true;
4412 		goto retry;
4413 	}
4414 
4415 	return page;
4416 }
4417 
wake_all_kswapds(unsigned int order,gfp_t gfp_mask,const struct alloc_context * ac)4418 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4419 			     const struct alloc_context *ac)
4420 {
4421 	struct zoneref *z;
4422 	struct zone *zone;
4423 	pg_data_t *last_pgdat = NULL;
4424 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4425 
4426 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4427 					ac->nodemask) {
4428 		if (last_pgdat != zone->zone_pgdat)
4429 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4430 		last_pgdat = zone->zone_pgdat;
4431 	}
4432 }
4433 
4434 static inline unsigned int
gfp_to_alloc_flags(gfp_t gfp_mask)4435 gfp_to_alloc_flags(gfp_t gfp_mask)
4436 {
4437 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4438 
4439 	/*
4440 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4441 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4442 	 * to save two branches.
4443 	 */
4444 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4445 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4446 
4447 	/*
4448 	 * The caller may dip into page reserves a bit more if the caller
4449 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4450 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4451 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4452 	 */
4453 	alloc_flags |= (__force int)
4454 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4455 
4456 	if (gfp_mask & __GFP_ATOMIC) {
4457 		/*
4458 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4459 		 * if it can't schedule.
4460 		 */
4461 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4462 			alloc_flags |= ALLOC_HARDER;
4463 		/*
4464 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4465 		 * comment for __cpuset_node_allowed().
4466 		 */
4467 		alloc_flags &= ~ALLOC_CPUSET;
4468 	} else if (unlikely(rt_task(current)) && !in_interrupt())
4469 		alloc_flags |= ALLOC_HARDER;
4470 
4471 	alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4472 
4473 	return alloc_flags;
4474 }
4475 
oom_reserves_allowed(struct task_struct * tsk)4476 static bool oom_reserves_allowed(struct task_struct *tsk)
4477 {
4478 	if (!tsk_is_oom_victim(tsk))
4479 		return false;
4480 
4481 	/*
4482 	 * !MMU doesn't have oom reaper so give access to memory reserves
4483 	 * only to the thread with TIF_MEMDIE set
4484 	 */
4485 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4486 		return false;
4487 
4488 	return true;
4489 }
4490 
4491 /*
4492  * Distinguish requests which really need access to full memory
4493  * reserves from oom victims which can live with a portion of it
4494  */
__gfp_pfmemalloc_flags(gfp_t gfp_mask)4495 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4496 {
4497 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4498 		return 0;
4499 	if (gfp_mask & __GFP_MEMALLOC)
4500 		return ALLOC_NO_WATERMARKS;
4501 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4502 		return ALLOC_NO_WATERMARKS;
4503 	if (!in_interrupt()) {
4504 		if (current->flags & PF_MEMALLOC)
4505 			return ALLOC_NO_WATERMARKS;
4506 		else if (oom_reserves_allowed(current))
4507 			return ALLOC_OOM;
4508 	}
4509 
4510 	return 0;
4511 }
4512 
gfp_pfmemalloc_allowed(gfp_t gfp_mask)4513 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4514 {
4515 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4516 }
4517 
4518 /*
4519  * Checks whether it makes sense to retry the reclaim to make a forward progress
4520  * for the given allocation request.
4521  *
4522  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4523  * without success, or when we couldn't even meet the watermark if we
4524  * reclaimed all remaining pages on the LRU lists.
4525  *
4526  * Returns true if a retry is viable or false to enter the oom path.
4527  */
4528 static inline bool
should_reclaim_retry(gfp_t gfp_mask,unsigned order,struct alloc_context * ac,int alloc_flags,bool did_some_progress,int * no_progress_loops)4529 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4530 		     struct alloc_context *ac, int alloc_flags,
4531 		     bool did_some_progress, int *no_progress_loops)
4532 {
4533 	struct zone *zone;
4534 	struct zoneref *z;
4535 	bool ret = false;
4536 
4537 	/*
4538 	 * Costly allocations might have made a progress but this doesn't mean
4539 	 * their order will become available due to high fragmentation so
4540 	 * always increment the no progress counter for them
4541 	 */
4542 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4543 		*no_progress_loops = 0;
4544 	else
4545 		(*no_progress_loops)++;
4546 
4547 	/*
4548 	 * Make sure we converge to OOM if we cannot make any progress
4549 	 * several times in the row.
4550 	 */
4551 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4552 		/* Before OOM, exhaust highatomic_reserve */
4553 		return unreserve_highatomic_pageblock(ac, true);
4554 	}
4555 
4556 	/*
4557 	 * Keep reclaiming pages while there is a chance this will lead
4558 	 * somewhere.  If none of the target zones can satisfy our allocation
4559 	 * request even if all reclaimable pages are considered then we are
4560 	 * screwed and have to go OOM.
4561 	 */
4562 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4563 				ac->highest_zoneidx, ac->nodemask) {
4564 		unsigned long available;
4565 		unsigned long reclaimable;
4566 		unsigned long min_wmark = min_wmark_pages(zone);
4567 		bool wmark;
4568 
4569 		available = reclaimable = zone_reclaimable_pages(zone);
4570 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4571 
4572 		/*
4573 		 * Would the allocation succeed if we reclaimed all
4574 		 * reclaimable pages?
4575 		 */
4576 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4577 				ac->highest_zoneidx, alloc_flags, available);
4578 		trace_reclaim_retry_zone(z, order, reclaimable,
4579 				available, min_wmark, *no_progress_loops, wmark);
4580 		if (wmark) {
4581 			/*
4582 			 * If we didn't make any progress and have a lot of
4583 			 * dirty + writeback pages then we should wait for
4584 			 * an IO to complete to slow down the reclaim and
4585 			 * prevent from pre mature OOM
4586 			 */
4587 			if (!did_some_progress) {
4588 				unsigned long write_pending;
4589 
4590 				write_pending = zone_page_state_snapshot(zone,
4591 							NR_ZONE_WRITE_PENDING);
4592 
4593 				if (2 * write_pending > reclaimable) {
4594 					congestion_wait(BLK_RW_ASYNC, HZ/10);
4595 					return true;
4596 				}
4597 			}
4598 
4599 			ret = true;
4600 			goto out;
4601 		}
4602 	}
4603 
4604 out:
4605 	/*
4606 	 * Memory allocation/reclaim might be called from a WQ context and the
4607 	 * current implementation of the WQ concurrency control doesn't
4608 	 * recognize that a particular WQ is congested if the worker thread is
4609 	 * looping without ever sleeping. Therefore we have to do a short sleep
4610 	 * here rather than calling cond_resched().
4611 	 */
4612 	if (current->flags & PF_WQ_WORKER)
4613 		schedule_timeout_uninterruptible(1);
4614 	else
4615 		cond_resched();
4616 	return ret;
4617 }
4618 
4619 static inline bool
check_retry_cpuset(int cpuset_mems_cookie,struct alloc_context * ac)4620 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4621 {
4622 	/*
4623 	 * It's possible that cpuset's mems_allowed and the nodemask from
4624 	 * mempolicy don't intersect. This should be normally dealt with by
4625 	 * policy_nodemask(), but it's possible to race with cpuset update in
4626 	 * such a way the check therein was true, and then it became false
4627 	 * before we got our cpuset_mems_cookie here.
4628 	 * This assumes that for all allocations, ac->nodemask can come only
4629 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4630 	 * when it does not intersect with the cpuset restrictions) or the
4631 	 * caller can deal with a violated nodemask.
4632 	 */
4633 	if (cpusets_enabled() && ac->nodemask &&
4634 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4635 		ac->nodemask = NULL;
4636 		return true;
4637 	}
4638 
4639 	/*
4640 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4641 	 * possible to race with parallel threads in such a way that our
4642 	 * allocation can fail while the mask is being updated. If we are about
4643 	 * to fail, check if the cpuset changed during allocation and if so,
4644 	 * retry.
4645 	 */
4646 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4647 		return true;
4648 
4649 	return false;
4650 }
4651 
4652 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)4653 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4654 						struct alloc_context *ac)
4655 {
4656 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4657 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4658 	struct page *page = NULL;
4659 	unsigned int alloc_flags;
4660 	unsigned long did_some_progress;
4661 	enum compact_priority compact_priority;
4662 	enum compact_result compact_result;
4663 	int compaction_retries;
4664 	int no_progress_loops;
4665 	unsigned int cpuset_mems_cookie;
4666 	int reserve_flags;
4667 #ifdef CONFIG_RECLAIM_ACCT
4668 	struct reclaim_acct ra = {0};
4669 #endif
4670 
4671 	/*
4672 	 * We also sanity check to catch abuse of atomic reserves being used by
4673 	 * callers that are not in atomic context.
4674 	 */
4675 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4676 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4677 		gfp_mask &= ~__GFP_ATOMIC;
4678 
4679 retry_cpuset:
4680 	compaction_retries = 0;
4681 	no_progress_loops = 0;
4682 	compact_priority = DEF_COMPACT_PRIORITY;
4683 	cpuset_mems_cookie = read_mems_allowed_begin();
4684 
4685 	/*
4686 	 * The fast path uses conservative alloc_flags to succeed only until
4687 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4688 	 * alloc_flags precisely. So we do that now.
4689 	 */
4690 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4691 
4692 	/*
4693 	 * We need to recalculate the starting point for the zonelist iterator
4694 	 * because we might have used different nodemask in the fast path, or
4695 	 * there was a cpuset modification and we are retrying - otherwise we
4696 	 * could end up iterating over non-eligible zones endlessly.
4697 	 */
4698 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4699 					ac->highest_zoneidx, ac->nodemask);
4700 	if (!ac->preferred_zoneref->zone)
4701 		goto nopage;
4702 
4703 	if (alloc_flags & ALLOC_KSWAPD)
4704 		wake_all_kswapds(order, gfp_mask, ac);
4705 
4706 	/*
4707 	 * The adjusted alloc_flags might result in immediate success, so try
4708 	 * that first
4709 	 */
4710 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4711 	if (page)
4712 		goto got_pg;
4713 
4714 	/*
4715 	 * For costly allocations, try direct compaction first, as it's likely
4716 	 * that we have enough base pages and don't need to reclaim. For non-
4717 	 * movable high-order allocations, do that as well, as compaction will
4718 	 * try prevent permanent fragmentation by migrating from blocks of the
4719 	 * same migratetype.
4720 	 * Don't try this for allocations that are allowed to ignore
4721 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4722 	 */
4723 	if (can_direct_reclaim &&
4724 			(costly_order ||
4725 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4726 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4727 		page = __alloc_pages_direct_compact(gfp_mask, order,
4728 						alloc_flags, ac,
4729 						INIT_COMPACT_PRIORITY,
4730 						&compact_result);
4731 		if (page)
4732 			goto got_pg;
4733 
4734 		/*
4735 		 * Checks for costly allocations with __GFP_NORETRY, which
4736 		 * includes some THP page fault allocations
4737 		 */
4738 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4739 			/*
4740 			 * If allocating entire pageblock(s) and compaction
4741 			 * failed because all zones are below low watermarks
4742 			 * or is prohibited because it recently failed at this
4743 			 * order, fail immediately unless the allocator has
4744 			 * requested compaction and reclaim retry.
4745 			 *
4746 			 * Reclaim is
4747 			 *  - potentially very expensive because zones are far
4748 			 *    below their low watermarks or this is part of very
4749 			 *    bursty high order allocations,
4750 			 *  - not guaranteed to help because isolate_freepages()
4751 			 *    may not iterate over freed pages as part of its
4752 			 *    linear scan, and
4753 			 *  - unlikely to make entire pageblocks free on its
4754 			 *    own.
4755 			 */
4756 			if (compact_result == COMPACT_SKIPPED ||
4757 			    compact_result == COMPACT_DEFERRED)
4758 				goto nopage;
4759 
4760 			/*
4761 			 * Looks like reclaim/compaction is worth trying, but
4762 			 * sync compaction could be very expensive, so keep
4763 			 * using async compaction.
4764 			 */
4765 			compact_priority = INIT_COMPACT_PRIORITY;
4766 		}
4767 	}
4768 
4769 retry:
4770 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4771 	if (alloc_flags & ALLOC_KSWAPD)
4772 		wake_all_kswapds(order, gfp_mask, ac);
4773 
4774 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4775 	if (reserve_flags)
4776 		alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
4777 
4778 	/*
4779 	 * Reset the nodemask and zonelist iterators if memory policies can be
4780 	 * ignored. These allocations are high priority and system rather than
4781 	 * user oriented.
4782 	 */
4783 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4784 		ac->nodemask = NULL;
4785 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4786 					ac->highest_zoneidx, ac->nodemask);
4787 	}
4788 
4789 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4790 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4791 	if (page)
4792 		goto got_pg;
4793 
4794 	/* Caller is not willing to reclaim, we can't balance anything */
4795 	if (!can_direct_reclaim)
4796 		goto nopage;
4797 
4798 	/* Avoid recursion of direct reclaim */
4799 	if (current->flags & PF_MEMALLOC)
4800 		goto nopage;
4801 
4802 	/* Try direct reclaim and then allocating */
4803 #ifdef CONFIG_RECLAIM_ACCT
4804 	reclaimacct_start(DIRECT_RECLAIMS, &ra);
4805 #endif
4806 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4807 							&did_some_progress);
4808 #ifdef CONFIG_RECLAIM_ACCT
4809 	reclaimacct_end(DIRECT_RECLAIMS);
4810 #endif
4811 	if (page)
4812 		goto got_pg;
4813 
4814 	/* Try direct compaction and then allocating */
4815 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4816 					compact_priority, &compact_result);
4817 	if (page)
4818 		goto got_pg;
4819 
4820 	/* Do not loop if specifically requested */
4821 	if (gfp_mask & __GFP_NORETRY)
4822 		goto nopage;
4823 
4824 	/*
4825 	 * Do not retry costly high order allocations unless they are
4826 	 * __GFP_RETRY_MAYFAIL
4827 	 */
4828 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4829 		goto nopage;
4830 
4831 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4832 				 did_some_progress > 0, &no_progress_loops))
4833 		goto retry;
4834 
4835 	/*
4836 	 * It doesn't make any sense to retry for the compaction if the order-0
4837 	 * reclaim is not able to make any progress because the current
4838 	 * implementation of the compaction depends on the sufficient amount
4839 	 * of free memory (see __compaction_suitable)
4840 	 */
4841 	if (did_some_progress > 0 &&
4842 			should_compact_retry(ac, order, alloc_flags,
4843 				compact_result, &compact_priority,
4844 				&compaction_retries))
4845 		goto retry;
4846 
4847 
4848 	/* Deal with possible cpuset update races before we start OOM killing */
4849 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4850 		goto retry_cpuset;
4851 
4852 	/* Reclaim has failed us, start killing things */
4853 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4854 	if (page)
4855 		goto got_pg;
4856 
4857 	/* Avoid allocations with no watermarks from looping endlessly */
4858 	if (tsk_is_oom_victim(current) &&
4859 	    (alloc_flags & ALLOC_OOM ||
4860 	     (gfp_mask & __GFP_NOMEMALLOC)))
4861 		goto nopage;
4862 
4863 	/* Retry as long as the OOM killer is making progress */
4864 	if (did_some_progress) {
4865 		no_progress_loops = 0;
4866 		goto retry;
4867 	}
4868 
4869 nopage:
4870 	/* Deal with possible cpuset update races before we fail */
4871 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4872 		goto retry_cpuset;
4873 
4874 	/*
4875 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4876 	 * we always retry
4877 	 */
4878 	if (gfp_mask & __GFP_NOFAIL) {
4879 		/*
4880 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4881 		 * of any new users that actually require GFP_NOWAIT
4882 		 */
4883 		if (WARN_ON_ONCE(!can_direct_reclaim))
4884 			goto fail;
4885 
4886 		/*
4887 		 * PF_MEMALLOC request from this context is rather bizarre
4888 		 * because we cannot reclaim anything and only can loop waiting
4889 		 * for somebody to do a work for us
4890 		 */
4891 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4892 
4893 		/*
4894 		 * non failing costly orders are a hard requirement which we
4895 		 * are not prepared for much so let's warn about these users
4896 		 * so that we can identify them and convert them to something
4897 		 * else.
4898 		 */
4899 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4900 
4901 		/*
4902 		 * Help non-failing allocations by giving them access to memory
4903 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4904 		 * could deplete whole memory reserves which would just make
4905 		 * the situation worse
4906 		 */
4907 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4908 		if (page)
4909 			goto got_pg;
4910 
4911 		cond_resched();
4912 		goto retry;
4913 	}
4914 fail:
4915 	warn_alloc(gfp_mask, ac->nodemask,
4916 			"page allocation failure: order:%u", order);
4917 got_pg:
4918 	return page;
4919 }
4920 
prepare_alloc_pages(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask,struct alloc_context * ac,gfp_t * alloc_mask,unsigned int * alloc_flags)4921 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4922 		int preferred_nid, nodemask_t *nodemask,
4923 		struct alloc_context *ac, gfp_t *alloc_mask,
4924 		unsigned int *alloc_flags)
4925 {
4926 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4927 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4928 	ac->nodemask = nodemask;
4929 	ac->migratetype = gfp_migratetype(gfp_mask);
4930 
4931 	if (cpusets_enabled()) {
4932 		*alloc_mask |= __GFP_HARDWALL;
4933 		/*
4934 		 * When we are in the interrupt context, it is irrelevant
4935 		 * to the current task context. It means that any node ok.
4936 		 */
4937 		if (!in_interrupt() && !ac->nodemask)
4938 			ac->nodemask = &cpuset_current_mems_allowed;
4939 		else
4940 			*alloc_flags |= ALLOC_CPUSET;
4941 	}
4942 
4943 	fs_reclaim_acquire(gfp_mask);
4944 	fs_reclaim_release(gfp_mask);
4945 
4946 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4947 
4948 #ifdef CONFIG_HYPERHOLD_ZSWAPD
4949 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4950 		wake_all_zswapd();
4951 #endif
4952 
4953 	if (should_fail_alloc_page(gfp_mask, order))
4954 		return false;
4955 
4956 	*alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
4957 
4958 	/* Dirty zone balancing only done in the fast path */
4959 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4960 
4961 	/*
4962 	 * The preferred zone is used for statistics but crucially it is
4963 	 * also used as the starting point for the zonelist iterator. It
4964 	 * may get reset for allocations that ignore memory policies.
4965 	 */
4966 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4967 					ac->highest_zoneidx, ac->nodemask);
4968 
4969 	return true;
4970 }
4971 
4972 /*
4973  * This is the 'heart' of the zoned buddy allocator.
4974  */
4975 struct page *
__alloc_pages_nodemask(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask)4976 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4977 							nodemask_t *nodemask)
4978 {
4979 	struct page *page;
4980 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4981 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4982 	struct alloc_context ac = { };
4983 
4984 	/*
4985 	 * There are several places where we assume that the order value is sane
4986 	 * so bail out early if the request is out of bound.
4987 	 */
4988 	if (unlikely(order >= MAX_ORDER)) {
4989 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4990 		return NULL;
4991 	}
4992 
4993 	gfp_mask &= gfp_allowed_mask;
4994 	alloc_mask = gfp_mask;
4995 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4996 		return NULL;
4997 
4998 	/*
4999 	 * Forbid the first pass from falling back to types that fragment
5000 	 * memory until all local zones are considered.
5001 	 */
5002 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
5003 
5004 	/* First allocation attempt */
5005 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
5006 	if (likely(page))
5007 		goto out;
5008 
5009 	/*
5010 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5011 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5012 	 * from a particular context which has been marked by
5013 	 * memalloc_no{fs,io}_{save,restore}.
