• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Mesa 3-D graphics library
3  *
4  * Copyright (C) 1999-2005  Brian Paul   All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included
14  * in all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  */
24 
25 
26 /**
27  * \file m_matrix.c
28  * Matrix operations.
29  *
30  * \note
31  * -# 4x4 transformation matrices are stored in memory in column major order.
32  * -# Points/vertices are to be thought of as column vectors.
33  * -# Transformation of a point p by a matrix M is: p' = M * p
34  */
35 
36 #include <stddef.h>
37 
38 #include "c99_math.h"
39 #include "main/errors.h"
40 #include "main/glheader.h"
41 #include "main/macros.h"
42 #define MATH_ASM_PTR_SIZE sizeof(void *)
43 #include "math/m_vector_asm.h"
44 
45 #include "m_matrix.h"
46 
47 #include "util/u_memory.h"
48 
49 
50 /**
51  * \defgroup MatFlags MAT_FLAG_XXX-flags
52  *
53  * Bitmasks to indicate different kinds of 4x4 matrices in GLmatrix::flags
54  */
55 /*@{*/
56 #define MAT_FLAG_IDENTITY       0     /**< is an identity matrix flag.
57                                        *   (Not actually used - the identity
58                                        *   matrix is identified by the absence
59                                        *   of all other flags.)
60                                        */
61 #define MAT_FLAG_GENERAL        0x1   /**< is a general matrix flag */
62 #define MAT_FLAG_ROTATION       0x2   /**< is a rotation matrix flag */
63 #define MAT_FLAG_TRANSLATION    0x4   /**< is a translation matrix flag */
64 #define MAT_FLAG_UNIFORM_SCALE  0x8   /**< is an uniform scaling matrix flag */
65 #define MAT_FLAG_GENERAL_SCALE  0x10  /**< is a general scaling matrix flag */
66 #define MAT_FLAG_GENERAL_3D     0x20  /**< general 3D matrix flag */
67 #define MAT_FLAG_PERSPECTIVE    0x40  /**< is a perspective proj matrix flag */
68 #define MAT_FLAG_SINGULAR       0x80  /**< is a singular matrix flag */
69 #define MAT_DIRTY_TYPE          0x100  /**< matrix type is dirty */
70 #define MAT_DIRTY_FLAGS         0x200  /**< matrix flags are dirty */
71 #define MAT_DIRTY_INVERSE       0x400  /**< matrix inverse is dirty */
72 
73 /** angle preserving matrix flags mask */
74 #define MAT_FLAGS_ANGLE_PRESERVING (MAT_FLAG_ROTATION | \
75 				    MAT_FLAG_TRANSLATION | \
76 				    MAT_FLAG_UNIFORM_SCALE)
77 
78 /** geometry related matrix flags mask */
79 #define MAT_FLAGS_GEOMETRY (MAT_FLAG_GENERAL | \
80 			    MAT_FLAG_ROTATION | \
81 			    MAT_FLAG_TRANSLATION | \
82 			    MAT_FLAG_UNIFORM_SCALE | \
83 			    MAT_FLAG_GENERAL_SCALE | \
84 			    MAT_FLAG_GENERAL_3D | \
85 			    MAT_FLAG_PERSPECTIVE | \
86 	                    MAT_FLAG_SINGULAR)
87 
88 /** length preserving matrix flags mask */
89 #define MAT_FLAGS_LENGTH_PRESERVING (MAT_FLAG_ROTATION | \
90 				     MAT_FLAG_TRANSLATION)
91 
92 
93 /** 3D (non-perspective) matrix flags mask */
94 #define MAT_FLAGS_3D (MAT_FLAG_ROTATION | \
95 		      MAT_FLAG_TRANSLATION | \
96 		      MAT_FLAG_UNIFORM_SCALE | \
97 		      MAT_FLAG_GENERAL_SCALE | \
98 		      MAT_FLAG_GENERAL_3D)
99 
100 /** dirty matrix flags mask */
101 #define MAT_DIRTY          (MAT_DIRTY_TYPE | \
102 			    MAT_DIRTY_FLAGS | \
103 			    MAT_DIRTY_INVERSE)
104 
105 /*@}*/
106 
107 
108 /**
109  * Test geometry related matrix flags.
110  *
111  * \param mat a pointer to a GLmatrix structure.
112  * \param a flags mask.
113  *
114  * \returns non-zero if all geometry related matrix flags are contained within
115  * the mask, or zero otherwise.
116  */
117 #define TEST_MAT_FLAGS(mat, a)  \
118     ((MAT_FLAGS_GEOMETRY & (~(a)) & ((mat)->flags) ) == 0)
119 
120 
121 
122 /**
123  * Names of the corresponding GLmatrixtype values.
124  */
125 static const char *types[] = {
126    "MATRIX_GENERAL",
127    "MATRIX_IDENTITY",
128    "MATRIX_3D_NO_ROT",
129    "MATRIX_PERSPECTIVE",
130    "MATRIX_2D",
131    "MATRIX_2D_NO_ROT",
132    "MATRIX_3D"
133 };
134 
135 
136 /**
137  * Identity matrix.
138  */
139 static const GLfloat Identity[16] = {
140    1.0, 0.0, 0.0, 0.0,
141    0.0, 1.0, 0.0, 0.0,
142    0.0, 0.0, 1.0, 0.0,
143    0.0, 0.0, 0.0, 1.0
144 };
145 
146 
147 
148 /**********************************************************************/
149 /** \name Matrix multiplication */
150 /*@{*/
151 
152 #define A(row,col)  a[(col<<2)+row]
153 #define B(row,col)  b[(col<<2)+row]
154 #define P(row,col)  product[(col<<2)+row]
155 
156 /**
157  * Perform a full 4x4 matrix multiplication.
158  *
159  * \param a matrix.
160  * \param b matrix.
161  * \param product will receive the product of \p a and \p b.
162  *
163  * \warning Is assumed that \p product != \p b. \p product == \p a is allowed.
164  *
165  * \note KW: 4*16 = 64 multiplications
166  *
167  * \author This \c matmul was contributed by Thomas Malik
168  */
matmul4(GLfloat * product,const GLfloat * a,const GLfloat * b)169 static void matmul4( GLfloat *product, const GLfloat *a, const GLfloat *b )
170 {
171    GLint i;
172    for (i = 0; i < 4; i++) {
173       const GLfloat ai0=A(i,0),  ai1=A(i,1),  ai2=A(i,2),  ai3=A(i,3);
174       P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0);
175       P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1);
176       P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2);
177       P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3);
178    }
179 }
180 
181 /**
182  * Multiply two matrices known to occupy only the top three rows, such
183  * as typical model matrices, and orthogonal matrices.
184  *
185  * \param a matrix.
186  * \param b matrix.
187  * \param product will receive the product of \p a and \p b.
188  */
matmul34(GLfloat * product,const GLfloat * a,const GLfloat * b)189 static void matmul34( GLfloat *product, const GLfloat *a, const GLfloat *b )
190 {
191    GLint i;
192    for (i = 0; i < 3; i++) {
193       const GLfloat ai0=A(i,0),  ai1=A(i,1),  ai2=A(i,2),  ai3=A(i,3);
194       P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0);
195       P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1);
196       P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2);
197       P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3;
198    }
199    P(3,0) = 0;
200    P(3,1) = 0;
201    P(3,2) = 0;
202    P(3,3) = 1;
203 }
204 
205 #undef A
206 #undef B
207 #undef P
208 
209 /**
210  * Multiply a matrix by an array of floats with known properties.
211  *
212  * \param mat pointer to a GLmatrix structure containing the left multiplication
213  * matrix, and that will receive the product result.
