• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple CPU accounting cgroup controller
4  */
5 #include "sched.h"
6 #include "walt.h"
7 
8 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
9 
10 /*
11  * There are no locks covering percpu hardirq/softirq time.
12  * They are only modified in vtime_account, on corresponding CPU
13  * with interrupts disabled. So, writes are safe.
14  * They are read and saved off onto struct rq in update_rq_clock().
15  * This may result in other CPU reading this CPU's irq time and can
16  * race with irq/vtime_account on this CPU. We would either get old
17  * or new value with a side effect of accounting a slice of irq time to wrong
18  * task when irq is in progress while we read rq->clock. That is a worthy
19  * compromise in place of having locks on each irq in account_system_time.
20  */
21 DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
22 
23 static int sched_clock_irqtime;
24 
enable_sched_clock_irqtime(void)25 void enable_sched_clock_irqtime(void)
26 {
27 	sched_clock_irqtime = 1;
28 }
29 
disable_sched_clock_irqtime(void)30 void disable_sched_clock_irqtime(void)
31 {
32 	sched_clock_irqtime = 0;
33 }
34 
irqtime_account_delta(struct irqtime * irqtime,u64 delta,enum cpu_usage_stat idx)35 static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
36 				  enum cpu_usage_stat idx)
37 {
38 	u64 *cpustat = kcpustat_this_cpu->cpustat;
39 
40 	u64_stats_update_begin(&irqtime->sync);
41 	cpustat[idx] += delta;
42 	irqtime->total += delta;
43 	irqtime->tick_delta += delta;
44 	u64_stats_update_end(&irqtime->sync);
45 }
46 
47 /*
48  * Called before incrementing preempt_count on {soft,}irq_enter
49  * and before decrementing preempt_count on {soft,}irq_exit.
50  */
irqtime_account_irq(struct task_struct * curr)51 void irqtime_account_irq(struct task_struct *curr)
52 {
53 	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
54 	s64 delta;
55 	int cpu;
56 #ifdef CONFIG_SCHED_WALT
57 	u64 wallclock;
58 	bool account = true;
59 #endif
60 
61 	if (!sched_clock_irqtime)
62 		return;
63 
64 	cpu = smp_processor_id();
65 #ifdef CONFIG_SCHED_WALT
66 	wallclock = sched_clock_cpu(cpu);
67 #endif
68 	delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
69 	irqtime->irq_start_time += delta;
70 
71 	/*
72 	 * We do not account for softirq time from ksoftirqd here.
73 	 * We want to continue accounting softirq time to ksoftirqd thread
74 	 * in that case, so as not to confuse scheduler with a special task
75 	 * that do not consume any time, but still wants to run.
76 	 */
77 	if (hardirq_count())
78 		irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
79 	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
80 		irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
81 #ifdef CONFIG_SCHED_WALT
82 	else
83 		account = false;
84 
85 	if (account)
86 		sched_account_irqtime(cpu, curr, delta, wallclock);
87 #endif
88 }
89 EXPORT_SYMBOL_GPL(irqtime_account_irq);
90 
irqtime_tick_accounted(u64 maxtime)91 static u64 irqtime_tick_accounted(u64 maxtime)
92 {
93 	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
94 	u64 delta;
95 
96 	delta = min(irqtime->tick_delta, maxtime);
97 	irqtime->tick_delta -= delta;
98 
99 	return delta;
100 }
101 
102 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
103 
104 #define sched_clock_irqtime	(0)
105 
irqtime_tick_accounted(u64 dummy)106 static u64 irqtime_tick_accounted(u64 dummy)
107 {
108 	return 0;
109 }
110 
111 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
112 
task_group_account_field(struct task_struct * p,int index,u64 tmp)113 static inline void task_group_account_field(struct task_struct *p, int index,
114 					    u64 tmp)
115 {
116 	/*
117 	 * Since all updates are sure to touch the root cgroup, we
118 	 * get ourselves ahead and touch it first. If the root cgroup
119 	 * is the only cgroup, then nothing else should be necessary.
120 	 *
121 	 */
122 	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
123 
124 	cgroup_account_cputime_field(p, index, tmp);
125 }
126 
127 /*
128  * Account user CPU time to a process.
129  * @p: the process that the CPU time gets accounted to
130  * @cputime: the CPU time spent in user space since the last update
131  */
account_user_time(struct task_struct * p,u64 cputime)132 void account_user_time(struct task_struct *p, u64 cputime)
133 {
134 	int index;
135 
136 	/* Add user time to process. */
137 	p->utime += cputime;
138 	account_group_user_time(p, cputime);
139 
140 	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
141 
142 	/* Add user time to cpustat. */
143 	task_group_account_field(p, index, cputime);
144 
145 	/* Account for user time used */
146 	acct_account_cputime(p);
147 }
148 
149 /*
150  * Account guest CPU time to a process.
