1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 */
5
6 /*
7 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
8 * or rs-channels. It also implements echoing, cooked mode etc.
9 *
10 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
11 *
12 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
13 * tty_struct and tty_queue structures. Previously there was an array
14 * of 256 tty_struct's which was statically allocated, and the
15 * tty_queue structures were allocated at boot time. Both are now
16 * dynamically allocated only when the tty is open.
17 *
18 * Also restructured routines so that there is more of a separation
19 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
20 * the low-level tty routines (serial.c, pty.c, console.c). This
21 * makes for cleaner and more compact code. -TYT, 9/17/92
22 *
23 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
24 * which can be dynamically activated and de-activated by the line
25 * discipline handling modules (like SLIP).
26 *
27 * NOTE: pay no attention to the line discipline code (yet); its
28 * interface is still subject to change in this version...
29 * -- TYT, 1/31/92
30 *
31 * Added functionality to the OPOST tty handling. No delays, but all
32 * other bits should be there.
33 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
34 *
35 * Rewrote canonical mode and added more termios flags.
36 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
37 *
38 * Reorganized FASYNC support so mouse code can share it.
39 * -- ctm@ardi.com, 9Sep95
40 *
41 * New TIOCLINUX variants added.
42 * -- mj@k332.feld.cvut.cz, 19-Nov-95
43 *
44 * Restrict vt switching via ioctl()
45 * -- grif@cs.ucr.edu, 5-Dec-95
46 *
47 * Move console and virtual terminal code to more appropriate files,
48 * implement CONFIG_VT and generalize console device interface.
49 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
50 *
51 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
52 * -- Bill Hawes <whawes@star.net>, June 97
53 *
54 * Added devfs support.
55 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
56 *
57 * Added support for a Unix98-style ptmx device.
58 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
59 *
60 * Reduced memory usage for older ARM systems
61 * -- Russell King <rmk@arm.linux.org.uk>
62 *
63 * Move do_SAK() into process context. Less stack use in devfs functions.
64 * alloc_tty_struct() always uses kmalloc()
65 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
66 */
67
68 #include <linux/types.h>
69 #include <linux/major.h>
70 #include <linux/errno.h>
71 #include <linux/signal.h>
72 #include <linux/fcntl.h>
73 #include <linux/sched/signal.h>
74 #include <linux/sched/task.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/ppp-ioctl.h>
91 #include <linux/proc_fs.h>
92 #include <linux/init.h>
93 #include <linux/module.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
99 #include <linux/serial.h>
100 #include <linux/ratelimit.h>
101 #include <linux/compat.h>
102
103 #include <linux/uaccess.h>
104
105 #include <linux/kbd_kern.h>
106 #include <linux/vt_kern.h>
107 #include <linux/selection.h>
108
109 #include <linux/kmod.h>
110 #include <linux/nsproxy.h>
111
112 #undef TTY_DEBUG_HANGUP
113 #ifdef TTY_DEBUG_HANGUP
114 # define tty_debug_hangup(tty, f, args...) tty_debug(tty, f, ##args)
115 #else
116 # define tty_debug_hangup(tty, f, args...) do { } while (0)
117 #endif
118
119 #define TTY_PARANOIA_CHECK 1
120 #define CHECK_TTY_COUNT 1
121
122 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
123 .c_iflag = ICRNL | IXON,
124 .c_oflag = OPOST | ONLCR,
125 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
126 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
127 ECHOCTL | ECHOKE | IEXTEN,
128 .c_cc = INIT_C_CC,
129 .c_ispeed = 38400,
130 .c_ospeed = 38400,
131 /* .c_line = N_TTY, */
132 };
133
134 EXPORT_SYMBOL(tty_std_termios);
135
136 /* This list gets poked at by procfs and various bits of boot up code. This
137 could do with some rationalisation such as pulling the tty proc function
138 into this file */
139
140 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
141
142 /* Mutex to protect creating and releasing a tty */
143 DEFINE_MUTEX(tty_mutex);
144
145 static ssize_t tty_read(struct kiocb *, struct iov_iter *);
146 static ssize_t tty_write(struct kiocb *, struct iov_iter *);
147 static __poll_t tty_poll(struct file *, poll_table *);
148 static int tty_open(struct inode *, struct file *);
149 #ifdef CONFIG_COMPAT
150 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
151 unsigned long arg);
152 #else
153 #define tty_compat_ioctl NULL
154 #endif
155 static int __tty_fasync(int fd, struct file *filp, int on);
156 static int tty_fasync(int fd, struct file *filp, int on);
157 static void release_tty(struct tty_struct *tty, int idx);
158
159 /**
160 * free_tty_struct - free a disused tty
161 * @tty: tty struct to free
162 *
163 * Free the write buffers, tty queue and tty memory itself.
164 *
165 * Locking: none. Must be called after tty is definitely unused
166 */
167
free_tty_struct(struct tty_struct * tty)168 static void free_tty_struct(struct tty_struct *tty)
169 {
170 tty_ldisc_deinit(tty);
171 put_device(tty->dev);
172 kfree(tty->write_buf);
173 tty->magic = 0xDEADDEAD;
174 kfree(tty);
175 }
176
file_tty(struct file * file)177 static inline struct tty_struct *file_tty(struct file *file)
178 {
179 return ((struct tty_file_private *)file->private_data)->tty;
180 }
181
tty_alloc_file(struct file * file)182 int tty_alloc_file(struct file *file)
183 {
184 struct tty_file_private *priv;
185
186 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
187 if (!priv)
188 return -ENOMEM;
189
190 file->private_data = priv;
191
192 return 0;
193 }
194
195 /* Associate a new file with the tty structure */
tty_add_file(struct tty_struct * tty,struct file * file)196 void tty_add_file(struct tty_struct *tty, struct file *file)
197 {
198 struct tty_file_private *priv = file->private_data;
199
200 priv->tty = tty;
201 priv->file = file;
202
203 spin_lock(&tty->files_lock);
204 list_add(&priv->list, &tty->tty_files);
205 spin_unlock(&tty->files_lock);
206 }
207
208 /**
209 * tty_free_file - free file->private_data
210 *
211 * This shall be used only for fail path handling when tty_add_file was not
212 * called yet.
213 */
tty_free_file(struct file * file)214 void tty_free_file(struct file *file)
215 {
216 struct tty_file_private *priv = file->private_data;
217
218 file->private_data = NULL;
219 kfree(priv);
220 }
221
222 /* Delete file from its tty */
tty_del_file(struct file * file)223 static void tty_del_file(struct file *file)
224 {
225 struct tty_file_private *priv = file->private_data;
226 struct tty_struct *tty = priv->tty;
227
228 spin_lock(&tty->files_lock);
229 list_del(&priv->list);
230 spin_unlock(&tty->files_lock);
231 tty_free_file(file);
232 }
233
234 /**
235 * tty_name - return tty naming
236 * @tty: tty structure
237 *
238 * Convert a tty structure into a name. The name reflects the kernel
239 * naming policy and if udev is in use may not reflect user space
240 *
241 * Locking: none
242 */
243
tty_name(const struct tty_struct * tty)244 const char *tty_name(const struct tty_struct *tty)
245 {
246 if (!tty) /* Hmm. NULL pointer. That's fun. */
247 return "NULL tty";
248 return tty->name;
249 }
250
251 EXPORT_SYMBOL(tty_name);
252
tty_driver_name(const struct tty_struct * tty)253 const char *tty_driver_name(const struct tty_struct *tty)
254 {
255 if (!tty || !tty->driver)
256 return "";
257 return tty->driver->name;
258 }
259
tty_paranoia_check(struct tty_struct * tty,struct inode * inode,const char * routine)260 static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
261 const char *routine)
262 {
263 #ifdef TTY_PARANOIA_CHECK
264 if (!tty) {
265 pr_warn("(%d:%d): %s: NULL tty\n",
266 imajor(inode), iminor(inode), routine);
267 return 1;
268 }
269 if (tty->magic != TTY_MAGIC) {
270 pr_warn("(%d:%d): %s: bad magic number\n",
271 imajor(inode), iminor(inode), routine);
272 return 1;
273 }
274 #endif
275 return 0;
276 }
277
278 /* Caller must hold tty_lock */
check_tty_count(struct tty_struct * tty,const char * routine)279 static int check_tty_count(struct tty_struct *tty, const char *routine)
280 {
281 #ifdef CHECK_TTY_COUNT
282 struct list_head *p;
283 int count = 0, kopen_count = 0;
284
285 spin_lock(&tty->files_lock);
286 list_for_each(p, &tty->tty_files) {
287 count++;
288 }
289 spin_unlock(&tty->files_lock);
290 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
291 tty->driver->subtype == PTY_TYPE_SLAVE &&
292 tty->link && tty->link->count)
293 count++;
294 if (tty_port_kopened(tty->port))
295 kopen_count++;
296 if (tty->count != (count + kopen_count)) {
297 tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
298 routine, tty->count, count, kopen_count);
299 return (count + kopen_count);
300 }
301 #endif
302 return 0;
303 }
304
305 /**
306 * get_tty_driver - find device of a tty
307 * @device: device identifier
308 * @index: returns the index of the tty
309 *
310 * This routine returns a tty driver structure, given a device number
311 * and also passes back the index number.
312 *
313 * Locking: caller must hold tty_mutex
314 */
315
get_tty_driver(dev_t device,int * index)316 static struct tty_driver *get_tty_driver(dev_t device, int *index)
317 {
318 struct tty_driver *p;
319
320 list_for_each_entry(p, &tty_drivers, tty_drivers) {
321 dev_t base = MKDEV(p->major, p->minor_start);
322 if (device < base || device >= base + p->num)
323 continue;
324 *index = device - base;
325 return tty_driver_kref_get(p);
326 }
327 return NULL;
328 }
329
330 /**
331 * tty_dev_name_to_number - return dev_t for device name
332 * @name: user space name of device under /dev
333 * @number: pointer to dev_t that this function will populate
334 *
335 * This function converts device names like ttyS0 or ttyUSB1 into dev_t
336 * like (4, 64) or (188, 1). If no corresponding driver is registered then
337 * the function returns -ENODEV.
338 *
339 * Locking: this acquires tty_mutex to protect the tty_drivers list from
340 * being modified while we are traversing it, and makes sure to
341 * release it before exiting.
342 */
tty_dev_name_to_number(const char * name,dev_t * number)343 int tty_dev_name_to_number(const char *name, dev_t *number)
344 {
345 struct tty_driver *p;
346 int ret;
347 int index, prefix_length = 0;
348 const char *str;
349
350 for (str = name; *str && !isdigit(*str); str++)
351 ;
352
353 if (!*str)
354 return -EINVAL;
355
356 ret = kstrtoint(str, 10, &index);
357 if (ret)
358 return ret;
359
360 prefix_length = str - name;
361 mutex_lock(&tty_mutex);
362
363 list_for_each_entry(p, &tty_drivers, tty_drivers)
364 if (prefix_length == strlen(p->name) && strncmp(name,
365 p->name, prefix_length) == 0) {
366 if (index < p->num) {
367 *number = MKDEV(p->major, p->minor_start + index);
368 goto out;
369 }
370 }
371
372 /* if here then driver wasn't found */
373 ret = -ENODEV;
374 out:
375 mutex_unlock(&tty_mutex);
376 return ret;
377 }
378 EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
379
380 #ifdef CONFIG_CONSOLE_POLL
381
382 /**
383 * tty_find_polling_driver - find device of a polled tty
384 * @name: name string to match
385 * @line: pointer to resulting tty line nr
386 *
387 * This routine returns a tty driver structure, given a name
388 * and the condition that the tty driver is capable of polled
389 * operation.
390 */
tty_find_polling_driver(char * name,int * line)391 struct tty_driver *tty_find_polling_driver(char *name, int *line)
392 {
393 struct tty_driver *p, *res = NULL;
394 int tty_line = 0;
395 int len;
396 char *str, *stp;
397
398 for (str = name; *str; str++)
399 if ((*str >= '0' && *str <= '9') || *str == ',')
400 break;
401 if (!*str)
402 return NULL;
403
404 len = str - name;
405 tty_line = simple_strtoul(str, &str, 10);
406
407 mutex_lock(&tty_mutex);
408 /* Search through the tty devices to look for a match */
409 list_for_each_entry(p, &tty_drivers, tty_drivers) {
410 if (!len || strncmp(name, p->name, len) != 0)
411 continue;
412 stp = str;
413 if (*stp == ',')
414 stp++;
415 if (*stp == '\0')
416 stp = NULL;
417
418 if (tty_line >= 0 && tty_line < p->num && p->ops &&
419 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
420 res = tty_driver_kref_get(p);
421 *line = tty_line;
422 break;
423 }
424 }
425 mutex_unlock(&tty_mutex);
426
427 return res;
428 }
429 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
430 #endif
431
hung_up_tty_read(struct kiocb * iocb,struct iov_iter * to)432 static ssize_t hung_up_tty_read(struct kiocb *iocb, struct iov_iter *to)
433 {
434 return 0;
435 }
436
hung_up_tty_write(struct kiocb * iocb,struct iov_iter * from)437 static ssize_t hung_up_tty_write(struct kiocb *iocb, struct iov_iter *from)
438 {
439 return -EIO;
440 }
441
442 /* No kernel lock held - none needed ;) */
hung_up_tty_poll(struct file * filp,poll_table * wait)443 static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait)
444 {
445 return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM;
446 }
447
hung_up_tty_ioctl(struct file * file,unsigned int cmd,unsigned long arg)448 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
449 unsigned long arg)
450 {
451 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
452 }
453
hung_up_tty_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)454 static long hung_up_tty_compat_ioctl(struct file *file,
455 unsigned int cmd, unsigned long arg)
456 {
457 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
458 }
459
hung_up_tty_fasync(int fd,struct file * file,int on)460 static int hung_up_tty_fasync(int fd, struct file *file, int on)
461 {
462 return -ENOTTY;
463 }
464
tty_show_fdinfo(struct seq_file * m,struct file * file)465 static void tty_show_fdinfo(struct seq_file *m, struct file *file)
466 {
467 struct tty_struct *tty = file_tty(file);
468
469 if (tty && tty->ops && tty->ops->show_fdinfo)
470 tty->ops->show_fdinfo(tty, m);
471 }
472
473 static const struct file_operations tty_fops = {
474 .llseek = no_llseek,
475 .read_iter = tty_read,
476 .write_iter = tty_write,
477 .splice_read = generic_file_splice_read,
478 .splice_write = iter_file_splice_write,
479 .poll = tty_poll,
480 .unlocked_ioctl = tty_ioctl,
481 .compat_ioctl = tty_compat_ioctl,
482 .open = tty_open,
483 .release = tty_release,
484 .fasync = tty_fasync,
485 .show_fdinfo = tty_show_fdinfo,
486 };
487
488 static const struct file_operations console_fops = {
489 .llseek = no_llseek,
490 .read_iter = tty_read,
491 .write_iter = redirected_tty_write,
492 .splice_read = generic_file_splice_read,
493 .splice_write = iter_file_splice_write,
494 .poll = tty_poll,
495 .unlocked_ioctl = tty_ioctl,
496 .compat_ioctl = tty_compat_ioctl,
497 .open = tty_open,
498 .release = tty_release,
499 .fasync = tty_fasync,
500 };
501
502 static const struct file_operations hung_up_tty_fops = {
503 .llseek = no_llseek,
504 .read_iter = hung_up_tty_read,
505 .write_iter = hung_up_tty_write,
506 .poll = hung_up_tty_poll,
507 .unlocked_ioctl = hung_up_tty_ioctl,
508 .compat_ioctl = hung_up_tty_compat_ioctl,
509 .release = tty_release,
510 .fasync = hung_up_tty_fasync,
511 };
512
513 static DEFINE_SPINLOCK(redirect_lock);
514 static struct file *redirect;
515
516 extern void tty_sysctl_init(void);
517
518 /**
519 * tty_wakeup - request more data
520 * @tty: terminal
521 *
522 * Internal and external helper for wakeups of tty. This function
523 * informs the line discipline if present that the driver is ready
524 * to receive more output data.