214  * \param m right multiplication matrix array.
215  * \param flags flags of the matrix \p m.
216  *
217  * Joins both flags and marks the type and inverse as dirty.  Calls matmul34()
218  * if both matrices are 3D, or matmul4() otherwise.
219  */
matrix_multf(GLmatrix * mat,const GLfloat * m,GLuint flags)220 static void matrix_multf( GLmatrix *mat, const GLfloat *m, GLuint flags )
221 {
222    mat->flags |= (flags | MAT_DIRTY_TYPE | MAT_DIRTY_INVERSE);
223 
224    if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D))
225       matmul34( mat->m, mat->m, m );
226    else
227       matmul4( mat->m, mat->m, m );
228 }
229 
230 /**
231  * Matrix multiplication.
232  *
233  * \param dest destination matrix.
234  * \param a left matrix.
235  * \param b right matrix.
236  *
237  * Joins both flags and marks the type and inverse as dirty.  Calls matmul34()
238  * if both matrices are 3D, or matmul4() otherwise.
239  */
240 void
_math_matrix_mul_matrix(GLmatrix * dest,const GLmatrix * a,const GLmatrix * b)241 _math_matrix_mul_matrix( GLmatrix *dest, const GLmatrix *a, const GLmatrix *b )
242 {
243    dest->flags = (a->flags |
244 		  b->flags |
245 		  MAT_DIRTY_TYPE |
246 		  MAT_DIRTY_INVERSE);
247 
248    if (TEST_MAT_FLAGS(dest, MAT_FLAGS_3D))
249       matmul34( dest->m, a->m, b->m );
250    else
251       matmul4( dest->m, a->m, b->m );
252 }
253 
254 /**
255  * Matrix multiplication.
256  *
257  * \param dest left and destination matrix.
258  * \param m right matrix array.
259  *
260  * Marks the matrix flags with general flag, and type and inverse dirty flags.
261  * Calls matmul4() for the multiplication.
262  */
263 void
_math_matrix_mul_floats(GLmatrix * dest,const GLfloat * m)264 _math_matrix_mul_floats( GLmatrix *dest, const GLfloat *m )
265 {
266    dest->flags |= (MAT_FLAG_GENERAL |
267 		   MAT_DIRTY_TYPE |
268 		   MAT_DIRTY_INVERSE |
269                    MAT_DIRTY_FLAGS);
270 
271    matmul4( dest->m, dest->m, m );
272 }
273 
274 /*@}*/
275 
276 
277 /**********************************************************************/
278 /** \name Matrix output */
279 /*@{*/
280 
281 /**
282  * Print a matrix array.
283  *
284  * \param m matrix array.
285  *
286  * Called by _math_matrix_print() to print a matrix or its inverse.
287  */
print_matrix_floats(const GLfloat m[16])288 static void print_matrix_floats( const GLfloat m[16] )
289 {
290    int i;
291    for (i=0;i<4;i++) {
292       _mesa_debug(NULL,"\t%f %f %f %f\n", m[i], m[4+i], m[8+i], m[12+i] );
293    }
294 }
295 
296 /**
297  * Dumps the contents of a GLmatrix structure.
298  *
299  * \param m pointer to the GLmatrix structure.
300  */
301 void
_math_matrix_print(const GLmatrix * m)302 _math_matrix_print( const GLmatrix *m )
303 {
304    GLfloat prod[16];
305 
306    _mesa_debug(NULL, "Matrix type: %s, flags: %x\n", types[m->type], m->flags);
307    print_matrix_floats(m->m);
308    _mesa_debug(NULL, "Inverse: \n");
309    print_matrix_floats(m->inv);
310    matmul4(prod, m->m, m->inv);
311    _mesa_debug(NULL, "Mat * Inverse:\n");
312    print_matrix_floats(prod);
313 }
314 
315 /*@}*/
316 
317 
318 /**
319  * References an element of 4x4 matrix.
320  *
321  * \param m matrix array.
322  * \param c column of the desired element.
323  * \param r row of the desired element.
324  *
325  * \return value of the desired element.
326  *
327  * Calculate the linear storage index of the element and references it.
328  */
329 #define MAT(m,r,c) (m)[(c)*4+(r)]
330 
331 
332 /**********************************************************************/
333 /** \name Matrix inversion */
334 /*@{*/
335 
336 /**
337  * Compute inverse of 4x4 transformation matrix.
338  *
339  * \param mat pointer to a GLmatrix structure. The matrix inverse will be
340  * stored in the GLmatrix::inv attribute.
341  *
342  * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
343  *
344  * \author
345  * Code contributed by Jacques Leroy jle@star.be
346  *
347  * Calculates the inverse matrix by performing the gaussian matrix reduction
348  * with partial pivoting followed by back/substitution with the loops manually
349  * unrolled.
350  */
invert_matrix_general(GLmatrix * mat)351 static GLboolean invert_matrix_general( GLmatrix *mat )
352 {
353    return util_invert_mat4x4(mat->inv, mat->m);
354 }
355 
356 /**
357  * Compute inverse of a general 3d transformation matrix.
358  *
359  * \param mat pointer to a GLmatrix structure. The matrix inverse will be
360  * stored in the GLmatrix::inv attribute.
361  *
362  * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
363  *
364  * \author Adapted from graphics gems II.
365  *
366  * Calculates the inverse of the upper left by first calculating its
367  * determinant and multiplying it to the symmetric adjust matrix of each
368  * element. Finally deals with the translation part by transforming the
369  * original translation vector using by the calculated submatrix inverse.
370  */
invert_matrix_3d_general(GLmatrix * mat)371 static GLboolean invert_matrix_3d_general( GLmatrix *mat )
372 {
373    const GLfloat *in = mat->m;
374    GLfloat *out = mat->inv;
375    GLfloat pos, neg, t;
376    GLfloat det;
377 
378    /* Calculate the determinant of upper left 3x3 submatrix and
379     * determine if the matrix is singular.
380     */
381    pos = neg = 0.0;
382    t =  MAT(in,0,0) * MAT(in,1,1) * MAT(in,2,2);
383    if (t >= 0.0F) pos += t; else neg += t;
384 
385    t =  MAT(in,1,0) * MAT(in,2,1) * MAT(in,0,2);
386    if (t >= 0.0F) pos += t; else neg += t;
387 
388    t =  MAT(in,2,0) * MAT(in,0,1) * MAT(in,1,2);
389    if (t >= 0.0F) pos += t; else neg += t;
390 
391    t = -MAT(in,2,0) * MAT(in,1,1) * MAT(in,0,2);
392    if (t >= 0.0F) pos += t; else neg += t;
393 
394    t = -MAT(in,1,0) * MAT(in,0,1) * MAT(in,2,2);
395    if (t >= 0.0F) pos += t; else neg += t;
396 
397    t = -MAT(in,0,0) * MAT(in,2,1) * MAT(in,1,2);
398    if (t >= 0.0F) pos += t; else neg += t;
399 
400    det = pos + neg;
401 
402    if (fabsf(det) < 1e-25F)
403       return GL_FALSE;
404 
405    det = 1.0F / det;
406    MAT(out,0,0) = (  (MAT(in,1,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,1,2) )*det);
407    MAT(out,0,1) = (- (MAT(in,0,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,0,2) )*det);
408    MAT(out,0,2) = (  (MAT(in,0,1)*MAT(in,1,2) - MAT(in,1,1)*MAT(in,0,2) )*det);
409    MAT(out,1,0) = (- (MAT(in,1,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,1,2) )*det);
410    MAT(out,1,1) = (  (MAT(in,0,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,0,2) )*det);
411    MAT(out,1,2) = (- (MAT(in,0,0)*MAT(in,1,2) - MAT(in,1,0)*MAT(in,0,2) )*det);
412    MAT(out,2,0) = (  (MAT(in,1,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,1,1) )*det);
413    MAT(out,2,1) = (- (MAT(in,0,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,0,1) )*det);
414    MAT(out,2,2) = (  (MAT(in,0,0)*MAT(in,1,1) - MAT(in,1,0)*MAT(in,0,1) )*det);
415 
416    /* Do the translation part */
417    MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) +
418 		     MAT(in,1,3) * MAT(out,0,1) +
419 		     MAT(in,2,3) * MAT(out,0,2) );
420    MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) +
421 		     MAT(in,1,3) * MAT(out,1,1) +
422 		     MAT(in,2,3) * MAT(out,1,2) );
423    MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) +
424 		     MAT(in,1,3) * MAT(out,2,1) +
425 		     MAT(in,2,3) * MAT(out,2,2) );
426 
427    return GL_TRUE;
428 }
429 
430 /**
431  * Compute inverse of a 3d transformation matrix.