151  * @p: the process that the CPU time gets accounted to
152  * @cputime: the CPU time spent in virtual machine since the last update
153  */
account_guest_time(struct task_struct * p,u64 cputime)154 void account_guest_time(struct task_struct *p, u64 cputime)
155 {
156 	u64 *cpustat = kcpustat_this_cpu->cpustat;
157 
158 	/* Add guest time to process. */
159 	p->utime += cputime;
160 	account_group_user_time(p, cputime);
161 	p->gtime += cputime;
162 
163 	/* Add guest time to cpustat. */
164 	if (task_nice(p) > 0) {
165 		task_group_account_field(p, CPUTIME_NICE, cputime);
166 		cpustat[CPUTIME_GUEST_NICE] += cputime;
167 	} else {
168 		task_group_account_field(p, CPUTIME_USER, cputime);
169 		cpustat[CPUTIME_GUEST] += cputime;
170 	}
171 }
172 
173 /*
174  * Account system CPU time to a process and desired cpustat field
175  * @p: the process that the CPU time gets accounted to
176  * @cputime: the CPU time spent in kernel space since the last update
177  * @index: pointer to cpustat field that has to be updated
178  */
account_system_index_time(struct task_struct * p,u64 cputime,enum cpu_usage_stat index)179 void account_system_index_time(struct task_struct *p,
180 			       u64 cputime, enum cpu_usage_stat index)
181 {
182 	/* Add system time to process. */
183 	p->stime += cputime;
184 	account_group_system_time(p, cputime);
185 
186 	/* Add system time to cpustat. */
187 	task_group_account_field(p, index, cputime);
188 
189 	/* Account for system time used */
190 	acct_account_cputime(p);
191 }
192 
193 /*
194  * Account system CPU time to a process.
195  * @p: the process that the CPU time gets accounted to
196  * @hardirq_offset: the offset to subtract from hardirq_count()
197  * @cputime: the CPU time spent in kernel space since the last update
198  */
account_system_time(struct task_struct * p,int hardirq_offset,u64 cputime)199 void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
200 {
201 	int index;
202 
203 	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
204 		account_guest_time(p, cputime);
205 		return;
206 	}
207 
208 	if (hardirq_count() - hardirq_offset)
209 		index = CPUTIME_IRQ;
210 	else if (in_serving_softirq())
211 		index = CPUTIME_SOFTIRQ;
212 	else
213 		index = CPUTIME_SYSTEM;
214 
215 	account_system_index_time(p, cputime, index);
216 }
217 
218 /*
219  * Account for involuntary wait time.
220  * @cputime: the CPU time spent in involuntary wait
221  */
account_steal_time(u64 cputime)222 void account_steal_time(u64 cputime)
223 {
224 	u64 *cpustat = kcpustat_this_cpu->cpustat;
225 
226 	cpustat[CPUTIME_STEAL] += cputime;
227 }
228 
229 /*
230  * Account for idle time.
231  * @cputime: the CPU time spent in idle wait
232  */
account_idle_time(u64 cputime)233 void account_idle_time(u64 cputime)
234 {
235 	u64 *cpustat = kcpustat_this_cpu->cpustat;
236 	struct rq *rq = this_rq();
237 
238 	if (atomic_read(&rq->nr_iowait) > 0)
239 		cpustat[CPUTIME_IOWAIT] += cputime;
240 	else
241 		cpustat[CPUTIME_IDLE] += cputime;
242 }
243 
244 /*
245  * When a guest is interrupted for a longer amount of time, missed clock
246  * ticks are not redelivered later. Due to that, this function may on
247  * occasion account more time than the calling functions think elapsed.
248  */
steal_account_process_time(u64 maxtime)249 static __always_inline u64 steal_account_process_time(u64 maxtime)
250 {
251 #ifdef CONFIG_PARAVIRT
252 	if (static_key_false(&paravirt_steal_enabled)) {
253 		u64 steal;
254 
255 		steal = paravirt_steal_clock(smp_processor_id());
256 		steal -= this_rq()->prev_steal_time;
257 		steal = min(steal, maxtime);
258 		account_steal_time(steal);
259 		this_rq()->prev_steal_time += steal;
260 
261 		return steal;
262 	}
263 #endif
264 	return 0;
265 }
266 
267 /*
268  * Account how much elapsed time was spent in steal, irq, or softirq time.
