1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 */
10
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/page_counter.h>
18 #include <linux/vmpressure.h>
19 #include <linux/eventfd.h>
20 #include <linux/mm.h>
21 #include <linux/vmstat.h>
22 #include <linux/writeback.h>
23 #include <linux/page-flags.h>
24 #include <linux/memcg_policy.h>
25
26 struct mem_cgroup;
27 struct obj_cgroup;
28 struct page;
29 struct mm_struct;
30 struct kmem_cache;
31
32 /* Cgroup-specific page state, on top of universal node page state */
33 enum memcg_stat_item {
34 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
35 MEMCG_SOCK,
36 MEMCG_PERCPU_B,
37 MEMCG_NR_STAT,
38 };
39
40 enum memcg_memory_event {
41 MEMCG_LOW,
42 MEMCG_HIGH,
43 MEMCG_MAX,
44 MEMCG_OOM,
45 MEMCG_OOM_KILL,
46 MEMCG_SWAP_HIGH,
47 MEMCG_SWAP_MAX,
48 MEMCG_SWAP_FAIL,
49 MEMCG_NR_MEMORY_EVENTS,
50 };
51
52 struct mem_cgroup_reclaim_cookie {
53 pg_data_t *pgdat;
54 unsigned int generation;
55 };
56
is_prot_page(struct page * page)57 static inline bool is_prot_page(struct page *page)
58 {
59 return false;
60 }
61
62 #ifdef CONFIG_MEMCG
63
64 #define MEM_CGROUP_ID_SHIFT 16
65 #define MEM_CGROUP_ID_MAX USHRT_MAX
66
67 struct mem_cgroup_id {
68 int id;
69 refcount_t ref;
70 };
71
72 /*
73 * Per memcg event counter is incremented at every pagein/pageout. With THP,
74 * it will be incremented by the number of pages. This counter is used
75 * to trigger some periodic events. This is straightforward and better
76 * than using jiffies etc. to handle periodic memcg event.
77 */
78 enum mem_cgroup_events_target {
79 MEM_CGROUP_TARGET_THRESH,
80 MEM_CGROUP_TARGET_SOFTLIMIT,
81 MEM_CGROUP_NTARGETS,
82 };
83
84 struct memcg_vmstats_percpu {
85 long stat[MEMCG_NR_STAT];
86 unsigned long events[NR_VM_EVENT_ITEMS];
87 unsigned long nr_page_events;
88 unsigned long targets[MEM_CGROUP_NTARGETS];
89 };
90
91 struct mem_cgroup_reclaim_iter {
92 struct mem_cgroup *position;
93 /* scan generation, increased every round-trip */
94 unsigned int generation;
95 };
96
97 struct lruvec_stat {
98 long count[NR_VM_NODE_STAT_ITEMS];
99 };
100
101 /*
102 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers,
103 * which have elements charged to this memcg.
104 */
105 struct memcg_shrinker_map {
106 struct rcu_head rcu;
107 unsigned long map[];
108 };
109
110 /*
111 * per-node information in memory controller.
112 */
113 struct mem_cgroup_per_node {
114 struct lruvec lruvec;
115
116 /* Legacy local VM stats */
117 struct lruvec_stat __percpu *lruvec_stat_local;
118
119 /* Subtree VM stats (batched updates) */
120 struct lruvec_stat __percpu *lruvec_stat_cpu;
121 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS];
122
123 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
124
125 struct mem_cgroup_reclaim_iter iter;
126
127 struct memcg_shrinker_map __rcu *shrinker_map;
128
129 struct rb_node tree_node; /* RB tree node */
130 unsigned long usage_in_excess;/* Set to the value by which */
131 /* the soft limit is exceeded*/
132 bool on_tree;
133 struct mem_cgroup *memcg; /* Back pointer, we cannot */
134 /* use container_of */
135 };
136
137 struct mem_cgroup_threshold {
138 struct eventfd_ctx *eventfd;
139 unsigned long threshold;
140 };
141
142 /* For threshold */
143 struct mem_cgroup_threshold_ary {
144 /* An array index points to threshold just below or equal to usage. */
145 int current_threshold;
146 /* Size of entries[] */
147 unsigned int size;
148 /* Array of thresholds */
149 struct mem_cgroup_threshold entries[];
150 };
151
152 struct mem_cgroup_thresholds {
153 /* Primary thresholds array */
154 struct mem_cgroup_threshold_ary *primary;
155 /*
156 * Spare threshold array.
157 * This is needed to make mem_cgroup_unregister_event() "never fail".
158 * It must be able to store at least primary->size - 1 entries.
159 */
160 struct mem_cgroup_threshold_ary *spare;
161 };
162
163 enum memcg_kmem_state {
164 KMEM_NONE,
165 KMEM_ALLOCATED,
166 KMEM_ONLINE,
167 };
168
169 #if defined(CONFIG_SMP)
170 struct memcg_padding {
171 char x[0];
172 } ____cacheline_internodealigned_in_smp;
173 #define MEMCG_PADDING(name) struct memcg_padding name;
174 #else
175 #define MEMCG_PADDING(name)
176 #endif
177
178 /*
179 * Remember four most recent foreign writebacks with dirty pages in this
180 * cgroup. Inode sharing is expected to be uncommon and, even if we miss
181 * one in a given round, we're likely to catch it later if it keeps
182 * foreign-dirtying, so a fairly low count should be enough.
183 *
184 * See mem_cgroup_track_foreign_dirty_slowpath() for details.
185 */
186 #define MEMCG_CGWB_FRN_CNT 4
187
188 struct memcg_cgwb_frn {
189 u64 bdi_id; /* bdi->id of the foreign inode */
190 int memcg_id; /* memcg->css.id of foreign inode */
191 u64 at; /* jiffies_64 at the time of dirtying */
192 struct wb_completion done; /* tracks in-flight foreign writebacks */
193 };
194
195 /*
196 * Bucket for arbitrarily byte-sized objects charged to a memory
197 * cgroup. The bucket can be reparented in one piece when the cgroup
198 * is destroyed, without having to round up the individual references
199 * of all live memory objects in the wild.
200 */
201 struct obj_cgroup {
202 struct percpu_ref refcnt;
203 struct mem_cgroup *memcg;
204 atomic_t nr_charged_bytes;
205 union {
206 struct list_head list;
207 struct rcu_head rcu;
208 };
209 };
210
211 /*
212 * The memory controller data structure. The memory controller controls both
213 * page cache and RSS per cgroup. We would eventually like to provide
214 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
215 * to help the administrator determine what knobs to tune.