5014 	 */
5015 	alloc_mask = current_gfp_context(gfp_mask);
5016 	ac.spread_dirty_pages = false;
5017 
5018 	/*
5019 	 * Restore the original nodemask if it was potentially replaced with
5020 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5021 	 */
5022 	ac.nodemask = nodemask;
5023 
5024 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
5025 
5026 out:
5027 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
5028 	    unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
5029 		__free_pages(page, order);
5030 		page = NULL;
5031 	}
5032 
5033 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
5034 
5035 	return page;
5036 }
5037 EXPORT_SYMBOL(__alloc_pages_nodemask);
5038 
5039 /*
5040  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5041  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5042  * you need to access high mem.
5043  */
__get_free_pages(gfp_t gfp_mask,unsigned int order)5044 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5045 {
5046 	struct page *page;
5047 
5048 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5049 	if (!page)
5050 		return 0;
5051 	return (unsigned long) page_address(page);
5052 }
5053 EXPORT_SYMBOL(__get_free_pages);
5054 
get_zeroed_page(gfp_t gfp_mask)5055 unsigned long get_zeroed_page(gfp_t gfp_mask)
5056 {
5057 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5058 }
5059 EXPORT_SYMBOL(get_zeroed_page);
5060 
free_the_page(struct page * page,unsigned int order)5061 static inline void free_the_page(struct page *page, unsigned int order)
5062 {
5063 	if (order == 0)		/* Via pcp? */
5064 		free_unref_page(page);
5065 	else
5066 		__free_pages_ok(page, order, FPI_NONE);
5067 }
5068 
__free_pages(struct page * page,unsigned int order)5069 void __free_pages(struct page *page, unsigned int order)
5070 {
5071 	if (put_page_testzero(page))
5072 		free_the_page(page, order);
5073 	else if (!PageHead(page))
5074 		while (order-- > 0)
5075 			free_the_page(page + (1 << order), order);
5076 }
5077 EXPORT_SYMBOL(__free_pages);
5078 
free_pages(unsigned long addr,unsigned int order)5079 void free_pages(unsigned long addr, unsigned int order)
5080 {
5081 	if (addr != 0) {
5082 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5083 		__free_pages(virt_to_page((void *)addr), order);
5084 	}
5085 }
5086 
5087 EXPORT_SYMBOL(free_pages);
5088 
5089 /*
5090  * Page Fragment:
5091  *  An arbitrary-length arbitrary-offset area of memory which resides
5092  *  within a 0 or higher order page.  Multiple fragments within that page
5093  *  are individually refcounted, in the page's reference counter.
5094  *
5095  * The page_frag functions below provide a simple allocation framework for
5096  * page fragments.  This is used by the network stack and network device
5097  * drivers to provide a backing region of memory for use as either an
5098  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5099  */
__page_frag_cache_refill(struct page_frag_cache * nc,gfp_t gfp_mask)5100 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5101 					     gfp_t gfp_mask)
5102 {
5103 	struct page *page = NULL;
5104 	gfp_t gfp = gfp_mask;
5105 
5106 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5107 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5108 		    __GFP_NOMEMALLOC;
5109 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5110 				PAGE_FRAG_CACHE_MAX_ORDER);
5111 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5112 #endif
5113 	if (unlikely(!page))
5114 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5115 
5116 	nc->va = page ? page_address(page) : NULL;
5117 
5118 #ifdef CONFIG_PAGE_TRACING
5119 	if (likely(page)) {
5120 		int order = get_order(nc->size);
5121 		int i;
5122 		struct page *newpage = page;
5123 		unsigned int deta = 1U << (unsigned int)order;
5124 
5125 		for (i = 0; i < (1 << order); i++) {
5126 			if (!newpage)
5127 				break;
5128 			SetPageSKB(newpage);
5129 			newpage++;
5130 		}
5131 		mod_zone_page_state(page_zone(page), NR_SKB_PAGES, (long)deta);
5132 	}
5133 #endif
5134 
5135 	return page;
5136 }
5137 
__page_frag_cache_drain(struct page * page,unsigned int count)5138 void __page_frag_cache_drain(struct page *page, unsigned int count)
5139 {
5140 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5141 
5142 	if (page_ref_sub_and_test(page, count)) {
5143 #ifdef CONFIG_PAGE_TRACING
5144 		if (likely(page)) {
5145 			unsigned int deta = 1U << compound_order(page);
5146 
5147 			mod_zone_page_state(page_zone(page), NR_SKB_PAGES, -(long)deta);
5148 		}
5149 #endif
5150 		free_the_page(page, compound_order(page));
5151 	}
5152 }
5153 EXPORT_SYMBOL(__page_frag_cache_drain);
5154 
page_frag_alloc(struct page_frag_cache * nc,unsigned int fragsz,gfp_t gfp_mask)5155 void *page_frag_alloc(struct page_frag_cache *nc,
5156 		      unsigned int fragsz, gfp_t gfp_mask)
5157 {
5158 	unsigned int size = PAGE_SIZE;
5159 	struct page *page;
5160 	int offset;
5161 
5162 	if (unlikely(!nc->va)) {
5163 refill:
5164 		page = __page_frag_cache_refill(nc, gfp_mask);
5165 		if (!page)
5166 			return NULL;
5167 
5168 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5169 		/* if size can vary use size else just use PAGE_SIZE */
5170 		size = nc->size;
5171 #endif
5172 		/* Even if we own the page, we do not use atomic_set().
5173 		 * This would break get_page_unless_zero() users.
5174 		 */
5175 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5176 
5177 		/* reset page count bias and offset to start of new frag */
5178 		nc->pfmemalloc = page_is_pfmemalloc(page);
5179 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5180 		nc->offset = size;
5181 	}
5182 
5183 	offset = nc->offset - fragsz;
5184 	if (unlikely(offset < 0)) {
5185 		page = virt_to_page(nc->va);
5186 
5187 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5188 			goto refill;
5189 
5190 		if (unlikely(nc->pfmemalloc)) {
5191 			free_the_page(page, compound_order(page));
5192 			goto refill;
5193 		}
5194 
5195 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5196 		/* if size can vary use size else just use PAGE_SIZE */
5197 		size = nc->size;
5198 #endif
5199 		/* OK, page count is 0, we can safely set it */
5200 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5201 
5202 		/* reset page count bias and offset to start of new frag */
5203 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5204 		offset = size - fragsz;
5205 	}
5206 
5207 	nc->pagecnt_bias--;
5208 	nc->offset = offset;
5209 
5210 	return nc->va + offset;
5211 }
5212 EXPORT_SYMBOL(page_frag_alloc);
5213 
5214 /*
5215  * Frees a page fragment allocated out of either a compound or order 0 page.
5216  */
page_frag_free(void * addr)5217 void page_frag_free(void *addr)
5218 {
5219 	struct page *page = virt_to_head_page(addr);
5220 
5221 	if (unlikely(put_page_testzero(page))) {
5222 #ifdef CONFIG_PAGE_TRACING
5223 		if (likely(page)) {
5224 			unsigned int deta = 1U << compound_order(page);
5225 
5226 			mod_zone_page_state(page_zone(page), NR_SKB_PAGES, -(long)deta);
5227 		}
5228 #endif
5229 		free_the_page(page, compound_order(page));
5230 	}
5231 }
5232 EXPORT_SYMBOL(page_frag_free);
5233 
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)5234 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5235 		size_t size)
5236 {
5237 	if (addr) {
5238 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5239 		unsigned long used = addr + PAGE_ALIGN(size);
5240 
5241 		split_page(virt_to_page((void *)addr), order);
5242 		while (used < alloc_end) {
5243 			free_page(used);
5244 			used += PAGE_SIZE;
5245 		}
5246 	}
5247 	return (void *)addr;
5248 }
5249 
5250 /**
5251  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5252  * @size: the number of bytes to allocate
5253  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5254  *
5255  * This function is similar to alloc_pages(), except that it allocates the
5256  * minimum number of pages to satisfy the request.  alloc_pages() can only
5257  * allocate memory in power-of-two pages.
5258  *
5259  * This function is also limited by MAX_ORDER.
5260  *
5261  * Memory allocated by this function must be released by free_pages_exact().
5262  *
5263  * Return: pointer to the allocated area or %NULL in case of error.
5264  */
alloc_pages_exact(size_t size,gfp_t gfp_mask)5265 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5266 {
5267 	unsigned int order = get_order(size);
5268 	unsigned long addr;
5269 
5270 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5271 		gfp_mask &= ~__GFP_COMP;
5272 
5273 	addr = __get_free_pages(gfp_mask, order);
5274 	return make_alloc_exact(addr, order, size);
5275 }
5276 EXPORT_SYMBOL(alloc_pages_exact);
5277 
5278 /**
5279  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5280  *			   pages on a node.
5281  * @nid: the preferred node ID where memory should be allocated
5282  * @size: the number of bytes to allocate
5283  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5284  *
5285  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5286  * back.
5287  *
5288  * Return: pointer to the allocated area or %NULL in case of error.
5289  */
alloc_pages_exact_nid(int nid,size_t size,gfp_t gfp_mask)5290 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5291 {
5292 	unsigned int order = get_order(size);
5293 	struct page *p;
5294 
5295 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5296 		gfp_mask &= ~__GFP_COMP;
5297 
5298 	p = alloc_pages_node(nid, gfp_mask, order);
5299 	if (!p)
5300 		return NULL;
5301 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5302 }
5303 
5304 /**
5305  * free_pages_exact - release memory allocated via alloc_pages_exact()
5306  * @virt: the value returned by alloc_pages_exact.
5307  * @size: size of allocation, same value as passed to alloc_pages_exact().
5308  *
5309  * Release the memory allocated by a previous call to alloc_pages_exact.
5310  */
free_pages_exact(void * virt,size_t size)5311 void free_pages_exact(void *virt, size_t size)
5312 {
5313 	unsigned long addr = (unsigned long)virt;
5314 	unsigned long end = addr + PAGE_ALIGN(size);
5315 
5316 	while (addr < end) {
5317 		free_page(addr);
5318 		addr += PAGE_SIZE;
5319 	}
5320 }
5321 EXPORT_SYMBOL(free_pages_exact);
5322 
5323 /**
5324  * nr_free_zone_pages - count number of pages beyond high watermark
5325  * @offset: The zone index of the highest zone
5326  *
5327  * nr_free_zone_pages() counts the number of pages which are beyond the
5328  * high watermark within all zones at or below a given zone index.  For each
5329  * zone, the number of pages is calculated as:
5330  *
5331  *     nr_free_zone_pages = managed_pages - high_pages
5332  *
5333  * Return: number of pages beyond high watermark.
5334  */
nr_free_zone_pages(int offset)5335 static unsigned long nr_free_zone_pages(int offset)
5336 {
5337 	struct zoneref *z;
5338 	struct zone *zone;
5339 
5340 	/* Just pick one node, since fallback list is circular */
5341 	unsigned long sum = 0;
5342 
5343 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5344 
5345 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5346 		unsigned long size = zone_managed_pages(zone);
5347 		unsigned long high = high_wmark_pages(zone);
5348 		if (size > high)
5349 			sum += size - high;
5350 	}
5351 
5352 	return sum;
5353 }
5354 
5355 /**
5356  * nr_free_buffer_pages - count number of pages beyond high watermark
5357  *
5358  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5359  * watermark within ZONE_DMA and ZONE_NORMAL.
5360  *
5361  * Return: number of pages beyond high watermark within ZONE_DMA and
5362  * ZONE_NORMAL.
5363  */
nr_free_buffer_pages(void)5364 unsigned long nr_free_buffer_pages(void)
5365 {
5366 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5367 }
5368 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5369 
show_node(struct zone * zone)5370 static inline void show_node(struct zone *zone)
5371 {
5372 	if (IS_ENABLED(CONFIG_NUMA))
5373 		printk("Node %d ", zone_to_nid(zone));
5374 }
5375 
si_mem_available(void)5376 long si_mem_available(void)
5377 {
5378 	long available;
5379 	unsigned long pagecache;
5380 	unsigned long wmark_low = 0;
5381 	unsigned long pages[NR_LRU_LISTS];
5382 	unsigned long reclaimable;
5383 	struct zone *zone;
5384 	int lru;
5385 
5386 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5387 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5388 
5389 	for_each_zone(zone)
5390 		wmark_low += low_wmark_pages(zone);
5391 
5392 	/*
5393 	 * Estimate the amount of memory available for userspace allocations,
5394 	 * without causing swapping.
5395 	 */
5396 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5397 
5398 	/*
5399 	 * Not all the page cache can be freed, otherwise the system will
5400 	 * start swapping. Assume at least half of the page cache, or the
5401 	 * low watermark worth of cache, needs to stay.
5402 	 */
5403 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5404 	pagecache -= min(pagecache / 2, wmark_low);
5405 	available += pagecache;
5406 
5407 	/*
5408 	 * Part of the reclaimable slab and other kernel memory consists of
5409 	 * items that are in use, and cannot be freed. Cap this estimate at the
5410 	 * low watermark.
5411 	 */
5412 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5413 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5414 	available += reclaimable - min(reclaimable / 2, wmark_low);
5415 
5416 	if (available < 0)
5417 		available = 0;
5418 	return available;
5419 }
5420 EXPORT_SYMBOL_GPL(si_mem_available);
5421 
si_meminfo(struct sysinfo * val)5422 void si_meminfo(struct sysinfo *val)
5423 {
5424 	val->totalram = totalram_pages();
5425 	val->sharedram = global_node_page_state(NR_SHMEM);
5426 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5427 	val->bufferram = nr_blockdev_pages();
5428 	val->totalhigh = totalhigh_pages();
5429 	val->freehigh = nr_free_highpages();
5430 	val->mem_unit = PAGE_SIZE;
5431 }
5432 
5433 EXPORT_SYMBOL(si_meminfo);
5434 
5435 #ifdef CONFIG_NUMA
si_meminfo_node(struct sysinfo * val,int nid)5436 void si_meminfo_node(struct sysinfo *val, int nid)
5437 {
5438 	int zone_type;		/* needs to be signed */
5439 	unsigned long managed_pages = 0;
5440 	unsigned long managed_highpages = 0;
5441 	unsigned long free_highpages = 0;
5442 	pg_data_t *pgdat = NODE_DATA(nid);
5443 
5444 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5445 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5446 	val->totalram = managed_pages;
5447 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5448 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5449 #ifdef CONFIG_HIGHMEM
5450 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5451 		struct zone *zone = &pgdat->node_zones[zone_type];
5452 
5453 		if (is_highmem(zone)) {
5454 			managed_highpages += zone_managed_pages(zone);
5455 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5456 		}
5457 	}
5458 	val->totalhigh = managed_highpages;
5459 	val->freehigh = free_highpages;
5460 #else
5461 	val->totalhigh = managed_highpages;
5462 	val->freehigh = free_highpages;
5463 #endif
5464 	val->mem_unit = PAGE_SIZE;
5465 }
5466 #endif
5467 
5468 /*
5469  * Determine whether the node should be displayed or not, depending on whether
5470  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5471  */
show_mem_node_skip(unsigned int flags,int nid,nodemask_t * nodemask)5472 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5473 {
5474 	if (!(flags & SHOW_MEM_FILTER_NODES))
5475 		return false;
5476 
5477 	/*
5478 	 * no node mask - aka implicit memory numa policy. Do not bother with
5479 	 * the synchronization - read_mems_allowed_begin - because we do not
5480 	 * have to be precise here.
5481 	 */
5482 	if (!nodemask)
5483 		nodemask = &cpuset_current_mems_allowed;
5484 
5485 	return !node_isset(nid, *nodemask);
5486 }
5487 
5488 #define K(x) ((x) << (PAGE_SHIFT-10))
5489 
show_migration_types(unsigned char type)5490 static void show_migration_types(unsigned char type)
5491 {
5492 	static const char types[MIGRATE_TYPES] = {
5493 		[MIGRATE_UNMOVABLE]	= 'U',
5494 		[MIGRATE_MOVABLE]	= 'M',
5495 		[MIGRATE_RECLAIMABLE]	= 'E',
5496 		[MIGRATE_HIGHATOMIC]	= 'H',
5497 #ifdef CONFIG_CMA
5498 		[MIGRATE_CMA]		= 'C',
5499 #endif
5500 #ifdef CONFIG_MEMORY_ISOLATION
5501 		[MIGRATE_ISOLATE]	= 'I',
5502 #endif
5503 	};
5504 	char tmp[MIGRATE_TYPES + 1];
5505 	char *p = tmp;
5506 	int i;
5507 
5508 	for (i = 0; i < MIGRATE_TYPES; i++) {
5509 		if (type & (1 << i))
5510 			*p++ = types[i];
5511 	}
5512 
5513 	*p = '\0';
5514 	printk(KERN_CONT "(%s) ", tmp);
5515 }
5516 
5517 /*
5518  * Show free area list (used inside shift_scroll-lock stuff)
5519  * We also calculate the percentage fragmentation. We do this by counting the
5520  * memory on each free list with the exception of the first item on the list.
5521  *
5522  * Bits in @filter:
5523  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5524  *   cpuset.