269  */
account_other_time(u64 max)270 static inline u64 account_other_time(u64 max)
271 {
272 	u64 accounted;
273 
274 	lockdep_assert_irqs_disabled();
275 
276 	accounted = steal_account_process_time(max);
277 
278 	if (accounted < max)
279 		accounted += irqtime_tick_accounted(max - accounted);
280 
281 	return accounted;
282 }
283 
284 #ifdef CONFIG_64BIT
read_sum_exec_runtime(struct task_struct * t)285 static inline u64 read_sum_exec_runtime(struct task_struct *t)
286 {
287 	return t->se.sum_exec_runtime;
288 }
289 #else
read_sum_exec_runtime(struct task_struct * t)290 static u64 read_sum_exec_runtime(struct task_struct *t)
291 {
292 	u64 ns;
293 	struct rq_flags rf;
294 	struct rq *rq;
295 
296 	rq = task_rq_lock(t, &rf);
297 	ns = t->se.sum_exec_runtime;
298 	task_rq_unlock(rq, t, &rf);
299 
300 	return ns;
301 }
302 #endif
303 
304 /*
305  * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
306  * tasks (sum on group iteration) belonging to @tsk's group.
307  */
thread_group_cputime(struct task_struct * tsk,struct task_cputime * times)308 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
309 {
310 	struct signal_struct *sig = tsk->signal;
311 	u64 utime, stime;
312 	struct task_struct *t;
313 	unsigned int seq, nextseq;
314 	unsigned long flags;
315 
316 	/*
317 	 * Update current task runtime to account pending time since last
318 	 * scheduler action or thread_group_cputime() call. This thread group
319 	 * might have other running tasks on different CPUs, but updating
320 	 * their runtime can affect syscall performance, so we skip account
321 	 * those pending times and rely only on values updated on tick or
322 	 * other scheduler action.
323 	 */
324 	if (same_thread_group(current, tsk))
325 		(void) task_sched_runtime(current);
326 
327 	rcu_read_lock();
328 	/* Attempt a lockless read on the first round. */
329 	nextseq = 0;
330 	do {
331 		seq = nextseq;
332 		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
333 		times->utime = sig->utime;
334 		times->stime = sig->stime;
335 		times->sum_exec_runtime = sig->sum_sched_runtime;
336 
337 		for_each_thread(tsk, t) {
338 			task_cputime(t, &utime, &stime);
339 			times->utime += utime;
340 			times->stime += stime;
341 			times->sum_exec_runtime += read_sum_exec_runtime(t);
342 		}
343 		/* If lockless access failed, take the lock. */
344 		nextseq = 1;
345 	} while (need_seqretry(&sig->stats_lock, seq));
346 	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
347 	rcu_read_unlock();
348 }
349 
350 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
351 /*
352  * Account a tick to a process and cpustat
353  * @p: the process that the CPU time gets accounted to
354  * @user_tick: is the tick from userspace
355  * @rq: the pointer to rq
356  *
357  * Tick demultiplexing follows the order
358  * - pending hardirq update
359  * - pending softirq update
360  * - user_time
361  * - idle_time
362  * - system time
363  *   - check for guest_time
364  *   - else account as system_time
365  *
366  * Check for hardirq is done both for system and user time as there is
367  * no timer going off while we are on hardirq and hence we may never get an
368  * opportunity to update it solely in system time.
369  * p->stime and friends are only updated on system time and not on irq
370  * softirq as those do not count in task exec_runtime any more.
371  */
irqtime_account_process_tick(struct task_struct * p,int user_tick,int ticks)372 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
373 					 int ticks)
374 {
375 	u64 other, cputime = TICK_NSEC * ticks;
376 
377 	/*
378 	 * When returning from idle, many ticks can get accounted at
379 	 * once, including some ticks of steal, irq, and softirq time.
380 	 * Subtract those ticks from the amount of time accounted to
381 	 * idle, or potentially user or system time. Due to rounding,
382 	 * other time can exceed ticks occasionally.
383 	 */
384 	other = account_other_time(ULONG_MAX);
385 	if (other >= cputime)
386 		return;
387 
388 	cputime -= other;
389 
390 	if (this_cpu_ksoftirqd() == p) {
391 		/*
392 		 * ksoftirqd time do not get accounted in cpu_softirq_time.
393 		 * So, we have to handle it separately here.
394 		 * Also, p->stime needs to be updated for ksoftirqd.
395 		 */
396 		account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
397 	} else if (user_tick) {
398 		account_user_time(p, cputime);
399 	} else if (p == this_rq()->idle) {
400 		account_idle_time(cputime);
401 	} else if (p->flags & PF_VCPU) { /* System time or guest time */
402 		account_guest_time(p, cputime);
403 	} else {
404 		account_system_index_time(p, cputime, CPUTIME_SYSTEM);
405 	}
406 }
407 
irqtime_account_idle_ticks(int ticks)408 static void irqtime_account_idle_ticks(int ticks)
409 {
410 	irqtime_account_process_tick(current, 0, ticks);
411 }
412 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
irqtime_account_idle_ticks(int ticks)413 static inline void irqtime_account_idle_ticks(int ticks) { }
irqtime_account_process_tick(struct task_struct * p,int user_tick,int nr_ticks)414 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
415 						int nr_ticks) { }
416 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
417 
418 /*
419  * Use precise platform statistics if available:
420  */
421 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
422 
423 # ifndef __ARCH_HAS_VTIME_TASK_SWITCH
vtime_task_switch(struct task_struct * prev)424 void vtime_task_switch(struct task_struct *prev)
425 {
426 	if (is_idle_task(prev))
427 		vtime_account_idle(prev);
428 	else
429 		vtime_account_kernel(prev);
430 
431 	vtime_flush(prev);
432 	arch_vtime_task_switch(prev);
433 }
434 # endif
435 
436 /*
437  * Archs that account the whole time spent in the idle task
438  * (outside irq) as idle time can rely on this and just implement
439  * vtime_account_kernel() and vtime_account_idle(). Archs that
440  * have other meaning of the idle time (s390 only includes the
441  * time spent by the CPU when it's in low power mode) must override
442  * vtime_account().
