1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Definitions for the 'struct sk_buff' memory handlers.
4 *
5 * Authors:
6 * Alan Cox, <gw4pts@gw4pts.ampr.org>
7 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 */
9
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <net/flow.h>
40 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
41 #include <linux/netfilter/nf_conntrack_common.h>
42 #endif
43
44 /* The interface for checksum offload between the stack and networking drivers
45 * is as follows...
46 *
47 * A. IP checksum related features
48 *
49 * Drivers advertise checksum offload capabilities in the features of a device.
50 * From the stack's point of view these are capabilities offered by the driver.
51 * A driver typically only advertises features that it is capable of offloading
52 * to its device.
53 *
54 * The checksum related features are:
55 *
56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
57 * IP (one's complement) checksum for any combination
58 * of protocols or protocol layering. The checksum is
59 * computed and set in a packet per the CHECKSUM_PARTIAL
60 * interface (see below).
61 *
62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63 * TCP or UDP packets over IPv4. These are specifically
64 * unencapsulated packets of the form IPv4|TCP or
65 * IPv4|UDP where the Protocol field in the IPv4 header
66 * is TCP or UDP. The IPv4 header may contain IP options.
67 * This feature cannot be set in features for a device
68 * with NETIF_F_HW_CSUM also set. This feature is being
69 * DEPRECATED (see below).
70 *
71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72 * TCP or UDP packets over IPv6. These are specifically
73 * unencapsulated packets of the form IPv6|TCP or
74 * IPv6|UDP where the Next Header field in the IPv6
75 * header is either TCP or UDP. IPv6 extension headers
76 * are not supported with this feature. This feature
77 * cannot be set in features for a device with
78 * NETIF_F_HW_CSUM also set. This feature is being
79 * DEPRECATED (see below).
80 *
81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82 * This flag is only used to disable the RX checksum
83 * feature for a device. The stack will accept receive
84 * checksum indication in packets received on a device
85 * regardless of whether NETIF_F_RXCSUM is set.
86 *
87 * B. Checksumming of received packets by device. Indication of checksum
88 * verification is set in skb->ip_summed. Possible values are:
89 *
90 * CHECKSUM_NONE:
91 *
92 * Device did not checksum this packet e.g. due to lack of capabilities.
93 * The packet contains full (though not verified) checksum in packet but
94 * not in skb->csum. Thus, skb->csum is undefined in this case.
95 *
96 * CHECKSUM_UNNECESSARY:
97 *
98 * The hardware you're dealing with doesn't calculate the full checksum
99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101 * if their checksums are okay. skb->csum is still undefined in this case
102 * though. A driver or device must never modify the checksum field in the
103 * packet even if checksum is verified.
104 *
105 * CHECKSUM_UNNECESSARY is applicable to following protocols:
106 * TCP: IPv6 and IPv4.
107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108 * zero UDP checksum for either IPv4 or IPv6, the networking stack
109 * may perform further validation in this case.
110 * GRE: only if the checksum is present in the header.
111 * SCTP: indicates the CRC in SCTP header has been validated.
112 * FCOE: indicates the CRC in FC frame has been validated.
113 *
114 * skb->csum_level indicates the number of consecutive checksums found in
115 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117 * and a device is able to verify the checksums for UDP (possibly zero),
118 * GRE (checksum flag is set) and TCP, skb->csum_level would be set to
119 * two. If the device were only able to verify the UDP checksum and not
120 * GRE, either because it doesn't support GRE checksum or because GRE
121 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122 * not considered in this case).
123 *
124 * CHECKSUM_COMPLETE:
125 *
126 * This is the most generic way. The device supplied checksum of the _whole_
127 * packet as seen by netif_rx() and fills in skb->csum. This means the
128 * hardware doesn't need to parse L3/L4 headers to implement this.
129 *
130 * Notes:
131 * - Even if device supports only some protocols, but is able to produce
132 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134 *
135 * CHECKSUM_PARTIAL:
136 *
137 * A checksum is set up to be offloaded to a device as described in the
138 * output description for CHECKSUM_PARTIAL. This may occur on a packet
139 * received directly from another Linux OS, e.g., a virtualized Linux kernel
140 * on the same host, or it may be set in the input path in GRO or remote
141 * checksum offload. For the purposes of checksum verification, the checksum
142 * referred to by skb->csum_start + skb->csum_offset and any preceding
143 * checksums in the packet are considered verified. Any checksums in the
144 * packet that are after the checksum being offloaded are not considered to
145 * be verified.
146 *
147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148 * in the skb->ip_summed for a packet. Values are:
149 *
150 * CHECKSUM_PARTIAL:
151 *
152 * The driver is required to checksum the packet as seen by hard_start_xmit()
153 * from skb->csum_start up to the end, and to record/write the checksum at
154 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
155 * csum_start and csum_offset values are valid values given the length and
156 * offset of the packet, but it should not attempt to validate that the
157 * checksum refers to a legitimate transport layer checksum -- it is the
158 * purview of the stack to validate that csum_start and csum_offset are set
159 * correctly.
160 *
161 * When the stack requests checksum offload for a packet, the driver MUST
162 * ensure that the checksum is set correctly. A driver can either offload the
163 * checksum calculation to the device, or call skb_checksum_help (in the case
164 * that the device does not support offload for a particular checksum).
165 *
166 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168 * checksum offload capability.
169 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170 * on network device checksumming capabilities: if a packet does not match
171 * them, skb_checksum_help or skb_crc32c_help (depending on the value of
172 * csum_not_inet, see item D.) is called to resolve the checksum.
173 *
174 * CHECKSUM_NONE:
175 *
176 * The skb was already checksummed by the protocol, or a checksum is not
177 * required.
178 *
179 * CHECKSUM_UNNECESSARY:
180 *
181 * This has the same meaning as CHECKSUM_NONE for checksum offload on
182 * output.
183 *
184 * CHECKSUM_COMPLETE:
185 * Not used in checksum output. If a driver observes a packet with this value
186 * set in skbuff, it should treat the packet as if CHECKSUM_NONE were set.
187 *
188 * D. Non-IP checksum (CRC) offloads
189 *
190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191 * offloading the SCTP CRC in a packet. To perform this offload the stack
192 * will set csum_start and csum_offset accordingly, set ip_summed to
193 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195 * A driver that supports both IP checksum offload and SCTP CRC32c offload
196 * must verify which offload is configured for a packet by testing the
197 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199 *
200 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201 * offloading the FCOE CRC in a packet. To perform this offload the stack
202 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203 * accordingly. Note that there is no indication in the skbuff that the
204 * CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
205 * both IP checksum offload and FCOE CRC offload must verify which offload
206 * is configured for a packet, presumably by inspecting packet headers.
207 *
208 * E. Checksumming on output with GSO.
209 *
210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213 * part of the GSO operation is implied. If a checksum is being offloaded
214 * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and
215 * csum_offset are set to refer to the outermost checksum being offloaded
216 * (two offloaded checksums are possible with UDP encapsulation).
217 */
218
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE 0
221 #define CHECKSUM_UNNECESSARY 1
222 #define CHECKSUM_COMPLETE 2
223 #define CHECKSUM_PARTIAL 3
224
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL 3
227
228 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X) \
230 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
235
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) + \
238 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240
241 struct ahash_request;
242 struct net_device;
243 struct scatterlist;
244 struct pipe_inode_info;
245 struct iov_iter;
246 struct napi_struct;
247 struct bpf_prog;
248 union bpf_attr;
249 struct skb_ext;
250
251 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
252 struct nf_bridge_info {
253 enum {
254 BRNF_PROTO_UNCHANGED,
255 BRNF_PROTO_8021Q,
256 BRNF_PROTO_PPPOE
257 } orig_proto:8;
258 u8 pkt_otherhost:1;
259 u8 in_prerouting:1;
260 u8 bridged_dnat:1;
261 __u16 frag_max_size;
262 struct net_device *physindev;
263
264 /* always valid & non-NULL from FORWARD on, for physdev match */
265 struct net_device *physoutdev;
266 union {
267 /* prerouting: detect dnat in orig/reply direction */
268 __be32 ipv4_daddr;
269 struct in6_addr ipv6_daddr;
270
271 /* after prerouting + nat detected: store original source
272 * mac since neigh resolution overwrites it, only used while
273 * skb is out in neigh layer.
274 */
275 char neigh_header[8];
276 };
277 };
278 #endif
279
280 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
281 /* Chain in tc_skb_ext will be used to share the tc chain with
282 * ovs recirc_id. It will be set to the current chain by tc
283 * and read by ovs to recirc_id.
284 */
285 struct tc_skb_ext {
286 __u32 chain;
287 __u16 mru;
288 };
289 #endif
290
291 struct sk_buff_head {
292 /* These two members must be first. */
293 struct sk_buff *next;
294 struct sk_buff *prev;
295
296 __u32 qlen;
297 spinlock_t lock;
298 };
299
300 struct sk_buff;
301
302 /* To allow 64K frame to be packed as single skb without frag_list we
303 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
304 * buffers which do not start on a page boundary.
305 *
306 * Since GRO uses frags we allocate at least 16 regardless of page
307 * size.
308 */
309 #if (65536/PAGE_SIZE + 1) < 16
310 #define MAX_SKB_FRAGS 16UL
311 #else
312 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
313 #endif
314 extern int sysctl_max_skb_frags;
315
316 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
317 * segment using its current segmentation instead.
318 */
319 #define GSO_BY_FRAGS 0xFFFF
320
321 typedef struct bio_vec skb_frag_t;
322
323 /**
324 * skb_frag_size() - Returns the size of a skb fragment
325 * @frag: skb fragment
326 */
skb_frag_size(const skb_frag_t * frag)327 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
328 {
329 return frag->bv_len;
330 }
331
332 /**
333 * skb_frag_size_set() - Sets the size of a skb fragment
334 * @frag: skb fragment
335 * @size: size of fragment
336 */
skb_frag_size_set(skb_frag_t * frag,unsigned int size)337 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
338 {
339 frag->bv_len = size;
340 }
341
342 /**
343 * skb_frag_size_add() - Increments the size of a skb fragment by @delta
344 * @frag: skb fragment
345 * @delta: value to add
346 */
skb_frag_size_add(skb_frag_t * frag,int delta)347 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
348 {
349 frag->bv_len += delta;
350 }
351
352 /**
353 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
354 * @frag: skb fragment
355 * @delta: value to subtract
356 */
skb_frag_size_sub(skb_frag_t * frag,int delta)357 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
358 {
359 frag->bv_len -= delta;
360 }
361
362 /**
363 * skb_frag_must_loop - Test if %p is a high memory page
364 * @p: fragment's page
365 */
skb_frag_must_loop(struct page * p)366 static inline bool skb_frag_must_loop(struct page *p)
367 {
368 #if defined(CONFIG_HIGHMEM)
369 if (PageHighMem(p))
370 return true;
371 #endif
372 return false;
373 }
374
375 /**
376 * skb_frag_foreach_page - loop over pages in a fragment
377 *
378 * @f: skb frag to operate on
379 * @f_off: offset from start of f->bv_page
380 * @f_len: length from f_off to loop over
381 * @p: (temp var) current page
382 * @p_off: (temp var) offset from start of current page,
383 * non-zero only on first page.
384 * @p_len: (temp var) length in current page,
385 * < PAGE_SIZE only on first and last page.
386 * @copied: (temp var) length so far, excluding current p_len.
387 *
388 * A fragment can hold a compound page, in which case per-page
389 * operations, notably kmap_atomic, must be called for each
390 * regular page.
391 */
392 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
393 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
394 p_off = (f_off) & (PAGE_SIZE - 1), \
395 p_len = skb_frag_must_loop(p) ? \
396 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
397 copied = 0; \
398 copied < f_len; \
399 copied += p_len, p++, p_off = 0, \
400 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
401
402 #define HAVE_HW_TIME_STAMP
403
404 /**
405 * struct skb_shared_hwtstamps - hardware time stamps
406 * @hwtstamp: hardware time stamp transformed into duration
407 * since arbitrary point in time
408 *
409 * Software time stamps generated by ktime_get_real() are stored in
410 * skb->tstamp.
411 *
412 * hwtstamps can only be compared against other hwtstamps from
413 * the same device.
414 *
415 * This structure is attached to packets as part of the
416 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
417 */
418 struct skb_shared_hwtstamps {
419 ktime_t hwtstamp;
420 };
421
422 /* Definitions for tx_flags in struct skb_shared_info */
423 enum {
424 /* generate hardware time stamp */
425 SKBTX_HW_TSTAMP = 1 << 0,
426
427 /* generate software time stamp when queueing packet to NIC */
428 SKBTX_SW_TSTAMP = 1 << 1,
429
430 /* device driver is going to provide hardware time stamp */
431 SKBTX_IN_PROGRESS = 1 << 2,
432
433 /* device driver supports TX zero-copy buffers */
434 SKBTX_DEV_ZEROCOPY = 1 << 3,
435
436 /* generate wifi status information (where possible) */
437 SKBTX_WIFI_STATUS = 1 << 4,
438
439 /* This indicates at least one fragment might be overwritten
440 * (as in vmsplice(), sendfile() ...)
441 * If we need to compute a TX checksum, we'll need to copy
442 * all frags to avoid possible bad checksum
443 */
444 SKBTX_SHARED_FRAG = 1 << 5,
445
446 /* generate software time stamp when entering packet scheduling */
447 SKBTX_SCHED_TSTAMP = 1 << 6,
448 };
449
450 #define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
451 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
452 SKBTX_SCHED_TSTAMP)
453 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
454
455 /*
456 * The callback notifies userspace to release buffers when skb DMA is done in
457 * lower device, the skb last reference should be 0 when calling this.
458 * The zerocopy_success argument is true if zero copy transmit occurred,
459 * false on data copy or out of memory error caused by data copy attempt.
460 * The ctx field is used to track device context.
461 * The desc field is used to track userspace buffer index.
462 */
463 struct ubuf_info {
464 void (*callback)(struct ubuf_info *, bool zerocopy_success);
465 union {
466 struct {
467 unsigned long desc;
468 void *ctx;
469 };
470 struct {
471 u32 id;
472 u16 len;
473 u16 zerocopy:1;
474 u32 bytelen;
475 };
476 };
477 refcount_t refcnt;
478
479 struct mmpin {
480 struct user_struct *user;
481 unsigned int num_pg;
482 } mmp;
483 };
484
485 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
486
487 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
488 void mm_unaccount_pinned_pages(struct mmpin *mmp);
489
490 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
491 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
492 struct ubuf_info *uarg);
493
sock_zerocopy_get(struct ubuf_info * uarg)494 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
495 {
496 refcount_inc(&uarg->refcnt);
497 }
498
499 void sock_zerocopy_put(struct ubuf_info *uarg);
500 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
501
502 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
503
504 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
505 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
506 struct msghdr *msg, int len,
507 struct ubuf_info *uarg);
508
509 /* This data is invariant across clones and lives at
510 * the end of the header data, ie. at skb->end.
511 */
512 struct skb_shared_info {
513 __u8 __unused;
514 __u8 meta_len;
515 __u8 nr_frags;
516 __u8 tx_flags;
517 unsigned short gso_size;
518 /* Warning: this field is not always filled in (UFO)! */
519 unsigned short gso_segs;
520 struct sk_buff *frag_list;
521 struct skb_shared_hwtstamps hwtstamps;
522 unsigned int gso_type;
523 u32 tskey;
524
525 /*
526 * Warning : all fields before dataref are cleared in __alloc_skb()
527 */
528 atomic_t dataref;
529
530 /* Intermediate layers must ensure that destructor_arg
531 * remains valid until skb destructor */
532 void * destructor_arg;
533
534 /* must be last field, see pskb_expand_head() */
535 skb_frag_t frags[MAX_SKB_FRAGS];
536 };
537
538 /* We divide dataref into two halves. The higher 16 bits hold references
539 * to the payload part of skb->data. The lower 16 bits hold references to
540 * the entire skb->data. A clone of a headerless skb holds the length of
541 * the header in skb->hdr_len.
542 *
543 * All users must obey the rule that the skb->data reference count must be
544 * greater than or equal to the payload reference count.
545 *
546 * Holding a reference to the payload part means that the user does not
547 * care about modifications to the header part of skb->data.
548 */
549 #define SKB_DATAREF_SHIFT 16
550 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
551
552
553 enum {
554 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
555 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
556 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
557 };
558
559 enum {
560 SKB_GSO_TCPV4 = 1 << 0,
561
562 /* This indicates the skb is from an untrusted source. */
563 SKB_GSO_DODGY = 1 << 1,
564
565 /* This indicates the tcp segment has CWR set. */
566 SKB_GSO_TCP_ECN = 1 << 2,
567
568 SKB_GSO_TCP_FIXEDID = 1 << 3,
569
570 SKB_GSO_TCPV6 = 1 << 4,
571
572 SKB_GSO_FCOE = 1 << 5,
573
574 SKB_GSO_GRE = 1 << 6,
575
576 SKB_GSO_GRE_CSUM = 1 << 7,
577
578 SKB_GSO_IPXIP4 = 1 << 8,
579
580 SKB_GSO_IPXIP6 = 1 << 9,
581
582 SKB_GSO_UDP_TUNNEL = 1 << 10,
583
584 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
585
586 SKB_GSO_PARTIAL = 1 << 12,
587
588 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
589
590 SKB_GSO_SCTP = 1 << 14,
591
592 SKB_GSO_ESP = 1 << 15,
593
594 SKB_GSO_UDP = 1 << 16,
595
596 SKB_GSO_UDP_L4 = 1 << 17,
597
598 SKB_GSO_FRAGLIST = 1 << 18,
599 };
600
601 #if BITS_PER_LONG > 32
602 #define NET_SKBUFF_DATA_USES_OFFSET 1
603 #endif
604
605 #ifdef NET_SKBUFF_DATA_USES_OFFSET
606 typedef unsigned int sk_buff_data_t;
607 #else
608 typedef unsigned char *sk_buff_data_t;
609 #endif
610
611 /**
612 * struct sk_buff - socket buffer
613 * @next: Next buffer in list
614 * @prev: Previous buffer in list
615 * @tstamp: Time we arrived/left
616 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
617 * for retransmit timer
618 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
619 * @list: queue head
620 * @sk: Socket we are owned by
621 * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in
622 * fragmentation management
623 * @dev: Device we arrived on/are leaving by
624 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
625 * @cb: Control buffer. Free for use by every layer. Put private vars here
626 * @_skb_refdst: destination entry (with norefcount bit)
627 * @sp: the security path, used for xfrm
628 * @len: Length of actual data
629 * @data_len: Data length
630 * @mac_len: Length of link layer header
631 * @hdr_len: writable header length of cloned skb
632 * @csum: Checksum (must include start/offset pair)
633 * @csum_start: Offset from skb->head where checksumming should start
634 * @csum_offset: Offset from csum_start where checksum should be stored
635 * @priority: Packet queueing priority
636 * @ignore_df: allow local fragmentation
637 * @cloned: Head may be cloned (check refcnt to be sure)
638 * @ip_summed: Driver fed us an IP checksum
639 * @nohdr: Payload reference only, must not modify header
640 * @pkt_type: Packet class
641 * @fclone: skbuff clone status
642 * @ipvs_property: skbuff is owned by ipvs
643 * @inner_protocol_type: whether the inner protocol is
644 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
645 * @remcsum_offload: remote checksum offload is enabled
646 * @offload_fwd_mark: Packet was L2-forwarded in hardware
647 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
648 * @tc_skip_classify: do not classify packet. set by IFB device
649 * @tc_at_ingress: used within tc_classify to distinguish in/egress
650 * @redirected: packet was redirected by packet classifier
651 * @from_ingress: packet was redirected from the ingress path
652 * @peeked: this packet has been seen already, so stats have been
653 * done for it, don't do them again
654 * @nf_trace: netfilter packet trace flag
655 * @protocol: Packet protocol from driver
656 * @destructor: Destruct function
657 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
658 * @_nfct: Associated connection, if any (with nfctinfo bits)
659 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
660 * @skb_iif: ifindex of device we arrived on
661 * @tc_index: Traffic control index
662 * @hash: the packet hash
663 * @queue_mapping: Queue mapping for multiqueue devices
664 * @head_frag: skb was allocated from page fragments,
665 * not allocated by kmalloc() or vmalloc().