216 */
217 struct mem_cgroup {
218 struct cgroup_subsys_state css;
219
220 /* Private memcg ID. Used to ID objects that outlive the cgroup */
221 struct mem_cgroup_id id;
222
223 /* Accounted resources */
224 struct page_counter memory; /* Both v1 & v2 */
225
226 union {
227 struct page_counter swap; /* v2 only */
228 struct page_counter memsw; /* v1 only */
229 };
230
231 /* Legacy consumer-oriented counters */
232 struct page_counter kmem; /* v1 only */
233 struct page_counter tcpmem; /* v1 only */
234
235 /* Range enforcement for interrupt charges */
236 struct work_struct high_work;
237
238 unsigned long soft_limit;
239
240 /* vmpressure notifications */
241 struct vmpressure vmpressure;
242
243 /*
244 * Should the accounting and control be hierarchical, per subtree?
245 */
246 bool use_hierarchy;
247
248 /*
249 * Should the OOM killer kill all belonging tasks, had it kill one?
250 */
251 bool oom_group;
252
253 /* protected by memcg_oom_lock */
254 bool oom_lock;
255 int under_oom;
256
257 int swappiness;
258 /* OOM-Killer disable */
259 int oom_kill_disable;
260
261 /* memory.events and memory.events.local */
262 struct cgroup_file events_file;
263 struct cgroup_file events_local_file;
264
265 /* handle for "memory.swap.events" */
266 struct cgroup_file swap_events_file;
267
268 /* protect arrays of thresholds */
269 struct mutex thresholds_lock;
270
271 /* thresholds for memory usage. RCU-protected */
272 struct mem_cgroup_thresholds thresholds;
273
274 /* thresholds for mem+swap usage. RCU-protected */
275 struct mem_cgroup_thresholds memsw_thresholds;
276
277 /* For oom notifier event fd */
278 struct list_head oom_notify;
279
280 /*
281 * Should we move charges of a task when a task is moved into this
282 * mem_cgroup ? And what type of charges should we move ?
283 */
284 unsigned long move_charge_at_immigrate;
285 /* taken only while moving_account > 0 */
286 spinlock_t move_lock;
287 unsigned long move_lock_flags;
288
289 MEMCG_PADDING(_pad1_);
290
291 atomic_long_t vmstats[MEMCG_NR_STAT];
292 atomic_long_t vmevents[NR_VM_EVENT_ITEMS];
293
294 /* memory.events */
295 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
296 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS];
297
298 unsigned long socket_pressure;
299
300 /* Legacy tcp memory accounting */
301 bool tcpmem_active;
302 int tcpmem_pressure;
303
304 #ifdef CONFIG_HYPERHOLD_MEMCG
305 struct list_head score_node;
306 #define MEM_CGROUP_NAME_MAX_LEN 100
307 char name[MEM_CGROUP_NAME_MAX_LEN];
308 struct memcg_reclaim memcg_reclaimed;
309 #endif
310
311 #ifdef CONFIG_MEMCG_KMEM
312 /* Index in the kmem_cache->memcg_params.memcg_caches array */
313 int kmemcg_id;
314 enum memcg_kmem_state kmem_state;
315 struct obj_cgroup __rcu *objcg;
316 struct list_head objcg_list; /* list of inherited objcgs */
317 #endif
318
319 MEMCG_PADDING(_pad2_);
320
321 /*
322 * set > 0 if pages under this cgroup are moving to other cgroup.
323 */
324 atomic_t moving_account;
325 struct task_struct *move_lock_task;
326
327 /* Legacy local VM stats and events */
328 struct memcg_vmstats_percpu __percpu *vmstats_local;
329
330 /* Subtree VM stats and events (batched updates) */
331 struct memcg_vmstats_percpu __percpu *vmstats_percpu;
332
333 #ifdef CONFIG_CGROUP_WRITEBACK
334 struct list_head cgwb_list;
335 struct wb_domain cgwb_domain;
336 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
337 #endif
338
339 /* List of events which userspace want to receive */
340 struct list_head event_list;
341 spinlock_t event_list_lock;
342
343 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
344 struct deferred_split deferred_split_queue;
345 #endif
346
347 struct mem_cgroup_per_node *nodeinfo[0];
348 /* WARNING: nodeinfo must be the last member here */
349 };
350
351 /*
352 * size of first charge trial. "32" comes from vmscan.c's magic value.
353 * TODO: maybe necessary to use big numbers in big irons.
354 */
355 #define MEMCG_CHARGE_BATCH 32U
356
357 extern struct mem_cgroup *root_mem_cgroup;
358
memcg_stat_item_in_bytes(int idx)359 static __always_inline bool memcg_stat_item_in_bytes(int idx)
360 {
361 if (idx == MEMCG_PERCPU_B)
362 return true;
363 return vmstat_item_in_bytes(idx);
364 }
365
mem_cgroup_is_root(struct mem_cgroup * memcg)366 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
367 {
368 return (memcg == root_mem_cgroup);
369 }
370
mem_cgroup_disabled(void)371 static inline bool mem_cgroup_disabled(void)
372 {
373 return !cgroup_subsys_enabled(memory_cgrp_subsys);
374 }
375
mem_cgroup_protection(struct mem_cgroup * root,struct mem_cgroup * memcg,unsigned long * min,unsigned long * low)376 static inline void mem_cgroup_protection(struct mem_cgroup *root,
377 struct mem_cgroup *memcg,
378 unsigned long *min,
379 unsigned long *low)
380 {
381 *min = *low = 0;
382
383 if (mem_cgroup_disabled())
384 return;
385
386 /*
387 * There is no reclaim protection applied to a targeted reclaim.
388 * We are special casing this specific case here because
389 * mem_cgroup_protected calculation is not robust enough to keep
390 * the protection invariant for calculated effective values for
391 * parallel reclaimers with different reclaim target. This is
392 * especially a problem for tail memcgs (as they have pages on LRU)
393 * which would want to have effective values 0 for targeted reclaim
394 * but a different value for external reclaim.
395 *
396 * Example
397 * Let's have global and A's reclaim in parallel:
398 * |
399 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
400 * |\
401 * | C (low = 1G, usage = 2.5G)
402 * B (low = 1G, usage = 0.5G)
403 *
404 * For the global reclaim
405 * A.elow = A.low
406 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
407 * C.elow = min(C.usage, C.low)
408 *
409 * With the effective values resetting we have A reclaim
410 * A.elow = 0
411 * B.elow = B.low
412 * C.elow = C.low
413 *
414 * If the global reclaim races with A's reclaim then
415 * B.elow = C.elow = 0 because children_low_usage > A.elow)
416 * is possible and reclaiming B would be violating the protection.