443  */
444 #ifndef __ARCH_HAS_VTIME_ACCOUNT
vtime_account_irq_enter(struct task_struct * tsk)445 void vtime_account_irq_enter(struct task_struct *tsk)
446 {
447 	if (!in_interrupt() && is_idle_task(tsk))
448 		vtime_account_idle(tsk);
449 	else
450 		vtime_account_kernel(tsk);
451 }
452 EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
453 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
454 
cputime_adjust(struct task_cputime * curr,struct prev_cputime * prev,u64 * ut,u64 * st)455 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
456 		    u64 *ut, u64 *st)
457 {
458 	*ut = curr->utime;
459 	*st = curr->stime;
460 }
461 
task_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)462 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
463 {
464 	*ut = p->utime;
465 	*st = p->stime;
466 }
467 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
468 
thread_group_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)469 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
470 {
471 	struct task_cputime cputime;
472 
473 	thread_group_cputime(p, &cputime);
474 
475 	*ut = cputime.utime;
476 	*st = cputime.stime;
477 }
478 
479 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */
480 
481 /*
482  * Account a single tick of CPU time.
483  * @p: the process that the CPU time gets accounted to
484  * @user_tick: indicates if the tick is a user or a system tick
485  */
account_process_tick(struct task_struct * p,int user_tick)486 void account_process_tick(struct task_struct *p, int user_tick)
487 {
488 	u64 cputime, steal;
489 
490 	if (vtime_accounting_enabled_this_cpu())
491 		return;
492 
493 	if (sched_clock_irqtime) {
494 		irqtime_account_process_tick(p, user_tick, 1);
495 		return;
496 	}
497 
498 	cputime = TICK_NSEC;
499 	steal = steal_account_process_time(ULONG_MAX);
500 
501 	if (steal >= cputime)
502 		return;
503 
504 	cputime -= steal;
505 
506 	if (user_tick)
507 		account_user_time(p, cputime);
508 	else if ((p != this_rq()->idle) || (irq_count() != HARDIRQ_OFFSET))
509 		account_system_time(p, HARDIRQ_OFFSET, cputime);
510 	else
511 		account_idle_time(cputime);
512 }
513 
514 /*
515  * Account multiple ticks of idle time.
516  * @ticks: number of stolen ticks
517  */
account_idle_ticks(unsigned long ticks)518 void account_idle_ticks(unsigned long ticks)
519 {
520 	u64 cputime, steal;
521 
522 	if (sched_clock_irqtime) {
523 		irqtime_account_idle_ticks(ticks);
524 		return;
525 	}
526 
527 	cputime = ticks * TICK_NSEC;
528 	steal = steal_account_process_time(ULONG_MAX);
529 
530 	if (steal >= cputime)
531 		return;
532 
533 	cputime -= steal;
534 	account_idle_time(cputime);
535 }
536 
537 /*
538  * Adjust tick based cputime random precision against scheduler runtime
539  * accounting.
540  *
541  * Tick based cputime accounting depend on random scheduling timeslices of a
542  * task to be interrupted or not by the timer.  Depending on these
543  * circumstances, the number of these interrupts may be over or
544  * under-optimistic, matching the real user and system cputime with a variable
545  * precision.
546  *
547  * Fix this by scaling these tick based values against the total runtime
548  * accounted by the CFS scheduler.
549  *
550  * This code provides the following guarantees:
551  *
552  *   stime + utime == rtime
553  *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
554  *
555  * Assuming that rtime_i+1 >= rtime_i.
556  */
cputime_adjust(struct task_cputime * curr,struct prev_cputime * prev,u64 * ut,u64 * st)557 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
558 		    u64 *ut, u64 *st)
559 {
560 	u64 rtime, stime, utime;
561 	unsigned long flags;
562 
563 	/* Serialize concurrent callers such that we can honour our guarantees */
564 	raw_spin_lock_irqsave(&prev->lock, flags);
565 	rtime = curr->sum_exec_runtime;
566 
567 	/*
568 	 * This is possible under two circumstances:
569 	 *  - rtime isn't monotonic after all (a bug);
570 	 *  - we got reordered by the lock.