5525  */
show_free_areas(unsigned int filter,nodemask_t * nodemask)5526 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5527 {
5528 	unsigned long free_pcp = 0;
5529 	int cpu;
5530 	struct zone *zone;
5531 	pg_data_t *pgdat;
5532 
5533 	for_each_populated_zone(zone) {
5534 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5535 			continue;
5536 
5537 		for_each_online_cpu(cpu)
5538 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5539 	}
5540 
5541 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5542 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5543 		" unevictable:%lu dirty:%lu writeback:%lu\n"
5544 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5545 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5546 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5547 		global_node_page_state(NR_ACTIVE_ANON),
5548 		global_node_page_state(NR_INACTIVE_ANON),
5549 		global_node_page_state(NR_ISOLATED_ANON),
5550 		global_node_page_state(NR_ACTIVE_FILE),
5551 		global_node_page_state(NR_INACTIVE_FILE),
5552 		global_node_page_state(NR_ISOLATED_FILE),
5553 		global_node_page_state(NR_UNEVICTABLE),
5554 		global_node_page_state(NR_FILE_DIRTY),
5555 		global_node_page_state(NR_WRITEBACK),
5556 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5557 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5558 		global_node_page_state(NR_FILE_MAPPED),
5559 		global_node_page_state(NR_SHMEM),
5560 		global_zone_page_state(NR_PAGETABLE),
5561 		global_zone_page_state(NR_BOUNCE),
5562 		global_zone_page_state(NR_FREE_PAGES),
5563 		free_pcp,
5564 		global_zone_page_state(NR_FREE_CMA_PAGES));
5565 
5566 	for_each_online_pgdat(pgdat) {
5567 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5568 			continue;
5569 
5570 		printk("Node %d"
5571 			" active_anon:%lukB"
5572 			" inactive_anon:%lukB"
5573 			" active_file:%lukB"
5574 			" inactive_file:%lukB"
5575 			" unevictable:%lukB"
5576 			" isolated(anon):%lukB"
5577 			" isolated(file):%lukB"
5578 			" mapped:%lukB"
5579 			" dirty:%lukB"
5580 			" writeback:%lukB"
5581 			" shmem:%lukB"
5582 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5583 			" shmem_thp: %lukB"
5584 			" shmem_pmdmapped: %lukB"
5585 			" anon_thp: %lukB"
5586 #endif
5587 			" writeback_tmp:%lukB"
5588 			" kernel_stack:%lukB"
5589 #ifdef CONFIG_SHADOW_CALL_STACK
5590 			" shadow_call_stack:%lukB"
5591 #endif
5592 			" all_unreclaimable? %s"
5593 			"\n",
5594 			pgdat->node_id,
5595 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5596 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5597 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5598 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5599 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5600 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5601 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5602 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5603 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5604 			K(node_page_state(pgdat, NR_WRITEBACK)),
5605 			K(node_page_state(pgdat, NR_SHMEM)),
5606 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5607 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5608 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5609 					* HPAGE_PMD_NR),
5610 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5611 #endif
5612 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5613 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
5614 #ifdef CONFIG_SHADOW_CALL_STACK
5615 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
5616 #endif
5617 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5618 				"yes" : "no");
5619 	}
5620 
5621 	for_each_populated_zone(zone) {
5622 		int i;
5623 
5624 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5625 			continue;
5626 
5627 		free_pcp = 0;
5628 		for_each_online_cpu(cpu)
5629 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5630 
5631 		show_node(zone);
5632 		printk(KERN_CONT
5633 			"%s"
5634 			" free:%lukB"
5635 			" min:%lukB"
5636 			" low:%lukB"
5637 			" high:%lukB"
5638 			" reserved_highatomic:%luKB"
5639 			" active_anon:%lukB"
5640 			" inactive_anon:%lukB"
5641 			" active_file:%lukB"
5642 			" inactive_file:%lukB"
5643 			" unevictable:%lukB"
5644 			" writepending:%lukB"
5645 			" present:%lukB"
5646 			" managed:%lukB"
5647 			" mlocked:%lukB"
5648 			" pagetables:%lukB"
5649 			" bounce:%lukB"
5650 			" free_pcp:%lukB"
5651 			" local_pcp:%ukB"
5652 			" free_cma:%lukB"
5653 			"\n",
5654 			zone->name,
5655 			K(zone_page_state(zone, NR_FREE_PAGES)),
5656 			K(min_wmark_pages(zone)),
5657 			K(low_wmark_pages(zone)),
5658 			K(high_wmark_pages(zone)),
5659 			K(zone->nr_reserved_highatomic),
5660 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5661 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5662 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5663 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5664 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5665 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5666 			K(zone->present_pages),
5667 			K(zone_managed_pages(zone)),
5668 			K(zone_page_state(zone, NR_MLOCK)),
5669 			K(zone_page_state(zone, NR_PAGETABLE)),
5670 			K(zone_page_state(zone, NR_BOUNCE)),
5671 			K(free_pcp),
5672 			K(this_cpu_read(zone->pageset->pcp.count)),
5673 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5674 		printk("lowmem_reserve[]:");
5675 		for (i = 0; i < MAX_NR_ZONES; i++)
5676 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5677 		printk(KERN_CONT "\n");
5678 	}
5679 
5680 	for_each_populated_zone(zone) {
5681 		unsigned int order;
5682 		unsigned long nr[MAX_ORDER], flags, total = 0;
5683 		unsigned char types[MAX_ORDER];
5684 
5685 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5686 			continue;
5687 		show_node(zone);
5688 		printk(KERN_CONT "%s: ", zone->name);
5689 
5690 		spin_lock_irqsave(&zone->lock, flags);
5691 		for (order = 0; order < MAX_ORDER; order++) {
5692 			struct free_area *area = &zone->free_area[order];
5693 			int type;
5694 
5695 			nr[order] = area->nr_free;
5696 			total += nr[order] << order;
5697 
5698 			types[order] = 0;
5699 			for (type = 0; type < MIGRATE_TYPES; type++) {
5700 				if (!free_area_empty(area, type))
5701 					types[order] |= 1 << type;
5702 			}
5703 		}
5704 		spin_unlock_irqrestore(&zone->lock, flags);
5705 		for (order = 0; order < MAX_ORDER; order++) {
5706 			printk(KERN_CONT "%lu*%lukB ",
5707 			       nr[order], K(1UL) << order);
5708 			if (nr[order])
5709 				show_migration_types(types[order]);
5710 		}
5711 		printk(KERN_CONT "= %lukB\n", K(total));
5712 	}
5713 
5714 	hugetlb_show_meminfo();
5715 
5716 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5717 
5718 	show_swap_cache_info();
5719 }
5720 
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)5721 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5722 {
5723 	zoneref->zone = zone;
5724 	zoneref->zone_idx = zone_idx(zone);
5725 }
5726 
5727 /*
5728  * Builds allocation fallback zone lists.
5729  *
5730  * Add all populated zones of a node to the zonelist.
5731  */
build_zonerefs_node(pg_data_t * pgdat,struct zoneref * zonerefs)5732 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5733 {
5734 	struct zone *zone;
5735 	enum zone_type zone_type = MAX_NR_ZONES;
5736 	int nr_zones = 0;
5737 
5738 	do {
5739 		zone_type--;
5740 		zone = pgdat->node_zones + zone_type;
5741 		if (managed_zone(zone)) {
5742 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5743 			check_highest_zone(zone_type);
5744 		}
5745 	} while (zone_type);
5746 
5747 	return nr_zones;
5748 }
5749 
5750 #ifdef CONFIG_NUMA
5751 
__parse_numa_zonelist_order(char * s)5752 static int __parse_numa_zonelist_order(char *s)
5753 {
5754 	/*
5755 	 * We used to support different zonlists modes but they turned
5756 	 * out to be just not useful. Let's keep the warning in place
5757 	 * if somebody still use the cmd line parameter so that we do
5758 	 * not fail it silently
5759 	 */
5760 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5761 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5762 		return -EINVAL;
5763 	}
5764 	return 0;
5765 }
5766 
5767 char numa_zonelist_order[] = "Node";
5768 
5769 /*
5770  * sysctl handler for numa_zonelist_order
5771  */
numa_zonelist_order_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5772 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5773 		void *buffer, size_t *length, loff_t *ppos)
5774 {
5775 	if (write)
5776 		return __parse_numa_zonelist_order(buffer);
5777 	return proc_dostring(table, write, buffer, length, ppos);
5778 }
5779 
5780 
5781 #define MAX_NODE_LOAD (nr_online_nodes)
5782 static int node_load[MAX_NUMNODES];
5783 
5784 /**
5785  * find_next_best_node - find the next node that should appear in a given node's fallback list
5786  * @node: node whose fallback list we're appending
5787  * @used_node_mask: nodemask_t of already used nodes
5788  *
5789  * We use a number of factors to determine which is the next node that should
5790  * appear on a given node's fallback list.  The node should not have appeared
5791  * already in @node's fallback list, and it should be the next closest node
5792  * according to the distance array (which contains arbitrary distance values
5793  * from each node to each node in the system), and should also prefer nodes
5794  * with no CPUs, since presumably they'll have very little allocation pressure
5795  * on them otherwise.
5796  *
5797  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5798  */
find_next_best_node(int node,nodemask_t * used_node_mask)5799 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5800 {
5801 	int n, val;
5802 	int min_val = INT_MAX;
5803 	int best_node = NUMA_NO_NODE;
5804 
5805 	/* Use the local node if we haven't already */
5806 	if (!node_isset(node, *used_node_mask)) {
5807 		node_set(node, *used_node_mask);
5808 		return node;
5809 	}
5810 
5811 	for_each_node_state(n, N_MEMORY) {
5812 
5813 		/* Don't want a node to appear more than once */
5814 		if (node_isset(n, *used_node_mask))
5815 			continue;
5816 
5817 		/* Use the distance array to find the distance */
5818 		val = node_distance(node, n);
5819 
5820 		/* Penalize nodes under us ("prefer the next node") */
5821 		val += (n < node);
5822 
5823 		/* Give preference to headless and unused nodes */
5824 		if (!cpumask_empty(cpumask_of_node(n)))
5825 			val += PENALTY_FOR_NODE_WITH_CPUS;
5826 
5827 		/* Slight preference for less loaded node */
5828 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5829 		val += node_load[n];
5830 
5831 		if (val < min_val) {
5832 			min_val = val;
5833 			best_node = n;
5834 		}
5835 	}
5836 
5837 	if (best_node >= 0)
5838 		node_set(best_node, *used_node_mask);
5839 
5840 	return best_node;
5841 }
5842 
5843 
5844 /*
5845  * Build zonelists ordered by node and zones within node.
5846  * This results in maximum locality--normal zone overflows into local
5847  * DMA zone, if any--but risks exhausting DMA zone.
5848  */
build_zonelists_in_node_order(pg_data_t * pgdat,int * node_order,unsigned nr_nodes)5849 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5850 		unsigned nr_nodes)
5851 {
5852 	struct zoneref *zonerefs;
5853 	int i;
5854 
5855 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5856 
5857 	for (i = 0; i < nr_nodes; i++) {
5858 		int nr_zones;
5859 
5860 		pg_data_t *node = NODE_DATA(node_order[i]);
5861 
5862 		nr_zones = build_zonerefs_node(node, zonerefs);
5863 		zonerefs += nr_zones;
5864 	}
5865 	zonerefs->zone = NULL;
5866 	zonerefs->zone_idx = 0;
5867 }
5868 
5869 /*
5870  * Build gfp_thisnode zonelists
5871  */
build_thisnode_zonelists(pg_data_t * pgdat)5872 static void build_thisnode_zonelists(pg_data_t *pgdat)
5873 {
5874 	struct zoneref *zonerefs;
5875 	int nr_zones;
5876 
5877 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5878 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5879 	zonerefs += nr_zones;
5880 	zonerefs->zone = NULL;
5881 	zonerefs->zone_idx = 0;
5882 }
5883 
5884 /*
5885  * Build zonelists ordered by zone and nodes within zones.
5886  * This results in conserving DMA zone[s] until all Normal memory is
5887  * exhausted, but results in overflowing to remote node while memory
5888  * may still exist in local DMA zone.
5889  */
5890 
build_zonelists(pg_data_t * pgdat)5891 static void build_zonelists(pg_data_t *pgdat)
5892 {
5893 	static int node_order[MAX_NUMNODES];
5894 	int node, load, nr_nodes = 0;
5895 	nodemask_t used_mask = NODE_MASK_NONE;
5896 	int local_node, prev_node;
5897 
5898 	/* NUMA-aware ordering of nodes */
5899 	local_node = pgdat->node_id;
5900 	load = nr_online_nodes;
5901 	prev_node = local_node;
5902 
5903 	memset(node_order, 0, sizeof(node_order));
5904 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5905 		/*
5906 		 * We don't want to pressure a particular node.
5907 		 * So adding penalty to the first node in same
5908 		 * distance group to make it round-robin.
5909 		 */
5910 		if (node_distance(local_node, node) !=
5911 		    node_distance(local_node, prev_node))
5912 			node_load[node] = load;
5913 
5914 		node_order[nr_nodes++] = node;
5915 		prev_node = node;
5916 		load--;
5917 	}
5918 
5919 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5920 	build_thisnode_zonelists(pgdat);
5921 }
5922 
5923 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5924 /*
5925  * Return node id of node used for "local" allocations.
5926  * I.e., first node id of first zone in arg node's generic zonelist.
5927  * Used for initializing percpu 'numa_mem', which is used primarily
5928  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5929  */
local_memory_node(int node)5930 int local_memory_node(int node)
5931 {
5932 	struct zoneref *z;
5933 
5934 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5935 				   gfp_zone(GFP_KERNEL),
5936 				   NULL);
5937 	return zone_to_nid(z->zone);
5938 }
5939 #endif
5940 
5941 static void setup_min_unmapped_ratio(void);
5942 static void setup_min_slab_ratio(void);
5943 #else	/* CONFIG_NUMA */
5944 
build_zonelists(pg_data_t * pgdat)5945 static void build_zonelists(pg_data_t *pgdat)
5946 {
5947 	int node, local_node;
5948 	struct zoneref *zonerefs;
5949 	int nr_zones;
5950 
5951 	local_node = pgdat->node_id;
5952 
5953 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5954 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5955 	zonerefs += nr_zones;
5956 
5957 	/*
5958 	 * Now we build the zonelist so that it contains the zones
5959 	 * of all the other nodes.
5960 	 * We don't want to pressure a particular node, so when
5961 	 * building the zones for node N, we make sure that the
5962 	 * zones coming right after the local ones are those from
5963 	 * node N+1 (modulo N)
5964 	 */
5965 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5966 		if (!node_online(node))
5967 			continue;
5968 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5969 		zonerefs += nr_zones;
5970 	}
5971 	for (node = 0; node < local_node; node++) {
5972 		if (!node_online(node))
5973 			continue;
5974 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5975 		zonerefs += nr_zones;
5976 	}
5977 
5978 	zonerefs->zone = NULL;
5979 	zonerefs->zone_idx = 0;
5980 }
5981 
5982 #endif	/* CONFIG_NUMA */
5983 
5984 /*
5985  * Boot pageset table. One per cpu which is going to be used for all
5986  * zones and all nodes. The parameters will be set in such a way
5987  * that an item put on a list will immediately be handed over to
5988  * the buddy list. This is safe since pageset manipulation is done
5989  * with interrupts disabled.
5990  *
5991  * The boot_pagesets must be kept even after bootup is complete for
5992  * unused processors and/or zones. They do play a role for bootstrapping
5993  * hotplugged processors.
5994  *
5995  * zoneinfo_show() and maybe other functions do
5996  * not check if the processor is online before following the pageset pointer.
5997  * Other parts of the kernel may not check if the zone is available.
5998  */
5999 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
6000 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
6001 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6002 
__build_all_zonelists(void * data)6003 static void __build_all_zonelists(void *data)
6004 {
6005 	int nid;
6006 	int __maybe_unused cpu;
6007 	pg_data_t *self = data;
6008 	static DEFINE_SPINLOCK(lock);
6009 
6010 	spin_lock(&lock);
6011 
6012 #ifdef CONFIG_NUMA
6013 	memset(node_load, 0, sizeof(node_load));
6014 #endif
6015 
6016 	/*
6017 	 * This node is hotadded and no memory is yet present.   So just
6018 	 * building zonelists is fine - no need to touch other nodes.
6019 	 */
6020 	if (self && !node_online(self->node_id)) {
6021 		build_zonelists(self);
6022 	} else {
6023 		for_each_online_node(nid) {
6024 			pg_data_t *pgdat = NODE_DATA(nid);
6025 
6026 			build_zonelists(pgdat);
6027 		}
6028 
6029 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6030 		/*
6031 		 * We now know the "local memory node" for each node--
6032 		 * i.e., the node of the first zone in the generic zonelist.
6033 		 * Set up numa_mem percpu variable for on-line cpus.  During
6034 		 * boot, only the boot cpu should be on-line;  we'll init the
6035 		 * secondary cpus' numa_mem as they come on-line.  During
6036 		 * node/memory hotplug, we'll fixup all on-line cpus.
6037 		 */
6038 		for_each_online_cpu(cpu)
6039 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6040 #endif
6041 	}
6042 
6043 	spin_unlock(&lock);
6044 }
6045 
6046 static noinline void __init
build_all_zonelists_init(void)6047 build_all_zonelists_init(void)
6048 {
6049 	int cpu;
6050 
6051 	__build_all_zonelists(NULL);
6052 
6053 	/*
6054 	 * Initialize the boot_pagesets that are going to be used
6055 	 * for bootstrapping processors. The real pagesets for
6056 	 * each zone will be allocated later when the per cpu
6057 	 * allocator is available.
6058 	 *
6059 	 * boot_pagesets are used also for bootstrapping offline
6060 	 * cpus if the system is already booted because the pagesets
6061 	 * are needed to initialize allocators on a specific cpu too.
6062 	 * F.e. the percpu allocator needs the page allocator which
6063 	 * needs the percpu allocator in order to allocate its pagesets
6064 	 * (a chicken-egg dilemma).
6065 	 */
6066 	for_each_possible_cpu(cpu)
6067 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
6068 
6069 	mminit_verify_zonelist();
6070 	cpuset_init_current_mems_allowed();
6071 }
6072 
6073 /*
6074  * unless system_state == SYSTEM_BOOTING.
6075  *
6076  * __ref due to call of __init annotated helper build_all_zonelists_init
6077  * [protected by SYSTEM_BOOTING].
6078  */
build_all_zonelists(pg_data_t * pgdat)6079 void __ref build_all_zonelists(pg_data_t *pgdat)
6080 {
6081 	unsigned long vm_total_pages;
6082 
6083 	if (system_state == SYSTEM_BOOTING) {
6084 		build_all_zonelists_init();
6085 	} else {
6086 		__build_all_zonelists(pgdat);
6087 		/* cpuset refresh routine should be here */
6088 	}
6089 	/* Get the number of free pages beyond high watermark in all zones. */
6090 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6091 	/*
6092 	 * Disable grouping by mobility if the number of pages in the
6093 	 * system is too low to allow the mechanism to work. It would be
6094 	 * more accurate, but expensive to check per-zone. This check is
6095 	 * made on memory-hotadd so a system can start with mobility
6096 	 * disabled and enable it later
6097 	 */
6098 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6099 		page_group_by_mobility_disabled = 1;
6100 	else
6101 		page_group_by_mobility_disabled = 0;
6102 
6103 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6104 		nr_online_nodes,
6105 		page_group_by_mobility_disabled ? "off" : "on",
6106 		vm_total_pages);
6107 #ifdef CONFIG_NUMA
6108 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6109 #endif
6110 }
6111 
6112 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6113 static bool __meminit
overlap_memmap_init(unsigned long zone,unsigned long * pfn)6114 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6115 {
6116 	static struct memblock_region *r;
6117 
6118 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6119 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6120 			for_each_mem_region(r) {
6121 				if (*pfn < memblock_region_memory_end_pfn(r))
6122 					break;
6123 			}
6124 		}
6125 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6126 		    memblock_is_mirror(r)) {
6127 			*pfn = memblock_region_memory_end_pfn(r);
6128 			return true;
6129 		}
6130 	}
6131 	return false;
6132 }
6133 
6134 /*
6135  * Initially all pages are reserved - free ones are freed
6136  * up by memblock_free_all() once the early boot process is
6137  * done. Non-atomic initialization, single-pass.
6138  *
6139  * All aligned pageblocks are initialized to the specified migratetype
6140  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6141  * zone stats (e.g., nr_isolate_pageblock) are touched.
6142  */
memmap_init_zone(unsigned long size,int nid,unsigned long zone,unsigned long start_pfn,unsigned long zone_end_pfn,enum meminit_context context,struct vmem_altmap * altmap,int migratetype)6143 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
6144 		unsigned long start_pfn, unsigned long zone_end_pfn,
6145 		enum meminit_context context,
6146 		struct vmem_altmap *altmap, int migratetype)
6147 {
6148 	unsigned long pfn, end_pfn = start_pfn + size;
6149 	struct page *page;
6150 
6151 	if (highest_memmap_pfn < end_pfn - 1)
6152 		highest_memmap_pfn = end_pfn - 1;
6153 
6154 #ifdef CONFIG_ZONE_DEVICE
6155 	/*
6156 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6157 	 * memory. We limit the total number of pages to initialize to just
6158 	 * those that might contain the memory mapping. We will defer the
6159 	 * ZONE_DEVICE page initialization until after we have released
6160 	 * the hotplug lock.
6161 	 */
6162 	if (zone == ZONE_DEVICE) {
6163 		if (!altmap)
6164 			return;
6165 
6166 		if (start_pfn == altmap->base_pfn)
6167 			start_pfn += altmap->reserve;
6168 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6169 	}
6170 #endif
6171 
6172 	for (pfn = start_pfn; pfn < end_pfn; ) {
6173 		/*
6174 		 * There can be holes in boot-time mem_map[]s handed to this
6175 		 * function.  They do not exist on hotplugged memory.
6176 		 */
6177 		if (context == MEMINIT_EARLY) {
6178 			if (overlap_memmap_init(zone, &pfn))
6179 				continue;
6180 			if (defer_init(nid, pfn, zone_end_pfn))
6181 				break;
6182 		}
6183 
6184 		page = pfn_to_page(pfn);
6185 		__init_single_page(page, pfn, zone, nid);
6186 		if (context == MEMINIT_HOTPLUG)
6187 			__SetPageReserved(page);
6188 
6189 		/*
6190 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6191 		 * such that unmovable allocations won't be scattered all
6192 		 * over the place during system boot.
