• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell OcteonTx2 RVU Admin Function driver
3  *
4  * Copyright (C) 2018 Marvell International Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/delay.h>
14 #include <linux/irq.h>
15 #include <linux/pci.h>
16 #include <linux/sysfs.h>
17 
18 #include "cgx.h"
19 #include "rvu.h"
20 #include "rvu_reg.h"
21 #include "ptp.h"
22 
23 #include "rvu_trace.h"
24 
25 #define DRV_NAME	"octeontx2-af"
26 #define DRV_STRING      "Marvell OcteonTX2 RVU Admin Function Driver"
27 
28 static int rvu_get_hwvf(struct rvu *rvu, int pcifunc);
29 
30 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
31 				struct rvu_block *block, int lf);
32 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
33 				  struct rvu_block *block, int lf);
34 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc);
35 
36 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
37 			 int type, int num,
38 			 void (mbox_handler)(struct work_struct *),
39 			 void (mbox_up_handler)(struct work_struct *));
40 enum {
41 	TYPE_AFVF,
42 	TYPE_AFPF,
43 };
44 
45 /* Supported devices */
46 static const struct pci_device_id rvu_id_table[] = {
47 	{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_RVU_AF) },
48 	{ 0, }  /* end of table */
49 };
50 
51 MODULE_AUTHOR("Sunil Goutham <sgoutham@marvell.com>");
52 MODULE_DESCRIPTION(DRV_STRING);
53 MODULE_LICENSE("GPL v2");
54 MODULE_DEVICE_TABLE(pci, rvu_id_table);
55 
56 static char *mkex_profile; /* MKEX profile name */
57 module_param(mkex_profile, charp, 0000);
58 MODULE_PARM_DESC(mkex_profile, "MKEX profile name string");
59 
rvu_setup_hw_capabilities(struct rvu * rvu)60 static void rvu_setup_hw_capabilities(struct rvu *rvu)
61 {
62 	struct rvu_hwinfo *hw = rvu->hw;
63 
64 	hw->cap.nix_tx_aggr_lvl = NIX_TXSCH_LVL_TL1;
65 	hw->cap.nix_fixed_txschq_mapping = false;
66 	hw->cap.nix_shaping = true;
67 	hw->cap.nix_tx_link_bp = true;
68 	hw->cap.nix_rx_multicast = true;
69 
70 	if (is_rvu_96xx_B0(rvu)) {
71 		hw->cap.nix_fixed_txschq_mapping = true;
72 		hw->cap.nix_txsch_per_cgx_lmac = 4;
73 		hw->cap.nix_txsch_per_lbk_lmac = 132;
74 		hw->cap.nix_txsch_per_sdp_lmac = 76;
75 		hw->cap.nix_shaping = false;
76 		hw->cap.nix_tx_link_bp = false;
77 		if (is_rvu_96xx_A0(rvu))
78 			hw->cap.nix_rx_multicast = false;
79 	}
80 }
81 
82 /* Poll a RVU block's register 'offset', for a 'zero'
83  * or 'nonzero' at bits specified by 'mask'
84  */
rvu_poll_reg(struct rvu * rvu,u64 block,u64 offset,u64 mask,bool zero)85 int rvu_poll_reg(struct rvu *rvu, u64 block, u64 offset, u64 mask, bool zero)
86 {
87 	unsigned long timeout = jiffies + usecs_to_jiffies(20000);
88 	bool twice = false;
89 	void __iomem *reg;
90 	u64 reg_val;
91 
92 	reg = rvu->afreg_base + ((block << 28) | offset);
93 again:
94 	reg_val = readq(reg);
95 	if (zero && !(reg_val & mask))
96 		return 0;
97 	if (!zero && (reg_val & mask))
98 		return 0;
99 	if (time_before(jiffies, timeout)) {
100 		usleep_range(1, 5);
101 		goto again;
102 	}
103 	/* In scenarios where CPU is scheduled out before checking
104 	 * 'time_before' (above) and gets scheduled in such that
105 	 * jiffies are beyond timeout value, then check again if HW is
106 	 * done with the operation in the meantime.
107 	 */
108 	if (!twice) {
109 		twice = true;
110 		goto again;
111 	}
112 	return -EBUSY;
113 }
114 
rvu_alloc_rsrc(struct rsrc_bmap * rsrc)115 int rvu_alloc_rsrc(struct rsrc_bmap *rsrc)
116 {
117 	int id;
118 
119 	if (!rsrc->bmap)
120 		return -EINVAL;
121 
122 	id = find_first_zero_bit(rsrc->bmap, rsrc->max);
123 	if (id >= rsrc->max)
124 		return -ENOSPC;
125 
126 	__set_bit(id, rsrc->bmap);
127 
128 	return id;
129 }
130 
rvu_alloc_rsrc_contig(struct rsrc_bmap * rsrc,int nrsrc)131 int rvu_alloc_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc)
132 {
133 	int start;
134 
135 	if (!rsrc->bmap)
136 		return -EINVAL;
137 
138 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
139 	if (start >= rsrc->max)
140 		return -ENOSPC;
141 
142 	bitmap_set(rsrc->bmap, start, nrsrc);
143 	return start;
144 }
145 
rvu_free_rsrc_contig(struct rsrc_bmap * rsrc,int nrsrc,int start)146 static void rvu_free_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc, int start)
147 {
148 	if (!rsrc->bmap)
149 		return;
150 	if (start >= rsrc->max)
151 		return;
152 
153 	bitmap_clear(rsrc->bmap, start, nrsrc);
154 }
155 
rvu_rsrc_check_contig(struct rsrc_bmap * rsrc,int nrsrc)156 bool rvu_rsrc_check_contig(struct rsrc_bmap *rsrc, int nrsrc)
157 {
158 	int start;
159 
160 	if (!rsrc->bmap)
161 		return false;
162 
163 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
164 	if (start >= rsrc->max)
165 		return false;
166 
167 	return true;
168 }
169 
rvu_free_rsrc(struct rsrc_bmap * rsrc,int id)170 void rvu_free_rsrc(struct rsrc_bmap *rsrc, int id)
171 {
172 	if (!rsrc->bmap)
173 		return;
174 
175 	__clear_bit(id, rsrc->bmap);
176 }
177 
rvu_rsrc_free_count(struct rsrc_bmap * rsrc)178 int rvu_rsrc_free_count(struct rsrc_bmap *rsrc)
179 {
180 	int used;
181 
182 	if (!rsrc->bmap)
183 		return 0;
184 
185 	used = bitmap_weight(rsrc->bmap, rsrc->max);
186 	return (rsrc->max - used);
187 }
188 
rvu_alloc_bitmap(struct rsrc_bmap * rsrc)189 int rvu_alloc_bitmap(struct rsrc_bmap *rsrc)
190 {
191 	rsrc->bmap = kcalloc(BITS_TO_LONGS(rsrc->max),
192 			     sizeof(long), GFP_KERNEL);
193 	if (!rsrc->bmap)
194 		return -ENOMEM;
195 	return 0;
196 }
197 
198 /* Get block LF's HW index from a PF_FUNC's block slot number */
rvu_get_lf(struct rvu * rvu,struct rvu_block * block,u16 pcifunc,u16 slot)199 int rvu_get_lf(struct rvu *rvu, struct rvu_block *block, u16 pcifunc, u16 slot)
200 {
201 	u16 match = 0;
202 	int lf;
203 
204 	mutex_lock(&rvu->rsrc_lock);
205 	for (lf = 0; lf < block->lf.max; lf++) {
206 		if (block->fn_map[lf] == pcifunc) {
207 			if (slot == match) {
208 				mutex_unlock(&rvu->rsrc_lock);
209 				return lf;
210 			}
211 			match++;
212 		}
213 	}
214 	mutex_unlock(&rvu->rsrc_lock);
215 	return -ENODEV;
216 }
217 
218 /* Convert BLOCK_TYPE_E to a BLOCK_ADDR_E.
219  * Some silicon variants of OcteonTX2 supports
220  * multiple blocks of same type.
221  *
222  * @pcifunc has to be zero when no LF is yet attached.
223  */
rvu_get_blkaddr(struct rvu * rvu,int blktype,u16 pcifunc)224 int rvu_get_blkaddr(struct rvu *rvu, int blktype, u16 pcifunc)
225 {
226 	int devnum, blkaddr = -ENODEV;
227 	u64 cfg, reg;
228 	bool is_pf;
229 
230 	switch (blktype) {
231 	case BLKTYPE_NPC:
232 		blkaddr = BLKADDR_NPC;
233 		goto exit;
234 	case BLKTYPE_NPA:
235 		blkaddr = BLKADDR_NPA;
236 		goto exit;
237 	case BLKTYPE_NIX:
238 		/* For now assume NIX0 */
239 		if (!pcifunc) {
240 			blkaddr = BLKADDR_NIX0;
241 			goto exit;
242 		}
243 		break;
244 	case BLKTYPE_SSO:
245 		blkaddr = BLKADDR_SSO;
246 		goto exit;
247 	case BLKTYPE_SSOW:
248 		blkaddr = BLKADDR_SSOW;
249 		goto exit;
250 	case BLKTYPE_TIM:
251 		blkaddr = BLKADDR_TIM;
252 		goto exit;
253 	case BLKTYPE_CPT:
254 		/* For now assume CPT0 */
255 		if (!pcifunc) {
256 			blkaddr = BLKADDR_CPT0;
257 			goto exit;
258 		}
259 		break;
260 	}
261 
262 	/* Check if this is a RVU PF or VF */
263 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
264 		is_pf = false;
265 		devnum = rvu_get_hwvf(rvu, pcifunc);
266 	} else {
267 		is_pf = true;
268 		devnum = rvu_get_pf(pcifunc);
269 	}
270 
271 	/* Check if the 'pcifunc' has a NIX LF from 'BLKADDR_NIX0' */
272 	if (blktype == BLKTYPE_NIX) {
273 		reg = is_pf ? RVU_PRIV_PFX_NIX0_CFG : RVU_PRIV_HWVFX_NIX0_CFG;
274 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
275 		if (cfg)
276 			blkaddr = BLKADDR_NIX0;
277 	}
278 
279 	/* Check if the 'pcifunc' has a CPT LF from 'BLKADDR_CPT0' */
280 	if (blktype == BLKTYPE_CPT) {
281 		reg = is_pf ? RVU_PRIV_PFX_CPT0_CFG : RVU_PRIV_HWVFX_CPT0_CFG;
282 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
283 		if (cfg)
284 			blkaddr = BLKADDR_CPT0;
285 	}
286 
287 exit:
288 	if (is_block_implemented(rvu->hw, blkaddr))
289 		return blkaddr;
290 	return -ENODEV;
291 }
292 
rvu_update_rsrc_map(struct rvu * rvu,struct rvu_pfvf * pfvf,struct rvu_block * block,u16 pcifunc,u16 lf,bool attach)293 static void rvu_update_rsrc_map(struct rvu *rvu, struct rvu_pfvf *pfvf,
294 				struct rvu_block *block, u16 pcifunc,
295 				u16 lf, bool attach)
296 {
297 	int devnum, num_lfs = 0;
298 	bool is_pf;
299 	u64 reg;
300 
301 	if (lf >= block->lf.max) {
302 		dev_err(&rvu->pdev->dev,
303 			"%s: FATAL: LF %d is >= %s's max lfs i.e %d\n",
304 			__func__, lf, block->name, block->lf.max);
305 		return;
306 	}
307 
308 	/* Check if this is for a RVU PF or VF */
309 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
310 		is_pf = false;
311 		devnum = rvu_get_hwvf(rvu, pcifunc);
312 	} else {
313 		is_pf = true;
314 		devnum = rvu_get_pf(pcifunc);
315 	}
316 
317 	block->fn_map[lf] = attach ? pcifunc : 0;
318 
319 	switch (block->type) {
320 	case BLKTYPE_NPA:
321 		pfvf->npalf = attach ? true : false;
322 		num_lfs = pfvf->npalf;
323 		break;
324 	case BLKTYPE_NIX:
325 		pfvf->nixlf = attach ? true : false;
326 		num_lfs = pfvf->nixlf;
327 		break;
328 	case BLKTYPE_SSO:
329 		attach ? pfvf->sso++ : pfvf->sso--;
330 		num_lfs = pfvf->sso;
331 		break;
332 	case BLKTYPE_SSOW:
333 		attach ? pfvf->ssow++ : pfvf->ssow--;
334 		num_lfs = pfvf->ssow;
335 		break;
336 	case BLKTYPE_TIM:
337 		attach ? pfvf->timlfs++ : pfvf->timlfs--;
338 		num_lfs = pfvf->timlfs;
339 		break;
340 	case BLKTYPE_CPT:
341 		attach ? pfvf->cptlfs++ : pfvf->cptlfs--;
342 		num_lfs = pfvf->cptlfs;