525 */
526
tty_wakeup(struct tty_struct * tty)527 void tty_wakeup(struct tty_struct *tty)
528 {
529 struct tty_ldisc *ld;
530
531 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
532 ld = tty_ldisc_ref(tty);
533 if (ld) {
534 if (ld->ops->write_wakeup)
535 ld->ops->write_wakeup(tty);
536 tty_ldisc_deref(ld);
537 }
538 }
539 wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
540 }
541
542 EXPORT_SYMBOL_GPL(tty_wakeup);
543
544 /**
545 * __tty_hangup - actual handler for hangup events
546 * @tty: tty device
547 *
548 * This can be called by a "kworker" kernel thread. That is process
549 * synchronous but doesn't hold any locks, so we need to make sure we
550 * have the appropriate locks for what we're doing.
551 *
552 * The hangup event clears any pending redirections onto the hung up
553 * device. It ensures future writes will error and it does the needed
554 * line discipline hangup and signal delivery. The tty object itself
555 * remains intact.
556 *
557 * Locking:
558 * BTM
559 * redirect lock for undoing redirection
560 * file list lock for manipulating list of ttys
561 * tty_ldiscs_lock from called functions
562 * termios_rwsem resetting termios data
563 * tasklist_lock to walk task list for hangup event
564 * ->siglock to protect ->signal/->sighand
565 */
__tty_hangup(struct tty_struct * tty,int exit_session)566 static void __tty_hangup(struct tty_struct *tty, int exit_session)
567 {
568 struct file *cons_filp = NULL;
569 struct file *filp, *f = NULL;
570 struct tty_file_private *priv;
571 int closecount = 0, n;
572 int refs;
573
574 if (!tty)
575 return;
576
577
578 spin_lock(&redirect_lock);
579 if (redirect && file_tty(redirect) == tty) {
580 f = redirect;
581 redirect = NULL;
582 }
583 spin_unlock(&redirect_lock);
584
585 tty_lock(tty);
586
587 if (test_bit(TTY_HUPPED, &tty->flags)) {
588 tty_unlock(tty);
589 return;
590 }
591
592 /*
593 * Some console devices aren't actually hung up for technical and
594 * historical reasons, which can lead to indefinite interruptible
595 * sleep in n_tty_read(). The following explicitly tells
596 * n_tty_read() to abort readers.
597 */
598 set_bit(TTY_HUPPING, &tty->flags);
599
600 /* inuse_filps is protected by the single tty lock,
601 this really needs to change if we want to flush the
602 workqueue with the lock held */
603 check_tty_count(tty, "tty_hangup");
604
605 spin_lock(&tty->files_lock);
606 /* This breaks for file handles being sent over AF_UNIX sockets ? */
607 list_for_each_entry(priv, &tty->tty_files, list) {
608 filp = priv->file;
609 if (filp->f_op->write_iter == redirected_tty_write)
610 cons_filp = filp;
611 if (filp->f_op->write_iter != tty_write)
612 continue;
613 closecount++;
614 __tty_fasync(-1, filp, 0); /* can't block */
615 filp->f_op = &hung_up_tty_fops;
616 }
617 spin_unlock(&tty->files_lock);
618
619 refs = tty_signal_session_leader(tty, exit_session);
620 /* Account for the p->signal references we killed */
621 while (refs--)
622 tty_kref_put(tty);
623
624 tty_ldisc_hangup(tty, cons_filp != NULL);
625
626 spin_lock_irq(&tty->ctrl_lock);
627 clear_bit(TTY_THROTTLED, &tty->flags);
628 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
629 put_pid(tty->session);
630 put_pid(tty->pgrp);
631 tty->session = NULL;
632 tty->pgrp = NULL;
633 tty->ctrl_status = 0;
634 spin_unlock_irq(&tty->ctrl_lock);
635
636 /*
637 * If one of the devices matches a console pointer, we
638 * cannot just call hangup() because that will cause
639 * tty->count and state->count to go out of sync.
640 * So we just call close() the right number of times.
641 */
642 if (cons_filp) {
643 if (tty->ops->close)
644 for (n = 0; n < closecount; n++)
645 tty->ops->close(tty, cons_filp);
646 } else if (tty->ops->hangup)
647 tty->ops->hangup(tty);
648 /*
649 * We don't want to have driver/ldisc interactions beyond the ones
650 * we did here. The driver layer expects no calls after ->hangup()
651 * from the ldisc side, which is now guaranteed.
652 */
653 set_bit(TTY_HUPPED, &tty->flags);
654 clear_bit(TTY_HUPPING, &tty->flags);
655 tty_unlock(tty);
656
657 if (f)
658 fput(f);
659 }
660
do_tty_hangup(struct work_struct * work)661 static void do_tty_hangup(struct work_struct *work)
662 {
663 struct tty_struct *tty =
664 container_of(work, struct tty_struct, hangup_work);
665
666 __tty_hangup(tty, 0);
667 }
668
669 /**
670 * tty_hangup - trigger a hangup event
671 * @tty: tty to hangup
672 *
673 * A carrier loss (virtual or otherwise) has occurred on this like
674 * schedule a hangup sequence to run after this event.
675 */
676
tty_hangup(struct tty_struct * tty)677 void tty_hangup(struct tty_struct *tty)
678 {
679 tty_debug_hangup(tty, "hangup\n");
680 schedule_work(&tty->hangup_work);
681 }
682
683 EXPORT_SYMBOL(tty_hangup);
684
685 /**
686 * tty_vhangup - process vhangup
687 * @tty: tty to hangup
688 *
689 * The user has asked via system call for the terminal to be hung up.
690 * We do this synchronously so that when the syscall returns the process
691 * is complete. That guarantee is necessary for security reasons.
692 */
693
tty_vhangup(struct tty_struct * tty)694 void tty_vhangup(struct tty_struct *tty)
695 {
696 tty_debug_hangup(tty, "vhangup\n");
697 __tty_hangup(tty, 0);
698 }
699
700 EXPORT_SYMBOL(tty_vhangup);
701
702
703 /**
704 * tty_vhangup_self - process vhangup for own ctty
705 *
706 * Perform a vhangup on the current controlling tty
707 */
708
tty_vhangup_self(void)709 void tty_vhangup_self(void)
710 {
711 struct tty_struct *tty;
712
713 tty = get_current_tty();
714 if (tty) {
715 tty_vhangup(tty);
716 tty_kref_put(tty);
717 }
718 }
719
720 /**
721 * tty_vhangup_session - hangup session leader exit
722 * @tty: tty to hangup
723 *
724 * The session leader is exiting and hanging up its controlling terminal.
725 * Every process in the foreground process group is signalled SIGHUP.
726 *
727 * We do this synchronously so that when the syscall returns the process
728 * is complete. That guarantee is necessary for security reasons.
729 */
730
tty_vhangup_session(struct tty_struct * tty)731 void tty_vhangup_session(struct tty_struct *tty)
732 {
733 tty_debug_hangup(tty, "session hangup\n");
734 __tty_hangup(tty, 1);
735 }
736
737 /**
738 * tty_hung_up_p - was tty hung up
739 * @filp: file pointer of tty
740 *
741 * Return true if the tty has been subject to a vhangup or a carrier
742 * loss
743 */
744
tty_hung_up_p(struct file * filp)745 int tty_hung_up_p(struct file *filp)
746 {
747 return (filp && filp->f_op == &hung_up_tty_fops);
748 }
749
750 EXPORT_SYMBOL(tty_hung_up_p);
751
752 /**
753 * stop_tty - propagate flow control
754 * @tty: tty to stop
755 *
756 * Perform flow control to the driver. May be called
757 * on an already stopped device and will not re-call the driver
758 * method.
759 *
760 * This functionality is used by both the line disciplines for
761 * halting incoming flow and by the driver. It may therefore be
762 * called from any context, may be under the tty atomic_write_lock
763 * but not always.
764 *
765 * Locking:
766 * flow_lock
767 */
768
__stop_tty(struct tty_struct * tty)769 void __stop_tty(struct tty_struct *tty)
770 {
771 if (tty->stopped)
772 return;
773 tty->stopped = 1;
774 if (tty->ops->stop)
775 tty->ops->stop(tty);
776 }
777
stop_tty(struct tty_struct * tty)778 void stop_tty(struct tty_struct *tty)
779 {
780 unsigned long flags;
781
782 spin_lock_irqsave(&tty->flow_lock, flags);
783 __stop_tty(tty);
784 spin_unlock_irqrestore(&tty->flow_lock, flags);
785 }
786 EXPORT_SYMBOL(stop_tty);
787
788 /**
789 * start_tty - propagate flow control
790 * @tty: tty to start
791 *
792 * Start a tty that has been stopped if at all possible. If this
793 * tty was previous stopped and is now being started, the driver
794 * start method is invoked and the line discipline woken.
795 *
796 * Locking:
797 * flow_lock
798 */
799
__start_tty(struct tty_struct * tty)800 void __start_tty(struct tty_struct *tty)
801 {
802 if (!tty->stopped || tty->flow_stopped)
803 return;
804 tty->stopped = 0;
805 if (tty->ops->start)
806 tty->ops->start(tty);
807 tty_wakeup(tty);
808 }
809
start_tty(struct tty_struct * tty)810 void start_tty(struct tty_struct *tty)
811 {
812 unsigned long flags;
813
814 spin_lock_irqsave(&tty->flow_lock, flags);
815 __start_tty(tty);
816 spin_unlock_irqrestore(&tty->flow_lock, flags);
817 }
818 EXPORT_SYMBOL(start_tty);
819
tty_update_time(struct timespec64 * time)820 static void tty_update_time(struct timespec64 *time)
821 {
822 time64_t sec = ktime_get_real_seconds();
823
824 /*
825 * We only care if the two values differ in anything other than the
826 * lower three bits (i.e every 8 seconds). If so, then we can update
827 * the time of the tty device, otherwise it could be construded as a
828 * security leak to let userspace know the exact timing of the tty.
829 */
830 if ((sec ^ time->tv_sec) & ~7)
831 time->tv_sec = sec;
832 }
833
834 /*
835 * Iterate on the ldisc ->read() function until we've gotten all
836 * the data the ldisc has for us.
837 *
838 * The "cookie" is something that the ldisc read function can fill
839 * in to let us know that there is more data to be had.
840 *
841 * We promise to continue to call the ldisc until it stops returning
842 * data or clears the cookie. The cookie may be something that the
843 * ldisc maintains state for and needs to free.
844 */
iterate_tty_read(struct tty_ldisc * ld,struct tty_struct * tty,struct file * file,struct iov_iter * to)845 static int iterate_tty_read(struct tty_ldisc *ld, struct tty_struct *tty,
846 struct file *file, struct iov_iter *to)
847 {
848 int retval = 0;
849 void *cookie = NULL;
850 unsigned long offset = 0;
851 char kernel_buf[64];
852 size_t count = iov_iter_count(to);
853
854 do {
855 int size, copied;
856
857 size = count > sizeof(kernel_buf) ? sizeof(kernel_buf) : count;
858 size = ld->ops->read(tty, file, kernel_buf, size, &cookie, offset);
859 if (!size)
860 break;
861
862 if (size < 0) {
863 /* Did we have an earlier error (ie -EFAULT)? */
864 if (retval)
865 break;
866 retval = size;
867
868 /*
869 * -EOVERFLOW means we didn't have enough space
870 * for a whole packet, and we shouldn't return
871 * a partial result.
872 */
873 if (retval == -EOVERFLOW)
874 offset = 0;
875 break;
876 }
877
878 copied = copy_to_iter(kernel_buf, size, to);
879 offset += copied;
880 count -= copied;
881
882 /*
883 * If the user copy failed, we still need to do another ->read()
884 * call if we had a cookie to let the ldisc clear up.
885 *
886 * But make sure size is zeroed.
887 */
888 if (unlikely(copied != size)) {
889 count = 0;
890 retval = -EFAULT;
891 }
892 } while (cookie);
893
894 /* We always clear tty buffer in case they contained passwords */
895 memzero_explicit(kernel_buf, sizeof(kernel_buf));
896 return offset ? offset : retval;
897 }
898
899
900 /**
901 * tty_read - read method for tty device files
902 * @file: pointer to tty file
903 * @buf: user buffer
904 * @count: size of user buffer
905 * @ppos: unused
906 *
907 * Perform the read system call function on this terminal device. Checks
908 * for hung up devices before calling the line discipline method.
909 *
910 * Locking:
911 * Locks the line discipline internally while needed. Multiple
912 * read calls may be outstanding in parallel.
