1 /*
2 * Copyright 2008 Advanced Micro Devices, Inc.
3 * Copyright 2008 Red Hat Inc.
4 * Copyright 2009 Jerome Glisse.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * Authors: Dave Airlie
25 * Alex Deucher
26 * Jerome Glisse
27 */
28 #include <linux/dma-fence-array.h>
29 #include <linux/interval_tree_generic.h>
30 #include <linux/idr.h>
31 #include <linux/dma-buf.h>
32
33 #include <drm/amdgpu_drm.h>
34 #include "amdgpu.h"
35 #include "amdgpu_trace.h"
36 #include "amdgpu_amdkfd.h"
37 #include "amdgpu_gmc.h"
38 #include "amdgpu_xgmi.h"
39 #include "amdgpu_dma_buf.h"
40
41 /**
42 * DOC: GPUVM
43 *
44 * GPUVM is similar to the legacy gart on older asics, however
45 * rather than there being a single global gart table
46 * for the entire GPU, there are multiple VM page tables active
47 * at any given time. The VM page tables can contain a mix
48 * vram pages and system memory pages and system memory pages
49 * can be mapped as snooped (cached system pages) or unsnooped
50 * (uncached system pages).
51 * Each VM has an ID associated with it and there is a page table
52 * associated with each VMID. When execting a command buffer,
53 * the kernel tells the the ring what VMID to use for that command
54 * buffer. VMIDs are allocated dynamically as commands are submitted.
55 * The userspace drivers maintain their own address space and the kernel
56 * sets up their pages tables accordingly when they submit their
57 * command buffers and a VMID is assigned.
58 * Cayman/Trinity support up to 8 active VMs at any given time;
59 * SI supports 16.
60 */
61
62 #define START(node) ((node)->start)
63 #define LAST(node) ((node)->last)
64
65 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
66 START, LAST, static, amdgpu_vm_it)
67
68 #undef START
69 #undef LAST
70
71 /**
72 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
73 */
74 struct amdgpu_prt_cb {
75
76 /**
77 * @adev: amdgpu device
78 */
79 struct amdgpu_device *adev;
80
81 /**
82 * @cb: callback
83 */
84 struct dma_fence_cb cb;
85 };
86
87 /*
88 * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS
89 * happens while holding this lock anywhere to prevent deadlocks when
90 * an MMU notifier runs in reclaim-FS context.
91 */
amdgpu_vm_eviction_lock(struct amdgpu_vm * vm)92 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm)
93 {
94 mutex_lock(&vm->eviction_lock);
95 vm->saved_flags = memalloc_nofs_save();
96 }
97
amdgpu_vm_eviction_trylock(struct amdgpu_vm * vm)98 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm)
99 {
100 if (mutex_trylock(&vm->eviction_lock)) {
101 vm->saved_flags = memalloc_nofs_save();
102 return 1;
103 }
104 return 0;
105 }
106
amdgpu_vm_eviction_unlock(struct amdgpu_vm * vm)107 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm)
108 {
109 memalloc_nofs_restore(vm->saved_flags);
110 mutex_unlock(&vm->eviction_lock);
111 }
112
113 /**
114 * amdgpu_vm_level_shift - return the addr shift for each level
115 *
116 * @adev: amdgpu_device pointer
117 * @level: VMPT level
118 *
119 * Returns:
120 * The number of bits the pfn needs to be right shifted for a level.
121 */
amdgpu_vm_level_shift(struct amdgpu_device * adev,unsigned level)122 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
123 unsigned level)
124 {
125 switch (level) {
126 case AMDGPU_VM_PDB2:
127 case AMDGPU_VM_PDB1:
128 case AMDGPU_VM_PDB0:
129 return 9 * (AMDGPU_VM_PDB0 - level) +
130 adev->vm_manager.block_size;
131 case AMDGPU_VM_PTB:
132 return 0;
133 default:
134 return ~0;
135 }
136 }
137
138 /**
139 * amdgpu_vm_num_entries - return the number of entries in a PD/PT
140 *
141 * @adev: amdgpu_device pointer
142 * @level: VMPT level
143 *
144 * Returns:
145 * The number of entries in a page directory or page table.
146 */
amdgpu_vm_num_entries(struct amdgpu_device * adev,unsigned level)147 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
148 unsigned level)
149 {
150 unsigned shift = amdgpu_vm_level_shift(adev,
151 adev->vm_manager.root_level);
152
153 if (level == adev->vm_manager.root_level)
154 /* For the root directory */
155 return round_up(adev->vm_manager.max_pfn, 1ULL << shift)
156 >> shift;
157 else if (level != AMDGPU_VM_PTB)
158 /* Everything in between */
159 return 512;
160 else
161 /* For the page tables on the leaves */
162 return AMDGPU_VM_PTE_COUNT(adev);
163 }
164
165 /**
166 * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD
167 *
168 * @adev: amdgpu_device pointer
169 *
170 * Returns:
171 * The number of entries in the root page directory which needs the ATS setting.
172 */
amdgpu_vm_num_ats_entries(struct amdgpu_device * adev)173 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev)
174 {
175 unsigned shift;
176
177 shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level);
178 return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT);
179 }
180
181 /**
182 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
183 *
184 * @adev: amdgpu_device pointer
185 * @level: VMPT level
186 *
187 * Returns:
188 * The mask to extract the entry number of a PD/PT from an address.
189 */
amdgpu_vm_entries_mask(struct amdgpu_device * adev,unsigned int level)190 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
191 unsigned int level)
192 {
193 if (level <= adev->vm_manager.root_level)
194 return 0xffffffff;
195 else if (level != AMDGPU_VM_PTB)
196 return 0x1ff;
197 else
198 return AMDGPU_VM_PTE_COUNT(adev) - 1;
199 }
200
201 /**
202 * amdgpu_vm_bo_size - returns the size of the BOs in bytes
203 *
204 * @adev: amdgpu_device pointer
205 * @level: VMPT level
206 *
207 * Returns:
208 * The size of the BO for a page directory or page table in bytes.