343 		break;
344 	}
345 
346 	reg = is_pf ? block->pf_lfcnt_reg : block->vf_lfcnt_reg;
347 	rvu_write64(rvu, BLKADDR_RVUM, reg | (devnum << 16), num_lfs);
348 }
349 
rvu_get_pf(u16 pcifunc)350 inline int rvu_get_pf(u16 pcifunc)
351 {
352 	return (pcifunc >> RVU_PFVF_PF_SHIFT) & RVU_PFVF_PF_MASK;
353 }
354 
rvu_get_pf_numvfs(struct rvu * rvu,int pf,int * numvfs,int * hwvf)355 void rvu_get_pf_numvfs(struct rvu *rvu, int pf, int *numvfs, int *hwvf)
356 {
357 	u64 cfg;
358 
359 	/* Get numVFs attached to this PF and first HWVF */
360 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
361 	*numvfs = (cfg >> 12) & 0xFF;
362 	*hwvf = cfg & 0xFFF;
363 }
364 
rvu_get_hwvf(struct rvu * rvu,int pcifunc)365 static int rvu_get_hwvf(struct rvu *rvu, int pcifunc)
366 {
367 	int pf, func;
368 	u64 cfg;
369 
370 	pf = rvu_get_pf(pcifunc);
371 	func = pcifunc & RVU_PFVF_FUNC_MASK;
372 
373 	/* Get first HWVF attached to this PF */
374 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
375 
376 	return ((cfg & 0xFFF) + func - 1);
377 }
378 
rvu_get_pfvf(struct rvu * rvu,int pcifunc)379 struct rvu_pfvf *rvu_get_pfvf(struct rvu *rvu, int pcifunc)
380 {
381 	/* Check if it is a PF or VF */
382 	if (pcifunc & RVU_PFVF_FUNC_MASK)
383 		return &rvu->hwvf[rvu_get_hwvf(rvu, pcifunc)];
384 	else
385 		return &rvu->pf[rvu_get_pf(pcifunc)];
386 }
387 
is_pf_func_valid(struct rvu * rvu,u16 pcifunc)388 static bool is_pf_func_valid(struct rvu *rvu, u16 pcifunc)
389 {
390 	int pf, vf, nvfs;
391 	u64 cfg;
392 
393 	pf = rvu_get_pf(pcifunc);
394 	if (pf >= rvu->hw->total_pfs)
395 		return false;
396 
397 	if (!(pcifunc & RVU_PFVF_FUNC_MASK))
398 		return true;
399 
400 	/* Check if VF is within number of VFs attached to this PF */
401 	vf = (pcifunc & RVU_PFVF_FUNC_MASK) - 1;
402 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
403 	nvfs = (cfg >> 12) & 0xFF;
404 	if (vf >= nvfs)
405 		return false;
406 
407 	return true;
408 }
409 
is_block_implemented(struct rvu_hwinfo * hw,int blkaddr)410 bool is_block_implemented(struct rvu_hwinfo *hw, int blkaddr)
411 {
412 	struct rvu_block *block;
413 
414 	if (blkaddr < BLKADDR_RVUM || blkaddr >= BLK_COUNT)
415 		return false;
416 
417 	block = &hw->block[blkaddr];
418 	return block->implemented;
419 }
420 
rvu_check_block_implemented(struct rvu * rvu)421 static void rvu_check_block_implemented(struct rvu *rvu)
422 {
423 	struct rvu_hwinfo *hw = rvu->hw;
424 	struct rvu_block *block;
425 	int blkid;
426 	u64 cfg;
427 
428 	/* For each block check if 'implemented' bit is set */
429 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
430 		block = &hw->block[blkid];
431 		cfg = rvupf_read64(rvu, RVU_PF_BLOCK_ADDRX_DISC(blkid));
432 		if (cfg & BIT_ULL(11))
433 			block->implemented = true;
434 	}
435 }
436 
rvu_setup_rvum_blk_revid(struct rvu * rvu)437 static void rvu_setup_rvum_blk_revid(struct rvu *rvu)
438 {
439 	rvu_write64(rvu, BLKADDR_RVUM,
440 		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM),
441 		    RVU_BLK_RVUM_REVID);
442 }
443 
rvu_clear_rvum_blk_revid(struct rvu * rvu)444 static void rvu_clear_rvum_blk_revid(struct rvu *rvu)
445 {
446 	rvu_write64(rvu, BLKADDR_RVUM,
447 		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM), 0x00);
448 }
449 
rvu_lf_reset(struct rvu * rvu,struct rvu_block * block,int lf)450 int rvu_lf_reset(struct rvu *rvu, struct rvu_block *block, int lf)
451 {
452 	int err;
453 
454 	if (!block->implemented)
455 		return 0;
456 
457 	rvu_write64(rvu, block->addr, block->lfreset_reg, lf | BIT_ULL(12));
458 	err = rvu_poll_reg(rvu, block->addr, block->lfreset_reg, BIT_ULL(12),
459 			   true);
460 	return err;
461 }
462 
rvu_block_reset(struct rvu * rvu,int blkaddr,u64 rst_reg)463 static void rvu_block_reset(struct rvu *rvu, int blkaddr, u64 rst_reg)
464 {
465 	struct rvu_block *block = &rvu->hw->block[blkaddr];
466 
467 	if (!block->implemented)
468 		return;
469 
470 	rvu_write64(rvu, blkaddr, rst_reg, BIT_ULL(0));
471 	rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true);
472 }
473 
rvu_reset_all_blocks(struct rvu * rvu)474 static void rvu_reset_all_blocks(struct rvu *rvu)
475 {
476 	/* Do a HW reset of all RVU blocks */
477 	rvu_block_reset(rvu, BLKADDR_NPA, NPA_AF_BLK_RST);
478 	rvu_block_reset(rvu, BLKADDR_NIX0, NIX_AF_BLK_RST);
479 	rvu_block_reset(rvu, BLKADDR_NPC, NPC_AF_BLK_RST);
480 	rvu_block_reset(rvu, BLKADDR_SSO, SSO_AF_BLK_RST);
481 	rvu_block_reset(rvu, BLKADDR_TIM, TIM_AF_BLK_RST);
482 	rvu_block_reset(rvu, BLKADDR_CPT0, CPT_AF_BLK_RST);
483 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_RX, NDC_AF_BLK_RST);
484 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_TX, NDC_AF_BLK_RST);
485 	rvu_block_reset(rvu, BLKADDR_NDC_NPA0, NDC_AF_BLK_RST);
486 }
487 
rvu_scan_block(struct rvu * rvu,struct rvu_block * block)488 static void rvu_scan_block(struct rvu *rvu, struct rvu_block *block)
489 {
490 	struct rvu_pfvf *pfvf;
491 	u64 cfg;
492 	int lf;
493 
494 	for (lf = 0; lf < block->lf.max; lf++) {
495 		cfg = rvu_read64(rvu, block->addr,
496 				 block->lfcfg_reg | (lf << block->lfshift));
497 		if (!(cfg & BIT_ULL(63)))
498 			continue;
499 
500 		/* Set this resource as being used */
501 		__set_bit(lf, block->lf.bmap);
502 
503 		/* Get, to whom this LF is attached */
504 		pfvf = rvu_get_pfvf(rvu, (cfg >> 8) & 0xFFFF);
505 		rvu_update_rsrc_map(rvu, pfvf, block,
506 				    (cfg >> 8) & 0xFFFF, lf, true);
507 
508 		/* Set start MSIX vector for this LF within this PF/VF */
509 		rvu_set_msix_offset(rvu, pfvf, block, lf);
510 	}
511 }
512 
rvu_check_min_msix_vec(struct rvu * rvu,int nvecs,int pf,int vf)513 static void rvu_check_min_msix_vec(struct rvu *rvu, int nvecs, int pf, int vf)
514 {
515 	int min_vecs;
516 
517 	if (!vf)
518 		goto check_pf;
519 
520 	if (!nvecs) {
521 		dev_warn(rvu->dev,
522 			 "PF%d:VF%d is configured with zero msix vectors, %d\n",
523 			 pf, vf - 1, nvecs);
524 	}
525 	return;
526 
527 check_pf:
528 	if (pf == 0)
529 		min_vecs = RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT;
530 	else
531 		min_vecs = RVU_PF_INT_VEC_CNT;
532 
533 	if (!(nvecs < min_vecs))
534 		return;
535 	dev_warn(rvu->dev,
536 		 "PF%d is configured with too few vectors, %d, min is %d\n",
537 		 pf, nvecs, min_vecs);
538 }
539 
rvu_setup_msix_resources(struct rvu * rvu)540 static int rvu_setup_msix_resources(struct rvu *rvu)
541 {
542 	struct rvu_hwinfo *hw = rvu->hw;
543 	int pf, vf, numvfs, hwvf, err;
544 	int nvecs, offset, max_msix;
545 	struct rvu_pfvf *pfvf;
546 	u64 cfg, phy_addr;
547 	dma_addr_t iova;
548 
549 	for (pf = 0; pf < hw->total_pfs; pf++) {
550 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
551 		/* If PF is not enabled, nothing to do */
552 		if (!((cfg >> 20) & 0x01))
553 			continue;
554 
555 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
556 
557 		pfvf = &rvu->pf[pf];
558 		/* Get num of MSIX vectors attached to this PF */
559 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_MSIX_CFG(pf));
560 		pfvf->msix.max = ((cfg >> 32) & 0xFFF) + 1;
561 		rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, 0);
562 
563 		/* Alloc msix bitmap for this PF */
564 		err = rvu_alloc_bitmap(&pfvf->msix);
565 		if (err)
566 			return err;
567 
568 		/* Allocate memory for MSIX vector to RVU block LF mapping */
569 		pfvf->msix_lfmap = devm_kcalloc(rvu->dev, pfvf->msix.max,
570 						sizeof(u16), GFP_KERNEL);
571 		if (!pfvf->msix_lfmap)
572 			return -ENOMEM;
573 
574 		/* For PF0 (AF) firmware will set msix vector offsets for
575 		 * AF, block AF and PF0_INT vectors, so jump to VFs.
576 		 */
577 		if (!pf)
578 			goto setup_vfmsix;
579 
580 		/* Set MSIX offset for PF's 'RVU_PF_INT_VEC' vectors.
581 		 * These are allocated on driver init and never freed,
582 		 * so no need to set 'msix_lfmap' for these.
583 		 */
584 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(pf));
585 		nvecs = (cfg >> 12) & 0xFF;
586 		cfg &= ~0x7FFULL;
587 		offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
588 		rvu_write64(rvu, BLKADDR_RVUM,
589 			    RVU_PRIV_PFX_INT_CFG(pf), cfg | offset);
590 setup_vfmsix:
591 		/* Alloc msix bitmap for VFs */
592 		for (vf = 0; vf < numvfs; vf++) {
593 			pfvf =  &rvu->hwvf[hwvf + vf];
594 			/* Get num of MSIX vectors attached to this VF */
595 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
596 					 RVU_PRIV_PFX_MSIX_CFG(pf));
597 			pfvf->msix.max = (cfg & 0xFFF) + 1;
598 			rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, vf + 1);
599 
600 			/* Alloc msix bitmap for this VF */
601 			err = rvu_alloc_bitmap(&pfvf->msix);
602 			if (err)
603 				return err;
604 
605 			pfvf->msix_lfmap =
606 				devm_kcalloc(rvu->dev, pfvf->msix.max,
607 					     sizeof(u16), GFP_KERNEL);
608 			if (!pfvf->msix_lfmap)
609 				return -ENOMEM;
610 
611 			/* Set MSIX offset for HWVF's 'RVU_VF_INT_VEC' vectors.
612 			 * These are allocated on driver init and never freed,
613 			 * so no need to set 'msix_lfmap' for these.
614 			 */
615 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
616 					 RVU_PRIV_HWVFX_INT_CFG(hwvf + vf));
617 			nvecs = (cfg >> 12) & 0xFF;
618 			cfg &= ~0x7FFULL;
619 			offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
620 			rvu_write64(rvu, BLKADDR_RVUM,
621 				    RVU_PRIV_HWVFX_INT_CFG(hwvf + vf),
622 				    cfg | offset);
623 		}
624 	}
625 
626 	/* HW interprets RVU_AF_MSIXTR_BASE address as an IOVA, hence
627 	 * create a IOMMU mapping for the physcial address configured by
628 	 * firmware and reconfig RVU_AF_MSIXTR_BASE with IOVA.