571 	 *
572 	 * In both cases this acts as a filter such that the rest of the code
573 	 * can assume it is monotonic regardless of anything else.
574 	 */
575 	if (prev->stime + prev->utime >= rtime)
576 		goto out;
577 
578 	stime = curr->stime;
579 	utime = curr->utime;
580 
581 	/*
582 	 * If either stime or utime are 0, assume all runtime is userspace.
583 	 * Once a task gets some ticks, the monotonicy code at 'update:'
584 	 * will ensure things converge to the observed ratio.
585 	 */
586 	if (stime == 0) {
587 		utime = rtime;
588 		goto update;
589 	}
590 
591 	if (utime == 0) {
592 		stime = rtime;
593 		goto update;
594 	}
595 
596 	stime = mul_u64_u64_div_u64(stime, rtime, stime + utime);
597 
598 update:
599 	/*
600 	 * Make sure stime doesn't go backwards; this preserves monotonicity
601 	 * for utime because rtime is monotonic.
602 	 *
603 	 *  utime_i+1 = rtime_i+1 - stime_i
604 	 *            = rtime_i+1 - (rtime_i - utime_i)
605 	 *            = (rtime_i+1 - rtime_i) + utime_i
606 	 *            >= utime_i
607 	 */
608 	if (stime < prev->stime)
609 		stime = prev->stime;
610 	utime = rtime - stime;
611 
612 	/*
613 	 * Make sure utime doesn't go backwards; this still preserves
614 	 * monotonicity for stime, analogous argument to above.
615 	 */
616 	if (utime < prev->utime) {
617 		utime = prev->utime;
618 		stime = rtime - utime;
619 	}
620 
621 	prev->stime = stime;
622 	prev->utime = utime;
623 out:
624 	*ut = prev->utime;
625 	*st = prev->stime;
626 	raw_spin_unlock_irqrestore(&prev->lock, flags);
627 }
628 
task_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)629 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
630 {
631 	struct task_cputime cputime = {
632 		.sum_exec_runtime = p->se.sum_exec_runtime,
633 	};
634 
635 	task_cputime(p, &cputime.utime, &cputime.stime);
636 	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
637 }
638 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
639 
thread_group_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)640 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
641 {
642 	struct task_cputime cputime;
643 
644 	thread_group_cputime(p, &cputime);
645 	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
646 }
647 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
648 
649 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
vtime_delta(struct vtime * vtime)650 static u64 vtime_delta(struct vtime *vtime)
651 {
652 	unsigned long long clock;
653 
654 	clock = sched_clock();
655 	if (clock < vtime->starttime)
656 		return 0;
657 
658 	return clock - vtime->starttime;
659 }
660 
get_vtime_delta(struct vtime * vtime)661 static u64 get_vtime_delta(struct vtime *vtime)
662 {
663 	u64 delta = vtime_delta(vtime);
664 	u64 other;
665 
666 	/*
667 	 * Unlike tick based timing, vtime based timing never has lost
668 	 * ticks, and no need for steal time accounting to make up for
669 	 * lost ticks. Vtime accounts a rounded version of actual
670 	 * elapsed time. Limit account_other_time to prevent rounding
671 	 * errors from causing elapsed vtime to go negative.
672 	 */
673 	other = account_other_time(delta);
674 	WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
675 	vtime->starttime += delta;
676 
677 	return delta - other;
678 }
679 
vtime_account_system(struct task_struct * tsk,struct vtime * vtime)680 static void vtime_account_system(struct task_struct *tsk,
681 				 struct vtime *vtime)
682 {
683 	vtime->stime += get_vtime_delta(vtime);
684 	if (vtime->stime >= TICK_NSEC) {
685 		account_system_time(tsk, irq_count(), vtime->stime);
686 		vtime->stime = 0;
687 	}
688 }
689 
vtime_account_guest(struct task_struct * tsk,struct vtime * vtime)690 static void vtime_account_guest(struct task_struct *tsk,
691 				struct vtime *vtime)
692 {
693 	vtime->gtime += get_vtime_delta(vtime);
694 	if (vtime->gtime >= TICK_NSEC) {
695 		account_guest_time(tsk, vtime->gtime);
696 		vtime->gtime = 0;
697 	}
698 }
699 
__vtime_account_kernel(struct task_struct * tsk,struct vtime * vtime)700 static void __vtime_account_kernel(struct task_struct *tsk,
701 				   struct vtime *vtime)
702 {
703 	/* We might have scheduled out from guest path */
704 	if (vtime->state == VTIME_GUEST)
705 		vtime_account_guest(tsk, vtime);
706 	else