432  *
433  * \param mat pointer to a GLmatrix structure. The matrix inverse will be
434  * stored in the GLmatrix::inv attribute.
435  *
436  * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
437  *
438  * If the matrix is not an angle preserving matrix then calls
439  * invert_matrix_3d_general for the actual calculation. Otherwise calculates
440  * the inverse matrix analyzing and inverting each of the scaling, rotation and
441  * translation parts.
442  */
invert_matrix_3d(GLmatrix * mat)443 static GLboolean invert_matrix_3d( GLmatrix *mat )
444 {
445    const GLfloat *in = mat->m;
446    GLfloat *out = mat->inv;
447 
448    if (!TEST_MAT_FLAGS(mat, MAT_FLAGS_ANGLE_PRESERVING)) {
449       return invert_matrix_3d_general( mat );
450    }
451 
452    if (mat->flags & MAT_FLAG_UNIFORM_SCALE) {
453       GLfloat scale = (MAT(in,0,0) * MAT(in,0,0) +
454                        MAT(in,0,1) * MAT(in,0,1) +
455                        MAT(in,0,2) * MAT(in,0,2));
456 
457       if (scale == 0.0F)
458          return GL_FALSE;
459 
460       scale = 1.0F / scale;
461 
462       /* Transpose and scale the 3 by 3 upper-left submatrix. */
463       MAT(out,0,0) = scale * MAT(in,0,0);
464       MAT(out,1,0) = scale * MAT(in,0,1);
465       MAT(out,2,0) = scale * MAT(in,0,2);
466       MAT(out,0,1) = scale * MAT(in,1,0);
467       MAT(out,1,1) = scale * MAT(in,1,1);
468       MAT(out,2,1) = scale * MAT(in,1,2);
469       MAT(out,0,2) = scale * MAT(in,2,0);
470       MAT(out,1,2) = scale * MAT(in,2,1);
471       MAT(out,2,2) = scale * MAT(in,2,2);
472    }
473    else if (mat->flags & MAT_FLAG_ROTATION) {
474       /* Transpose the 3 by 3 upper-left submatrix. */
475       MAT(out,0,0) = MAT(in,0,0);
476       MAT(out,1,0) = MAT(in,0,1);
477       MAT(out,2,0) = MAT(in,0,2);
478       MAT(out,0,1) = MAT(in,1,0);
479       MAT(out,1,1) = MAT(in,1,1);
480       MAT(out,2,1) = MAT(in,1,2);
481       MAT(out,0,2) = MAT(in,2,0);
482       MAT(out,1,2) = MAT(in,2,1);
483       MAT(out,2,2) = MAT(in,2,2);
484    }
485    else {
486       /* pure translation */
487       memcpy( out, Identity, sizeof(Identity) );
488       MAT(out,0,3) = - MAT(in,0,3);
489       MAT(out,1,3) = - MAT(in,1,3);
490       MAT(out,2,3) = - MAT(in,2,3);
491       return GL_TRUE;
492    }
493 
494    if (mat->flags & MAT_FLAG_TRANSLATION) {
495       /* Do the translation part */
496       MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) +
497 			MAT(in,1,3) * MAT(out,0,1) +
498 			MAT(in,2,3) * MAT(out,0,2) );
499       MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) +
500 			MAT(in,1,3) * MAT(out,1,1) +
501 			MAT(in,2,3) * MAT(out,1,2) );
502       MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) +
503 			MAT(in,1,3) * MAT(out,2,1) +
504 			MAT(in,2,3) * MAT(out,2,2) );
505    }
506    else {
507       MAT(out,0,3) = MAT(out,1,3) = MAT(out,2,3) = 0.0;
508    }
509 
510    return GL_TRUE;
511 }
512 
513 /**
514  * Compute inverse of an identity transformation matrix.
515  *
516  * \param mat pointer to a GLmatrix structure. The matrix inverse will be
517  * stored in the GLmatrix::inv attribute.
518  *
519  * \return always GL_TRUE.
520  *
521  * Simply copies Identity into GLmatrix::inv.
522  */
invert_matrix_identity(GLmatrix * mat)523 static GLboolean invert_matrix_identity( GLmatrix *mat )
524 {
525    memcpy( mat->inv, Identity, sizeof(Identity) );
526    return GL_TRUE;
527 }
528 
529 /**
530  * Compute inverse of a no-rotation 3d transformation matrix.
531  *
532  * \param mat pointer to a GLmatrix structure. The matrix inverse will be
533  * stored in the GLmatrix::inv attribute.
534  *
535  * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
536  *
537  * Calculates the
538  */
invert_matrix_3d_no_rot(GLmatrix * mat)539 static GLboolean invert_matrix_3d_no_rot( GLmatrix *mat )
540 {
541    const GLfloat *in = mat->m;
542    GLfloat *out = mat->inv;
543 
544    if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0 || MAT(in,2,2) == 0 )
545       return GL_FALSE;
546 
547    memcpy( out, Identity, sizeof(Identity) );
548    MAT(out,0,0) = 1.0F / MAT(in,0,0);
549    MAT(out,1,1) = 1.0F / MAT(in,1,1);
550    MAT(out,2,2) = 1.0F / MAT(in,2,2);
551 
552    if (mat->flags & MAT_FLAG_TRANSLATION) {
553       MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0));
554       MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1));
555       MAT(out,2,3) = - (MAT(in,2,3) * MAT(out,2,2));
556    }
557 
558    return GL_TRUE;
559 }
560 
561 /**
562  * Compute inverse of a no-rotation 2d transformation matrix.
563  *
564  * \param mat pointer to a GLmatrix structure. The matrix inverse will be
565  * stored in the GLmatrix::inv attribute.
566  *
567  * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
568  *
569  * Calculates the inverse matrix by applying the inverse scaling and
570  * translation to the identity matrix.