417 *
418 */
419 if (root == memcg)
420 return;
421
422 *min = READ_ONCE(memcg->memory.emin);
423 *low = READ_ONCE(memcg->memory.elow);
424 }
425
426 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
427 struct mem_cgroup *memcg);
428
mem_cgroup_supports_protection(struct mem_cgroup * memcg)429 static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg)
430 {
431 /*
432 * The root memcg doesn't account charges, and doesn't support
433 * protection.
434 */
435 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg);
436
437 }
438
mem_cgroup_below_low(struct mem_cgroup * memcg)439 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
440 {
441 if (!mem_cgroup_supports_protection(memcg))
442 return false;
443
444 return READ_ONCE(memcg->memory.elow) >=
445 page_counter_read(&memcg->memory);
446 }
447
mem_cgroup_below_min(struct mem_cgroup * memcg)448 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
449 {
450 if (!mem_cgroup_supports_protection(memcg))
451 return false;
452
453 return READ_ONCE(memcg->memory.emin) >=
454 page_counter_read(&memcg->memory);
455 }
456
457 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask);
458
459 void mem_cgroup_uncharge(struct page *page);
460 void mem_cgroup_uncharge_list(struct list_head *page_list);
461
462 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
463
464 static struct mem_cgroup_per_node *
mem_cgroup_nodeinfo(struct mem_cgroup * memcg,int nid)465 mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid)
466 {
467 return memcg->nodeinfo[nid];
468 }
469
470 /**
471 * mem_cgroup_lruvec - get the lru list vector for a memcg & node
472 * @memcg: memcg of the wanted lruvec
473 *
474 * Returns the lru list vector holding pages for a given @memcg &
475 * @node combination. This can be the node lruvec, if the memory
476 * controller is disabled.
477 */
mem_cgroup_lruvec(struct mem_cgroup * memcg,struct pglist_data * pgdat)478 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
479 struct pglist_data *pgdat)
480 {
481 struct mem_cgroup_per_node *mz;
482 struct lruvec *lruvec;
483
484 if (mem_cgroup_disabled()) {
485 lruvec = &pgdat->__lruvec;
486 goto out;
487 }
488
489 if (!memcg)
490 memcg = root_mem_cgroup;
491
492 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
493 lruvec = &mz->lruvec;
494 out:
495 /*
496 * Since a node can be onlined after the mem_cgroup was created,
497 * we have to be prepared to initialize lruvec->pgdat here;
498 * and if offlined then reonlined, we need to reinitialize it.
499 */
500 if (unlikely(lruvec->pgdat != pgdat))
501 lruvec->pgdat = pgdat;
502 return lruvec;
503 }
504
505 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *);
506
507 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
508
509 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
510
511 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page);
512
513 static inline
mem_cgroup_from_css(struct cgroup_subsys_state * css)514 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
515 return css ? container_of(css, struct mem_cgroup, css) : NULL;
516 }
517
obj_cgroup_tryget(struct obj_cgroup * objcg)518 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
519 {
520 return percpu_ref_tryget(&objcg->refcnt);
521 }
522
obj_cgroup_get(struct obj_cgroup * objcg)523 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
524 {
525 percpu_ref_get(&objcg->refcnt);
526 }
527
obj_cgroup_put(struct obj_cgroup * objcg)528 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
529 {
530 percpu_ref_put(&objcg->refcnt);
531 }
532
533 /*
534 * After the initialization objcg->memcg is always pointing at
535 * a valid memcg, but can be atomically swapped to the parent memcg.
536 *
537 * The caller must ensure that the returned memcg won't be released:
538 * e.g. acquire the rcu_read_lock or css_set_lock.
539 */
obj_cgroup_memcg(struct obj_cgroup * objcg)540 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
541 {
542 return READ_ONCE(objcg->memcg);
543 }
544
mem_cgroup_put(struct mem_cgroup * memcg)545 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
546 {
547 if (memcg)
548 css_put(&memcg->css);
549 }
550
551 #define mem_cgroup_from_counter(counter, member) \
552 container_of(counter, struct mem_cgroup, member)
553
554 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
555 struct mem_cgroup *,
556 struct mem_cgroup_reclaim_cookie *);
557 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
558 int mem_cgroup_scan_tasks(struct mem_cgroup *,
559 int (*)(struct task_struct *, void *), void *);
560
mem_cgroup_id(struct mem_cgroup * memcg)561 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
562 {
563 if (mem_cgroup_disabled())
564 return 0;
565 #ifdef CONFIG_HYPERHOLD_FILE_LRU
566 if (!memcg)
567 return -1;
568 #endif
569
570 return memcg->id.id;
571 }
572 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
573
mem_cgroup_from_seq(struct seq_file * m)574 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
575 {
576 return mem_cgroup_from_css(seq_css(m));
577 }
578
lruvec_memcg(struct lruvec * lruvec)579 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
580 {
581 struct mem_cgroup_per_node *mz;
582
583 if (mem_cgroup_disabled())
584 return NULL;
585
586 #ifdef CONFIG_HYPERHOLD_FILE_LRU
587 if (is_node_lruvec(lruvec))
588 return NULL;
589 #endif
590
591 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
592 return mz->memcg;
593 }
594
595 /**
596 * parent_mem_cgroup - find the accounting parent of a memcg
597 * @memcg: memcg whose parent to find
598 *
599 * Returns the parent memcg, or NULL if this is the root or the memory
600 * controller is in legacy no-hierarchy mode.
601 */
parent_mem_cgroup(struct mem_cgroup * memcg)602 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
603 {
604 if (!memcg->memory.parent)
605 return NULL;
606 return mem_cgroup_from_counter(memcg->memory.parent, memory);
607 }
608
mem_cgroup_is_descendant(struct mem_cgroup * memcg,struct mem_cgroup * root)609 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
610 struct mem_cgroup *root)
611 {
612 if (root == memcg)
613 return true;
614 if (!root->use_hierarchy)
615 return false;
616 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
617 }
618
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)619 static inline bool mm_match_cgroup(struct mm_struct *mm,
620 struct mem_cgroup *memcg)
621 {
622 struct mem_cgroup *task_memcg;
623 bool match = false;
624
625 rcu_read_lock();
626 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
627 if (task_memcg)
628 match = mem_cgroup_is_descendant(task_memcg, memcg);
629 rcu_read_unlock();
630 return match;
631 }
632
633 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
634 ino_t page_cgroup_ino(struct page *page);
635
mem_cgroup_online(struct mem_cgroup * memcg)636 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
637 {
638 if (mem_cgroup_disabled())
639 return true;
640 return !!(memcg->css.flags & CSS_ONLINE);
641 }
642
643 /*
644 * For memory reclaim.