6193 		 */
6194 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6195 			set_pageblock_migratetype(page, migratetype);
6196 			cond_resched();
6197 		}
6198 		pfn++;
6199 	}
6200 }
6201 
6202 #ifdef CONFIG_ZONE_DEVICE
memmap_init_zone_device(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages,struct dev_pagemap * pgmap)6203 void __ref memmap_init_zone_device(struct zone *zone,
6204 				   unsigned long start_pfn,
6205 				   unsigned long nr_pages,
6206 				   struct dev_pagemap *pgmap)
6207 {
6208 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6209 	struct pglist_data *pgdat = zone->zone_pgdat;
6210 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6211 	unsigned long zone_idx = zone_idx(zone);
6212 	unsigned long start = jiffies;
6213 	int nid = pgdat->node_id;
6214 
6215 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6216 		return;
6217 
6218 	/*
6219 	 * The call to memmap_init should have already taken care
6220 	 * of the pages reserved for the memmap, so we can just jump to
6221 	 * the end of that region and start processing the device pages.
6222 	 */
6223 	if (altmap) {
6224 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6225 		nr_pages = end_pfn - start_pfn;
6226 	}
6227 
6228 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6229 		struct page *page = pfn_to_page(pfn);
6230 
6231 		__init_single_page(page, pfn, zone_idx, nid);
6232 
6233 		/*
6234 		 * Mark page reserved as it will need to wait for onlining
6235 		 * phase for it to be fully associated with a zone.
6236 		 *
6237 		 * We can use the non-atomic __set_bit operation for setting
6238 		 * the flag as we are still initializing the pages.
6239 		 */
6240 		__SetPageReserved(page);
6241 
6242 		/*
6243 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6244 		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6245 		 * ever freed or placed on a driver-private list.
6246 		 */
6247 		page->pgmap = pgmap;
6248 		page->zone_device_data = NULL;
6249 
6250 		/*
6251 		 * Mark the block movable so that blocks are reserved for
6252 		 * movable at startup. This will force kernel allocations
6253 		 * to reserve their blocks rather than leaking throughout
6254 		 * the address space during boot when many long-lived
6255 		 * kernel allocations are made.
6256 		 *
6257 		 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6258 		 * because this is done early in section_activate()
6259 		 */
6260 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6261 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6262 			cond_resched();
6263 		}
6264 	}
6265 
6266 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6267 		nr_pages, jiffies_to_msecs(jiffies - start));
6268 }
6269 
6270 #endif
zone_init_free_lists(struct zone * zone)6271 static void __meminit zone_init_free_lists(struct zone *zone)
6272 {
6273 	unsigned int order, t;
6274 	for_each_migratetype_order(order, t) {
6275 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6276 		zone->free_area[order].nr_free = 0;
6277 	}
6278 }
6279 
6280 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6281 /*
6282  * Only struct pages that correspond to ranges defined by memblock.memory
6283  * are zeroed and initialized by going through __init_single_page() during
6284  * memmap_init_zone_range().
6285  *
6286  * But, there could be struct pages that correspond to holes in
6287  * memblock.memory. This can happen because of the following reasons:
6288  * - physical memory bank size is not necessarily the exact multiple of the
6289  *   arbitrary section size
6290  * - early reserved memory may not be listed in memblock.memory
6291  * - memory layouts defined with memmap= kernel parameter may not align
6292  *   nicely with memmap sections
6293  *
6294  * Explicitly initialize those struct pages so that:
6295  * - PG_Reserved is set
6296  * - zone and node links point to zone and node that span the page if the
6297  *   hole is in the middle of a zone
6298  * - zone and node links point to adjacent zone/node if the hole falls on
6299  *   the zone boundary; the pages in such holes will be prepended to the
6300  *   zone/node above the hole except for the trailing pages in the last
6301  *   section that will be appended to the zone/node below.
6302  */
init_unavailable_range(unsigned long spfn,unsigned long epfn,int zone,int node)6303 static void __init init_unavailable_range(unsigned long spfn,
6304 					  unsigned long epfn,
6305 					  int zone, int node)
6306 {
6307 	unsigned long pfn;
6308 	u64 pgcnt = 0;
6309 
6310 	for (pfn = spfn; pfn < epfn; pfn++) {
6311 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6312 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6313 				+ pageblock_nr_pages - 1;
6314 			continue;
6315 		}
6316 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
6317 		__SetPageReserved(pfn_to_page(pfn));
6318 		pgcnt++;
6319 	}
6320 
6321 	if (pgcnt)
6322 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6323 			node, zone_names[zone], pgcnt);
6324 }
6325 #else
init_unavailable_range(unsigned long spfn,unsigned long epfn,int zone,int node)6326 static inline void init_unavailable_range(unsigned long spfn,
6327 					  unsigned long epfn,
6328 					  int zone, int node)
6329 {
6330 }
6331 #endif
6332 
memmap_init_zone_range(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn,unsigned long * hole_pfn)6333 static void __init memmap_init_zone_range(struct zone *zone,
6334 					  unsigned long start_pfn,
6335 					  unsigned long end_pfn,
6336 					  unsigned long *hole_pfn)
6337 {
6338 	unsigned long zone_start_pfn = zone->zone_start_pfn;
6339 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6340 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6341 
6342 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6343 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6344 
6345 	if (start_pfn >= end_pfn)
6346 		return;
6347 
6348 	memmap_init_zone(end_pfn - start_pfn, nid, zone_id, start_pfn,
6349 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6350 
6351 	if (*hole_pfn < start_pfn)
6352 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6353 
6354 	*hole_pfn = end_pfn;
6355 }
6356 
memmap_init(void)6357 void __init __weak memmap_init(void)
6358 {
6359 	unsigned long start_pfn, end_pfn;
6360 	unsigned long hole_pfn = 0;
6361 	int i, j, zone_id, nid;
6362 
6363 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6364 		struct pglist_data *node = NODE_DATA(nid);
6365 
6366 		for (j = 0; j < MAX_NR_ZONES; j++) {
6367 			struct zone *zone = node->node_zones + j;
6368 
6369 			if (!populated_zone(zone))
6370 				continue;
6371 
6372 			memmap_init_zone_range(zone, start_pfn, end_pfn,
6373 					       &hole_pfn);
6374 			zone_id = j;
6375 		}
6376 	}
6377 
6378 #ifdef CONFIG_SPARSEMEM
6379 	/*
6380 	 * Initialize the memory map for hole in the range [memory_end,
6381 	 * section_end].
6382 	 * Append the pages in this hole to the highest zone in the last
6383 	 * node.
6384 	 * The call to init_unavailable_range() is outside the ifdef to
6385 	 * silence the compiler warining about zone_id set but not used;
6386 	 * for FLATMEM it is a nop anyway
6387 	 */
6388 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6389 	if (hole_pfn < end_pfn)
6390 #endif
6391 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6392 }
6393 
6394 /* A stub for backwards compatibility with custom implementatin on IA-64 */
arch_memmap_init(unsigned long size,int nid,unsigned long zone,unsigned long range_start_pfn)6395 void __meminit __weak arch_memmap_init(unsigned long size, int nid,
6396 				       unsigned long zone,
6397 				       unsigned long range_start_pfn)
6398 {
6399 }
6400 
zone_batchsize(struct zone * zone)6401 static int zone_batchsize(struct zone *zone)
6402 {
6403 #ifdef CONFIG_MMU
6404 	int batch;
6405 
6406 	/*
6407 	 * The per-cpu-pages pools are set to around 1000th of the
6408 	 * size of the zone.
6409 	 */
6410 	batch = zone_managed_pages(zone) / 1024;
6411 	/* But no more than a meg. */
6412 	if (batch * PAGE_SIZE > 1024 * 1024)
6413 		batch = (1024 * 1024) / PAGE_SIZE;
6414 	batch /= 4;		/* We effectively *= 4 below */
6415 	if (batch < 1)
6416 		batch = 1;
6417 
6418 	/*
6419 	 * Clamp the batch to a 2^n - 1 value. Having a power
6420 	 * of 2 value was found to be more likely to have
6421 	 * suboptimal cache aliasing properties in some cases.
6422 	 *
6423 	 * For example if 2 tasks are alternately allocating
6424 	 * batches of pages, one task can end up with a lot
6425 	 * of pages of one half of the possible page colors
6426 	 * and the other with pages of the other colors.
6427 	 */
6428 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6429 
6430 	return batch;
6431 
6432 #else
6433 	/* The deferral and batching of frees should be suppressed under NOMMU
6434 	 * conditions.
6435 	 *
6436 	 * The problem is that NOMMU needs to be able to allocate large chunks
6437 	 * of contiguous memory as there's no hardware page translation to
6438 	 * assemble apparent contiguous memory from discontiguous pages.
6439 	 *
6440 	 * Queueing large contiguous runs of pages for batching, however,
6441 	 * causes the pages to actually be freed in smaller chunks.  As there
6442 	 * can be a significant delay between the individual batches being
6443 	 * recycled, this leads to the once large chunks of space being
6444 	 * fragmented and becoming unavailable for high-order allocations.
6445 	 */
6446 	return 0;
6447 #endif
6448 }
6449 
6450 /*
6451  * pcp->high and pcp->batch values are related and dependent on one another:
6452  * ->batch must never be higher then ->high.
6453  * The following function updates them in a safe manner without read side
6454  * locking.
6455  *
6456  * Any new users of pcp->batch and pcp->high should ensure they can cope with
6457  * those fields changing asynchronously (acording to the above rule).
6458  *
6459  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6460  * outside of boot time (or some other assurance that no concurrent updaters
6461  * exist).
6462  */
pageset_update(struct per_cpu_pages * pcp,unsigned long high,unsigned long batch)6463 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6464 		unsigned long batch)
6465 {
6466        /* start with a fail safe value for batch */
6467 	pcp->batch = 1;
6468 	smp_wmb();
6469 
6470        /* Update high, then batch, in order */
6471 	pcp->high = high;
6472 	smp_wmb();
6473 
6474 	pcp->batch = batch;
6475 }
6476 
6477 /* a companion to pageset_set_high() */
pageset_set_batch(struct per_cpu_pageset * p,unsigned long batch)6478 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6479 {
6480 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6481 }
6482 
pageset_init(struct per_cpu_pageset * p)6483 static void pageset_init(struct per_cpu_pageset *p)
6484 {
6485 	struct per_cpu_pages *pcp;
6486 	int migratetype;
6487 
6488 	memset(p, 0, sizeof(*p));
6489 
6490 	pcp = &p->pcp;
6491 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6492 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6493 }
6494 
setup_pageset(struct per_cpu_pageset * p,unsigned long batch)6495 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6496 {
6497 	pageset_init(p);
6498 	pageset_set_batch(p, batch);
6499 }
6500 
6501 /*
6502  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6503  * to the value high for the pageset p.
6504  */
pageset_set_high(struct per_cpu_pageset * p,unsigned long high)6505 static void pageset_set_high(struct per_cpu_pageset *p,
6506 				unsigned long high)
6507 {
6508 	unsigned long batch = max(1UL, high / 4);
6509 	if ((high / 4) > (PAGE_SHIFT * 8))
6510 		batch = PAGE_SHIFT * 8;
6511 
6512 	pageset_update(&p->pcp, high, batch);
6513 }
6514 
pageset_set_high_and_batch(struct zone * zone,struct per_cpu_pageset * pcp)6515 static void pageset_set_high_and_batch(struct zone *zone,
6516 				       struct per_cpu_pageset *pcp)
6517 {
6518 	if (percpu_pagelist_fraction)
6519 		pageset_set_high(pcp,
6520 			(zone_managed_pages(zone) /
6521 				percpu_pagelist_fraction));
6522 	else
6523 		pageset_set_batch(pcp, zone_batchsize(zone));
6524 }
6525 
zone_pageset_init(struct zone * zone,int cpu)6526 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6527 {
6528 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6529 
6530 	pageset_init(pcp);
6531 	pageset_set_high_and_batch(zone, pcp);
6532 }
6533 
setup_zone_pageset(struct zone * zone)6534 void __meminit setup_zone_pageset(struct zone *zone)
6535 {
6536 	int cpu;
6537 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6538 	for_each_possible_cpu(cpu)
6539 		zone_pageset_init(zone, cpu);
6540 }
6541 
6542 /*
6543  * Allocate per cpu pagesets and initialize them.
6544  * Before this call only boot pagesets were available.
6545  */
setup_per_cpu_pageset(void)6546 void __init setup_per_cpu_pageset(void)
6547 {
6548 	struct pglist_data *pgdat;
6549 	struct zone *zone;
6550 	int __maybe_unused cpu;
6551 
6552 	for_each_populated_zone(zone)
6553 		setup_zone_pageset(zone);
6554 
6555 #ifdef CONFIG_NUMA
6556 	/*
6557 	 * Unpopulated zones continue using the boot pagesets.
6558 	 * The numa stats for these pagesets need to be reset.
6559 	 * Otherwise, they will end up skewing the stats of
6560 	 * the nodes these zones are associated with.
6561 	 */
6562 	for_each_possible_cpu(cpu) {
6563 		struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6564 		memset(pcp->vm_numa_stat_diff, 0,
6565 		       sizeof(pcp->vm_numa_stat_diff));
6566 	}
6567 #endif
6568 
6569 	for_each_online_pgdat(pgdat)
6570 		pgdat->per_cpu_nodestats =
6571 			alloc_percpu(struct per_cpu_nodestat);
6572 }
6573 
zone_pcp_init(struct zone * zone)6574 static __meminit void zone_pcp_init(struct zone *zone)
6575 {
6576 	/*
6577 	 * per cpu subsystem is not up at this point. The following code
6578 	 * relies on the ability of the linker to provide the
6579 	 * offset of a (static) per cpu variable into the per cpu area.
6580 	 */
6581 	zone->pageset = &boot_pageset;
6582 
6583 	if (populated_zone(zone))
6584 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
6585 			zone->name, zone->present_pages,
6586 					 zone_batchsize(zone));
6587 }
6588 
init_currently_empty_zone(struct zone * zone,unsigned long zone_start_pfn,unsigned long size)6589 void __meminit init_currently_empty_zone(struct zone *zone,
6590 					unsigned long zone_start_pfn,
6591 					unsigned long size)
6592 {
6593 	struct pglist_data *pgdat = zone->zone_pgdat;
6594 	int zone_idx = zone_idx(zone) + 1;
6595 
6596 	if (zone_idx > pgdat->nr_zones)
6597 		pgdat->nr_zones = zone_idx;
6598 
6599 	zone->zone_start_pfn = zone_start_pfn;
6600 
6601 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
6602 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
6603 			pgdat->node_id,
6604 			(unsigned long)zone_idx(zone),
6605 			zone_start_pfn, (zone_start_pfn + size));
6606 
6607 	zone_init_free_lists(zone);
6608 	zone->initialized = 1;
6609 }
6610 
6611 /**
6612  * get_pfn_range_for_nid - Return the start and end page frames for a node
6613  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6614  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6615  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6616  *
6617  * It returns the start and end page frame of a node based on information
6618  * provided by memblock_set_node(). If called for a node
6619  * with no available memory, a warning is printed and the start and end
6620  * PFNs will be 0.
6621  */
get_pfn_range_for_nid(unsigned int nid,unsigned long * start_pfn,unsigned long * end_pfn)6622 void __init get_pfn_range_for_nid(unsigned int nid,
6623 			unsigned long *start_pfn, unsigned long *end_pfn)
6624 {
6625 	unsigned long this_start_pfn, this_end_pfn;
6626 	int i;
6627 
6628 	*start_pfn = -1UL;
6629 	*end_pfn = 0;
6630 
6631 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6632 		*start_pfn = min(*start_pfn, this_start_pfn);
6633 		*end_pfn = max(*end_pfn, this_end_pfn);
6634 	}
6635 
6636 	if (*start_pfn == -1UL)
6637 		*start_pfn = 0;
6638 }
6639 
6640 /*
6641  * This finds a zone that can be used for ZONE_MOVABLE pages. The
6642  * assumption is made that zones within a node are ordered in monotonic
6643  * increasing memory addresses so that the "highest" populated zone is used
6644  */
find_usable_zone_for_movable(void)6645 static void __init find_usable_zone_for_movable(void)
6646 {
6647 	int zone_index;
6648 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6649 		if (zone_index == ZONE_MOVABLE)
6650 			continue;
6651 
6652 		if (arch_zone_highest_possible_pfn[zone_index] >
6653 				arch_zone_lowest_possible_pfn[zone_index])
6654 			break;
6655 	}
6656 
6657 	VM_BUG_ON(zone_index == -1);
6658 	movable_zone = zone_index;
6659 }
6660 
6661 /*
6662  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6663  * because it is sized independent of architecture. Unlike the other zones,
6664  * the starting point for ZONE_MOVABLE is not fixed. It may be different
6665  * in each node depending on the size of each node and how evenly kernelcore
6666  * is distributed. This helper function adjusts the zone ranges
6667  * provided by the architecture for a given node by using the end of the
6668  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6669  * zones within a node are in order of monotonic increases memory addresses
6670  */
adjust_zone_range_for_zone_movable(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)6671 static void __init adjust_zone_range_for_zone_movable(int nid,
6672 					unsigned long zone_type,
6673 					unsigned long node_start_pfn,
6674 					unsigned long node_end_pfn,
6675 					unsigned long *zone_start_pfn,
6676 					unsigned long *zone_end_pfn)
6677 {
6678 	/* Only adjust if ZONE_MOVABLE is on this node */
6679 	if (zone_movable_pfn[nid]) {
6680 		/* Size ZONE_MOVABLE */
6681 		if (zone_type == ZONE_MOVABLE) {
6682 			*zone_start_pfn = zone_movable_pfn[nid];
6683 			*zone_end_pfn = min(node_end_pfn,
6684 				arch_zone_highest_possible_pfn[movable_zone]);
6685 
6686 		/* Adjust for ZONE_MOVABLE starting within this range */
6687 		} else if (!mirrored_kernelcore &&
6688 			*zone_start_pfn < zone_movable_pfn[nid] &&
6689 			*zone_end_pfn > zone_movable_pfn[nid]) {
6690 			*zone_end_pfn = zone_movable_pfn[nid];
6691 
6692 		/* Check if this whole range is within ZONE_MOVABLE */
6693 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
6694 			*zone_start_pfn = *zone_end_pfn;
6695 	}
6696 }
6697 
6698 /*
6699  * Return the number of pages a zone spans in a node, including holes
6700  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6701  */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)6702 static unsigned long __init zone_spanned_pages_in_node(int nid,
6703 					unsigned long zone_type,
6704 					unsigned long node_start_pfn,
6705 					unsigned long node_end_pfn,
6706 					unsigned long *zone_start_pfn,
6707 					unsigned long *zone_end_pfn)
6708 {
6709 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6710 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6711 	/* When hotadd a new node from cpu_up(), the node should be empty */
6712 	if (!node_start_pfn && !node_end_pfn)
6713 		return 0;
6714 
6715 	/* Get the start and end of the zone */
6716 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6717 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6718 	adjust_zone_range_for_zone_movable(nid, zone_type,
6719 				node_start_pfn, node_end_pfn,
6720 				zone_start_pfn, zone_end_pfn);
6721 
6722 	/* Check that this node has pages within the zone's required range */
6723 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6724 		return 0;
6725 
6726 	/* Move the zone boundaries inside the node if necessary */
6727 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6728 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6729 
6730 	/* Return the spanned pages */
6731 	return *zone_end_pfn - *zone_start_pfn;
6732 }
6733 
6734 /*
6735  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6736  * then all holes in the requested range will be accounted for.
6737  */
__absent_pages_in_range(int nid,unsigned long range_start_pfn,unsigned long range_end_pfn)6738 unsigned long __init __absent_pages_in_range(int nid,
6739 				unsigned long range_start_pfn,
6740 				unsigned long range_end_pfn)
6741 {
6742 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
6743 	unsigned long start_pfn, end_pfn;
6744 	int i;
6745 
6746 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6747 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6748 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6749 		nr_absent -= end_pfn - start_pfn;
6750 	}
6751 	return nr_absent;
6752 }
6753 
6754 /**
6755  * absent_pages_in_range - Return number of page frames in holes within a range
6756  * @start_pfn: The start PFN to start searching for holes
6757  * @end_pfn: The end PFN to stop searching for holes
6758  *
6759  * Return: the number of pages frames in memory holes within a range.