571  */
invert_matrix_2d_no_rot(GLmatrix * mat)572 static GLboolean invert_matrix_2d_no_rot( GLmatrix *mat )
573 {
574    const GLfloat *in = mat->m;
575    GLfloat *out = mat->inv;
576 
577    if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0)
578       return GL_FALSE;
579 
580    memcpy( out, Identity, sizeof(Identity) );
581    MAT(out,0,0) = 1.0F / MAT(in,0,0);
582    MAT(out,1,1) = 1.0F / MAT(in,1,1);
583 
584    if (mat->flags & MAT_FLAG_TRANSLATION) {
585       MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0));
586       MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1));
587    }
588 
589    return GL_TRUE;
590 }
591 
592 #if 0
593 /* broken */
594 static GLboolean invert_matrix_perspective( GLmatrix *mat )
595 {
596    const GLfloat *in = mat->m;
597    GLfloat *out = mat->inv;
598 
599    if (MAT(in,2,3) == 0)
600       return GL_FALSE;
601 
602    memcpy( out, Identity, sizeof(Identity) );
603 
604    MAT(out,0,0) = 1.0F / MAT(in,0,0);
605    MAT(out,1,1) = 1.0F / MAT(in,1,1);
606 
607    MAT(out,0,3) = MAT(in,0,2);
608    MAT(out,1,3) = MAT(in,1,2);
609 
610    MAT(out,2,2) = 0;
611    MAT(out,2,3) = -1;
612 
613    MAT(out,3,2) = 1.0F / MAT(in,2,3);
614    MAT(out,3,3) = MAT(in,2,2) * MAT(out,3,2);
615 
616    return GL_TRUE;
617 }
618 #endif
619 
620 /**
621  * Matrix inversion function pointer type.
622  */
623 typedef GLboolean (*inv_mat_func)( GLmatrix *mat );
624 
625 /**
626  * Table of the matrix inversion functions according to the matrix type.
627  */
628 static inv_mat_func inv_mat_tab[7] = {
629    invert_matrix_general,
630    invert_matrix_identity,
631    invert_matrix_3d_no_rot,
632 #if 0
633    /* Don't use this function for now - it fails when the projection matrix
634     * is premultiplied by a translation (ala Chromium's tilesort SPU).
635     */
636    invert_matrix_perspective,
637 #else
638    invert_matrix_general,
639 #endif
640    invert_matrix_3d,		/* lazy! */
641    invert_matrix_2d_no_rot,
642    invert_matrix_3d
643 };
644 
645 /**
646  * Compute inverse of a transformation matrix.
647  *
648  * \param mat pointer to a GLmatrix structure. The matrix inverse will be
649  * stored in the GLmatrix::inv attribute.
650  *
651  * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
652  *
653  * Calls the matrix inversion function in inv_mat_tab corresponding to the
654  * given matrix type.  In case of failure, updates the MAT_FLAG_SINGULAR flag,
655  * and copies the identity matrix into GLmatrix::inv.
656  */
matrix_invert(GLmatrix * mat)657 static GLboolean matrix_invert( GLmatrix *mat )
658 {
659    if (inv_mat_tab[mat->type](mat)) {
660       mat->flags &= ~MAT_FLAG_SINGULAR;
661       return GL_TRUE;
662    } else {
663       mat->flags |= MAT_FLAG_SINGULAR;
664       memcpy( mat->inv, Identity, sizeof(Identity) );
665       return GL_FALSE;
666    }
667 }
668 
669 /*@}*/
670 
671 
672 /**********************************************************************/
673 /** \name Matrix generation */
674 /*@{*/
675 
676 /**
677  * Generate a 4x4 transformation matrix from glRotate parameters, and
678  * post-multiply the input matrix by it.
679  *
680  * \author
681  * This function was contributed by Erich Boleyn (erich@uruk.org).
682  * Optimizations contributed by Rudolf Opalla (rudi@khm.de).
683  */
684 void
_math_matrix_rotate(GLmatrix * mat,GLfloat angle,GLfloat x,GLfloat y,GLfloat z)685 _math_matrix_rotate( GLmatrix *mat,
686 		     GLfloat angle, GLfloat x, GLfloat y, GLfloat z )
687 {
688    GLfloat xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c, s, c;
689    GLfloat m[16];
690    GLboolean optimized;
691 
692    s = sinf( angle * M_PI / 180.0 );
693    c = cosf( angle * M_PI / 180.0 );
694 
695    memcpy(m, Identity, sizeof(Identity));
696    optimized = GL_FALSE;
697 
698 #define M(row,col)  m[col*4+row]
699 
700    if (x == 0.0F) {
701       if (y == 0.0F) {
702          if (z != 0.0F) {
703             optimized = GL_TRUE;
704             /* rotate only around z-axis */
705             M(0,0) = c;
706             M(1,1) = c;
707             if (z < 0.0F) {
708                M(0,1) = s;
709                M(1,0) = -s;
710             }
711             else {
712                M(0,1) = -s;
713                M(1,0) = s;
714             }
715          }
716       }
717       else if (z == 0.0F) {
718          optimized = GL_TRUE;
719          /* rotate only around y-axis */
720          M(0,0) = c;
721          M(2,2) = c;
722          if (y < 0.0F) {
723             M(0,2) = -s;
724             M(2,0) = s;
725          }
726          else {
727             M(0,2) = s;
728             M(2,0) = -s;
729          }
730       }
731    }
732    else if (y == 0.0F) {
733       if (z == 0.0F) {
734          optimized = GL_TRUE;
735          /* rotate only around x-axis */
736          M(1,1) = c;
737          M(2,2) = c;
738          if (x < 0.0F) {
739             M(1,2) = s;
740             M(2,1) = -s;
741          }
742          else {
743             M(1,2) = -s;
744             M(2,1) = s;
745          }
746       }
747    }
748 
749    if (!optimized) {
750       const GLfloat mag = sqrtf(x * x + y * y + z * z);
751 
752       if (mag <= 1.0e-4F) {
753          /* no rotation, leave mat as-is */
754          return;
755       }
756 
757       x /= mag;
758       y /= mag;
759       z /= mag;
760 
761 
762       /*
763        *     Arbitrary axis rotation matrix.
764        *
765        *  This is composed of 5 matrices, Rz, Ry, T, Ry', Rz', multiplied
766        *  like so:  Rz * Ry * T * Ry' * Rz'.  T is the final rotation
767        *  (which is about the X-axis), and the two composite transforms
768        *  Ry' * Rz' and Rz * Ry are (respectively) the rotations necessary
769        *  from the arbitrary axis to the X-axis then back.  They are
770        *  all elementary rotations.
771        *
772        *  Rz' is a rotation about the Z-axis, to bring the axis vector
773        *  into the x-z plane.  Then Ry' is applied, rotating about the
774        *  Y-axis to bring the axis vector parallel with the X-axis.  The
775        *  rotation about the X-axis is then performed.  Ry and Rz are
776        *  simply the respective inverse transforms to bring the arbitrary
777        *  axis back to its original orientation.  The first transforms
778        *  Rz' and Ry' are considered inverses, since the data from the
779        *  arbitrary axis gives you info on how to get to it, not how
780        *  to get away from it, and an inverse must be applied.
781        *
782        *  The basic calculation used is to recognize that the arbitrary
783        *  axis vector (x, y, z), since it is of unit length, actually
784        *  represents the sines and cosines of the angles to rotate the
785        *  X-axis to the same orientation, with theta being the angle about
786        *  Z and phi the angle about Y (in the order described above)
787        *  as follows:
788        *
789        *  cos ( theta ) = x / sqrt ( 1 - z^2 )
790        *  sin ( theta ) = y / sqrt ( 1 - z^2 )
791        *
792        *  cos ( phi ) = sqrt ( 1 - z^2 )
793        *  sin ( phi ) = z
794        *
795        *  Note that cos ( phi ) can further be inserted to the above
796        *  formulas:
797        *
798        *  cos ( theta ) = x / cos ( phi )
799        *  sin ( theta ) = y / sin ( phi )
800        *
801        *  ...etc.  Because of those relations and the standard trigonometric
802        *  relations, it is pssible to reduce the transforms down to what
803        *  is used below.  It may be that any primary axis chosen will give the
804        *  same results (modulo a sign convention) using thie method.
