• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include "pthread_impl.h"
2 
3 /*
4  * struct waiter
5  *
6  * Waiter objects have automatic storage on the waiting thread, and
7  * are used in building a linked list representing waiters currently
8  * waiting on the condition variable or a group of waiters woken
9  * together by a broadcast or signal; in the case of signal, this is a
10  * degenerate list of one member.
11  *
12  * Waiter lists attached to the condition variable itself are
13  * protected by the lock on the cv. Detached waiter lists are never
14  * modified again, but can only be traversed in reverse order, and are
15  * protected by the "barrier" locks in each node, which are unlocked
16  * in turn to control wake order.
17  *
18  * Since process-shared cond var semantics do not necessarily allow
19  * one thread to see another's automatic storage (they may be in
20  * different processes), the waiter list is not used for the
21  * process-shared case, but the structure is still used to store data
22  * needed by the cancellation cleanup handler.
23  */
24 
25 struct waiter {
26 	struct waiter *prev, *next;
27 	volatile int state, barrier;
28 	volatile int *notify;
29 };
30 
31 /* Self-synchronized-destruction-safe lock functions */
32 
lock(volatile int * l)33 static inline void lock(volatile int *l)
34 {
35 	if (a_cas(l, 0, 1)) {
36 		a_cas(l, 1, 2);
37 		do __wait(l, 0, 2, 1);
38 		while (a_cas(l, 0, 2));
39 	}
40 }
41 
unlock(volatile int * l)42 static inline void unlock(volatile int *l)
43 {
44 	if (a_swap(l, 0)==2)
45 		__wake(l, 1, 1);
46 }
47 
unlock_requeue(volatile int * l,volatile int * r,int w)48 static inline void unlock_requeue(volatile int *l, volatile int *r, int w)
49 {
50 	a_store(l, 0);
51 	if (w) __wake(l, 1, 1);
52 	else __syscall(SYS_futex, l, FUTEX_REQUEUE|FUTEX_PRIVATE, 0, 1, r) != -ENOSYS
53 		|| __syscall(SYS_futex, l, FUTEX_REQUEUE, 0, 1, r);
54 }
55 
56 enum {
57 	WAITING,
58 	SIGNALED,
59 	LEAVING,
60 };
61 
__pthread_cond_timedwait(pthread_cond_t * restrict c,pthread_mutex_t * restrict m,const struct timespec * restrict ts)62 int __pthread_cond_timedwait(pthread_cond_t *restrict c, pthread_mutex_t *restrict m, const struct timespec *restrict ts)
63 {
64 	struct waiter node = { 0 };
65 	int e, seq, clock = c->_c_clock, cs, shared=0, oldstate, tmp;
66 	volatile int *fut;
67 
68 	if ((m->_m_type&15) && (m->_m_lock&INT_MAX) != __pthread_self()->tid)
69 		return EPERM;
70 
71 	if (ts && ts->tv_nsec >= 1000000000UL)
72 		return EINVAL;
73 
74 	__pthread_testcancel();
75 
76 	if (c->_c_shared) {
77 		shared = 1;
78 		fut = &c->_c_seq;
79 		seq = c->_c_seq;
80 		a_inc(&c->_c_waiters);
81 	} else {
82 		lock(&c->_c_lock);
83 
84 		seq = node.barrier = 2;
85 		fut = &node.barrier;
86 		node.state = WAITING;
87 		node.next = c->_c_head;
88 		c->_c_head = &node;
89 		if (!c->_c_tail) c->_c_tail = &node;
90 		else node.next->prev = &node;
91 
92 		unlock(&c->_c_lock);
93 	}
94 
95 	__pthread_mutex_unlock(m);
96 
97 	__pthread_setcancelstate(PTHREAD_CANCEL_MASKED, &cs);
98 	if (cs == PTHREAD_CANCEL_DISABLE) __pthread_setcancelstate(cs, 0);
99 
100 	do e = __timedwait_cp(fut, seq, clock, ts, !shared);
101 	while (*fut==seq && (!e || e==EINTR));