6760  */
absent_pages_in_range(unsigned long start_pfn,unsigned long end_pfn)6761 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6762 							unsigned long end_pfn)
6763 {
6764 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6765 }
6766 
6767 /* Return the number of page frames in holes in a zone on a node */
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn)6768 static unsigned long __init zone_absent_pages_in_node(int nid,
6769 					unsigned long zone_type,
6770 					unsigned long node_start_pfn,
6771 					unsigned long node_end_pfn)
6772 {
6773 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6774 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6775 	unsigned long zone_start_pfn, zone_end_pfn;
6776 	unsigned long nr_absent;
6777 
6778 	/* When hotadd a new node from cpu_up(), the node should be empty */
6779 	if (!node_start_pfn && !node_end_pfn)
6780 		return 0;
6781 
6782 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6783 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6784 
6785 	adjust_zone_range_for_zone_movable(nid, zone_type,
6786 			node_start_pfn, node_end_pfn,
6787 			&zone_start_pfn, &zone_end_pfn);
6788 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6789 
6790 	/*
6791 	 * ZONE_MOVABLE handling.
6792 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6793 	 * and vice versa.
6794 	 */
6795 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6796 		unsigned long start_pfn, end_pfn;
6797 		struct memblock_region *r;
6798 
6799 		for_each_mem_region(r) {
6800 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6801 					  zone_start_pfn, zone_end_pfn);
6802 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6803 					zone_start_pfn, zone_end_pfn);
6804 
6805 			if (zone_type == ZONE_MOVABLE &&
6806 			    memblock_is_mirror(r))
6807 				nr_absent += end_pfn - start_pfn;
6808 
6809 			if (zone_type == ZONE_NORMAL &&
6810 			    !memblock_is_mirror(r))
6811 				nr_absent += end_pfn - start_pfn;
6812 		}
6813 	}
6814 
6815 	return nr_absent;
6816 }
6817 
calculate_node_totalpages(struct pglist_data * pgdat,unsigned long node_start_pfn,unsigned long node_end_pfn)6818 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6819 						unsigned long node_start_pfn,
6820 						unsigned long node_end_pfn)
6821 {
6822 	unsigned long realtotalpages = 0, totalpages = 0;
6823 	enum zone_type i;
6824 
6825 	for (i = 0; i < MAX_NR_ZONES; i++) {
6826 		struct zone *zone = pgdat->node_zones + i;
6827 		unsigned long zone_start_pfn, zone_end_pfn;
6828 		unsigned long spanned, absent;
6829 		unsigned long size, real_size;
6830 
6831 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6832 						     node_start_pfn,
6833 						     node_end_pfn,
6834 						     &zone_start_pfn,
6835 						     &zone_end_pfn);
6836 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
6837 						   node_start_pfn,
6838 						   node_end_pfn);
6839 
6840 		size = spanned;
6841 		real_size = size - absent;
6842 
6843 		if (size)
6844 			zone->zone_start_pfn = zone_start_pfn;
6845 		else
6846 			zone->zone_start_pfn = 0;
6847 		zone->spanned_pages = size;
6848 		zone->present_pages = real_size;
6849 
6850 		totalpages += size;
6851 		realtotalpages += real_size;
6852 	}
6853 
6854 	pgdat->node_spanned_pages = totalpages;
6855 	pgdat->node_present_pages = realtotalpages;
6856 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6857 							realtotalpages);
6858 }
6859 
6860 #ifndef CONFIG_SPARSEMEM
6861 /*
6862  * Calculate the size of the zone->blockflags rounded to an unsigned long
6863  * Start by making sure zonesize is a multiple of pageblock_order by rounding
6864  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6865  * round what is now in bits to nearest long in bits, then return it in
6866  * bytes.
6867  */
usemap_size(unsigned long zone_start_pfn,unsigned long zonesize)6868 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6869 {
6870 	unsigned long usemapsize;
6871 
6872 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6873 	usemapsize = roundup(zonesize, pageblock_nr_pages);
6874 	usemapsize = usemapsize >> pageblock_order;
6875 	usemapsize *= NR_PAGEBLOCK_BITS;
6876 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6877 
6878 	return usemapsize / 8;
6879 }
6880 
setup_usemap(struct pglist_data * pgdat,struct zone * zone,unsigned long zone_start_pfn,unsigned long zonesize)6881 static void __ref setup_usemap(struct pglist_data *pgdat,
6882 				struct zone *zone,
6883 				unsigned long zone_start_pfn,
6884 				unsigned long zonesize)
6885 {
6886 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6887 	zone->pageblock_flags = NULL;
6888 	if (usemapsize) {
6889 		zone->pageblock_flags =
6890 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6891 					    pgdat->node_id);
6892 		if (!zone->pageblock_flags)
6893 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6894 			      usemapsize, zone->name, pgdat->node_id);
6895 	}
6896 }
6897 #else
setup_usemap(struct pglist_data * pgdat,struct zone * zone,unsigned long zone_start_pfn,unsigned long zonesize)6898 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6899 				unsigned long zone_start_pfn, unsigned long zonesize) {}
6900 #endif /* CONFIG_SPARSEMEM */
6901 
6902 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6903 
6904 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
set_pageblock_order(void)6905 void __init set_pageblock_order(void)
6906 {
6907 	unsigned int order;
6908 
6909 	/* Check that pageblock_nr_pages has not already been setup */
6910 	if (pageblock_order)
6911 		return;
6912 
6913 	if (HPAGE_SHIFT > PAGE_SHIFT)
6914 		order = HUGETLB_PAGE_ORDER;
6915 	else
6916 		order = MAX_ORDER - 1;
6917 
6918 	/*
6919 	 * Assume the largest contiguous order of interest is a huge page.
6920 	 * This value may be variable depending on boot parameters on IA64 and
6921 	 * powerpc.
6922 	 */
6923 	pageblock_order = order;
6924 }
6925 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6926 
6927 /*
6928  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6929  * is unused as pageblock_order is set at compile-time. See
6930  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6931  * the kernel config
6932  */
set_pageblock_order(void)6933 void __init set_pageblock_order(void)
6934 {
6935 }
6936 
6937 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6938 
calc_memmap_size(unsigned long spanned_pages,unsigned long present_pages)6939 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6940 						unsigned long present_pages)
6941 {
6942 	unsigned long pages = spanned_pages;
6943 
6944 	/*
6945 	 * Provide a more accurate estimation if there are holes within
6946 	 * the zone and SPARSEMEM is in use. If there are holes within the
6947 	 * zone, each populated memory region may cost us one or two extra
6948 	 * memmap pages due to alignment because memmap pages for each
6949 	 * populated regions may not be naturally aligned on page boundary.
6950 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6951 	 */
6952 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6953 	    IS_ENABLED(CONFIG_SPARSEMEM))
6954 		pages = present_pages;
6955 
6956 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6957 }
6958 
6959 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pgdat_init_split_queue(struct pglist_data * pgdat)6960 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6961 {
6962 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6963 
6964 	spin_lock_init(&ds_queue->split_queue_lock);
6965 	INIT_LIST_HEAD(&ds_queue->split_queue);
6966 	ds_queue->split_queue_len = 0;
6967 }
6968 #else
pgdat_init_split_queue(struct pglist_data * pgdat)6969 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6970 #endif
6971 
6972 #ifdef CONFIG_COMPACTION
pgdat_init_kcompactd(struct pglist_data * pgdat)6973 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6974 {
6975 	init_waitqueue_head(&pgdat->kcompactd_wait);
6976 }
6977 #else
pgdat_init_kcompactd(struct pglist_data * pgdat)6978 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6979 #endif
6980 
pgdat_init_internals(struct pglist_data * pgdat)6981 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6982 {
6983 	pgdat_resize_init(pgdat);
6984 
6985 	pgdat_init_split_queue(pgdat);
6986 	pgdat_init_kcompactd(pgdat);
6987 
6988 	init_waitqueue_head(&pgdat->kswapd_wait);
6989 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6990 #ifdef CONFIG_HYPERHOLD_ZSWAPD
6991 	init_waitqueue_head(&pgdat->zswapd_wait);
6992 #endif
6993 
6994 	pgdat_page_ext_init(pgdat);
6995 	spin_lock_init(&pgdat->lru_lock);
6996 	lruvec_init(&pgdat->__lruvec);
6997 #if defined(CONFIG_HYPERHOLD_FILE_LRU) && defined(CONFIG_MEMCG)
6998 	pgdat->__lruvec.pgdat = pgdat;
6999 #endif
7000 }
7001 
zone_init_internals(struct zone * zone,enum zone_type idx,int nid,unsigned long remaining_pages)7002 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7003 							unsigned long remaining_pages)
7004 {
7005 	atomic_long_set(&zone->managed_pages, remaining_pages);
7006 	zone_set_nid(zone, nid);
7007 	zone->name = zone_names[idx];
7008 	zone->zone_pgdat = NODE_DATA(nid);
7009 	spin_lock_init(&zone->lock);
7010 	zone_seqlock_init(zone);
7011 	zone_pcp_init(zone);
7012 }
7013 
7014 /*
7015  * Set up the zone data structures
7016  * - init pgdat internals
7017  * - init all zones belonging to this node
7018  *
7019  * NOTE: this function is only called during memory hotplug
7020  */
7021 #ifdef CONFIG_MEMORY_HOTPLUG
free_area_init_core_hotplug(int nid)7022 void __ref free_area_init_core_hotplug(int nid)
7023 {
7024 	enum zone_type z;
7025 	pg_data_t *pgdat = NODE_DATA(nid);
7026 
7027 	pgdat_init_internals(pgdat);
7028 	for (z = 0; z < MAX_NR_ZONES; z++)
7029 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7030 }
7031 #endif
7032 
7033 /*
7034  * Set up the zone data structures:
7035  *   - mark all pages reserved
7036  *   - mark all memory queues empty
7037  *   - clear the memory bitmaps
7038  *
7039  * NOTE: pgdat should get zeroed by caller.
7040  * NOTE: this function is only called during early init.
7041  */
free_area_init_core(struct pglist_data * pgdat)7042 static void __init free_area_init_core(struct pglist_data *pgdat)
7043 {
7044 	enum zone_type j;
7045 	int nid = pgdat->node_id;
7046 
7047 	pgdat_init_internals(pgdat);
7048 	pgdat->per_cpu_nodestats = &boot_nodestats;
7049 
7050 	for (j = 0; j < MAX_NR_ZONES; j++) {
7051 		struct zone *zone = pgdat->node_zones + j;
7052 		unsigned long size, freesize, memmap_pages;
7053 		unsigned long zone_start_pfn = zone->zone_start_pfn;
7054 
7055 		size = zone->spanned_pages;
7056 		freesize = zone->present_pages;
7057 
7058 		/*
7059 		 * Adjust freesize so that it accounts for how much memory
7060 		 * is used by this zone for memmap. This affects the watermark
7061 		 * and per-cpu initialisations
7062 		 */
7063 		memmap_pages = calc_memmap_size(size, freesize);
7064 		if (!is_highmem_idx(j)) {
7065 			if (freesize >= memmap_pages) {
7066 				freesize -= memmap_pages;
7067 				if (memmap_pages)
7068 					printk(KERN_DEBUG
7069 					       "  %s zone: %lu pages used for memmap\n",
7070 					       zone_names[j], memmap_pages);
7071 			} else
7072 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
7073 					zone_names[j], memmap_pages, freesize);
7074 		}
7075 
7076 		/* Account for reserved pages */
7077 		if (j == 0 && freesize > dma_reserve) {
7078 			freesize -= dma_reserve;
7079 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
7080 					zone_names[0], dma_reserve);
7081 		}
7082 
7083 		if (!is_highmem_idx(j))
7084 			nr_kernel_pages += freesize;
7085 		/* Charge for highmem memmap if there are enough kernel pages */
7086 		else if (nr_kernel_pages > memmap_pages * 2)
7087 			nr_kernel_pages -= memmap_pages;
7088 		nr_all_pages += freesize;
7089 
7090 		/*
7091 		 * Set an approximate value for lowmem here, it will be adjusted
7092 		 * when the bootmem allocator frees pages into the buddy system.
7093 		 * And all highmem pages will be managed by the buddy system.
7094 		 */
7095 		zone_init_internals(zone, j, nid, freesize);
7096 
7097 		if (!size)
7098 			continue;
7099 
7100 		set_pageblock_order();
7101 		setup_usemap(pgdat, zone, zone_start_pfn, size);
7102 		init_currently_empty_zone(zone, zone_start_pfn, size);
7103 		arch_memmap_init(size, nid, j, zone_start_pfn);
7104 	}
7105 }
7106 
7107 #ifdef CONFIG_FLAT_NODE_MEM_MAP
alloc_node_mem_map(struct pglist_data * pgdat)7108 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
7109 {
7110 	unsigned long __maybe_unused start = 0;
7111 	unsigned long __maybe_unused offset = 0;
7112 
7113 	/* Skip empty nodes */
7114 	if (!pgdat->node_spanned_pages)
7115 		return;
7116 
7117 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7118 	offset = pgdat->node_start_pfn - start;
7119 	/* ia64 gets its own node_mem_map, before this, without bootmem */
7120 	if (!pgdat->node_mem_map) {
7121 		unsigned long size, end;
7122 		struct page *map;
7123 
7124 		/*
7125 		 * The zone's endpoints aren't required to be MAX_ORDER
7126 		 * aligned but the node_mem_map endpoints must be in order
7127 		 * for the buddy allocator to function correctly.
7128 		 */
7129 		end = pgdat_end_pfn(pgdat);
7130 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7131 		size =  (end - start) * sizeof(struct page);
7132 		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7133 					  pgdat->node_id);
7134 		if (!map)
7135 			panic("Failed to allocate %ld bytes for node %d memory map\n",
7136 			      size, pgdat->node_id);
7137 		pgdat->node_mem_map = map + offset;
7138 	}
7139 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7140 				__func__, pgdat->node_id, (unsigned long)pgdat,
7141 				(unsigned long)pgdat->node_mem_map);
7142 #ifndef CONFIG_NEED_MULTIPLE_NODES
7143 	/*
7144 	 * With no DISCONTIG, the global mem_map is just set as node 0's
7145 	 */
7146 	if (pgdat == NODE_DATA(0)) {
7147 		mem_map = NODE_DATA(0)->node_mem_map;
7148 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7149 			mem_map -= offset;
7150 	}
7151 #endif
7152 }
7153 #else
alloc_node_mem_map(struct pglist_data * pgdat)7154 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7155 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
7156 
7157 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
pgdat_set_deferred_range(pg_data_t * pgdat)7158 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7159 {
7160 	pgdat->first_deferred_pfn = ULONG_MAX;
7161 }
7162 #else
pgdat_set_deferred_range(pg_data_t * pgdat)7163 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7164 #endif
7165 
free_area_init_node(int nid)7166 static void __init free_area_init_node(int nid)
7167 {
7168 	pg_data_t *pgdat = NODE_DATA(nid);
7169 	unsigned long start_pfn = 0;
7170 	unsigned long end_pfn = 0;
7171 
7172 	/* pg_data_t should be reset to zero when it's allocated */
7173 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7174 
7175 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7176 
7177 	pgdat->node_id = nid;
7178 	pgdat->node_start_pfn = start_pfn;
7179 	pgdat->per_cpu_nodestats = NULL;
7180 
7181 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7182 		(u64)start_pfn << PAGE_SHIFT,
7183 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7184 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7185 
7186 	alloc_node_mem_map(pgdat);
7187 	pgdat_set_deferred_range(pgdat);
7188 
7189 	free_area_init_core(pgdat);
7190 }
7191 
free_area_init_memoryless_node(int nid)7192 void __init free_area_init_memoryless_node(int nid)
7193 {
7194 	free_area_init_node(nid);
7195 }
7196 
7197 #if MAX_NUMNODES > 1
7198 /*
7199  * Figure out the number of possible node ids.
7200  */
setup_nr_node_ids(void)7201 void __init setup_nr_node_ids(void)
7202 {
7203 	unsigned int highest;
7204 
7205 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7206 	nr_node_ids = highest + 1;
7207 }
7208 #endif
7209 
7210 /**
7211  * node_map_pfn_alignment - determine the maximum internode alignment
7212  *
7213  * This function should be called after node map is populated and sorted.
7214  * It calculates the maximum power of two alignment which can distinguish
7215  * all the nodes.
7216  *
7217  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7218  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7219  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7220  * shifted, 1GiB is enough and this function will indicate so.
7221  *
7222  * This is used to test whether pfn -> nid mapping of the chosen memory
7223  * model has fine enough granularity to avoid incorrect mapping for the
7224  * populated node map.
7225  *
7226  * Return: the determined alignment in pfn's.  0 if there is no alignment
7227  * requirement (single node).
7228  */
node_map_pfn_alignment(void)7229 unsigned long __init node_map_pfn_alignment(void)
7230 {
7231 	unsigned long accl_mask = 0, last_end = 0;
7232 	unsigned long start, end, mask;
7233 	int last_nid = NUMA_NO_NODE;
7234 	int i, nid;
7235 
7236 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7237 		if (!start || last_nid < 0 || last_nid == nid) {
7238 			last_nid = nid;
7239 			last_end = end;
7240 			continue;
7241 		}
7242 
7243 		/*
7244 		 * Start with a mask granular enough to pin-point to the
7245 		 * start pfn and tick off bits one-by-one until it becomes
7246 		 * too coarse to separate the current node from the last.
7247 		 */
7248 		mask = ~((1 << __ffs(start)) - 1);
7249 		while (mask && last_end <= (start & (mask << 1)))
7250 			mask <<= 1;
7251 
7252 		/* accumulate all internode masks */
7253 		accl_mask |= mask;
7254 	}
7255 
7256 	/* convert mask to number of pages */
7257 	return ~accl_mask + 1;
7258 }
7259 
7260 /**
7261  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7262  *
7263  * Return: the minimum PFN based on information provided via
7264  * memblock_set_node().
7265  */
find_min_pfn_with_active_regions(void)7266 unsigned long __init find_min_pfn_with_active_regions(void)
7267 {
7268 	return PHYS_PFN(memblock_start_of_DRAM());
7269 }
7270 
7271 /*
7272  * early_calculate_totalpages()
7273  * Sum pages in active regions for movable zone.
7274  * Populate N_MEMORY for calculating usable_nodes.
7275  */
early_calculate_totalpages(void)7276 static unsigned long __init early_calculate_totalpages(void)
7277 {
7278 	unsigned long totalpages = 0;
7279 	unsigned long start_pfn, end_pfn;
7280 	int i, nid;
7281 
7282 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7283 		unsigned long pages = end_pfn - start_pfn;
7284 
7285 		totalpages += pages;
7286 		if (pages)
7287 			node_set_state(nid, N_MEMORY);
7288 	}
7289 	return totalpages;
7290 }
7291 
7292 /*
7293  * Find the PFN the Movable zone begins in each node. Kernel memory
7294  * is spread evenly between nodes as long as the nodes have enough
7295  * memory. When they don't, some nodes will have more kernelcore than
7296  * others
7297  */
find_zone_movable_pfns_for_nodes(void)7298 static void __init find_zone_movable_pfns_for_nodes(void)
7299 {
7300 	int i, nid;
7301 	unsigned long usable_startpfn;
7302 	unsigned long kernelcore_node, kernelcore_remaining;
7303 	/* save the state before borrow the nodemask */
7304 	nodemask_t saved_node_state = node_states[N_MEMORY];
7305 	unsigned long totalpages = early_calculate_totalpages();
7306 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7307 	struct memblock_region *r;
7308 
7309 	/* Need to find movable_zone earlier when movable_node is specified. */
7310 	find_usable_zone_for_movable();
7311 
7312 	/*
7313 	 * If movable_node is specified, ignore kernelcore and movablecore
7314 	 * options.