805        *
806        *  Particularly nice is to notice that all divisions that might
807        *  have caused trouble when parallel to certain planes or
808        *  axis go away with care paid to reducing the expressions.
809        *  After checking, it does perform correctly under all cases, since
810        *  in all the cases of division where the denominator would have
811        *  been zero, the numerator would have been zero as well, giving
812        *  the expected result.
813        */
814 
815       xx = x * x;
816       yy = y * y;
817       zz = z * z;
818       xy = x * y;
819       yz = y * z;
820       zx = z * x;
821       xs = x * s;
822       ys = y * s;
823       zs = z * s;
824       one_c = 1.0F - c;
825 
826       /* We already hold the identity-matrix so we can skip some statements */
827       M(0,0) = (one_c * xx) + c;
828       M(0,1) = (one_c * xy) - zs;
829       M(0,2) = (one_c * zx) + ys;
830 /*    M(0,3) = 0.0F; */
831 
832       M(1,0) = (one_c * xy) + zs;
833       M(1,1) = (one_c * yy) + c;
834       M(1,2) = (one_c * yz) - xs;
835 /*    M(1,3) = 0.0F; */
836 
837       M(2,0) = (one_c * zx) - ys;
838       M(2,1) = (one_c * yz) + xs;
839       M(2,2) = (one_c * zz) + c;
840 /*    M(2,3) = 0.0F; */
841 
842 /*
843       M(3,0) = 0.0F;
844       M(3,1) = 0.0F;
845       M(3,2) = 0.0F;
846       M(3,3) = 1.0F;
847 */
848    }
849 #undef M
850 
851    matrix_multf( mat, m, MAT_FLAG_ROTATION );
852 }
853 
854 /**
855  * Apply a perspective projection matrix.
856  *
857  * \param mat matrix to apply the projection.
858  * \param left left clipping plane coordinate.
859  * \param right right clipping plane coordinate.
860  * \param bottom bottom clipping plane coordinate.
861  * \param top top clipping plane coordinate.
862  * \param nearval distance to the near clipping plane.
863  * \param farval distance to the far clipping plane.
864  *
865  * Creates the projection matrix and multiplies it with \p mat, marking the
866  * MAT_FLAG_PERSPECTIVE flag.
867  */
868 void
_math_matrix_frustum(GLmatrix * mat,GLfloat left,GLfloat right,GLfloat bottom,GLfloat top,GLfloat nearval,GLfloat farval)869 _math_matrix_frustum( GLmatrix *mat,
870 		      GLfloat left, GLfloat right,
871 		      GLfloat bottom, GLfloat top,
872 		      GLfloat nearval, GLfloat farval )
873 {
874    GLfloat x, y, a, b, c, d;
875    GLfloat m[16];
876 
877    x = (2.0F*nearval) / (right-left);
878    y = (2.0F*nearval) / (top-bottom);
879    a = (right+left) / (right-left);
880    b = (top+bottom) / (top-bottom);
881    c = -(farval+nearval) / ( farval-nearval);
882    d = -(2.0F*farval*nearval) / (farval-nearval);  /* error? */
883 
884 #define M(row,col)  m[col*4+row]
885    M(0,0) = x;     M(0,1) = 0.0F;  M(0,2) = a;      M(0,3) = 0.0F;
886    M(1,0) = 0.0F;  M(1,1) = y;     M(1,2) = b;      M(1,3) = 0.0F;
887    M(2,0) = 0.0F;  M(2,1) = 0.0F;  M(2,2) = c;      M(2,3) = d;
888    M(3,0) = 0.0F;  M(3,1) = 0.0F;  M(3,2) = -1.0F;  M(3,3) = 0.0F;
889 #undef M
890 
891    matrix_multf( mat, m, MAT_FLAG_PERSPECTIVE );
892 }
893 
894 /**
895  * Create an orthographic projection matrix.
896  *
897  * \param m float array in which to store the project matrix
898  * \param left left clipping plane coordinate.
899  * \param right right clipping plane coordinate.
900  * \param bottom bottom clipping plane coordinate.
901  * \param top top clipping plane coordinate.
902  * \param nearval distance to the near clipping plane.
903  * \param farval distance to the far clipping plane.
904  *
905  * Creates the projection matrix and stored the values in \p m.  As with other
906  * OpenGL matrices, the data is stored in column-major ordering.
907  */
908 void
_math_float_ortho(float * m,float left,float right,float bottom,float top,float nearval,float farval)909 _math_float_ortho(float *m,
910                   float left, float right,
911                   float bottom, float top,
912                   float nearval, float farval)
913 {
914 #define M(row,col)  m[col*4+row]
915    M(0,0) = 2.0F / (right-left);
916    M(0,1) = 0.0F;
917    M(0,2) = 0.0F;
918    M(0,3) = -(right+left) / (right-left);
919 
920    M(1,0) = 0.0F;
921    M(1,1) = 2.0F / (top-bottom);
922    M(1,2) = 0.0F;
923    M(1,3) = -(top+bottom) / (top-bottom);
924 
925    M(2,0) = 0.0F;
926    M(2,1) = 0.0F;
927    M(2,2) = -2.0F / (farval-nearval);
928    M(2,3) = -(farval+nearval) / (farval-nearval);
929 
930    M(3,0) = 0.0F;
931    M(3,1) = 0.0F;
932    M(3,2) = 0.0F;
933    M(3,3) = 1.0F;
934 #undef M
935 }
936 
937 /**
938  * Apply an orthographic projection matrix.
939  *
940  * \param mat matrix to apply the projection.
941  * \param left left clipping plane coordinate.
942  * \param right right clipping plane coordinate.
943  * \param bottom bottom clipping plane coordinate.
944  * \param top top clipping plane coordinate.
945  * \param nearval distance to the near clipping plane.
946  * \param farval distance to the far clipping plane.
947  *
948  * Creates the projection matrix and multiplies it with \p mat, marking the
949  * MAT_FLAG_GENERAL_SCALE and MAT_FLAG_TRANSLATION flags.
950  */
951 void
_math_matrix_ortho(GLmatrix * mat,GLfloat left,GLfloat right,GLfloat bottom,GLfloat top,GLfloat nearval,GLfloat farval)952 _math_matrix_ortho( GLmatrix *mat,
953 		    GLfloat left, GLfloat right,
954 		    GLfloat bottom, GLfloat top,
955 		    GLfloat nearval, GLfloat farval )
956 {
957    GLfloat m[16];
958 
959    _math_float_ortho(m, left, right, bottom, top, nearval, farval);
960    matrix_multf( mat, m, (MAT_FLAG_GENERAL_SCALE|MAT_FLAG_TRANSLATION));
961 }
962 
963 /**
964  * Multiply a matrix with a general scaling matrix.
965  *
966  * \param mat matrix.
967  * \param x x axis scale factor.
968  * \param y y axis scale factor.
969  * \param z z axis scale factor.
970  *
971  * Multiplies in-place the elements of \p mat by the scale factors. Checks if
972  * the scales factors are roughly the same, marking the MAT_FLAG_UNIFORM_SCALE
973  * flag, or MAT_FLAG_GENERAL_SCALE. Marks the MAT_DIRTY_TYPE and
974  * MAT_DIRTY_INVERSE dirty flags.