666 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
667 * @active_extensions: active extensions (skb_ext_id types)
668 * @ndisc_nodetype: router type (from link layer)
669 * @ooo_okay: allow the mapping of a socket to a queue to be changed
670 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
671 * ports.
672 * @sw_hash: indicates hash was computed in software stack
673 * @wifi_acked_valid: wifi_acked was set
674 * @wifi_acked: whether frame was acked on wifi or not
675 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
676 * @encapsulation: indicates the inner headers in the skbuff are valid
677 * @encap_hdr_csum: software checksum is needed
678 * @csum_valid: checksum is already valid
679 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
680 * @csum_complete_sw: checksum was completed by software
681 * @csum_level: indicates the number of consecutive checksums found in
682 * the packet minus one that have been verified as
683 * CHECKSUM_UNNECESSARY (max 3)
684 * @scm_io_uring: SKB holds io_uring registered files
685 * @dst_pending_confirm: need to confirm neighbour
686 * @decrypted: Decrypted SKB
687 * @napi_id: id of the NAPI struct this skb came from
688 * @sender_cpu: (aka @napi_id) source CPU in XPS
689 * @secmark: security marking
690 * @mark: Generic packet mark
691 * @reserved_tailroom: (aka @mark) number of bytes of free space available
692 * at the tail of an sk_buff
693 * @vlan_present: VLAN tag is present
694 * @vlan_proto: vlan encapsulation protocol
695 * @vlan_tci: vlan tag control information
696 * @inner_protocol: Protocol (encapsulation)
697 * @inner_ipproto: (aka @inner_protocol) stores ipproto when
698 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
699 * @inner_transport_header: Inner transport layer header (encapsulation)
700 * @inner_network_header: Network layer header (encapsulation)
701 * @inner_mac_header: Link layer header (encapsulation)
702 * @transport_header: Transport layer header
703 * @network_header: Network layer header
704 * @mac_header: Link layer header
705 * @kcov_handle: KCOV remote handle for remote coverage collection
706 * @tail: Tail pointer
707 * @end: End pointer
708 * @head: Head of buffer
709 * @data: Data head pointer
710 * @truesize: Buffer size
711 * @users: User count - see {datagram,tcp}.c
712 * @extensions: allocated extensions, valid if active_extensions is nonzero
713 */
714
715 struct sk_buff {
716 union {
717 struct {
718 /* These two members must be first. */
719 struct sk_buff *next;
720 struct sk_buff *prev;
721
722 union {
723 struct net_device *dev;
724 /* Some protocols might use this space to store information,
725 * while device pointer would be NULL.
726 * UDP receive path is one user.
727 */
728 unsigned long dev_scratch;
729 };
730 };
731 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
732 struct list_head list;
733 };
734
735 union {
736 struct sock *sk;
737 int ip_defrag_offset;
738 };
739
740 union {
741 ktime_t tstamp;
742 u64 skb_mstamp_ns; /* earliest departure time */
743 };
744 /*
745 * This is the control buffer. It is free to use for every
746 * layer. Please put your private variables there. If you
747 * want to keep them across layers you have to do a skb_clone()
748 * first. This is owned by whoever has the skb queued ATM.
749 */
750 char cb[48] __aligned(8);
751
752 union {
753 struct {
754 unsigned long _skb_refdst;
755 void (*destructor)(struct sk_buff *skb);
756 };
757 struct list_head tcp_tsorted_anchor;
758 };
759
760 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
761 unsigned long _nfct;
762 #endif
763 unsigned int len,
764 data_len;
765 __u16 mac_len,
766 hdr_len;
767
768 /* Following fields are _not_ copied in __copy_skb_header()
769 * Note that queue_mapping is here mostly to fill a hole.
770 */
771 __u16 queue_mapping;
772
773 /* if you move cloned around you also must adapt those constants */
774 #ifdef __BIG_ENDIAN_BITFIELD
775 #define CLONED_MASK (1 << 7)
776 #else
777 #define CLONED_MASK 1
778 #endif
779 #define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset)
780
781 /* private: */
782 __u8 __cloned_offset[0];
783 /* public: */
784 __u8 cloned:1,
785 nohdr:1,
786 fclone:2,
787 peeked:1,
788 head_frag:1,
789 pfmemalloc:1;
790 #ifdef CONFIG_SKB_EXTENSIONS
791 __u8 active_extensions;
792 #endif
793 /* fields enclosed in headers_start/headers_end are copied
794 * using a single memcpy() in __copy_skb_header()
795 */
796 /* private: */
797 __u32 headers_start[0];
798 /* public: */
799
800 /* if you move pkt_type around you also must adapt those constants */
801 #ifdef __BIG_ENDIAN_BITFIELD
802 #define PKT_TYPE_MAX (7 << 5)
803 #else
804 #define PKT_TYPE_MAX 7
805 #endif
806 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
807
808 /* private: */
809 __u8 __pkt_type_offset[0];
810 /* public: */
811 __u8 pkt_type:3;
812 __u8 ignore_df:1;
813 __u8 nf_trace:1;
814 __u8 ip_summed:2;
815 __u8 ooo_okay:1;
816
817 __u8 l4_hash:1;
818 __u8 sw_hash:1;
819 __u8 wifi_acked_valid:1;
820 __u8 wifi_acked:1;
821 __u8 no_fcs:1;
822 /* Indicates the inner headers are valid in the skbuff. */
823 __u8 encapsulation:1;
824 __u8 encap_hdr_csum:1;
825 __u8 csum_valid:1;
826
827 #ifdef __BIG_ENDIAN_BITFIELD
828 #define PKT_VLAN_PRESENT_BIT 7
829 #else
830 #define PKT_VLAN_PRESENT_BIT 0
831 #endif
832 #define PKT_VLAN_PRESENT_OFFSET() offsetof(struct sk_buff, __pkt_vlan_present_offset)
833 /* private: */
834 __u8 __pkt_vlan_present_offset[0];
835 /* public: */
836 __u8 vlan_present:1;
837 __u8 csum_complete_sw:1;
838 __u8 csum_level:2;
839 __u8 csum_not_inet:1;
840 __u8 dst_pending_confirm:1;
841 #ifdef CONFIG_IPV6_NDISC_NODETYPE
842 __u8 ndisc_nodetype:2;
843 #endif
844
845 __u8 ipvs_property:1;
846 __u8 inner_protocol_type:1;
847 __u8 remcsum_offload:1;
848 #ifdef CONFIG_NET_SWITCHDEV
849 __u8 offload_fwd_mark:1;
850 __u8 offload_l3_fwd_mark:1;
851 #endif
852 #ifdef CONFIG_NET_CLS_ACT
853 __u8 tc_skip_classify:1;
854 __u8 tc_at_ingress:1;
855 #endif
856 #ifdef CONFIG_NET_REDIRECT
857 __u8 redirected:1;
858 __u8 from_ingress:1;
859 #endif
860 #ifdef CONFIG_TLS_DEVICE
861 __u8 decrypted:1;
862 #endif
863 __u8 scm_io_uring:1;
864
865 #ifdef CONFIG_NET_SCHED
866 __u16 tc_index; /* traffic control index */
867 #endif
868
869 union {
870 __wsum csum;
871 struct {
872 __u16 csum_start;
873 __u16 csum_offset;
874 };
875 };
876 __u32 priority;
877 int skb_iif;
878 __u32 hash;
879 __be16 vlan_proto;
880 __u16 vlan_tci;
881 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
882 union {
883 unsigned int napi_id;
884 unsigned int sender_cpu;
885 };
886 #endif
887 #ifdef CONFIG_NETWORK_SECMARK
888 __u32 secmark;
889 #endif
890
891 union {
892 __u32 mark;
893 __u32 reserved_tailroom;
894 };
895
896 union {
897 __be16 inner_protocol;
898 __u8 inner_ipproto;
899 };
900
901 __u16 inner_transport_header;
902 __u16 inner_network_header;
903 __u16 inner_mac_header;
904
905 __be16 protocol;
906 __u16 transport_header;
907 __u16 network_header;
908 __u16 mac_header;
909
910 #ifdef CONFIG_KCOV
911 u64 kcov_handle;
912 #endif
913
914 /* private: */
915 __u32 headers_end[0];
916 /* public: */
917
918 /* These elements must be at the end, see alloc_skb() for details. */
919 sk_buff_data_t tail;
920 sk_buff_data_t end;
921 unsigned char *head,
922 *data;
923 unsigned int truesize;
924 refcount_t users;
925
926 #ifdef CONFIG_SKB_EXTENSIONS
927 /* only useable after checking ->active_extensions != 0 */
928 struct skb_ext *extensions;
929 #endif
930 };
931
932 #ifdef __KERNEL__
933 /*
934 * Handling routines are only of interest to the kernel
935 */
936
937 #define SKB_ALLOC_FCLONE 0x01
938 #define SKB_ALLOC_RX 0x02
939 #define SKB_ALLOC_NAPI 0x04
940
941 /**
942 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
943 * @skb: buffer
944 */
skb_pfmemalloc(const struct sk_buff * skb)945 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
946 {
947 return unlikely(skb->pfmemalloc);
948 }
949
950 /*
951 * skb might have a dst pointer attached, refcounted or not.
952 * _skb_refdst low order bit is set if refcount was _not_ taken
953 */
954 #define SKB_DST_NOREF 1UL
955 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
956
957 /**
958 * skb_dst - returns skb dst_entry
959 * @skb: buffer
960 *
961 * Returns skb dst_entry, regardless of reference taken or not.
962 */
skb_dst(const struct sk_buff * skb)963 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
964 {
965 /* If refdst was not refcounted, check we still are in a
966 * rcu_read_lock section
967 */
968 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
969 !rcu_read_lock_held() &&
970 !rcu_read_lock_bh_held());
971 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
972 }
973
974 /**
975 * skb_dst_set - sets skb dst
976 * @skb: buffer
977 * @dst: dst entry
978 *
979 * Sets skb dst, assuming a reference was taken on dst and should
980 * be released by skb_dst_drop()
981 */
skb_dst_set(struct sk_buff * skb,struct dst_entry * dst)982 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
983 {
984 skb->_skb_refdst = (unsigned long)dst;
985 }
986
987 /**
988 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
989 * @skb: buffer
990 * @dst: dst entry
991 *
992 * Sets skb dst, assuming a reference was not taken on dst.
993 * If dst entry is cached, we do not take reference and dst_release
994 * will be avoided by refdst_drop. If dst entry is not cached, we take
995 * reference, so that last dst_release can destroy the dst immediately.
996 */
skb_dst_set_noref(struct sk_buff * skb,struct dst_entry * dst)997 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
998 {
999 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1000 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1001 }
1002
1003 /**
1004 * skb_dst_is_noref - Test if skb dst isn't refcounted
1005 * @skb: buffer
1006 */
skb_dst_is_noref(const struct sk_buff * skb)1007 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1008 {
1009 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1010 }
1011
1012 /**
1013 * skb_rtable - Returns the skb &rtable
1014 * @skb: buffer
1015 */
skb_rtable(const struct sk_buff * skb)1016 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1017 {
1018 return (struct rtable *)skb_dst(skb);
1019 }
1020
1021 /* For mangling skb->pkt_type from user space side from applications
1022 * such as nft, tc, etc, we only allow a conservative subset of
1023 * possible pkt_types to be set.
1024 */
skb_pkt_type_ok(u32 ptype)1025 static inline bool skb_pkt_type_ok(u32 ptype)
1026 {
1027 return ptype <= PACKET_OTHERHOST;
1028 }
1029
1030 /**
1031 * skb_napi_id - Returns the skb's NAPI id
1032 * @skb: buffer
1033 */
skb_napi_id(const struct sk_buff * skb)1034 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1035 {
1036 #ifdef CONFIG_NET_RX_BUSY_POLL
1037 return skb->napi_id;
1038 #else
1039 return 0;
1040 #endif
1041 }
1042
1043 /**
1044 * skb_unref - decrement the skb's reference count
1045 * @skb: buffer
1046 *
1047 * Returns true if we can free the skb.
1048 */
skb_unref(struct sk_buff * skb)1049 static inline bool skb_unref(struct sk_buff *skb)
1050 {
1051 if (unlikely(!skb))
1052 return false;
1053 if (likely(refcount_read(&skb->users) == 1))
1054 smp_rmb();
1055 else if (likely(!refcount_dec_and_test(&skb->users)))
1056 return false;
1057
1058 return true;
1059 }
1060
1061 void skb_release_head_state(struct sk_buff *skb);
1062 void kfree_skb(struct sk_buff *skb);
1063 void kfree_skb_list(struct sk_buff *segs);
1064 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1065 void skb_tx_error(struct sk_buff *skb);
1066
1067 #ifdef CONFIG_TRACEPOINTS
1068 void consume_skb(struct sk_buff *skb);
1069 #else
consume_skb(struct sk_buff * skb)1070 static inline void consume_skb(struct sk_buff *skb)
1071 {
1072 return kfree_skb(skb);
1073 }
1074 #endif
1075
1076 void __consume_stateless_skb(struct sk_buff *skb);
1077 void __kfree_skb(struct sk_buff *skb);
1078 extern struct kmem_cache *skbuff_head_cache;
1079
1080 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1081 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1082 bool *fragstolen, int *delta_truesize);
1083
1084 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1085 int node);
1086 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1087 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1088 struct sk_buff *build_skb_around(struct sk_buff *skb,
1089 void *data, unsigned int frag_size);
1090
1091 /**
1092 * alloc_skb - allocate a network buffer
1093 * @size: size to allocate
1094 * @priority: allocation mask
1095 *
1096 * This function is a convenient wrapper around __alloc_skb().
1097 */
alloc_skb(unsigned int size,gfp_t priority)1098 static inline struct sk_buff *alloc_skb(unsigned int size,
1099 gfp_t priority)
1100 {
1101 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1102 }
1103
1104 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1105 unsigned long data_len,
1106 int max_page_order,
1107 int *errcode,
1108 gfp_t gfp_mask);
1109 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1110
1111 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1112 struct sk_buff_fclones {
1113 struct sk_buff skb1;
1114
1115 struct sk_buff skb2;
1116
1117 refcount_t fclone_ref;
1118 };
1119
1120 /**
1121 * skb_fclone_busy - check if fclone is busy
1122 * @sk: socket
1123 * @skb: buffer
1124 *
1125 * Returns true if skb is a fast clone, and its clone is not freed.
1126 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1127 * so we also check that this didnt happen.
1128 */
skb_fclone_busy(const struct sock * sk,const struct sk_buff * skb)1129 static inline bool skb_fclone_busy(const struct sock *sk,
1130 const struct sk_buff *skb)
1131 {
1132 const struct sk_buff_fclones *fclones;
1133
1134 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1135
1136 return skb->fclone == SKB_FCLONE_ORIG &&
1137 refcount_read(&fclones->fclone_ref) > 1 &&
1138 fclones->skb2.sk == sk;
1139 }
1140
1141 /**
1142 * alloc_skb_fclone - allocate a network buffer from fclone cache
1143 * @size: size to allocate
1144 * @priority: allocation mask
1145 *
1146 * This function is a convenient wrapper around __alloc_skb().
1147 */
alloc_skb_fclone(unsigned int size,gfp_t priority)1148 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1149 gfp_t priority)
1150 {
1151 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1152 }
1153
1154 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1155 void skb_headers_offset_update(struct sk_buff *skb, int off);
1156 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1157 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1158 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1159 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1160 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1161 gfp_t gfp_mask, bool fclone);
__pskb_copy(struct sk_buff * skb,int headroom,gfp_t gfp_mask)1162 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1163 gfp_t gfp_mask)
1164 {
1165 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1166 }
1167
1168 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1169 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1170 unsigned int headroom);
1171 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1172 int newtailroom, gfp_t priority);
1173 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1174 int offset, int len);
1175 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1176 int offset, int len);
1177 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1178 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1179
1180 /**
1181 * skb_pad - zero pad the tail of an skb
1182 * @skb: buffer to pad
1183 * @pad: space to pad
1184 *
1185 * Ensure that a buffer is followed by a padding area that is zero
1186 * filled. Used by network drivers which may DMA or transfer data
1187 * beyond the buffer end onto the wire.
1188 *
1189 * May return error in out of memory cases. The skb is freed on error.