645 */
646 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
647
648 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
649 int zid, int nr_pages);
650
651 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)652 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
653 enum lru_list lru, int zone_idx)
654 {
655 struct mem_cgroup_per_node *mz;
656
657 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
658 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
659 }
660
661 void mem_cgroup_handle_over_high(void);
662
663 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
664
665 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
666
667 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
668 struct task_struct *p);
669
670 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
671
mem_cgroup_enter_user_fault(void)672 static inline void mem_cgroup_enter_user_fault(void)
673 {
674 WARN_ON(current->in_user_fault);
675 current->in_user_fault = 1;
676 }
677
mem_cgroup_exit_user_fault(void)678 static inline void mem_cgroup_exit_user_fault(void)
679 {
680 WARN_ON(!current->in_user_fault);
681 current->in_user_fault = 0;
682 }
683
task_in_memcg_oom(struct task_struct * p)684 static inline bool task_in_memcg_oom(struct task_struct *p)
685 {
686 return p->memcg_in_oom;
687 }
688
689 bool mem_cgroup_oom_synchronize(bool wait);
690 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
691 struct mem_cgroup *oom_domain);
692 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
693
694 #ifdef CONFIG_MEMCG_SWAP
695 extern bool cgroup_memory_noswap;
696 #endif
697
698 struct mem_cgroup *lock_page_memcg(struct page *page);
699 void __unlock_page_memcg(struct mem_cgroup *memcg);
700 void unlock_page_memcg(struct page *page);
701
702 /*
703 * idx can be of type enum memcg_stat_item or node_stat_item.
704 * Keep in sync with memcg_exact_page_state().
705 */
memcg_page_state(struct mem_cgroup * memcg,int idx)706 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
707 {
708 long x = atomic_long_read(&memcg->vmstats[idx]);
709 #ifdef CONFIG_SMP
710 if (x < 0)
711 x = 0;
712 #endif
713 return x;
714 }
715
716 /*
717 * idx can be of type enum memcg_stat_item or node_stat_item.
718 * Keep in sync with memcg_exact_page_state().
719 */
memcg_page_state_local(struct mem_cgroup * memcg,int idx)720 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
721 int idx)
722 {
723 long x = 0;
724 int cpu;
725
726 for_each_possible_cpu(cpu)
727 x += per_cpu(memcg->vmstats_local->stat[idx], cpu);
728 #ifdef CONFIG_SMP
729 if (x < 0)
730 x = 0;
731 #endif
732 return x;
733 }
734
735 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
736
737 /* idx can be of type enum memcg_stat_item or node_stat_item */
mod_memcg_state(struct mem_cgroup * memcg,int idx,int val)738 static inline void mod_memcg_state(struct mem_cgroup *memcg,
739 int idx, int val)
740 {
741 unsigned long flags;
742
743 local_irq_save(flags);
744 __mod_memcg_state(memcg, idx, val);
745 local_irq_restore(flags);
746 }
747
748 /**
749 * mod_memcg_page_state - update page state statistics
750 * @page: the page
751 * @idx: page state item to account
752 * @val: number of pages (positive or negative)
753 *
754 * The @page must be locked or the caller must use lock_page_memcg()
755 * to prevent double accounting when the page is concurrently being
756 * moved to another memcg:
757 *
758 * lock_page(page) or lock_page_memcg(page)
759 * if (TestClearPageState(page))
760 * mod_memcg_page_state(page, state, -1);
761 * unlock_page(page) or unlock_page_memcg(page)
762 *
763 * Kernel pages are an exception to this, since they'll never move.
764 */
__mod_memcg_page_state(struct page * page,int idx,int val)765 static inline void __mod_memcg_page_state(struct page *page,
766 int idx, int val)
767 {
768 if (page->mem_cgroup)
769 __mod_memcg_state(page->mem_cgroup, idx, val);
770 }
771
mod_memcg_page_state(struct page * page,int idx,int val)772 static inline void mod_memcg_page_state(struct page *page,
773 int idx, int val)
774 {
775 if (page->mem_cgroup)
776 mod_memcg_state(page->mem_cgroup, idx, val);
777 }
778
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)779 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
780 enum node_stat_item idx)
781 {
782 struct mem_cgroup_per_node *pn;
783 long x;
784
785 if (mem_cgroup_disabled())
786 return node_page_state(lruvec_pgdat(lruvec), idx);
787
788 #ifdef CONFIG_HYPERHOLD_FILE_LRU
789 if (is_node_lruvec(lruvec))
790 return node_page_state(lruvec_pgdat(lruvec), idx);
791 #endif
792 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
793 x = atomic_long_read(&pn->lruvec_stat[idx]);
794 #ifdef CONFIG_SMP
795 if (x < 0)
796 x = 0;
797 #endif
798 return x;
799 }
800
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)801 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
802 enum node_stat_item idx)
803 {
804 struct mem_cgroup_per_node *pn;
805 long x = 0;
806 int cpu;
807
808 if (mem_cgroup_disabled())
809 return node_page_state(lruvec_pgdat(lruvec), idx);
810
811 #ifdef CONFIG_HYPERHOLD_FILE_LRU
812 if (is_node_lruvec(lruvec))
813 return node_page_state(lruvec_pgdat(lruvec), idx);
814 #endif
815
816 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
817 for_each_possible_cpu(cpu)
818 x += per_cpu(pn->lruvec_stat_local->count[idx], cpu);
819 #ifdef CONFIG_SMP
820 if (x < 0)
821 x = 0;
822 #endif
823 return x;
824 }
825
826 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
827 int val);
828 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
829 int val);
830 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val);
831
832 void mod_memcg_obj_state(void *p, int idx, int val);
833
mod_lruvec_slab_state(void * p,enum node_stat_item idx,int val)834 static inline void mod_lruvec_slab_state(void *p, enum node_stat_item idx,
835 int val)
836 {
837 unsigned long flags;
838
839 local_irq_save(flags);
840 __mod_lruvec_slab_state(p, idx, val);
841 local_irq_restore(flags);
842 }
843
mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)844 static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
845 enum node_stat_item idx, int val)
846 {
847 unsigned long flags;
848
849 local_irq_save(flags);
850 __mod_memcg_lruvec_state(lruvec, idx, val);
851 local_irq_restore(flags);
852 }
853
mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)854 static inline void mod_lruvec_state(struct lruvec *lruvec,
855 enum node_stat_item idx, int val)
856 {
857 unsigned long flags;
858
859 local_irq_save(flags);
860 __mod_lruvec_state(lruvec, idx, val);
861 local_irq_restore(flags);
862 }
863
864 #ifdef CONFIG_HYPERHOLD_FILE_LRU