975  */
976 void
_math_matrix_scale(GLmatrix * mat,GLfloat x,GLfloat y,GLfloat z)977 _math_matrix_scale( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z )
978 {
979    GLfloat *m = mat->m;
980    m[0] *= x;   m[4] *= y;   m[8]  *= z;
981    m[1] *= x;   m[5] *= y;   m[9]  *= z;
982    m[2] *= x;   m[6] *= y;   m[10] *= z;
983    m[3] *= x;   m[7] *= y;   m[11] *= z;
984 
985    if (fabsf(x - y) < 1e-8F && fabsf(x - z) < 1e-8F)
986       mat->flags |= MAT_FLAG_UNIFORM_SCALE;
987    else
988       mat->flags |= MAT_FLAG_GENERAL_SCALE;
989 
990    mat->flags |= (MAT_DIRTY_TYPE |
991 		  MAT_DIRTY_INVERSE);
992 }
993 
994 /**
995  * Multiply a matrix with a translation matrix.
996  *
997  * \param mat matrix.
998  * \param x translation vector x coordinate.
999  * \param y translation vector y coordinate.
1000  * \param z translation vector z coordinate.
1001  *
1002  * Adds the translation coordinates to the elements of \p mat in-place.  Marks
1003  * the MAT_FLAG_TRANSLATION flag, and the MAT_DIRTY_TYPE and MAT_DIRTY_INVERSE
1004  * dirty flags.
1005  */
1006 void
_math_matrix_translate(GLmatrix * mat,GLfloat x,GLfloat y,GLfloat z)1007 _math_matrix_translate( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z )
1008 {
1009    GLfloat *m = mat->m;
1010    m[12] = m[0] * x + m[4] * y + m[8]  * z + m[12];
1011    m[13] = m[1] * x + m[5] * y + m[9]  * z + m[13];
1012    m[14] = m[2] * x + m[6] * y + m[10] * z + m[14];
1013    m[15] = m[3] * x + m[7] * y + m[11] * z + m[15];
1014 
1015    mat->flags |= (MAT_FLAG_TRANSLATION |
1016 		  MAT_DIRTY_TYPE |
1017 		  MAT_DIRTY_INVERSE);
1018 }
1019 
1020 
1021 /**
1022  * Set matrix to do viewport and depthrange mapping.
1023  * Transforms Normalized Device Coords to window/Z values.
1024  */
1025 void
_math_matrix_viewport(GLmatrix * m,const float scale[3],const float translate[3],double depthMax)1026 _math_matrix_viewport(GLmatrix *m, const float scale[3],
1027                       const float translate[3], double depthMax)
1028 {
1029    m->m[MAT_SX] = scale[0];
1030    m->m[MAT_TX] = translate[0];
1031    m->m[MAT_SY] = scale[1];
1032    m->m[MAT_TY] = translate[1];
1033    m->m[MAT_SZ] = depthMax*scale[2];
1034    m->m[MAT_TZ] = depthMax*translate[2];
1035    m->flags = MAT_FLAG_GENERAL_SCALE | MAT_FLAG_TRANSLATION;
1036    m->type = MATRIX_3D_NO_ROT;
1037 }
1038 
1039 
1040 /**
1041  * Set a matrix to the identity matrix.
1042  *
1043  * \param mat matrix.
1044  *
1045  * Copies ::Identity into \p GLmatrix::m, and into GLmatrix::inv if not NULL.
1046  * Sets the matrix type to identity, and clear the dirty flags.
1047  */
1048 void
_math_matrix_set_identity(GLmatrix * mat)1049 _math_matrix_set_identity( GLmatrix *mat )
1050 {
1051    STATIC_ASSERT(MATRIX_M == offsetof(GLmatrix, m));
1052    STATIC_ASSERT(MATRIX_INV == offsetof(GLmatrix, inv));
1053 
1054    memcpy( mat->m, Identity, sizeof(Identity) );
1055    memcpy( mat->inv, Identity, sizeof(Identity) );
1056 
1057    mat->type = MATRIX_IDENTITY;
1058    mat->flags &= ~(MAT_DIRTY_FLAGS|
1059 		   MAT_DIRTY_TYPE|
1060 		   MAT_DIRTY_INVERSE);
1061 }
1062 
1063 /*@}*/
1064 
1065 
1066 /**********************************************************************/
1067 /** \name Matrix analysis */
1068 /*@{*/
1069 
1070 #define ZERO(x) (1<<x)
1071 #define ONE(x)  (1<<(x+16))
1072 
1073 #define MASK_NO_TRX      (ZERO(12) | ZERO(13) | ZERO(14))
1074 #define MASK_NO_2D_SCALE ( ONE(0)  | ONE(5))
1075 
1076 #define MASK_IDENTITY    ( ONE(0)  | ZERO(4)  | ZERO(8)  | ZERO(12) |\
1077 			  ZERO(1)  |  ONE(5)  | ZERO(9)  | ZERO(13) |\
1078 			  ZERO(2)  | ZERO(6)  |  ONE(10) | ZERO(14) |\
1079 			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
1080 
1081 #define MASK_2D_NO_ROT   (           ZERO(4)  | ZERO(8)  |           \
1082 			  ZERO(1)  |            ZERO(9)  |           \
1083 			  ZERO(2)  | ZERO(6)  |  ONE(10) | ZERO(14) |\
1084 			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
1085 
1086 #define MASK_2D          (                      ZERO(8)  |           \
1087 			                        ZERO(9)  |           \
1088 			  ZERO(2)  | ZERO(6)  |  ONE(10) | ZERO(14) |\
1089 			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
1090 
1091 
1092 #define MASK_3D_NO_ROT   (           ZERO(4)  | ZERO(8)  |           \
1093 			  ZERO(1)  |            ZERO(9)  |           \
1094 			  ZERO(2)  | ZERO(6)  |                      \
1095 			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
1096 
1097 #define MASK_3D          (                                           \
1098 			                                             \
1099 			                                             \
1100 			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
1101 
1102 
1103 #define MASK_PERSPECTIVE (           ZERO(4)  |            ZERO(12) |\
1104 			  ZERO(1)  |                       ZERO(13) |\
1105 			  ZERO(2)  | ZERO(6)  |                      \
1106 			  ZERO(3)  | ZERO(7)  |            ZERO(15) )
1107 
1108 #define SQ(x) ((x)*(x))
1109 
1110 /**
1111  * Determine type and flags from scratch.
1112  *
1113  * \param mat matrix.
1114  *
1115  * This is expensive enough to only want to do it once.