209 */
amdgpu_vm_bo_size(struct amdgpu_device * adev,unsigned level)210 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
211 {
212 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
213 }
214
215 /**
216 * amdgpu_vm_bo_evicted - vm_bo is evicted
217 *
218 * @vm_bo: vm_bo which is evicted
219 *
220 * State for PDs/PTs and per VM BOs which are not at the location they should
221 * be.
222 */
amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base * vm_bo)223 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
224 {
225 struct amdgpu_vm *vm = vm_bo->vm;
226 struct amdgpu_bo *bo = vm_bo->bo;
227
228 vm_bo->moved = true;
229 if (bo->tbo.type == ttm_bo_type_kernel)
230 list_move(&vm_bo->vm_status, &vm->evicted);
231 else
232 list_move_tail(&vm_bo->vm_status, &vm->evicted);
233 }
234 /**
235 * amdgpu_vm_bo_moved - vm_bo is moved
236 *
237 * @vm_bo: vm_bo which is moved
238 *
239 * State for per VM BOs which are moved, but that change is not yet reflected
240 * in the page tables.
241 */
amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base * vm_bo)242 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
243 {
244 list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
245 }
246
247 /**
248 * amdgpu_vm_bo_idle - vm_bo is idle
249 *
250 * @vm_bo: vm_bo which is now idle
251 *
252 * State for PDs/PTs and per VM BOs which have gone through the state machine
253 * and are now idle.
254 */
amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base * vm_bo)255 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
256 {
257 list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
258 vm_bo->moved = false;
259 }
260
261 /**
262 * amdgpu_vm_bo_invalidated - vm_bo is invalidated
263 *
264 * @vm_bo: vm_bo which is now invalidated
265 *
266 * State for normal BOs which are invalidated and that change not yet reflected
267 * in the PTs.
268 */
amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base * vm_bo)269 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
270 {
271 spin_lock(&vm_bo->vm->invalidated_lock);
272 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
273 spin_unlock(&vm_bo->vm->invalidated_lock);
274 }
275
276 /**
277 * amdgpu_vm_bo_relocated - vm_bo is reloacted
278 *
279 * @vm_bo: vm_bo which is relocated
280 *
281 * State for PDs/PTs which needs to update their parent PD.
282 * For the root PD, just move to idle state.
283 */
amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base * vm_bo)284 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
285 {
286 if (vm_bo->bo->parent)
287 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
288 else
289 amdgpu_vm_bo_idle(vm_bo);
290 }
291
292 /**
293 * amdgpu_vm_bo_done - vm_bo is done
294 *
295 * @vm_bo: vm_bo which is now done
296 *
297 * State for normal BOs which are invalidated and that change has been updated
298 * in the PTs.
299 */
amdgpu_vm_bo_done(struct amdgpu_vm_bo_base * vm_bo)300 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
301 {
302 spin_lock(&vm_bo->vm->invalidated_lock);
303 list_del_init(&vm_bo->vm_status);
304 spin_unlock(&vm_bo->vm->invalidated_lock);
305 }
306
307 /**
308 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
309 *
310 * @base: base structure for tracking BO usage in a VM
311 * @vm: vm to which bo is to be added
312 * @bo: amdgpu buffer object
313 *
314 * Initialize a bo_va_base structure and add it to the appropriate lists
315 *
316 */
amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base * base,struct amdgpu_vm * vm,struct amdgpu_bo * bo)317 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
318 struct amdgpu_vm *vm,
319 struct amdgpu_bo *bo)
320 {
321 base->vm = vm;
322 base->bo = bo;
323 base->next = NULL;
324 INIT_LIST_HEAD(&base->vm_status);
325
326 if (!bo)
327 return;
328 base->next = bo->vm_bo;
329 bo->vm_bo = base;
330
331 if (bo->tbo.base.resv != vm->root.base.bo->tbo.base.resv)
332 return;
333
334 vm->bulk_moveable = false;
335 if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
336 amdgpu_vm_bo_relocated(base);
337 else
338 amdgpu_vm_bo_idle(base);
339
340 if (bo->preferred_domains &
341 amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type))
342 return;
343
344 /*
345 * we checked all the prerequisites, but it looks like this per vm bo
346 * is currently evicted. add the bo to the evicted list to make sure it
347 * is validated on next vm use to avoid fault.
348 * */
349 amdgpu_vm_bo_evicted(base);
350 }
351
352 /**
353 * amdgpu_vm_pt_parent - get the parent page directory
354 *
355 * @pt: child page table
356 *
357 * Helper to get the parent entry for the child page table. NULL if we are at
358 * the root page directory.
359 */
amdgpu_vm_pt_parent(struct amdgpu_vm_pt * pt)360 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt)
361 {
362 struct amdgpu_bo *parent = pt->base.bo->parent;
363
364 if (!parent)
365 return NULL;
366
367 return container_of(parent->vm_bo, struct amdgpu_vm_pt, base);
368 }
369
370 /*
371 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
372 */
373 struct amdgpu_vm_pt_cursor {
374 uint64_t pfn;
375 struct amdgpu_vm_pt *parent;
376 struct amdgpu_vm_pt *entry;
377 unsigned level;
378 };
379
380 /**
381 * amdgpu_vm_pt_start - start PD/PT walk
382 *
383 * @adev: amdgpu_device pointer
384 * @vm: amdgpu_vm structure
385 * @start: start address of the walk
386 * @cursor: state to initialize
387 *
388 * Initialize a amdgpu_vm_pt_cursor to start a walk.