707 		vtime_account_system(tsk, vtime);
708 }
709 
vtime_account_kernel(struct task_struct * tsk)710 void vtime_account_kernel(struct task_struct *tsk)
711 {
712 	struct vtime *vtime = &tsk->vtime;
713 
714 	if (!vtime_delta(vtime))
715 		return;
716 
717 	write_seqcount_begin(&vtime->seqcount);
718 	__vtime_account_kernel(tsk, vtime);
719 	write_seqcount_end(&vtime->seqcount);
720 }
721 
vtime_user_enter(struct task_struct * tsk)722 void vtime_user_enter(struct task_struct *tsk)
723 {
724 	struct vtime *vtime = &tsk->vtime;
725 
726 	write_seqcount_begin(&vtime->seqcount);
727 	vtime_account_system(tsk, vtime);
728 	vtime->state = VTIME_USER;
729 	write_seqcount_end(&vtime->seqcount);
730 }
731 
vtime_user_exit(struct task_struct * tsk)732 void vtime_user_exit(struct task_struct *tsk)
733 {
734 	struct vtime *vtime = &tsk->vtime;
735 
736 	write_seqcount_begin(&vtime->seqcount);
737 	vtime->utime += get_vtime_delta(vtime);
738 	if (vtime->utime >= TICK_NSEC) {
739 		account_user_time(tsk, vtime->utime);
740 		vtime->utime = 0;
741 	}
742 	vtime->state = VTIME_SYS;
743 	write_seqcount_end(&vtime->seqcount);
744 }
745 
vtime_guest_enter(struct task_struct * tsk)746 void vtime_guest_enter(struct task_struct *tsk)
747 {
748 	struct vtime *vtime = &tsk->vtime;
749 	/*
750 	 * The flags must be updated under the lock with
751 	 * the vtime_starttime flush and update.
752 	 * That enforces a right ordering and update sequence
753 	 * synchronization against the reader (task_gtime())
754 	 * that can thus safely catch up with a tickless delta.
755 	 */
756 	write_seqcount_begin(&vtime->seqcount);
757 	vtime_account_system(tsk, vtime);
758 	tsk->flags |= PF_VCPU;
759 	vtime->state = VTIME_GUEST;
760 	write_seqcount_end(&vtime->seqcount);
761 }
762 EXPORT_SYMBOL_GPL(vtime_guest_enter);
763 
vtime_guest_exit(struct task_struct * tsk)764 void vtime_guest_exit(struct task_struct *tsk)
765 {
766 	struct vtime *vtime = &tsk->vtime;
767 
768 	write_seqcount_begin(&vtime->seqcount);
769 	vtime_account_guest(tsk, vtime);
770 	tsk->flags &= ~PF_VCPU;
771 	vtime->state = VTIME_SYS;
772 	write_seqcount_end(&vtime->seqcount);
773 }
774 EXPORT_SYMBOL_GPL(vtime_guest_exit);
775 
vtime_account_idle(struct task_struct * tsk)776 void vtime_account_idle(struct task_struct *tsk)
777 {
778 	account_idle_time(get_vtime_delta(&tsk->vtime));
779 }
780 
vtime_task_switch_generic(struct task_struct * prev)781 void vtime_task_switch_generic(struct task_struct *prev)
782 {
783 	struct vtime *vtime = &prev->vtime;
784 
785 	write_seqcount_begin(&vtime->seqcount);
786 	if (vtime->state == VTIME_IDLE)
787 		vtime_account_idle(prev);
788 	else
789 		__vtime_account_kernel(prev, vtime);
790 	vtime->state = VTIME_INACTIVE;
791 	vtime->cpu = -1;
792 	write_seqcount_end(&vtime->seqcount);
793 
794 	vtime = &current->vtime;
795 
796 	write_seqcount_begin(&vtime->seqcount);
797 	if (is_idle_task(current))
798 		vtime->state = VTIME_IDLE;
799 	else if (current->flags & PF_VCPU)
800 		vtime->state = VTIME_GUEST;
801 	else
802 		vtime->state = VTIME_SYS;
803 	vtime->starttime = sched_clock();
804 	vtime->cpu = smp_processor_id();
805 	write_seqcount_end(&vtime->seqcount);
806 }
807 
vtime_init_idle(struct task_struct * t,int cpu)808 void vtime_init_idle(struct task_struct *t, int cpu)
809 {
810 	struct vtime *vtime = &t->vtime;
811 	unsigned long flags;
812 
813 	local_irq_save(flags);
814 	write_seqcount_begin(&vtime->seqcount);
815 	vtime->state = VTIME_IDLE;
816 	vtime->starttime = sched_clock();
817 	vtime->cpu = cpu;
818 	write_seqcount_end(&vtime->seqcount);
819 	local_irq_restore(flags);
820 }
821 
task_gtime(struct task_struct * t)822 u64 task_gtime(struct task_struct *t)
823 {
824 	struct vtime *vtime = &t->vtime;
825 	unsigned int seq;
826 	u64 gtime;
827 
828 	if (!vtime_accounting_enabled())
829 		return t->gtime;
830 
831 	do {
832 		seq = read_seqcount_begin(&vtime->seqcount);
833 
834 		gtime = t->gtime;
835 		if (vtime->state == VTIME_GUEST)
836 			gtime += vtime->gtime + vtime_delta(vtime);
837 
838 	} while (read_seqcount_retry(&vtime->seqcount, seq));
839 
840 	return gtime;
841 }
842 
843 /*
844  * Fetch cputime raw values from fields of task_struct and
845  * add up the pending nohz execution time since the last
846  * cputime snapshot.