1116  */
analyse_from_scratch(GLmatrix * mat)1117 static void analyse_from_scratch( GLmatrix *mat )
1118 {
1119    const GLfloat *m = mat->m;
1120    GLuint mask = 0;
1121    GLuint i;
1122 
1123    for (i = 0 ; i < 16 ; i++) {
1124       if (m[i] == 0.0F) mask |= (1<<i);
1125    }
1126 
1127    if (m[0] == 1.0F) mask |= (1<<16);
1128    if (m[5] == 1.0F) mask |= (1<<21);
1129    if (m[10] == 1.0F) mask |= (1<<26);
1130    if (m[15] == 1.0F) mask |= (1<<31);
1131 
1132    mat->flags &= ~MAT_FLAGS_GEOMETRY;
1133 
1134    /* Check for translation - no-one really cares
1135     */
1136    if ((mask & MASK_NO_TRX) != MASK_NO_TRX)
1137       mat->flags |= MAT_FLAG_TRANSLATION;
1138 
1139    /* Do the real work
1140     */
1141    if (mask == (GLuint) MASK_IDENTITY) {
1142       mat->type = MATRIX_IDENTITY;
1143    }
1144    else if ((mask & MASK_2D_NO_ROT) == (GLuint) MASK_2D_NO_ROT) {
1145       mat->type = MATRIX_2D_NO_ROT;
1146 
1147       if ((mask & MASK_NO_2D_SCALE) != MASK_NO_2D_SCALE)
1148 	 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1149    }
1150    else if ((mask & MASK_2D) == (GLuint) MASK_2D) {
1151       GLfloat mm = DOT2(m, m);
1152       GLfloat m4m4 = DOT2(m+4,m+4);
1153       GLfloat mm4 = DOT2(m,m+4);
1154 
1155       mat->type = MATRIX_2D;
1156 
1157       /* Check for scale */
1158       if (SQ(mm-1) > SQ(1e-6F) ||
1159 	  SQ(m4m4-1) > SQ(1e-6F))
1160 	 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1161 
1162       /* Check for rotation */
1163       if (SQ(mm4) > SQ(1e-6F))
1164 	 mat->flags |= MAT_FLAG_GENERAL_3D;
1165       else
1166 	 mat->flags |= MAT_FLAG_ROTATION;
1167 
1168    }
1169    else if ((mask & MASK_3D_NO_ROT) == (GLuint) MASK_3D_NO_ROT) {
1170       mat->type = MATRIX_3D_NO_ROT;
1171 
1172       /* Check for scale */
1173       if (SQ(m[0]-m[5]) < SQ(1e-6F) &&
1174 	  SQ(m[0]-m[10]) < SQ(1e-6F)) {
1175 	 if (SQ(m[0]-1.0F) > SQ(1e-6F)) {
1176 	    mat->flags |= MAT_FLAG_UNIFORM_SCALE;
1177          }
1178       }
1179       else {
1180 	 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1181       }
1182    }
1183    else if ((mask & MASK_3D) == (GLuint) MASK_3D) {
1184       GLfloat c1 = DOT3(m,m);
1185       GLfloat c2 = DOT3(m+4,m+4);
1186       GLfloat c3 = DOT3(m+8,m+8);
1187       GLfloat d1 = DOT3(m, m+4);
1188       GLfloat cp[3];
1189 
1190       mat->type = MATRIX_3D;
1191 
1192       /* Check for scale */
1193       if (SQ(c1-c2) < SQ(1e-6F) && SQ(c1-c3) < SQ(1e-6F)) {
1194 	 if (SQ(c1-1.0F) > SQ(1e-6F))
1195 	    mat->flags |= MAT_FLAG_UNIFORM_SCALE;
1196 	 /* else no scale at all */
1197       }
1198       else {
1199 	 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1200       }
1201 
1202       /* Check for rotation */
1203       if (SQ(d1) < SQ(1e-6F)) {
1204 	 CROSS3( cp, m, m+4 );
1205 	 SUB_3V( cp, cp, (m+8) );
1206 	 if (LEN_SQUARED_3FV(cp) < SQ(1e-6F))
1207 	    mat->flags |= MAT_FLAG_ROTATION;
1208 	 else
1209 	    mat->flags |= MAT_FLAG_GENERAL_3D;
1210       }
1211       else {
1212 	 mat->flags |= MAT_FLAG_GENERAL_3D; /* shear, etc */
1213       }
1214    }
1215    else if ((mask & MASK_PERSPECTIVE) == MASK_PERSPECTIVE && m[11]==-1.0F) {
1216       mat->type = MATRIX_PERSPECTIVE;
1217       mat->flags |= MAT_FLAG_GENERAL;
1218    }
1219    else {
1220       mat->type = MATRIX_GENERAL;
1221       mat->flags |= MAT_FLAG_GENERAL;
1222    }
1223 }
1224 
1225 /**
1226  * Analyze a matrix given that its flags are accurate.
1227  *
1228  * This is the more common operation, hopefully.
1229  */
analyse_from_flags(GLmatrix * mat)1230 static void analyse_from_flags( GLmatrix *mat )
1231 {
1232    const GLfloat *m = mat->m;
1233 
1234    if (TEST_MAT_FLAGS(mat, 0)) {
1235       mat->type = MATRIX_IDENTITY;
1236    }
1237    else if (TEST_MAT_FLAGS(mat, (MAT_FLAG_TRANSLATION |
1238 				 MAT_FLAG_UNIFORM_SCALE |
1239 				 MAT_FLAG_GENERAL_SCALE))) {
1240       if ( m[10]==1.0F && m[14]==0.0F ) {
1241 	 mat->type = MATRIX_2D_NO_ROT;
1242       }
1243       else {
1244 	 mat->type = MATRIX_3D_NO_ROT;
1245       }
1246    }
1247    else if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D)) {
1248       if (                                 m[ 8]==0.0F
1249             &&                             m[ 9]==0.0F
1250             && m[2]==0.0F && m[6]==0.0F && m[10]==1.0F && m[14]==0.0F) {
1251 	 mat->type = MATRIX_2D;
1252       }
1253       else {
1254 	 mat->type = MATRIX_3D;
1255       }
1256    }
1257    else if (                 m[4]==0.0F                 && m[12]==0.0F
1258             && m[1]==0.0F                               && m[13]==0.0F
1259             && m[2]==0.0F && m[6]==0.0F
1260             && m[3]==0.0F && m[7]==0.0F && m[11]==-1.0F && m[15]==0.0F) {
1261       mat->type = MATRIX_PERSPECTIVE;
1262    }
1263    else {
1264       mat->type = MATRIX_GENERAL;
1265    }
1266 }
1267 
1268 /**
1269  * Analyze and update a matrix.
1270  *
1271  * \param mat matrix.
1272  *
1273  * If the matrix type is dirty then calls either analyse_from_scratch() or
1274  * analyse_from_flags() to determine its type, according to whether the flags
1275  * are dirty or not, respectively. If the matrix has an inverse and it's dirty
1276  * then calls matrix_invert(). Finally clears the dirty flags.
1277  */
1278 void
_math_matrix_analyse(GLmatrix * mat)1279 _math_matrix_analyse( GLmatrix *mat )
1280 {
1281    if (mat->flags & MAT_DIRTY_TYPE) {
1282       if (mat->flags & MAT_DIRTY_FLAGS)
1283 	 analyse_from_scratch( mat );
1284       else
1285 	 analyse_from_flags( mat );
1286    }
1287 
1288    if (mat->flags & MAT_DIRTY_INVERSE) {
1289       matrix_invert( mat );
1290       mat->flags &= ~MAT_DIRTY_INVERSE;
1291    }
1292 
1293    mat->flags &= ~(MAT_DIRTY_FLAGS | MAT_DIRTY_TYPE);
1294 }
1295 
1296 /*@}*/
1297 
1298 
1299 /**
1300  * Test if the given matrix preserves vector lengths.
1301  */
1302 GLboolean
_math_matrix_is_length_preserving(const GLmatrix * m)1303 _math_matrix_is_length_preserving( const GLmatrix *m )
1304 {
1305    return TEST_MAT_FLAGS( m, MAT_FLAGS_LENGTH_PRESERVING);
1306 }
1307 
1308 
1309 /**
1310  * Test if the given matrix does any rotation.
1311  * (or perhaps if the upper-left 3x3 is non-identity)
1312  */
1313 GLboolean
_math_matrix_has_rotation(const GLmatrix * m)1314 _math_matrix_has_rotation( const GLmatrix *m )
1315 {
1316    if (m->flags & (MAT_FLAG_GENERAL |
1317                    MAT_FLAG_ROTATION |
1318                    MAT_FLAG_GENERAL_3D |
1319                    MAT_FLAG_PERSPECTIVE))
1320       return GL_TRUE;
1321    else
1322       return GL_FALSE;
1323 }
1324 
1325 
1326 GLboolean
_math_matrix_is_general_scale(const GLmatrix * m)1327 _math_matrix_is_general_scale( const GLmatrix *m )
1328 {
1329    return (m->flags & MAT_FLAG_GENERAL_SCALE) ? GL_TRUE : GL_FALSE;
1330 }
1331 
1332 
1333 GLboolean
_math_matrix_is_dirty(const GLmatrix * m)1334 _math_matrix_is_dirty( const GLmatrix *m )
1335 {
1336    return (m->flags & MAT_DIRTY) ? GL_TRUE : GL_FALSE;
1337 }
1338 
1339 
1340 /**********************************************************************/
1341 /** \name Matrix setup */
1342 /*@{*/
1343 
1344 /**
1345  * Copy a matrix.