389 */
amdgpu_vm_pt_start(struct amdgpu_device * adev,struct amdgpu_vm * vm,uint64_t start,struct amdgpu_vm_pt_cursor * cursor)390 static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
391 struct amdgpu_vm *vm, uint64_t start,
392 struct amdgpu_vm_pt_cursor *cursor)
393 {
394 cursor->pfn = start;
395 cursor->parent = NULL;
396 cursor->entry = &vm->root;
397 cursor->level = adev->vm_manager.root_level;
398 }
399
400 /**
401 * amdgpu_vm_pt_descendant - go to child node
402 *
403 * @adev: amdgpu_device pointer
404 * @cursor: current state
405 *
406 * Walk to the child node of the current node.
407 * Returns:
408 * True if the walk was possible, false otherwise.
409 */
amdgpu_vm_pt_descendant(struct amdgpu_device * adev,struct amdgpu_vm_pt_cursor * cursor)410 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
411 struct amdgpu_vm_pt_cursor *cursor)
412 {
413 unsigned mask, shift, idx;
414
415 if (!cursor->entry->entries)
416 return false;
417
418 BUG_ON(!cursor->entry->base.bo);
419 mask = amdgpu_vm_entries_mask(adev, cursor->level);
420 shift = amdgpu_vm_level_shift(adev, cursor->level);
421
422 ++cursor->level;
423 idx = (cursor->pfn >> shift) & mask;
424 cursor->parent = cursor->entry;
425 cursor->entry = &cursor->entry->entries[idx];
426 return true;
427 }
428
429 /**
430 * amdgpu_vm_pt_sibling - go to sibling node
431 *
432 * @adev: amdgpu_device pointer
433 * @cursor: current state
434 *
435 * Walk to the sibling node of the current node.
436 * Returns:
437 * True if the walk was possible, false otherwise.
438 */
amdgpu_vm_pt_sibling(struct amdgpu_device * adev,struct amdgpu_vm_pt_cursor * cursor)439 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
440 struct amdgpu_vm_pt_cursor *cursor)
441 {
442 unsigned shift, num_entries;
443
444 /* Root doesn't have a sibling */
445 if (!cursor->parent)
446 return false;
447
448 /* Go to our parents and see if we got a sibling */
449 shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
450 num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
451
452 if (cursor->entry == &cursor->parent->entries[num_entries - 1])
453 return false;
454
455 cursor->pfn += 1ULL << shift;
456 cursor->pfn &= ~((1ULL << shift) - 1);
457 ++cursor->entry;
458 return true;
459 }
460
461 /**
462 * amdgpu_vm_pt_ancestor - go to parent node
463 *
464 * @cursor: current state
465 *
466 * Walk to the parent node of the current node.
467 * Returns:
468 * True if the walk was possible, false otherwise.
469 */
amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor * cursor)470 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
471 {
472 if (!cursor->parent)
473 return false;
474
475 --cursor->level;
476 cursor->entry = cursor->parent;
477 cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
478 return true;
479 }
480
481 /**
482 * amdgpu_vm_pt_next - get next PD/PT in hieratchy
483 *
484 * @adev: amdgpu_device pointer
485 * @cursor: current state
486 *
487 * Walk the PD/PT tree to the next node.
488 */
amdgpu_vm_pt_next(struct amdgpu_device * adev,struct amdgpu_vm_pt_cursor * cursor)489 static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
490 struct amdgpu_vm_pt_cursor *cursor)
491 {
492 /* First try a newborn child */
493 if (amdgpu_vm_pt_descendant(adev, cursor))
494 return;
495
496 /* If that didn't worked try to find a sibling */
497 while (!amdgpu_vm_pt_sibling(adev, cursor)) {
498 /* No sibling, go to our parents and grandparents */
499 if (!amdgpu_vm_pt_ancestor(cursor)) {
500 cursor->pfn = ~0ll;
501 return;
502 }
503 }
504 }
505
506 /**
507 * amdgpu_vm_pt_first_dfs - start a deep first search
508 *
509 * @adev: amdgpu_device structure
510 * @vm: amdgpu_vm structure
511 * @start: optional cursor to start with
512 * @cursor: state to initialize
513 *
514 * Starts a deep first traversal of the PD/PT tree.
515 */
amdgpu_vm_pt_first_dfs(struct amdgpu_device * adev,struct amdgpu_vm * vm,struct amdgpu_vm_pt_cursor * start,struct amdgpu_vm_pt_cursor * cursor)516 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
517 struct amdgpu_vm *vm,
518 struct amdgpu_vm_pt_cursor *start,
519 struct amdgpu_vm_pt_cursor *cursor)
520 {
521 if (start)
522 *cursor = *start;
523 else
524 amdgpu_vm_pt_start(adev, vm, 0, cursor);
525 while (amdgpu_vm_pt_descendant(adev, cursor));
526 }
527
528 /**
529 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
530 *
531 * @start: starting point for the search
532 * @entry: current entry
533 *
534 * Returns:
535 * True when the search should continue, false otherwise.
536 */
amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor * start,struct amdgpu_vm_pt * entry)537 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
538 struct amdgpu_vm_pt *entry)
539 {
540 return entry && (!start || entry != start->entry);
541 }
542
543 /**
544 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
545 *
546 * @adev: amdgpu_device structure
547 * @cursor: current state
548 *
549 * Move the cursor to the next node in a deep first search.