1190 */
skb_pad(struct sk_buff * skb,int pad)1191 static inline int skb_pad(struct sk_buff *skb, int pad)
1192 {
1193 return __skb_pad(skb, pad, true);
1194 }
1195 #define dev_kfree_skb(a) consume_skb(a)
1196
1197 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1198 int offset, size_t size);
1199
1200 struct skb_seq_state {
1201 __u32 lower_offset;
1202 __u32 upper_offset;
1203 __u32 frag_idx;
1204 __u32 stepped_offset;
1205 struct sk_buff *root_skb;
1206 struct sk_buff *cur_skb;
1207 __u8 *frag_data;
1208 };
1209
1210 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1211 unsigned int to, struct skb_seq_state *st);
1212 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1213 struct skb_seq_state *st);
1214 void skb_abort_seq_read(struct skb_seq_state *st);
1215
1216 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1217 unsigned int to, struct ts_config *config);
1218
1219 /*
1220 * Packet hash types specify the type of hash in skb_set_hash.
1221 *
1222 * Hash types refer to the protocol layer addresses which are used to
1223 * construct a packet's hash. The hashes are used to differentiate or identify
1224 * flows of the protocol layer for the hash type. Hash types are either
1225 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1226 *
1227 * Properties of hashes:
1228 *
1229 * 1) Two packets in different flows have different hash values
1230 * 2) Two packets in the same flow should have the same hash value
1231 *
1232 * A hash at a higher layer is considered to be more specific. A driver should
1233 * set the most specific hash possible.
1234 *
1235 * A driver cannot indicate a more specific hash than the layer at which a hash
1236 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1237 *
1238 * A driver may indicate a hash level which is less specific than the
1239 * actual layer the hash was computed on. For instance, a hash computed
1240 * at L4 may be considered an L3 hash. This should only be done if the
1241 * driver can't unambiguously determine that the HW computed the hash at
1242 * the higher layer. Note that the "should" in the second property above
1243 * permits this.
1244 */
1245 enum pkt_hash_types {
1246 PKT_HASH_TYPE_NONE, /* Undefined type */
1247 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1248 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1249 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1250 };
1251
skb_clear_hash(struct sk_buff * skb)1252 static inline void skb_clear_hash(struct sk_buff *skb)
1253 {
1254 skb->hash = 0;
1255 skb->sw_hash = 0;
1256 skb->l4_hash = 0;
1257 }
1258
skb_clear_hash_if_not_l4(struct sk_buff * skb)1259 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1260 {
1261 if (!skb->l4_hash)
1262 skb_clear_hash(skb);
1263 }
1264
1265 static inline void
__skb_set_hash(struct sk_buff * skb,__u32 hash,bool is_sw,bool is_l4)1266 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1267 {
1268 skb->l4_hash = is_l4;
1269 skb->sw_hash = is_sw;
1270 skb->hash = hash;
1271 }
1272
1273 static inline void
skb_set_hash(struct sk_buff * skb,__u32 hash,enum pkt_hash_types type)1274 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1275 {
1276 /* Used by drivers to set hash from HW */
1277 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1278 }
1279
1280 static inline void
__skb_set_sw_hash(struct sk_buff * skb,__u32 hash,bool is_l4)1281 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1282 {
1283 __skb_set_hash(skb, hash, true, is_l4);
1284 }
1285
1286 void __skb_get_hash(struct sk_buff *skb);
1287 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1288 u32 skb_get_poff(const struct sk_buff *skb);
1289 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1290 const struct flow_keys_basic *keys, int hlen);
1291 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1292 void *data, int hlen_proto);
1293
skb_flow_get_ports(const struct sk_buff * skb,int thoff,u8 ip_proto)1294 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1295 int thoff, u8 ip_proto)
1296 {
1297 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1298 }
1299
1300 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1301 const struct flow_dissector_key *key,
1302 unsigned int key_count);
1303
1304 struct bpf_flow_dissector;
1305 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1306 __be16 proto, int nhoff, int hlen, unsigned int flags);
1307
1308 bool __skb_flow_dissect(const struct net *net,
1309 const struct sk_buff *skb,
1310 struct flow_dissector *flow_dissector,
1311 void *target_container,
1312 void *data, __be16 proto, int nhoff, int hlen,
1313 unsigned int flags);
1314
skb_flow_dissect(const struct sk_buff * skb,struct flow_dissector * flow_dissector,void * target_container,unsigned int flags)1315 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1316 struct flow_dissector *flow_dissector,
1317 void *target_container, unsigned int flags)
1318 {
1319 return __skb_flow_dissect(NULL, skb, flow_dissector,
1320 target_container, NULL, 0, 0, 0, flags);
1321 }
1322
skb_flow_dissect_flow_keys(const struct sk_buff * skb,struct flow_keys * flow,unsigned int flags)1323 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1324 struct flow_keys *flow,
1325 unsigned int flags)
1326 {
1327 memset(flow, 0, sizeof(*flow));
1328 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1329 flow, NULL, 0, 0, 0, flags);
1330 }
1331
1332 static inline bool
skb_flow_dissect_flow_keys_basic(const struct net * net,const struct sk_buff * skb,struct flow_keys_basic * flow,void * data,__be16 proto,int nhoff,int hlen,unsigned int flags)1333 skb_flow_dissect_flow_keys_basic(const struct net *net,
1334 const struct sk_buff *skb,
1335 struct flow_keys_basic *flow, void *data,
1336 __be16 proto, int nhoff, int hlen,
1337 unsigned int flags)
1338 {
1339 memset(flow, 0, sizeof(*flow));
1340 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1341 data, proto, nhoff, hlen, flags);
1342 }
1343
1344 void skb_flow_dissect_meta(const struct sk_buff *skb,
1345 struct flow_dissector *flow_dissector,
1346 void *target_container);
1347
1348 /* Gets a skb connection tracking info, ctinfo map should be a
1349 * map of mapsize to translate enum ip_conntrack_info states
1350 * to user states.
1351 */
1352 void
1353 skb_flow_dissect_ct(const struct sk_buff *skb,
1354 struct flow_dissector *flow_dissector,
1355 void *target_container,
1356 u16 *ctinfo_map,
1357 size_t mapsize);
1358 void
1359 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1360 struct flow_dissector *flow_dissector,
1361 void *target_container);
1362
1363 void skb_flow_dissect_hash(const struct sk_buff *skb,
1364 struct flow_dissector *flow_dissector,
1365 void *target_container);
1366
skb_get_hash(struct sk_buff * skb)1367 static inline __u32 skb_get_hash(struct sk_buff *skb)
1368 {
1369 if (!skb->l4_hash && !skb->sw_hash)
1370 __skb_get_hash(skb);
1371
1372 return skb->hash;
1373 }
1374
skb_get_hash_flowi6(struct sk_buff * skb,const struct flowi6 * fl6)1375 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1376 {
1377 if (!skb->l4_hash && !skb->sw_hash) {
1378 struct flow_keys keys;
1379 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1380
1381 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1382 }
1383
1384 return skb->hash;
1385 }
1386
1387 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1388 const siphash_key_t *perturb);
1389
skb_get_hash_raw(const struct sk_buff * skb)1390 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1391 {
1392 return skb->hash;
1393 }
1394
skb_copy_hash(struct sk_buff * to,const struct sk_buff * from)1395 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1396 {
1397 to->hash = from->hash;
1398 to->sw_hash = from->sw_hash;
1399 to->l4_hash = from->l4_hash;
1400 };
1401
skb_copy_decrypted(struct sk_buff * to,const struct sk_buff * from)1402 static inline void skb_copy_decrypted(struct sk_buff *to,
1403 const struct sk_buff *from)
1404 {
1405 #ifdef CONFIG_TLS_DEVICE
1406 to->decrypted = from->decrypted;
1407 #endif
1408 }
1409
1410 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_end_pointer(const struct sk_buff * skb)1411 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1412 {
1413 return skb->head + skb->end;
1414 }
1415
skb_end_offset(const struct sk_buff * skb)1416 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1417 {
1418 return skb->end;
1419 }
1420 #else
skb_end_pointer(const struct sk_buff * skb)1421 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1422 {
1423 return skb->end;
1424 }
1425
skb_end_offset(const struct sk_buff * skb)1426 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1427 {
1428 return skb->end - skb->head;
1429 }
1430 #endif
1431
1432 /* Internal */
1433 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1434
skb_hwtstamps(struct sk_buff * skb)1435 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1436 {
1437 return &skb_shinfo(skb)->hwtstamps;
1438 }
1439
skb_zcopy(struct sk_buff * skb)1440 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1441 {
1442 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1443
1444 return is_zcopy ? skb_uarg(skb) : NULL;
1445 }
1446
skb_zcopy_set(struct sk_buff * skb,struct ubuf_info * uarg,bool * have_ref)1447 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1448 bool *have_ref)
1449 {
1450 if (skb && uarg && !skb_zcopy(skb)) {
1451 if (unlikely(have_ref && *have_ref))
1452 *have_ref = false;
1453 else
1454 sock_zerocopy_get(uarg);
1455 skb_shinfo(skb)->destructor_arg = uarg;
1456 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1457 }
1458 }
1459
skb_zcopy_set_nouarg(struct sk_buff * skb,void * val)1460 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1461 {
1462 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1463 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1464 }
1465
skb_zcopy_is_nouarg(struct sk_buff * skb)1466 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1467 {
1468 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1469 }
1470
skb_zcopy_get_nouarg(struct sk_buff * skb)1471 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1472 {
1473 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1474 }
1475
1476 /* Release a reference on a zerocopy structure */
skb_zcopy_clear(struct sk_buff * skb,bool zerocopy)1477 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1478 {
1479 struct ubuf_info *uarg = skb_zcopy(skb);
1480
1481 if (uarg) {
1482 if (skb_zcopy_is_nouarg(skb)) {
1483 /* no notification callback */
1484 } else if (uarg->callback == sock_zerocopy_callback) {
1485 uarg->zerocopy = uarg->zerocopy && zerocopy;
1486 sock_zerocopy_put(uarg);
1487 } else {
1488 uarg->callback(uarg, zerocopy);
1489 }
1490
1491 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1492 }
1493 }
1494
1495 /* Abort a zerocopy operation and revert zckey on error in send syscall */
skb_zcopy_abort(struct sk_buff * skb)1496 static inline void skb_zcopy_abort(struct sk_buff *skb)
1497 {
1498 struct ubuf_info *uarg = skb_zcopy(skb);
1499
1500 if (uarg) {
1501 sock_zerocopy_put_abort(uarg, false);
1502 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1503 }
1504 }
1505
skb_mark_not_on_list(struct sk_buff * skb)1506 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1507 {
1508 skb->next = NULL;
1509 }
1510
1511 /* Iterate through singly-linked GSO fragments of an skb. */
1512 #define skb_list_walk_safe(first, skb, next_skb) \
1513 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \
1514 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1515
skb_list_del_init(struct sk_buff * skb)1516 static inline void skb_list_del_init(struct sk_buff *skb)
1517 {
1518 __list_del_entry(&skb->list);
1519 skb_mark_not_on_list(skb);
1520 }
1521
1522 /**
1523 * skb_queue_empty - check if a queue is empty
1524 * @list: queue head
1525 *
1526 * Returns true if the queue is empty, false otherwise.
1527 */
skb_queue_empty(const struct sk_buff_head * list)1528 static inline int skb_queue_empty(const struct sk_buff_head *list)
1529 {
1530 return list->next == (const struct sk_buff *) list;
1531 }
1532
1533 /**
1534 * skb_queue_empty_lockless - check if a queue is empty
1535 * @list: queue head
1536 *
1537 * Returns true if the queue is empty, false otherwise.
1538 * This variant can be used in lockless contexts.
1539 */
skb_queue_empty_lockless(const struct sk_buff_head * list)1540 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1541 {
1542 return READ_ONCE(list->next) == (const struct sk_buff *) list;
1543 }
1544
1545
1546 /**
1547 * skb_queue_is_last - check if skb is the last entry in the queue
1548 * @list: queue head
1549 * @skb: buffer
1550 *
1551 * Returns true if @skb is the last buffer on the list.
1552 */
skb_queue_is_last(const struct sk_buff_head * list,const struct sk_buff * skb)1553 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1554 const struct sk_buff *skb)
1555 {
1556 return skb->next == (const struct sk_buff *) list;
1557 }
1558
1559 /**
1560 * skb_queue_is_first - check if skb is the first entry in the queue
1561 * @list: queue head
1562 * @skb: buffer
1563 *
1564 * Returns true if @skb is the first buffer on the list.
1565 */
skb_queue_is_first(const struct sk_buff_head * list,const struct sk_buff * skb)1566 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1567 const struct sk_buff *skb)
1568 {
1569 return skb->prev == (const struct sk_buff *) list;
1570 }
1571
1572 /**
1573 * skb_queue_next - return the next packet in the queue
1574 * @list: queue head
1575 * @skb: current buffer
1576 *
1577 * Return the next packet in @list after @skb. It is only valid to
1578 * call this if skb_queue_is_last() evaluates to false.
1579 */
skb_queue_next(const struct sk_buff_head * list,const struct sk_buff * skb)1580 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1581 const struct sk_buff *skb)
1582 {
1583 /* This BUG_ON may seem severe, but if we just return then we
1584 * are going to dereference garbage.
1585 */
1586 BUG_ON(skb_queue_is_last(list, skb));
1587 return skb->next;
1588 }
1589
1590 /**
1591 * skb_queue_prev - return the prev packet in the queue
1592 * @list: queue head
1593 * @skb: current buffer
1594 *
1595 * Return the prev packet in @list before @skb. It is only valid to
1596 * call this if skb_queue_is_first() evaluates to false.
1597 */
skb_queue_prev(const struct sk_buff_head * list,const struct sk_buff * skb)1598 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1599 const struct sk_buff *skb)
1600 {
1601 /* This BUG_ON may seem severe, but if we just return then we
1602 * are going to dereference garbage.
1603 */
1604 BUG_ON(skb_queue_is_first(list, skb));
1605 return skb->prev;
1606 }
1607
1608 /**
1609 * skb_get - reference buffer
1610 * @skb: buffer to reference
1611 *
1612 * Makes another reference to a socket buffer and returns a pointer
1613 * to the buffer.
1614 */
skb_get(struct sk_buff * skb)1615 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1616 {
1617 refcount_inc(&skb->users);
1618 return skb;
1619 }
1620
1621 /*
1622 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1623 */
1624
1625 /**
1626 * skb_cloned - is the buffer a clone
1627 * @skb: buffer to check
1628 *
1629 * Returns true if the buffer was generated with skb_clone() and is
1630 * one of multiple shared copies of the buffer. Cloned buffers are
1631 * shared data so must not be written to under normal circumstances.
1632 */
skb_cloned(const struct sk_buff * skb)1633 static inline int skb_cloned(const struct sk_buff *skb)
1634 {
1635 return skb->cloned &&
1636 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1637 }
1638
skb_unclone(struct sk_buff * skb,gfp_t pri)1639 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1640 {
1641 might_sleep_if(gfpflags_allow_blocking(pri));
1642
1643 if (skb_cloned(skb))
1644 return pskb_expand_head(skb, 0, 0, pri);
1645
1646 return 0;
1647 }
1648
1649 /**
1650 * skb_header_cloned - is the header a clone
1651 * @skb: buffer to check
1652 *
1653 * Returns true if modifying the header part of the buffer requires
1654 * the data to be copied.
1655 */
skb_header_cloned(const struct sk_buff * skb)1656 static inline int skb_header_cloned(const struct sk_buff *skb)
1657 {
1658 int dataref;
1659
1660 if (!skb->cloned)
1661 return 0;
1662
1663 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1664 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1665 return dataref != 1;
1666 }
1667
skb_header_unclone(struct sk_buff * skb,gfp_t pri)1668 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1669 {
1670 might_sleep_if(gfpflags_allow_blocking(pri));
1671
1672 if (skb_header_cloned(skb))
1673 return pskb_expand_head(skb, 0, 0, pri);
1674
1675 return 0;
1676 }
1677
1678 /**
1679 * __skb_header_release - release reference to header
1680 * @skb: buffer to operate on
1681 */
__skb_header_release(struct sk_buff * skb)1682 static inline void __skb_header_release(struct sk_buff *skb)
1683 {
1684 skb->nohdr = 1;
1685 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1686 }
1687
1688
1689 /**
1690 * skb_shared - is the buffer shared
1691 * @skb: buffer to check
1692 *
1693 * Returns true if more than one person has a reference to this
1694 * buffer.
1695 */
skb_shared(const struct sk_buff * skb)1696 static inline int skb_shared(const struct sk_buff *skb)
1697 {
1698 return refcount_read(&skb->users) != 1;
1699 }
1700
1701 /**
1702 * skb_share_check - check if buffer is shared and if so clone it
1703 * @skb: buffer to check
1704 * @pri: priority for memory allocation
1705 *
1706 * If the buffer is shared the buffer is cloned and the old copy
1707 * drops a reference. A new clone with a single reference is returned.
1708 * If the buffer is not shared the original buffer is returned. When
1709 * being called from interrupt status or with spinlocks held pri must
1710 * be GFP_ATOMIC.
1711 *
1712 * NULL is returned on a memory allocation failure.
1713 */
skb_share_check(struct sk_buff * skb,gfp_t pri)1714 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1715 {
1716 might_sleep_if(gfpflags_allow_blocking(pri));
1717 if (skb_shared(skb)) {
1718 struct sk_buff *nskb = skb_clone(skb, pri);
1719
1720 if (likely(nskb))
1721 consume_skb(skb);
1722 else
1723 kfree_skb(skb);
1724 skb = nskb;
1725 }
1726 return skb;
1727 }
1728
1729 /*
1730 * Copy shared buffers into a new sk_buff. We effectively do COW on
1731 * packets to handle cases where we have a local reader and forward
1732 * and a couple of other messy ones. The normal one is tcpdumping
1733 * a packet thats being forwarded.
1734 */
1735
1736 /**
1737 * skb_unshare - make a copy of a shared buffer
1738 * @skb: buffer to check
1739 * @pri: priority for memory allocation
1740 *
1741 * If the socket buffer is a clone then this function creates a new
1742 * copy of the data, drops a reference count on the old copy and returns
1743 * the new copy with the reference count at 1. If the buffer is not a clone
1744 * the original buffer is returned. When called with a spinlock held or
1745 * from interrupt state @pri must be %GFP_ATOMIC
1746 *
1747 * %NULL is returned on a memory allocation failure.