629 	 */
630 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
631 	max_msix = cfg & 0xFFFFF;
632 	if (rvu->fwdata && rvu->fwdata->msixtr_base)
633 		phy_addr = rvu->fwdata->msixtr_base;
634 	else
635 		phy_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE);
636 
637 	iova = dma_map_resource(rvu->dev, phy_addr,
638 				max_msix * PCI_MSIX_ENTRY_SIZE,
639 				DMA_BIDIRECTIONAL, 0);
640 
641 	if (dma_mapping_error(rvu->dev, iova))
642 		return -ENOMEM;
643 
644 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE, (u64)iova);
645 	rvu->msix_base_iova = iova;
646 	rvu->msixtr_base_phy = phy_addr;
647 
648 	return 0;
649 }
650 
rvu_reset_msix(struct rvu * rvu)651 static void rvu_reset_msix(struct rvu *rvu)
652 {
653 	/* Restore msixtr base register */
654 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE,
655 		    rvu->msixtr_base_phy);
656 }
657 
rvu_free_hw_resources(struct rvu * rvu)658 static void rvu_free_hw_resources(struct rvu *rvu)
659 {
660 	struct rvu_hwinfo *hw = rvu->hw;
661 	struct rvu_block *block;
662 	struct rvu_pfvf  *pfvf;
663 	int id, max_msix;
664 	u64 cfg;
665 
666 	rvu_npa_freemem(rvu);
667 	rvu_npc_freemem(rvu);
668 	rvu_nix_freemem(rvu);
669 
670 	/* Free block LF bitmaps */
671 	for (id = 0; id < BLK_COUNT; id++) {
672 		block = &hw->block[id];
673 		kfree(block->lf.bmap);
674 	}
675 
676 	/* Free MSIX bitmaps */
677 	for (id = 0; id < hw->total_pfs; id++) {
678 		pfvf = &rvu->pf[id];
679 		kfree(pfvf->msix.bmap);
680 	}
681 
682 	for (id = 0; id < hw->total_vfs; id++) {
683 		pfvf = &rvu->hwvf[id];
684 		kfree(pfvf->msix.bmap);
685 	}
686 
687 	/* Unmap MSIX vector base IOVA mapping */
688 	if (!rvu->msix_base_iova)
689 		return;
690 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
691 	max_msix = cfg & 0xFFFFF;
692 	dma_unmap_resource(rvu->dev, rvu->msix_base_iova,
693 			   max_msix * PCI_MSIX_ENTRY_SIZE,
694 			   DMA_BIDIRECTIONAL, 0);
695 
696 	rvu_reset_msix(rvu);
697 	mutex_destroy(&rvu->rsrc_lock);
698 }
699 
rvu_setup_pfvf_macaddress(struct rvu * rvu)700 static void rvu_setup_pfvf_macaddress(struct rvu *rvu)
701 {
702 	struct rvu_hwinfo *hw = rvu->hw;
703 	int pf, vf, numvfs, hwvf;
704 	struct rvu_pfvf *pfvf;
705 	u64 *mac;
706 
707 	for (pf = 0; pf < hw->total_pfs; pf++) {
708 		if (!is_pf_cgxmapped(rvu, pf))
709 			continue;
710 		/* Assign MAC address to PF */
711 		pfvf = &rvu->pf[pf];
712 		if (rvu->fwdata && pf < PF_MACNUM_MAX) {
713 			mac = &rvu->fwdata->pf_macs[pf];
714 			if (*mac)
715 				u64_to_ether_addr(*mac, pfvf->mac_addr);
716 			else
717 				eth_random_addr(pfvf->mac_addr);
718 		} else {
719 			eth_random_addr(pfvf->mac_addr);
720 		}
721 
722 		/* Assign MAC address to VFs */
723 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
724 		for (vf = 0; vf < numvfs; vf++, hwvf++) {
725 			pfvf = &rvu->hwvf[hwvf];
726 			if (rvu->fwdata && hwvf < VF_MACNUM_MAX) {
727 				mac = &rvu->fwdata->vf_macs[hwvf];
728 				if (*mac)
729 					u64_to_ether_addr(*mac, pfvf->mac_addr);
730 				else
731 					eth_random_addr(pfvf->mac_addr);
732 			} else {
733 				eth_random_addr(pfvf->mac_addr);
734 			}
735 		}
736 	}
737 }
738 
rvu_fwdata_init(struct rvu * rvu)739 static int rvu_fwdata_init(struct rvu *rvu)
740 {
741 	u64 fwdbase;
742 	int err;
743 
744 	/* Get firmware data base address */
745 	err = cgx_get_fwdata_base(&fwdbase);
746 	if (err)
747 		goto fail;
748 	rvu->fwdata = ioremap_wc(fwdbase, sizeof(struct rvu_fwdata));
749 	if (!rvu->fwdata)
750 		goto fail;
751 	if (!is_rvu_fwdata_valid(rvu)) {
752 		dev_err(rvu->dev,
753 			"Mismatch in 'fwdata' struct btw kernel and firmware\n");
754 		iounmap(rvu->fwdata);
755 		rvu->fwdata = NULL;
756 		return -EINVAL;
757 	}
758 	return 0;
759 fail:
760 	dev_info(rvu->dev, "Unable to fetch 'fwdata' from firmware\n");
761 	return -EIO;
762 }
763 
rvu_fwdata_exit(struct rvu * rvu)764 static void rvu_fwdata_exit(struct rvu *rvu)
765 {
766 	if (rvu->fwdata)
767 		iounmap(rvu->fwdata);
768 }
769 
rvu_setup_hw_resources(struct rvu * rvu)770 static int rvu_setup_hw_resources(struct rvu *rvu)
771 {
772 	struct rvu_hwinfo *hw = rvu->hw;
773 	struct rvu_block *block;
774 	int blkid, err;
775 	u64 cfg;
776 
777 	/* Get HW supported max RVU PF & VF count */
778 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
779 	hw->total_pfs = (cfg >> 32) & 0xFF;
780 	hw->total_vfs = (cfg >> 20) & 0xFFF;
781 	hw->max_vfs_per_pf = (cfg >> 40) & 0xFF;
782 
783 	/* Init NPA LF's bitmap */
784 	block = &hw->block[BLKADDR_NPA];
785 	if (!block->implemented)
786 		goto nix;
787 	cfg = rvu_read64(rvu, BLKADDR_NPA, NPA_AF_CONST);
788 	block->lf.max = (cfg >> 16) & 0xFFF;
789 	block->addr = BLKADDR_NPA;
790 	block->type = BLKTYPE_NPA;
791 	block->lfshift = 8;
792 	block->lookup_reg = NPA_AF_RVU_LF_CFG_DEBUG;
793 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NPA_CFG;
794 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NPA_CFG;
795 	block->lfcfg_reg = NPA_PRIV_LFX_CFG;
796 	block->msixcfg_reg = NPA_PRIV_LFX_INT_CFG;
797 	block->lfreset_reg = NPA_AF_LF_RST;
798 	sprintf(block->name, "NPA");
799 	err = rvu_alloc_bitmap(&block->lf);
800 	if (err)
801 		return err;
802 
803 nix:
804 	/* Init NIX LF's bitmap */
805 	block = &hw->block[BLKADDR_NIX0];
806 	if (!block->implemented)
807 		goto sso;
808 	cfg = rvu_read64(rvu, BLKADDR_NIX0, NIX_AF_CONST2);
809 	block->lf.max = cfg & 0xFFF;
810 	block->addr = BLKADDR_NIX0;
811 	block->type = BLKTYPE_NIX;
812 	block->lfshift = 8;
813 	block->lookup_reg = NIX_AF_RVU_LF_CFG_DEBUG;
814 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NIX0_CFG;
815 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NIX0_CFG;
816 	block->lfcfg_reg = NIX_PRIV_LFX_CFG;
817 	block->msixcfg_reg = NIX_PRIV_LFX_INT_CFG;
818 	block->lfreset_reg = NIX_AF_LF_RST;
819 	sprintf(block->name, "NIX");
820 	err = rvu_alloc_bitmap(&block->lf);
821 	if (err)
822 		return err;
823 
824 sso:
825 	/* Init SSO group's bitmap */
826 	block = &hw->block[BLKADDR_SSO];
827 	if (!block->implemented)
828 		goto ssow;
829 	cfg = rvu_read64(rvu, BLKADDR_SSO, SSO_AF_CONST);
830 	block->lf.max = cfg & 0xFFFF;
831 	block->addr = BLKADDR_SSO;
832 	block->type = BLKTYPE_SSO;
833 	block->multislot = true;
834 	block->lfshift = 3;
835 	block->lookup_reg = SSO_AF_RVU_LF_CFG_DEBUG;
836 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSO_CFG;
837 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSO_CFG;
838 	block->lfcfg_reg = SSO_PRIV_LFX_HWGRP_CFG;
839 	block->msixcfg_reg = SSO_PRIV_LFX_HWGRP_INT_CFG;
840 	block->lfreset_reg = SSO_AF_LF_HWGRP_RST;
841 	sprintf(block->name, "SSO GROUP");
842 	err = rvu_alloc_bitmap(&block->lf);
843 	if (err)
844 		return err;
845 
846 ssow:
847 	/* Init SSO workslot's bitmap */
848 	block = &hw->block[BLKADDR_SSOW];
849 	if (!block->implemented)
850 		goto tim;
851 	block->lf.max = (cfg >> 56) & 0xFF;
852 	block->addr = BLKADDR_SSOW;
853 	block->type = BLKTYPE_SSOW;
854 	block->multislot = true;
855 	block->lfshift = 3;
856 	block->lookup_reg = SSOW_AF_RVU_LF_HWS_CFG_DEBUG;
857 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSOW_CFG;
858 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSOW_CFG;
859 	block->lfcfg_reg = SSOW_PRIV_LFX_HWS_CFG;
860 	block->msixcfg_reg = SSOW_PRIV_LFX_HWS_INT_CFG;
861 	block->lfreset_reg = SSOW_AF_LF_HWS_RST;
862 	sprintf(block->name, "SSOWS");
863 	err = rvu_alloc_bitmap(&block->lf);
864 	if (err)
865 		return err;
866 
867 tim:
868 	/* Init TIM LF's bitmap */
869 	block = &hw->block[BLKADDR_TIM];
870 	if (!block->implemented)
871 		goto cpt;
872 	cfg = rvu_read64(rvu, BLKADDR_TIM, TIM_AF_CONST);
873 	block->lf.max = cfg & 0xFFFF;
874 	block->addr = BLKADDR_TIM;
875 	block->type = BLKTYPE_TIM;
876 	block->multislot = true;
877 	block->lfshift = 3;
878 	block->lookup_reg = TIM_AF_RVU_LF_CFG_DEBUG;
879 	block->pf_lfcnt_reg = RVU_PRIV_PFX_TIM_CFG;
880 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_TIM_CFG;
881 	block->lfcfg_reg = TIM_PRIV_LFX_CFG;
882 	block->msixcfg_reg = TIM_PRIV_LFX_INT_CFG;
883 	block->lfreset_reg = TIM_AF_LF_RST;
884 	sprintf(block->name, "TIM");
885 	err = rvu_alloc_bitmap(&block->lf);
886 	if (err)
887 		return err;
888 
889 cpt:
890 	/* Init CPT LF's bitmap */
891 	block = &hw->block[BLKADDR_CPT0];
892 	if (!block->implemented)
893 		goto init;
894 	cfg = rvu_read64(rvu, BLKADDR_CPT0, CPT_AF_CONSTANTS0);
895 	block->lf.max = cfg & 0xFF;
896 	block->addr = BLKADDR_CPT0;
897 	block->type = BLKTYPE_CPT;
898 	block->multislot = true;
899 	block->lfshift = 3;
900 	block->lookup_reg = CPT_AF_RVU_LF_CFG_DEBUG;
901 	block->pf_lfcnt_reg = RVU_PRIV_PFX_CPT0_CFG;
902 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_CPT0_CFG;
903 	block->lfcfg_reg = CPT_PRIV_LFX_CFG;
904 	block->msixcfg_reg = CPT_PRIV_LFX_INT_CFG;
905 	block->lfreset_reg = CPT_AF_LF_RST;
906 	sprintf(block->name, "CPT");
907 	err = rvu_alloc_bitmap(&block->lf);
908 	if (err)
909 		return err;
910 
911 init:
912 	/* Allocate memory for PFVF data */
913 	rvu->pf = devm_kcalloc(rvu->dev, hw->total_pfs,
914 			       sizeof(struct rvu_pfvf), GFP_KERNEL);
915 	if (!rvu->pf)
916 		return -ENOMEM;
917 
918 	rvu->hwvf = devm_kcalloc(rvu->dev, hw->total_vfs,
919 				 sizeof(struct rvu_pfvf), GFP_KERNEL);
920 	if (!rvu->hwvf)
921 		return -ENOMEM;
922 
923 	mutex_init(&rvu->rsrc_lock);
924 
925 	rvu_fwdata_init(rvu);
926 
927 	err = rvu_setup_msix_resources(rvu);
928 	if (err)
929 		return err;
930 
931 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
932 		block = &hw->block[blkid];
933 		if (!block->lf.bmap)
934 			continue;
935 
936 		/* Allocate memory for block LF/slot to pcifunc mapping info */
937 		block->fn_map = devm_kcalloc(rvu->dev, block->lf.max,
938 					     sizeof(u16), GFP_KERNEL);
939 		if (!block->fn_map) {
940 			err = -ENOMEM;
941 			goto msix_err;
942 		}
943 
944 		/* Scan all blocks to check if low level firmware has
945 		 * already provisioned any of the resources to a PF/VF.
946 		 */
947 		rvu_scan_block(rvu, block);
948 	}
949 
950 	err = rvu_npc_init(rvu);
951 	if (err)
952 		goto npc_err;
953 
954 	err = rvu_cgx_init(rvu);
955 	if (err)
956 		goto cgx_err;
957 
958 	/* Assign MACs for CGX mapped functions */
959 	rvu_setup_pfvf_macaddress(rvu);
960 
961 	err = rvu_npa_init(rvu);
962 	if (err)
963 		goto npa_err;
964 
965 	err = rvu_nix_init(rvu);
966 	if (err)
967 		goto nix_err;
968 
969 	return 0;
970 
971 nix_err:
972 	rvu_nix_freemem(rvu);
973 npa_err:
974 	rvu_npa_freemem(rvu);
975 cgx_err:
976 	rvu_cgx_exit(rvu);
977 npc_err:
978 	rvu_npc_freemem(rvu);
979 	rvu_fwdata_exit(rvu);
980 msix_err:
981 	rvu_reset_msix(rvu);
982 	return err;
983 }
984 
985 /* NPA and NIX admin queue APIs */
rvu_aq_free(struct rvu * rvu,struct admin_queue * aq)986 void rvu_aq_free(struct rvu *rvu, struct admin_queue *aq)
987 {
988 	if (!aq)
989 		return;
990 
991 	qmem_free(rvu->dev, aq->inst);
992 	qmem_free(rvu->dev, aq->res);
993 	devm_kfree(rvu->dev, aq);
994 }
995 
rvu_aq_alloc(struct rvu * rvu,struct admin_queue ** ad_queue,int qsize,int inst_size,int res_size)996 int rvu_aq_alloc(struct rvu *rvu, struct admin_queue **ad_queue,
997 		 int qsize, int inst_size, int res_size)
998 {
999 	struct admin_queue *aq;
1000 	int err;
1001 
1002 	*ad_queue = devm_kzalloc(rvu->dev, sizeof(*aq), GFP_KERNEL);
1003 	if (!*ad_queue)
1004 		return -ENOMEM;
1005 	aq = *ad_queue;
1006 
1007 	/* Alloc memory for instructions i.e AQ */
1008 	err = qmem_alloc(rvu->dev, &aq->inst, qsize, inst_size);
1009 	if (err) {
1010 		devm_kfree(rvu->dev, aq);
1011 		return err;
1012 	}
1013 
1014 	/* Alloc memory for results */
1015 	err = qmem_alloc(rvu->dev, &aq->res, qsize, res_size);
1016 	if (err) {
1017 		rvu_aq_free(rvu, aq);
1018 		return err;
1019 	}
1020 
1021 	spin_lock_init(&aq->lock);
1022 	return 0;
1023 }
1024 
rvu_mbox_handler_ready(struct rvu * rvu,struct msg_req * req,struct ready_msg_rsp * rsp)1025 int rvu_mbox_handler_ready(struct rvu *rvu, struct msg_req *req,
1026 			   struct ready_msg_rsp *rsp)
1027 {
1028 	if (rvu->fwdata) {
1029 		rsp->rclk_freq = rvu->fwdata->rclk;
1030 		rsp->sclk_freq = rvu->fwdata->sclk;
1031 	}
1032 	return 0;
1033 }
1034 
1035 /* Get current count of a RVU block's LF/slots
1036  * provisioned to a given RVU func.