847  */
task_cputime(struct task_struct * t,u64 * utime,u64 * stime)848 void task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
849 {
850 	struct vtime *vtime = &t->vtime;
851 	unsigned int seq;
852 	u64 delta;
853 
854 	if (!vtime_accounting_enabled()) {
855 		*utime = t->utime;
856 		*stime = t->stime;
857 		return;
858 	}
859 
860 	do {
861 		seq = read_seqcount_begin(&vtime->seqcount);
862 
863 		*utime = t->utime;
864 		*stime = t->stime;
865 
866 		/* Task is sleeping or idle, nothing to add */
867 		if (vtime->state < VTIME_SYS)
868 			continue;
869 
870 		delta = vtime_delta(vtime);
871 
872 		/*
873 		 * Task runs either in user (including guest) or kernel space,
874 		 * add pending nohz time to the right place.
875 		 */
876 		if (vtime->state == VTIME_SYS)
877 			*stime += vtime->stime + delta;
878 		else
879 			*utime += vtime->utime + delta;
880 	} while (read_seqcount_retry(&vtime->seqcount, seq));
881 }
882 
vtime_state_fetch(struct vtime * vtime,int cpu)883 static int vtime_state_fetch(struct vtime *vtime, int cpu)
884 {
885 	int state = READ_ONCE(vtime->state);
886 
887 	/*
888 	 * We raced against a context switch, fetch the
889 	 * kcpustat task again.
890 	 */
891 	if (vtime->cpu != cpu && vtime->cpu != -1)
892 		return -EAGAIN;
893 
894 	/*
895 	 * Two possible things here:
896 	 * 1) We are seeing the scheduling out task (prev) or any past one.
897 	 * 2) We are seeing the scheduling in task (next) but it hasn't
898 	 *    passed though vtime_task_switch() yet so the pending
899 	 *    cputime of the prev task may not be flushed yet.
900 	 *
901 	 * Case 1) is ok but 2) is not. So wait for a safe VTIME state.
902 	 */
903 	if (state == VTIME_INACTIVE)
904 		return -EAGAIN;
905 
906 	return state;
907 }
908 
kcpustat_user_vtime(struct vtime * vtime)909 static u64 kcpustat_user_vtime(struct vtime *vtime)
910 {
911 	if (vtime->state == VTIME_USER)
912 		return vtime->utime + vtime_delta(vtime);
913 	else if (vtime->state == VTIME_GUEST)
914 		return vtime->gtime + vtime_delta(vtime);
915 	return 0;
916 }
917 
kcpustat_field_vtime(u64 * cpustat,struct task_struct * tsk,enum cpu_usage_stat usage,int cpu,u64 * val)918 static int kcpustat_field_vtime(u64 *cpustat,
919 				struct task_struct *tsk,
920 				enum cpu_usage_stat usage,
921 				int cpu, u64 *val)
922 {
923 	struct vtime *vtime = &tsk->vtime;
924 	unsigned int seq;
925 
926 	do {
927 		int state;
928 
929 		seq = read_seqcount_begin(&vtime->seqcount);
930 
931 		state = vtime_state_fetch(vtime, cpu);
932 		if (state < 0)
933 			return state;
934 
935 		*val = cpustat[usage];
936 
937 		/*
938 		 * Nice VS unnice cputime accounting may be inaccurate if
939 		 * the nice value has changed since the last vtime update.
940 		 * But proper fix would involve interrupting target on nice
941 		 * updates which is a no go on nohz_full (although the scheduler
942 		 * may still interrupt the target if rescheduling is needed...)