1748 */
skb_unshare(struct sk_buff * skb,gfp_t pri)1749 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1750 gfp_t pri)
1751 {
1752 might_sleep_if(gfpflags_allow_blocking(pri));
1753 if (skb_cloned(skb)) {
1754 struct sk_buff *nskb = skb_copy(skb, pri);
1755
1756 /* Free our shared copy */
1757 if (likely(nskb))
1758 consume_skb(skb);
1759 else
1760 kfree_skb(skb);
1761 skb = nskb;
1762 }
1763 return skb;
1764 }
1765
1766 /**
1767 * skb_peek - peek at the head of an &sk_buff_head
1768 * @list_: list to peek at
1769 *
1770 * Peek an &sk_buff. Unlike most other operations you _MUST_
1771 * be careful with this one. A peek leaves the buffer on the
1772 * list and someone else may run off with it. You must hold
1773 * the appropriate locks or have a private queue to do this.
1774 *
1775 * Returns %NULL for an empty list or a pointer to the head element.
1776 * The reference count is not incremented and the reference is therefore
1777 * volatile. Use with caution.
1778 */
skb_peek(const struct sk_buff_head * list_)1779 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1780 {
1781 struct sk_buff *skb = list_->next;
1782
1783 if (skb == (struct sk_buff *)list_)
1784 skb = NULL;
1785 return skb;
1786 }
1787
1788 /**
1789 * __skb_peek - peek at the head of a non-empty &sk_buff_head
1790 * @list_: list to peek at
1791 *
1792 * Like skb_peek(), but the caller knows that the list is not empty.
1793 */
__skb_peek(const struct sk_buff_head * list_)1794 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1795 {
1796 return list_->next;
1797 }
1798
1799 /**
1800 * skb_peek_next - peek skb following the given one from a queue
1801 * @skb: skb to start from
1802 * @list_: list to peek at
1803 *
1804 * Returns %NULL when the end of the list is met or a pointer to the
1805 * next element. The reference count is not incremented and the
1806 * reference is therefore volatile. Use with caution.
1807 */
skb_peek_next(struct sk_buff * skb,const struct sk_buff_head * list_)1808 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1809 const struct sk_buff_head *list_)
1810 {
1811 struct sk_buff *next = skb->next;
1812
1813 if (next == (struct sk_buff *)list_)
1814 next = NULL;
1815 return next;
1816 }
1817
1818 /**
1819 * skb_peek_tail - peek at the tail of an &sk_buff_head
1820 * @list_: list to peek at
1821 *
1822 * Peek an &sk_buff. Unlike most other operations you _MUST_
1823 * be careful with this one. A peek leaves the buffer on the
1824 * list and someone else may run off with it. You must hold
1825 * the appropriate locks or have a private queue to do this.
1826 *
1827 * Returns %NULL for an empty list or a pointer to the tail element.
1828 * The reference count is not incremented and the reference is therefore
1829 * volatile. Use with caution.
1830 */
skb_peek_tail(const struct sk_buff_head * list_)1831 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1832 {
1833 struct sk_buff *skb = READ_ONCE(list_->prev);
1834
1835 if (skb == (struct sk_buff *)list_)
1836 skb = NULL;
1837 return skb;
1838
1839 }
1840
1841 /**
1842 * skb_queue_len - get queue length
1843 * @list_: list to measure
1844 *
1845 * Return the length of an &sk_buff queue.
1846 */
skb_queue_len(const struct sk_buff_head * list_)1847 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1848 {
1849 return list_->qlen;
1850 }
1851
1852 /**
1853 * skb_queue_len_lockless - get queue length
1854 * @list_: list to measure
1855 *
1856 * Return the length of an &sk_buff queue.
1857 * This variant can be used in lockless contexts.
1858 */
skb_queue_len_lockless(const struct sk_buff_head * list_)1859 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
1860 {
1861 return READ_ONCE(list_->qlen);
1862 }
1863
1864 /**
1865 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1866 * @list: queue to initialize
1867 *
1868 * This initializes only the list and queue length aspects of
1869 * an sk_buff_head object. This allows to initialize the list
1870 * aspects of an sk_buff_head without reinitializing things like
1871 * the spinlock. It can also be used for on-stack sk_buff_head
1872 * objects where the spinlock is known to not be used.
1873 */
__skb_queue_head_init(struct sk_buff_head * list)1874 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1875 {
1876 list->prev = list->next = (struct sk_buff *)list;
1877 list->qlen = 0;
1878 }
1879
1880 /*
1881 * This function creates a split out lock class for each invocation;
1882 * this is needed for now since a whole lot of users of the skb-queue
1883 * infrastructure in drivers have different locking usage (in hardirq)
1884 * than the networking core (in softirq only). In the long run either the
1885 * network layer or drivers should need annotation to consolidate the
1886 * main types of usage into 3 classes.
1887 */
skb_queue_head_init(struct sk_buff_head * list)1888 static inline void skb_queue_head_init(struct sk_buff_head *list)
1889 {
1890 spin_lock_init(&list->lock);
1891 __skb_queue_head_init(list);
1892 }
1893
skb_queue_head_init_class(struct sk_buff_head * list,struct lock_class_key * class)1894 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1895 struct lock_class_key *class)
1896 {
1897 skb_queue_head_init(list);
1898 lockdep_set_class(&list->lock, class);
1899 }
1900
1901 /*
1902 * Insert an sk_buff on a list.
1903 *
1904 * The "__skb_xxxx()" functions are the non-atomic ones that
1905 * can only be called with interrupts disabled.
1906 */
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)1907 static inline void __skb_insert(struct sk_buff *newsk,
1908 struct sk_buff *prev, struct sk_buff *next,
1909 struct sk_buff_head *list)
1910 {
1911 /* See skb_queue_empty_lockless() and skb_peek_tail()
1912 * for the opposite READ_ONCE()
1913 */
1914 WRITE_ONCE(newsk->next, next);
1915 WRITE_ONCE(newsk->prev, prev);
1916 WRITE_ONCE(next->prev, newsk);
1917 WRITE_ONCE(prev->next, newsk);
1918 WRITE_ONCE(list->qlen, list->qlen + 1);
1919 }
1920
__skb_queue_splice(const struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * next)1921 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1922 struct sk_buff *prev,
1923 struct sk_buff *next)
1924 {
1925 struct sk_buff *first = list->next;
1926 struct sk_buff *last = list->prev;
1927
1928 WRITE_ONCE(first->prev, prev);
1929 WRITE_ONCE(prev->next, first);
1930
1931 WRITE_ONCE(last->next, next);
1932 WRITE_ONCE(next->prev, last);
1933 }
1934
1935 /**
1936 * skb_queue_splice - join two skb lists, this is designed for stacks
1937 * @list: the new list to add
1938 * @head: the place to add it in the first list
1939 */
skb_queue_splice(const struct sk_buff_head * list,struct sk_buff_head * head)1940 static inline void skb_queue_splice(const struct sk_buff_head *list,
1941 struct sk_buff_head *head)
1942 {
1943 if (!skb_queue_empty(list)) {
1944 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1945 head->qlen += list->qlen;
1946 }
1947 }
1948
1949 /**
1950 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1951 * @list: the new list to add
1952 * @head: the place to add it in the first list
1953 *
1954 * The list at @list is reinitialised
1955 */
skb_queue_splice_init(struct sk_buff_head * list,struct sk_buff_head * head)1956 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1957 struct sk_buff_head *head)
1958 {
1959 if (!skb_queue_empty(list)) {
1960 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1961 head->qlen += list->qlen;
1962 __skb_queue_head_init(list);
1963 }
1964 }
1965
1966 /**
1967 * skb_queue_splice_tail - join two skb lists, each list being a queue
1968 * @list: the new list to add
1969 * @head: the place to add it in the first list
1970 */
skb_queue_splice_tail(const struct sk_buff_head * list,struct sk_buff_head * head)1971 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1972 struct sk_buff_head *head)
1973 {
1974 if (!skb_queue_empty(list)) {
1975 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1976 head->qlen += list->qlen;
1977 }
1978 }
1979
1980 /**
1981 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1982 * @list: the new list to add
1983 * @head: the place to add it in the first list
1984 *
1985 * Each of the lists is a queue.
1986 * The list at @list is reinitialised
1987 */
skb_queue_splice_tail_init(struct sk_buff_head * list,struct sk_buff_head * head)1988 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1989 struct sk_buff_head *head)
1990 {
1991 if (!skb_queue_empty(list)) {
1992 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1993 head->qlen += list->qlen;
1994 __skb_queue_head_init(list);
1995 }
1996 }
1997
1998 /**
1999 * __skb_queue_after - queue a buffer at the list head
2000 * @list: list to use
2001 * @prev: place after this buffer
2002 * @newsk: buffer to queue
2003 *
2004 * Queue a buffer int the middle of a list. This function takes no locks
2005 * and you must therefore hold required locks before calling it.
2006 *
2007 * A buffer cannot be placed on two lists at the same time.
2008 */
__skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)2009 static inline void __skb_queue_after(struct sk_buff_head *list,
2010 struct sk_buff *prev,
2011 struct sk_buff *newsk)
2012 {
2013 __skb_insert(newsk, prev, prev->next, list);
2014 }
2015
2016 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2017 struct sk_buff_head *list);
2018
__skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)2019 static inline void __skb_queue_before(struct sk_buff_head *list,
2020 struct sk_buff *next,
2021 struct sk_buff *newsk)
2022 {
2023 __skb_insert(newsk, next->prev, next, list);
2024 }
2025
2026 /**
2027 * __skb_queue_head - queue a buffer at the list head
2028 * @list: list to use
2029 * @newsk: buffer to queue
2030 *
2031 * Queue a buffer at the start of a list. This function takes no locks
2032 * and you must therefore hold required locks before calling it.
2033 *
2034 * A buffer cannot be placed on two lists at the same time.
2035 */
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)2036 static inline void __skb_queue_head(struct sk_buff_head *list,
2037 struct sk_buff *newsk)
2038 {
2039 __skb_queue_after(list, (struct sk_buff *)list, newsk);
2040 }
2041 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2042
2043 /**
2044 * __skb_queue_tail - queue a buffer at the list tail
2045 * @list: list to use
2046 * @newsk: buffer to queue
2047 *
2048 * Queue a buffer at the end of a list. This function takes no locks
2049 * and you must therefore hold required locks before calling it.
2050 *
2051 * A buffer cannot be placed on two lists at the same time.
2052 */
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)2053 static inline void __skb_queue_tail(struct sk_buff_head *list,
2054 struct sk_buff *newsk)
2055 {
2056 __skb_queue_before(list, (struct sk_buff *)list, newsk);
2057 }
2058 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2059
2060 /*
2061 * remove sk_buff from list. _Must_ be called atomically, and with
2062 * the list known..
2063 */
2064 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)2065 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2066 {
2067 struct sk_buff *next, *prev;
2068
2069 WRITE_ONCE(list->qlen, list->qlen - 1);
2070 next = skb->next;
2071 prev = skb->prev;
2072 skb->next = skb->prev = NULL;
2073 WRITE_ONCE(next->prev, prev);
2074 WRITE_ONCE(prev->next, next);
2075 }
2076
2077 /**
2078 * __skb_dequeue - remove from the head of the queue
2079 * @list: list to dequeue from
2080 *
2081 * Remove the head of the list. This function does not take any locks
2082 * so must be used with appropriate locks held only. The head item is
2083 * returned or %NULL if the list is empty.
2084 */
__skb_dequeue(struct sk_buff_head * list)2085 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2086 {
2087 struct sk_buff *skb = skb_peek(list);
2088 if (skb)
2089 __skb_unlink(skb, list);
2090 return skb;
2091 }
2092 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2093
2094 /**
2095 * __skb_dequeue_tail - remove from the tail of the queue
2096 * @list: list to dequeue from
2097 *
2098 * Remove the tail of the list. This function does not take any locks
2099 * so must be used with appropriate locks held only. The tail item is
2100 * returned or %NULL if the list is empty.
2101 */
__skb_dequeue_tail(struct sk_buff_head * list)2102 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2103 {
2104 struct sk_buff *skb = skb_peek_tail(list);
2105 if (skb)
2106 __skb_unlink(skb, list);
2107 return skb;
2108 }
2109 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2110
2111
skb_is_nonlinear(const struct sk_buff * skb)2112 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2113 {
2114 return skb->data_len;
2115 }
2116
skb_headlen(const struct sk_buff * skb)2117 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2118 {
2119 return skb->len - skb->data_len;
2120 }
2121
__skb_pagelen(const struct sk_buff * skb)2122 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2123 {
2124 unsigned int i, len = 0;
2125
2126 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2127 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2128 return len;
2129 }
2130
skb_pagelen(const struct sk_buff * skb)2131 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2132 {
2133 return skb_headlen(skb) + __skb_pagelen(skb);
2134 }
2135
2136 /**
2137 * __skb_fill_page_desc - initialise a paged fragment in an skb
2138 * @skb: buffer containing fragment to be initialised
2139 * @i: paged fragment index to initialise
2140 * @page: the page to use for this fragment
2141 * @off: the offset to the data with @page
2142 * @size: the length of the data
2143 *
2144 * Initialises the @i'th fragment of @skb to point to &size bytes at
2145 * offset @off within @page.
2146 *
2147 * Does not take any additional reference on the fragment.
2148 */
__skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2149 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2150 struct page *page, int off, int size)
2151 {
2152 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2153
2154 /*
2155 * Propagate page pfmemalloc to the skb if we can. The problem is
2156 * that not all callers have unique ownership of the page but rely
2157 * on page_is_pfmemalloc doing the right thing(tm).
2158 */
2159 frag->bv_page = page;
2160 frag->bv_offset = off;
2161 skb_frag_size_set(frag, size);
2162
2163 page = compound_head(page);
2164 if (page_is_pfmemalloc(page))
2165 skb->pfmemalloc = true;
2166 }
2167
2168 /**
2169 * skb_fill_page_desc - initialise a paged fragment in an skb
2170 * @skb: buffer containing fragment to be initialised
2171 * @i: paged fragment index to initialise
2172 * @page: the page to use for this fragment
2173 * @off: the offset to the data with @page
2174 * @size: the length of the data
2175 *
2176 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2177 * @skb to point to @size bytes at offset @off within @page. In
2178 * addition updates @skb such that @i is the last fragment.
2179 *
2180 * Does not take any additional reference on the fragment.
2181 */
skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2182 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2183 struct page *page, int off, int size)
2184 {
2185 __skb_fill_page_desc(skb, i, page, off, size);
2186 skb_shinfo(skb)->nr_frags = i + 1;
2187 }
2188
2189 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2190 int size, unsigned int truesize);
2191
2192 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2193 unsigned int truesize);
2194
2195 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
2196
2197 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_tail_pointer(const struct sk_buff * skb)2198 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2199 {
2200 return skb->head + skb->tail;
2201 }
2202
skb_reset_tail_pointer(struct sk_buff * skb)2203 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2204 {
2205 skb->tail = skb->data - skb->head;
2206 }
2207
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2208 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2209 {
2210 skb_reset_tail_pointer(skb);
2211 skb->tail += offset;
2212 }
2213
2214 #else /* NET_SKBUFF_DATA_USES_OFFSET */
skb_tail_pointer(const struct sk_buff * skb)2215 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2216 {
2217 return skb->tail;
2218 }
2219
skb_reset_tail_pointer(struct sk_buff * skb)2220 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2221 {
2222 skb->tail = skb->data;
2223 }
2224
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2225 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2226 {
2227 skb->tail = skb->data + offset;
2228 }
2229
2230 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2231
2232 /*
2233 * Add data to an sk_buff
2234 */
2235 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2236 void *skb_put(struct sk_buff *skb, unsigned int len);
__skb_put(struct sk_buff * skb,unsigned int len)2237 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2238 {
2239 void *tmp = skb_tail_pointer(skb);
2240 SKB_LINEAR_ASSERT(skb);
2241 skb->tail += len;
2242 skb->len += len;
2243 return tmp;
2244 }
2245
__skb_put_zero(struct sk_buff * skb,unsigned int len)2246 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2247 {
2248 void *tmp = __skb_put(skb, len);
2249
2250 memset(tmp, 0, len);
2251 return tmp;
2252 }
2253
__skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2254 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2255 unsigned int len)
2256 {
2257 void *tmp = __skb_put(skb, len);
2258
2259 memcpy(tmp, data, len);
2260 return tmp;
2261 }
2262
__skb_put_u8(struct sk_buff * skb,u8 val)2263 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2264 {
2265 *(u8 *)__skb_put(skb, 1) = val;
2266 }
2267
skb_put_zero(struct sk_buff * skb,unsigned int len)2268 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2269 {
2270 void *tmp = skb_put(skb, len);
2271
2272 memset(tmp, 0, len);
2273
2274 return tmp;
2275 }
2276
skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2277 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2278 unsigned int len)
2279 {
2280 void *tmp = skb_put(skb, len);
2281
2282 memcpy(tmp, data, len);
2283
2284 return tmp;
2285 }
2286
skb_put_u8(struct sk_buff * skb,u8 val)2287 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2288 {
2289 *(u8 *)skb_put(skb, 1) = val;
2290 }
2291
2292 void *skb_push(struct sk_buff *skb, unsigned int len);
__skb_push(struct sk_buff * skb,unsigned int len)2293 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2294 {
2295 skb->data -= len;
2296 skb->len += len;
2297 return skb->data;
2298 }
2299
2300 void *skb_pull(struct sk_buff *skb, unsigned int len);
__skb_pull(struct sk_buff * skb,unsigned int len)2301 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2302 {
2303 skb->len -= len;
2304 BUG_ON(skb->len < skb->data_len);
2305 return skb->data += len;
2306 }
2307
skb_pull_inline(struct sk_buff * skb,unsigned int len)2308 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2309 {
2310 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2311 }
2312
2313 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2314
__pskb_pull(struct sk_buff * skb,unsigned int len)2315 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2316 {
2317 if (len > skb_headlen(skb) &&
2318 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2319 return NULL;
2320 skb->len -= len;
2321 return skb->data += len;
2322 }
2323
pskb_pull(struct sk_buff * skb,unsigned int len)2324 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2325 {
2326 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2327 }
2328
pskb_may_pull(struct sk_buff * skb,unsigned int len)2329 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2330 {
2331 if (likely(len <= skb_headlen(skb)))
2332 return true;
2333 if (unlikely(len > skb->len))
2334 return false;
2335 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2336 }
2337
2338 void skb_condense(struct sk_buff *skb);
2339
2340 /**
2341 * skb_headroom - bytes at buffer head
2342 * @skb: buffer to check
2343 *
2344 * Return the number of bytes of free space at the head of an &sk_buff.