1037  */
rvu_get_rsrc_mapcount(struct rvu_pfvf * pfvf,int blktype)1038 static u16 rvu_get_rsrc_mapcount(struct rvu_pfvf *pfvf, int blktype)
1039 {
1040 	switch (blktype) {
1041 	case BLKTYPE_NPA:
1042 		return pfvf->npalf ? 1 : 0;
1043 	case BLKTYPE_NIX:
1044 		return pfvf->nixlf ? 1 : 0;
1045 	case BLKTYPE_SSO:
1046 		return pfvf->sso;
1047 	case BLKTYPE_SSOW:
1048 		return pfvf->ssow;
1049 	case BLKTYPE_TIM:
1050 		return pfvf->timlfs;
1051 	case BLKTYPE_CPT:
1052 		return pfvf->cptlfs;
1053 	}
1054 	return 0;
1055 }
1056 
is_pffunc_map_valid(struct rvu * rvu,u16 pcifunc,int blktype)1057 bool is_pffunc_map_valid(struct rvu *rvu, u16 pcifunc, int blktype)
1058 {
1059 	struct rvu_pfvf *pfvf;
1060 
1061 	if (!is_pf_func_valid(rvu, pcifunc))
1062 		return false;
1063 
1064 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1065 
1066 	/* Check if this PFFUNC has a LF of type blktype attached */
1067 	if (!rvu_get_rsrc_mapcount(pfvf, blktype))
1068 		return false;
1069 
1070 	return true;
1071 }
1072 
rvu_lookup_rsrc(struct rvu * rvu,struct rvu_block * block,int pcifunc,int slot)1073 static int rvu_lookup_rsrc(struct rvu *rvu, struct rvu_block *block,
1074 			   int pcifunc, int slot)
1075 {
1076 	u64 val;
1077 
1078 	val = ((u64)pcifunc << 24) | (slot << 16) | (1ULL << 13);
1079 	rvu_write64(rvu, block->addr, block->lookup_reg, val);
1080 	/* Wait for the lookup to finish */
1081 	/* TODO: put some timeout here */
1082 	while (rvu_read64(rvu, block->addr, block->lookup_reg) & (1ULL << 13))
1083 		;
1084 
1085 	val = rvu_read64(rvu, block->addr, block->lookup_reg);
1086 
1087 	/* Check LF valid bit */
1088 	if (!(val & (1ULL << 12)))
1089 		return -1;
1090 
1091 	return (val & 0xFFF);
1092 }
1093 
rvu_detach_block(struct rvu * rvu,int pcifunc,int blktype)1094 static void rvu_detach_block(struct rvu *rvu, int pcifunc, int blktype)
1095 {
1096 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1097 	struct rvu_hwinfo *hw = rvu->hw;
1098 	struct rvu_block *block;
1099 	int slot, lf, num_lfs;
1100 	int blkaddr;
1101 
1102 	blkaddr = rvu_get_blkaddr(rvu, blktype, pcifunc);
1103 	if (blkaddr < 0)
1104 		return;
1105 
1106 	block = &hw->block[blkaddr];
1107 
1108 	num_lfs = rvu_get_rsrc_mapcount(pfvf, block->type);
1109 	if (!num_lfs)
1110 		return;
1111 
1112 	for (slot = 0; slot < num_lfs; slot++) {
1113 		lf = rvu_lookup_rsrc(rvu, block, pcifunc, slot);
1114 		if (lf < 0) /* This should never happen */
1115 			continue;
1116 
1117 		/* Disable the LF */
1118 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1119 			    (lf << block->lfshift), 0x00ULL);
1120 
1121 		/* Update SW maintained mapping info as well */
1122 		rvu_update_rsrc_map(rvu, pfvf, block,
1123 				    pcifunc, lf, false);
1124 
1125 		/* Free the resource */
1126 		rvu_free_rsrc(&block->lf, lf);
1127 
1128 		/* Clear MSIX vector offset for this LF */
1129 		rvu_clear_msix_offset(rvu, pfvf, block, lf);
1130 	}
1131 }
1132 
rvu_detach_rsrcs(struct rvu * rvu,struct rsrc_detach * detach,u16 pcifunc)1133 static int rvu_detach_rsrcs(struct rvu *rvu, struct rsrc_detach *detach,
1134 			    u16 pcifunc)
1135 {
1136 	struct rvu_hwinfo *hw = rvu->hw;
1137 	bool detach_all = true;
1138 	struct rvu_block *block;
1139 	int blkid;
1140 
1141 	mutex_lock(&rvu->rsrc_lock);
1142 
1143 	/* Check for partial resource detach */
1144 	if (detach && detach->partial)
1145 		detach_all = false;
1146 
1147 	/* Check for RVU block's LFs attached to this func,
1148 	 * if so, detach them.
1149 	 */
1150 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1151 		block = &hw->block[blkid];
1152 		if (!block->lf.bmap)
1153 			continue;
1154 		if (!detach_all && detach) {
1155 			if (blkid == BLKADDR_NPA && !detach->npalf)
1156 				continue;
1157 			else if ((blkid == BLKADDR_NIX0) && !detach->nixlf)
1158 				continue;
1159 			else if ((blkid == BLKADDR_SSO) && !detach->sso)
1160 				continue;
1161 			else if ((blkid == BLKADDR_SSOW) && !detach->ssow)
1162 				continue;
1163 			else if ((blkid == BLKADDR_TIM) && !detach->timlfs)
1164 				continue;
1165 			else if ((blkid == BLKADDR_CPT0) && !detach->cptlfs)
1166 				continue;
1167 		}
1168 		rvu_detach_block(rvu, pcifunc, block->type);
1169 	}
1170 
1171 	mutex_unlock(&rvu->rsrc_lock);
1172 	return 0;
1173 }
1174 
rvu_mbox_handler_detach_resources(struct rvu * rvu,struct rsrc_detach * detach,struct msg_rsp * rsp)1175 int rvu_mbox_handler_detach_resources(struct rvu *rvu,
1176 				      struct rsrc_detach *detach,
1177 				      struct msg_rsp *rsp)
1178 {
1179 	return rvu_detach_rsrcs(rvu, detach, detach->hdr.pcifunc);
1180 }
1181 
rvu_attach_block(struct rvu * rvu,int pcifunc,int blktype,int num_lfs)1182 static void rvu_attach_block(struct rvu *rvu, int pcifunc,
1183 			     int blktype, int num_lfs)
1184 {
1185 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1186 	struct rvu_hwinfo *hw = rvu->hw;
1187 	struct rvu_block *block;
1188 	int slot, lf;
1189 	int blkaddr;
1190 	u64 cfg;
1191 
1192 	if (!num_lfs)
1193 		return;
1194 
1195 	blkaddr = rvu_get_blkaddr(rvu, blktype, 0);
1196 	if (blkaddr < 0)
1197 		return;
1198 
1199 	block = &hw->block[blkaddr];
1200 	if (!block->lf.bmap)
1201 		return;
1202 
1203 	for (slot = 0; slot < num_lfs; slot++) {
1204 		/* Allocate the resource */
1205 		lf = rvu_alloc_rsrc(&block->lf);
1206 		if (lf < 0)
1207 			return;
1208 
1209 		cfg = (1ULL << 63) | (pcifunc << 8) | slot;
1210 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1211 			    (lf << block->lfshift), cfg);
1212 		rvu_update_rsrc_map(rvu, pfvf, block,
1213 				    pcifunc, lf, true);
1214 
1215 		/* Set start MSIX vector for this LF within this PF/VF */
1216 		rvu_set_msix_offset(rvu, pfvf, block, lf);
1217 	}
1218 }
1219 
rvu_check_rsrc_availability(struct rvu * rvu,struct rsrc_attach * req,u16 pcifunc)1220 static int rvu_check_rsrc_availability(struct rvu *rvu,
1221 				       struct rsrc_attach *req, u16 pcifunc)
1222 {
1223 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1224 	struct rvu_hwinfo *hw = rvu->hw;
1225 	struct rvu_block *block;
1226 	int free_lfs, mappedlfs;
1227 
1228 	/* Only one NPA LF can be attached */
1229 	if (req->npalf && !rvu_get_rsrc_mapcount(pfvf, BLKTYPE_NPA)) {
1230 		block = &hw->block[BLKADDR_NPA];
1231 		free_lfs = rvu_rsrc_free_count(&block->lf);
1232 		if (!free_lfs)
1233 			goto fail;
1234 	} else if (req->npalf) {
1235 		dev_err(&rvu->pdev->dev,
1236 			"Func 0x%x: Invalid req, already has NPA\n",
1237 			 pcifunc);
1238 		return -EINVAL;
1239 	}
1240 
1241 	/* Only one NIX LF can be attached */
1242 	if (req->nixlf && !rvu_get_rsrc_mapcount(pfvf, BLKTYPE_NIX)) {
1243 		block = &hw->block[BLKADDR_NIX0];
1244 		free_lfs = rvu_rsrc_free_count(&block->lf);
1245 		if (!free_lfs)
1246 			goto fail;
1247 	} else if (req->nixlf) {
1248 		dev_err(&rvu->pdev->dev,
1249 			"Func 0x%x: Invalid req, already has NIX\n",
1250 			pcifunc);
1251 		return -EINVAL;
1252 	}
1253 
1254 	if (req->sso) {
1255 		block = &hw->block[BLKADDR_SSO];
1256 		/* Is request within limits ? */
1257 		if (req->sso > block->lf.max) {
1258 			dev_err(&rvu->pdev->dev,
1259 				"Func 0x%x: Invalid SSO req, %d > max %d\n",
1260 				 pcifunc, req->sso, block->lf.max);
1261 			return -EINVAL;
1262 		}
1263 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->type);
1264 		free_lfs = rvu_rsrc_free_count(&block->lf);
1265 		/* Check if additional resources are available */
1266 		if (req->sso > mappedlfs &&
1267 		    ((req->sso - mappedlfs) > free_lfs))
1268 			goto fail;
1269 	}
1270 
1271 	if (req->ssow) {
1272 		block = &hw->block[BLKADDR_SSOW];
1273 		if (req->ssow > block->lf.max) {
1274 			dev_err(&rvu->pdev->dev,
1275 				"Func 0x%x: Invalid SSOW req, %d > max %d\n",
1276 				 pcifunc, req->sso, block->lf.max);
1277 			return -EINVAL;
1278 		}
1279 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->type);
1280 		free_lfs = rvu_rsrc_free_count(&block->lf);
1281 		if (req->ssow > mappedlfs &&
1282 		    ((req->ssow - mappedlfs) > free_lfs))
1283 			goto fail;
1284 	}
1285 
1286 	if (req->timlfs) {
1287 		block = &hw->block[BLKADDR_TIM];
1288 		if (req->timlfs > block->lf.max) {
1289 			dev_err(&rvu->pdev->dev,
1290 				"Func 0x%x: Invalid TIMLF req, %d > max %d\n",
1291 				 pcifunc, req->timlfs, block->lf.max);
1292 			return -EINVAL;
1293 		}
1294 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->type);
1295 		free_lfs = rvu_rsrc_free_count(&block->lf);
1296 		if (req->timlfs > mappedlfs &&
1297 		    ((req->timlfs - mappedlfs) > free_lfs))
1298 			goto fail;
1299 	}
1300 
1301 	if (req->cptlfs) {
1302 		block = &hw->block[BLKADDR_CPT0];
1303 		if (req->cptlfs > block->lf.max) {
1304 			dev_err(&rvu->pdev->dev,
1305 				"Func 0x%x: Invalid CPTLF req, %d > max %d\n",
1306 				 pcifunc, req->cptlfs, block->lf.max);
1307 			return -EINVAL;
1308 		}
1309 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->type);
1310 		free_lfs = rvu_rsrc_free_count(&block->lf);
1311 		if (req->cptlfs > mappedlfs &&
1312 		    ((req->cptlfs - mappedlfs) > free_lfs))
1313 			goto fail;
1314 	}
1315 
1316 	return 0;
1317 
1318 fail:
1319 	dev_info(rvu->dev, "Request for %s failed\n", block->name);
1320 	return -ENOSPC;
1321 }
1322 
rvu_mbox_handler_attach_resources(struct rvu * rvu,struct rsrc_attach * attach,struct msg_rsp * rsp)1323 int rvu_mbox_handler_attach_resources(struct rvu *rvu,
1324 				      struct rsrc_attach *attach,
1325 				      struct msg_rsp *rsp)
1326 {
1327 	u16 pcifunc = attach->hdr.pcifunc;
1328 	int err;
1329 
1330 	/* If first request, detach all existing attached resources */
1331 	if (!attach->modify)
1332 		rvu_detach_rsrcs(rvu, NULL, pcifunc);
1333 
1334 	mutex_lock(&rvu->rsrc_lock);
1335 
1336 	/* Check if the request can be accommodated */
1337 	err = rvu_check_rsrc_availability(rvu, attach, pcifunc);
1338 	if (err)
1339 		goto exit;
1340 
1341 	/* Now attach the requested resources */
1342 	if (attach->npalf)
1343 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NPA, 1);
1344 
1345 	if (attach->nixlf)
1346 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NIX, 1);
1347 
1348 	if (attach->sso) {
1349 		/* RVU func doesn't know which exact LF or slot is attached
1350 		 * to it, it always sees as slot 0,1,2. So for a 'modify'
1351 		 * request, simply detach all existing attached LFs/slots
1352 		 * and attach a fresh.