is_file_page(struct page * page)865 static __always_inline bool is_file_page(struct page *page)
866 {
867 if (!PageUnevictable(page) && !PageSwapBacked(page) && page_mapping(page))
868 return true;
869
870 return false;
871
872 }
873 #endif
874
__mod_lruvec_page_state(struct page * page,enum node_stat_item idx,int val)875 static inline void __mod_lruvec_page_state(struct page *page,
876 enum node_stat_item idx, int val)
877 {
878 struct page *head = compound_head(page); /* rmap on tail pages */
879 pg_data_t *pgdat = page_pgdat(page);
880 struct lruvec *lruvec;
881
882 #ifdef CONFIG_HYPERHOLD_FILE_LRU
883 if (is_file_page(page) && !is_prot_page(page)) {
884 __mod_node_page_state(pgdat, idx, val);
885 return;
886
887 }
888 #endif
889
890 /* Untracked pages have no memcg, no lruvec. Update only the node */
891 if (!head->mem_cgroup) {
892 __mod_node_page_state(pgdat, idx, val);
893 return;
894 }
895
896 lruvec = mem_cgroup_lruvec(head->mem_cgroup, pgdat);
897 __mod_lruvec_state(lruvec, idx, val);
898 }
899
mod_lruvec_page_state(struct page * page,enum node_stat_item idx,int val)900 static inline void mod_lruvec_page_state(struct page *page,
901 enum node_stat_item idx, int val)
902 {
903 unsigned long flags;
904
905 local_irq_save(flags);
906 __mod_lruvec_page_state(page, idx, val);
907 local_irq_restore(flags);
908 }
909
910 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
911 gfp_t gfp_mask,
912 unsigned long *total_scanned);
913
914 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
915 unsigned long count);
916
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)917 static inline void count_memcg_events(struct mem_cgroup *memcg,
918 enum vm_event_item idx,
919 unsigned long count)
920 {
921 unsigned long flags;
922
923 local_irq_save(flags);
924 __count_memcg_events(memcg, idx, count);
925 local_irq_restore(flags);
926 }
927
count_memcg_page_event(struct page * page,enum vm_event_item idx)928 static inline void count_memcg_page_event(struct page *page,
929 enum vm_event_item idx)
930 {
931 if (page->mem_cgroup)
932 count_memcg_events(page->mem_cgroup, idx, 1);
933 }
934
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)935 static inline void count_memcg_event_mm(struct mm_struct *mm,
936 enum vm_event_item idx)
937 {
938 struct mem_cgroup *memcg;
939
940 if (mem_cgroup_disabled())
941 return;
942
943 rcu_read_lock();
944 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
945 if (likely(memcg))
946 count_memcg_events(memcg, idx, 1);
947 rcu_read_unlock();
948 }
949
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)950 static inline void memcg_memory_event(struct mem_cgroup *memcg,
951 enum memcg_memory_event event)
952 {
953 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
954 event == MEMCG_SWAP_FAIL;
955
956 atomic_long_inc(&memcg->memory_events_local[event]);
957 if (!swap_event)
958 cgroup_file_notify(&memcg->events_local_file);
959
960 do {
961 atomic_long_inc(&memcg->memory_events[event]);
962 if (swap_event)
963 cgroup_file_notify(&memcg->swap_events_file);
964 else
965 cgroup_file_notify(&memcg->events_file);
966
967 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
968 break;
969 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
970 break;
971 } while ((memcg = parent_mem_cgroup(memcg)) &&
972 !mem_cgroup_is_root(memcg));
973 }
974
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)975 static inline void memcg_memory_event_mm(struct mm_struct *mm,
976 enum memcg_memory_event event)
977 {
978 struct mem_cgroup *memcg;
979
980 if (mem_cgroup_disabled())
981 return;
982
983 rcu_read_lock();
984 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
985 if (likely(memcg))
986 memcg_memory_event(memcg, event);
987 rcu_read_unlock();
988 }
989
990 void split_page_memcg(struct page *head, unsigned int nr);
991
992 #else /* CONFIG_MEMCG */
993
994 #define MEM_CGROUP_ID_SHIFT 0
995 #define MEM_CGROUP_ID_MAX 0
996
997 struct mem_cgroup;
998
mem_cgroup_is_root(struct mem_cgroup * memcg)999 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1000 {
1001 return true;
1002 }
1003
mem_cgroup_disabled(void)1004 static inline bool mem_cgroup_disabled(void)
1005 {
1006 return true;
1007 }
1008
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)1009 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1010 enum memcg_memory_event event)
1011 {
1012 }
1013
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)1014 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1015 enum memcg_memory_event event)
1016 {
1017 }
1018
mem_cgroup_protection(struct mem_cgroup * root,struct mem_cgroup * memcg,unsigned long * min,unsigned long * low)1019 static inline void mem_cgroup_protection(struct mem_cgroup *root,
1020 struct mem_cgroup *memcg,
1021 unsigned long *min,
1022 unsigned long *low)
1023 {
1024 *min = *low = 0;
1025 }
1026
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)1027 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1028 struct mem_cgroup *memcg)
1029 {
1030 }
1031
mem_cgroup_below_low(struct mem_cgroup * memcg)1032 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
1033 {
1034 return false;
1035 }
1036
mem_cgroup_below_min(struct mem_cgroup * memcg)1037 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
1038 {
1039 return false;
1040 }
1041
mem_cgroup_charge(struct page * page,struct mm_struct * mm,gfp_t gfp_mask)1042 static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
1043 gfp_t gfp_mask)
1044 {
1045 return 0;
1046 }
1047
mem_cgroup_uncharge(struct page * page)1048 static inline void mem_cgroup_uncharge(struct page *page)
1049 {
1050 }
1051
mem_cgroup_uncharge_list(struct list_head * page_list)1052 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1053 {
1054 }
1055
mem_cgroup_migrate(struct page * old,struct page * new)1056 static inline void mem_cgroup_migrate(struct page *old, struct page *new)
1057 {
1058 }
1059
mem_cgroup_lruvec(struct mem_cgroup * memcg,struct pglist_data * pgdat)1060 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1061 struct pglist_data *pgdat)
1062 {
1063 return &pgdat->__lruvec;
1064 }
1065
mem_cgroup_page_lruvec(struct page * page,struct pglist_data * pgdat)1066 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
1067 struct pglist_data *pgdat)
1068 {
1069 return &pgdat->__lruvec;
1070 }
1071
parent_mem_cgroup(struct mem_cgroup * memcg)1072 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1073 {
1074 return NULL;
1075 }
1076
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)1077 static inline bool mm_match_cgroup(struct mm_struct *mm,
1078 struct mem_cgroup *memcg)
1079 {
1080 return true;
1081 }