550 */
amdgpu_vm_pt_next_dfs(struct amdgpu_device * adev,struct amdgpu_vm_pt_cursor * cursor)551 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
552 struct amdgpu_vm_pt_cursor *cursor)
553 {
554 if (!cursor->entry)
555 return;
556
557 if (!cursor->parent)
558 cursor->entry = NULL;
559 else if (amdgpu_vm_pt_sibling(adev, cursor))
560 while (amdgpu_vm_pt_descendant(adev, cursor));
561 else
562 amdgpu_vm_pt_ancestor(cursor);
563 }
564
565 /*
566 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
567 */
568 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) \
569 for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)), \
570 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
571 amdgpu_vm_pt_continue_dfs((start), (entry)); \
572 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
573
574 /**
575 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
576 *
577 * @vm: vm providing the BOs
578 * @validated: head of validation list
579 * @entry: entry to add
580 *
581 * Add the page directory to the list of BOs to
582 * validate for command submission.
583 */
amdgpu_vm_get_pd_bo(struct amdgpu_vm * vm,struct list_head * validated,struct amdgpu_bo_list_entry * entry)584 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
585 struct list_head *validated,
586 struct amdgpu_bo_list_entry *entry)
587 {
588 entry->priority = 0;
589 entry->tv.bo = &vm->root.base.bo->tbo;
590 /* Two for VM updates, one for TTM and one for the CS job */
591 entry->tv.num_shared = 4;
592 entry->user_pages = NULL;
593 list_add(&entry->tv.head, validated);
594 }
595
596 /**
597 * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag
598 *
599 * @bo: BO which was removed from the LRU
600 *
601 * Make sure the bulk_moveable flag is updated when a BO is removed from the
602 * LRU.
603 */
amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object * bo)604 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo)
605 {
606 struct amdgpu_bo *abo;
607 struct amdgpu_vm_bo_base *bo_base;
608
609 if (!amdgpu_bo_is_amdgpu_bo(bo))
610 return;
611
612 if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT)
613 return;
614
615 abo = ttm_to_amdgpu_bo(bo);
616 if (!abo->parent)
617 return;
618 for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) {
619 struct amdgpu_vm *vm = bo_base->vm;
620
621 if (abo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
622 vm->bulk_moveable = false;
623 }
624
625 }
626 /**
627 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
628 *
629 * @adev: amdgpu device pointer
630 * @vm: vm providing the BOs
631 *
632 * Move all BOs to the end of LRU and remember their positions to put them
633 * together.
634 */
amdgpu_vm_move_to_lru_tail(struct amdgpu_device * adev,struct amdgpu_vm * vm)635 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
636 struct amdgpu_vm *vm)
637 {
638 struct amdgpu_vm_bo_base *bo_base;
639
640 if (vm->bulk_moveable) {
641 spin_lock(&ttm_bo_glob.lru_lock);
642 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
643 spin_unlock(&ttm_bo_glob.lru_lock);
644 return;
645 }
646
647 memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
648
649 spin_lock(&ttm_bo_glob.lru_lock);
650 list_for_each_entry(bo_base, &vm->idle, vm_status) {
651 struct amdgpu_bo *bo = bo_base->bo;
652
653 if (!bo->parent)
654 continue;
655
656 ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move);
657 if (bo->shadow)
658 ttm_bo_move_to_lru_tail(&bo->shadow->tbo,
659 &vm->lru_bulk_move);
660 }
661 spin_unlock(&ttm_bo_glob.lru_lock);
662
663 vm->bulk_moveable = true;
664 }
665
666 /**
667 * amdgpu_vm_validate_pt_bos - validate the page table BOs
668 *
669 * @adev: amdgpu device pointer
670 * @vm: vm providing the BOs
671 * @validate: callback to do the validation
672 * @param: parameter for the validation callback
673 *
674 * Validate the page table BOs on command submission if neccessary.
675 *
676 * Returns:
677 * Validation result.
678 */
amdgpu_vm_validate_pt_bos(struct amdgpu_device * adev,struct amdgpu_vm * vm,int (* validate)(void * p,struct amdgpu_bo * bo),void * param)679 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
680 int (*validate)(void *p, struct amdgpu_bo *bo),
681 void *param)
682 {
683 struct amdgpu_vm_bo_base *bo_base, *tmp;
684 int r;
685
686 vm->bulk_moveable &= list_empty(&vm->evicted);
687
688 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
689 struct amdgpu_bo *bo = bo_base->bo;
690
691 r = validate(param, bo);
692 if (r)
693 return r;
694
695 if (bo->tbo.type != ttm_bo_type_kernel) {
696 amdgpu_vm_bo_moved(bo_base);
697 } else {
698 vm->update_funcs->map_table(bo);
699 amdgpu_vm_bo_relocated(bo_base);
700 }
701 }
702
703 amdgpu_vm_eviction_lock(vm);
704 vm->evicting = false;
705 amdgpu_vm_eviction_unlock(vm);
706
707 return 0;
708 }
709
710 /**
711 * amdgpu_vm_ready - check VM is ready for updates
712 *
713 * @vm: VM to check
714 *
715 * Check if all VM PDs/PTs are ready for updates
716 *
717 * Returns:
718 * True if eviction list is empty.
719 */
amdgpu_vm_ready(struct amdgpu_vm * vm)720 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
721 {
722 return list_empty(&vm->evicted);
723 }
724
725 /**
726 * amdgpu_vm_clear_bo - initially clear the PDs/PTs
727 *
728 * @adev: amdgpu_device pointer
729 * @vm: VM to clear BO from
730 * @bo: BO to clear
731 * @immediate: use an immediate update
732 *
733 * Root PD needs to be reserved when calling this.
734 *
735 * Returns:
736 * 0 on success, errno otherwise.