913 */
914
tty_read(struct kiocb * iocb,struct iov_iter * to)915 static ssize_t tty_read(struct kiocb *iocb, struct iov_iter *to)
916 {
917 int i;
918 struct file *file = iocb->ki_filp;
919 struct inode *inode = file_inode(file);
920 struct tty_struct *tty = file_tty(file);
921 struct tty_ldisc *ld;
922
923 if (tty_paranoia_check(tty, inode, "tty_read"))
924 return -EIO;
925 if (!tty || tty_io_error(tty))
926 return -EIO;
927
928 /* We want to wait for the line discipline to sort out in this
929 situation */
930 ld = tty_ldisc_ref_wait(tty);
931 if (!ld)
932 return hung_up_tty_read(iocb, to);
933 i = -EIO;
934 if (ld->ops->read)
935 i = iterate_tty_read(ld, tty, file, to);
936 tty_ldisc_deref(ld);
937
938 if (i > 0)
939 tty_update_time(&inode->i_atime);
940
941 return i;
942 }
943
tty_write_unlock(struct tty_struct * tty)944 static void tty_write_unlock(struct tty_struct *tty)
945 {
946 mutex_unlock(&tty->atomic_write_lock);
947 wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
948 }
949
tty_write_lock(struct tty_struct * tty,int ndelay)950 static int tty_write_lock(struct tty_struct *tty, int ndelay)
951 {
952 if (!mutex_trylock(&tty->atomic_write_lock)) {
953 if (ndelay)
954 return -EAGAIN;
955 if (mutex_lock_interruptible(&tty->atomic_write_lock))
956 return -ERESTARTSYS;
957 }
958 return 0;
959 }
960
961 /*
962 * Split writes up in sane blocksizes to avoid
963 * denial-of-service type attacks
964 */
do_tty_write(ssize_t (* write)(struct tty_struct *,struct file *,const unsigned char *,size_t),struct tty_struct * tty,struct file * file,struct iov_iter * from)965 static inline ssize_t do_tty_write(
966 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
967 struct tty_struct *tty,
968 struct file *file,
969 struct iov_iter *from)
970 {
971 size_t count = iov_iter_count(from);
972 ssize_t ret, written = 0;
973 unsigned int chunk;
974
975 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
976 if (ret < 0)
977 return ret;
978
979 /*
980 * We chunk up writes into a temporary buffer. This
981 * simplifies low-level drivers immensely, since they
982 * don't have locking issues and user mode accesses.
983 *
984 * But if TTY_NO_WRITE_SPLIT is set, we should use a
985 * big chunk-size..
986 *
987 * The default chunk-size is 2kB, because the NTTY
988 * layer has problems with bigger chunks. It will
989 * claim to be able to handle more characters than
990 * it actually does.
991 *
992 * FIXME: This can probably go away now except that 64K chunks
993 * are too likely to fail unless switched to vmalloc...
994 */
995 chunk = 2048;
996 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
997 chunk = 65536;
998 if (count < chunk)
999 chunk = count;
1000
1001 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1002 if (tty->write_cnt < chunk) {
1003 unsigned char *buf_chunk;
1004
1005 if (chunk < 1024)
1006 chunk = 1024;
1007
1008 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1009 if (!buf_chunk) {
1010 ret = -ENOMEM;
1011 goto out;
1012 }
1013 kfree(tty->write_buf);
1014 tty->write_cnt = chunk;
1015 tty->write_buf = buf_chunk;
1016 }
1017
1018 /* Do the write .. */
1019 for (;;) {
1020 size_t size = count;
1021 if (size > chunk)
1022 size = chunk;
1023
1024 ret = -EFAULT;
1025 if (copy_from_iter(tty->write_buf, size, from) != size)
1026 break;
1027
1028 ret = write(tty, file, tty->write_buf, size);
1029 if (ret <= 0)
1030 break;
1031
1032 written += ret;
1033 if (ret > size)
1034 break;
1035
1036 /* FIXME! Have Al check this! */
1037 if (ret != size)
1038 iov_iter_revert(from, size-ret);
1039
1040 count -= ret;
1041 if (!count)
1042 break;
1043 ret = -ERESTARTSYS;
1044 if (signal_pending(current))
1045 break;
1046 cond_resched();
1047 }
1048 if (written) {
1049 tty_update_time(&file_inode(file)->i_mtime);
1050 ret = written;
1051 }
1052 out:
1053 tty_write_unlock(tty);
1054 return ret;
1055 }
1056
1057 /**
1058 * tty_write_message - write a message to a certain tty, not just the console.
1059 * @tty: the destination tty_struct
1060 * @msg: the message to write
1061 *
1062 * This is used for messages that need to be redirected to a specific tty.
1063 * We don't put it into the syslog queue right now maybe in the future if
1064 * really needed.
1065 *
1066 * We must still hold the BTM and test the CLOSING flag for the moment.
1067 */
1068
tty_write_message(struct tty_struct * tty,char * msg)1069 void tty_write_message(struct tty_struct *tty, char *msg)
1070 {
1071 if (tty) {
1072 mutex_lock(&tty->atomic_write_lock);
1073 tty_lock(tty);
1074 if (tty->ops->write && tty->count > 0)
1075 tty->ops->write(tty, msg, strlen(msg));
1076 tty_unlock(tty);
1077 tty_write_unlock(tty);
1078 }
1079 return;
1080 }
1081
1082
1083 /**
1084 * tty_write - write method for tty device file
1085 * @file: tty file pointer
1086 * @buf: user data to write
1087 * @count: bytes to write
1088 * @ppos: unused
1089 *
1090 * Write data to a tty device via the line discipline.
1091 *
1092 * Locking:
1093 * Locks the line discipline as required
1094 * Writes to the tty driver are serialized by the atomic_write_lock
1095 * and are then processed in chunks to the device. The line discipline
1096 * write method will not be invoked in parallel for each device.
1097 */
1098
file_tty_write(struct file * file,struct kiocb * iocb,struct iov_iter * from)1099 static ssize_t file_tty_write(struct file *file, struct kiocb *iocb, struct iov_iter *from)
1100 {
1101 struct tty_struct *tty = file_tty(file);
1102 struct tty_ldisc *ld;
1103 ssize_t ret;
1104
1105 if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1106 return -EIO;
1107 if (!tty || !tty->ops->write || tty_io_error(tty))
1108 return -EIO;
1109 /* Short term debug to catch buggy drivers */
1110 if (tty->ops->write_room == NULL)
1111 tty_err(tty, "missing write_room method\n");
1112 ld = tty_ldisc_ref_wait(tty);
1113 if (!ld)
1114 return hung_up_tty_write(iocb, from);
1115 if (!ld->ops->write)
1116 ret = -EIO;
1117 else
1118 ret = do_tty_write(ld->ops->write, tty, file, from);
1119 tty_ldisc_deref(ld);
1120 return ret;
1121 }
1122
tty_write(struct kiocb * iocb,struct iov_iter * from)1123 static ssize_t tty_write(struct kiocb *iocb, struct iov_iter *from)
1124 {
1125 return file_tty_write(iocb->ki_filp, iocb, from);
1126 }
1127
redirected_tty_write(struct kiocb * iocb,struct iov_iter * iter)1128 ssize_t redirected_tty_write(struct kiocb *iocb, struct iov_iter *iter)
1129 {
1130 struct file *p = NULL;
1131
1132 spin_lock(&redirect_lock);
1133 if (redirect)
1134 p = get_file(redirect);
1135 spin_unlock(&redirect_lock);
1136
1137 /*
1138 * We know the redirected tty is just another tty, we can can
1139 * call file_tty_write() directly with that file pointer.
1140 */
1141 if (p) {
1142 ssize_t res;
1143 res = file_tty_write(p, iocb, iter);
1144 fput(p);
1145 return res;
1146 }
1147 return tty_write(iocb, iter);
1148 }
1149
1150 /**
1151 * tty_send_xchar - send priority character
1152 *
1153 * Send a high priority character to the tty even if stopped
1154 *
1155 * Locking: none for xchar method, write ordering for write method.
1156 */
1157
tty_send_xchar(struct tty_struct * tty,char ch)1158 int tty_send_xchar(struct tty_struct *tty, char ch)
1159 {
1160 int was_stopped = tty->stopped;
1161
1162 if (tty->ops->send_xchar) {
1163 down_read(&tty->termios_rwsem);
1164 tty->ops->send_xchar(tty, ch);
1165 up_read(&tty->termios_rwsem);
1166 return 0;
1167 }
1168
1169 if (tty_write_lock(tty, 0) < 0)
1170 return -ERESTARTSYS;
1171
1172 down_read(&tty->termios_rwsem);
1173 if (was_stopped)
1174 start_tty(tty);
1175 tty->ops->write(tty, &ch, 1);
1176 if (was_stopped)
1177 stop_tty(tty);
1178 up_read(&tty->termios_rwsem);
1179 tty_write_unlock(tty);
1180 return 0;
1181 }
1182
1183 static char ptychar[] = "pqrstuvwxyzabcde";
1184
1185 /**
1186 * pty_line_name - generate name for a pty
1187 * @driver: the tty driver in use
1188 * @index: the minor number
1189 * @p: output buffer of at least 6 bytes
1190 *
1191 * Generate a name from a driver reference and write it to the output
1192 * buffer.
1193 *
1194 * Locking: None
1195 */
pty_line_name(struct tty_driver * driver,int index,char * p)1196 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1197 {
1198 int i = index + driver->name_base;
1199 /* ->name is initialized to "ttyp", but "tty" is expected */
1200 sprintf(p, "%s%c%x",
1201 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1202 ptychar[i >> 4 & 0xf], i & 0xf);
1203 }
1204
1205 /**
1206 * tty_line_name - generate name for a tty
1207 * @driver: the tty driver in use
1208 * @index: the minor number
1209 * @p: output buffer of at least 7 bytes
1210 *
1211 * Generate a name from a driver reference and write it to the output
1212 * buffer.
1213 *
1214 * Locking: None
1215 */
tty_line_name(struct tty_driver * driver,int index,char * p)1216 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1217 {
1218 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1219 return sprintf(p, "%s", driver->name);
1220 else
1221 return sprintf(p, "%s%d", driver->name,
1222 index + driver->name_base);
1223 }
1224
1225 /**
1226 * tty_driver_lookup_tty() - find an existing tty, if any
1227 * @driver: the driver for the tty
1228 * @idx: the minor number
1229 *
1230 * Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1231 * driver lookup() method returns an error.
1232 *
1233 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1234 */
tty_driver_lookup_tty(struct tty_driver * driver,struct file * file,int idx)1235 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1236 struct file *file, int idx)
1237 {
1238 struct tty_struct *tty;
1239
1240 if (driver->ops->lookup)
1241 if (!file)
1242 tty = ERR_PTR(-EIO);
1243 else
1244 tty = driver->ops->lookup(driver, file, idx);
1245 else
1246 tty = driver->ttys[idx];
1247
1248 if (!IS_ERR(tty))
1249 tty_kref_get(tty);
1250 return tty;
1251 }
1252
1253 /**
1254 * tty_init_termios - helper for termios setup
1255 * @tty: the tty to set up
1256 *
1257 * Initialise the termios structure for this tty. This runs under
1258 * the tty_mutex currently so we can be relaxed about ordering.
1259 */
1260
tty_init_termios(struct tty_struct * tty)1261 void tty_init_termios(struct tty_struct *tty)
1262 {
1263 struct ktermios *tp;
1264 int idx = tty->index;
1265
1266 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1267 tty->termios = tty->driver->init_termios;
1268 else {
1269 /* Check for lazy saved data */
1270 tp = tty->driver->termios[idx];
1271 if (tp != NULL) {
1272 tty->termios = *tp;
1273 tty->termios.c_line = tty->driver->init_termios.c_line;
1274 } else
1275 tty->termios = tty->driver->init_termios;
1276 }
1277 /* Compatibility until drivers always set this */
1278 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1279 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1280 }
1281 EXPORT_SYMBOL_GPL(tty_init_termios);
1282
tty_standard_install(struct tty_driver * driver,struct tty_struct * tty)1283 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1284 {
1285 tty_init_termios(tty);
1286 tty_driver_kref_get(driver);
1287 tty->count++;
1288 driver->ttys[tty->index] = tty;
1289 return 0;
1290 }
1291 EXPORT_SYMBOL_GPL(tty_standard_install);
1292
1293 /**
1294 * tty_driver_install_tty() - install a tty entry in the driver
1295 * @driver: the driver for the tty
1296 * @tty: the tty
1297 *
1298 * Install a tty object into the driver tables. The tty->index field
1299 * will be set by the time this is called. This method is responsible
1300 * for ensuring any need additional structures are allocated and
1301 * configured.
1302 *
1303 * Locking: tty_mutex for now
1304 */
tty_driver_install_tty(struct tty_driver * driver,struct tty_struct * tty)1305 static int tty_driver_install_tty(struct tty_driver *driver,
1306 struct tty_struct *tty)
1307 {
1308 return driver->ops->install ? driver->ops->install(driver, tty) :
1309 tty_standard_install(driver, tty);
1310 }
1311
1312 /**
1313 * tty_driver_remove_tty() - remove a tty from the driver tables
1314 * @driver: the driver for the tty
1315 * @tty: tty to remove
1316 *
1317 * Remvoe a tty object from the driver tables. The tty->index field
1318 * will be set by the time this is called.
1319 *
1320 * Locking: tty_mutex for now
1321 */
tty_driver_remove_tty(struct tty_driver * driver,struct tty_struct * tty)1322 static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1323 {
1324 if (driver->ops->remove)
1325 driver->ops->remove(driver, tty);
1326 else
1327 driver->ttys[tty->index] = NULL;
1328 }
1329
1330 /**
1331 * tty_reopen() - fast re-open of an open tty
1332 * @tty: the tty to open
1333 *
1334 * Return 0 on success, -errno on error.
1335 * Re-opens on master ptys are not allowed and return -EIO.
1336 *
1337 * Locking: Caller must hold tty_lock
1338 */
tty_reopen(struct tty_struct * tty)1339 static int tty_reopen(struct tty_struct *tty)
1340 {
1341 struct tty_driver *driver = tty->driver;
1342 struct tty_ldisc *ld;
1343 int retval = 0;
1344
1345 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1346 driver->subtype == PTY_TYPE_MASTER)
1347 return -EIO;
1348
1349 if (!tty->count)
1350 return -EAGAIN;
1351
1352 if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1353 return -EBUSY;
1354
1355 ld = tty_ldisc_ref_wait(tty);
1356 if (ld) {
1357 tty_ldisc_deref(ld);
1358 } else {
1359 retval = tty_ldisc_lock(tty, 5 * HZ);
1360 if (retval)
1361 return retval;
1362
1363 if (!tty->ldisc)
1364 retval = tty_ldisc_reinit(tty, tty->termios.c_line);
1365 tty_ldisc_unlock(tty);
1366 }
1367
1368 if (retval == 0)
1369 tty->count++;
1370
1371 return retval;
1372 }
1373
1374 /**
1375 * tty_init_dev - initialise a tty device
1376 * @driver: tty driver we are opening a device on
1377 * @idx: device index
1378 *
1379 * Prepare a tty device. This may not be a "new" clean device but
1380 * could also be an active device. The pty drivers require special
1381 * handling because of this.
1382 *
1383 * Locking:
1384 * The function is called under the tty_mutex, which
1385 * protects us from the tty struct or driver itself going away.
1386 *
1387 * On exit the tty device has the line discipline attached and
1388 * a reference count of 1. If a pair was created for pty/tty use
1389 * and the other was a pty master then it too has a reference count of 1.