1346  *
1347  * \param to destination matrix.
1348  * \param from source matrix.
1349  *
1350  * Copies all fields in GLmatrix, creating an inverse array if necessary.
1351  */
1352 void
_math_matrix_copy(GLmatrix * to,const GLmatrix * from)1353 _math_matrix_copy( GLmatrix *to, const GLmatrix *from )
1354 {
1355    memcpy(to->m, from->m, 16 * sizeof(GLfloat));
1356    memcpy(to->inv, from->inv, 16 * sizeof(GLfloat));
1357    to->flags = from->flags;
1358    to->type = from->type;
1359 }
1360 
1361 /**
1362  * Copy a matrix as part of glPushMatrix.
1363  *
1364  * The makes the source matrix canonical (inverse and flags are up-to-date),
1365  * so that later glPopMatrix is evaluated as a no-op if there is no state
1366  * change.
1367  *
1368  * It this wasn't done, a draw call would canonicalize the matrix, which
1369  * would make it different from the pushed one and so glPopMatrix wouldn't be
1370  * recognized as a no-op.
1371  */
1372 void
_math_matrix_push_copy(GLmatrix * to,GLmatrix * from)1373 _math_matrix_push_copy(GLmatrix *to, GLmatrix *from)
1374 {
1375    if (from->flags & MAT_DIRTY)
1376       _math_matrix_analyse(from);
1377 
1378    _math_matrix_copy(to, from);
1379 }
1380 
1381 /**
1382  * Loads a matrix array into GLmatrix.
1383  *
1384  * \param m matrix array.
1385  * \param mat matrix.
1386  *
1387  * Copies \p m into GLmatrix::m and marks the MAT_FLAG_GENERAL and MAT_DIRTY
1388  * flags.
1389  */
1390 void
_math_matrix_loadf(GLmatrix * mat,const GLfloat * m)1391 _math_matrix_loadf( GLmatrix *mat, const GLfloat *m )
1392 {
1393    memcpy( mat->m, m, 16*sizeof(GLfloat) );
1394    mat->flags = (MAT_FLAG_GENERAL | MAT_DIRTY);
1395 }
1396 
1397 /**
1398  * Matrix constructor.
1399  *
1400  * \param m matrix.
1401  *
1402  * Initialize the GLmatrix fields.
1403  */
1404 void
_math_matrix_ctr(GLmatrix * m)1405 _math_matrix_ctr( GLmatrix *m )
1406 {
1407    memset(m, 0, sizeof(*m));
1408    memcpy( m->m, Identity, sizeof(Identity) );
1409    memcpy( m->inv, Identity, sizeof(Identity) );
1410    m->type = MATRIX_IDENTITY;
1411    m->flags = 0;
1412 }
1413 
1414 /*@}*/
1415 
1416 
1417 /**********************************************************************/
1418 /** \name Matrix transpose */
1419 /*@{*/
1420 
1421 /**
1422  * Transpose a GLfloat matrix.
1423  *
1424  * \param to destination array.
1425  * \param from source array.
1426  */
1427 void
_math_transposef(GLfloat to[16],const GLfloat from[16])1428 _math_transposef( GLfloat to[16], const GLfloat from[16] )
1429 {
1430    to[0] = from[0];
1431    to[1] = from[4];
1432    to[2] = from[8];
1433    to[3] = from[12];
1434    to[4] = from[1];
1435    to[5] = from[5];
1436    to[6] = from[9];
1437    to[7] = from[13];
1438    to[8] = from[2];
1439    to[9] = from[6];
1440    to[10] = from[10];
1441    to[11] = from[14];
1442    to[12] = from[3];
1443    to[13] = from[7];
1444    to[14] = from[11];
1445    to[15] = from[15];
1446 }
1447 
1448 /**
1449  * Transpose a GLdouble matrix.
1450  *
1451  * \param to destination array.
1452  * \param from source array.
1453  */
1454 void
_math_transposed(GLdouble to[16],const GLdouble from[16])1455 _math_transposed( GLdouble to[16], const GLdouble from[16] )
1456 {
1457    to[0] = from[0];
1458    to[1] = from[4];
1459    to[2] = from[8];
1460    to[3] = from[12];
1461    to[4] = from[1];
1462    to[5] = from[5];
1463    to[6] = from[9];
1464    to[7] = from[13];
1465    to[8] = from[2];
1466    to[9] = from[6];
1467    to[10] = from[10];
1468    to[11] = from[14];
1469    to[12] = from[3];
1470    to[13] = from[7];
1471    to[14] = from[11];
1472    to[15] = from[15];
1473 }
1474 
1475 /**
1476  * Transpose a GLdouble matrix and convert to GLfloat.
1477  *
1478  * \param to destination array.
1479  * \param from source array.
1480  */
1481 void
_math_transposefd(GLfloat to[16],const GLdouble from[16])1482 _math_transposefd( GLfloat to[16], const GLdouble from[16] )
1483 {
1484    to[0] = (GLfloat) from[0];
1485    to[1] = (GLfloat) from[4];
1486    to[2] = (GLfloat) from[8];
1487    to[3] = (GLfloat) from[12];
1488    to[4] = (GLfloat) from[1];
1489    to[5] = (GLfloat) from[5];
1490    to[6] = (GLfloat) from[9];
1491    to[7] = (GLfloat) from[13];
1492    to[8] = (GLfloat) from[2];
1493    to[9] = (GLfloat) from[6];
1494    to[10] = (GLfloat) from[10];
1495    to[11] = (GLfloat) from[14];
1496    to[12] = (GLfloat) from[3];
1497    to[13] = (GLfloat) from[7];
1498    to[14] = (GLfloat) from[11];
1499    to[15] = (GLfloat) from[15];
1500 }
1501 
1502 /*@}*/
1503 
1504 
1505 /**
1506  * Transform a 4-element row vector (1x4 matrix) by a 4x4 matrix.  This
1507  * function is used for transforming clipping plane equations and spotlight
1508  * directions.
1509  * Mathematically,  u = v * m.
1510  * Input:  v - input vector
1511  *         m - transformation matrix
1512  * Output:  u - transformed vector
1513  */
1514 void
_mesa_transform_vector(GLfloat u[4],const GLfloat v[4],const GLfloat m[16])1515 _mesa_transform_vector( GLfloat u[4], const GLfloat v[4], const GLfloat m[16] )
1516 {
1517    const GLfloat v0 = v[0], v1 = v[1], v2 = v[2], v3 = v[3];
1518 #define M(row,col)  m[row + col*4]
1519    u[0] = v0 * M(0,0) + v1 * M(1,0) + v2 * M(2,0) + v3 * M(3,0);
1520    u[1] = v0 * M(0,1) + v1 * M(1,1) + v2 * M(2,1) + v3 * M(3,1);
1521    u[2] = v0 * M(0,2) + v1 * M(1,2) + v2 * M(2,2) + v3 * M(3,2);
1522    u[3] = v0 * M(0,3) + v1 * M(1,3) + v2 * M(2,3) + v3 * M(3,3);
1523 #undef M
1524 }
1525