737 */
amdgpu_vm_clear_bo(struct amdgpu_device * adev,struct amdgpu_vm * vm,struct amdgpu_bo * bo,bool immediate)738 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
739 struct amdgpu_vm *vm,
740 struct amdgpu_bo *bo,
741 bool immediate)
742 {
743 struct ttm_operation_ctx ctx = { true, false };
744 unsigned level = adev->vm_manager.root_level;
745 struct amdgpu_vm_update_params params;
746 struct amdgpu_bo *ancestor = bo;
747 unsigned entries, ats_entries;
748 uint64_t addr;
749 int r;
750
751 /* Figure out our place in the hierarchy */
752 if (ancestor->parent) {
753 ++level;
754 while (ancestor->parent->parent) {
755 ++level;
756 ancestor = ancestor->parent;
757 }
758 }
759
760 entries = amdgpu_bo_size(bo) / 8;
761 if (!vm->pte_support_ats) {
762 ats_entries = 0;
763
764 } else if (!bo->parent) {
765 ats_entries = amdgpu_vm_num_ats_entries(adev);
766 ats_entries = min(ats_entries, entries);
767 entries -= ats_entries;
768
769 } else {
770 struct amdgpu_vm_pt *pt;
771
772 pt = container_of(ancestor->vm_bo, struct amdgpu_vm_pt, base);
773 ats_entries = amdgpu_vm_num_ats_entries(adev);
774 if ((pt - vm->root.entries) >= ats_entries) {
775 ats_entries = 0;
776 } else {
777 ats_entries = entries;
778 entries = 0;
779 }
780 }
781
782 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
783 if (r)
784 return r;
785
786 if (bo->shadow) {
787 r = ttm_bo_validate(&bo->shadow->tbo, &bo->shadow->placement,
788 &ctx);
789 if (r)
790 return r;
791 }
792
793 r = vm->update_funcs->map_table(bo);
794 if (r)
795 return r;
796
797 memset(¶ms, 0, sizeof(params));
798 params.adev = adev;
799 params.vm = vm;
800 params.immediate = immediate;
801
802 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT);
803 if (r)
804 return r;
805
806 addr = 0;
807 if (ats_entries) {
808 uint64_t value = 0, flags;
809
810 flags = AMDGPU_PTE_DEFAULT_ATC;
811 if (level != AMDGPU_VM_PTB) {
812 /* Handle leaf PDEs as PTEs */
813 flags |= AMDGPU_PDE_PTE;
814 amdgpu_gmc_get_vm_pde(adev, level, &value, &flags);
815 }
816
817 r = vm->update_funcs->update(¶ms, bo, addr, 0, ats_entries,
818 value, flags);
819 if (r)
820 return r;
821
822 addr += ats_entries * 8;
823 }
824
825 if (entries) {
826 uint64_t value = 0, flags = 0;
827
828 if (adev->asic_type >= CHIP_VEGA10) {
829 if (level != AMDGPU_VM_PTB) {
830 /* Handle leaf PDEs as PTEs */
831 flags |= AMDGPU_PDE_PTE;
832 amdgpu_gmc_get_vm_pde(adev, level,
833 &value, &flags);
834 } else {
835 /* Workaround for fault priority problem on GMC9 */
836 flags = AMDGPU_PTE_EXECUTABLE;
837 }
838 }
839
840 r = vm->update_funcs->update(¶ms, bo, addr, 0, entries,
841 value, flags);
842 if (r)
843 return r;
844 }
845
846 return vm->update_funcs->commit(¶ms, NULL);
847 }
848
849 /**
850 * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation
851 *
852 * @adev: amdgpu_device pointer
853 * @vm: requesting vm
854 * @level: the page table level
855 * @immediate: use a immediate update
856 * @bp: resulting BO allocation parameters
857 */
amdgpu_vm_bo_param(struct amdgpu_device * adev,struct amdgpu_vm * vm,int level,bool immediate,struct amdgpu_bo_param * bp)858 static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm,
859 int level, bool immediate,
860 struct amdgpu_bo_param *bp)
861 {
862 memset(bp, 0, sizeof(*bp));
863
864 bp->size = amdgpu_vm_bo_size(adev, level);
865 bp->byte_align = AMDGPU_GPU_PAGE_SIZE;
866 bp->domain = AMDGPU_GEM_DOMAIN_VRAM;
867 bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain);
868 bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
869 AMDGPU_GEM_CREATE_CPU_GTT_USWC;
870 if (vm->use_cpu_for_update)
871 bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
872 else if (!vm->root.base.bo || vm->root.base.bo->shadow)
873 bp->flags |= AMDGPU_GEM_CREATE_SHADOW;
874 bp->type = ttm_bo_type_kernel;
875 bp->no_wait_gpu = immediate;
876 if (vm->root.base.bo)
877 bp->resv = vm->root.base.bo->tbo.base.resv;
878 }
879
880 /**
881 * amdgpu_vm_alloc_pts - Allocate a specific page table
882 *
883 * @adev: amdgpu_device pointer
884 * @vm: VM to allocate page tables for
885 * @cursor: Which page table to allocate
886 * @immediate: use an immediate update
887 *
888 * Make sure a specific page table or directory is allocated.
889 *
890 * Returns:
891 * 1 if page table needed to be allocated, 0 if page table was already
892 * allocated, negative errno if an error occurred.