1390 *
1391 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1392 * failed open. The new code protects the open with a mutex, so it's
1393 * really quite straightforward. The mutex locking can probably be
1394 * relaxed for the (most common) case of reopening a tty.
1395 *
1396 * Return: returned tty structure
1397 */
1398
tty_init_dev(struct tty_driver * driver,int idx)1399 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1400 {
1401 struct tty_struct *tty;
1402 int retval;
1403
1404 /*
1405 * First time open is complex, especially for PTY devices.
1406 * This code guarantees that either everything succeeds and the
1407 * TTY is ready for operation, or else the table slots are vacated
1408 * and the allocated memory released. (Except that the termios
1409 * may be retained.)
1410 */
1411
1412 if (!try_module_get(driver->owner))
1413 return ERR_PTR(-ENODEV);
1414
1415 tty = alloc_tty_struct(driver, idx);
1416 if (!tty) {
1417 retval = -ENOMEM;
1418 goto err_module_put;
1419 }
1420
1421 tty_lock(tty);
1422 retval = tty_driver_install_tty(driver, tty);
1423 if (retval < 0)
1424 goto err_free_tty;
1425
1426 if (!tty->port)
1427 tty->port = driver->ports[idx];
1428
1429 if (WARN_RATELIMIT(!tty->port,
1430 "%s: %s driver does not set tty->port. This would crash the kernel. Fix the driver!\n",
1431 __func__, tty->driver->name)) {
1432 retval = -EINVAL;
1433 goto err_release_lock;
1434 }
1435
1436 retval = tty_ldisc_lock(tty, 5 * HZ);
1437 if (retval)
1438 goto err_release_lock;
1439 tty->port->itty = tty;
1440
1441 /*
1442 * Structures all installed ... call the ldisc open routines.
1443 * If we fail here just call release_tty to clean up. No need
1444 * to decrement the use counts, as release_tty doesn't care.
1445 */
1446 retval = tty_ldisc_setup(tty, tty->link);
1447 if (retval)
1448 goto err_release_tty;
1449 tty_ldisc_unlock(tty);
1450 /* Return the tty locked so that it cannot vanish under the caller */
1451 return tty;
1452
1453 err_free_tty:
1454 tty_unlock(tty);
1455 free_tty_struct(tty);
1456 err_module_put:
1457 module_put(driver->owner);
1458 return ERR_PTR(retval);
1459
1460 /* call the tty release_tty routine to clean out this slot */
1461 err_release_tty:
1462 tty_ldisc_unlock(tty);
1463 tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1464 retval, idx);
1465 err_release_lock:
1466 tty_unlock(tty);
1467 release_tty(tty, idx);
1468 return ERR_PTR(retval);
1469 }
1470
1471 /**
1472 * tty_save_termios() - save tty termios data in driver table
1473 * @tty: tty whose termios data to save
1474 *
1475 * Locking: Caller guarantees serialisation with tty_init_termios().
1476 */
tty_save_termios(struct tty_struct * tty)1477 void tty_save_termios(struct tty_struct *tty)
1478 {
1479 struct ktermios *tp;
1480 int idx = tty->index;
1481
1482 /* If the port is going to reset then it has no termios to save */
1483 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1484 return;
1485
1486 /* Stash the termios data */
1487 tp = tty->driver->termios[idx];
1488 if (tp == NULL) {
1489 tp = kmalloc(sizeof(*tp), GFP_KERNEL);
1490 if (tp == NULL)
1491 return;
1492 tty->driver->termios[idx] = tp;
1493 }
1494 *tp = tty->termios;
1495 }
1496 EXPORT_SYMBOL_GPL(tty_save_termios);
1497
1498 /**
1499 * tty_flush_works - flush all works of a tty/pty pair
1500 * @tty: tty device to flush works for (or either end of a pty pair)
1501 *
1502 * Sync flush all works belonging to @tty (and the 'other' tty).
1503 */
tty_flush_works(struct tty_struct * tty)1504 static void tty_flush_works(struct tty_struct *tty)
1505 {
1506 flush_work(&tty->SAK_work);
1507 flush_work(&tty->hangup_work);
1508 if (tty->link) {
1509 flush_work(&tty->link->SAK_work);
1510 flush_work(&tty->link->hangup_work);
1511 }
1512 }
1513
1514 /**
1515 * release_one_tty - release tty structure memory
1516 * @work: work of tty we are obliterating
1517 *
1518 * Releases memory associated with a tty structure, and clears out the
1519 * driver table slots. This function is called when a device is no longer
1520 * in use. It also gets called when setup of a device fails.
1521 *
1522 * Locking:
1523 * takes the file list lock internally when working on the list
1524 * of ttys that the driver keeps.
1525 *
1526 * This method gets called from a work queue so that the driver private
1527 * cleanup ops can sleep (needed for USB at least)
1528 */
release_one_tty(struct work_struct * work)1529 static void release_one_tty(struct work_struct *work)
1530 {
1531 struct tty_struct *tty =
1532 container_of(work, struct tty_struct, hangup_work);
1533 struct tty_driver *driver = tty->driver;
1534 struct module *owner = driver->owner;
1535
1536 if (tty->ops->cleanup)
1537 tty->ops->cleanup(tty);
1538
1539 tty->magic = 0;
1540 tty_driver_kref_put(driver);
1541 module_put(owner);
1542
1543 spin_lock(&tty->files_lock);
1544 list_del_init(&tty->tty_files);
1545 spin_unlock(&tty->files_lock);
1546
1547 put_pid(tty->pgrp);
1548 put_pid(tty->session);
1549 free_tty_struct(tty);
1550 }
1551
queue_release_one_tty(struct kref * kref)1552 static void queue_release_one_tty(struct kref *kref)
1553 {
1554 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1555
1556 /* The hangup queue is now free so we can reuse it rather than
1557 waste a chunk of memory for each port */
1558 INIT_WORK(&tty->hangup_work, release_one_tty);
1559 schedule_work(&tty->hangup_work);
1560 }
1561
1562 /**
1563 * tty_kref_put - release a tty kref
1564 * @tty: tty device
1565 *
1566 * Release a reference to a tty device and if need be let the kref
1567 * layer destruct the object for us
1568 */
1569
tty_kref_put(struct tty_struct * tty)1570 void tty_kref_put(struct tty_struct *tty)
1571 {
1572 if (tty)
1573 kref_put(&tty->kref, queue_release_one_tty);
1574 }
1575 EXPORT_SYMBOL(tty_kref_put);
1576
1577 /**
1578 * release_tty - release tty structure memory
1579 *
1580 * Release both @tty and a possible linked partner (think pty pair),
1581 * and decrement the refcount of the backing module.
1582 *
1583 * Locking:
1584 * tty_mutex
1585 * takes the file list lock internally when working on the list
1586 * of ttys that the driver keeps.
1587 *
1588 */
release_tty(struct tty_struct * tty,int idx)1589 static void release_tty(struct tty_struct *tty, int idx)
1590 {
1591 /* This should always be true but check for the moment */
1592 WARN_ON(tty->index != idx);
1593 WARN_ON(!mutex_is_locked(&tty_mutex));
1594 if (tty->ops->shutdown)
1595 tty->ops->shutdown(tty);
1596 tty_save_termios(tty);
1597 tty_driver_remove_tty(tty->driver, tty);
1598 if (tty->port)
1599 tty->port->itty = NULL;
1600 if (tty->link)
1601 tty->link->port->itty = NULL;
1602 if (tty->port)
1603 tty_buffer_cancel_work(tty->port);
1604 if (tty->link)
1605 tty_buffer_cancel_work(tty->link->port);
1606
1607 tty_kref_put(tty->link);
1608 tty_kref_put(tty);
1609 }
1610
1611 /**
1612 * tty_release_checks - check a tty before real release
1613 * @tty: tty to check
1614 * @idx: index of the tty
1615 *
1616 * Performs some paranoid checking before true release of the @tty.
1617 * This is a no-op unless TTY_PARANOIA_CHECK is defined.
1618 */
tty_release_checks(struct tty_struct * tty,int idx)1619 static int tty_release_checks(struct tty_struct *tty, int idx)
1620 {
1621 #ifdef TTY_PARANOIA_CHECK
1622 if (idx < 0 || idx >= tty->driver->num) {
1623 tty_debug(tty, "bad idx %d\n", idx);
1624 return -1;
1625 }
1626
1627 /* not much to check for devpts */
1628 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1629 return 0;
1630
1631 if (tty != tty->driver->ttys[idx]) {
1632 tty_debug(tty, "bad driver table[%d] = %p\n",
1633 idx, tty->driver->ttys[idx]);
1634 return -1;
1635 }
1636 if (tty->driver->other) {
1637 struct tty_struct *o_tty = tty->link;
1638
1639 if (o_tty != tty->driver->other->ttys[idx]) {
1640 tty_debug(tty, "bad other table[%d] = %p\n",
1641 idx, tty->driver->other->ttys[idx]);
1642 return -1;
1643 }
1644 if (o_tty->link != tty) {
1645 tty_debug(tty, "bad link = %p\n", o_tty->link);
1646 return -1;
1647 }
1648 }
1649 #endif
1650 return 0;
1651 }
1652
1653 /**
1654 * tty_kclose - closes tty opened by tty_kopen
1655 * @tty: tty device
1656 *
1657 * Performs the final steps to release and free a tty device. It is the
1658 * same as tty_release_struct except that it also resets TTY_PORT_KOPENED
1659 * flag on tty->port.
1660 */
tty_kclose(struct tty_struct * tty)1661 void tty_kclose(struct tty_struct *tty)
1662 {
1663 /*
1664 * Ask the line discipline code to release its structures
1665 */
1666 tty_ldisc_release(tty);
1667
1668 /* Wait for pending work before tty destruction commmences */
1669 tty_flush_works(tty);
1670
1671 tty_debug_hangup(tty, "freeing structure\n");
1672 /*
1673 * The release_tty function takes care of the details of clearing
1674 * the slots and preserving the termios structure.
1675 */
1676 mutex_lock(&tty_mutex);
1677 tty_port_set_kopened(tty->port, 0);
1678 release_tty(tty, tty->index);
1679 mutex_unlock(&tty_mutex);
1680 }
1681 EXPORT_SYMBOL_GPL(tty_kclose);
1682
1683 /**
1684 * tty_release_struct - release a tty struct
1685 * @tty: tty device
1686 * @idx: index of the tty
1687 *
1688 * Performs the final steps to release and free a tty device. It is
1689 * roughly the reverse of tty_init_dev.
1690 */
tty_release_struct(struct tty_struct * tty,int idx)1691 void tty_release_struct(struct tty_struct *tty, int idx)
1692 {
1693 /*
1694 * Ask the line discipline code to release its structures
1695 */
1696 tty_ldisc_release(tty);
1697
1698 /* Wait for pending work before tty destruction commmences */
1699 tty_flush_works(tty);
1700
1701 tty_debug_hangup(tty, "freeing structure\n");
1702 /*
1703 * The release_tty function takes care of the details of clearing
1704 * the slots and preserving the termios structure.
1705 */
1706 mutex_lock(&tty_mutex);
1707 release_tty(tty, idx);
1708 mutex_unlock(&tty_mutex);
1709 }
1710 EXPORT_SYMBOL_GPL(tty_release_struct);
1711
1712 /**
1713 * tty_release - vfs callback for close
1714 * @inode: inode of tty
1715 * @filp: file pointer for handle to tty
1716 *
1717 * Called the last time each file handle is closed that references
1718 * this tty. There may however be several such references.
1719 *
1720 * Locking:
1721 * Takes bkl. See tty_release_dev
1722 *
1723 * Even releasing the tty structures is a tricky business.. We have
1724 * to be very careful that the structures are all released at the
1725 * same time, as interrupts might otherwise get the wrong pointers.
1726 *
1727 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1728 * lead to double frees or releasing memory still in use.
1729 */
1730
tty_release(struct inode * inode,struct file * filp)1731 int tty_release(struct inode *inode, struct file *filp)
1732 {
1733 struct tty_struct *tty = file_tty(filp);
1734 struct tty_struct *o_tty = NULL;
1735 int do_sleep, final;
1736 int idx;
1737 long timeout = 0;
1738 int once = 1;
1739
1740 if (tty_paranoia_check(tty, inode, __func__))
1741 return 0;
1742
1743 tty_lock(tty);
1744 check_tty_count(tty, __func__);
1745
1746 __tty_fasync(-1, filp, 0);
1747
1748 idx = tty->index;
1749 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1750 tty->driver->subtype == PTY_TYPE_MASTER)
1751 o_tty = tty->link;
1752
1753 if (tty_release_checks(tty, idx)) {
1754 tty_unlock(tty);
1755 return 0;
1756 }
1757
1758 tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1759
1760 if (tty->ops->close)
1761 tty->ops->close(tty, filp);
1762
1763 /* If tty is pty master, lock the slave pty (stable lock order) */
1764 tty_lock_slave(o_tty);
1765
1766 /*
1767 * Sanity check: if tty->count is going to zero, there shouldn't be
1768 * any waiters on tty->read_wait or tty->write_wait. We test the
1769 * wait queues and kick everyone out _before_ actually starting to
1770 * close. This ensures that we won't block while releasing the tty
1771 * structure.
1772 *
1773 * The test for the o_tty closing is necessary, since the master and
1774 * slave sides may close in any order. If the slave side closes out
1775 * first, its count will be one, since the master side holds an open.
1776 * Thus this test wouldn't be triggered at the time the slave closed,
1777 * so we do it now.
1778 */
1779 while (1) {
1780 do_sleep = 0;
1781
1782 if (tty->count <= 1) {
1783 if (waitqueue_active(&tty->read_wait)) {
1784 wake_up_poll(&tty->read_wait, EPOLLIN);
1785 do_sleep++;
1786 }
1787 if (waitqueue_active(&tty->write_wait)) {
1788 wake_up_poll(&tty->write_wait, EPOLLOUT);
1789 do_sleep++;
1790 }
1791 }
1792 if (o_tty && o_tty->count <= 1) {
1793 if (waitqueue_active(&o_tty->read_wait)) {
1794 wake_up_poll(&o_tty->read_wait, EPOLLIN);
1795 do_sleep++;
1796 }
1797 if (waitqueue_active(&o_tty->write_wait)) {
1798 wake_up_poll(&o_tty->write_wait, EPOLLOUT);
1799 do_sleep++;
1800 }
1801 }
1802 if (!do_sleep)
1803 break;
1804
1805 if (once) {
1806 once = 0;
1807 tty_warn(tty, "read/write wait queue active!\n");
1808 }
1809 schedule_timeout_killable(timeout);
1810 if (timeout < 120 * HZ)
1811 timeout = 2 * timeout + 1;
1812 else
1813 timeout = MAX_SCHEDULE_TIMEOUT;
1814 }
1815
1816 if (o_tty) {
1817 if (--o_tty->count < 0) {
1818 tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1819 o_tty->count = 0;
1820 }
1821 }
1822 if (--tty->count < 0) {
1823 tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1824 tty->count = 0;
1825 }
1826
1827 /*
1828 * We've decremented tty->count, so we need to remove this file
1829 * descriptor off the tty->tty_files list; this serves two
1830 * purposes:
1831 * - check_tty_count sees the correct number of file descriptors
1832 * associated with this tty.