102 	if (e == EINTR) e = 0;
103 
104 	if (shared) {
105 		/* Suppress cancellation if a signal was potentially
106 		 * consumed; this is a legitimate form of spurious
107 		 * wake even if not. */
108 		if (e == ECANCELED && c->_c_seq != seq) e = 0;
109 		if (a_fetch_add(&c->_c_waiters, -1) == -0x7fffffff)
110 			__wake(&c->_c_waiters, 1, 0);
111 		oldstate = WAITING;
112 		goto relock;
113 	}
114 
115 	oldstate = a_cas(&node.state, WAITING, LEAVING);
116 
117 	if (oldstate == WAITING) {
118 		/* Access to cv object is valid because this waiter was not
119 		 * yet signaled and a new signal/broadcast cannot return
120 		 * after seeing a LEAVING waiter without getting notified
121 		 * via the futex notify below. */
122 
123 		lock(&c->_c_lock);
124 
125 		if (c->_c_head == &node) c->_c_head = node.next;
126 		else if (node.prev) node.prev->next = node.next;
127 		if (c->_c_tail == &node) c->_c_tail = node.prev;
128 		else if (node.next) node.next->prev = node.prev;
129 
130 		unlock(&c->_c_lock);
131 
132 		if (node.notify) {
133 			if (a_fetch_add(node.notify, -1)==1)
134 				__wake(node.notify, 1, 1);
135 		}
136 	} else {
137 		/* Lock barrier first to control wake order. */
138 		lock(&node.barrier);
139 	}
140 
141 relock:
142 	/* Errors locking the mutex override any existing error or
143 	 * cancellation, since the caller must see them to know the
144 	 * state of the mutex. */
145 	if ((tmp = pthread_mutex_lock(m))) e = tmp;
146 
147 	if (oldstate == WAITING) goto done;
148 
149 	if (!node.next) a_inc(&m->_m_waiters);
150 
151 	/* Unlock the barrier that's holding back the next waiter, and
152 	 * either wake it or requeue it to the mutex. */
153 	if (node.prev)
154 		unlock_requeue(&node.prev->barrier, &m->_m_lock, m->_m_type & 128);
155 	else
156 		a_dec(&m->_m_waiters);
157 
158 	/* Since a signal was consumed, cancellation is not permitted. */
159 	if (e == ECANCELED) e = 0;
160 
161 done:
162 	__pthread_setcancelstate(cs, 0);
163 
164 	if (e == ECANCELED) {
165 		__pthread_testcancel();
166 		__pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, 0);
167 	}
168 
169 	return e;
170 }
171 
__private_cond_signal(pthread_cond_t * c,int n)172 int __private_cond_signal(pthread_cond_t *c, int n)
173 {
174 	struct waiter *p, *first=0;
175 	volatile int ref = 0;
176 	int cur;
177 
178 	lock(&c->_c_lock);
179 	for (p=c->_c_tail; n && p; p=p->prev) {
180 		if (a_cas(&p->state, WAITING, SIGNALED) != WAITING) {
181 			ref++;
182 			p->notify = &ref;
183 		} else {
184 			n--;
185 			if (!first) first=p;
186 		}
187 	}
188 	/* Split the list, leaving any remainder on the cv. */
189 	if (p) {
190 		if (p->next) p->next->prev = 0;
191 		p->next = 0;
192 	} else {
193 		c->_c_head = 0;
194 	}
195 	c->_c_tail = p;
196 	unlock(&c->_c_lock);
197 
198 	/* Wait for any waiters in the LEAVING state to remove
199 	 * themselves from the list before returning or allowing
200 	 * signaled threads to proceed. */
201 	while ((cur = ref)) __wait(&ref, 0, cur, 1);
202 
203 	/* Allow first signaled waiter, if any, to proceed. */
204 	if (first) unlock(&first->barrier);
205 
206 	return 0;
207 }
208 
209 weak_alias(__pthread_cond_timedwait, pthread_cond_timedwait);
210