893 */
amdgpu_vm_alloc_pts(struct amdgpu_device * adev,struct amdgpu_vm * vm,struct amdgpu_vm_pt_cursor * cursor,bool immediate)894 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
895 struct amdgpu_vm *vm,
896 struct amdgpu_vm_pt_cursor *cursor,
897 bool immediate)
898 {
899 struct amdgpu_vm_pt *entry = cursor->entry;
900 struct amdgpu_bo_param bp;
901 struct amdgpu_bo *pt;
902 int r;
903
904 if (cursor->level < AMDGPU_VM_PTB && !entry->entries) {
905 unsigned num_entries;
906
907 num_entries = amdgpu_vm_num_entries(adev, cursor->level);
908 entry->entries = kvmalloc_array(num_entries,
909 sizeof(*entry->entries),
910 GFP_KERNEL | __GFP_ZERO);
911 if (!entry->entries)
912 return -ENOMEM;
913 }
914
915 if (entry->base.bo)
916 return 0;
917
918 amdgpu_vm_bo_param(adev, vm, cursor->level, immediate, &bp);
919
920 r = amdgpu_bo_create(adev, &bp, &pt);
921 if (r)
922 return r;
923
924 /* Keep a reference to the root directory to avoid
925 * freeing them up in the wrong order.
926 */
927 pt->parent = amdgpu_bo_ref(cursor->parent->base.bo);
928 amdgpu_vm_bo_base_init(&entry->base, vm, pt);
929
930 r = amdgpu_vm_clear_bo(adev, vm, pt, immediate);
931 if (r)
932 goto error_free_pt;
933
934 return 0;
935
936 error_free_pt:
937 amdgpu_bo_unref(&pt->shadow);
938 amdgpu_bo_unref(&pt);
939 return r;
940 }
941
942 /**
943 * amdgpu_vm_free_table - fre one PD/PT
944 *
945 * @entry: PDE to free
946 */
amdgpu_vm_free_table(struct amdgpu_vm_pt * entry)947 static void amdgpu_vm_free_table(struct amdgpu_vm_pt *entry)
948 {
949 if (entry->base.bo) {
950 entry->base.bo->vm_bo = NULL;
951 list_del(&entry->base.vm_status);
952 amdgpu_bo_unref(&entry->base.bo->shadow);
953 amdgpu_bo_unref(&entry->base.bo);
954 }
955 kvfree(entry->entries);
956 entry->entries = NULL;
957 }
958
959 /**
960 * amdgpu_vm_free_pts - free PD/PT levels
961 *
962 * @adev: amdgpu device structure
963 * @vm: amdgpu vm structure
964 * @start: optional cursor where to start freeing PDs/PTs
965 *
966 * Free the page directory or page table level and all sub levels.
967 */
amdgpu_vm_free_pts(struct amdgpu_device * adev,struct amdgpu_vm * vm,struct amdgpu_vm_pt_cursor * start)968 static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
969 struct amdgpu_vm *vm,
970 struct amdgpu_vm_pt_cursor *start)
971 {
972 struct amdgpu_vm_pt_cursor cursor;
973 struct amdgpu_vm_pt *entry;
974
975 vm->bulk_moveable = false;
976
977 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
978 amdgpu_vm_free_table(entry);
979
980 if (start)
981 amdgpu_vm_free_table(start->entry);
982 }
983
984 /**
985 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
986 *
987 * @adev: amdgpu_device pointer
988 */
amdgpu_vm_check_compute_bug(struct amdgpu_device * adev)989 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
990 {
991 const struct amdgpu_ip_block *ip_block;
992 bool has_compute_vm_bug;
993 struct amdgpu_ring *ring;
994 int i;
995
996 has_compute_vm_bug = false;
997
998 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
999 if (ip_block) {
1000 /* Compute has a VM bug for GFX version < 7.
1001 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
1002 if (ip_block->version->major <= 7)
1003 has_compute_vm_bug = true;
1004 else if (ip_block->version->major == 8)
1005 if (adev->gfx.mec_fw_version < 673)
1006 has_compute_vm_bug = true;
1007 }
1008
1009 for (i = 0; i < adev->num_rings; i++) {
1010 ring = adev->rings[i];
1011 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
1012 /* only compute rings */
1013 ring->has_compute_vm_bug = has_compute_vm_bug;
1014 else
1015 ring->has_compute_vm_bug = false;
1016 }
1017 }
1018
1019 /**
1020 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
1021 *
1022 * @ring: ring on which the job will be submitted
1023 * @job: job to submit
1024 *
1025 * Returns:
1026 * True if sync is needed.
1027 */
amdgpu_vm_need_pipeline_sync(struct amdgpu_ring * ring,struct amdgpu_job * job)1028 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
1029 struct amdgpu_job *job)
1030 {
1031 struct amdgpu_device *adev = ring->adev;
1032 unsigned vmhub = ring->funcs->vmhub;
1033 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1034 struct amdgpu_vmid *id;
1035 bool gds_switch_needed;
1036 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
1037
1038 if (job->vmid == 0)
1039 return false;
1040 id = &id_mgr->ids[job->vmid];
1041 gds_switch_needed = ring->funcs->emit_gds_switch && (
1042 id->gds_base != job->gds_base ||
1043 id->gds_size != job->gds_size ||
1044 id->gws_base != job->gws_base ||
1045 id->gws_size != job->gws_size ||
1046 id->oa_base != job->oa_base ||
1047 id->oa_size != job->oa_size);
1048
1049 if (amdgpu_vmid_had_gpu_reset(adev, id))
1050 return true;
1051
1052 return vm_flush_needed || gds_switch_needed;
1053 }
1054
1055 /**
1056 * amdgpu_vm_flush - hardware flush the vm
1057 *
1058 * @ring: ring to use for flush
1059 * @job: related job
1060 * @need_pipe_sync: is pipe sync needed
1061 *
1062 * Emit a VM flush when it is necessary.
1063 *
1064 * Returns:
1065 * 0 on success, errno otherwise.