943 		 */
944 		switch (usage) {
945 		case CPUTIME_SYSTEM:
946 			if (state == VTIME_SYS)
947 				*val += vtime->stime + vtime_delta(vtime);
948 			break;
949 		case CPUTIME_USER:
950 			if (task_nice(tsk) <= 0)
951 				*val += kcpustat_user_vtime(vtime);
952 			break;
953 		case CPUTIME_NICE:
954 			if (task_nice(tsk) > 0)
955 				*val += kcpustat_user_vtime(vtime);
956 			break;
957 		case CPUTIME_GUEST:
958 			if (state == VTIME_GUEST && task_nice(tsk) <= 0)
959 				*val += vtime->gtime + vtime_delta(vtime);
960 			break;
961 		case CPUTIME_GUEST_NICE:
962 			if (state == VTIME_GUEST && task_nice(tsk) > 0)
963 				*val += vtime->gtime + vtime_delta(vtime);
964 			break;
965 		default:
966 			break;
967 		}
968 	} while (read_seqcount_retry(&vtime->seqcount, seq));
969 
970 	return 0;
971 }
972 
kcpustat_field(struct kernel_cpustat * kcpustat,enum cpu_usage_stat usage,int cpu)973 u64 kcpustat_field(struct kernel_cpustat *kcpustat,
974 		   enum cpu_usage_stat usage, int cpu)
975 {
976 	u64 *cpustat = kcpustat->cpustat;
977 	u64 val = cpustat[usage];
978 	struct rq *rq;
979 	int err;
980 
981 	if (!vtime_accounting_enabled_cpu(cpu))
982 		return val;
983 
984 	rq = cpu_rq(cpu);
985 
986 	for (;;) {
987 		struct task_struct *curr;
988 
989 		rcu_read_lock();
990 		curr = rcu_dereference(rq->curr);
991 		if (WARN_ON_ONCE(!curr)) {
992 			rcu_read_unlock();
993 			return cpustat[usage];
994 		}
995 
996 		err = kcpustat_field_vtime(cpustat, curr, usage, cpu, &val);
997 		rcu_read_unlock();
998 
999 		if (!err)
1000 			return val;
1001 
1002 		cpu_relax();
1003 	}
1004 }
1005 EXPORT_SYMBOL_GPL(kcpustat_field);
1006 
kcpustat_cpu_fetch_vtime(struct kernel_cpustat * dst,const struct kernel_cpustat * src,struct task_struct * tsk,int cpu)1007 static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat *dst,
1008 				    const struct kernel_cpustat *src,
1009 				    struct task_struct *tsk, int cpu)
1010 {
1011 	struct vtime *vtime = &tsk->vtime;
1012 	unsigned int seq;
1013 
1014 	do {
1015 		u64 *cpustat;
1016 		u64 delta;
1017 		int state;
1018 
1019 		seq = read_seqcount_begin(&vtime->seqcount);
1020 
1021 		state = vtime_state_fetch(vtime, cpu);
1022 		if (state < 0)
1023 			return state;
1024 
1025 		*dst = *src;
1026 		cpustat = dst->cpustat;
1027 
1028 		/* Task is sleeping, dead or idle, nothing to add */
1029 		if (state < VTIME_SYS)
1030 			continue;
1031 
1032 		delta = vtime_delta(vtime);
1033 
1034 		/*
1035 		 * Task runs either in user (including guest) or kernel space,
1036 		 * add pending nohz time to the right place.
1037 		 */
1038 		if (state == VTIME_SYS) {
1039 			cpustat[CPUTIME_SYSTEM] += vtime->stime + delta;
1040 		} else if (state == VTIME_USER) {
1041 			if (task_nice(tsk) > 0)
1042 				cpustat[CPUTIME_NICE] += vtime->utime + delta;
1043 			else
1044 				cpustat[CPUTIME_USER] += vtime->utime + delta;
1045 		} else {
1046 			WARN_ON_ONCE(state != VTIME_GUEST);
1047 			if (task_nice(tsk) > 0) {
1048 				cpustat[CPUTIME_GUEST_NICE] += vtime->gtime + delta;
1049 				cpustat[CPUTIME_NICE] += vtime->gtime + delta;
1050 			} else {
1051 				cpustat[CPUTIME_GUEST] += vtime->gtime + delta;
1052 				cpustat[CPUTIME_USER] += vtime->gtime + delta;
1053 			}
1054 		}
1055 	} while (read_seqcount_retry(&vtime->seqcount, seq));
1056 
1057 	return 0;
1058 }
1059 
kcpustat_cpu_fetch(struct kernel_cpustat * dst,int cpu)1060 void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu)
1061 {
1062 	const struct kernel_cpustat *src = &kcpustat_cpu(cpu);
1063 	struct rq *rq;
1064 	int err;
1065 
1066 	if (!vtime_accounting_enabled_cpu(cpu)) {
1067 		*dst = *src;
1068 		return;
1069 	}
1070 
1071 	rq = cpu_rq(cpu);
1072 
1073 	for (;;) {
1074 		struct task_struct *curr;
1075 
1076 		rcu_read_lock();
1077 		curr = rcu_dereference(rq->curr);
1078 		if (WARN_ON_ONCE(!curr)) {
1079 			rcu_read_unlock();
1080 			*dst = *src;
1081 			return;
1082 		}
1083 
1084 		err = kcpustat_cpu_fetch_vtime(dst, src, curr, cpu);
1085 		rcu_read_unlock();
1086 
1087 		if (!err)
1088 			return;
1089 
1090 		cpu_relax();
1091 	}
1092 }
1093 EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch);
1094 
1095 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
1096