2345 */
skb_headroom(const struct sk_buff * skb)2346 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2347 {
2348 return skb->data - skb->head;
2349 }
2350
2351 /**
2352 * skb_tailroom - bytes at buffer end
2353 * @skb: buffer to check
2354 *
2355 * Return the number of bytes of free space at the tail of an sk_buff
2356 */
skb_tailroom(const struct sk_buff * skb)2357 static inline int skb_tailroom(const struct sk_buff *skb)
2358 {
2359 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2360 }
2361
2362 /**
2363 * skb_availroom - bytes at buffer end
2364 * @skb: buffer to check
2365 *
2366 * Return the number of bytes of free space at the tail of an sk_buff
2367 * allocated by sk_stream_alloc()
2368 */
skb_availroom(const struct sk_buff * skb)2369 static inline int skb_availroom(const struct sk_buff *skb)
2370 {
2371 if (skb_is_nonlinear(skb))
2372 return 0;
2373
2374 return skb->end - skb->tail - skb->reserved_tailroom;
2375 }
2376
2377 /**
2378 * skb_reserve - adjust headroom
2379 * @skb: buffer to alter
2380 * @len: bytes to move
2381 *
2382 * Increase the headroom of an empty &sk_buff by reducing the tail
2383 * room. This is only allowed for an empty buffer.
2384 */
skb_reserve(struct sk_buff * skb,int len)2385 static inline void skb_reserve(struct sk_buff *skb, int len)
2386 {
2387 skb->data += len;
2388 skb->tail += len;
2389 }
2390
2391 /**
2392 * skb_tailroom_reserve - adjust reserved_tailroom
2393 * @skb: buffer to alter
2394 * @mtu: maximum amount of headlen permitted
2395 * @needed_tailroom: minimum amount of reserved_tailroom
2396 *
2397 * Set reserved_tailroom so that headlen can be as large as possible but
2398 * not larger than mtu and tailroom cannot be smaller than
2399 * needed_tailroom.
2400 * The required headroom should already have been reserved before using
2401 * this function.
2402 */
skb_tailroom_reserve(struct sk_buff * skb,unsigned int mtu,unsigned int needed_tailroom)2403 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2404 unsigned int needed_tailroom)
2405 {
2406 SKB_LINEAR_ASSERT(skb);
2407 if (mtu < skb_tailroom(skb) - needed_tailroom)
2408 /* use at most mtu */
2409 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2410 else
2411 /* use up to all available space */
2412 skb->reserved_tailroom = needed_tailroom;
2413 }
2414
2415 #define ENCAP_TYPE_ETHER 0
2416 #define ENCAP_TYPE_IPPROTO 1
2417
skb_set_inner_protocol(struct sk_buff * skb,__be16 protocol)2418 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2419 __be16 protocol)
2420 {
2421 skb->inner_protocol = protocol;
2422 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2423 }
2424
skb_set_inner_ipproto(struct sk_buff * skb,__u8 ipproto)2425 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2426 __u8 ipproto)
2427 {
2428 skb->inner_ipproto = ipproto;
2429 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2430 }
2431
skb_reset_inner_headers(struct sk_buff * skb)2432 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2433 {
2434 skb->inner_mac_header = skb->mac_header;
2435 skb->inner_network_header = skb->network_header;
2436 skb->inner_transport_header = skb->transport_header;
2437 }
2438
skb_reset_mac_len(struct sk_buff * skb)2439 static inline void skb_reset_mac_len(struct sk_buff *skb)
2440 {
2441 skb->mac_len = skb->network_header - skb->mac_header;
2442 }
2443
skb_inner_transport_header(const struct sk_buff * skb)2444 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2445 *skb)
2446 {
2447 return skb->head + skb->inner_transport_header;
2448 }
2449
skb_inner_transport_offset(const struct sk_buff * skb)2450 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2451 {
2452 return skb_inner_transport_header(skb) - skb->data;
2453 }
2454
skb_reset_inner_transport_header(struct sk_buff * skb)2455 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2456 {
2457 skb->inner_transport_header = skb->data - skb->head;
2458 }
2459
skb_set_inner_transport_header(struct sk_buff * skb,const int offset)2460 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2461 const int offset)
2462 {
2463 skb_reset_inner_transport_header(skb);
2464 skb->inner_transport_header += offset;
2465 }
2466
skb_inner_network_header(const struct sk_buff * skb)2467 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2468 {
2469 return skb->head + skb->inner_network_header;
2470 }
2471
skb_reset_inner_network_header(struct sk_buff * skb)2472 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2473 {
2474 skb->inner_network_header = skb->data - skb->head;
2475 }
2476
skb_set_inner_network_header(struct sk_buff * skb,const int offset)2477 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2478 const int offset)
2479 {
2480 skb_reset_inner_network_header(skb);
2481 skb->inner_network_header += offset;
2482 }
2483
skb_inner_mac_header(const struct sk_buff * skb)2484 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2485 {
2486 return skb->head + skb->inner_mac_header;
2487 }
2488
skb_reset_inner_mac_header(struct sk_buff * skb)2489 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2490 {
2491 skb->inner_mac_header = skb->data - skb->head;
2492 }
2493
skb_set_inner_mac_header(struct sk_buff * skb,const int offset)2494 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2495 const int offset)
2496 {
2497 skb_reset_inner_mac_header(skb);
2498 skb->inner_mac_header += offset;
2499 }
skb_transport_header_was_set(const struct sk_buff * skb)2500 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2501 {
2502 return skb->transport_header != (typeof(skb->transport_header))~0U;
2503 }
2504
skb_transport_header(const struct sk_buff * skb)2505 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2506 {
2507 return skb->head + skb->transport_header;
2508 }
2509
skb_reset_transport_header(struct sk_buff * skb)2510 static inline void skb_reset_transport_header(struct sk_buff *skb)
2511 {
2512 skb->transport_header = skb->data - skb->head;
2513 }
2514
skb_set_transport_header(struct sk_buff * skb,const int offset)2515 static inline void skb_set_transport_header(struct sk_buff *skb,
2516 const int offset)
2517 {
2518 skb_reset_transport_header(skb);
2519 skb->transport_header += offset;
2520 }
2521
skb_network_header(const struct sk_buff * skb)2522 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2523 {
2524 return skb->head + skb->network_header;
2525 }
2526
skb_reset_network_header(struct sk_buff * skb)2527 static inline void skb_reset_network_header(struct sk_buff *skb)
2528 {
2529 skb->network_header = skb->data - skb->head;
2530 }
2531
skb_set_network_header(struct sk_buff * skb,const int offset)2532 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2533 {
2534 skb_reset_network_header(skb);
2535 skb->network_header += offset;
2536 }
2537
skb_mac_header(const struct sk_buff * skb)2538 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2539 {
2540 return skb->head + skb->mac_header;
2541 }
2542
skb_mac_offset(const struct sk_buff * skb)2543 static inline int skb_mac_offset(const struct sk_buff *skb)
2544 {
2545 return skb_mac_header(skb) - skb->data;
2546 }
2547
skb_mac_header_len(const struct sk_buff * skb)2548 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2549 {
2550 return skb->network_header - skb->mac_header;
2551 }
2552
skb_mac_header_was_set(const struct sk_buff * skb)2553 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2554 {
2555 return skb->mac_header != (typeof(skb->mac_header))~0U;
2556 }
2557
skb_unset_mac_header(struct sk_buff * skb)2558 static inline void skb_unset_mac_header(struct sk_buff *skb)
2559 {
2560 skb->mac_header = (typeof(skb->mac_header))~0U;
2561 }
2562
skb_reset_mac_header(struct sk_buff * skb)2563 static inline void skb_reset_mac_header(struct sk_buff *skb)
2564 {
2565 skb->mac_header = skb->data - skb->head;
2566 }
2567
skb_set_mac_header(struct sk_buff * skb,const int offset)2568 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2569 {
2570 skb_reset_mac_header(skb);
2571 skb->mac_header += offset;
2572 }
2573
skb_pop_mac_header(struct sk_buff * skb)2574 static inline void skb_pop_mac_header(struct sk_buff *skb)
2575 {
2576 skb->mac_header = skb->network_header;
2577 }
2578
skb_probe_transport_header(struct sk_buff * skb)2579 static inline void skb_probe_transport_header(struct sk_buff *skb)
2580 {
2581 struct flow_keys_basic keys;
2582
2583 if (skb_transport_header_was_set(skb))
2584 return;
2585
2586 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2587 NULL, 0, 0, 0, 0))
2588 skb_set_transport_header(skb, keys.control.thoff);
2589 }
2590
skb_mac_header_rebuild(struct sk_buff * skb)2591 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2592 {
2593 if (skb_mac_header_was_set(skb)) {
2594 const unsigned char *old_mac = skb_mac_header(skb);
2595
2596 skb_set_mac_header(skb, -skb->mac_len);
2597 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2598 }
2599 }
2600
skb_checksum_start_offset(const struct sk_buff * skb)2601 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2602 {
2603 return skb->csum_start - skb_headroom(skb);
2604 }
2605
skb_checksum_start(const struct sk_buff * skb)2606 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2607 {
2608 return skb->head + skb->csum_start;
2609 }
2610
skb_transport_offset(const struct sk_buff * skb)2611 static inline int skb_transport_offset(const struct sk_buff *skb)
2612 {
2613 return skb_transport_header(skb) - skb->data;
2614 }
2615
skb_network_header_len(const struct sk_buff * skb)2616 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2617 {
2618 return skb->transport_header - skb->network_header;
2619 }
2620
skb_inner_network_header_len(const struct sk_buff * skb)2621 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2622 {
2623 return skb->inner_transport_header - skb->inner_network_header;
2624 }
2625
skb_network_offset(const struct sk_buff * skb)2626 static inline int skb_network_offset(const struct sk_buff *skb)
2627 {
2628 return skb_network_header(skb) - skb->data;
2629 }
2630
skb_inner_network_offset(const struct sk_buff * skb)2631 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2632 {
2633 return skb_inner_network_header(skb) - skb->data;
2634 }
2635
pskb_network_may_pull(struct sk_buff * skb,unsigned int len)2636 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2637 {
2638 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2639 }
2640
2641 /*
2642 * CPUs often take a performance hit when accessing unaligned memory
2643 * locations. The actual performance hit varies, it can be small if the
2644 * hardware handles it or large if we have to take an exception and fix it
2645 * in software.
2646 *
2647 * Since an ethernet header is 14 bytes network drivers often end up with
2648 * the IP header at an unaligned offset. The IP header can be aligned by
2649 * shifting the start of the packet by 2 bytes. Drivers should do this
2650 * with:
2651 *
2652 * skb_reserve(skb, NET_IP_ALIGN);
2653 *
2654 * The downside to this alignment of the IP header is that the DMA is now
2655 * unaligned. On some architectures the cost of an unaligned DMA is high
2656 * and this cost outweighs the gains made by aligning the IP header.
2657 *
2658 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2659 * to be overridden.
2660 */
2661 #ifndef NET_IP_ALIGN
2662 #define NET_IP_ALIGN 2
2663 #endif
2664
2665 /*
2666 * The networking layer reserves some headroom in skb data (via
2667 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2668 * the header has to grow. In the default case, if the header has to grow
2669 * 32 bytes or less we avoid the reallocation.
2670 *
2671 * Unfortunately this headroom changes the DMA alignment of the resulting
2672 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2673 * on some architectures. An architecture can override this value,
2674 * perhaps setting it to a cacheline in size (since that will maintain
2675 * cacheline alignment of the DMA). It must be a power of 2.
2676 *
2677 * Various parts of the networking layer expect at least 32 bytes of
2678 * headroom, you should not reduce this.
2679 *
2680 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2681 * to reduce average number of cache lines per packet.
2682 * get_rps_cpu() for example only access one 64 bytes aligned block :
2683 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2684 */
2685 #ifndef NET_SKB_PAD
2686 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
2687 #endif
2688
2689 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2690
__skb_set_length(struct sk_buff * skb,unsigned int len)2691 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2692 {
2693 if (WARN_ON(skb_is_nonlinear(skb)))
2694 return;
2695 skb->len = len;
2696 skb_set_tail_pointer(skb, len);
2697 }
2698
__skb_trim(struct sk_buff * skb,unsigned int len)2699 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2700 {
2701 __skb_set_length(skb, len);
2702 }
2703
2704 void skb_trim(struct sk_buff *skb, unsigned int len);
2705
__pskb_trim(struct sk_buff * skb,unsigned int len)2706 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2707 {
2708 if (skb->data_len)
2709 return ___pskb_trim(skb, len);
2710 __skb_trim(skb, len);
2711 return 0;
2712 }
2713
pskb_trim(struct sk_buff * skb,unsigned int len)2714 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2715 {
2716 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2717 }
2718
2719 /**
2720 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2721 * @skb: buffer to alter
2722 * @len: new length
2723 *
2724 * This is identical to pskb_trim except that the caller knows that
2725 * the skb is not cloned so we should never get an error due to out-
2726 * of-memory.
2727 */
pskb_trim_unique(struct sk_buff * skb,unsigned int len)2728 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2729 {
2730 int err = pskb_trim(skb, len);
2731 BUG_ON(err);
2732 }
2733
__skb_grow(struct sk_buff * skb,unsigned int len)2734 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2735 {
2736 unsigned int diff = len - skb->len;
2737
2738 if (skb_tailroom(skb) < diff) {
2739 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2740 GFP_ATOMIC);
2741 if (ret)
2742 return ret;
2743 }
2744 __skb_set_length(skb, len);
2745 return 0;
2746 }
2747
2748 /**
2749 * skb_orphan - orphan a buffer
2750 * @skb: buffer to orphan
2751 *
2752 * If a buffer currently has an owner then we call the owner's
2753 * destructor function and make the @skb unowned. The buffer continues
2754 * to exist but is no longer charged to its former owner.
2755 */
skb_orphan(struct sk_buff * skb)2756 static inline void skb_orphan(struct sk_buff *skb)
2757 {
2758 if (skb->destructor) {
2759 skb->destructor(skb);
2760 skb->destructor = NULL;
2761 skb->sk = NULL;
2762 } else {
2763 BUG_ON(skb->sk);
2764 }
2765 }
2766
2767 /**
2768 * skb_orphan_frags - orphan the frags contained in a buffer
2769 * @skb: buffer to orphan frags from
2770 * @gfp_mask: allocation mask for replacement pages
2771 *
2772 * For each frag in the SKB which needs a destructor (i.e. has an
2773 * owner) create a copy of that frag and release the original
2774 * page by calling the destructor.
2775 */
skb_orphan_frags(struct sk_buff * skb,gfp_t gfp_mask)2776 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2777 {
2778 if (likely(!skb_zcopy(skb)))
2779 return 0;
2780 if (!skb_zcopy_is_nouarg(skb) &&
2781 skb_uarg(skb)->callback == sock_zerocopy_callback)
2782 return 0;
2783 return skb_copy_ubufs(skb, gfp_mask);
2784 }
2785
2786 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
skb_orphan_frags_rx(struct sk_buff * skb,gfp_t gfp_mask)2787 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2788 {
2789 if (likely(!skb_zcopy(skb)))
2790 return 0;
2791 return skb_copy_ubufs(skb, gfp_mask);
2792 }
2793
2794 /**
2795 * __skb_queue_purge - empty a list
2796 * @list: list to empty
2797 *
2798 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2799 * the list and one reference dropped. This function does not take the
2800 * list lock and the caller must hold the relevant locks to use it.
2801 */
__skb_queue_purge(struct sk_buff_head * list)2802 static inline void __skb_queue_purge(struct sk_buff_head *list)
2803 {
2804 struct sk_buff *skb;
2805 while ((skb = __skb_dequeue(list)) != NULL)
2806 kfree_skb(skb);
2807 }
2808 void skb_queue_purge(struct sk_buff_head *list);
2809
2810 unsigned int skb_rbtree_purge(struct rb_root *root);
2811
2812 void *netdev_alloc_frag(unsigned int fragsz);
2813
2814 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2815 gfp_t gfp_mask);
2816
2817 /**
2818 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2819 * @dev: network device to receive on
2820 * @length: length to allocate
2821 *
2822 * Allocate a new &sk_buff and assign it a usage count of one. The
2823 * buffer has unspecified headroom built in. Users should allocate
2824 * the headroom they think they need without accounting for the
2825 * built in space. The built in space is used for optimisations.
2826 *
2827 * %NULL is returned if there is no free memory. Although this function
2828 * allocates memory it can be called from an interrupt.
2829 */
netdev_alloc_skb(struct net_device * dev,unsigned int length)2830 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2831 unsigned int length)
2832 {
2833 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2834 }
2835
2836 /* legacy helper around __netdev_alloc_skb() */
__dev_alloc_skb(unsigned int length,gfp_t gfp_mask)2837 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2838 gfp_t gfp_mask)
2839 {
2840 return __netdev_alloc_skb(NULL, length, gfp_mask);
2841 }
2842
2843 /* legacy helper around netdev_alloc_skb() */
dev_alloc_skb(unsigned int length)2844 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2845 {
2846 return netdev_alloc_skb(NULL, length);
2847 }
2848
2849
__netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length,gfp_t gfp)2850 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2851 unsigned int length, gfp_t gfp)
2852 {
2853 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2854
2855 if (NET_IP_ALIGN && skb)
2856 skb_reserve(skb, NET_IP_ALIGN);
2857 return skb;
2858 }
2859
netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length)2860 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2861 unsigned int length)
2862 {
2863 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2864 }
2865
skb_free_frag(void * addr)2866 static inline void skb_free_frag(void *addr)
2867 {
2868 page_frag_free(addr);
2869 }
2870
2871 void *napi_alloc_frag(unsigned int fragsz);
2872 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2873 unsigned int length, gfp_t gfp_mask);
napi_alloc_skb(struct napi_struct * napi,unsigned int length)2874 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2875 unsigned int length)
2876 {
2877 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2878 }
2879 void napi_consume_skb(struct sk_buff *skb, int budget);
2880
2881 void __kfree_skb_flush(void);
2882 void __kfree_skb_defer(struct sk_buff *skb);
2883
2884 /**
2885 * __dev_alloc_pages - allocate page for network Rx
2886 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2887 * @order: size of the allocation
2888 *
2889 * Allocate a new page.
2890 *
2891 * %NULL is returned if there is no free memory.
2892 */
__dev_alloc_pages(gfp_t gfp_mask,unsigned int order)2893 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2894 unsigned int order)
2895 {
2896 /* This piece of code contains several assumptions.
2897 * 1. This is for device Rx, therefor a cold page is preferred.
2898 * 2. The expectation is the user wants a compound page.