1066 */
amdgpu_vm_flush(struct amdgpu_ring * ring,struct amdgpu_job * job,bool need_pipe_sync)1067 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
1068 bool need_pipe_sync)
1069 {
1070 struct amdgpu_device *adev = ring->adev;
1071 unsigned vmhub = ring->funcs->vmhub;
1072 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1073 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1074 bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1075 id->gds_base != job->gds_base ||
1076 id->gds_size != job->gds_size ||
1077 id->gws_base != job->gws_base ||
1078 id->gws_size != job->gws_size ||
1079 id->oa_base != job->oa_base ||
1080 id->oa_size != job->oa_size);
1081 bool vm_flush_needed = job->vm_needs_flush;
1082 struct dma_fence *fence = NULL;
1083 bool pasid_mapping_needed = false;
1084 unsigned patch_offset = 0;
1085 bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL));
1086 int r;
1087
1088 if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid)
1089 adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid);
1090
1091 if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1092 gds_switch_needed = true;
1093 vm_flush_needed = true;
1094 pasid_mapping_needed = true;
1095 }
1096
1097 mutex_lock(&id_mgr->lock);
1098 if (id->pasid != job->pasid || !id->pasid_mapping ||
1099 !dma_fence_is_signaled(id->pasid_mapping))
1100 pasid_mapping_needed = true;
1101 mutex_unlock(&id_mgr->lock);
1102
1103 gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1104 vm_flush_needed &= !!ring->funcs->emit_vm_flush &&
1105 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1106 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1107 ring->funcs->emit_wreg;
1108
1109 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
1110 return 0;
1111
1112 if (ring->funcs->init_cond_exec)
1113 patch_offset = amdgpu_ring_init_cond_exec(ring);
1114
1115 if (need_pipe_sync)
1116 amdgpu_ring_emit_pipeline_sync(ring);
1117
1118 if (vm_flush_needed) {
1119 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1120 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1121 }
1122
1123 if (pasid_mapping_needed)
1124 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1125
1126 if (vm_flush_needed || pasid_mapping_needed) {
1127 r = amdgpu_fence_emit(ring, &fence, 0);
1128 if (r)
1129 return r;
1130 }
1131
1132 if (vm_flush_needed) {
1133 mutex_lock(&id_mgr->lock);
1134 dma_fence_put(id->last_flush);
1135 id->last_flush = dma_fence_get(fence);
1136 id->current_gpu_reset_count =
1137 atomic_read(&adev->gpu_reset_counter);
1138 mutex_unlock(&id_mgr->lock);
1139 }
1140
1141 if (pasid_mapping_needed) {
1142 mutex_lock(&id_mgr->lock);
1143 id->pasid = job->pasid;
1144 dma_fence_put(id->pasid_mapping);
1145 id->pasid_mapping = dma_fence_get(fence);
1146 mutex_unlock(&id_mgr->lock);
1147 }
1148 dma_fence_put(fence);
1149
1150 if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1151 id->gds_base = job->gds_base;
1152 id->gds_size = job->gds_size;
1153 id->gws_base = job->gws_base;
1154 id->gws_size = job->gws_size;
1155 id->oa_base = job->oa_base;
1156 id->oa_size = job->oa_size;
1157 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1158 job->gds_size, job->gws_base,
1159 job->gws_size, job->oa_base,
1160 job->oa_size);
1161 }
1162
1163 if (ring->funcs->patch_cond_exec)
1164 amdgpu_ring_patch_cond_exec(ring, patch_offset);
1165
1166 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1167 if (ring->funcs->emit_switch_buffer) {
1168 amdgpu_ring_emit_switch_buffer(ring);
1169 amdgpu_ring_emit_switch_buffer(ring);
1170 }
1171 return 0;
1172 }
1173
1174 /**
1175 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1176 *
1177 * @vm: requested vm
1178 * @bo: requested buffer object
1179 *
1180 * Find @bo inside the requested vm.
1181 * Search inside the @bos vm list for the requested vm
1182 * Returns the found bo_va or NULL if none is found
1183 *
1184 * Object has to be reserved!
1185 *
1186 * Returns:
1187 * Found bo_va or NULL.
1188 */
amdgpu_vm_bo_find(struct amdgpu_vm * vm,struct amdgpu_bo * bo)1189 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1190 struct amdgpu_bo *bo)
1191 {
1192 struct amdgpu_vm_bo_base *base;
1193
1194 for (base = bo->vm_bo; base; base = base->next) {
1195 if (base->vm != vm)
1196 continue;
1197
1198 return container_of(base, struct amdgpu_bo_va, base);
1199 }
1200 return NULL;
1201 }
1202
1203 /**
1204 * amdgpu_vm_map_gart - Resolve gart mapping of addr
1205 *
1206 * @pages_addr: optional DMA address to use for lookup
1207 * @addr: the unmapped addr
1208 *
1209 * Look up the physical address of the page that the pte resolves
1210 * to.
1211 *
1212 * Returns:
1213 * The pointer for the page table entry.
1214 */
amdgpu_vm_map_gart(const dma_addr_t * pages_addr,uint64_t addr)1215 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1216 {
1217 uint64_t result;
1218
1219 /* page table offset */
1220 result = pages_addr[addr >> PAGE_SHIFT];
1221
1222 /* in case cpu page size != gpu page size*/
1223 result |= addr & (~PAGE_MASK);
1224
1225 result &= 0xFFFFFFFFFFFFF000ULL;
1226
1227 return result;
1228 }
1229
1230 /**
1231 * amdgpu_vm_update_pde - update a single level in the hierarchy
1232 *
1233 * @params: parameters for the update
1234 * @vm: requested vm
1235 * @entry: entry to update
1236 *
1237 * Makes sure the requested entry in parent is up to date.