1082
get_mem_cgroup_from_mm(struct mm_struct * mm)1083 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1084 {
1085 return NULL;
1086 }
1087
get_mem_cgroup_from_page(struct page * page)1088 static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1089 {
1090 return NULL;
1091 }
1092
mem_cgroup_put(struct mem_cgroup * memcg)1093 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1094 {
1095 }
1096
1097 static inline struct mem_cgroup *
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1098 mem_cgroup_iter(struct mem_cgroup *root,
1099 struct mem_cgroup *prev,
1100 struct mem_cgroup_reclaim_cookie *reclaim)
1101 {
1102 return NULL;
1103 }
1104
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1105 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1106 struct mem_cgroup *prev)
1107 {
1108 }
1109
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1110 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1111 int (*fn)(struct task_struct *, void *), void *arg)
1112 {
1113 return 0;
1114 }
1115
mem_cgroup_id(struct mem_cgroup * memcg)1116 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1117 {
1118 return 0;
1119 }
1120
mem_cgroup_from_id(unsigned short id)1121 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1122 {
1123 WARN_ON_ONCE(id);
1124 /* XXX: This should always return root_mem_cgroup */
1125 return NULL;
1126 }
1127
mem_cgroup_from_seq(struct seq_file * m)1128 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1129 {
1130 return NULL;
1131 }
1132
lruvec_memcg(struct lruvec * lruvec)1133 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1134 {
1135 return NULL;
1136 }
1137
mem_cgroup_online(struct mem_cgroup * memcg)1138 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1139 {
1140 return true;
1141 }
1142
1143 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)1144 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1145 enum lru_list lru, int zone_idx)
1146 {
1147 return 0;
1148 }
1149
mem_cgroup_get_max(struct mem_cgroup * memcg)1150 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1151 {
1152 return 0;
1153 }
1154
mem_cgroup_size(struct mem_cgroup * memcg)1155 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1156 {
1157 return 0;
1158 }
1159
1160 static inline void
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1161 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1162 {
1163 }
1164
1165 static inline void
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1166 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1167 {
1168 }
1169
lock_page_memcg(struct page * page)1170 static inline struct mem_cgroup *lock_page_memcg(struct page *page)
1171 {
1172 return NULL;
1173 }
1174
__unlock_page_memcg(struct mem_cgroup * memcg)1175 static inline void __unlock_page_memcg(struct mem_cgroup *memcg)
1176 {
1177 }
1178
unlock_page_memcg(struct page * page)1179 static inline void unlock_page_memcg(struct page *page)
1180 {
1181 }
1182
mem_cgroup_handle_over_high(void)1183 static inline void mem_cgroup_handle_over_high(void)
1184 {
1185 }
1186
mem_cgroup_enter_user_fault(void)1187 static inline void mem_cgroup_enter_user_fault(void)
1188 {
1189 }
1190
mem_cgroup_exit_user_fault(void)1191 static inline void mem_cgroup_exit_user_fault(void)
1192 {
1193 }
1194
task_in_memcg_oom(struct task_struct * p)1195 static inline bool task_in_memcg_oom(struct task_struct *p)
1196 {
1197 return false;
1198 }
1199
mem_cgroup_oom_synchronize(bool wait)1200 static inline bool mem_cgroup_oom_synchronize(bool wait)
1201 {
1202 return false;
1203 }
1204
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)1205 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1206 struct task_struct *victim, struct mem_cgroup *oom_domain)
1207 {
1208 return NULL;
1209 }
1210
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)1211 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1212 {
1213 }
1214
memcg_page_state(struct mem_cgroup * memcg,int idx)1215 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1216 {
1217 return 0;
1218 }
1219
memcg_page_state_local(struct mem_cgroup * memcg,int idx)1220 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
1221 int idx)
1222 {
1223 return 0;
1224 }
1225
__mod_memcg_state(struct mem_cgroup * memcg,int idx,int nr)1226 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1227 int idx,
1228 int nr)
1229 {
1230 }
1231
mod_memcg_state(struct mem_cgroup * memcg,int idx,int nr)1232 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1233 int idx,
1234 int nr)
1235 {
1236 }
1237
__mod_memcg_page_state(struct page * page,int idx,int nr)1238 static inline void __mod_memcg_page_state(struct page *page,
1239 int idx,
1240 int nr)
1241 {
1242 }
1243
mod_memcg_page_state(struct page * page,int idx,int nr)1244 static inline void mod_memcg_page_state(struct page *page,
1245 int idx,
1246 int nr)
1247 {
1248 }
1249
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)1250 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1251 enum node_stat_item idx)
1252 {
1253 return node_page_state(lruvec_pgdat(lruvec), idx);
1254 }
1255
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)1256 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1257 enum node_stat_item idx)
1258 {
1259 return node_page_state(lruvec_pgdat(lruvec), idx);
1260 }
1261
__mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)1262 static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1263 enum node_stat_item idx, int val)
1264 {
1265 }
1266
__mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)1267 static inline void __mod_lruvec_state(struct lruvec *lruvec,
1268 enum node_stat_item idx, int val)
1269 {
1270 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1271 }
1272
mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)1273 static inline void mod_lruvec_state(struct lruvec *lruvec,
1274 enum node_stat_item idx, int val)
1275 {
1276 mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1277 }
1278
__mod_lruvec_page_state(struct page * page,enum node_stat_item idx,int val)1279 static inline void __mod_lruvec_page_state(struct page *page,
1280 enum node_stat_item idx, int val)
1281 {
1282 __mod_node_page_state(page_pgdat(page), idx, val);
1283 }
1284
mod_lruvec_page_state(struct page * page,enum node_stat_item idx,int val)1285 static inline void mod_lruvec_page_state(struct page *page,
1286 enum node_stat_item idx, int val)
1287 {
1288 mod_node_page_state(page_pgdat(page), idx, val);
1289 }
1290
__mod_lruvec_slab_state(void * p,enum node_stat_item idx,int val)1291 static inline void __mod_lruvec_slab_state(void *p, enum node_stat_item idx,
1292 int val)
1293 {