1353 		 */
1354 		if (attach->modify)
1355 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSO);
1356 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSO, attach->sso);
1357 	}
1358 
1359 	if (attach->ssow) {
1360 		if (attach->modify)
1361 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSOW);
1362 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSOW, attach->ssow);
1363 	}
1364 
1365 	if (attach->timlfs) {
1366 		if (attach->modify)
1367 			rvu_detach_block(rvu, pcifunc, BLKTYPE_TIM);
1368 		rvu_attach_block(rvu, pcifunc, BLKTYPE_TIM, attach->timlfs);
1369 	}
1370 
1371 	if (attach->cptlfs) {
1372 		if (attach->modify)
1373 			rvu_detach_block(rvu, pcifunc, BLKTYPE_CPT);
1374 		rvu_attach_block(rvu, pcifunc, BLKTYPE_CPT, attach->cptlfs);
1375 	}
1376 
1377 exit:
1378 	mutex_unlock(&rvu->rsrc_lock);
1379 	return err;
1380 }
1381 
rvu_get_msix_offset(struct rvu * rvu,struct rvu_pfvf * pfvf,int blkaddr,int lf)1382 static u16 rvu_get_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1383 			       int blkaddr, int lf)
1384 {
1385 	u16 vec;
1386 
1387 	if (lf < 0)
1388 		return MSIX_VECTOR_INVALID;
1389 
1390 	for (vec = 0; vec < pfvf->msix.max; vec++) {
1391 		if (pfvf->msix_lfmap[vec] == MSIX_BLKLF(blkaddr, lf))
1392 			return vec;
1393 	}
1394 	return MSIX_VECTOR_INVALID;
1395 }
1396 
rvu_set_msix_offset(struct rvu * rvu,struct rvu_pfvf * pfvf,struct rvu_block * block,int lf)1397 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1398 				struct rvu_block *block, int lf)
1399 {
1400 	u16 nvecs, vec, offset;
1401 	u64 cfg;
1402 
1403 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1404 			 (lf << block->lfshift));
1405 	nvecs = (cfg >> 12) & 0xFF;
1406 
1407 	/* Check and alloc MSIX vectors, must be contiguous */
1408 	if (!rvu_rsrc_check_contig(&pfvf->msix, nvecs))
1409 		return;
1410 
1411 	offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
1412 
1413 	/* Config MSIX offset in LF */
1414 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1415 		    (lf << block->lfshift), (cfg & ~0x7FFULL) | offset);
1416 
1417 	/* Update the bitmap as well */
1418 	for (vec = 0; vec < nvecs; vec++)
1419 		pfvf->msix_lfmap[offset + vec] = MSIX_BLKLF(block->addr, lf);
1420 }
1421 
rvu_clear_msix_offset(struct rvu * rvu,struct rvu_pfvf * pfvf,struct rvu_block * block,int lf)1422 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1423 				  struct rvu_block *block, int lf)
1424 {
1425 	u16 nvecs, vec, offset;
1426 	u64 cfg;
1427 
1428 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1429 			 (lf << block->lfshift));
1430 	nvecs = (cfg >> 12) & 0xFF;
1431 
1432 	/* Clear MSIX offset in LF */
1433 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1434 		    (lf << block->lfshift), cfg & ~0x7FFULL);
1435 
1436 	offset = rvu_get_msix_offset(rvu, pfvf, block->addr, lf);
1437 
1438 	/* Update the mapping */
1439 	for (vec = 0; vec < nvecs; vec++)
1440 		pfvf->msix_lfmap[offset + vec] = 0;
1441 
1442 	/* Free the same in MSIX bitmap */
1443 	rvu_free_rsrc_contig(&pfvf->msix, nvecs, offset);
1444 }
1445 
rvu_mbox_handler_msix_offset(struct rvu * rvu,struct msg_req * req,struct msix_offset_rsp * rsp)1446 int rvu_mbox_handler_msix_offset(struct rvu *rvu, struct msg_req *req,
1447 				 struct msix_offset_rsp *rsp)
1448 {
1449 	struct rvu_hwinfo *hw = rvu->hw;
1450 	u16 pcifunc = req->hdr.pcifunc;
1451 	struct rvu_pfvf *pfvf;
1452 	int lf, slot;
1453 
1454 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1455 	if (!pfvf->msix.bmap)
1456 		return 0;
1457 
1458 	/* Set MSIX offsets for each block's LFs attached to this PF/VF */
1459 	lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NPA], pcifunc, 0);
1460 	rsp->npa_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NPA, lf);
1461 
1462 	lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NIX0], pcifunc, 0);
1463 	rsp->nix_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NIX0, lf);
1464 
1465 	rsp->sso = pfvf->sso;
1466 	for (slot = 0; slot < rsp->sso; slot++) {
1467 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSO], pcifunc, slot);
1468 		rsp->sso_msixoff[slot] =
1469 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSO, lf);
1470 	}
1471 
1472 	rsp->ssow = pfvf->ssow;
1473 	for (slot = 0; slot < rsp->ssow; slot++) {
1474 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSOW], pcifunc, slot);
1475 		rsp->ssow_msixoff[slot] =
1476 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSOW, lf);
1477 	}
1478 
1479 	rsp->timlfs = pfvf->timlfs;
1480 	for (slot = 0; slot < rsp->timlfs; slot++) {
1481 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_TIM], pcifunc, slot);
1482 		rsp->timlf_msixoff[slot] =
1483 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_TIM, lf);
1484 	}
1485 
1486 	rsp->cptlfs = pfvf->cptlfs;
1487 	for (slot = 0; slot < rsp->cptlfs; slot++) {
1488 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT0], pcifunc, slot);
1489 		rsp->cptlf_msixoff[slot] =
1490 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT0, lf);
1491 	}
1492 	return 0;
1493 }
1494 
rvu_mbox_handler_vf_flr(struct rvu * rvu,struct msg_req * req,struct msg_rsp * rsp)1495 int rvu_mbox_handler_vf_flr(struct rvu *rvu, struct msg_req *req,
1496 			    struct msg_rsp *rsp)
1497 {
1498 	u16 pcifunc = req->hdr.pcifunc;
1499 	u16 vf, numvfs;
1500 	u64 cfg;
1501 
1502 	vf = pcifunc & RVU_PFVF_FUNC_MASK;
1503 	cfg = rvu_read64(rvu, BLKADDR_RVUM,
1504 			 RVU_PRIV_PFX_CFG(rvu_get_pf(pcifunc)));
1505 	numvfs = (cfg >> 12) & 0xFF;
1506 
1507 	if (vf && vf <= numvfs)
1508 		__rvu_flr_handler(rvu, pcifunc);
1509 	else
1510 		return RVU_INVALID_VF_ID;
1511 
1512 	return 0;
1513 }
1514 
rvu_mbox_handler_get_hw_cap(struct rvu * rvu,struct msg_req * req,struct get_hw_cap_rsp * rsp)1515 int rvu_mbox_handler_get_hw_cap(struct rvu *rvu, struct msg_req *req,
1516 				struct get_hw_cap_rsp *rsp)
1517 {
1518 	struct rvu_hwinfo *hw = rvu->hw;
1519 
1520 	rsp->nix_fixed_txschq_mapping = hw->cap.nix_fixed_txschq_mapping;
1521 	rsp->nix_shaping = hw->cap.nix_shaping;
1522 
1523 	return 0;
1524 }
1525 
rvu_process_mbox_msg(struct otx2_mbox * mbox,int devid,struct mbox_msghdr * req)1526 static int rvu_process_mbox_msg(struct otx2_mbox *mbox, int devid,
1527 				struct mbox_msghdr *req)
1528 {
1529 	struct rvu *rvu = pci_get_drvdata(mbox->pdev);
1530 
1531 	/* Check if valid, if not reply with a invalid msg */
1532 	if (req->sig != OTX2_MBOX_REQ_SIG)
1533 		goto bad_message;
1534 
1535 	switch (req->id) {
1536 #define M(_name, _id, _fn_name, _req_type, _rsp_type)			\
1537 	case _id: {							\
1538 		struct _rsp_type *rsp;					\
1539 		int err;						\
1540 									\
1541 		rsp = (struct _rsp_type *)otx2_mbox_alloc_msg(		\
1542 			mbox, devid,					\
1543 			sizeof(struct _rsp_type));			\
1544 		/* some handlers should complete even if reply */	\
1545 		/* could not be allocated */				\
1546 		if (!rsp &&						\
1547 		    _id != MBOX_MSG_DETACH_RESOURCES &&			\
1548 		    _id != MBOX_MSG_NIX_TXSCH_FREE &&			\
1549 		    _id != MBOX_MSG_VF_FLR)				\
1550 			return -ENOMEM;					\
1551 		if (rsp) {						\
1552 			rsp->hdr.id = _id;				\
1553 			rsp->hdr.sig = OTX2_MBOX_RSP_SIG;		\
1554 			rsp->hdr.pcifunc = req->pcifunc;		\
1555 			rsp->hdr.rc = 0;				\
1556 		}							\
1557 									\
1558 		err = rvu_mbox_handler_ ## _fn_name(rvu,		\
1559 						    (struct _req_type *)req, \
1560 						    rsp);		\
1561 		if (rsp && err)						\
1562 			rsp->hdr.rc = err;				\
1563 									\
1564 		trace_otx2_msg_process(mbox->pdev, _id, err);		\
1565 		return rsp ? err : -ENOMEM;				\
1566 	}
1567 MBOX_MESSAGES
1568 #undef M
1569 
1570 bad_message:
1571 	default:
1572 		otx2_reply_invalid_msg(mbox, devid, req->pcifunc, req->id);
1573 		return -ENODEV;
1574 	}
1575 }
1576 
__rvu_mbox_handler(struct rvu_work * mwork,int type)1577 static void __rvu_mbox_handler(struct rvu_work *mwork, int type)
1578 {
1579 	struct rvu *rvu = mwork->rvu;
1580 	int offset, err, id, devid;
1581 	struct otx2_mbox_dev *mdev;
1582 	struct mbox_hdr *req_hdr;
1583 	struct mbox_msghdr *msg;
1584 	struct mbox_wq_info *mw;
1585 	struct otx2_mbox *mbox;
1586 
1587 	switch (type) {
1588 	case TYPE_AFPF:
1589 		mw = &rvu->afpf_wq_info;
1590 		break;
1591 	case TYPE_AFVF:
1592 		mw = &rvu->afvf_wq_info;
1593 		break;
1594 	default:
1595 		return;
1596 	}
1597 
1598 	devid = mwork - mw->mbox_wrk;
1599 	mbox = &mw->mbox;
1600 	mdev = &mbox->dev[devid];
1601 
1602 	/* Process received mbox messages */
1603 	req_hdr = mdev->mbase + mbox->rx_start;
1604 	if (mw->mbox_wrk[devid].num_msgs == 0)
1605 		return;
1606 
1607 	offset = mbox->rx_start + ALIGN(sizeof(*req_hdr), MBOX_MSG_ALIGN);
1608 
1609 	for (id = 0; id < mw->mbox_wrk[devid].num_msgs; id++) {
1610 		msg = mdev->mbase + offset;
1611 
1612 		/* Set which PF/VF sent this message based on mbox IRQ */
1613 		switch (type) {
1614 		case TYPE_AFPF:
1615 			msg->pcifunc &=
1616 				~(RVU_PFVF_PF_MASK << RVU_PFVF_PF_SHIFT);
1617 			msg->pcifunc |= (devid << RVU_PFVF_PF_SHIFT);
1618 			break;
1619 		case TYPE_AFVF:
1620 			msg->pcifunc &=
1621 				~(RVU_PFVF_FUNC_MASK << RVU_PFVF_FUNC_SHIFT);
1622 			msg->pcifunc |= (devid << RVU_PFVF_FUNC_SHIFT) + 1;
1623 			break;
1624 		}
1625 
1626 		err = rvu_process_mbox_msg(mbox, devid, msg);
1627 		if (!err) {
1628 			offset = mbox->rx_start + msg->next_msgoff;
1629 			continue;
1630 		}
1631 
1632 		if (msg->pcifunc & RVU_PFVF_FUNC_MASK)
1633 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d:VF%d\n",
1634 				 err, otx2_mbox_id2name(msg->id),
1635 				 msg->id, rvu_get_pf(msg->pcifunc),
1636 				 (msg->pcifunc & RVU_PFVF_FUNC_MASK) - 1);
1637 		else
1638 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d\n",
1639 				 err, otx2_mbox_id2name(msg->id),
1640 				 msg->id, devid);
1641 	}
1642 	mw->mbox_wrk[devid].num_msgs = 0;
1643 
1644 	/* Send mbox responses to VF/PF */
1645 	otx2_mbox_msg_send(mbox, devid);
1646 }
1647 
rvu_afpf_mbox_handler(struct work_struct * work)1648 static inline void rvu_afpf_mbox_handler(struct work_struct *work)
1649 {
1650 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1651 
1652 	__rvu_mbox_handler(mwork, TYPE_AFPF);
1653 }
1654 
rvu_afvf_mbox_handler(struct work_struct * work)1655 static inline void rvu_afvf_mbox_handler(struct work_struct *work)
1656 {
1657 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1658 
1659 	__rvu_mbox_handler(mwork, TYPE_AFVF);
1660 }
1661 
__rvu_mbox_up_handler(struct rvu_work * mwork,int type)1662 static void __rvu_mbox_up_handler(struct rvu_work *mwork, int type)
1663 {
1664 	struct rvu *rvu = mwork->rvu;
1665 	struct otx2_mbox_dev *mdev;
1666 	struct mbox_hdr *rsp_hdr;
1667 	struct mbox_msghdr *msg;
1668 	struct mbox_wq_info *mw;
1669 	struct otx2_mbox *mbox;
1670 	int offset, id, devid;
1671 
1672 	switch (type) {
1673 	case TYPE_AFPF:
1674 		mw = &rvu->afpf_wq_info;
1675 		break;
1676 	case TYPE_AFVF:
1677 		mw = &rvu->afvf_wq_info;
1678 		break;
1679 	default:
1680 		return;
1681 	}
1682 
1683 	devid = mwork - mw->mbox_wrk_up;
1684 	mbox = &mw->mbox_up;
1685 	mdev = &mbox->dev[devid];
1686 
1687 	rsp_hdr = mdev->mbase + mbox->rx_start;
1688 	if (mw->mbox_wrk_up[devid].up_num_msgs == 0) {
1689 		dev_warn(rvu->dev, "mbox up handler: num_msgs = 0\n");
1690 		return;
1691 	}
1692 
1693 	offset = mbox->rx_start + ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN);
1694 
1695 	for (id = 0; id < mw->mbox_wrk_up[devid].up_num_msgs; id++) {
1696 		msg = mdev->mbase + offset;
1697 
1698 		if (msg->id >= MBOX_MSG_MAX) {
1699 			dev_err(rvu->dev,
1700 				"Mbox msg with unknown ID 0x%x\n", msg->id);
1701 			goto end;
1702 		}
1703 
1704 		if (msg->sig != OTX2_MBOX_RSP_SIG) {
1705 			dev_err(rvu->dev,
1706 				"Mbox msg with wrong signature %x, ID 0x%x\n",
1707 				msg->sig, msg->id);
1708 			goto end;
1709 		}
1710 
1711 		switch (msg->id) {
1712 		case MBOX_MSG_CGX_LINK_EVENT:
1713 			break;
1714 		default:
1715 			if (msg->rc)
1716 				dev_err(rvu->dev,
1717 					"Mbox msg response has err %d, ID 0x%x\n",
1718 					msg->rc, msg->id);