1833 * - do_tty_hangup no longer sees this file descriptor as
1834 * something that needs to be handled for hangups.
1835 */
1836 tty_del_file(filp);
1837
1838 /*
1839 * Perform some housekeeping before deciding whether to return.
1840 *
1841 * If _either_ side is closing, make sure there aren't any
1842 * processes that still think tty or o_tty is their controlling
1843 * tty.
1844 */
1845 if (!tty->count) {
1846 read_lock(&tasklist_lock);
1847 session_clear_tty(tty->session);
1848 if (o_tty)
1849 session_clear_tty(o_tty->session);
1850 read_unlock(&tasklist_lock);
1851 }
1852
1853 /* check whether both sides are closing ... */
1854 final = !tty->count && !(o_tty && o_tty->count);
1855
1856 tty_unlock_slave(o_tty);
1857 tty_unlock(tty);
1858
1859 /* At this point, the tty->count == 0 should ensure a dead tty
1860 cannot be re-opened by a racing opener */
1861
1862 if (!final)
1863 return 0;
1864
1865 tty_debug_hangup(tty, "final close\n");
1866
1867 tty_release_struct(tty, idx);
1868 return 0;
1869 }
1870
1871 /**
1872 * tty_open_current_tty - get locked tty of current task
1873 * @device: device number
1874 * @filp: file pointer to tty
1875 * @return: locked tty of the current task iff @device is /dev/tty
1876 *
1877 * Performs a re-open of the current task's controlling tty.
1878 *
1879 * We cannot return driver and index like for the other nodes because
1880 * devpts will not work then. It expects inodes to be from devpts FS.
1881 */
tty_open_current_tty(dev_t device,struct file * filp)1882 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1883 {
1884 struct tty_struct *tty;
1885 int retval;
1886
1887 if (device != MKDEV(TTYAUX_MAJOR, 0))
1888 return NULL;
1889
1890 tty = get_current_tty();
1891 if (!tty)
1892 return ERR_PTR(-ENXIO);
1893
1894 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1895 /* noctty = 1; */
1896 tty_lock(tty);
1897 tty_kref_put(tty); /* safe to drop the kref now */
1898
1899 retval = tty_reopen(tty);
1900 if (retval < 0) {
1901 tty_unlock(tty);
1902 tty = ERR_PTR(retval);
1903 }
1904 return tty;
1905 }
1906
1907 /**
1908 * tty_lookup_driver - lookup a tty driver for a given device file
1909 * @device: device number
1910 * @filp: file pointer to tty
1911 * @index: index for the device in the @return driver
1912 * @return: driver for this inode (with increased refcount)
1913 *
1914 * If @return is not erroneous, the caller is responsible to decrement the
1915 * refcount by tty_driver_kref_put.
1916 *
1917 * Locking: tty_mutex protects get_tty_driver
1918 */
tty_lookup_driver(dev_t device,struct file * filp,int * index)1919 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1920 int *index)
1921 {
1922 struct tty_driver *driver = NULL;
1923
1924 switch (device) {
1925 #ifdef CONFIG_VT
1926 case MKDEV(TTY_MAJOR, 0): {
1927 extern struct tty_driver *console_driver;
1928 driver = tty_driver_kref_get(console_driver);
1929 *index = fg_console;
1930 break;
1931 }
1932 #endif
1933 case MKDEV(TTYAUX_MAJOR, 1): {
1934 struct tty_driver *console_driver = console_device(index);
1935 if (console_driver) {
1936 driver = tty_driver_kref_get(console_driver);
1937 if (driver && filp) {
1938 /* Don't let /dev/console block */
1939 filp->f_flags |= O_NONBLOCK;
1940 break;
1941 }
1942 }
1943 if (driver)
1944 tty_driver_kref_put(driver);
1945 return ERR_PTR(-ENODEV);
1946 }
1947 default:
1948 driver = get_tty_driver(device, index);
1949 if (!driver)
1950 return ERR_PTR(-ENODEV);
1951 break;
1952 }
1953 return driver;
1954 }
1955
1956 /**
1957 * tty_kopen - open a tty device for kernel
1958 * @device: dev_t of device to open
1959 *
1960 * Opens tty exclusively for kernel. Performs the driver lookup,
1961 * makes sure it's not already opened and performs the first-time
1962 * tty initialization.
1963 *
1964 * Returns the locked initialized &tty_struct
1965 *
1966 * Claims the global tty_mutex to serialize:
1967 * - concurrent first-time tty initialization
1968 * - concurrent tty driver removal w/ lookup
1969 * - concurrent tty removal from driver table
1970 */
tty_kopen(dev_t device)1971 struct tty_struct *tty_kopen(dev_t device)
1972 {
1973 struct tty_struct *tty;
1974 struct tty_driver *driver;
1975 int index = -1;
1976
1977 mutex_lock(&tty_mutex);
1978 driver = tty_lookup_driver(device, NULL, &index);
1979 if (IS_ERR(driver)) {
1980 mutex_unlock(&tty_mutex);
1981 return ERR_CAST(driver);
1982 }
1983
1984 /* check whether we're reopening an existing tty */
1985 tty = tty_driver_lookup_tty(driver, NULL, index);
1986 if (IS_ERR(tty))
1987 goto out;
1988
1989 if (tty) {
1990 /* drop kref from tty_driver_lookup_tty() */
1991 tty_kref_put(tty);
1992 tty = ERR_PTR(-EBUSY);
1993 } else { /* tty_init_dev returns tty with the tty_lock held */
1994 tty = tty_init_dev(driver, index);
1995 if (IS_ERR(tty))
1996 goto out;
1997 tty_port_set_kopened(tty->port, 1);
1998 }
1999 out:
2000 mutex_unlock(&tty_mutex);
2001 tty_driver_kref_put(driver);
2002 return tty;
2003 }
2004 EXPORT_SYMBOL_GPL(tty_kopen);
2005
2006 /**
2007 * tty_open_by_driver - open a tty device
2008 * @device: dev_t of device to open
2009 * @filp: file pointer to tty
2010 *
2011 * Performs the driver lookup, checks for a reopen, or otherwise
2012 * performs the first-time tty initialization.
2013 *
2014 * Returns the locked initialized or re-opened &tty_struct
2015 *
2016 * Claims the global tty_mutex to serialize:
2017 * - concurrent first-time tty initialization
2018 * - concurrent tty driver removal w/ lookup
2019 * - concurrent tty removal from driver table
2020 */
tty_open_by_driver(dev_t device,struct file * filp)2021 static struct tty_struct *tty_open_by_driver(dev_t device,
2022 struct file *filp)
2023 {
2024 struct tty_struct *tty;
2025 struct tty_driver *driver = NULL;
2026 int index = -1;
2027 int retval;
2028
2029 mutex_lock(&tty_mutex);
2030 driver = tty_lookup_driver(device, filp, &index);
2031 if (IS_ERR(driver)) {
2032 mutex_unlock(&tty_mutex);
2033 return ERR_CAST(driver);
2034 }
2035
2036 /* check whether we're reopening an existing tty */
2037 tty = tty_driver_lookup_tty(driver, filp, index);
2038 if (IS_ERR(tty)) {
2039 mutex_unlock(&tty_mutex);
2040 goto out;
2041 }
2042
2043 if (tty) {
2044 if (tty_port_kopened(tty->port)) {
2045 tty_kref_put(tty);
2046 mutex_unlock(&tty_mutex);
2047 tty = ERR_PTR(-EBUSY);
2048 goto out;
2049 }
2050 mutex_unlock(&tty_mutex);
2051 retval = tty_lock_interruptible(tty);
2052 tty_kref_put(tty); /* drop kref from tty_driver_lookup_tty() */
2053 if (retval) {
2054 if (retval == -EINTR)
2055 retval = -ERESTARTSYS;
2056 tty = ERR_PTR(retval);
2057 goto out;
2058 }
2059 retval = tty_reopen(tty);
2060 if (retval < 0) {
2061 tty_unlock(tty);
2062 tty = ERR_PTR(retval);
2063 }
2064 } else { /* Returns with the tty_lock held for now */
2065 tty = tty_init_dev(driver, index);
2066 mutex_unlock(&tty_mutex);
2067 }
2068 out:
2069 tty_driver_kref_put(driver);
2070 return tty;
2071 }
2072
2073 /**
2074 * tty_open - open a tty device
2075 * @inode: inode of device file
2076 * @filp: file pointer to tty
2077 *
2078 * tty_open and tty_release keep up the tty count that contains the
2079 * number of opens done on a tty. We cannot use the inode-count, as
2080 * different inodes might point to the same tty.
2081 *
2082 * Open-counting is needed for pty masters, as well as for keeping
2083 * track of serial lines: DTR is dropped when the last close happens.
2084 * (This is not done solely through tty->count, now. - Ted 1/27/92)
2085 *
2086 * The termios state of a pty is reset on first open so that
2087 * settings don't persist across reuse.
2088 *
2089 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2090 * tty->count should protect the rest.
2091 * ->siglock protects ->signal/->sighand
2092 *
2093 * Note: the tty_unlock/lock cases without a ref are only safe due to
2094 * tty_mutex
2095 */
2096
tty_open(struct inode * inode,struct file * filp)2097 static int tty_open(struct inode *inode, struct file *filp)
2098 {
2099 struct tty_struct *tty;
2100 int noctty, retval;
2101 dev_t device = inode->i_rdev;
2102 unsigned saved_flags = filp->f_flags;
2103
2104 nonseekable_open(inode, filp);
2105
2106 retry_open:
2107 retval = tty_alloc_file(filp);
2108 if (retval)
2109 return -ENOMEM;
2110
2111 tty = tty_open_current_tty(device, filp);
2112 if (!tty)
2113 tty = tty_open_by_driver(device, filp);
2114
2115 if (IS_ERR(tty)) {
2116 tty_free_file(filp);
2117 retval = PTR_ERR(tty);
2118 if (retval != -EAGAIN || signal_pending(current))
2119 return retval;
2120 schedule();
2121 goto retry_open;
2122 }
2123
2124 tty_add_file(tty, filp);
2125
2126 check_tty_count(tty, __func__);
2127 tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2128
2129 if (tty->ops->open)
2130 retval = tty->ops->open(tty, filp);
2131 else
2132 retval = -ENODEV;
2133 filp->f_flags = saved_flags;
2134
2135 if (retval) {
2136 tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2137
2138 tty_unlock(tty); /* need to call tty_release without BTM */
2139 tty_release(inode, filp);
2140 if (retval != -ERESTARTSYS)
2141 return retval;
2142
2143 if (signal_pending(current))
2144 return retval;
2145
2146 schedule();
2147 /*
2148 * Need to reset f_op in case a hangup happened.
2149 */
2150 if (tty_hung_up_p(filp))
2151 filp->f_op = &tty_fops;
2152 goto retry_open;
2153 }
2154 clear_bit(TTY_HUPPED, &tty->flags);
2155
2156 noctty = (filp->f_flags & O_NOCTTY) ||
2157 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2158 device == MKDEV(TTYAUX_MAJOR, 1) ||
2159 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2160 tty->driver->subtype == PTY_TYPE_MASTER);
2161 if (!noctty)
2162 tty_open_proc_set_tty(filp, tty);
2163 tty_unlock(tty);
2164 return 0;
2165 }
2166
2167
2168
2169 /**
2170 * tty_poll - check tty status
2171 * @filp: file being polled
2172 * @wait: poll wait structures to update
2173 *
2174 * Call the line discipline polling method to obtain the poll
2175 * status of the device.
2176 *
2177 * Locking: locks called line discipline but ldisc poll method
2178 * may be re-entered freely by other callers.
2179 */
2180
tty_poll(struct file * filp,poll_table * wait)2181 static __poll_t tty_poll(struct file *filp, poll_table *wait)
2182 {
2183 struct tty_struct *tty = file_tty(filp);
2184 struct tty_ldisc *ld;
2185 __poll_t ret = 0;
2186
2187 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2188 return 0;
2189
2190 ld = tty_ldisc_ref_wait(tty);
2191 if (!ld)
2192 return hung_up_tty_poll(filp, wait);
2193 if (ld->ops->poll)
2194 ret = ld->ops->poll(tty, filp, wait);
2195 tty_ldisc_deref(ld);
2196 return ret;
2197 }
2198
__tty_fasync(int fd,struct file * filp,int on)2199 static int __tty_fasync(int fd, struct file *filp, int on)
2200 {
2201 struct tty_struct *tty = file_tty(filp);
2202 unsigned long flags;
2203 int retval = 0;
2204
2205 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2206 goto out;
2207
2208 retval = fasync_helper(fd, filp, on, &tty->fasync);
2209 if (retval <= 0)
2210 goto out;
2211
2212 if (on) {
2213 enum pid_type type;
2214 struct pid *pid;
2215
2216 spin_lock_irqsave(&tty->ctrl_lock, flags);
2217 if (tty->pgrp) {
2218 pid = tty->pgrp;
2219 type = PIDTYPE_PGID;
2220 } else {
2221 pid = task_pid(current);
2222 type = PIDTYPE_TGID;
2223 }
2224 get_pid(pid);
2225 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2226 __f_setown(filp, pid, type, 0);
2227 put_pid(pid);
2228 retval = 0;
2229 }
2230 out:
2231 return retval;
2232 }
2233
tty_fasync(int fd,struct file * filp,int on)2234 static int tty_fasync(int fd, struct file *filp, int on)
2235 {
2236 struct tty_struct *tty = file_tty(filp);
2237 int retval = -ENOTTY;
2238
2239 tty_lock(tty);
2240 if (!tty_hung_up_p(filp))
2241 retval = __tty_fasync(fd, filp, on);
2242 tty_unlock(tty);
2243
2244 return retval;
2245 }
2246
2247 /**
2248 * tiocsti - fake input character
2249 * @tty: tty to fake input into
2250 * @p: pointer to character
2251 *
2252 * Fake input to a tty device. Does the necessary locking and
2253 * input management.
2254 *
2255 * FIXME: does not honour flow control ??