1294 struct page *page = virt_to_head_page(p);
1295
1296 __mod_node_page_state(page_pgdat(page), idx, val);
1297 }
1298
mod_lruvec_slab_state(void * p,enum node_stat_item idx,int val)1299 static inline void mod_lruvec_slab_state(void *p, enum node_stat_item idx,
1300 int val)
1301 {
1302 struct page *page = virt_to_head_page(p);
1303
1304 mod_node_page_state(page_pgdat(page), idx, val);
1305 }
1306
mod_memcg_obj_state(void * p,int idx,int val)1307 static inline void mod_memcg_obj_state(void *p, int idx, int val)
1308 {
1309 }
1310
1311 static inline
mem_cgroup_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)1312 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1313 gfp_t gfp_mask,
1314 unsigned long *total_scanned)
1315 {
1316 return 0;
1317 }
1318
split_page_memcg(struct page * head,unsigned int nr)1319 static inline void split_page_memcg(struct page *head, unsigned int nr)
1320 {
1321 }
1322
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1323 static inline void count_memcg_events(struct mem_cgroup *memcg,
1324 enum vm_event_item idx,
1325 unsigned long count)
1326 {
1327 }
1328
__count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1329 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1330 enum vm_event_item idx,
1331 unsigned long count)
1332 {
1333 }
1334
count_memcg_page_event(struct page * page,int idx)1335 static inline void count_memcg_page_event(struct page *page,
1336 int idx)
1337 {
1338 }
1339
1340 static inline
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)1341 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1342 {
1343 }
1344 #endif /* CONFIG_MEMCG */
1345
1346 /* idx can be of type enum memcg_stat_item or node_stat_item */
__inc_memcg_state(struct mem_cgroup * memcg,int idx)1347 static inline void __inc_memcg_state(struct mem_cgroup *memcg,
1348 int idx)
1349 {
1350 __mod_memcg_state(memcg, idx, 1);
1351 }
1352
1353 /* idx can be of type enum memcg_stat_item or node_stat_item */
__dec_memcg_state(struct mem_cgroup * memcg,int idx)1354 static inline void __dec_memcg_state(struct mem_cgroup *memcg,
1355 int idx)
1356 {
1357 __mod_memcg_state(memcg, idx, -1);
1358 }
1359
1360 /* idx can be of type enum memcg_stat_item or node_stat_item */
__inc_memcg_page_state(struct page * page,int idx)1361 static inline void __inc_memcg_page_state(struct page *page,
1362 int idx)
1363 {
1364 __mod_memcg_page_state(page, idx, 1);
1365 }
1366
1367 /* idx can be of type enum memcg_stat_item or node_stat_item */
__dec_memcg_page_state(struct page * page,int idx)1368 static inline void __dec_memcg_page_state(struct page *page,
1369 int idx)
1370 {
1371 __mod_memcg_page_state(page, idx, -1);
1372 }
1373
__inc_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx)1374 static inline void __inc_lruvec_state(struct lruvec *lruvec,
1375 enum node_stat_item idx)
1376 {
1377 __mod_lruvec_state(lruvec, idx, 1);
1378 }
1379
__dec_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx)1380 static inline void __dec_lruvec_state(struct lruvec *lruvec,
1381 enum node_stat_item idx)
1382 {
1383 __mod_lruvec_state(lruvec, idx, -1);
1384 }
1385
__inc_lruvec_page_state(struct page * page,enum node_stat_item idx)1386 static inline void __inc_lruvec_page_state(struct page *page,
1387 enum node_stat_item idx)
1388 {
1389 __mod_lruvec_page_state(page, idx, 1);
1390 }
1391
__dec_lruvec_page_state(struct page * page,enum node_stat_item idx)1392 static inline void __dec_lruvec_page_state(struct page *page,
1393 enum node_stat_item idx)
1394 {
1395 __mod_lruvec_page_state(page, idx, -1);
1396 }
1397
__inc_lruvec_slab_state(void * p,enum node_stat_item idx)1398 static inline void __inc_lruvec_slab_state(void *p, enum node_stat_item idx)
1399 {
1400 __mod_lruvec_slab_state(p, idx, 1);
1401 }
1402
__dec_lruvec_slab_state(void * p,enum node_stat_item idx)1403 static inline void __dec_lruvec_slab_state(void *p, enum node_stat_item idx)
1404 {
1405 __mod_lruvec_slab_state(p, idx, -1);
1406 }
1407
1408 /* idx can be of type enum memcg_stat_item or node_stat_item */
inc_memcg_state(struct mem_cgroup * memcg,int idx)1409 static inline void inc_memcg_state(struct mem_cgroup *memcg,
1410 int idx)
1411 {
1412 mod_memcg_state(memcg, idx, 1);
1413 }
1414
1415 /* idx can be of type enum memcg_stat_item or node_stat_item */
dec_memcg_state(struct mem_cgroup * memcg,int idx)1416 static inline void dec_memcg_state(struct mem_cgroup *memcg,
1417 int idx)
1418 {
1419 mod_memcg_state(memcg, idx, -1);
1420 }
1421
1422 /* idx can be of type enum memcg_stat_item or node_stat_item */
inc_memcg_page_state(struct page * page,int idx)1423 static inline void inc_memcg_page_state(struct page *page,
1424 int idx)
1425 {
1426 mod_memcg_page_state(page, idx, 1);
1427 }
1428
1429 /* idx can be of type enum memcg_stat_item or node_stat_item */
dec_memcg_page_state(struct page * page,int idx)1430 static inline void dec_memcg_page_state(struct page *page,
1431 int idx)
1432 {
1433 mod_memcg_page_state(page, idx, -1);
1434 }
1435
inc_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx)1436 static inline void inc_lruvec_state(struct lruvec *lruvec,
1437 enum node_stat_item idx)
1438 {
1439 mod_lruvec_state(lruvec, idx, 1);
1440 }
1441
dec_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx)1442 static inline void dec_lruvec_state(struct lruvec *lruvec,
1443 enum node_stat_item idx)
1444 {
1445 mod_lruvec_state(lruvec, idx, -1);
1446 }
1447
inc_lruvec_page_state(struct page * page,enum node_stat_item idx)1448 static inline void inc_lruvec_page_state(struct page *page,
1449 enum node_stat_item idx)
1450 {
1451 mod_lruvec_page_state(page, idx, 1);
1452 }
1453
dec_lruvec_page_state(struct page * page,enum node_stat_item idx)1454 static inline void dec_lruvec_page_state(struct page *page,
1455 enum node_stat_item idx)
1456 {
1457 mod_lruvec_page_state(page, idx, -1);
1458 }
1459
parent_lruvec(struct lruvec * lruvec)1460 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1461 {
1462 struct mem_cgroup *memcg;
1463
1464 memcg = lruvec_memcg(lruvec);
1465 if (!memcg)
1466 return NULL;
1467 memcg = parent_mem_cgroup(memcg);
1468 if (!memcg)
1469 return NULL;
1470 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1471 }
1472
1473 #ifdef CONFIG_CGROUP_WRITEBACK
1474
1475 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1476 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1477 unsigned long *pheadroom, unsigned long *pdirty,
1478 unsigned long *pwriteback);
1479
1480 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
1481 struct bdi_writeback *wb);
1482