1719 			break;
1720 		}
1721 end:
1722 		offset = mbox->rx_start + msg->next_msgoff;
1723 		mdev->msgs_acked++;
1724 	}
1725 	mw->mbox_wrk_up[devid].up_num_msgs = 0;
1726 
1727 	otx2_mbox_reset(mbox, devid);
1728 }
1729 
rvu_afpf_mbox_up_handler(struct work_struct * work)1730 static inline void rvu_afpf_mbox_up_handler(struct work_struct *work)
1731 {
1732 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1733 
1734 	__rvu_mbox_up_handler(mwork, TYPE_AFPF);
1735 }
1736 
rvu_afvf_mbox_up_handler(struct work_struct * work)1737 static inline void rvu_afvf_mbox_up_handler(struct work_struct *work)
1738 {
1739 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1740 
1741 	__rvu_mbox_up_handler(mwork, TYPE_AFVF);
1742 }
1743 
rvu_mbox_init(struct rvu * rvu,struct mbox_wq_info * mw,int type,int num,void (mbox_handler)(struct work_struct *),void (mbox_up_handler)(struct work_struct *))1744 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
1745 			 int type, int num,
1746 			 void (mbox_handler)(struct work_struct *),
1747 			 void (mbox_up_handler)(struct work_struct *))
1748 {
1749 	void __iomem *hwbase = NULL, *reg_base;
1750 	int err, i, dir, dir_up;
1751 	struct rvu_work *mwork;
1752 	const char *name;
1753 	u64 bar4_addr;
1754 
1755 	switch (type) {
1756 	case TYPE_AFPF:
1757 		name = "rvu_afpf_mailbox";
1758 		bar4_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PF_BAR4_ADDR);
1759 		dir = MBOX_DIR_AFPF;
1760 		dir_up = MBOX_DIR_AFPF_UP;
1761 		reg_base = rvu->afreg_base;
1762 		break;
1763 	case TYPE_AFVF:
1764 		name = "rvu_afvf_mailbox";
1765 		bar4_addr = rvupf_read64(rvu, RVU_PF_VF_BAR4_ADDR);
1766 		dir = MBOX_DIR_PFVF;
1767 		dir_up = MBOX_DIR_PFVF_UP;
1768 		reg_base = rvu->pfreg_base;
1769 		break;
1770 	default:
1771 		return -EINVAL;
1772 	}
1773 
1774 	mw->mbox_wq = alloc_workqueue(name,
1775 				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
1776 				      num);
1777 	if (!mw->mbox_wq)
1778 		return -ENOMEM;
1779 
1780 	mw->mbox_wrk = devm_kcalloc(rvu->dev, num,
1781 				    sizeof(struct rvu_work), GFP_KERNEL);
1782 	if (!mw->mbox_wrk) {
1783 		err = -ENOMEM;
1784 		goto exit;
1785 	}
1786 
1787 	mw->mbox_wrk_up = devm_kcalloc(rvu->dev, num,
1788 				       sizeof(struct rvu_work), GFP_KERNEL);
1789 	if (!mw->mbox_wrk_up) {
1790 		err = -ENOMEM;
1791 		goto exit;
1792 	}
1793 
1794 	/* Mailbox is a reserved memory (in RAM) region shared between
1795 	 * RVU devices, shouldn't be mapped as device memory to allow
1796 	 * unaligned accesses.
1797 	 */
1798 	hwbase = ioremap_wc(bar4_addr, MBOX_SIZE * num);
1799 	if (!hwbase) {
1800 		dev_err(rvu->dev, "Unable to map mailbox region\n");
1801 		err = -ENOMEM;
1802 		goto exit;
1803 	}
1804 
1805 	err = otx2_mbox_init(&mw->mbox, hwbase, rvu->pdev, reg_base, dir, num);
1806 	if (err)
1807 		goto exit;
1808 
1809 	err = otx2_mbox_init(&mw->mbox_up, hwbase, rvu->pdev,
1810 			     reg_base, dir_up, num);
1811 	if (err)
1812 		goto exit;
1813 
1814 	for (i = 0; i < num; i++) {
1815 		mwork = &mw->mbox_wrk[i];
1816 		mwork->rvu = rvu;
1817 		INIT_WORK(&mwork->work, mbox_handler);
1818 
1819 		mwork = &mw->mbox_wrk_up[i];
1820 		mwork->rvu = rvu;
1821 		INIT_WORK(&mwork->work, mbox_up_handler);
1822 	}
1823 
1824 	return 0;
1825 exit:
1826 	if (hwbase)
1827 		iounmap((void __iomem *)hwbase);
1828 	destroy_workqueue(mw->mbox_wq);
1829 	return err;
1830 }
1831 
rvu_mbox_destroy(struct mbox_wq_info * mw)1832 static void rvu_mbox_destroy(struct mbox_wq_info *mw)
1833 {
1834 	if (mw->mbox_wq) {
1835 		flush_workqueue(mw->mbox_wq);
1836 		destroy_workqueue(mw->mbox_wq);
1837 		mw->mbox_wq = NULL;
1838 	}
1839 
1840 	if (mw->mbox.hwbase)
1841 		iounmap((void __iomem *)mw->mbox.hwbase);
1842 
1843 	otx2_mbox_destroy(&mw->mbox);
1844 	otx2_mbox_destroy(&mw->mbox_up);
1845 }
1846 
rvu_queue_work(struct mbox_wq_info * mw,int first,int mdevs,u64 intr)1847 static void rvu_queue_work(struct mbox_wq_info *mw, int first,
1848 			   int mdevs, u64 intr)
1849 {
1850 	struct otx2_mbox_dev *mdev;
1851 	struct otx2_mbox *mbox;
1852 	struct mbox_hdr *hdr;
1853 	int i;
1854 
1855 	for (i = first; i < mdevs; i++) {
1856 		/* start from 0 */
1857 		if (!(intr & BIT_ULL(i - first)))
1858 			continue;
1859 
1860 		mbox = &mw->mbox;
1861 		mdev = &mbox->dev[i];
1862 		hdr = mdev->mbase + mbox->rx_start;
1863 
1864 		/*The hdr->num_msgs is set to zero immediately in the interrupt
1865 		 * handler to  ensure that it holds a correct value next time
1866 		 * when the interrupt handler is called.
1867 		 * pf->mbox.num_msgs holds the data for use in pfaf_mbox_handler
1868 		 * pf>mbox.up_num_msgs holds the data for use in
1869 		 * pfaf_mbox_up_handler.
1870 		 */
1871 
1872 		if (hdr->num_msgs) {
1873 			mw->mbox_wrk[i].num_msgs = hdr->num_msgs;
1874 			hdr->num_msgs = 0;
1875 			queue_work(mw->mbox_wq, &mw->mbox_wrk[i].work);
1876 		}
1877 		mbox = &mw->mbox_up;
1878 		mdev = &mbox->dev[i];
1879 		hdr = mdev->mbase + mbox->rx_start;
1880 		if (hdr->num_msgs) {
1881 			mw->mbox_wrk_up[i].up_num_msgs = hdr->num_msgs;
1882 			hdr->num_msgs = 0;
1883 			queue_work(mw->mbox_wq, &mw->mbox_wrk_up[i].work);
1884 		}
1885 	}
1886 }
1887 
rvu_mbox_intr_handler(int irq,void * rvu_irq)1888 static irqreturn_t rvu_mbox_intr_handler(int irq, void *rvu_irq)
1889 {
1890 	struct rvu *rvu = (struct rvu *)rvu_irq;
1891 	int vfs = rvu->vfs;
1892 	u64 intr;
1893 
1894 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT);
1895 	/* Clear interrupts */
1896 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT, intr);
1897 	if (intr)
1898 		trace_otx2_msg_interrupt(rvu->pdev, "PF(s) to AF", intr);
1899 
1900 	/* Sync with mbox memory region */
1901 	rmb();
1902 
1903 	rvu_queue_work(&rvu->afpf_wq_info, 0, rvu->hw->total_pfs, intr);
1904 
1905 	/* Handle VF interrupts */
1906 	if (vfs > 64) {
1907 		intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(1));
1908 		rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), intr);
1909 
1910 		rvu_queue_work(&rvu->afvf_wq_info, 64, vfs, intr);
1911 		vfs -= 64;
1912 	}
1913 
1914 	intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(0));
1915 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), intr);
1916 	if (intr)
1917 		trace_otx2_msg_interrupt(rvu->pdev, "VF(s) to AF", intr);
1918 
1919 	rvu_queue_work(&rvu->afvf_wq_info, 0, vfs, intr);
1920 
1921 	return IRQ_HANDLED;
1922 }
1923 
rvu_enable_mbox_intr(struct rvu * rvu)1924 static void rvu_enable_mbox_intr(struct rvu *rvu)
1925 {
1926 	struct rvu_hwinfo *hw = rvu->hw;
1927 
1928 	/* Clear spurious irqs, if any */
1929 	rvu_write64(rvu, BLKADDR_RVUM,
1930 		    RVU_AF_PFAF_MBOX_INT, INTR_MASK(hw->total_pfs));
1931 
1932 	/* Enable mailbox interrupt for all PFs except PF0 i.e AF itself */
1933 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1S,
1934 		    INTR_MASK(hw->total_pfs) & ~1ULL);
1935 }
1936 
rvu_blklf_teardown(struct rvu * rvu,u16 pcifunc,u8 blkaddr)1937 static void rvu_blklf_teardown(struct rvu *rvu, u16 pcifunc, u8 blkaddr)
1938 {
1939 	struct rvu_block *block;
1940 	int slot, lf, num_lfs;
1941 	int err;
1942 
1943 	block = &rvu->hw->block[blkaddr];
1944 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
1945 					block->type);
1946 	if (!num_lfs)
1947 		return;
1948 	for (slot = 0; slot < num_lfs; slot++) {
1949 		lf = rvu_get_lf(rvu, block, pcifunc, slot);
1950 		if (lf < 0)
1951 			continue;
1952 
1953 		/* Cleanup LF and reset it */
1954 		if (block->addr == BLKADDR_NIX0)
1955 			rvu_nix_lf_teardown(rvu, pcifunc, block->addr, lf);
1956 		else if (block->addr == BLKADDR_NPA)
1957 			rvu_npa_lf_teardown(rvu, pcifunc, lf);
1958 
1959 		err = rvu_lf_reset(rvu, block, lf);
1960 		if (err) {
1961 			dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
1962 				block->addr, lf);
1963 		}
1964 	}
1965 }
1966 
__rvu_flr_handler(struct rvu * rvu,u16 pcifunc)1967 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc)
1968 {
1969 	mutex_lock(&rvu->flr_lock);
1970 	/* Reset order should reflect inter-block dependencies:
1971 	 * 1. Reset any packet/work sources (NIX, CPT, TIM)
1972 	 * 2. Flush and reset SSO/SSOW
1973 	 * 3. Cleanup pools (NPA)
1974 	 */
1975 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX0);
1976 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT0);
1977 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_TIM);
1978 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSOW);
1979 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSO);
1980 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NPA);
1981 	rvu_detach_rsrcs(rvu, NULL, pcifunc);
1982 	mutex_unlock(&rvu->flr_lock);
1983 }
1984 
rvu_afvf_flr_handler(struct rvu * rvu,int vf)1985 static void rvu_afvf_flr_handler(struct rvu *rvu, int vf)
1986 {
1987 	int reg = 0;
1988 
1989 	/* pcifunc = 0(PF0) | (vf + 1) */
1990 	__rvu_flr_handler(rvu, vf + 1);
1991 
1992 	if (vf >= 64) {
1993 		reg = 1;
1994 		vf = vf - 64;
1995 	}
1996 
1997 	/* Signal FLR finish and enable IRQ */
1998 	rvupf_write64(rvu, RVU_PF_VFTRPENDX(reg), BIT_ULL(vf));
1999 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(reg), BIT_ULL(vf));
2000 }
2001 
rvu_flr_handler(struct work_struct * work)2002 static void rvu_flr_handler(struct work_struct *work)
2003 {
2004 	struct rvu_work *flrwork = container_of(work, struct rvu_work, work);
2005 	struct rvu *rvu = flrwork->rvu;
2006 	u16 pcifunc, numvfs, vf;
2007 	u64 cfg;
2008 	int pf;
2009 
2010 	pf = flrwork - rvu->flr_wrk;
2011 	if (pf >= rvu->hw->total_pfs) {
2012 		rvu_afvf_flr_handler(rvu, pf - rvu->hw->total_pfs);
2013 		return;
2014 	}
2015 
2016 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2017 	numvfs = (cfg >> 12) & 0xFF;
2018 	pcifunc  = pf << RVU_PFVF_PF_SHIFT;
2019 
2020 	for (vf = 0; vf < numvfs; vf++)
2021 		__rvu_flr_handler(rvu, (pcifunc | (vf + 1)));
2022 
2023 	__rvu_flr_handler(rvu, pcifunc);
2024 
2025 	/* Signal FLR finish */
2026 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND, BIT_ULL(pf));
2027 
2028 	/* Enable interrupt */
2029 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,  BIT_ULL(pf));
2030 }
2031 
rvu_afvf_queue_flr_work(struct rvu * rvu,int start_vf,int numvfs)2032 static void rvu_afvf_queue_flr_work(struct rvu *rvu, int start_vf, int numvfs)
2033 {
2034 	int dev, vf, reg = 0;
2035 	u64 intr;
2036 
2037 	if (start_vf >= 64)
2038 		reg = 1;
2039 
2040 	intr = rvupf_read64(rvu, RVU_PF_VFFLR_INTX(reg));
2041 	if (!intr)
2042 		return;
2043 
2044 	for (vf = 0; vf < numvfs; vf++) {
2045 		if (!(intr & BIT_ULL(vf)))
2046 			continue;
2047 		dev = vf + start_vf + rvu->hw->total_pfs;
2048 		queue_work(rvu->flr_wq, &rvu->flr_wrk[dev].work);
2049 		/* Clear and disable the interrupt */
2050 		rvupf_write64(rvu, RVU_PF_VFFLR_INTX(reg), BIT_ULL(vf));
2051 		rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(reg), BIT_ULL(vf));
2052 	}
2053 }
2054 
rvu_flr_intr_handler(int irq,void * rvu_irq)2055 static irqreturn_t rvu_flr_intr_handler(int irq, void *rvu_irq)
2056 {
2057 	struct rvu *rvu = (struct rvu *)rvu_irq;
2058 	u64 intr;
2059 	u8  pf;
2060 
2061 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT);
2062 	if (!intr)
2063 		goto afvf_flr;
2064 
2065 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2066 		if (intr & (1ULL << pf)) {
2067 			/* PF is already dead do only AF related operations */
2068 			queue_work(rvu->flr_wq, &rvu->flr_wrk[pf].work);
2069 			/* clear interrupt */
2070 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT,
2071 				    BIT_ULL(pf));
2072 			/* Disable the interrupt */
2073 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2074 				    BIT_ULL(pf));
2075 		}
2076 	}
2077 
2078 afvf_flr:
2079 	rvu_afvf_queue_flr_work(rvu, 0, 64);
2080 	if (rvu->vfs > 64)
2081 		rvu_afvf_queue_flr_work(rvu, 64, rvu->vfs - 64);
2082 
2083 	return IRQ_HANDLED;
2084 }
2085 
rvu_me_handle_vfset(struct rvu * rvu,int idx,u64 intr)2086 static void rvu_me_handle_vfset(struct rvu *rvu, int idx, u64 intr)
2087 {
2088 	int vf;
2089 
2090 	/* Nothing to be done here other than clearing the
2091 	 * TRPEND bit.