2899 * 3. If requesting a order 0 page it will not be compound
2900 * due to the check to see if order has a value in prep_new_page
2901 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2902 * code in gfp_to_alloc_flags that should be enforcing this.
2903 */
2904 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2905
2906 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2907 }
2908
dev_alloc_pages(unsigned int order)2909 static inline struct page *dev_alloc_pages(unsigned int order)
2910 {
2911 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2912 }
2913
2914 /**
2915 * __dev_alloc_page - allocate a page for network Rx
2916 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2917 *
2918 * Allocate a new page.
2919 *
2920 * %NULL is returned if there is no free memory.
2921 */
__dev_alloc_page(gfp_t gfp_mask)2922 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2923 {
2924 return __dev_alloc_pages(gfp_mask, 0);
2925 }
2926
dev_alloc_page(void)2927 static inline struct page *dev_alloc_page(void)
2928 {
2929 return dev_alloc_pages(0);
2930 }
2931
2932 /**
2933 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2934 * @page: The page that was allocated from skb_alloc_page
2935 * @skb: The skb that may need pfmemalloc set
2936 */
skb_propagate_pfmemalloc(struct page * page,struct sk_buff * skb)2937 static inline void skb_propagate_pfmemalloc(struct page *page,
2938 struct sk_buff *skb)
2939 {
2940 if (page_is_pfmemalloc(page))
2941 skb->pfmemalloc = true;
2942 }
2943
2944 /**
2945 * skb_frag_off() - Returns the offset of a skb fragment
2946 * @frag: the paged fragment
2947 */
skb_frag_off(const skb_frag_t * frag)2948 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
2949 {
2950 return frag->bv_offset;
2951 }
2952
2953 /**
2954 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
2955 * @frag: skb fragment
2956 * @delta: value to add
2957 */
skb_frag_off_add(skb_frag_t * frag,int delta)2958 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
2959 {
2960 frag->bv_offset += delta;
2961 }
2962
2963 /**
2964 * skb_frag_off_set() - Sets the offset of a skb fragment
2965 * @frag: skb fragment
2966 * @offset: offset of fragment
2967 */
skb_frag_off_set(skb_frag_t * frag,unsigned int offset)2968 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
2969 {
2970 frag->bv_offset = offset;
2971 }
2972
2973 /**
2974 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
2975 * @fragto: skb fragment where offset is set
2976 * @fragfrom: skb fragment offset is copied from
2977 */
skb_frag_off_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)2978 static inline void skb_frag_off_copy(skb_frag_t *fragto,
2979 const skb_frag_t *fragfrom)
2980 {
2981 fragto->bv_offset = fragfrom->bv_offset;
2982 }
2983
2984 /**
2985 * skb_frag_page - retrieve the page referred to by a paged fragment
2986 * @frag: the paged fragment
2987 *
2988 * Returns the &struct page associated with @frag.
2989 */
skb_frag_page(const skb_frag_t * frag)2990 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2991 {
2992 return frag->bv_page;
2993 }
2994
2995 /**
2996 * __skb_frag_ref - take an addition reference on a paged fragment.
2997 * @frag: the paged fragment
2998 *
2999 * Takes an additional reference on the paged fragment @frag.
3000 */
__skb_frag_ref(skb_frag_t * frag)3001 static inline void __skb_frag_ref(skb_frag_t *frag)
3002 {
3003 get_page(skb_frag_page(frag));
3004 }
3005
3006 /**
3007 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3008 * @skb: the buffer
3009 * @f: the fragment offset.
3010 *
3011 * Takes an additional reference on the @f'th paged fragment of @skb.
3012 */
skb_frag_ref(struct sk_buff * skb,int f)3013 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3014 {
3015 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3016 }
3017
3018 /**
3019 * __skb_frag_unref - release a reference on a paged fragment.
3020 * @frag: the paged fragment
3021 *
3022 * Releases a reference on the paged fragment @frag.
3023 */
__skb_frag_unref(skb_frag_t * frag)3024 static inline void __skb_frag_unref(skb_frag_t *frag)
3025 {
3026 put_page(skb_frag_page(frag));
3027 }
3028
3029 /**
3030 * skb_frag_unref - release a reference on a paged fragment of an skb.
3031 * @skb: the buffer
3032 * @f: the fragment offset
3033 *
3034 * Releases a reference on the @f'th paged fragment of @skb.
3035 */
skb_frag_unref(struct sk_buff * skb,int f)3036 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3037 {
3038 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
3039 }
3040
3041 /**
3042 * skb_frag_address - gets the address of the data contained in a paged fragment
3043 * @frag: the paged fragment buffer
3044 *
3045 * Returns the address of the data within @frag. The page must already
3046 * be mapped.
3047 */
skb_frag_address(const skb_frag_t * frag)3048 static inline void *skb_frag_address(const skb_frag_t *frag)
3049 {
3050 return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3051 }
3052
3053 /**
3054 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3055 * @frag: the paged fragment buffer
3056 *
3057 * Returns the address of the data within @frag. Checks that the page
3058 * is mapped and returns %NULL otherwise.
3059 */
skb_frag_address_safe(const skb_frag_t * frag)3060 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3061 {
3062 void *ptr = page_address(skb_frag_page(frag));
3063 if (unlikely(!ptr))
3064 return NULL;
3065
3066 return ptr + skb_frag_off(frag);
3067 }
3068
3069 /**
3070 * skb_frag_page_copy() - sets the page in a fragment from another fragment
3071 * @fragto: skb fragment where page is set
3072 * @fragfrom: skb fragment page is copied from
3073 */
skb_frag_page_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3074 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3075 const skb_frag_t *fragfrom)
3076 {
3077 fragto->bv_page = fragfrom->bv_page;
3078 }
3079
3080 /**
3081 * __skb_frag_set_page - sets the page contained in a paged fragment
3082 * @frag: the paged fragment
3083 * @page: the page to set
3084 *
3085 * Sets the fragment @frag to contain @page.
3086 */
__skb_frag_set_page(skb_frag_t * frag,struct page * page)3087 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3088 {
3089 frag->bv_page = page;
3090 }
3091
3092 /**
3093 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3094 * @skb: the buffer
3095 * @f: the fragment offset
3096 * @page: the page to set
3097 *
3098 * Sets the @f'th fragment of @skb to contain @page.
3099 */
skb_frag_set_page(struct sk_buff * skb,int f,struct page * page)3100 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3101 struct page *page)
3102 {
3103 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3104 }
3105
3106 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3107
3108 /**
3109 * skb_frag_dma_map - maps a paged fragment via the DMA API
3110 * @dev: the device to map the fragment to
3111 * @frag: the paged fragment to map
3112 * @offset: the offset within the fragment (starting at the
3113 * fragment's own offset)
3114 * @size: the number of bytes to map
3115 * @dir: the direction of the mapping (``PCI_DMA_*``)
3116 *
3117 * Maps the page associated with @frag to @device.
3118 */
skb_frag_dma_map(struct device * dev,const skb_frag_t * frag,size_t offset,size_t size,enum dma_data_direction dir)3119 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3120 const skb_frag_t *frag,
3121 size_t offset, size_t size,
3122 enum dma_data_direction dir)
3123 {
3124 return dma_map_page(dev, skb_frag_page(frag),
3125 skb_frag_off(frag) + offset, size, dir);
3126 }
3127
pskb_copy(struct sk_buff * skb,gfp_t gfp_mask)3128 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3129 gfp_t gfp_mask)
3130 {
3131 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3132 }
3133
3134
pskb_copy_for_clone(struct sk_buff * skb,gfp_t gfp_mask)3135 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3136 gfp_t gfp_mask)
3137 {
3138 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3139 }
3140
3141
3142 /**
3143 * skb_clone_writable - is the header of a clone writable
3144 * @skb: buffer to check
3145 * @len: length up to which to write
3146 *
3147 * Returns true if modifying the header part of the cloned buffer
3148 * does not requires the data to be copied.
3149 */
skb_clone_writable(const struct sk_buff * skb,unsigned int len)3150 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3151 {
3152 return !skb_header_cloned(skb) &&
3153 skb_headroom(skb) + len <= skb->hdr_len;
3154 }
3155
skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)3156 static inline int skb_try_make_writable(struct sk_buff *skb,
3157 unsigned int write_len)
3158 {
3159 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3160 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3161 }
3162
__skb_cow(struct sk_buff * skb,unsigned int headroom,int cloned)3163 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3164 int cloned)
3165 {
3166 int delta = 0;
3167
3168 if (headroom > skb_headroom(skb))
3169 delta = headroom - skb_headroom(skb);
3170
3171 if (delta || cloned)
3172 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3173 GFP_ATOMIC);
3174 return 0;
3175 }
3176
3177 /**
3178 * skb_cow - copy header of skb when it is required
3179 * @skb: buffer to cow
3180 * @headroom: needed headroom
3181 *
3182 * If the skb passed lacks sufficient headroom or its data part
3183 * is shared, data is reallocated. If reallocation fails, an error
3184 * is returned and original skb is not changed.
3185 *
3186 * The result is skb with writable area skb->head...skb->tail
3187 * and at least @headroom of space at head.
3188 */
skb_cow(struct sk_buff * skb,unsigned int headroom)3189 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3190 {
3191 return __skb_cow(skb, headroom, skb_cloned(skb));
3192 }
3193
3194 /**
3195 * skb_cow_head - skb_cow but only making the head writable
3196 * @skb: buffer to cow
3197 * @headroom: needed headroom
3198 *
3199 * This function is identical to skb_cow except that we replace the
3200 * skb_cloned check by skb_header_cloned. It should be used when
3201 * you only need to push on some header and do not need to modify
3202 * the data.
3203 */
skb_cow_head(struct sk_buff * skb,unsigned int headroom)3204 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3205 {
3206 return __skb_cow(skb, headroom, skb_header_cloned(skb));
3207 }
3208
3209 /**
3210 * skb_padto - pad an skbuff up to a minimal size
3211 * @skb: buffer to pad
3212 * @len: minimal length
3213 *
3214 * Pads up a buffer to ensure the trailing bytes exist and are
3215 * blanked. If the buffer already contains sufficient data it
3216 * is untouched. Otherwise it is extended. Returns zero on
3217 * success. The skb is freed on error.
3218 */
skb_padto(struct sk_buff * skb,unsigned int len)3219 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3220 {
3221 unsigned int size = skb->len;
3222 if (likely(size >= len))
3223 return 0;
3224 return skb_pad(skb, len - size);
3225 }
3226
3227 /**
3228 * __skb_put_padto - increase size and pad an skbuff up to a minimal size
3229 * @skb: buffer to pad
3230 * @len: minimal length
3231 * @free_on_error: free buffer on error
3232 *
3233 * Pads up a buffer to ensure the trailing bytes exist and are
3234 * blanked. If the buffer already contains sufficient data it
3235 * is untouched. Otherwise it is extended. Returns zero on
3236 * success. The skb is freed on error if @free_on_error is true.
3237 */
__skb_put_padto(struct sk_buff * skb,unsigned int len,bool free_on_error)3238 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3239 unsigned int len,
3240 bool free_on_error)
3241 {
3242 unsigned int size = skb->len;
3243
3244 if (unlikely(size < len)) {
3245 len -= size;
3246 if (__skb_pad(skb, len, free_on_error))
3247 return -ENOMEM;
3248 __skb_put(skb, len);
3249 }
3250 return 0;
3251 }
3252
3253 /**
3254 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3255 * @skb: buffer to pad
3256 * @len: minimal length
3257 *
3258 * Pads up a buffer to ensure the trailing bytes exist and are
3259 * blanked. If the buffer already contains sufficient data it
3260 * is untouched. Otherwise it is extended. Returns zero on
3261 * success. The skb is freed on error.
3262 */
skb_put_padto(struct sk_buff * skb,unsigned int len)3263 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3264 {
3265 return __skb_put_padto(skb, len, true);
3266 }
3267
skb_add_data(struct sk_buff * skb,struct iov_iter * from,int copy)3268 static inline int skb_add_data(struct sk_buff *skb,
3269 struct iov_iter *from, int copy)
3270 {
3271 const int off = skb->len;
3272
3273 if (skb->ip_summed == CHECKSUM_NONE) {
3274 __wsum csum = 0;
3275 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3276 &csum, from)) {
3277 skb->csum = csum_block_add(skb->csum, csum, off);
3278 return 0;
3279 }
3280 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3281 return 0;
3282
3283 __skb_trim(skb, off);
3284 return -EFAULT;
3285 }
3286
skb_can_coalesce(struct sk_buff * skb,int i,const struct page * page,int off)3287 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3288 const struct page *page, int off)
3289 {
3290 if (skb_zcopy(skb))
3291 return false;
3292 if (i) {
3293 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3294
3295 return page == skb_frag_page(frag) &&
3296 off == skb_frag_off(frag) + skb_frag_size(frag);
3297 }
3298 return false;
3299 }
3300
__skb_linearize(struct sk_buff * skb)3301 static inline int __skb_linearize(struct sk_buff *skb)
3302 {
3303 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3304 }
3305
3306 /**
3307 * skb_linearize - convert paged skb to linear one
3308 * @skb: buffer to linarize
3309 *
3310 * If there is no free memory -ENOMEM is returned, otherwise zero
3311 * is returned and the old skb data released.
3312 */
skb_linearize(struct sk_buff * skb)3313 static inline int skb_linearize(struct sk_buff *skb)
3314 {
3315 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3316 }
3317
3318 /**
3319 * skb_has_shared_frag - can any frag be overwritten
3320 * @skb: buffer to test
3321 *
3322 * Return true if the skb has at least one frag that might be modified
3323 * by an external entity (as in vmsplice()/sendfile())
3324 */
skb_has_shared_frag(const struct sk_buff * skb)3325 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3326 {
3327 return skb_is_nonlinear(skb) &&
3328 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3329 }
3330
3331 /**
3332 * skb_linearize_cow - make sure skb is linear and writable
3333 * @skb: buffer to process
3334 *
3335 * If there is no free memory -ENOMEM is returned, otherwise zero
3336 * is returned and the old skb data released.
3337 */
skb_linearize_cow(struct sk_buff * skb)3338 static inline int skb_linearize_cow(struct sk_buff *skb)
3339 {
3340 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3341 __skb_linearize(skb) : 0;
3342 }
3343
3344 static __always_inline void
__skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3345 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3346 unsigned int off)
3347 {
3348 if (skb->ip_summed == CHECKSUM_COMPLETE)
3349 skb->csum = csum_block_sub(skb->csum,
3350 csum_partial(start, len, 0), off);
3351 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3352 skb_checksum_start_offset(skb) < 0)
3353 skb->ip_summed = CHECKSUM_NONE;
3354 }
3355
3356 /**
3357 * skb_postpull_rcsum - update checksum for received skb after pull
3358 * @skb: buffer to update
3359 * @start: start of data before pull
3360 * @len: length of data pulled
3361 *
3362 * After doing a pull on a received packet, you need to call this to
3363 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3364 * CHECKSUM_NONE so that it can be recomputed from scratch.
3365 */
skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3366 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3367 const void *start, unsigned int len)
3368 {
3369 __skb_postpull_rcsum(skb, start, len, 0);
3370 }
3371
3372 static __always_inline void
__skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3373 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3374 unsigned int off)
3375 {
3376 if (skb->ip_summed == CHECKSUM_COMPLETE)
3377 skb->csum = csum_block_add(skb->csum,
3378 csum_partial(start, len, 0), off);
3379 }
3380
3381 /**
3382 * skb_postpush_rcsum - update checksum for received skb after push
3383 * @skb: buffer to update
3384 * @start: start of data after push
3385 * @len: length of data pushed
3386 *
3387 * After doing a push on a received packet, you need to call this to
3388 * update the CHECKSUM_COMPLETE checksum.
3389 */
skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3390 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3391 const void *start, unsigned int len)
3392 {
3393 __skb_postpush_rcsum(skb, start, len, 0);
3394 }
3395
3396 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3397
3398 /**
3399 * skb_push_rcsum - push skb and update receive checksum
3400 * @skb: buffer to update
3401 * @len: length of data pulled
3402 *
3403 * This function performs an skb_push on the packet and updates
3404 * the CHECKSUM_COMPLETE checksum. It should be used on
3405 * receive path processing instead of skb_push unless you know
3406 * that the checksum difference is zero (e.g., a valid IP header)
3407 * or you are setting ip_summed to CHECKSUM_NONE.
3408 */
skb_push_rcsum(struct sk_buff * skb,unsigned int len)3409 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3410 {
3411 skb_push(skb, len);
3412 skb_postpush_rcsum(skb, skb->data, len);
3413 return skb->data;
3414 }
3415
3416 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3417 /**
3418 * pskb_trim_rcsum - trim received skb and update checksum
3419 * @skb: buffer to trim
3420 * @len: new length
3421 *
3422 * This is exactly the same as pskb_trim except that it ensures the
3423 * checksum of received packets are still valid after the operation.
3424 * It can change skb pointers.