mem_cgroup_track_foreign_dirty(struct page * page,struct bdi_writeback * wb)1483 static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1484 struct bdi_writeback *wb)
1485 {
1486 if (mem_cgroup_disabled())
1487 return;
1488
1489 if (unlikely(&page->mem_cgroup->css != wb->memcg_css))
1490 mem_cgroup_track_foreign_dirty_slowpath(page, wb);
1491 }
1492
1493 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1494
1495 #else /* CONFIG_CGROUP_WRITEBACK */
1496
mem_cgroup_wb_domain(struct bdi_writeback * wb)1497 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1498 {
1499 return NULL;
1500 }
1501
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)1502 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1503 unsigned long *pfilepages,
1504 unsigned long *pheadroom,
1505 unsigned long *pdirty,
1506 unsigned long *pwriteback)
1507 {
1508 }
1509
mem_cgroup_track_foreign_dirty(struct page * page,struct bdi_writeback * wb)1510 static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1511 struct bdi_writeback *wb)
1512 {
1513 }
1514
mem_cgroup_flush_foreign(struct bdi_writeback * wb)1515 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1516 {
1517 }
1518
1519 #endif /* CONFIG_CGROUP_WRITEBACK */
1520
1521 struct sock;
1522 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1523 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1524 #ifdef CONFIG_MEMCG
1525 extern struct static_key_false memcg_sockets_enabled_key;
1526 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1527 void mem_cgroup_sk_alloc(struct sock *sk);
1528 void mem_cgroup_sk_free(struct sock *sk);
mem_cgroup_under_socket_pressure(struct mem_cgroup * memcg)1529 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1530 {
1531 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1532 return true;
1533 do {
1534 if (time_before(jiffies, memcg->socket_pressure))
1535 return true;
1536 } while ((memcg = parent_mem_cgroup(memcg)));
1537 return false;
1538 }
1539
1540 extern int memcg_expand_shrinker_maps(int new_id);
1541
1542 extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1543 int nid, int shrinker_id);
1544 #else
1545 #define mem_cgroup_sockets_enabled 0
mem_cgroup_sk_alloc(struct sock * sk)1546 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
mem_cgroup_sk_free(struct sock * sk)1547 static inline void mem_cgroup_sk_free(struct sock *sk) { };
mem_cgroup_under_socket_pressure(struct mem_cgroup * memcg)1548 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1549 {
1550 return false;
1551 }
1552
memcg_set_shrinker_bit(struct mem_cgroup * memcg,int nid,int shrinker_id)1553 static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1554 int nid, int shrinker_id)
1555 {
1556 }
1557 #endif
1558
1559 #ifdef CONFIG_MEMCG_KMEM
1560 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
1561 unsigned int nr_pages);
1562 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages);
1563 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1564 void __memcg_kmem_uncharge_page(struct page *page, int order);
1565
1566 struct obj_cgroup *get_obj_cgroup_from_current(void);
1567
1568 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1569 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1570
1571 extern struct static_key_false memcg_kmem_enabled_key;
1572
1573 extern int memcg_nr_cache_ids;
1574 void memcg_get_cache_ids(void);
1575 void memcg_put_cache_ids(void);
1576
1577 /*
1578 * Helper macro to loop through all memcg-specific caches. Callers must still
1579 * check if the cache is valid (it is either valid or NULL).
1580 * the slab_mutex must be held when looping through those caches
1581 */
1582 #define for_each_memcg_cache_index(_idx) \
1583 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1584
memcg_kmem_enabled(void)1585 static inline bool memcg_kmem_enabled(void)
1586 {
1587 return static_branch_likely(&memcg_kmem_enabled_key);
1588 }
1589
memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1590 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1591 int order)
1592 {
1593 if (memcg_kmem_enabled())
1594 return __memcg_kmem_charge_page(page, gfp, order);
1595 return 0;
1596 }
1597
memcg_kmem_uncharge_page(struct page * page,int order)1598 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1599 {
1600 if (memcg_kmem_enabled())
1601 __memcg_kmem_uncharge_page(page, order);
1602 }
1603
memcg_kmem_charge(struct mem_cgroup * memcg,gfp_t gfp,unsigned int nr_pages)1604 static inline int memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
1605 unsigned int nr_pages)
1606 {
1607 if (memcg_kmem_enabled())
1608 return __memcg_kmem_charge(memcg, gfp, nr_pages);
1609 return 0;
1610 }
1611
memcg_kmem_uncharge(struct mem_cgroup * memcg,unsigned int nr_pages)1612 static inline void memcg_kmem_uncharge(struct mem_cgroup *memcg,
1613 unsigned int nr_pages)
1614 {
1615 if (memcg_kmem_enabled())
1616 __memcg_kmem_uncharge(memcg, nr_pages);
1617 }
1618
1619 /*
1620 * helper for accessing a memcg's index. It will be used as an index in the
1621 * child cache array in kmem_cache, and also to derive its name. This function
1622 * will return -1 when this is not a kmem-limited memcg.
1623 */
memcg_cache_id(struct mem_cgroup * memcg)1624 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1625 {
1626 return memcg ? memcg->kmemcg_id : -1;
1627 }
1628
1629 struct mem_cgroup *mem_cgroup_from_obj(void *p);
1630
1631 #else
1632
memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1633 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1634 int order)
1635 {
1636 return 0;
1637 }
1638
memcg_kmem_uncharge_page(struct page * page,int order)1639 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1640 {
1641 }
1642
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1643 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1644 int order)
1645 {
1646 return 0;
1647 }
1648
__memcg_kmem_uncharge_page(struct page * page,int order)1649 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1650 {
1651 }
1652
1653 #define for_each_memcg_cache_index(_idx) \
1654 for (; NULL; )
1655
memcg_kmem_enabled(void)1656 static inline bool memcg_kmem_enabled(void)
1657 {
1658 return false;
1659 }
1660
memcg_cache_id(struct mem_cgroup * memcg)1661 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1662 {
1663 return -1;
1664 }
1665
memcg_get_cache_ids(void)1666 static inline void memcg_get_cache_ids(void)
1667 {
1668 }
1669
memcg_put_cache_ids(void)1670 static inline void memcg_put_cache_ids(void)
1671 {
1672 }
1673
mem_cgroup_from_obj(void * p)1674 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1675 {
1676 return NULL;
1677 }
1678
1679 #endif /* CONFIG_MEMCG_KMEM */
1680
1681 #endif /* _LINUX_MEMCONTROL_H */
1682