2256 *
2257 * Locking:
2258 * Called functions take tty_ldiscs_lock
2259 * current->signal->tty check is safe without locks
2260 */
2261
tiocsti(struct tty_struct * tty,char __user * p)2262 static int tiocsti(struct tty_struct *tty, char __user *p)
2263 {
2264 char ch, mbz = 0;
2265 struct tty_ldisc *ld;
2266
2267 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2268 return -EPERM;
2269 if (get_user(ch, p))
2270 return -EFAULT;
2271 tty_audit_tiocsti(tty, ch);
2272 ld = tty_ldisc_ref_wait(tty);
2273 if (!ld)
2274 return -EIO;
2275 tty_buffer_lock_exclusive(tty->port);
2276 if (ld->ops->receive_buf)
2277 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2278 tty_buffer_unlock_exclusive(tty->port);
2279 tty_ldisc_deref(ld);
2280 return 0;
2281 }
2282
2283 /**
2284 * tiocgwinsz - implement window query ioctl
2285 * @tty: tty
2286 * @arg: user buffer for result
2287 *
2288 * Copies the kernel idea of the window size into the user buffer.
2289 *
2290 * Locking: tty->winsize_mutex is taken to ensure the winsize data
2291 * is consistent.
2292 */
2293
tiocgwinsz(struct tty_struct * tty,struct winsize __user * arg)2294 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2295 {
2296 int err;
2297
2298 mutex_lock(&tty->winsize_mutex);
2299 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2300 mutex_unlock(&tty->winsize_mutex);
2301
2302 return err ? -EFAULT: 0;
2303 }
2304
2305 /**
2306 * tty_do_resize - resize event
2307 * @tty: tty being resized
2308 * @ws: new dimensions
2309 *
2310 * Update the termios variables and send the necessary signals to
2311 * peform a terminal resize correctly
2312 */
2313
tty_do_resize(struct tty_struct * tty,struct winsize * ws)2314 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2315 {
2316 struct pid *pgrp;
2317
2318 /* Lock the tty */
2319 mutex_lock(&tty->winsize_mutex);
2320 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2321 goto done;
2322
2323 /* Signal the foreground process group */
2324 pgrp = tty_get_pgrp(tty);
2325 if (pgrp)
2326 kill_pgrp(pgrp, SIGWINCH, 1);
2327 put_pid(pgrp);
2328
2329 tty->winsize = *ws;
2330 done:
2331 mutex_unlock(&tty->winsize_mutex);
2332 return 0;
2333 }
2334 EXPORT_SYMBOL(tty_do_resize);
2335
2336 /**
2337 * tiocswinsz - implement window size set ioctl
2338 * @tty: tty side of tty
2339 * @arg: user buffer for result
2340 *
2341 * Copies the user idea of the window size to the kernel. Traditionally
2342 * this is just advisory information but for the Linux console it
2343 * actually has driver level meaning and triggers a VC resize.
2344 *
2345 * Locking:
2346 * Driver dependent. The default do_resize method takes the
2347 * tty termios mutex and ctrl_lock. The console takes its own lock
2348 * then calls into the default method.
2349 */
2350
tiocswinsz(struct tty_struct * tty,struct winsize __user * arg)2351 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2352 {
2353 struct winsize tmp_ws;
2354 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2355 return -EFAULT;
2356
2357 if (tty->ops->resize)
2358 return tty->ops->resize(tty, &tmp_ws);
2359 else
2360 return tty_do_resize(tty, &tmp_ws);
2361 }
2362
2363 /**
2364 * tioccons - allow admin to move logical console
2365 * @file: the file to become console
2366 *
2367 * Allow the administrator to move the redirected console device
2368 *
2369 * Locking: uses redirect_lock to guard the redirect information
2370 */
2371
tioccons(struct file * file)2372 static int tioccons(struct file *file)
2373 {
2374 if (!capable(CAP_SYS_ADMIN))
2375 return -EPERM;
2376 if (file->f_op->write_iter == redirected_tty_write) {
2377 struct file *f;
2378 spin_lock(&redirect_lock);
2379 f = redirect;
2380 redirect = NULL;
2381 spin_unlock(&redirect_lock);
2382 if (f)
2383 fput(f);
2384 return 0;
2385 }
2386 if (file->f_op->write_iter != tty_write)
2387 return -ENOTTY;
2388 if (!(file->f_mode & FMODE_WRITE))
2389 return -EBADF;
2390 if (!(file->f_mode & FMODE_CAN_WRITE))
2391 return -EINVAL;
2392 spin_lock(&redirect_lock);
2393 if (redirect) {
2394 spin_unlock(&redirect_lock);
2395 return -EBUSY;
2396 }
2397 redirect = get_file(file);
2398 spin_unlock(&redirect_lock);
2399 return 0;
2400 }
2401
2402 /**
2403 * tiocsetd - set line discipline
2404 * @tty: tty device
2405 * @p: pointer to user data
2406 *
2407 * Set the line discipline according to user request.
2408 *
2409 * Locking: see tty_set_ldisc, this function is just a helper
2410 */
2411
tiocsetd(struct tty_struct * tty,int __user * p)2412 static int tiocsetd(struct tty_struct *tty, int __user *p)
2413 {
2414 int disc;
2415 int ret;
2416
2417 if (get_user(disc, p))
2418 return -EFAULT;
2419
2420 ret = tty_set_ldisc(tty, disc);
2421
2422 return ret;
2423 }
2424
2425 /**
2426 * tiocgetd - get line discipline
2427 * @tty: tty device
2428 * @p: pointer to user data
2429 *
2430 * Retrieves the line discipline id directly from the ldisc.
2431 *
2432 * Locking: waits for ldisc reference (in case the line discipline
2433 * is changing or the tty is being hungup)
2434 */
2435
tiocgetd(struct tty_struct * tty,int __user * p)2436 static int tiocgetd(struct tty_struct *tty, int __user *p)
2437 {
2438 struct tty_ldisc *ld;
2439 int ret;
2440
2441 ld = tty_ldisc_ref_wait(tty);
2442 if (!ld)
2443 return -EIO;
2444 ret = put_user(ld->ops->num, p);
2445 tty_ldisc_deref(ld);
2446 return ret;
2447 }
2448
2449 /**
2450 * send_break - performed time break
2451 * @tty: device to break on
2452 * @duration: timeout in mS
2453 *
2454 * Perform a timed break on hardware that lacks its own driver level
2455 * timed break functionality.
2456 *
2457 * Locking:
2458 * atomic_write_lock serializes
2459 *
2460 */
2461
send_break(struct tty_struct * tty,unsigned int duration)2462 static int send_break(struct tty_struct *tty, unsigned int duration)
2463 {
2464 int retval;
2465
2466 if (tty->ops->break_ctl == NULL)
2467 return 0;
2468
2469 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2470 retval = tty->ops->break_ctl(tty, duration);
2471 else {
2472 /* Do the work ourselves */
2473 if (tty_write_lock(tty, 0) < 0)
2474 return -EINTR;
2475 retval = tty->ops->break_ctl(tty, -1);
2476 if (retval)
2477 goto out;
2478 if (!signal_pending(current))
2479 msleep_interruptible(duration);
2480 retval = tty->ops->break_ctl(tty, 0);
2481 out:
2482 tty_write_unlock(tty);
2483 if (signal_pending(current))
2484 retval = -EINTR;
2485 }
2486 return retval;
2487 }
2488
2489 /**
2490 * tty_tiocmget - get modem status
2491 * @tty: tty device
2492 * @p: pointer to result
2493 *
2494 * Obtain the modem status bits from the tty driver if the feature
2495 * is supported. Return -ENOTTY if it is not available.
2496 *
2497 * Locking: none (up to the driver)
2498 */
2499
tty_tiocmget(struct tty_struct * tty,int __user * p)2500 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2501 {
2502 int retval = -ENOTTY;
2503
2504 if (tty->ops->tiocmget) {
2505 retval = tty->ops->tiocmget(tty);
2506
2507 if (retval >= 0)
2508 retval = put_user(retval, p);
2509 }
2510 return retval;
2511 }
2512
2513 /**
2514 * tty_tiocmset - set modem status
2515 * @tty: tty device
2516 * @cmd: command - clear bits, set bits or set all
2517 * @p: pointer to desired bits
2518 *
2519 * Set the modem status bits from the tty driver if the feature
2520 * is supported. Return -ENOTTY if it is not available.
2521 *
2522 * Locking: none (up to the driver)
2523 */
2524
tty_tiocmset(struct tty_struct * tty,unsigned int cmd,unsigned __user * p)2525 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2526 unsigned __user *p)
2527 {
2528 int retval;
2529 unsigned int set, clear, val;
2530
2531 if (tty->ops->tiocmset == NULL)
2532 return -ENOTTY;
2533
2534 retval = get_user(val, p);
2535 if (retval)
2536 return retval;
2537 set = clear = 0;
2538 switch (cmd) {
2539 case TIOCMBIS:
2540 set = val;
2541 break;
2542 case TIOCMBIC:
2543 clear = val;
2544 break;
2545 case TIOCMSET:
2546 set = val;
2547 clear = ~val;
2548 break;
2549 }
2550 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2551 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2552 return tty->ops->tiocmset(tty, set, clear);
2553 }
2554
tty_tiocgicount(struct tty_struct * tty,void __user * arg)2555 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2556 {
2557 int retval = -EINVAL;
2558 struct serial_icounter_struct icount;
2559 memset(&icount, 0, sizeof(icount));
2560 if (tty->ops->get_icount)
2561 retval = tty->ops->get_icount(tty, &icount);
2562 if (retval != 0)
2563 return retval;
2564 if (copy_to_user(arg, &icount, sizeof(icount)))
2565 return -EFAULT;
2566 return 0;
2567 }
2568
tty_tiocsserial(struct tty_struct * tty,struct serial_struct __user * ss)2569 static int tty_tiocsserial(struct tty_struct *tty, struct serial_struct __user *ss)
2570 {
2571 static DEFINE_RATELIMIT_STATE(depr_flags,
2572 DEFAULT_RATELIMIT_INTERVAL,
2573 DEFAULT_RATELIMIT_BURST);
2574 char comm[TASK_COMM_LEN];
2575 struct serial_struct v;
2576 int flags;
2577
2578 if (copy_from_user(&v, ss, sizeof(*ss)))
2579 return -EFAULT;
2580
2581 flags = v.flags & ASYNC_DEPRECATED;
2582
2583 if (flags && __ratelimit(&depr_flags))
2584 pr_warn("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2585 __func__, get_task_comm(comm, current), flags);
2586 if (!tty->ops->set_serial)
2587 return -ENOTTY;
2588 return tty->ops->set_serial(tty, &v);
2589 }
2590
tty_tiocgserial(struct tty_struct * tty,struct serial_struct __user * ss)2591 static int tty_tiocgserial(struct tty_struct *tty, struct serial_struct __user *ss)
2592 {
2593 struct serial_struct v;
2594 int err;
2595
2596 memset(&v, 0, sizeof(v));
2597 if (!tty->ops->get_serial)
2598 return -ENOTTY;
2599 err = tty->ops->get_serial(tty, &v);
2600 if (!err && copy_to_user(ss, &v, sizeof(v)))
2601 err = -EFAULT;
2602 return err;
2603 }
2604
2605 /*
2606 * if pty, return the slave side (real_tty)
2607 * otherwise, return self
2608 */
tty_pair_get_tty(struct tty_struct * tty)2609 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2610 {
2611 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2612 tty->driver->subtype == PTY_TYPE_MASTER)
2613 tty = tty->link;
2614 return tty;
2615 }
2616
2617 /*
2618 * Split this up, as gcc can choke on it otherwise..
2619 */
tty_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2620 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2621 {
2622 struct tty_struct *tty = file_tty(file);
2623 struct tty_struct *real_tty;
2624 void __user *p = (void __user *)arg;
2625 int retval;
2626 struct tty_ldisc *ld;
2627
2628 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2629 return -EINVAL;
2630
2631 real_tty = tty_pair_get_tty(tty);
2632
2633 /*
2634 * Factor out some common prep work
2635 */
2636 switch (cmd) {
2637 case TIOCSETD:
2638 case TIOCSBRK:
2639 case TIOCCBRK:
2640 case TCSBRK:
2641 case TCSBRKP:
2642 retval = tty_check_change(tty);
2643 if (retval)
2644 return retval;
2645 if (cmd != TIOCCBRK) {
2646 tty_wait_until_sent(tty, 0);
2647 if (signal_pending(current))
2648 return -EINTR;
2649 }
2650 break;
2651 }
2652
2653 /*
2654 * Now do the stuff.
2655 */
2656 switch (cmd) {
2657 case TIOCSTI:
2658 return tiocsti(tty, p);
2659 case TIOCGWINSZ:
2660 return tiocgwinsz(real_tty, p);
2661 case TIOCSWINSZ:
2662 return tiocswinsz(real_tty, p);
2663 case TIOCCONS:
2664 return real_tty != tty ? -EINVAL : tioccons(file);
2665 case TIOCEXCL:
2666 set_bit(TTY_EXCLUSIVE, &tty->flags);
2667 return 0;
2668 case TIOCNXCL:
2669 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2670 return 0;
2671 case TIOCGEXCL:
2672 {
2673 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2674 return put_user(excl, (int __user *)p);
2675 }
2676 case TIOCGETD:
2677 return tiocgetd(tty, p);
2678 case TIOCSETD:
2679 return tiocsetd(tty, p);
2680 case TIOCVHANGUP:
2681 if (!capable(CAP_SYS_ADMIN))
2682 return -EPERM;
2683 tty_vhangup(tty);
2684 return 0;
2685 case TIOCGDEV:
2686 {
2687 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2688 return put_user(ret, (unsigned int __user *)p);
2689 }
2690 /*
2691 * Break handling
2692 */
2693 case TIOCSBRK: /* Turn break on, unconditionally */
2694 if (tty->ops->break_ctl)
2695 return tty->ops->break_ctl(tty, -1);
2696 return 0;
2697 case TIOCCBRK: /* Turn break off, unconditionally */
2698 if (tty->ops->break_ctl)
2699 return tty->ops->break_ctl(tty, 0);
2700 return 0;
2701 case TCSBRK: /* SVID version: non-zero arg --> no break */
2702 /* non-zero arg means wait for all output data
2703 * to be sent (performed above) but don't send break.
2704 * This is used by the tcdrain() termios function.