7315 	 */
7316 	if (movable_node_is_enabled()) {
7317 		for_each_mem_region(r) {
7318 			if (!memblock_is_hotpluggable(r))
7319 				continue;
7320 
7321 			nid = memblock_get_region_node(r);
7322 
7323 			usable_startpfn = PFN_DOWN(r->base);
7324 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7325 				min(usable_startpfn, zone_movable_pfn[nid]) :
7326 				usable_startpfn;
7327 		}
7328 
7329 		goto out2;
7330 	}
7331 
7332 	/*
7333 	 * If kernelcore=mirror is specified, ignore movablecore option
7334 	 */
7335 	if (mirrored_kernelcore) {
7336 		bool mem_below_4gb_not_mirrored = false;
7337 
7338 		for_each_mem_region(r) {
7339 			if (memblock_is_mirror(r))
7340 				continue;
7341 
7342 			nid = memblock_get_region_node(r);
7343 
7344 			usable_startpfn = memblock_region_memory_base_pfn(r);
7345 
7346 			if (usable_startpfn < 0x100000) {
7347 				mem_below_4gb_not_mirrored = true;
7348 				continue;
7349 			}
7350 
7351 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7352 				min(usable_startpfn, zone_movable_pfn[nid]) :
7353 				usable_startpfn;
7354 		}
7355 
7356 		if (mem_below_4gb_not_mirrored)
7357 			pr_warn("This configuration results in unmirrored kernel memory.\n");
7358 
7359 		goto out2;
7360 	}
7361 
7362 	/*
7363 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7364 	 * amount of necessary memory.
7365 	 */
7366 	if (required_kernelcore_percent)
7367 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7368 				       10000UL;
7369 	if (required_movablecore_percent)
7370 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7371 					10000UL;
7372 
7373 	/*
7374 	 * If movablecore= was specified, calculate what size of
7375 	 * kernelcore that corresponds so that memory usable for
7376 	 * any allocation type is evenly spread. If both kernelcore
7377 	 * and movablecore are specified, then the value of kernelcore
7378 	 * will be used for required_kernelcore if it's greater than
7379 	 * what movablecore would have allowed.
7380 	 */
7381 	if (required_movablecore) {
7382 		unsigned long corepages;
7383 
7384 		/*
7385 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7386 		 * was requested by the user
7387 		 */
7388 		required_movablecore =
7389 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7390 		required_movablecore = min(totalpages, required_movablecore);
7391 		corepages = totalpages - required_movablecore;
7392 
7393 		required_kernelcore = max(required_kernelcore, corepages);
7394 	}
7395 
7396 	/*
7397 	 * If kernelcore was not specified or kernelcore size is larger
7398 	 * than totalpages, there is no ZONE_MOVABLE.
7399 	 */
7400 	if (!required_kernelcore || required_kernelcore >= totalpages)
7401 		goto out;
7402 
7403 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7404 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7405 
7406 restart:
7407 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7408 	kernelcore_node = required_kernelcore / usable_nodes;
7409 	for_each_node_state(nid, N_MEMORY) {
7410 		unsigned long start_pfn, end_pfn;
7411 
7412 		/*
7413 		 * Recalculate kernelcore_node if the division per node
7414 		 * now exceeds what is necessary to satisfy the requested
7415 		 * amount of memory for the kernel
7416 		 */
7417 		if (required_kernelcore < kernelcore_node)
7418 			kernelcore_node = required_kernelcore / usable_nodes;
7419 
7420 		/*
7421 		 * As the map is walked, we track how much memory is usable
7422 		 * by the kernel using kernelcore_remaining. When it is
7423 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7424 		 */
7425 		kernelcore_remaining = kernelcore_node;
7426 
7427 		/* Go through each range of PFNs within this node */
7428 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7429 			unsigned long size_pages;
7430 
7431 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7432 			if (start_pfn >= end_pfn)
7433 				continue;
7434 
7435 			/* Account for what is only usable for kernelcore */
7436 			if (start_pfn < usable_startpfn) {
7437 				unsigned long kernel_pages;
7438 				kernel_pages = min(end_pfn, usable_startpfn)
7439 								- start_pfn;
7440 
7441 				kernelcore_remaining -= min(kernel_pages,
7442 							kernelcore_remaining);
7443 				required_kernelcore -= min(kernel_pages,
7444 							required_kernelcore);
7445 
7446 				/* Continue if range is now fully accounted */
7447 				if (end_pfn <= usable_startpfn) {
7448 
7449 					/*
7450 					 * Push zone_movable_pfn to the end so
7451 					 * that if we have to rebalance
7452 					 * kernelcore across nodes, we will
7453 					 * not double account here
7454 					 */
7455 					zone_movable_pfn[nid] = end_pfn;
7456 					continue;
7457 				}
7458 				start_pfn = usable_startpfn;
7459 			}
7460 
7461 			/*
7462 			 * The usable PFN range for ZONE_MOVABLE is from
7463 			 * start_pfn->end_pfn. Calculate size_pages as the
7464 			 * number of pages used as kernelcore
7465 			 */
7466 			size_pages = end_pfn - start_pfn;
7467 			if (size_pages > kernelcore_remaining)
7468 				size_pages = kernelcore_remaining;
7469 			zone_movable_pfn[nid] = start_pfn + size_pages;
7470 
7471 			/*
7472 			 * Some kernelcore has been met, update counts and
7473 			 * break if the kernelcore for this node has been
7474 			 * satisfied
7475 			 */
7476 			required_kernelcore -= min(required_kernelcore,
7477 								size_pages);
7478 			kernelcore_remaining -= size_pages;
7479 			if (!kernelcore_remaining)
7480 				break;
7481 		}
7482 	}
7483 
7484 	/*
7485 	 * If there is still required_kernelcore, we do another pass with one
7486 	 * less node in the count. This will push zone_movable_pfn[nid] further
7487 	 * along on the nodes that still have memory until kernelcore is
7488 	 * satisfied
7489 	 */
7490 	usable_nodes--;
7491 	if (usable_nodes && required_kernelcore > usable_nodes)
7492 		goto restart;
7493 
7494 out2:
7495 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7496 	for (nid = 0; nid < MAX_NUMNODES; nid++)
7497 		zone_movable_pfn[nid] =
7498 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7499 
7500 out:
7501 	/* restore the node_state */
7502 	node_states[N_MEMORY] = saved_node_state;
7503 }
7504 
7505 /* Any regular or high memory on that node ? */
check_for_memory(pg_data_t * pgdat,int nid)7506 static void check_for_memory(pg_data_t *pgdat, int nid)
7507 {
7508 	enum zone_type zone_type;
7509 
7510 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7511 		struct zone *zone = &pgdat->node_zones[zone_type];
7512 		if (populated_zone(zone)) {
7513 			if (IS_ENABLED(CONFIG_HIGHMEM))
7514 				node_set_state(nid, N_HIGH_MEMORY);
7515 			if (zone_type <= ZONE_NORMAL)
7516 				node_set_state(nid, N_NORMAL_MEMORY);
7517 			break;
7518 		}
7519 	}
7520 }
7521 
7522 /*
7523  * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7524  * such cases we allow max_zone_pfn sorted in the descending order
7525  */
arch_has_descending_max_zone_pfns(void)7526 bool __weak arch_has_descending_max_zone_pfns(void)
7527 {
7528 	return false;
7529 }
7530 
7531 /**
7532  * free_area_init - Initialise all pg_data_t and zone data
7533  * @max_zone_pfn: an array of max PFNs for each zone
7534  *
7535  * This will call free_area_init_node() for each active node in the system.
7536  * Using the page ranges provided by memblock_set_node(), the size of each
7537  * zone in each node and their holes is calculated. If the maximum PFN
7538  * between two adjacent zones match, it is assumed that the zone is empty.
7539  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7540  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7541  * starts where the previous one ended. For example, ZONE_DMA32 starts
7542  * at arch_max_dma_pfn.
7543  */
free_area_init(unsigned long * max_zone_pfn)7544 void __init free_area_init(unsigned long *max_zone_pfn)
7545 {
7546 	unsigned long start_pfn, end_pfn;
7547 	int i, nid, zone;
7548 	bool descending;
7549 
7550 	/* Record where the zone boundaries are */
7551 	memset(arch_zone_lowest_possible_pfn, 0,
7552 				sizeof(arch_zone_lowest_possible_pfn));
7553 	memset(arch_zone_highest_possible_pfn, 0,
7554 				sizeof(arch_zone_highest_possible_pfn));
7555 
7556 	start_pfn = find_min_pfn_with_active_regions();
7557 	descending = arch_has_descending_max_zone_pfns();
7558 
7559 	for (i = 0; i < MAX_NR_ZONES; i++) {
7560 		if (descending)
7561 			zone = MAX_NR_ZONES - i - 1;
7562 		else
7563 			zone = i;
7564 
7565 		if (zone == ZONE_MOVABLE)
7566 			continue;
7567 
7568 		end_pfn = max(max_zone_pfn[zone], start_pfn);
7569 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
7570 		arch_zone_highest_possible_pfn[zone] = end_pfn;
7571 
7572 		start_pfn = end_pfn;
7573 	}
7574 
7575 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7576 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7577 	find_zone_movable_pfns_for_nodes();
7578 
7579 	/* Print out the zone ranges */
7580 	pr_info("Zone ranges:\n");
7581 	for (i = 0; i < MAX_NR_ZONES; i++) {
7582 		if (i == ZONE_MOVABLE)
7583 			continue;
7584 		pr_info("  %-8s ", zone_names[i]);
7585 		if (arch_zone_lowest_possible_pfn[i] ==
7586 				arch_zone_highest_possible_pfn[i])
7587 			pr_cont("empty\n");
7588 		else
7589 			pr_cont("[mem %#018Lx-%#018Lx]\n",
7590 				(u64)arch_zone_lowest_possible_pfn[i]
7591 					<< PAGE_SHIFT,
7592 				((u64)arch_zone_highest_possible_pfn[i]
7593 					<< PAGE_SHIFT) - 1);
7594 	}
7595 
7596 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7597 	pr_info("Movable zone start for each node\n");
7598 	for (i = 0; i < MAX_NUMNODES; i++) {
7599 		if (zone_movable_pfn[i])
7600 			pr_info("  Node %d: %#018Lx\n", i,
7601 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7602 	}
7603 
7604 	/*
7605 	 * Print out the early node map, and initialize the
7606 	 * subsection-map relative to active online memory ranges to
7607 	 * enable future "sub-section" extensions of the memory map.
7608 	 */
7609 	pr_info("Early memory node ranges\n");
7610 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7611 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7612 			(u64)start_pfn << PAGE_SHIFT,
7613 			((u64)end_pfn << PAGE_SHIFT) - 1);
7614 		subsection_map_init(start_pfn, end_pfn - start_pfn);
7615 	}
7616 
7617 	/* Initialise every node */
7618 	mminit_verify_pageflags_layout();
7619 	setup_nr_node_ids();
7620 	for_each_online_node(nid) {
7621 		pg_data_t *pgdat = NODE_DATA(nid);
7622 		free_area_init_node(nid);
7623 
7624 		/* Any memory on that node */
7625 		if (pgdat->node_present_pages)
7626 			node_set_state(nid, N_MEMORY);
7627 		check_for_memory(pgdat, nid);
7628 	}
7629 
7630 	memmap_init();
7631 }
7632 
cmdline_parse_core(char * p,unsigned long * core,unsigned long * percent)7633 static int __init cmdline_parse_core(char *p, unsigned long *core,
7634 				     unsigned long *percent)
7635 {
7636 	unsigned long long coremem;
7637 	char *endptr;
7638 
7639 	if (!p)
7640 		return -EINVAL;
7641 
7642 	/* Value may be a percentage of total memory, otherwise bytes */
7643 	coremem = simple_strtoull(p, &endptr, 0);
7644 	if (*endptr == '%') {
7645 		/* Paranoid check for percent values greater than 100 */
7646 		WARN_ON(coremem > 100);
7647 
7648 		*percent = coremem;
7649 	} else {
7650 		coremem = memparse(p, &p);
7651 		/* Paranoid check that UL is enough for the coremem value */
7652 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7653 
7654 		*core = coremem >> PAGE_SHIFT;
7655 		*percent = 0UL;
7656 	}
7657 	return 0;
7658 }
7659 
7660 /*
7661  * kernelcore=size sets the amount of memory for use for allocations that
7662  * cannot be reclaimed or migrated.
7663  */
cmdline_parse_kernelcore(char * p)7664 static int __init cmdline_parse_kernelcore(char *p)
7665 {
7666 	/* parse kernelcore=mirror */
7667 	if (parse_option_str(p, "mirror")) {
7668 		mirrored_kernelcore = true;
7669 		return 0;
7670 	}
7671 
7672 	return cmdline_parse_core(p, &required_kernelcore,
7673 				  &required_kernelcore_percent);
7674 }
7675 
7676 /*
7677  * movablecore=size sets the amount of memory for use for allocations that
7678  * can be reclaimed or migrated.
7679  */
cmdline_parse_movablecore(char * p)7680 static int __init cmdline_parse_movablecore(char *p)
7681 {
7682 	return cmdline_parse_core(p, &required_movablecore,
7683 				  &required_movablecore_percent);
7684 }
7685 
7686 early_param("kernelcore", cmdline_parse_kernelcore);
7687 early_param("movablecore", cmdline_parse_movablecore);
7688 
adjust_managed_page_count(struct page * page,long count)7689 void adjust_managed_page_count(struct page *page, long count)
7690 {
7691 	atomic_long_add(count, &page_zone(page)->managed_pages);
7692 	totalram_pages_add(count);
7693 #ifdef CONFIG_HIGHMEM
7694 	if (PageHighMem(page))
7695 		totalhigh_pages_add(count);
7696 #endif
7697 }
7698 EXPORT_SYMBOL(adjust_managed_page_count);
7699 
free_reserved_area(void * start,void * end,int poison,const char * s)7700 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7701 {
7702 	void *pos;
7703 	unsigned long pages = 0;
7704 
7705 	start = (void *)PAGE_ALIGN((unsigned long)start);
7706 	end = (void *)((unsigned long)end & PAGE_MASK);
7707 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7708 		struct page *page = virt_to_page(pos);
7709 		void *direct_map_addr;
7710 
7711 		/*
7712 		 * 'direct_map_addr' might be different from 'pos'
7713 		 * because some architectures' virt_to_page()
7714 		 * work with aliases.  Getting the direct map
7715 		 * address ensures that we get a _writeable_
7716 		 * alias for the memset().
7717 		 */
7718 		direct_map_addr = page_address(page);
7719 		if ((unsigned int)poison <= 0xFF)
7720 			memset(direct_map_addr, poison, PAGE_SIZE);
7721 
7722 		free_reserved_page(page);
7723 	}
7724 
7725 	if (pages && s)
7726 		pr_info("Freeing %s memory: %ldK\n",
7727 			s, pages << (PAGE_SHIFT - 10));
7728 
7729 	return pages;
7730 }
7731 
7732 #ifdef	CONFIG_HIGHMEM
free_highmem_page(struct page * page)7733 void free_highmem_page(struct page *page)
7734 {
7735 	__free_reserved_page(page);
7736 	totalram_pages_inc();
7737 	atomic_long_inc(&page_zone(page)->managed_pages);
7738 	totalhigh_pages_inc();
7739 }
7740 #endif
7741 
7742 
mem_init_print_info(const char * str)7743 void __init mem_init_print_info(const char *str)
7744 {
7745 	unsigned long physpages, codesize, datasize, rosize, bss_size;
7746 	unsigned long init_code_size, init_data_size;
7747 
7748 	physpages = get_num_physpages();
7749 	codesize = _etext - _stext;
7750 	datasize = _edata - _sdata;
7751 	rosize = __end_rodata - __start_rodata;
7752 	bss_size = __bss_stop - __bss_start;
7753 	init_data_size = __init_end - __init_begin;
7754 	init_code_size = _einittext - _sinittext;
7755 
7756 	/*
7757 	 * Detect special cases and adjust section sizes accordingly:
7758 	 * 1) .init.* may be embedded into .data sections
7759 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
7760 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
7761 	 * 3) .rodata.* may be embedded into .text or .data sections.
7762 	 */
7763 #define adj_init_size(start, end, size, pos, adj) \
7764 	do { \
7765 		if (start <= pos && pos < end && size > adj) \
7766 			size -= adj; \
7767 	} while (0)
7768 
7769 	adj_init_size(__init_begin, __init_end, init_data_size,
7770 		     _sinittext, init_code_size);
7771 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7772 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7773 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7774 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7775 
7776 #undef	adj_init_size
7777 
7778 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7779 #ifdef	CONFIG_HIGHMEM
7780 		", %luK highmem"
7781 #endif
7782 		"%s%s)\n",
7783 		nr_free_pages() << (PAGE_SHIFT - 10),
7784 		physpages << (PAGE_SHIFT - 10),
7785 		codesize >> 10, datasize >> 10, rosize >> 10,
7786 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7787 		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7788 		totalcma_pages << (PAGE_SHIFT - 10),
7789 #ifdef	CONFIG_HIGHMEM
7790 		totalhigh_pages() << (PAGE_SHIFT - 10),
7791 #endif
7792 		str ? ", " : "", str ? str : "");
7793 }
7794 
7795 /**
7796  * set_dma_reserve - set the specified number of pages reserved in the first zone
7797  * @new_dma_reserve: The number of pages to mark reserved
7798  *
7799  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7800  * In the DMA zone, a significant percentage may be consumed by kernel image
7801  * and other unfreeable allocations which can skew the watermarks badly. This
7802  * function may optionally be used to account for unfreeable pages in the
7803  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7804  * smaller per-cpu batchsize.
7805  */
set_dma_reserve(unsigned long new_dma_reserve)7806 void __init set_dma_reserve(unsigned long new_dma_reserve)
7807 {
7808 	dma_reserve = new_dma_reserve;
7809 }
7810 
page_alloc_cpu_dead(unsigned int cpu)7811 static int page_alloc_cpu_dead(unsigned int cpu)
7812 {
7813 
7814 	lru_add_drain_cpu(cpu);
7815 	drain_pages(cpu);
7816 
7817 	/*
7818 	 * Spill the event counters of the dead processor
7819 	 * into the current processors event counters.
7820 	 * This artificially elevates the count of the current
7821 	 * processor.
7822 	 */
7823 	vm_events_fold_cpu(cpu);
7824 
7825 	/*
7826 	 * Zero the differential counters of the dead processor
7827 	 * so that the vm statistics are consistent.
7828 	 *
7829 	 * This is only okay since the processor is dead and cannot
7830 	 * race with what we are doing.
7831 	 */
7832 	cpu_vm_stats_fold(cpu);
7833 	return 0;
7834 }
7835 
7836 #ifdef CONFIG_NUMA
7837 int hashdist = HASHDIST_DEFAULT;
7838 
set_hashdist(char * str)7839 static int __init set_hashdist(char *str)
7840 {
7841 	if (!str)
7842 		return 0;
7843 	hashdist = simple_strtoul(str, &str, 0);
7844 	return 1;
7845 }
7846 __setup("hashdist=", set_hashdist);
7847 #endif
7848 
page_alloc_init(void)7849 void __init page_alloc_init(void)
7850 {
7851 	int ret;
7852 
7853 #ifdef CONFIG_NUMA
7854 	if (num_node_state(N_MEMORY) == 1)
7855 		hashdist = 0;
7856 #endif
7857 
7858 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7859 					"mm/page_alloc:dead", NULL,
7860 					page_alloc_cpu_dead);
7861 	WARN_ON(ret < 0);
7862 }
7863 
7864 /*
7865  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7866  *	or min_free_kbytes changes.