3425 */
3426
pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)3427 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3428 {
3429 if (likely(len >= skb->len))
3430 return 0;
3431 return pskb_trim_rcsum_slow(skb, len);
3432 }
3433
__skb_trim_rcsum(struct sk_buff * skb,unsigned int len)3434 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3435 {
3436 if (skb->ip_summed == CHECKSUM_COMPLETE)
3437 skb->ip_summed = CHECKSUM_NONE;
3438 __skb_trim(skb, len);
3439 return 0;
3440 }
3441
__skb_grow_rcsum(struct sk_buff * skb,unsigned int len)3442 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3443 {
3444 if (skb->ip_summed == CHECKSUM_COMPLETE)
3445 skb->ip_summed = CHECKSUM_NONE;
3446 return __skb_grow(skb, len);
3447 }
3448
3449 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3450 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3451 #define skb_rb_last(root) rb_to_skb(rb_last(root))
3452 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3453 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3454
3455 #define skb_queue_walk(queue, skb) \
3456 for (skb = (queue)->next; \
3457 skb != (struct sk_buff *)(queue); \
3458 skb = skb->next)
3459
3460 #define skb_queue_walk_safe(queue, skb, tmp) \
3461 for (skb = (queue)->next, tmp = skb->next; \
3462 skb != (struct sk_buff *)(queue); \
3463 skb = tmp, tmp = skb->next)
3464
3465 #define skb_queue_walk_from(queue, skb) \
3466 for (; skb != (struct sk_buff *)(queue); \
3467 skb = skb->next)
3468
3469 #define skb_rbtree_walk(skb, root) \
3470 for (skb = skb_rb_first(root); skb != NULL; \
3471 skb = skb_rb_next(skb))
3472
3473 #define skb_rbtree_walk_from(skb) \
3474 for (; skb != NULL; \
3475 skb = skb_rb_next(skb))
3476
3477 #define skb_rbtree_walk_from_safe(skb, tmp) \
3478 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3479 skb = tmp)
3480
3481 #define skb_queue_walk_from_safe(queue, skb, tmp) \
3482 for (tmp = skb->next; \
3483 skb != (struct sk_buff *)(queue); \
3484 skb = tmp, tmp = skb->next)
3485
3486 #define skb_queue_reverse_walk(queue, skb) \
3487 for (skb = (queue)->prev; \
3488 skb != (struct sk_buff *)(queue); \
3489 skb = skb->prev)
3490
3491 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3492 for (skb = (queue)->prev, tmp = skb->prev; \
3493 skb != (struct sk_buff *)(queue); \
3494 skb = tmp, tmp = skb->prev)
3495
3496 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3497 for (tmp = skb->prev; \
3498 skb != (struct sk_buff *)(queue); \
3499 skb = tmp, tmp = skb->prev)
3500
skb_has_frag_list(const struct sk_buff * skb)3501 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3502 {
3503 return skb_shinfo(skb)->frag_list != NULL;
3504 }
3505
skb_frag_list_init(struct sk_buff * skb)3506 static inline void skb_frag_list_init(struct sk_buff *skb)
3507 {
3508 skb_shinfo(skb)->frag_list = NULL;
3509 }
3510
3511 #define skb_walk_frags(skb, iter) \
3512 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3513
3514
3515 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3516 int *err, long *timeo_p,
3517 const struct sk_buff *skb);
3518 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3519 struct sk_buff_head *queue,
3520 unsigned int flags,
3521 int *off, int *err,
3522 struct sk_buff **last);
3523 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3524 struct sk_buff_head *queue,
3525 unsigned int flags, int *off, int *err,
3526 struct sk_buff **last);
3527 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3528 struct sk_buff_head *sk_queue,
3529 unsigned int flags, int *off, int *err);
3530 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3531 int *err);
3532 __poll_t datagram_poll(struct file *file, struct socket *sock,
3533 struct poll_table_struct *wait);
3534 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3535 struct iov_iter *to, int size);
skb_copy_datagram_msg(const struct sk_buff * from,int offset,struct msghdr * msg,int size)3536 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3537 struct msghdr *msg, int size)
3538 {
3539 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3540 }
3541 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3542 struct msghdr *msg);
3543 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3544 struct iov_iter *to, int len,
3545 struct ahash_request *hash);
3546 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3547 struct iov_iter *from, int len);
3548 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3549 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3550 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
skb_free_datagram_locked(struct sock * sk,struct sk_buff * skb)3551 static inline void skb_free_datagram_locked(struct sock *sk,
3552 struct sk_buff *skb)
3553 {
3554 __skb_free_datagram_locked(sk, skb, 0);
3555 }
3556 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3557 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3558 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3559 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3560 int len);
3561 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3562 struct pipe_inode_info *pipe, unsigned int len,
3563 unsigned int flags);
3564 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3565 int len);
3566 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3567 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3568 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3569 int len, int hlen);
3570 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3571 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3572 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3573 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3574 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3575 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3576 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3577 unsigned int offset);
3578 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3579 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3580 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3581 int skb_vlan_pop(struct sk_buff *skb);
3582 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3583 int skb_eth_pop(struct sk_buff *skb);
3584 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3585 const unsigned char *src);
3586 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3587 int mac_len, bool ethernet);
3588 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3589 bool ethernet);
3590 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3591 int skb_mpls_dec_ttl(struct sk_buff *skb);
3592 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3593 gfp_t gfp);
3594
memcpy_from_msg(void * data,struct msghdr * msg,int len)3595 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3596 {
3597 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3598 }
3599
memcpy_to_msg(struct msghdr * msg,void * data,int len)3600 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3601 {
3602 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3603 }
3604
3605 struct skb_checksum_ops {
3606 __wsum (*update)(const void *mem, int len, __wsum wsum);
3607 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3608 };
3609
3610 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3611
3612 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3613 __wsum csum, const struct skb_checksum_ops *ops);
3614 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3615 __wsum csum);
3616
3617 static inline void * __must_check
__skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * data,int hlen,void * buffer)3618 __skb_header_pointer(const struct sk_buff *skb, int offset,
3619 int len, void *data, int hlen, void *buffer)
3620 {
3621 if (hlen - offset >= len)
3622 return data + offset;
3623
3624 if (!skb ||
3625 skb_copy_bits(skb, offset, buffer, len) < 0)
3626 return NULL;
3627
3628 return buffer;
3629 }
3630
3631 static inline void * __must_check
skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)3632 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3633 {
3634 return __skb_header_pointer(skb, offset, len, skb->data,
3635 skb_headlen(skb), buffer);
3636 }
3637
3638 /**
3639 * skb_needs_linearize - check if we need to linearize a given skb
3640 * depending on the given device features.
3641 * @skb: socket buffer to check
3642 * @features: net device features
3643 *
3644 * Returns true if either:
3645 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3646 * 2. skb is fragmented and the device does not support SG.
3647 */
skb_needs_linearize(struct sk_buff * skb,netdev_features_t features)3648 static inline bool skb_needs_linearize(struct sk_buff *skb,
3649 netdev_features_t features)
3650 {
3651 return skb_is_nonlinear(skb) &&
3652 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3653 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3654 }
3655
skb_copy_from_linear_data(const struct sk_buff * skb,void * to,const unsigned int len)3656 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3657 void *to,
3658 const unsigned int len)
3659 {
3660 memcpy(to, skb->data, len);
3661 }
3662
skb_copy_from_linear_data_offset(const struct sk_buff * skb,const int offset,void * to,const unsigned int len)3663 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3664 const int offset, void *to,
3665 const unsigned int len)
3666 {
3667 memcpy(to, skb->data + offset, len);
3668 }
3669
skb_copy_to_linear_data(struct sk_buff * skb,const void * from,const unsigned int len)3670 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3671 const void *from,
3672 const unsigned int len)
3673 {
3674 memcpy(skb->data, from, len);
3675 }
3676
skb_copy_to_linear_data_offset(struct sk_buff * skb,const int offset,const void * from,const unsigned int len)3677 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3678 const int offset,
3679 const void *from,
3680 const unsigned int len)
3681 {
3682 memcpy(skb->data + offset, from, len);
3683 }
3684
3685 void skb_init(void);
3686
skb_get_ktime(const struct sk_buff * skb)3687 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3688 {
3689 return skb->tstamp;
3690 }
3691
3692 /**
3693 * skb_get_timestamp - get timestamp from a skb
3694 * @skb: skb to get stamp from
3695 * @stamp: pointer to struct __kernel_old_timeval to store stamp in
3696 *
3697 * Timestamps are stored in the skb as offsets to a base timestamp.
3698 * This function converts the offset back to a struct timeval and stores
3699 * it in stamp.
3700 */
skb_get_timestamp(const struct sk_buff * skb,struct __kernel_old_timeval * stamp)3701 static inline void skb_get_timestamp(const struct sk_buff *skb,
3702 struct __kernel_old_timeval *stamp)
3703 {
3704 *stamp = ns_to_kernel_old_timeval(skb->tstamp);
3705 }
3706
skb_get_new_timestamp(const struct sk_buff * skb,struct __kernel_sock_timeval * stamp)3707 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3708 struct __kernel_sock_timeval *stamp)
3709 {
3710 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3711
3712 stamp->tv_sec = ts.tv_sec;
3713 stamp->tv_usec = ts.tv_nsec / 1000;
3714 }
3715
skb_get_timestampns(const struct sk_buff * skb,struct __kernel_old_timespec * stamp)3716 static inline void skb_get_timestampns(const struct sk_buff *skb,
3717 struct __kernel_old_timespec *stamp)
3718 {
3719 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3720
3721 stamp->tv_sec = ts.tv_sec;
3722 stamp->tv_nsec = ts.tv_nsec;
3723 }
3724
skb_get_new_timestampns(const struct sk_buff * skb,struct __kernel_timespec * stamp)3725 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3726 struct __kernel_timespec *stamp)
3727 {
3728 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3729
3730 stamp->tv_sec = ts.tv_sec;
3731 stamp->tv_nsec = ts.tv_nsec;
3732 }
3733
__net_timestamp(struct sk_buff * skb)3734 static inline void __net_timestamp(struct sk_buff *skb)
3735 {
3736 skb->tstamp = ktime_get_real();
3737 }
3738
net_timedelta(ktime_t t)3739 static inline ktime_t net_timedelta(ktime_t t)
3740 {
3741 return ktime_sub(ktime_get_real(), t);
3742 }
3743
net_invalid_timestamp(void)3744 static inline ktime_t net_invalid_timestamp(void)
3745 {
3746 return 0;
3747 }
3748
skb_metadata_len(const struct sk_buff * skb)3749 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3750 {
3751 return skb_shinfo(skb)->meta_len;
3752 }
3753
skb_metadata_end(const struct sk_buff * skb)3754 static inline void *skb_metadata_end(const struct sk_buff *skb)
3755 {
3756 return skb_mac_header(skb);
3757 }
3758
__skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b,u8 meta_len)3759 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3760 const struct sk_buff *skb_b,
3761 u8 meta_len)
3762 {
3763 const void *a = skb_metadata_end(skb_a);
3764 const void *b = skb_metadata_end(skb_b);
3765 /* Using more efficient varaiant than plain call to memcmp(). */
3766 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3767 u64 diffs = 0;
3768
3769 switch (meta_len) {
3770 #define __it(x, op) (x -= sizeof(u##op))
3771 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3772 case 32: diffs |= __it_diff(a, b, 64);
3773 fallthrough;
3774 case 24: diffs |= __it_diff(a, b, 64);
3775 fallthrough;
3776 case 16: diffs |= __it_diff(a, b, 64);
3777 fallthrough;
3778 case 8: diffs |= __it_diff(a, b, 64);
3779 break;
3780 case 28: diffs |= __it_diff(a, b, 64);
3781 fallthrough;
3782 case 20: diffs |= __it_diff(a, b, 64);
3783 fallthrough;
3784 case 12: diffs |= __it_diff(a, b, 64);
3785 fallthrough;
3786 case 4: diffs |= __it_diff(a, b, 32);
3787 break;
3788 }
3789 return diffs;
3790 #else
3791 return memcmp(a - meta_len, b - meta_len, meta_len);
3792 #endif
3793 }
3794
skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b)3795 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3796 const struct sk_buff *skb_b)
3797 {
3798 u8 len_a = skb_metadata_len(skb_a);
3799 u8 len_b = skb_metadata_len(skb_b);
3800
3801 if (!(len_a | len_b))
3802 return false;
3803
3804 return len_a != len_b ?
3805 true : __skb_metadata_differs(skb_a, skb_b, len_a);
3806 }
3807
skb_metadata_set(struct sk_buff * skb,u8 meta_len)3808 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3809 {
3810 skb_shinfo(skb)->meta_len = meta_len;
3811 }
3812
skb_metadata_clear(struct sk_buff * skb)3813 static inline void skb_metadata_clear(struct sk_buff *skb)
3814 {
3815 skb_metadata_set(skb, 0);
3816 }
3817
3818 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3819
3820 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3821
3822 void skb_clone_tx_timestamp(struct sk_buff *skb);
3823 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3824
3825 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3826
skb_clone_tx_timestamp(struct sk_buff * skb)3827 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3828 {
3829 }
3830
skb_defer_rx_timestamp(struct sk_buff * skb)3831 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3832 {
3833 return false;
3834 }
3835
3836 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3837
3838 /**
3839 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3840 *
3841 * PHY drivers may accept clones of transmitted packets for
3842 * timestamping via their phy_driver.txtstamp method. These drivers
3843 * must call this function to return the skb back to the stack with a
3844 * timestamp.
3845 *
3846 * @skb: clone of the original outgoing packet
3847 * @hwtstamps: hardware time stamps
3848 *
3849 */
3850 void skb_complete_tx_timestamp(struct sk_buff *skb,
3851 struct skb_shared_hwtstamps *hwtstamps);
3852
3853 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3854 struct skb_shared_hwtstamps *hwtstamps,
3855 struct sock *sk, int tstype);
3856
3857 /**
3858 * skb_tstamp_tx - queue clone of skb with send time stamps
3859 * @orig_skb: the original outgoing packet
3860 * @hwtstamps: hardware time stamps, may be NULL if not available
3861 *
3862 * If the skb has a socket associated, then this function clones the
3863 * skb (thus sharing the actual data and optional structures), stores
3864 * the optional hardware time stamping information (if non NULL) or
3865 * generates a software time stamp (otherwise), then queues the clone
3866 * to the error queue of the socket. Errors are silently ignored.
3867 */
3868 void skb_tstamp_tx(struct sk_buff *orig_skb,
3869 struct skb_shared_hwtstamps *hwtstamps);
3870
3871 /**
3872 * skb_tx_timestamp() - Driver hook for transmit timestamping
3873 *
3874 * Ethernet MAC Drivers should call this function in their hard_xmit()
3875 * function immediately before giving the sk_buff to the MAC hardware.
3876 *
3877 * Specifically, one should make absolutely sure that this function is
3878 * called before TX completion of this packet can trigger. Otherwise
3879 * the packet could potentially already be freed.
3880 *
3881 * @skb: A socket buffer.
3882 */
skb_tx_timestamp(struct sk_buff * skb)3883 static inline void skb_tx_timestamp(struct sk_buff *skb)
3884 {
3885 skb_clone_tx_timestamp(skb);
3886 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3887 skb_tstamp_tx(skb, NULL);
3888 }
3889
3890 /**
3891 * skb_complete_wifi_ack - deliver skb with wifi status
3892 *
3893 * @skb: the original outgoing packet
3894 * @acked: ack status
3895 *
3896 */
3897 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3898
3899 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3900 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3901
skb_csum_unnecessary(const struct sk_buff * skb)3902 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3903 {
3904 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3905 skb->csum_valid ||
3906 (skb->ip_summed == CHECKSUM_PARTIAL &&
3907 skb_checksum_start_offset(skb) >= 0));
3908 }
3909
3910 /**
3911 * skb_checksum_complete - Calculate checksum of an entire packet
3912 * @skb: packet to process
3913 *
3914 * This function calculates the checksum over the entire packet plus
3915 * the value of skb->csum. The latter can be used to supply the
3916 * checksum of a pseudo header as used by TCP/UDP. It returns the
3917 * checksum.
3918 *
3919 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3920 * this function can be used to verify that checksum on received
3921 * packets. In that case the function should return zero if the
3922 * checksum is correct. In particular, this function will return zero
3923 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3924 * hardware has already verified the correctness of the checksum.
3925 */
skb_checksum_complete(struct sk_buff * skb)3926 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3927 {
3928 return skb_csum_unnecessary(skb) ?
3929 0 : __skb_checksum_complete(skb);
3930 }
3931
__skb_decr_checksum_unnecessary(struct sk_buff * skb)3932 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3933 {
3934 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3935 if (skb->csum_level == 0)
3936 skb->ip_summed = CHECKSUM_NONE;
3937 else
3938 skb->csum_level--;
3939 }
3940 }
3941
__skb_incr_checksum_unnecessary(struct sk_buff * skb)3942 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3943 {
3944 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3945 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3946 skb->csum_level++;
3947 } else if (skb->ip_summed == CHECKSUM_NONE) {
3948 skb->ip_summed = CHECKSUM_UNNECESSARY;
3949 skb->csum_level = 0;
3950 }
3951 }
3952
__skb_reset_checksum_unnecessary(struct sk_buff * skb)3953 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
3954 {
3955 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3956 skb->ip_summed = CHECKSUM_NONE;
3957 skb->csum_level = 0;
3958 }
3959 }
3960
3961 /* Check if we need to perform checksum complete validation.
3962 *
3963 * Returns true if checksum complete is needed, false otherwise
3964 * (either checksum is unnecessary or zero checksum is allowed).
3965 */
__skb_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)3966 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3967 bool zero_okay,
3968 __sum16 check)
3969 {
3970 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3971 skb->csum_valid = 1;
3972 __skb_decr_checksum_unnecessary(skb);
3973 return false;
3974 }
3975
3976 return true;
3977 }
3978
3979 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3980 * in checksum_init.
3981 */
3982 #define CHECKSUM_BREAK 76
3983
3984 /* Unset checksum-complete
3985 *
3986 * Unset checksum complete can be done when packet is being modified
3987 * (uncompressed for instance) and checksum-complete value is
3988 * invalidated.
3989 */
skb_checksum_complete_unset(struct sk_buff * skb)3990 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3991 {
3992 if (skb->ip_summed == CHECKSUM_COMPLETE)
3993 skb->ip_summed = CHECKSUM_NONE;
3994 }
3995
3996 /* Validate (init) checksum based on checksum complete.
3997 *
3998 * Return values:
3999 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
4000 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4001 * checksum is stored in skb->csum for use in __skb_checksum_complete
4002 * non-zero: value of invalid checksum
4003 *
4004 */
__skb_checksum_validate_complete(struct sk_buff * skb,bool complete,__wsum psum)4005 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4006 bool complete,
4007 __wsum psum)
4008 {
4009 if (skb->ip_summed == CHECKSUM_COMPLETE) {
4010 if (!csum_fold(csum_add(psum, skb->csum))) {
4011 skb->csum_valid = 1;
4012 return 0;
4013 }
4014 }
4015
4016 skb->csum = psum;
4017
4018 if (complete || skb->len <= CHECKSUM_BREAK) {
4019 __sum16 csum;
4020
4021 csum = __skb_checksum_complete(skb);
4022 skb->csum_valid = !csum;
4023 return csum;
4024 }
4025
4026 return 0;
4027 }
4028
null_compute_pseudo(struct sk_buff * skb,int proto)4029 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4030 {
4031 return 0;
4032 }
4033
4034 /* Perform checksum validate (init). Note that this is a macro since we only
4035 * want to calculate the pseudo header which is an input function if necessary.
4036 * First we try to validate without any computation (checksum unnecessary) and
4037 * then calculate based on checksum complete calling the function to compute
4038 * pseudo header.