2705 */
2706 if (!arg)
2707 return send_break(tty, 250);
2708 return 0;
2709 case TCSBRKP: /* support for POSIX tcsendbreak() */
2710 return send_break(tty, arg ? arg*100 : 250);
2711
2712 case TIOCMGET:
2713 return tty_tiocmget(tty, p);
2714 case TIOCMSET:
2715 case TIOCMBIC:
2716 case TIOCMBIS:
2717 return tty_tiocmset(tty, cmd, p);
2718 case TIOCGICOUNT:
2719 return tty_tiocgicount(tty, p);
2720 case TCFLSH:
2721 switch (arg) {
2722 case TCIFLUSH:
2723 case TCIOFLUSH:
2724 /* flush tty buffer and allow ldisc to process ioctl */
2725 tty_buffer_flush(tty, NULL);
2726 break;
2727 }
2728 break;
2729 case TIOCSSERIAL:
2730 return tty_tiocsserial(tty, p);
2731 case TIOCGSERIAL:
2732 return tty_tiocgserial(tty, p);
2733 case TIOCGPTPEER:
2734 /* Special because the struct file is needed */
2735 return ptm_open_peer(file, tty, (int)arg);
2736 default:
2737 retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2738 if (retval != -ENOIOCTLCMD)
2739 return retval;
2740 }
2741 if (tty->ops->ioctl) {
2742 retval = tty->ops->ioctl(tty, cmd, arg);
2743 if (retval != -ENOIOCTLCMD)
2744 return retval;
2745 }
2746 ld = tty_ldisc_ref_wait(tty);
2747 if (!ld)
2748 return hung_up_tty_ioctl(file, cmd, arg);
2749 retval = -EINVAL;
2750 if (ld->ops->ioctl) {
2751 retval = ld->ops->ioctl(tty, file, cmd, arg);
2752 if (retval == -ENOIOCTLCMD)
2753 retval = -ENOTTY;
2754 }
2755 tty_ldisc_deref(ld);
2756 return retval;
2757 }
2758
2759 #ifdef CONFIG_COMPAT
2760
2761 struct serial_struct32 {
2762 compat_int_t type;
2763 compat_int_t line;
2764 compat_uint_t port;
2765 compat_int_t irq;
2766 compat_int_t flags;
2767 compat_int_t xmit_fifo_size;
2768 compat_int_t custom_divisor;
2769 compat_int_t baud_base;
2770 unsigned short close_delay;
2771 char io_type;
2772 char reserved_char;
2773 compat_int_t hub6;
2774 unsigned short closing_wait; /* time to wait before closing */
2775 unsigned short closing_wait2; /* no longer used... */
2776 compat_uint_t iomem_base;
2777 unsigned short iomem_reg_shift;
2778 unsigned int port_high;
2779 /* compat_ulong_t iomap_base FIXME */
2780 compat_int_t reserved;
2781 };
2782
compat_tty_tiocsserial(struct tty_struct * tty,struct serial_struct32 __user * ss)2783 static int compat_tty_tiocsserial(struct tty_struct *tty,
2784 struct serial_struct32 __user *ss)
2785 {
2786 static DEFINE_RATELIMIT_STATE(depr_flags,
2787 DEFAULT_RATELIMIT_INTERVAL,
2788 DEFAULT_RATELIMIT_BURST);
2789 char comm[TASK_COMM_LEN];
2790 struct serial_struct32 v32;
2791 struct serial_struct v;
2792 int flags;
2793
2794 if (copy_from_user(&v32, ss, sizeof(*ss)))
2795 return -EFAULT;
2796
2797 memcpy(&v, &v32, offsetof(struct serial_struct32, iomem_base));
2798 v.iomem_base = compat_ptr(v32.iomem_base);
2799 v.iomem_reg_shift = v32.iomem_reg_shift;
2800 v.port_high = v32.port_high;
2801 v.iomap_base = 0;
2802
2803 flags = v.flags & ASYNC_DEPRECATED;
2804
2805 if (flags && __ratelimit(&depr_flags))
2806 pr_warn("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2807 __func__, get_task_comm(comm, current), flags);
2808 if (!tty->ops->set_serial)
2809 return -ENOTTY;
2810 return tty->ops->set_serial(tty, &v);
2811 }
2812
compat_tty_tiocgserial(struct tty_struct * tty,struct serial_struct32 __user * ss)2813 static int compat_tty_tiocgserial(struct tty_struct *tty,
2814 struct serial_struct32 __user *ss)
2815 {
2816 struct serial_struct32 v32;
2817 struct serial_struct v;
2818 int err;
2819
2820 memset(&v, 0, sizeof(v));
2821 memset(&v32, 0, sizeof(v32));
2822
2823 if (!tty->ops->get_serial)
2824 return -ENOTTY;
2825 err = tty->ops->get_serial(tty, &v);
2826 if (!err) {
2827 memcpy(&v32, &v, offsetof(struct serial_struct32, iomem_base));
2828 v32.iomem_base = (unsigned long)v.iomem_base >> 32 ?
2829 0xfffffff : ptr_to_compat(v.iomem_base);
2830 v32.iomem_reg_shift = v.iomem_reg_shift;
2831 v32.port_high = v.port_high;
2832 if (copy_to_user(ss, &v32, sizeof(v32)))
2833 err = -EFAULT;
2834 }
2835 return err;
2836 }
tty_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2837 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2838 unsigned long arg)
2839 {
2840 struct tty_struct *tty = file_tty(file);
2841 struct tty_ldisc *ld;
2842 int retval = -ENOIOCTLCMD;
2843
2844 switch (cmd) {
2845 case TIOCOUTQ:
2846 case TIOCSTI:
2847 case TIOCGWINSZ:
2848 case TIOCSWINSZ:
2849 case TIOCGEXCL:
2850 case TIOCGETD:
2851 case TIOCSETD:
2852 case TIOCGDEV:
2853 case TIOCMGET:
2854 case TIOCMSET:
2855 case TIOCMBIC:
2856 case TIOCMBIS:
2857 case TIOCGICOUNT:
2858 case TIOCGPGRP:
2859 case TIOCSPGRP:
2860 case TIOCGSID:
2861 case TIOCSERGETLSR:
2862 case TIOCGRS485:
2863 case TIOCSRS485:
2864 #ifdef TIOCGETP
2865 case TIOCGETP:
2866 case TIOCSETP:
2867 case TIOCSETN:
2868 #endif
2869 #ifdef TIOCGETC
2870 case TIOCGETC:
2871 case TIOCSETC:
2872 #endif
2873 #ifdef TIOCGLTC
2874 case TIOCGLTC:
2875 case TIOCSLTC:
2876 #endif
2877 case TCSETSF:
2878 case TCSETSW:
2879 case TCSETS:
2880 case TCGETS:
2881 #ifdef TCGETS2
2882 case TCGETS2:
2883 case TCSETSF2:
2884 case TCSETSW2:
2885 case TCSETS2:
2886 #endif
2887 case TCGETA:
2888 case TCSETAF:
2889 case TCSETAW:
2890 case TCSETA:
2891 case TIOCGLCKTRMIOS:
2892 case TIOCSLCKTRMIOS:
2893 #ifdef TCGETX
2894 case TCGETX:
2895 case TCSETX:
2896 case TCSETXW:
2897 case TCSETXF:
2898 #endif
2899 case TIOCGSOFTCAR:
2900 case TIOCSSOFTCAR:
2901
2902 case PPPIOCGCHAN:
2903 case PPPIOCGUNIT:
2904 return tty_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2905 case TIOCCONS:
2906 case TIOCEXCL:
2907 case TIOCNXCL:
2908 case TIOCVHANGUP:
2909 case TIOCSBRK:
2910 case TIOCCBRK:
2911 case TCSBRK:
2912 case TCSBRKP:
2913 case TCFLSH:
2914 case TIOCGPTPEER:
2915 case TIOCNOTTY:
2916 case TIOCSCTTY:
2917 case TCXONC:
2918 case TIOCMIWAIT:
2919 case TIOCSERCONFIG:
2920 return tty_ioctl(file, cmd, arg);
2921 }
2922
2923 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2924 return -EINVAL;
2925
2926 switch (cmd) {
2927 case TIOCSSERIAL:
2928 return compat_tty_tiocsserial(tty, compat_ptr(arg));
2929 case TIOCGSERIAL:
2930 return compat_tty_tiocgserial(tty, compat_ptr(arg));
2931 }
2932 if (tty->ops->compat_ioctl) {
2933 retval = tty->ops->compat_ioctl(tty, cmd, arg);
2934 if (retval != -ENOIOCTLCMD)
2935 return retval;
2936 }
2937
2938 ld = tty_ldisc_ref_wait(tty);
2939 if (!ld)
2940 return hung_up_tty_compat_ioctl(file, cmd, arg);
2941 if (ld->ops->compat_ioctl)
2942 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2943 if (retval == -ENOIOCTLCMD && ld->ops->ioctl)
2944 retval = ld->ops->ioctl(tty, file,
2945 (unsigned long)compat_ptr(cmd), arg);
2946 tty_ldisc_deref(ld);
2947
2948 return retval;
2949 }
2950 #endif
2951
this_tty(const void * t,struct file * file,unsigned fd)2952 static int this_tty(const void *t, struct file *file, unsigned fd)
2953 {
2954 if (likely(file->f_op->read_iter != tty_read))
2955 return 0;
2956 return file_tty(file) != t ? 0 : fd + 1;
2957 }
2958
2959 /*
2960 * This implements the "Secure Attention Key" --- the idea is to
2961 * prevent trojan horses by killing all processes associated with this
2962 * tty when the user hits the "Secure Attention Key". Required for
2963 * super-paranoid applications --- see the Orange Book for more details.
2964 *
2965 * This code could be nicer; ideally it should send a HUP, wait a few
2966 * seconds, then send a INT, and then a KILL signal. But you then
2967 * have to coordinate with the init process, since all processes associated
2968 * with the current tty must be dead before the new getty is allowed
2969 * to spawn.
2970 *
2971 * Now, if it would be correct ;-/ The current code has a nasty hole -
2972 * it doesn't catch files in flight. We may send the descriptor to ourselves
2973 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2974 *
2975 * Nasty bug: do_SAK is being called in interrupt context. This can
2976 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2977 */
__do_SAK(struct tty_struct * tty)2978 void __do_SAK(struct tty_struct *tty)
2979 {
2980 #ifdef TTY_SOFT_SAK
2981 tty_hangup(tty);
2982 #else
2983 struct task_struct *g, *p;
2984 struct pid *session;
2985 int i;
2986 unsigned long flags;
2987
2988 if (!tty)
2989 return;
2990
2991 spin_lock_irqsave(&tty->ctrl_lock, flags);
2992 session = get_pid(tty->session);
2993 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2994
2995 tty_ldisc_flush(tty);
2996
2997 tty_driver_flush_buffer(tty);
2998
2999 read_lock(&tasklist_lock);
3000 /* Kill the entire session */
3001 do_each_pid_task(session, PIDTYPE_SID, p) {
3002 tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3003 task_pid_nr(p), p->comm);
3004 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
3005 } while_each_pid_task(session, PIDTYPE_SID, p);
3006
3007 /* Now kill any processes that happen to have the tty open */
3008 do_each_thread(g, p) {
3009 if (p->signal->tty == tty) {
3010 tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3011 task_pid_nr(p), p->comm);
3012 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
3013 continue;
3014 }
3015 task_lock(p);
3016 i = iterate_fd(p->files, 0, this_tty, tty);
3017 if (i != 0) {
3018 tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3019 task_pid_nr(p), p->comm, i - 1);
3020 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
3021 }
3022 task_unlock(p);
3023 } while_each_thread(g, p);
3024 read_unlock(&tasklist_lock);
3025 put_pid(session);
3026 #endif
3027 }
3028
do_SAK_work(struct work_struct * work)3029 static void do_SAK_work(struct work_struct *work)
3030 {
3031 struct tty_struct *tty =
3032 container_of(work, struct tty_struct, SAK_work);
3033 __do_SAK(tty);
3034 }
3035
3036 /*
3037 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3038 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3039 * the values which we write to it will be identical to the values which it
3040 * already has. --akpm
3041 */
do_SAK(struct tty_struct * tty)3042 void do_SAK(struct tty_struct *tty)
3043 {
3044 if (!tty)
3045 return;
3046 schedule_work(&tty->SAK_work);
3047 }
3048
3049 EXPORT_SYMBOL(do_SAK);
3050
3051 /* Must put_device() after it's unused! */
tty_get_device(struct tty_struct * tty)3052 static struct device *tty_get_device(struct tty_struct *tty)
3053 {
3054 dev_t devt = tty_devnum(tty);
3055 return class_find_device_by_devt(tty_class, devt);
3056 }
3057
3058
3059 /**
3060 * alloc_tty_struct
3061 *
3062 * This subroutine allocates and initializes a tty structure.
3063 *
3064 * Locking: none - tty in question is not exposed at this point
3065 */
3066
alloc_tty_struct(struct tty_driver * driver,int idx)3067 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3068 {
3069 struct tty_struct *tty;
3070
3071 tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3072 if (!tty)
3073 return NULL;
3074
3075 kref_init(&tty->kref);
3076 tty->magic = TTY_MAGIC;
3077 if (tty_ldisc_init(tty)) {
3078 kfree(tty);
3079 return NULL;
3080 }
3081 tty->session = NULL;
3082 tty->pgrp = NULL;
3083 mutex_init(&tty->legacy_mutex);
3084 mutex_init(&tty->throttle_mutex);
3085 init_rwsem(&tty->termios_rwsem);
3086 mutex_init(&tty->winsize_mutex);
3087 init_ldsem(&tty->ldisc_sem);
3088 init_waitqueue_head(&tty->write_wait);
3089 init_waitqueue_head(&tty->read_wait);
3090 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3091 mutex_init(&tty->atomic_write_lock);
3092 spin_lock_init(&tty->ctrl_lock);
3093 spin_lock_init(&tty->flow_lock);
3094 spin_lock_init(&tty->files_lock);
3095 INIT_LIST_HEAD(&tty->tty_files);
3096 INIT_WORK(&tty->SAK_work, do_SAK_work);
3097
3098 tty->driver = driver;
3099 tty->ops = driver->ops;
3100 tty->index = idx;
3101 tty_line_name(driver, idx, tty->name);
3102 tty->dev = tty_get_device(tty);
3103
3104 return tty;
3105 }
3106
3107 /**
3108 * tty_put_char - write one character to a tty
3109 * @tty: tty
3110 * @ch: character
3111 *
3112 * Write one byte to the tty using the provided put_char method
3113 * if present. Returns the number of characters successfully output.
3114 *
3115 * Note: the specific put_char operation in the driver layer may go
3116 * away soon. Don't call it directly, use this method
3117 */
3118
tty_put_char(struct tty_struct * tty,unsigned char ch)3119 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3120 {
3121 if (tty->ops->put_char)
3122 return tty->ops->put_char(tty, ch);
3123 return tty->ops->write(tty, &ch, 1);
3124 }
3125 EXPORT_SYMBOL_GPL(tty_put_char);
3126
3127 struct class *tty_class;
3128
tty_cdev_add(struct tty_driver * driver,dev_t dev,unsigned int index,unsigned int count)3129 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3130 unsigned int index, unsigned int count)
3131 {
3132 int err;
3133
3134 /* init here, since reused cdevs cause crashes */
3135 driver->cdevs[index] = cdev_alloc();
3136 if (!driver->cdevs[index])
3137 return -ENOMEM;
3138 driver->cdevs[index]->ops = &tty_fops;
3139 driver->cdevs[index]->owner = driver->owner;
3140 err = cdev_add(driver->cdevs[index], dev, count);
3141 if (err)
3142 kobject_put(&driver->cdevs[index]->kobj);
3143 return err;
3144 }
3145
3146 /**
3147 * tty_register_device - register a tty device
3148 * @driver: the tty driver that describes the tty device
3149 * @index: the index in the tty driver for this tty device
3150 * @device: a struct device that is associated with this tty device.