7867  */
calculate_totalreserve_pages(void)7868 static void calculate_totalreserve_pages(void)
7869 {
7870 	struct pglist_data *pgdat;
7871 	unsigned long reserve_pages = 0;
7872 	enum zone_type i, j;
7873 
7874 	for_each_online_pgdat(pgdat) {
7875 
7876 		pgdat->totalreserve_pages = 0;
7877 
7878 		for (i = 0; i < MAX_NR_ZONES; i++) {
7879 			struct zone *zone = pgdat->node_zones + i;
7880 			long max = 0;
7881 			unsigned long managed_pages = zone_managed_pages(zone);
7882 
7883 			/* Find valid and maximum lowmem_reserve in the zone */
7884 			for (j = i; j < MAX_NR_ZONES; j++) {
7885 				if (zone->lowmem_reserve[j] > max)
7886 					max = zone->lowmem_reserve[j];
7887 			}
7888 
7889 			/* we treat the high watermark as reserved pages. */
7890 			max += high_wmark_pages(zone);
7891 
7892 			if (max > managed_pages)
7893 				max = managed_pages;
7894 
7895 			pgdat->totalreserve_pages += max;
7896 
7897 			reserve_pages += max;
7898 		}
7899 	}
7900 	totalreserve_pages = reserve_pages;
7901 }
7902 
7903 /*
7904  * setup_per_zone_lowmem_reserve - called whenever
7905  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7906  *	has a correct pages reserved value, so an adequate number of
7907  *	pages are left in the zone after a successful __alloc_pages().
7908  */
setup_per_zone_lowmem_reserve(void)7909 static void setup_per_zone_lowmem_reserve(void)
7910 {
7911 	struct pglist_data *pgdat;
7912 	enum zone_type i, j;
7913 
7914 	for_each_online_pgdat(pgdat) {
7915 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
7916 			struct zone *zone = &pgdat->node_zones[i];
7917 			int ratio = sysctl_lowmem_reserve_ratio[i];
7918 			bool clear = !ratio || !zone_managed_pages(zone);
7919 			unsigned long managed_pages = 0;
7920 
7921 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
7922 				struct zone *upper_zone = &pgdat->node_zones[j];
7923 
7924 				managed_pages += zone_managed_pages(upper_zone);
7925 
7926 				if (clear)
7927 					zone->lowmem_reserve[j] = 0;
7928 				else
7929 					zone->lowmem_reserve[j] = managed_pages / ratio;
7930 			}
7931 		}
7932 	}
7933 
7934 	/* update totalreserve_pages */
7935 	calculate_totalreserve_pages();
7936 }
7937 
__setup_per_zone_wmarks(void)7938 static void __setup_per_zone_wmarks(void)
7939 {
7940 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7941 	unsigned long lowmem_pages = 0;
7942 	struct zone *zone;
7943 	unsigned long flags;
7944 
7945 	/* Calculate total number of !ZONE_HIGHMEM pages */
7946 	for_each_zone(zone) {
7947 		if (!is_highmem(zone))
7948 			lowmem_pages += zone_managed_pages(zone);
7949 	}
7950 
7951 	for_each_zone(zone) {
7952 		u64 tmp;
7953 
7954 		spin_lock_irqsave(&zone->lock, flags);
7955 		tmp = (u64)pages_min * zone_managed_pages(zone);
7956 		do_div(tmp, lowmem_pages);
7957 		if (is_highmem(zone)) {
7958 			/*
7959 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7960 			 * need highmem pages, so cap pages_min to a small
7961 			 * value here.
7962 			 *
7963 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7964 			 * deltas control async page reclaim, and so should
7965 			 * not be capped for highmem.
7966 			 */
7967 			unsigned long min_pages;
7968 
7969 			min_pages = zone_managed_pages(zone) / 1024;
7970 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7971 			zone->_watermark[WMARK_MIN] = min_pages;
7972 		} else {
7973 			/*
7974 			 * If it's a lowmem zone, reserve a number of pages
7975 			 * proportionate to the zone's size.
7976 			 */
7977 			zone->_watermark[WMARK_MIN] = tmp;
7978 		}
7979 
7980 		/*
7981 		 * Set the kswapd watermarks distance according to the
7982 		 * scale factor in proportion to available memory, but
7983 		 * ensure a minimum size on small systems.
7984 		 */
7985 		tmp = max_t(u64, tmp >> 2,
7986 			    mult_frac(zone_managed_pages(zone),
7987 				      watermark_scale_factor, 10000));
7988 
7989 		zone->watermark_boost = 0;
7990 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7991 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7992 
7993 		spin_unlock_irqrestore(&zone->lock, flags);
7994 	}
7995 
7996 	/* update totalreserve_pages */
7997 	calculate_totalreserve_pages();
7998 }
7999 
8000 /**
8001  * setup_per_zone_wmarks - called when min_free_kbytes changes
8002  * or when memory is hot-{added|removed}
8003  *
8004  * Ensures that the watermark[min,low,high] values for each zone are set
8005  * correctly with respect to min_free_kbytes.
8006  */
setup_per_zone_wmarks(void)8007 void setup_per_zone_wmarks(void)
8008 {
8009 	static DEFINE_SPINLOCK(lock);
8010 
8011 	spin_lock(&lock);
8012 	__setup_per_zone_wmarks();
8013 	spin_unlock(&lock);
8014 }
8015 
8016 /*
8017  * Initialise min_free_kbytes.
8018  *
8019  * For small machines we want it small (128k min).  For large machines
8020  * we want it large (256MB max).  But it is not linear, because network
8021  * bandwidth does not increase linearly with machine size.  We use
8022  *
8023  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8024  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8025  *
8026  * which yields
8027  *
8028  * 16MB:	512k
8029  * 32MB:	724k
8030  * 64MB:	1024k
8031  * 128MB:	1448k
8032  * 256MB:	2048k
8033  * 512MB:	2896k
8034  * 1024MB:	4096k
8035  * 2048MB:	5792k
8036  * 4096MB:	8192k
8037  * 8192MB:	11584k
8038  * 16384MB:	16384k
8039  */
init_per_zone_wmark_min(void)8040 int __meminit init_per_zone_wmark_min(void)
8041 {
8042 	unsigned long lowmem_kbytes;
8043 	int new_min_free_kbytes;
8044 
8045 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8046 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8047 
8048 	if (new_min_free_kbytes > user_min_free_kbytes) {
8049 		min_free_kbytes = new_min_free_kbytes;
8050 		if (min_free_kbytes < 128)
8051 			min_free_kbytes = 128;
8052 		if (min_free_kbytes > 262144)
8053 			min_free_kbytes = 262144;
8054 	} else {
8055 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8056 				new_min_free_kbytes, user_min_free_kbytes);
8057 	}
8058 	setup_per_zone_wmarks();
8059 	refresh_zone_stat_thresholds();
8060 	setup_per_zone_lowmem_reserve();
8061 
8062 #ifdef CONFIG_NUMA
8063 	setup_min_unmapped_ratio();
8064 	setup_min_slab_ratio();
8065 #endif
8066 
8067 	khugepaged_min_free_kbytes_update();
8068 
8069 	return 0;
8070 }
postcore_initcall(init_per_zone_wmark_min)8071 postcore_initcall(init_per_zone_wmark_min)
8072 
8073 /*
8074  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8075  *	that we can call two helper functions whenever min_free_kbytes
8076  *	changes.
8077  */
8078 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8079 		void *buffer, size_t *length, loff_t *ppos)
8080 {
8081 	int rc;
8082 
8083 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8084 	if (rc)
8085 		return rc;
8086 
8087 	if (write) {
8088 		user_min_free_kbytes = min_free_kbytes;
8089 		setup_per_zone_wmarks();
8090 	}
8091 	return 0;
8092 }
8093 
watermark_scale_factor_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8094 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8095 		void *buffer, size_t *length, loff_t *ppos)
8096 {
8097 	int rc;
8098 
8099 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8100 	if (rc)
8101 		return rc;
8102 
8103 	if (write)
8104 		setup_per_zone_wmarks();
8105 
8106 	return 0;
8107 }
8108 
8109 #ifdef CONFIG_NUMA
setup_min_unmapped_ratio(void)8110 static void setup_min_unmapped_ratio(void)
8111 {
8112 	pg_data_t *pgdat;
8113 	struct zone *zone;
8114 
8115 	for_each_online_pgdat(pgdat)
8116 		pgdat->min_unmapped_pages = 0;
8117 
8118 	for_each_zone(zone)
8119 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8120 						         sysctl_min_unmapped_ratio) / 100;
8121 }
8122 
8123 
sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8124 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8125 		void *buffer, size_t *length, loff_t *ppos)
8126 {
8127 	int rc;
8128 
8129 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8130 	if (rc)
8131 		return rc;
8132 
8133 	setup_min_unmapped_ratio();
8134 
8135 	return 0;
8136 }
8137 
setup_min_slab_ratio(void)8138 static void setup_min_slab_ratio(void)
8139 {
8140 	pg_data_t *pgdat;
8141 	struct zone *zone;
8142 
8143 	for_each_online_pgdat(pgdat)
8144 		pgdat->min_slab_pages = 0;
8145 
8146 	for_each_zone(zone)
8147 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8148 						     sysctl_min_slab_ratio) / 100;
8149 }
8150 
sysctl_min_slab_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8151 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8152 		void *buffer, size_t *length, loff_t *ppos)
8153 {
8154 	int rc;
8155 
8156 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8157 	if (rc)
8158 		return rc;
8159 
8160 	setup_min_slab_ratio();
8161 
8162 	return 0;
8163 }
8164 #endif
8165 
8166 /*
8167  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8168  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8169  *	whenever sysctl_lowmem_reserve_ratio changes.
8170  *
8171  * The reserve ratio obviously has absolutely no relation with the
8172  * minimum watermarks. The lowmem reserve ratio can only make sense
8173  * if in function of the boot time zone sizes.
8174  */
lowmem_reserve_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8175 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8176 		void *buffer, size_t *length, loff_t *ppos)
8177 {
8178 	int i;
8179 
8180 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8181 
8182 	for (i = 0; i < MAX_NR_ZONES; i++) {
8183 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8184 			sysctl_lowmem_reserve_ratio[i] = 0;
8185 	}
8186 
8187 	setup_per_zone_lowmem_reserve();
8188 	return 0;
8189 }
8190 
__zone_pcp_update(struct zone * zone)8191 static void __zone_pcp_update(struct zone *zone)
8192 {
8193 	unsigned int cpu;
8194 
8195 	for_each_possible_cpu(cpu)
8196 		pageset_set_high_and_batch(zone,
8197 				per_cpu_ptr(zone->pageset, cpu));
8198 }
8199 
8200 /*
8201  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8202  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
8203  * pagelist can have before it gets flushed back to buddy allocator.
8204  */
percpu_pagelist_fraction_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8205 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8206 		void *buffer, size_t *length, loff_t *ppos)
8207 {
8208 	struct zone *zone;
8209 	int old_percpu_pagelist_fraction;
8210 	int ret;
8211 
8212 	mutex_lock(&pcp_batch_high_lock);
8213 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8214 
8215 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8216 	if (!write || ret < 0)
8217 		goto out;
8218 
8219 	/* Sanity checking to avoid pcp imbalance */
8220 	if (percpu_pagelist_fraction &&
8221 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8222 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8223 		ret = -EINVAL;
8224 		goto out;
8225 	}
8226 
8227 	/* No change? */
8228 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8229 		goto out;
8230 
8231 	for_each_populated_zone(zone)
8232 		__zone_pcp_update(zone);
8233 out:
8234 	mutex_unlock(&pcp_batch_high_lock);
8235 	return ret;
8236 }
8237 
8238 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8239 /*
8240  * Returns the number of pages that arch has reserved but
8241  * is not known to alloc_large_system_hash().
8242  */
arch_reserved_kernel_pages(void)8243 static unsigned long __init arch_reserved_kernel_pages(void)
8244 {
8245 	return 0;
8246 }
8247 #endif
8248 
8249 /*
8250  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8251  * machines. As memory size is increased the scale is also increased but at
8252  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8253  * quadruples the scale is increased by one, which means the size of hash table
8254  * only doubles, instead of quadrupling as well.
8255  * Because 32-bit systems cannot have large physical memory, where this scaling
8256  * makes sense, it is disabled on such platforms.
8257  */
8258 #if __BITS_PER_LONG > 32
8259 #define ADAPT_SCALE_BASE	(64ul << 30)
8260 #define ADAPT_SCALE_SHIFT	2
8261 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8262 #endif
8263 
8264 /*
8265  * allocate a large system hash table from bootmem
8266  * - it is assumed that the hash table must contain an exact power-of-2
8267  *   quantity of entries
8268  * - limit is the number of hash buckets, not the total allocation size
8269  */
alloc_large_system_hash(const char * tablename,unsigned long bucketsize,unsigned long numentries,int scale,int flags,unsigned int * _hash_shift,unsigned int * _hash_mask,unsigned long low_limit,unsigned long high_limit)8270 void *__init alloc_large_system_hash(const char *tablename,
8271 				     unsigned long bucketsize,
8272 				     unsigned long numentries,
8273 				     int scale,
8274 				     int flags,
8275 				     unsigned int *_hash_shift,
8276 				     unsigned int *_hash_mask,
8277 				     unsigned long low_limit,
8278 				     unsigned long high_limit)
8279 {
8280 	unsigned long long max = high_limit;
8281 	unsigned long log2qty, size;
8282 	void *table = NULL;
8283 	gfp_t gfp_flags;
8284 	bool virt;
8285 
8286 	/* allow the kernel cmdline to have a say */
8287 	if (!numentries) {
8288 		/* round applicable memory size up to nearest megabyte */
8289 		numentries = nr_kernel_pages;
8290 		numentries -= arch_reserved_kernel_pages();
8291 
8292 		/* It isn't necessary when PAGE_SIZE >= 1MB */
8293 		if (PAGE_SHIFT < 20)
8294 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8295 
8296 #if __BITS_PER_LONG > 32
8297 		if (!high_limit) {
8298 			unsigned long adapt;
8299 
8300 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8301 			     adapt <<= ADAPT_SCALE_SHIFT)
8302 				scale++;
8303 		}
8304 #endif
8305 
8306 		/* limit to 1 bucket per 2^scale bytes of low memory */
8307 		if (scale > PAGE_SHIFT)
8308 			numentries >>= (scale - PAGE_SHIFT);
8309 		else
8310 			numentries <<= (PAGE_SHIFT - scale);
8311 
8312 		/* Make sure we've got at least a 0-order allocation.. */
8313 		if (unlikely(flags & HASH_SMALL)) {
8314 			/* Makes no sense without HASH_EARLY */
8315 			WARN_ON(!(flags & HASH_EARLY));
8316 			if (!(numentries >> *_hash_shift)) {
8317 				numentries = 1UL << *_hash_shift;
8318 				BUG_ON(!numentries);
8319 			}
8320 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8321 			numentries = PAGE_SIZE / bucketsize;
8322 	}
8323 	numentries = roundup_pow_of_two(numentries);
8324 
8325 	/* limit allocation size to 1/16 total memory by default */
8326 	if (max == 0) {
8327 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8328 		do_div(max, bucketsize);
8329 	}
8330 	max = min(max, 0x80000000ULL);
8331 
8332 	if (numentries < low_limit)
8333 		numentries = low_limit;
8334 	if (numentries > max)
8335 		numentries = max;
8336 
8337 	log2qty = ilog2(numentries);
8338 
8339 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8340 	do {
8341 		virt = false;
8342 		size = bucketsize << log2qty;
8343 		if (flags & HASH_EARLY) {
8344 			if (flags & HASH_ZERO)
8345 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8346 			else
8347 				table = memblock_alloc_raw(size,
8348 							   SMP_CACHE_BYTES);
8349 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8350 			table = __vmalloc(size, gfp_flags);
8351 			virt = true;
8352 		} else {
8353 			/*
8354 			 * If bucketsize is not a power-of-two, we may free
8355 			 * some pages at the end of hash table which
8356 			 * alloc_pages_exact() automatically does
8357 			 */
8358 			table = alloc_pages_exact(size, gfp_flags);
8359 			kmemleak_alloc(table, size, 1, gfp_flags);
8360 		}
8361 	} while (!table && size > PAGE_SIZE && --log2qty);
8362 
8363 	if (!table)
8364 		panic("Failed to allocate %s hash table\n", tablename);
8365 
8366 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8367 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8368 		virt ? "vmalloc" : "linear");
8369 
8370 	if (_hash_shift)
8371 		*_hash_shift = log2qty;
8372 	if (_hash_mask)
8373 		*_hash_mask = (1 << log2qty) - 1;
8374 
8375 	return table;
8376 }
8377 
8378 /*
8379  * This function checks whether pageblock includes unmovable pages or not.
8380  *
8381  * PageLRU check without isolation or lru_lock could race so that
8382  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8383  * check without lock_page also may miss some movable non-lru pages at
8384  * race condition. So you can't expect this function should be exact.
8385  *
8386  * Returns a page without holding a reference. If the caller wants to
8387  * dereference that page (e.g., dumping), it has to make sure that it
8388  * cannot get removed (e.g., via memory unplug) concurrently.
8389  *
8390  */
has_unmovable_pages(struct zone * zone,struct page * page,int migratetype,int flags)8391 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8392 				 int migratetype, int flags)
8393 {
8394 	unsigned long iter = 0;
8395 	unsigned long pfn = page_to_pfn(page);
8396 	unsigned long offset = pfn % pageblock_nr_pages;
8397 
8398 	if (is_migrate_cma_page(page)) {
8399 		/*
8400 		 * CMA allocations (alloc_contig_range) really need to mark
8401 		 * isolate CMA pageblocks even when they are not movable in fact
8402 		 * so consider them movable here.
8403 		 */
8404 		if (is_migrate_cma(migratetype))
8405 			return NULL;
8406 
8407 		return page;
8408 	}
8409 
8410 	for (; iter < pageblock_nr_pages - offset; iter++) {
8411 		if (!pfn_valid_within(pfn + iter))
8412 			continue;
8413 
8414 		page = pfn_to_page(pfn + iter);
8415 
8416 		/*
8417 		 * Both, bootmem allocations and memory holes are marked
8418 		 * PG_reserved and are unmovable. We can even have unmovable
8419 		 * allocations inside ZONE_MOVABLE, for example when
8420 		 * specifying "movablecore".
8421 		 */
8422 		if (PageReserved(page))
8423 			return page;
8424 
8425 		/*
8426 		 * If the zone is movable and we have ruled out all reserved
8427 		 * pages then it should be reasonably safe to assume the rest
8428 		 * is movable.
8429 		 */
8430 		if (zone_idx(zone) == ZONE_MOVABLE)
8431 			continue;
8432 
8433 		/*
8434 		 * Hugepages are not in LRU lists, but they're movable.
8435 		 * THPs are on the LRU, but need to be counted as #small pages.
8436 		 * We need not scan over tail pages because we don't
8437 		 * handle each tail page individually in migration.
8438 		 */
8439 		if (PageHuge(page) || PageTransCompound(page)) {
8440 			struct page *head = compound_head(page);
8441 			unsigned int skip_pages;
8442 
8443 			if (PageHuge(page)) {
8444 				if (!hugepage_migration_supported(page_hstate(head)))
8445 					return page;
8446 			} else if (!PageLRU(head) && !__PageMovable(head)) {
8447 				return page;
8448 			}
8449 
8450 			skip_pages = compound_nr(head) - (page - head);
8451 			iter += skip_pages - 1;
8452 			continue;
8453 		}
8454 
8455 		/*
8456 		 * We can't use page_count without pin a page
8457 		 * because another CPU can free compound page.
8458 		 * This check already skips compound tails of THP
8459 		 * because their page->_refcount is zero at all time.
8460 		 */
8461 		if (!page_ref_count(page)) {
8462 			if (PageBuddy(page))
8463 				iter += (1 << buddy_order(page)) - 1;
8464 			continue;
8465 		}
8466 
8467 		/*
8468 		 * The HWPoisoned page may be not in buddy system, and
8469 		 * page_count() is not 0.