4039 *
4040 * Return values:
4041 * 0: checksum is validated or try to in skb_checksum_complete
4042 * non-zero: value of invalid checksum
4043 */
4044 #define __skb_checksum_validate(skb, proto, complete, \
4045 zero_okay, check, compute_pseudo) \
4046 ({ \
4047 __sum16 __ret = 0; \
4048 skb->csum_valid = 0; \
4049 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
4050 __ret = __skb_checksum_validate_complete(skb, \
4051 complete, compute_pseudo(skb, proto)); \
4052 __ret; \
4053 })
4054
4055 #define skb_checksum_init(skb, proto, compute_pseudo) \
4056 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4057
4058 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
4059 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4060
4061 #define skb_checksum_validate(skb, proto, compute_pseudo) \
4062 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4063
4064 #define skb_checksum_validate_zero_check(skb, proto, check, \
4065 compute_pseudo) \
4066 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4067
4068 #define skb_checksum_simple_validate(skb) \
4069 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4070
__skb_checksum_convert_check(struct sk_buff * skb)4071 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4072 {
4073 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4074 }
4075
__skb_checksum_convert(struct sk_buff * skb,__wsum pseudo)4076 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4077 {
4078 skb->csum = ~pseudo;
4079 skb->ip_summed = CHECKSUM_COMPLETE;
4080 }
4081
4082 #define skb_checksum_try_convert(skb, proto, compute_pseudo) \
4083 do { \
4084 if (__skb_checksum_convert_check(skb)) \
4085 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4086 } while (0)
4087
skb_remcsum_adjust_partial(struct sk_buff * skb,void * ptr,u16 start,u16 offset)4088 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4089 u16 start, u16 offset)
4090 {
4091 skb->ip_summed = CHECKSUM_PARTIAL;
4092 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4093 skb->csum_offset = offset - start;
4094 }
4095
4096 /* Update skbuf and packet to reflect the remote checksum offload operation.
4097 * When called, ptr indicates the starting point for skb->csum when
4098 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4099 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4100 */
skb_remcsum_process(struct sk_buff * skb,void * ptr,int start,int offset,bool nopartial)4101 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4102 int start, int offset, bool nopartial)
4103 {
4104 __wsum delta;
4105
4106 if (!nopartial) {
4107 skb_remcsum_adjust_partial(skb, ptr, start, offset);
4108 return;
4109 }
4110
4111 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4112 __skb_checksum_complete(skb);
4113 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4114 }
4115
4116 delta = remcsum_adjust(ptr, skb->csum, start, offset);
4117
4118 /* Adjust skb->csum since we changed the packet */
4119 skb->csum = csum_add(skb->csum, delta);
4120 }
4121
skb_nfct(const struct sk_buff * skb)4122 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4123 {
4124 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4125 return (void *)(skb->_nfct & NFCT_PTRMASK);
4126 #else
4127 return NULL;
4128 #endif
4129 }
4130
skb_get_nfct(const struct sk_buff * skb)4131 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4132 {
4133 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4134 return skb->_nfct;
4135 #else
4136 return 0UL;
4137 #endif
4138 }
4139
skb_set_nfct(struct sk_buff * skb,unsigned long nfct)4140 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4141 {
4142 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4143 skb->_nfct = nfct;
4144 #endif
4145 }
4146
4147 #ifdef CONFIG_SKB_EXTENSIONS
4148 enum skb_ext_id {
4149 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4150 SKB_EXT_BRIDGE_NF,
4151 #endif
4152 #ifdef CONFIG_XFRM
4153 SKB_EXT_SEC_PATH,
4154 #endif
4155 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4156 TC_SKB_EXT,
4157 #endif
4158 #if IS_ENABLED(CONFIG_MPTCP)
4159 SKB_EXT_MPTCP,
4160 #endif
4161 SKB_EXT_NUM, /* must be last */
4162 };
4163
4164 /**
4165 * struct skb_ext - sk_buff extensions
4166 * @refcnt: 1 on allocation, deallocated on 0
4167 * @offset: offset to add to @data to obtain extension address
4168 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4169 * @data: start of extension data, variable sized
4170 *
4171 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4172 * to use 'u8' types while allowing up to 2kb worth of extension data.
4173 */
4174 struct skb_ext {
4175 refcount_t refcnt;
4176 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4177 u8 chunks; /* same */
4178 char data[] __aligned(8);
4179 };
4180
4181 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4182 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4183 struct skb_ext *ext);
4184 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4185 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4186 void __skb_ext_put(struct skb_ext *ext);
4187
skb_ext_put(struct sk_buff * skb)4188 static inline void skb_ext_put(struct sk_buff *skb)
4189 {
4190 if (skb->active_extensions)
4191 __skb_ext_put(skb->extensions);
4192 }
4193
__skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4194 static inline void __skb_ext_copy(struct sk_buff *dst,
4195 const struct sk_buff *src)
4196 {
4197 dst->active_extensions = src->active_extensions;
4198
4199 if (src->active_extensions) {
4200 struct skb_ext *ext = src->extensions;
4201
4202 refcount_inc(&ext->refcnt);
4203 dst->extensions = ext;
4204 }
4205 }
4206
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4207 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4208 {
4209 skb_ext_put(dst);
4210 __skb_ext_copy(dst, src);
4211 }
4212
__skb_ext_exist(const struct skb_ext * ext,enum skb_ext_id i)4213 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4214 {
4215 return !!ext->offset[i];
4216 }
4217
skb_ext_exist(const struct sk_buff * skb,enum skb_ext_id id)4218 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4219 {
4220 return skb->active_extensions & (1 << id);
4221 }
4222
skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)4223 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4224 {
4225 if (skb_ext_exist(skb, id))
4226 __skb_ext_del(skb, id);
4227 }
4228
skb_ext_find(const struct sk_buff * skb,enum skb_ext_id id)4229 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4230 {
4231 if (skb_ext_exist(skb, id)) {
4232 struct skb_ext *ext = skb->extensions;
4233
4234 return (void *)ext + (ext->offset[id] << 3);
4235 }
4236
4237 return NULL;
4238 }
4239
skb_ext_reset(struct sk_buff * skb)4240 static inline void skb_ext_reset(struct sk_buff *skb)
4241 {
4242 if (unlikely(skb->active_extensions)) {
4243 __skb_ext_put(skb->extensions);
4244 skb->active_extensions = 0;
4245 }
4246 }
4247
skb_has_extensions(struct sk_buff * skb)4248 static inline bool skb_has_extensions(struct sk_buff *skb)
4249 {
4250 return unlikely(skb->active_extensions);
4251 }
4252 #else
skb_ext_put(struct sk_buff * skb)4253 static inline void skb_ext_put(struct sk_buff *skb) {}
skb_ext_reset(struct sk_buff * skb)4254 static inline void skb_ext_reset(struct sk_buff *skb) {}
skb_ext_del(struct sk_buff * skb,int unused)4255 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
__skb_ext_copy(struct sk_buff * d,const struct sk_buff * s)4256 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * s)4257 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
skb_has_extensions(struct sk_buff * skb)4258 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4259 #endif /* CONFIG_SKB_EXTENSIONS */
4260
nf_reset_ct(struct sk_buff * skb)4261 static inline void nf_reset_ct(struct sk_buff *skb)
4262 {
4263 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4264 nf_conntrack_put(skb_nfct(skb));
4265 skb->_nfct = 0;
4266 #endif
4267 }
4268
nf_reset_trace(struct sk_buff * skb)4269 static inline void nf_reset_trace(struct sk_buff *skb)
4270 {
4271 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4272 skb->nf_trace = 0;
4273 #endif
4274 }
4275
ipvs_reset(struct sk_buff * skb)4276 static inline void ipvs_reset(struct sk_buff *skb)
4277 {
4278 #if IS_ENABLED(CONFIG_IP_VS)
4279 skb->ipvs_property = 0;
4280 #endif
4281 }
4282
4283 /* Note: This doesn't put any conntrack info in dst. */
__nf_copy(struct sk_buff * dst,const struct sk_buff * src,bool copy)4284 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4285 bool copy)
4286 {
4287 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4288 dst->_nfct = src->_nfct;
4289 nf_conntrack_get(skb_nfct(src));
4290 #endif
4291 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4292 if (copy)
4293 dst->nf_trace = src->nf_trace;
4294 #endif
4295 }
4296
nf_copy(struct sk_buff * dst,const struct sk_buff * src)4297 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4298 {
4299 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4300 nf_conntrack_put(skb_nfct(dst));
4301 #endif
4302 __nf_copy(dst, src, true);
4303 }
4304
4305 #ifdef CONFIG_NETWORK_SECMARK
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4306 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4307 {
4308 to->secmark = from->secmark;
4309 }
4310
skb_init_secmark(struct sk_buff * skb)4311 static inline void skb_init_secmark(struct sk_buff *skb)
4312 {
4313 skb->secmark = 0;
4314 }
4315 #else
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4316 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4317 { }
4318
skb_init_secmark(struct sk_buff * skb)4319 static inline void skb_init_secmark(struct sk_buff *skb)
4320 { }
4321 #endif
4322
secpath_exists(const struct sk_buff * skb)4323 static inline int secpath_exists(const struct sk_buff *skb)
4324 {
4325 #ifdef CONFIG_XFRM
4326 return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4327 #else
4328 return 0;
4329 #endif
4330 }
4331
skb_irq_freeable(const struct sk_buff * skb)4332 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4333 {
4334 return !skb->destructor &&
4335 !secpath_exists(skb) &&
4336 !skb_nfct(skb) &&
4337 !skb->_skb_refdst &&
4338 !skb_has_frag_list(skb);
4339 }
4340
skb_set_queue_mapping(struct sk_buff * skb,u16 queue_mapping)4341 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4342 {
4343 skb->queue_mapping = queue_mapping;
4344 }
4345
skb_get_queue_mapping(const struct sk_buff * skb)4346 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4347 {
4348 return skb->queue_mapping;
4349 }
4350
skb_copy_queue_mapping(struct sk_buff * to,const struct sk_buff * from)4351 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4352 {
4353 to->queue_mapping = from->queue_mapping;
4354 }
4355
skb_record_rx_queue(struct sk_buff * skb,u16 rx_queue)4356 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4357 {
4358 skb->queue_mapping = rx_queue + 1;
4359 }
4360
skb_get_rx_queue(const struct sk_buff * skb)4361 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4362 {
4363 return skb->queue_mapping - 1;
4364 }
4365
skb_rx_queue_recorded(const struct sk_buff * skb)4366 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4367 {
4368 return skb->queue_mapping != 0;
4369 }
4370
skb_set_dst_pending_confirm(struct sk_buff * skb,u32 val)4371 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4372 {
4373 skb->dst_pending_confirm = val;
4374 }
4375
skb_get_dst_pending_confirm(const struct sk_buff * skb)4376 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4377 {
4378 return skb->dst_pending_confirm != 0;
4379 }
4380
skb_sec_path(const struct sk_buff * skb)4381 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4382 {
4383 #ifdef CONFIG_XFRM
4384 return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4385 #else
4386 return NULL;
4387 #endif
4388 }
4389
4390 /* Keeps track of mac header offset relative to skb->head.
4391 * It is useful for TSO of Tunneling protocol. e.g. GRE.
4392 * For non-tunnel skb it points to skb_mac_header() and for
4393 * tunnel skb it points to outer mac header.
4394 * Keeps track of level of encapsulation of network headers.
4395 */
4396 struct skb_gso_cb {
4397 union {
4398 int mac_offset;
4399 int data_offset;
4400 };
4401 int encap_level;
4402 __wsum csum;
4403 __u16 csum_start;
4404 };
4405 #define SKB_GSO_CB_OFFSET 32
4406 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4407
skb_tnl_header_len(const struct sk_buff * inner_skb)4408 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4409 {
4410 return (skb_mac_header(inner_skb) - inner_skb->head) -
4411 SKB_GSO_CB(inner_skb)->mac_offset;
4412 }
4413
gso_pskb_expand_head(struct sk_buff * skb,int extra)4414 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4415 {
4416 int new_headroom, headroom;
4417 int ret;
4418
4419 headroom = skb_headroom(skb);
4420 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4421 if (ret)
4422 return ret;
4423
4424 new_headroom = skb_headroom(skb);
4425 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4426 return 0;
4427 }
4428
gso_reset_checksum(struct sk_buff * skb,__wsum res)4429 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4430 {
4431 /* Do not update partial checksums if remote checksum is enabled. */
4432 if (skb->remcsum_offload)
4433 return;
4434
4435 SKB_GSO_CB(skb)->csum = res;
4436 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4437 }
4438
4439 /* Compute the checksum for a gso segment. First compute the checksum value
4440 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4441 * then add in skb->csum (checksum from csum_start to end of packet).
4442 * skb->csum and csum_start are then updated to reflect the checksum of the
4443 * resultant packet starting from the transport header-- the resultant checksum
4444 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4445 * header.
4446 */
gso_make_checksum(struct sk_buff * skb,__wsum res)4447 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4448 {
4449 unsigned char *csum_start = skb_transport_header(skb);
4450 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4451 __wsum partial = SKB_GSO_CB(skb)->csum;
4452
4453 SKB_GSO_CB(skb)->csum = res;
4454 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4455
4456 return csum_fold(csum_partial(csum_start, plen, partial));
4457 }
4458
skb_is_gso(const struct sk_buff * skb)4459 static inline bool skb_is_gso(const struct sk_buff *skb)
4460 {
4461 return skb_shinfo(skb)->gso_size;
4462 }
4463
4464 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_v6(const struct sk_buff * skb)4465 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4466 {
4467 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4468 }
4469
4470 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_sctp(const struct sk_buff * skb)4471 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4472 {
4473 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4474 }
4475
4476 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_tcp(const struct sk_buff * skb)4477 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4478 {
4479 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4480 }
4481
skb_gso_reset(struct sk_buff * skb)4482 static inline void skb_gso_reset(struct sk_buff *skb)
4483 {
4484 skb_shinfo(skb)->gso_size = 0;
4485 skb_shinfo(skb)->gso_segs = 0;
4486 skb_shinfo(skb)->gso_type = 0;
4487 }
4488
skb_increase_gso_size(struct skb_shared_info * shinfo,u16 increment)4489 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4490 u16 increment)
4491 {
4492 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4493 return;
4494 shinfo->gso_size += increment;
4495 }
4496
skb_decrease_gso_size(struct skb_shared_info * shinfo,u16 decrement)4497 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4498 u16 decrement)
4499 {
4500 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4501 return;
4502 shinfo->gso_size -= decrement;
4503 }
4504
4505 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4506
skb_warn_if_lro(const struct sk_buff * skb)4507 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4508 {
4509 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4510 * wanted then gso_type will be set. */
4511 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4512
4513 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4514 unlikely(shinfo->gso_type == 0)) {
4515 __skb_warn_lro_forwarding(skb);
4516 return true;
4517 }
4518 return false;
4519 }
4520
skb_forward_csum(struct sk_buff * skb)4521 static inline void skb_forward_csum(struct sk_buff *skb)
4522 {
4523 /* Unfortunately we don't support this one. Any brave souls? */
4524 if (skb->ip_summed == CHECKSUM_COMPLETE)
4525 skb->ip_summed = CHECKSUM_NONE;
4526 }
4527
4528 /**
4529 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4530 * @skb: skb to check
4531 *
4532 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4533 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4534 * use this helper, to document places where we make this assertion.
4535 */
skb_checksum_none_assert(const struct sk_buff * skb)4536 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4537 {
4538 #ifdef DEBUG
4539 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4540 #endif
4541 }
4542
4543 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4544
4545 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4546 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4547 unsigned int transport_len,
4548 __sum16(*skb_chkf)(struct sk_buff *skb));
4549
4550 /**
4551 * skb_head_is_locked - Determine if the skb->head is locked down
4552 * @skb: skb to check
4553 *
4554 * The head on skbs build around a head frag can be removed if they are
4555 * not cloned. This function returns true if the skb head is locked down
4556 * due to either being allocated via kmalloc, or by being a clone with
4557 * multiple references to the head.
4558 */
skb_head_is_locked(const struct sk_buff * skb)4559 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4560 {
4561 return !skb->head_frag || skb_cloned(skb);
4562 }
4563
4564 /* Local Checksum Offload.
4565 * Compute outer checksum based on the assumption that the
4566 * inner checksum will be offloaded later.
4567 * See Documentation/networking/checksum-offloads.rst for
4568 * explanation of how this works.
4569 * Fill in outer checksum adjustment (e.g. with sum of outer
4570 * pseudo-header) before calling.
4571 * Also ensure that inner checksum is in linear data area.
4572 */
lco_csum(struct sk_buff * skb)4573 static inline __wsum lco_csum(struct sk_buff *skb)
4574 {
4575 unsigned char *csum_start = skb_checksum_start(skb);
4576 unsigned char *l4_hdr = skb_transport_header(skb);
4577 __wsum partial;
4578
4579 /* Start with complement of inner checksum adjustment */
4580 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4581 skb->csum_offset));
4582
4583 /* Add in checksum of our headers (incl. outer checksum
4584 * adjustment filled in by caller) and return result.
4585 */
4586 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4587 }
4588
skb_is_redirected(const struct sk_buff * skb)4589 static inline bool skb_is_redirected(const struct sk_buff *skb)
4590 {
4591 #ifdef CONFIG_NET_REDIRECT
4592 return skb->redirected;
4593 #else
4594 return false;
4595 #endif
4596 }
4597
skb_set_redirected(struct sk_buff * skb,bool from_ingress)4598 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4599 {
4600 #ifdef CONFIG_NET_REDIRECT
4601 skb->redirected = 1;
4602 skb->from_ingress = from_ingress;
4603 if (skb->from_ingress)
4604 skb->tstamp = 0;
4605 #endif
4606 }
4607
skb_reset_redirect(struct sk_buff * skb)4608 static inline void skb_reset_redirect(struct sk_buff *skb)
4609 {
4610 #ifdef CONFIG_NET_REDIRECT
4611 skb->redirected = 0;
4612 #endif
4613 }
4614
skb_set_kcov_handle(struct sk_buff * skb,const u64 kcov_handle)4615 static inline void skb_set_kcov_handle(struct sk_buff *skb,
4616 const u64 kcov_handle)
4617 {
4618 #ifdef CONFIG_KCOV
4619 skb->kcov_handle = kcov_handle;
4620 #endif
4621 }
4622
skb_get_kcov_handle(struct sk_buff * skb)4623 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
4624 {
4625 #ifdef CONFIG_KCOV
4626 return skb->kcov_handle;
4627 #else
4628 return 0;
4629 #endif
4630 }
4631
4632 #endif /* __KERNEL__ */
4633 #endif /* _LINUX_SKBUFF_H */
4634