2092 	 */
2093 	for (vf = 0; vf < 64; vf++) {
2094 		if (intr & (1ULL << vf)) {
2095 			/* clear the trpend due to ME(master enable) */
2096 			rvupf_write64(rvu, RVU_PF_VFTRPENDX(idx), BIT_ULL(vf));
2097 			/* clear interrupt */
2098 			rvupf_write64(rvu, RVU_PF_VFME_INTX(idx), BIT_ULL(vf));
2099 		}
2100 	}
2101 }
2102 
2103 /* Handles ME interrupts from VFs of AF */
rvu_me_vf_intr_handler(int irq,void * rvu_irq)2104 static irqreturn_t rvu_me_vf_intr_handler(int irq, void *rvu_irq)
2105 {
2106 	struct rvu *rvu = (struct rvu *)rvu_irq;
2107 	int vfset;
2108 	u64 intr;
2109 
2110 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2111 
2112 	for (vfset = 0; vfset <= 1; vfset++) {
2113 		intr = rvupf_read64(rvu, RVU_PF_VFME_INTX(vfset));
2114 		if (intr)
2115 			rvu_me_handle_vfset(rvu, vfset, intr);
2116 	}
2117 
2118 	return IRQ_HANDLED;
2119 }
2120 
2121 /* Handles ME interrupts from PFs */
rvu_me_pf_intr_handler(int irq,void * rvu_irq)2122 static irqreturn_t rvu_me_pf_intr_handler(int irq, void *rvu_irq)
2123 {
2124 	struct rvu *rvu = (struct rvu *)rvu_irq;
2125 	u64 intr;
2126 	u8  pf;
2127 
2128 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2129 
2130 	/* Nothing to be done here other than clearing the
2131 	 * TRPEND bit.
2132 	 */
2133 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2134 		if (intr & (1ULL << pf)) {
2135 			/* clear the trpend due to ME(master enable) */
2136 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND,
2137 				    BIT_ULL(pf));
2138 			/* clear interrupt */
2139 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT,
2140 				    BIT_ULL(pf));
2141 		}
2142 	}
2143 
2144 	return IRQ_HANDLED;
2145 }
2146 
rvu_unregister_interrupts(struct rvu * rvu)2147 static void rvu_unregister_interrupts(struct rvu *rvu)
2148 {
2149 	int irq;
2150 
2151 	/* Disable the Mbox interrupt */
2152 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1C,
2153 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2154 
2155 	/* Disable the PF FLR interrupt */
2156 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2157 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2158 
2159 	/* Disable the PF ME interrupt */
2160 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1C,
2161 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2162 
2163 	for (irq = 0; irq < rvu->num_vec; irq++) {
2164 		if (rvu->irq_allocated[irq]) {
2165 			free_irq(pci_irq_vector(rvu->pdev, irq), rvu);
2166 			rvu->irq_allocated[irq] = false;
2167 		}
2168 	}
2169 
2170 	pci_free_irq_vectors(rvu->pdev);
2171 	rvu->num_vec = 0;
2172 }
2173 
rvu_afvf_msix_vectors_num_ok(struct rvu * rvu)2174 static int rvu_afvf_msix_vectors_num_ok(struct rvu *rvu)
2175 {
2176 	struct rvu_pfvf *pfvf = &rvu->pf[0];
2177 	int offset;
2178 
2179 	pfvf = &rvu->pf[0];
2180 	offset = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2181 
2182 	/* Make sure there are enough MSIX vectors configured so that
2183 	 * VF interrupts can be handled. Offset equal to zero means
2184 	 * that PF vectors are not configured and overlapping AF vectors.
2185 	 */
2186 	return (pfvf->msix.max >= RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT) &&
2187 	       offset;
2188 }
2189 
rvu_register_interrupts(struct rvu * rvu)2190 static int rvu_register_interrupts(struct rvu *rvu)
2191 {
2192 	int ret, offset, pf_vec_start;
2193 
2194 	rvu->num_vec = pci_msix_vec_count(rvu->pdev);
2195 
2196 	rvu->irq_name = devm_kmalloc_array(rvu->dev, rvu->num_vec,
2197 					   NAME_SIZE, GFP_KERNEL);
2198 	if (!rvu->irq_name)
2199 		return -ENOMEM;
2200 
2201 	rvu->irq_allocated = devm_kcalloc(rvu->dev, rvu->num_vec,
2202 					  sizeof(bool), GFP_KERNEL);
2203 	if (!rvu->irq_allocated)
2204 		return -ENOMEM;
2205 
2206 	/* Enable MSI-X */
2207 	ret = pci_alloc_irq_vectors(rvu->pdev, rvu->num_vec,
2208 				    rvu->num_vec, PCI_IRQ_MSIX);
2209 	if (ret < 0) {
2210 		dev_err(rvu->dev,
2211 			"RVUAF: Request for %d msix vectors failed, ret %d\n",
2212 			rvu->num_vec, ret);
2213 		return ret;
2214 	}
2215 
2216 	/* Register mailbox interrupt handler */
2217 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], "RVUAF Mbox");
2218 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_MBOX),
2219 			  rvu_mbox_intr_handler, 0,
2220 			  &rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], rvu);
2221 	if (ret) {
2222 		dev_err(rvu->dev,
2223 			"RVUAF: IRQ registration failed for mbox irq\n");
2224 		goto fail;
2225 	}
2226 
2227 	rvu->irq_allocated[RVU_AF_INT_VEC_MBOX] = true;
2228 
2229 	/* Enable mailbox interrupts from all PFs */
2230 	rvu_enable_mbox_intr(rvu);
2231 
2232 	/* Register FLR interrupt handler */
2233 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2234 		"RVUAF FLR");
2235 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFFLR),
2236 			  rvu_flr_intr_handler, 0,
2237 			  &rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2238 			  rvu);
2239 	if (ret) {
2240 		dev_err(rvu->dev,
2241 			"RVUAF: IRQ registration failed for FLR\n");
2242 		goto fail;
2243 	}
2244 	rvu->irq_allocated[RVU_AF_INT_VEC_PFFLR] = true;
2245 
2246 	/* Enable FLR interrupt for all PFs*/
2247 	rvu_write64(rvu, BLKADDR_RVUM,
2248 		    RVU_AF_PFFLR_INT, INTR_MASK(rvu->hw->total_pfs));
2249 
2250 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,
2251 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2252 
2253 	/* Register ME interrupt handler */
2254 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2255 		"RVUAF ME");
2256 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFME),
2257 			  rvu_me_pf_intr_handler, 0,
2258 			  &rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2259 			  rvu);
2260 	if (ret) {
2261 		dev_err(rvu->dev,
2262 			"RVUAF: IRQ registration failed for ME\n");
2263 	}
2264 	rvu->irq_allocated[RVU_AF_INT_VEC_PFME] = true;
2265 
2266 	/* Clear TRPEND bit for all PF */
2267 	rvu_write64(rvu, BLKADDR_RVUM,
2268 		    RVU_AF_PFTRPEND, INTR_MASK(rvu->hw->total_pfs));
2269 	/* Enable ME interrupt for all PFs*/
2270 	rvu_write64(rvu, BLKADDR_RVUM,
2271 		    RVU_AF_PFME_INT, INTR_MASK(rvu->hw->total_pfs));
2272 
2273 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1S,
2274 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2275 
2276 	if (!rvu_afvf_msix_vectors_num_ok(rvu))
2277 		return 0;
2278 
2279 	/* Get PF MSIX vectors offset. */
2280 	pf_vec_start = rvu_read64(rvu, BLKADDR_RVUM,
2281 				  RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2282 
2283 	/* Register MBOX0 interrupt. */
2284 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX0;
2285 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox0");
2286 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2287 			  rvu_mbox_intr_handler, 0,
2288 			  &rvu->irq_name[offset * NAME_SIZE],
2289 			  rvu);
2290 	if (ret)
2291 		dev_err(rvu->dev,
2292 			"RVUAF: IRQ registration failed for Mbox0\n");
2293 
2294 	rvu->irq_allocated[offset] = true;
2295 
2296 	/* Register MBOX1 interrupt. MBOX1 IRQ number follows MBOX0 so
2297 	 * simply increment current offset by 1.