3151 * This field is optional, if there is no known struct device
3152 * for this tty device it can be set to NULL safely.
3153 *
3154 * Returns a pointer to the struct device for this tty device
3155 * (or ERR_PTR(-EFOO) on error).
3156 *
3157 * This call is required to be made to register an individual tty device
3158 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3159 * that bit is not set, this function should not be called by a tty
3160 * driver.
3161 *
3162 * Locking: ??
3163 */
3164
tty_register_device(struct tty_driver * driver,unsigned index,struct device * device)3165 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3166 struct device *device)
3167 {
3168 return tty_register_device_attr(driver, index, device, NULL, NULL);
3169 }
3170 EXPORT_SYMBOL(tty_register_device);
3171
tty_device_create_release(struct device * dev)3172 static void tty_device_create_release(struct device *dev)
3173 {
3174 dev_dbg(dev, "releasing...\n");
3175 kfree(dev);
3176 }
3177
3178 /**
3179 * tty_register_device_attr - register a tty device
3180 * @driver: the tty driver that describes the tty device
3181 * @index: the index in the tty driver for this tty device
3182 * @device: a struct device that is associated with this tty device.
3183 * This field is optional, if there is no known struct device
3184 * for this tty device it can be set to NULL safely.
3185 * @drvdata: Driver data to be set to device.
3186 * @attr_grp: Attribute group to be set on device.
3187 *
3188 * Returns a pointer to the struct device for this tty device
3189 * (or ERR_PTR(-EFOO) on error).
3190 *
3191 * This call is required to be made to register an individual tty device
3192 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3193 * that bit is not set, this function should not be called by a tty
3194 * driver.
3195 *
3196 * Locking: ??
3197 */
tty_register_device_attr(struct tty_driver * driver,unsigned index,struct device * device,void * drvdata,const struct attribute_group ** attr_grp)3198 struct device *tty_register_device_attr(struct tty_driver *driver,
3199 unsigned index, struct device *device,
3200 void *drvdata,
3201 const struct attribute_group **attr_grp)
3202 {
3203 char name[64];
3204 dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3205 struct ktermios *tp;
3206 struct device *dev;
3207 int retval;
3208
3209 if (index >= driver->num) {
3210 pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3211 driver->name, index);
3212 return ERR_PTR(-EINVAL);
3213 }
3214
3215 if (driver->type == TTY_DRIVER_TYPE_PTY)
3216 pty_line_name(driver, index, name);
3217 else
3218 tty_line_name(driver, index, name);
3219
3220 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3221 if (!dev)
3222 return ERR_PTR(-ENOMEM);
3223
3224 dev->devt = devt;
3225 dev->class = tty_class;
3226 dev->parent = device;
3227 dev->release = tty_device_create_release;
3228 dev_set_name(dev, "%s", name);
3229 dev->groups = attr_grp;
3230 dev_set_drvdata(dev, drvdata);
3231
3232 dev_set_uevent_suppress(dev, 1);
3233
3234 retval = device_register(dev);
3235 if (retval)
3236 goto err_put;
3237
3238 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3239 /*
3240 * Free any saved termios data so that the termios state is
3241 * reset when reusing a minor number.
3242 */
3243 tp = driver->termios[index];
3244 if (tp) {
3245 driver->termios[index] = NULL;
3246 kfree(tp);
3247 }
3248
3249 retval = tty_cdev_add(driver, devt, index, 1);
3250 if (retval)
3251 goto err_del;
3252 }
3253
3254 dev_set_uevent_suppress(dev, 0);
3255 kobject_uevent(&dev->kobj, KOBJ_ADD);
3256
3257 return dev;
3258
3259 err_del:
3260 device_del(dev);
3261 err_put:
3262 put_device(dev);
3263
3264 return ERR_PTR(retval);
3265 }
3266 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3267
3268 /**
3269 * tty_unregister_device - unregister a tty device
3270 * @driver: the tty driver that describes the tty device
3271 * @index: the index in the tty driver for this tty device
3272 *
3273 * If a tty device is registered with a call to tty_register_device() then
3274 * this function must be called when the tty device is gone.
3275 *
3276 * Locking: ??
3277 */
3278
tty_unregister_device(struct tty_driver * driver,unsigned index)3279 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3280 {
3281 device_destroy(tty_class,
3282 MKDEV(driver->major, driver->minor_start) + index);
3283 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3284 cdev_del(driver->cdevs[index]);
3285 driver->cdevs[index] = NULL;
3286 }
3287 }
3288 EXPORT_SYMBOL(tty_unregister_device);
3289
3290 /**
3291 * __tty_alloc_driver -- allocate tty driver
3292 * @lines: count of lines this driver can handle at most
3293 * @owner: module which is responsible for this driver
3294 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3295 *
3296 * This should not be called directly, some of the provided macros should be
3297 * used instead. Use IS_ERR and friends on @retval.
3298 */
__tty_alloc_driver(unsigned int lines,struct module * owner,unsigned long flags)3299 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3300 unsigned long flags)
3301 {
3302 struct tty_driver *driver;
3303 unsigned int cdevs = 1;
3304 int err;
3305
3306 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3307 return ERR_PTR(-EINVAL);
3308
3309 driver = kzalloc(sizeof(*driver), GFP_KERNEL);
3310 if (!driver)
3311 return ERR_PTR(-ENOMEM);
3312
3313 kref_init(&driver->kref);
3314 driver->magic = TTY_DRIVER_MAGIC;
3315 driver->num = lines;
3316 driver->owner = owner;
3317 driver->flags = flags;
3318
3319 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3320 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3321 GFP_KERNEL);
3322 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3323 GFP_KERNEL);
3324 if (!driver->ttys || !driver->termios) {
3325 err = -ENOMEM;
3326 goto err_free_all;
3327 }
3328 }
3329
3330 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3331 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3332 GFP_KERNEL);
3333 if (!driver->ports) {
3334 err = -ENOMEM;
3335 goto err_free_all;
3336 }
3337 cdevs = lines;
3338 }
3339
3340 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3341 if (!driver->cdevs) {
3342 err = -ENOMEM;
3343 goto err_free_all;
3344 }
3345
3346 return driver;
3347 err_free_all:
3348 kfree(driver->ports);
3349 kfree(driver->ttys);
3350 kfree(driver->termios);
3351 kfree(driver->cdevs);
3352 kfree(driver);
3353 return ERR_PTR(err);
3354 }
3355 EXPORT_SYMBOL(__tty_alloc_driver);
3356
destruct_tty_driver(struct kref * kref)3357 static void destruct_tty_driver(struct kref *kref)
3358 {
3359 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3360 int i;
3361 struct ktermios *tp;
3362
3363 if (driver->flags & TTY_DRIVER_INSTALLED) {
3364 for (i = 0; i < driver->num; i++) {
3365 tp = driver->termios[i];
3366 if (tp) {
3367 driver->termios[i] = NULL;
3368 kfree(tp);
3369 }
3370 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3371 tty_unregister_device(driver, i);
3372 }
3373 proc_tty_unregister_driver(driver);
3374 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3375 cdev_del(driver->cdevs[0]);
3376 }
3377 kfree(driver->cdevs);
3378 kfree(driver->ports);
3379 kfree(driver->termios);
3380 kfree(driver->ttys);
3381 kfree(driver);
3382 }
3383
tty_driver_kref_put(struct tty_driver * driver)3384 void tty_driver_kref_put(struct tty_driver *driver)
3385 {
3386 kref_put(&driver->kref, destruct_tty_driver);
3387 }
3388 EXPORT_SYMBOL(tty_driver_kref_put);
3389
tty_set_operations(struct tty_driver * driver,const struct tty_operations * op)3390 void tty_set_operations(struct tty_driver *driver,
3391 const struct tty_operations *op)
3392 {
3393 driver->ops = op;
3394 };
3395 EXPORT_SYMBOL(tty_set_operations);
3396
put_tty_driver(struct tty_driver * d)3397 void put_tty_driver(struct tty_driver *d)
3398 {
3399 tty_driver_kref_put(d);
3400 }
3401 EXPORT_SYMBOL(put_tty_driver);
3402
3403 /*
3404 * Called by a tty driver to register itself.
3405 */
tty_register_driver(struct tty_driver * driver)3406 int tty_register_driver(struct tty_driver *driver)
3407 {
3408 int error;
3409 int i;
3410 dev_t dev;
3411 struct device *d;
3412
3413 if (!driver->major) {
3414 error = alloc_chrdev_region(&dev, driver->minor_start,
3415 driver->num, driver->name);
3416 if (!error) {
3417 driver->major = MAJOR(dev);
3418 driver->minor_start = MINOR(dev);
3419 }
3420 } else {
3421 dev = MKDEV(driver->major, driver->minor_start);
3422 error = register_chrdev_region(dev, driver->num, driver->name);
3423 }
3424 if (error < 0)
3425 goto err;
3426
3427 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3428 error = tty_cdev_add(driver, dev, 0, driver->num);
3429 if (error)
3430 goto err_unreg_char;
3431 }
3432
3433 mutex_lock(&tty_mutex);
3434 list_add(&driver->tty_drivers, &tty_drivers);
3435 mutex_unlock(&tty_mutex);
3436
3437 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3438 for (i = 0; i < driver->num; i++) {
3439 d = tty_register_device(driver, i, NULL);
3440 if (IS_ERR(d)) {
3441 error = PTR_ERR(d);
3442 goto err_unreg_devs;
3443 }
3444 }
3445 }
3446 proc_tty_register_driver(driver);
3447 driver->flags |= TTY_DRIVER_INSTALLED;
3448 return 0;
3449
3450 err_unreg_devs:
3451 for (i--; i >= 0; i--)
3452 tty_unregister_device(driver, i);
3453
3454 mutex_lock(&tty_mutex);
3455 list_del(&driver->tty_drivers);
3456 mutex_unlock(&tty_mutex);
3457
3458 err_unreg_char:
3459 unregister_chrdev_region(dev, driver->num);
3460 err:
3461 return error;
3462 }
3463 EXPORT_SYMBOL(tty_register_driver);
3464
3465 /*
3466 * Called by a tty driver to unregister itself.
3467 */
tty_unregister_driver(struct tty_driver * driver)3468 int tty_unregister_driver(struct tty_driver *driver)
3469 {
3470 #if 0
3471 /* FIXME */
3472 if (driver->refcount)
3473 return -EBUSY;
3474 #endif
3475 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3476 driver->num);
3477 mutex_lock(&tty_mutex);
3478 list_del(&driver->tty_drivers);
3479 mutex_unlock(&tty_mutex);
3480 return 0;
3481 }
3482
3483 EXPORT_SYMBOL(tty_unregister_driver);
3484
tty_devnum(struct tty_struct * tty)3485 dev_t tty_devnum(struct tty_struct *tty)
3486 {
3487 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3488 }
3489 EXPORT_SYMBOL(tty_devnum);
3490
tty_default_fops(struct file_operations * fops)3491 void tty_default_fops(struct file_operations *fops)
3492 {
3493 *fops = tty_fops;
3494 }
3495
tty_devnode(struct device * dev,umode_t * mode)3496 static char *tty_devnode(struct device *dev, umode_t *mode)
3497 {
3498 if (!mode)
3499 return NULL;
3500 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3501 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3502 *mode = 0666;
3503 return NULL;
3504 }
3505
tty_class_init(void)3506 static int __init tty_class_init(void)
3507 {
3508 tty_class = class_create(THIS_MODULE, "tty");
3509 if (IS_ERR(tty_class))
3510 return PTR_ERR(tty_class);
3511 tty_class->devnode = tty_devnode;
3512 return 0;
3513 }
3514
3515 postcore_initcall(tty_class_init);
3516
3517 /* 3/2004 jmc: why do these devices exist? */
3518 static struct cdev tty_cdev, console_cdev;
3519
show_cons_active(struct device * dev,struct device_attribute * attr,char * buf)3520 static ssize_t show_cons_active(struct device *dev,
3521 struct device_attribute *attr, char *buf)
3522 {
3523 struct console *cs[16];
3524 int i = 0;
3525 struct console *c;
3526 ssize_t count = 0;
3527
3528 console_lock();
3529 for_each_console(c) {
3530 if (!c->device)
3531 continue;
3532 if (!c->write)
3533 continue;
3534 if ((c->flags & CON_ENABLED) == 0)
3535 continue;
3536 cs[i++] = c;
3537 if (i >= ARRAY_SIZE(cs))
3538 break;
3539 }
3540 while (i--) {
3541 int index = cs[i]->index;
3542 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3543
3544 /* don't resolve tty0 as some programs depend on it */
3545 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3546 count += tty_line_name(drv, index, buf + count);
3547 else
3548 count += sprintf(buf + count, "%s%d",
3549 cs[i]->name, cs[i]->index);
3550
3551 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3552 }
3553 console_unlock();
3554
3555 return count;
3556 }
3557 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3558
3559 static struct attribute *cons_dev_attrs[] = {
3560 &dev_attr_active.attr,
3561 NULL
3562 };
3563
3564 ATTRIBUTE_GROUPS(cons_dev);
3565
3566 static struct device *consdev;
3567
console_sysfs_notify(void)3568 void console_sysfs_notify(void)
3569 {
3570 if (consdev)
3571 sysfs_notify(&consdev->kobj, NULL, "active");
3572 }
3573
3574 /*
3575 * Ok, now we can initialize the rest of the tty devices and can count
3576 * on memory allocations, interrupts etc..
3577 */
tty_init(void)3578 int __init tty_init(void)
3579 {
3580 tty_sysctl_init();
3581 cdev_init(&tty_cdev, &tty_fops);
3582 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3583 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3584 panic("Couldn't register /dev/tty driver\n");
3585 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3586
3587 cdev_init(&console_cdev, &console_fops);
3588 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3589 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3590 panic("Couldn't register /dev/console driver\n");
3591 consdev = device_create_with_groups(tty_class, NULL,
3592 MKDEV(TTYAUX_MAJOR, 1), NULL,
3593 cons_dev_groups, "console");
3594 if (IS_ERR(consdev))
3595 consdev = NULL;
3596
3597 #ifdef CONFIG_VT
3598 vty_init(&console_fops);
3599 #endif
3600 return 0;
3601 }
3602
3603