8470 		 */
8471 		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8472 			continue;
8473 
8474 		/*
8475 		 * We treat all PageOffline() pages as movable when offlining
8476 		 * to give drivers a chance to decrement their reference count
8477 		 * in MEM_GOING_OFFLINE in order to indicate that these pages
8478 		 * can be offlined as there are no direct references anymore.
8479 		 * For actually unmovable PageOffline() where the driver does
8480 		 * not support this, we will fail later when trying to actually
8481 		 * move these pages that still have a reference count > 0.
8482 		 * (false negatives in this function only)
8483 		 */
8484 		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8485 			continue;
8486 
8487 		if (__PageMovable(page) || PageLRU(page))
8488 			continue;
8489 
8490 		/*
8491 		 * If there are RECLAIMABLE pages, we need to check
8492 		 * it.  But now, memory offline itself doesn't call
8493 		 * shrink_node_slabs() and it still to be fixed.
8494 		 */
8495 		return page;
8496 	}
8497 	return NULL;
8498 }
8499 
8500 #ifdef CONFIG_CONTIG_ALLOC
pfn_max_align_down(unsigned long pfn)8501 static unsigned long pfn_max_align_down(unsigned long pfn)
8502 {
8503 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8504 			     pageblock_nr_pages) - 1);
8505 }
8506 
pfn_max_align_up(unsigned long pfn)8507 static unsigned long pfn_max_align_up(unsigned long pfn)
8508 {
8509 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8510 				pageblock_nr_pages));
8511 }
8512 
8513 /* [start, end) must belong to a single zone. */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end)8514 static int __alloc_contig_migrate_range(struct compact_control *cc,
8515 					unsigned long start, unsigned long end)
8516 {
8517 	/* This function is based on compact_zone() from compaction.c. */
8518 	unsigned int nr_reclaimed;
8519 	unsigned long pfn = start;
8520 	unsigned int tries = 0;
8521 	int ret = 0;
8522 	struct migration_target_control mtc = {
8523 		.nid = zone_to_nid(cc->zone),
8524 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8525 	};
8526 
8527 	migrate_prep();
8528 
8529 	while (pfn < end || !list_empty(&cc->migratepages)) {
8530 		if (fatal_signal_pending(current)) {
8531 			ret = -EINTR;
8532 			break;
8533 		}
8534 
8535 		if (list_empty(&cc->migratepages)) {
8536 			cc->nr_migratepages = 0;
8537 			pfn = isolate_migratepages_range(cc, pfn, end);
8538 			if (!pfn) {
8539 				ret = -EINTR;
8540 				break;
8541 			}
8542 			tries = 0;
8543 		} else if (++tries == 5) {
8544 			ret = ret < 0 ? ret : -EBUSY;
8545 			break;
8546 		}
8547 
8548 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8549 							&cc->migratepages);
8550 		cc->nr_migratepages -= nr_reclaimed;
8551 
8552 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8553 				NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8554 	}
8555 	if (ret < 0) {
8556 		putback_movable_pages(&cc->migratepages);
8557 		return ret;
8558 	}
8559 	return 0;
8560 }
8561 
8562 /**
8563  * alloc_contig_range() -- tries to allocate given range of pages
8564  * @start:	start PFN to allocate
8565  * @end:	one-past-the-last PFN to allocate
8566  * @migratetype:	migratetype of the underlaying pageblocks (either
8567  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
8568  *			in range must have the same migratetype and it must
8569  *			be either of the two.
8570  * @gfp_mask:	GFP mask to use during compaction
8571  *
8572  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8573  * aligned.  The PFN range must belong to a single zone.
8574  *
8575  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8576  * pageblocks in the range.  Once isolated, the pageblocks should not
8577  * be modified by others.
8578  *
8579  * Return: zero on success or negative error code.  On success all
8580  * pages which PFN is in [start, end) are allocated for the caller and
8581  * need to be freed with free_contig_range().
8582  */
alloc_contig_range(unsigned long start,unsigned long end,unsigned migratetype,gfp_t gfp_mask)8583 int alloc_contig_range(unsigned long start, unsigned long end,
8584 		       unsigned migratetype, gfp_t gfp_mask)
8585 {
8586 	unsigned long outer_start, outer_end;
8587 	unsigned int order;
8588 	int ret = 0;
8589 
8590 	struct compact_control cc = {
8591 		.nr_migratepages = 0,
8592 		.order = -1,
8593 		.zone = page_zone(pfn_to_page(start)),
8594 		.mode = MIGRATE_SYNC,
8595 		.ignore_skip_hint = true,
8596 		.no_set_skip_hint = true,
8597 		.gfp_mask = current_gfp_context(gfp_mask),
8598 		.alloc_contig = true,
8599 	};
8600 	INIT_LIST_HEAD(&cc.migratepages);
8601 
8602 	/*
8603 	 * What we do here is we mark all pageblocks in range as
8604 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
8605 	 * have different sizes, and due to the way page allocator
8606 	 * work, we align the range to biggest of the two pages so
8607 	 * that page allocator won't try to merge buddies from
8608 	 * different pageblocks and change MIGRATE_ISOLATE to some
8609 	 * other migration type.
8610 	 *
8611 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8612 	 * migrate the pages from an unaligned range (ie. pages that
8613 	 * we are interested in).  This will put all the pages in
8614 	 * range back to page allocator as MIGRATE_ISOLATE.
8615 	 *
8616 	 * When this is done, we take the pages in range from page
8617 	 * allocator removing them from the buddy system.  This way
8618 	 * page allocator will never consider using them.
8619 	 *
8620 	 * This lets us mark the pageblocks back as
8621 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8622 	 * aligned range but not in the unaligned, original range are
8623 	 * put back to page allocator so that buddy can use them.
8624 	 */
8625 
8626 	ret = start_isolate_page_range(pfn_max_align_down(start),
8627 				       pfn_max_align_up(end), migratetype, 0);
8628 	if (ret)
8629 		return ret;
8630 
8631 	/*
8632 	 * In case of -EBUSY, we'd like to know which page causes problem.
8633 	 * So, just fall through. test_pages_isolated() has a tracepoint
8634 	 * which will report the busy page.
8635 	 *
8636 	 * It is possible that busy pages could become available before
8637 	 * the call to test_pages_isolated, and the range will actually be
8638 	 * allocated.  So, if we fall through be sure to clear ret so that
8639 	 * -EBUSY is not accidentally used or returned to caller.
8640 	 */
8641 	ret = __alloc_contig_migrate_range(&cc, start, end);
8642 	if (ret && ret != -EBUSY)
8643 		goto done;
8644 	ret =0;
8645 
8646 	/*
8647 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8648 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
8649 	 * more, all pages in [start, end) are free in page allocator.
8650 	 * What we are going to do is to allocate all pages from
8651 	 * [start, end) (that is remove them from page allocator).
8652 	 *
8653 	 * The only problem is that pages at the beginning and at the
8654 	 * end of interesting range may be not aligned with pages that
8655 	 * page allocator holds, ie. they can be part of higher order
8656 	 * pages.  Because of this, we reserve the bigger range and
8657 	 * once this is done free the pages we are not interested in.
8658 	 *
8659 	 * We don't have to hold zone->lock here because the pages are
8660 	 * isolated thus they won't get removed from buddy.
8661 	 */
8662 
8663 	lru_add_drain_all();
8664 
8665 	order = 0;
8666 	outer_start = start;
8667 	while (!PageBuddy(pfn_to_page(outer_start))) {
8668 		if (++order >= MAX_ORDER) {
8669 			outer_start = start;
8670 			break;
8671 		}
8672 		outer_start &= ~0UL << order;
8673 	}
8674 
8675 	if (outer_start != start) {
8676 		order = buddy_order(pfn_to_page(outer_start));
8677 
8678 		/*
8679 		 * outer_start page could be small order buddy page and
8680 		 * it doesn't include start page. Adjust outer_start
8681 		 * in this case to report failed page properly
8682 		 * on tracepoint in test_pages_isolated()
8683 		 */
8684 		if (outer_start + (1UL << order) <= start)
8685 			outer_start = start;
8686 	}
8687 
8688 	/* Make sure the range is really isolated. */
8689 	if (test_pages_isolated(outer_start, end, 0)) {
8690 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8691 			__func__, outer_start, end);
8692 		ret = -EBUSY;
8693 		goto done;
8694 	}
8695 
8696 	/* Grab isolated pages from freelists. */
8697 	outer_end = isolate_freepages_range(&cc, outer_start, end);
8698 	if (!outer_end) {
8699 		ret = -EBUSY;
8700 		goto done;
8701 	}
8702 
8703 	/* Free head and tail (if any) */
8704 	if (start != outer_start)
8705 		free_contig_range(outer_start, start - outer_start);
8706 	if (end != outer_end)
8707 		free_contig_range(end, outer_end - end);
8708 
8709 done:
8710 	undo_isolate_page_range(pfn_max_align_down(start),
8711 				pfn_max_align_up(end), migratetype);
8712 	return ret;
8713 }
8714 EXPORT_SYMBOL(alloc_contig_range);
8715 
__alloc_contig_pages(unsigned long start_pfn,unsigned long nr_pages,gfp_t gfp_mask)8716 static int __alloc_contig_pages(unsigned long start_pfn,
8717 				unsigned long nr_pages, gfp_t gfp_mask)
8718 {
8719 	unsigned long end_pfn = start_pfn + nr_pages;
8720 
8721 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8722 				  gfp_mask);
8723 }
8724 
pfn_range_valid_contig(struct zone * z,unsigned long start_pfn,unsigned long nr_pages)8725 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8726 				   unsigned long nr_pages)
8727 {
8728 	unsigned long i, end_pfn = start_pfn + nr_pages;
8729 	struct page *page;
8730 
8731 	for (i = start_pfn; i < end_pfn; i++) {
8732 		page = pfn_to_online_page(i);
8733 		if (!page)
8734 			return false;
8735 
8736 		if (page_zone(page) != z)
8737 			return false;
8738 
8739 		if (PageReserved(page))
8740 			return false;
8741 
8742 		if (page_count(page) > 0)
8743 			return false;
8744 
8745 		if (PageHuge(page))
8746 			return false;
8747 	}
8748 	return true;
8749 }
8750 
zone_spans_last_pfn(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)8751 static bool zone_spans_last_pfn(const struct zone *zone,
8752 				unsigned long start_pfn, unsigned long nr_pages)
8753 {
8754 	unsigned long last_pfn = start_pfn + nr_pages - 1;
8755 
8756 	return zone_spans_pfn(zone, last_pfn);
8757 }
8758 
8759 /**
8760  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8761  * @nr_pages:	Number of contiguous pages to allocate
8762  * @gfp_mask:	GFP mask to limit search and used during compaction
8763  * @nid:	Target node
8764  * @nodemask:	Mask for other possible nodes
8765  *
8766  * This routine is a wrapper around alloc_contig_range(). It scans over zones
8767  * on an applicable zonelist to find a contiguous pfn range which can then be
8768  * tried for allocation with alloc_contig_range(). This routine is intended
8769  * for allocation requests which can not be fulfilled with the buddy allocator.
8770  *
8771  * The allocated memory is always aligned to a page boundary. If nr_pages is a
8772  * power of two then the alignment is guaranteed to be to the given nr_pages
8773  * (e.g. 1GB request would be aligned to 1GB).
8774  *
8775  * Allocated pages can be freed with free_contig_range() or by manually calling
8776  * __free_page() on each allocated page.
8777  *
8778  * Return: pointer to contiguous pages on success, or NULL if not successful.
8779  */
alloc_contig_pages(unsigned long nr_pages,gfp_t gfp_mask,int nid,nodemask_t * nodemask)8780 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8781 				int nid, nodemask_t *nodemask)
8782 {
8783 	unsigned long ret, pfn, flags;
8784 	struct zonelist *zonelist;
8785 	struct zone *zone;
8786 	struct zoneref *z;
8787 
8788 	zonelist = node_zonelist(nid, gfp_mask);
8789 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
8790 					gfp_zone(gfp_mask), nodemask) {
8791 		spin_lock_irqsave(&zone->lock, flags);
8792 
8793 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8794 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8795 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8796 				/*
8797 				 * We release the zone lock here because
8798 				 * alloc_contig_range() will also lock the zone
8799 				 * at some point. If there's an allocation
8800 				 * spinning on this lock, it may win the race
8801 				 * and cause alloc_contig_range() to fail...
8802 				 */
8803 				spin_unlock_irqrestore(&zone->lock, flags);
8804 				ret = __alloc_contig_pages(pfn, nr_pages,
8805 							gfp_mask);
8806 				if (!ret)
8807 					return pfn_to_page(pfn);
8808 				spin_lock_irqsave(&zone->lock, flags);
8809 			}
8810 			pfn += nr_pages;
8811 		}
8812 		spin_unlock_irqrestore(&zone->lock, flags);
8813 	}
8814 	return NULL;
8815 }
8816 #endif /* CONFIG_CONTIG_ALLOC */
8817 
free_contig_range(unsigned long pfn,unsigned int nr_pages)8818 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8819 {
8820 	unsigned int count = 0;
8821 
8822 	for (; nr_pages--; pfn++) {
8823 		struct page *page = pfn_to_page(pfn);
8824 
8825 		count += page_count(page) != 1;
8826 		__free_page(page);
8827 	}
8828 	WARN(count != 0, "%d pages are still in use!\n", count);
8829 }
8830 EXPORT_SYMBOL(free_contig_range);
8831 
8832 /*
8833  * The zone indicated has a new number of managed_pages; batch sizes and percpu
8834  * page high values need to be recalulated.
8835  */
zone_pcp_update(struct zone * zone)8836 void __meminit zone_pcp_update(struct zone *zone)
8837 {
8838 	mutex_lock(&pcp_batch_high_lock);
8839 	__zone_pcp_update(zone);
8840 	mutex_unlock(&pcp_batch_high_lock);
8841 }
8842 
zone_pcp_reset(struct zone * zone)8843 void zone_pcp_reset(struct zone *zone)
8844 {
8845 	unsigned long flags;
8846 	int cpu;
8847 	struct per_cpu_pageset *pset;
8848 
8849 	/* avoid races with drain_pages()  */
8850 	local_irq_save(flags);
8851 	if (zone->pageset != &boot_pageset) {
8852 		for_each_online_cpu(cpu) {
8853 			pset = per_cpu_ptr(zone->pageset, cpu);
8854 			drain_zonestat(zone, pset);
8855 		}
8856 		free_percpu(zone->pageset);
8857 		zone->pageset = &boot_pageset;
8858 	}
8859 	local_irq_restore(flags);
8860 }
8861 
8862 #ifdef CONFIG_MEMORY_HOTREMOVE
8863 /*
8864  * All pages in the range must be in a single zone, must not contain holes,
8865  * must span full sections, and must be isolated before calling this function.
8866  */
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)8867 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8868 {
8869 	unsigned long pfn = start_pfn;
8870 	struct page *page;
8871 	struct zone *zone;
8872 	unsigned int order;
8873 	unsigned long flags;
8874 
8875 	offline_mem_sections(pfn, end_pfn);
8876 	zone = page_zone(pfn_to_page(pfn));
8877 	spin_lock_irqsave(&zone->lock, flags);
8878 	while (pfn < end_pfn) {
8879 		page = pfn_to_page(pfn);
8880 		/*
8881 		 * The HWPoisoned page may be not in buddy system, and
8882 		 * page_count() is not 0.
8883 		 */
8884 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8885 			pfn++;
8886 			continue;
8887 		}
8888 		/*
8889 		 * At this point all remaining PageOffline() pages have a
8890 		 * reference count of 0 and can simply be skipped.
8891 		 */
8892 		if (PageOffline(page)) {
8893 			BUG_ON(page_count(page));
8894 			BUG_ON(PageBuddy(page));
8895 			pfn++;
8896 			continue;
8897 		}
8898 
8899 		BUG_ON(page_count(page));
8900 		BUG_ON(!PageBuddy(page));
8901 		order = buddy_order(page);
8902 		del_page_from_free_list(page, zone, order);
8903 		pfn += (1 << order);
8904 	}
8905 	spin_unlock_irqrestore(&zone->lock, flags);
8906 }
8907 #endif
8908 
is_free_buddy_page(struct page * page)8909 bool is_free_buddy_page(struct page *page)
8910 {
8911 	struct zone *zone = page_zone(page);
8912 	unsigned long pfn = page_to_pfn(page);
8913 	unsigned long flags;
8914 	unsigned int order;
8915 
8916 	spin_lock_irqsave(&zone->lock, flags);
8917 	for (order = 0; order < MAX_ORDER; order++) {
8918 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8919 
8920 		if (PageBuddy(page_head) && buddy_order(page_head) >= order)
8921 			break;
8922 	}
8923 	spin_unlock_irqrestore(&zone->lock, flags);
8924 
8925 	return order < MAX_ORDER;
8926 }
8927 
8928 #ifdef CONFIG_MEMORY_FAILURE
8929 /*
8930  * Break down a higher-order page in sub-pages, and keep our target out of
8931  * buddy allocator.
8932  */
break_down_buddy_pages(struct zone * zone,struct page * page,struct page * target,int low,int high,int migratetype)8933 static void break_down_buddy_pages(struct zone *zone, struct page *page,
8934 				   struct page *target, int low, int high,
8935 				   int migratetype)
8936 {
8937 	unsigned long size = 1 << high;
8938 	struct page *current_buddy, *next_page;
8939 
8940 	while (high > low) {
8941 		high--;
8942 		size >>= 1;
8943 
8944 		if (target >= &page[size]) {
8945 			next_page = page + size;
8946 			current_buddy = page;
8947 		} else {
8948 			next_page = page;
8949 			current_buddy = page + size;
8950 		}
8951 
8952 		if (set_page_guard(zone, current_buddy, high, migratetype))
8953 			continue;
8954 
8955 		if (current_buddy != target) {
8956 			add_to_free_list(current_buddy, zone, high, migratetype);
8957 			set_buddy_order(current_buddy, high);
8958 			page = next_page;
8959 		}
8960 	}
8961 }
8962 
8963 /*
8964  * Take a page that will be marked as poisoned off the buddy allocator.
8965  */
take_page_off_buddy(struct page * page)8966 bool take_page_off_buddy(struct page *page)
8967 {
8968 	struct zone *zone = page_zone(page);
8969 	unsigned long pfn = page_to_pfn(page);
8970 	unsigned long flags;
8971 	unsigned int order;
8972 	bool ret = false;
8973 
8974 	spin_lock_irqsave(&zone->lock, flags);
8975 	for (order = 0; order < MAX_ORDER; order++) {
8976 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8977 		int page_order = buddy_order(page_head);
8978 
8979 		if (PageBuddy(page_head) && page_order >= order) {
8980 			unsigned long pfn_head = page_to_pfn(page_head);
8981 			int migratetype = get_pfnblock_migratetype(page_head,
8982 								   pfn_head);
8983 
8984 			del_page_from_free_list(page_head, zone, page_order);
8985 			break_down_buddy_pages(zone, page_head, page, 0,
8986 						page_order, migratetype);
8987 			if (!is_migrate_isolate(migratetype))
8988 				__mod_zone_freepage_state(zone, -1, migratetype);
8989 			ret = true;
8990 			break;
8991 		}
8992 		if (page_count(page_head) > 0)
8993 			break;
8994 	}
8995 	spin_unlock_irqrestore(&zone->lock, flags);
8996 	return ret;
8997 }
8998 #endif
8999 
9000 #ifdef CONFIG_ZONE_DMA
has_managed_dma(void)9001 bool has_managed_dma(void)
9002 {
9003 	struct pglist_data *pgdat;
9004 
9005 	for_each_online_pgdat(pgdat) {
9006 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9007 
9008 		if (managed_zone(zone))
9009 			return true;
9010 	}
9011 	return false;
9012 }
9013 #endif /* CONFIG_ZONE_DMA */
9014