2298 	 */
2299 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX1;
2300 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox1");
2301 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2302 			  rvu_mbox_intr_handler, 0,
2303 			  &rvu->irq_name[offset * NAME_SIZE],
2304 			  rvu);
2305 	if (ret)
2306 		dev_err(rvu->dev,
2307 			"RVUAF: IRQ registration failed for Mbox1\n");
2308 
2309 	rvu->irq_allocated[offset] = true;
2310 
2311 	/* Register FLR interrupt handler for AF's VFs */
2312 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR0;
2313 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR0");
2314 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2315 			  rvu_flr_intr_handler, 0,
2316 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2317 	if (ret) {
2318 		dev_err(rvu->dev,
2319 			"RVUAF: IRQ registration failed for RVUAFVF FLR0\n");
2320 		goto fail;
2321 	}
2322 	rvu->irq_allocated[offset] = true;
2323 
2324 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR1;
2325 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR1");
2326 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2327 			  rvu_flr_intr_handler, 0,
2328 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2329 	if (ret) {
2330 		dev_err(rvu->dev,
2331 			"RVUAF: IRQ registration failed for RVUAFVF FLR1\n");
2332 		goto fail;
2333 	}
2334 	rvu->irq_allocated[offset] = true;
2335 
2336 	/* Register ME interrupt handler for AF's VFs */
2337 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME0;
2338 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME0");
2339 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2340 			  rvu_me_vf_intr_handler, 0,
2341 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2342 	if (ret) {
2343 		dev_err(rvu->dev,
2344 			"RVUAF: IRQ registration failed for RVUAFVF ME0\n");
2345 		goto fail;
2346 	}
2347 	rvu->irq_allocated[offset] = true;
2348 
2349 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME1;
2350 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME1");
2351 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2352 			  rvu_me_vf_intr_handler, 0,
2353 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2354 	if (ret) {
2355 		dev_err(rvu->dev,
2356 			"RVUAF: IRQ registration failed for RVUAFVF ME1\n");
2357 		goto fail;
2358 	}
2359 	rvu->irq_allocated[offset] = true;
2360 	return 0;
2361 
2362 fail:
2363 	rvu_unregister_interrupts(rvu);
2364 	return ret;
2365 }
2366 
rvu_flr_wq_destroy(struct rvu * rvu)2367 static void rvu_flr_wq_destroy(struct rvu *rvu)
2368 {
2369 	if (rvu->flr_wq) {
2370 		flush_workqueue(rvu->flr_wq);
2371 		destroy_workqueue(rvu->flr_wq);
2372 		rvu->flr_wq = NULL;
2373 	}
2374 }
2375 
rvu_flr_init(struct rvu * rvu)2376 static int rvu_flr_init(struct rvu *rvu)
2377 {
2378 	int dev, num_devs;
2379 	u64 cfg;
2380 	int pf;
2381 
2382 	/* Enable FLR for all PFs*/
2383 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2384 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2385 		rvu_write64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf),
2386 			    cfg | BIT_ULL(22));
2387 	}
2388 
2389 	rvu->flr_wq = alloc_workqueue("rvu_afpf_flr",
2390 				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2391 				       1);
2392 	if (!rvu->flr_wq)
2393 		return -ENOMEM;
2394 
2395 	num_devs = rvu->hw->total_pfs + pci_sriov_get_totalvfs(rvu->pdev);
2396 	rvu->flr_wrk = devm_kcalloc(rvu->dev, num_devs,
2397 				    sizeof(struct rvu_work), GFP_KERNEL);
2398 	if (!rvu->flr_wrk) {
2399 		destroy_workqueue(rvu->flr_wq);
2400 		return -ENOMEM;
2401 	}
2402 
2403 	for (dev = 0; dev < num_devs; dev++) {
2404 		rvu->flr_wrk[dev].rvu = rvu;
2405 		INIT_WORK(&rvu->flr_wrk[dev].work, rvu_flr_handler);
2406 	}
2407 
2408 	mutex_init(&rvu->flr_lock);
2409 
2410 	return 0;
2411 }
2412 
rvu_disable_afvf_intr(struct rvu * rvu)2413 static void rvu_disable_afvf_intr(struct rvu *rvu)
2414 {
2415 	int vfs = rvu->vfs;
2416 
2417 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(0), INTR_MASK(vfs));
2418 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(0), INTR_MASK(vfs));
2419 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(0), INTR_MASK(vfs));
2420 	if (vfs <= 64)
2421 		return;
2422 
2423 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(1),
2424 		      INTR_MASK(vfs - 64));
2425 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
2426 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
2427 }
2428 
rvu_enable_afvf_intr(struct rvu * rvu)2429 static void rvu_enable_afvf_intr(struct rvu *rvu)
2430 {
2431 	int vfs = rvu->vfs;
2432 
2433 	/* Clear any pending interrupts and enable AF VF interrupts for
2434 	 * the first 64 VFs.
2435 	 */
2436 	/* Mbox */
2437 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), INTR_MASK(vfs));
2438 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(0), INTR_MASK(vfs));
2439 
2440 	/* FLR */
2441 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(0), INTR_MASK(vfs));
2442 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(0), INTR_MASK(vfs));
2443 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(0), INTR_MASK(vfs));
2444 
2445 	/* Same for remaining VFs, if any. */
2446 	if (vfs <= 64)
2447 		return;
2448 
2449 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), INTR_MASK(vfs - 64));
2450 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(1),
2451 		      INTR_MASK(vfs - 64));
2452 
2453 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(1), INTR_MASK(vfs - 64));
2454 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
2455 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
2456 }
2457 
2458 #define PCI_DEVID_OCTEONTX2_LBK 0xA061
2459 
lbk_get_num_chans(void)2460 static int lbk_get_num_chans(void)
2461 {
2462 	struct pci_dev *pdev;
2463 	void __iomem *base;
2464 	int ret = -EIO;
2465 
2466 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_LBK,
2467 			      NULL);
2468 	if (!pdev)
2469 		goto err;
2470 
2471 	base = pci_ioremap_bar(pdev, 0);
2472 	if (!base)
2473 		goto err_put;
2474 
2475 	/* Read number of available LBK channels from LBK(0)_CONST register. */
2476 	ret = (readq(base + 0x10) >> 32) & 0xffff;
2477 	iounmap(base);
2478 err_put:
2479 	pci_dev_put(pdev);
2480 err:
2481 	return ret;
2482 }
2483 
rvu_enable_sriov(struct rvu * rvu)2484 static int rvu_enable_sriov(struct rvu *rvu)
2485 {
2486 	struct pci_dev *pdev = rvu->pdev;
2487 	int err, chans, vfs;
2488 
2489 	if (!rvu_afvf_msix_vectors_num_ok(rvu)) {
2490 		dev_warn(&pdev->dev,
2491 			 "Skipping SRIOV enablement since not enough IRQs are available\n");
2492 		return 0;
2493 	}
2494 
2495 	chans = lbk_get_num_chans();
2496 	if (chans < 0)
2497 		return chans;
2498 
2499 	vfs = pci_sriov_get_totalvfs(pdev);
2500 
2501 	/* Limit VFs in case we have more VFs than LBK channels available. */
2502 	if (vfs > chans)
2503 		vfs = chans;
2504 
2505 	if (!vfs)
2506 		return 0;
2507 
2508 	/* Save VFs number for reference in VF interrupts handlers.
2509 	 * Since interrupts might start arriving during SRIOV enablement
2510 	 * ordinary API cannot be used to get number of enabled VFs.
2511 	 */
2512 	rvu->vfs = vfs;
2513 
2514 	err = rvu_mbox_init(rvu, &rvu->afvf_wq_info, TYPE_AFVF, vfs,
2515 			    rvu_afvf_mbox_handler, rvu_afvf_mbox_up_handler);
2516 	if (err)
2517 		return err;
2518 
2519 	rvu_enable_afvf_intr(rvu);
2520 	/* Make sure IRQs are enabled before SRIOV. */
2521 	mb();
2522 
2523 	err = pci_enable_sriov(pdev, vfs);
2524 	if (err) {
2525 		rvu_disable_afvf_intr(rvu);
2526 		rvu_mbox_destroy(&rvu->afvf_wq_info);
2527 		return err;
2528 	}
2529 
2530 	return 0;
2531 }
2532 
rvu_disable_sriov(struct rvu * rvu)2533 static void rvu_disable_sriov(struct rvu *rvu)
2534 {
2535 	rvu_disable_afvf_intr(rvu);
2536 	rvu_mbox_destroy(&rvu->afvf_wq_info);
2537 	pci_disable_sriov(rvu->pdev);
2538 }
2539 
rvu_update_module_params(struct rvu * rvu)2540 static void rvu_update_module_params(struct rvu *rvu)
2541 {
2542 	const char *default_pfl_name = "default";
2543 
2544 	strscpy(rvu->mkex_pfl_name,
2545 		mkex_profile ? mkex_profile : default_pfl_name, MKEX_NAME_LEN);
2546 }
2547 
rvu_probe(struct pci_dev * pdev,const struct pci_device_id * id)2548 static int rvu_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2549 {
2550 	struct device *dev = &pdev->dev;
2551 	struct rvu *rvu;
2552 	int    err;
2553 
2554 	rvu = devm_kzalloc(dev, sizeof(*rvu), GFP_KERNEL);
2555 	if (!rvu)
2556 		return -ENOMEM;
2557 
2558 	rvu->hw = devm_kzalloc(dev, sizeof(struct rvu_hwinfo), GFP_KERNEL);
2559 	if (!rvu->hw) {
2560 		devm_kfree(dev, rvu);
2561 		return -ENOMEM;
2562 	}
2563 
2564 	pci_set_drvdata(pdev, rvu);
2565 	rvu->pdev = pdev;
2566 	rvu->dev = &pdev->dev;
2567 
2568 	err = pci_enable_device(pdev);
2569 	if (err) {
2570 		dev_err(dev, "Failed to enable PCI device\n");
2571 		goto err_freemem;
2572 	}
2573 
2574 	err = pci_request_regions(pdev, DRV_NAME);
2575 	if (err) {
2576 		dev_err(dev, "PCI request regions failed 0x%x\n", err);
2577 		goto err_disable_device;
2578 	}
2579 
2580 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
2581 	if (err) {
2582 		dev_err(dev, "DMA mask config failed, abort\n");
2583 		goto err_release_regions;
2584 	}
2585 
2586 	pci_set_master(pdev);
2587 
2588 	rvu->ptp = ptp_get();
2589 	if (IS_ERR(rvu->ptp)) {
2590 		err = PTR_ERR(rvu->ptp);
2591 		if (err == -EPROBE_DEFER)
2592 			goto err_release_regions;
2593 		rvu->ptp = NULL;
2594 	}
2595 
2596 	/* Map Admin function CSRs */
2597 	rvu->afreg_base = pcim_iomap(pdev, PCI_AF_REG_BAR_NUM, 0);
2598 	rvu->pfreg_base = pcim_iomap(pdev, PCI_PF_REG_BAR_NUM, 0);
2599 	if (!rvu->afreg_base || !rvu->pfreg_base) {
2600 		dev_err(dev, "Unable to map admin function CSRs, aborting\n");
2601 		err = -ENOMEM;
2602 		goto err_put_ptp;
2603 	}
2604 
2605 	/* Store module params in rvu structure */
2606 	rvu_update_module_params(rvu);
2607 
2608 	/* Check which blocks the HW supports */
2609 	rvu_check_block_implemented(rvu);
2610 
2611 	rvu_reset_all_blocks(rvu);
2612 
2613 	rvu_setup_hw_capabilities(rvu);
2614 
2615 	err = rvu_setup_hw_resources(rvu);
2616 	if (err)
2617 		goto err_put_ptp;
2618 
2619 	/* Init mailbox btw AF and PFs */
2620 	err = rvu_mbox_init(rvu, &rvu->afpf_wq_info, TYPE_AFPF,
2621 			    rvu->hw->total_pfs, rvu_afpf_mbox_handler,
2622 			    rvu_afpf_mbox_up_handler);
2623 	if (err)
2624 		goto err_hwsetup;
2625 
2626 	err = rvu_flr_init(rvu);
2627 	if (err)
2628 		goto err_mbox;
2629 
2630 	err = rvu_register_interrupts(rvu);
2631 	if (err)
2632 		goto err_flr;
2633 
2634 	rvu_setup_rvum_blk_revid(rvu);
2635 
2636 	/* Enable AF's VFs (if any) */
2637 	err = rvu_enable_sriov(rvu);
2638 	if (err)
2639 		goto err_irq;
2640 
2641 	/* Initialize debugfs */
2642 	rvu_dbg_init(rvu);
2643 
2644 	return 0;
2645 err_irq:
2646 	rvu_unregister_interrupts(rvu);
2647 err_flr:
2648 	rvu_flr_wq_destroy(rvu);
2649 err_mbox:
2650 	rvu_mbox_destroy(&rvu->afpf_wq_info);
2651 err_hwsetup:
2652 	rvu_cgx_exit(rvu);
2653 	rvu_fwdata_exit(rvu);
2654 	rvu_reset_all_blocks(rvu);
2655 	rvu_free_hw_resources(rvu);
2656 	rvu_clear_rvum_blk_revid(rvu);
2657 err_put_ptp:
2658 	ptp_put(rvu->ptp);
2659 err_release_regions:
2660 	pci_release_regions(pdev);
2661 err_disable_device:
2662 	pci_disable_device(pdev);
2663 err_freemem:
2664 	pci_set_drvdata(pdev, NULL);
2665 	devm_kfree(&pdev->dev, rvu->hw);
2666 	devm_kfree(dev, rvu);
2667 	return err;
2668 }
2669 
rvu_remove(struct pci_dev * pdev)2670 static void rvu_remove(struct pci_dev *pdev)
2671 {
2672 	struct rvu *rvu = pci_get_drvdata(pdev);
2673 
2674 	rvu_dbg_exit(rvu);
2675 	rvu_unregister_interrupts(rvu);
2676 	rvu_flr_wq_destroy(rvu);
2677 	rvu_cgx_exit(rvu);
2678 	rvu_fwdata_exit(rvu);
2679 	rvu_mbox_destroy(&rvu->afpf_wq_info);
2680 	rvu_disable_sriov(rvu);
2681 	rvu_reset_all_blocks(rvu);
2682 	rvu_free_hw_resources(rvu);
2683 	rvu_clear_rvum_blk_revid(rvu);
2684 	ptp_put(rvu->ptp);
2685 	pci_release_regions(pdev);
2686 	pci_disable_device(pdev);
2687 	pci_set_drvdata(pdev, NULL);
2688 
2689 	devm_kfree(&pdev->dev, rvu->hw);
2690 	devm_kfree(&pdev->dev, rvu);
2691 }
2692 
2693 static struct pci_driver rvu_driver = {
2694 	.name = DRV_NAME,
2695 	.id_table = rvu_id_table,
2696 	.probe = rvu_probe,
2697 	.remove = rvu_remove,
2698 };
2699 
rvu_init_module(void)2700 static int __init rvu_init_module(void)
2701 {
2702 	int err;
2703 
2704 	pr_info("%s: %s\n", DRV_NAME, DRV_STRING);
2705 
2706 	err = pci_register_driver(&cgx_driver);
2707 	if (err < 0)
2708 		return err;
2709 
2710 	err = pci_register_driver(&ptp_driver);
2711 	if (err < 0)
2712 		goto ptp_err;
2713 
2714 	err =  pci_register_driver(&rvu_driver);
2715 	if (err < 0)
2716 		goto rvu_err;
2717 
2718 	return 0;
2719 rvu_err:
2720 	pci_unregister_driver(&ptp_driver);
2721 ptp_err:
2722 	pci_unregister_driver(&cgx_driver);
2723 
2724 	return err;
2725 }
2726 
rvu_cleanup_module(void)2727 static void __exit rvu_cleanup_module(void)
2728 {
2729 	pci_unregister_driver(&rvu_driver);
2730 	pci_unregister_driver(&ptp_driver);
2731 	pci_unregister_driver(&cgx_driver);
2732 }
2733 
2734 module_init(rvu_init_module);
2735 module_exit(rvu_cleanup_module);
2736