1238 */
amdgpu_vm_update_pde(struct amdgpu_vm_update_params * params,struct amdgpu_vm * vm,struct amdgpu_vm_pt * entry)1239 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params,
1240 struct amdgpu_vm *vm,
1241 struct amdgpu_vm_pt *entry)
1242 {
1243 struct amdgpu_vm_pt *parent = amdgpu_vm_pt_parent(entry);
1244 struct amdgpu_bo *bo = parent->base.bo, *pbo;
1245 uint64_t pde, pt, flags;
1246 unsigned level;
1247
1248 for (level = 0, pbo = bo->parent; pbo; ++level)
1249 pbo = pbo->parent;
1250
1251 level += params->adev->vm_manager.root_level;
1252 amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags);
1253 pde = (entry - parent->entries) * 8;
1254 return vm->update_funcs->update(params, bo, pde, pt, 1, 0, flags);
1255 }
1256
1257 /**
1258 * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1259 *
1260 * @adev: amdgpu_device pointer
1261 * @vm: related vm
1262 *
1263 * Mark all PD level as invalid after an error.
1264 */
amdgpu_vm_invalidate_pds(struct amdgpu_device * adev,struct amdgpu_vm * vm)1265 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1266 struct amdgpu_vm *vm)
1267 {
1268 struct amdgpu_vm_pt_cursor cursor;
1269 struct amdgpu_vm_pt *entry;
1270
1271 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry)
1272 if (entry->base.bo && !entry->base.moved)
1273 amdgpu_vm_bo_relocated(&entry->base);
1274 }
1275
1276 /**
1277 * amdgpu_vm_update_pdes - make sure that all directories are valid
1278 *
1279 * @adev: amdgpu_device pointer
1280 * @vm: requested vm
1281 * @immediate: submit immediately to the paging queue
1282 *
1283 * Makes sure all directories are up to date.
1284 *
1285 * Returns:
1286 * 0 for success, error for failure.
1287 */
amdgpu_vm_update_pdes(struct amdgpu_device * adev,struct amdgpu_vm * vm,bool immediate)1288 int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
1289 struct amdgpu_vm *vm, bool immediate)
1290 {
1291 struct amdgpu_vm_update_params params;
1292 int r;
1293
1294 if (list_empty(&vm->relocated))
1295 return 0;
1296
1297 memset(¶ms, 0, sizeof(params));
1298 params.adev = adev;
1299 params.vm = vm;
1300 params.immediate = immediate;
1301
1302 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT);
1303 if (r)
1304 return r;
1305
1306 while (!list_empty(&vm->relocated)) {
1307 struct amdgpu_vm_pt *entry;
1308
1309 entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt,
1310 base.vm_status);
1311 amdgpu_vm_bo_idle(&entry->base);
1312
1313 r = amdgpu_vm_update_pde(¶ms, vm, entry);
1314 if (r)
1315 goto error;
1316 }
1317
1318 r = vm->update_funcs->commit(¶ms, &vm->last_update);
1319 if (r)
1320 goto error;
1321 return 0;
1322
1323 error:
1324 amdgpu_vm_invalidate_pds(adev, vm);
1325 return r;
1326 }
1327
1328 /*
1329 * amdgpu_vm_update_flags - figure out flags for PTE updates
1330 *
1331 * Make sure to set the right flags for the PTEs at the desired level.
1332 */
amdgpu_vm_update_flags(struct amdgpu_vm_update_params * params,struct amdgpu_bo * bo,unsigned level,uint64_t pe,uint64_t addr,unsigned count,uint32_t incr,uint64_t flags)1333 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params,
1334 struct amdgpu_bo *bo, unsigned level,
1335 uint64_t pe, uint64_t addr,
1336 unsigned count, uint32_t incr,
1337 uint64_t flags)
1338
1339 {
1340 if (level != AMDGPU_VM_PTB) {
1341 flags |= AMDGPU_PDE_PTE;
1342 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1343
1344 } else if (params->adev->asic_type >= CHIP_VEGA10 &&
1345 !(flags & AMDGPU_PTE_VALID) &&
1346 !(flags & AMDGPU_PTE_PRT)) {
1347
1348 /* Workaround for fault priority problem on GMC9 */
1349 flags |= AMDGPU_PTE_EXECUTABLE;
1350 }
1351
1352 params->vm->update_funcs->update(params, bo, pe, addr, count, incr,
1353 flags);
1354 }
1355
1356 /**
1357 * amdgpu_vm_fragment - get fragment for PTEs
1358 *
1359 * @params: see amdgpu_vm_update_params definition
1360 * @start: first PTE to handle
1361 * @end: last PTE to handle
1362 * @flags: hw mapping flags
1363 * @frag: resulting fragment size
1364 * @frag_end: end of this fragment
1365 *
1366 * Returns the first possible fragment for the start and end address.
1367 */
amdgpu_vm_fragment(struct amdgpu_vm_update_params * params,uint64_t start,uint64_t end,uint64_t flags,unsigned int * frag,uint64_t * frag_end)1368 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params,
1369 uint64_t start, uint64_t end, uint64_t flags,
1370 unsigned int *frag, uint64_t *frag_end)
1371 {
1372 /**
1373 * The MC L1 TLB supports variable sized pages, based on a fragment
1374 * field in the PTE. When this field is set to a non-zero value, page
1375 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1376 * flags are considered valid for all PTEs within the fragment range
1377 * and corresponding mappings are assumed to be physically contiguous.
1378 *
1379 * The L1 TLB can store a single PTE for the whole fragment,
1380 * significantly increasing the space available for translation
1381 * caching. This leads to large improvements in throughput when the
1382 * TLB is under pressure.
1383 *
1384 * The L2 TLB distributes small and large fragments into two
1385 * asymmetric partitions. The large fragment cache is significantly
1386 * larger. Thus, we try to use large fragments wherever possible.
1387 * Userspace can support this by aligning virtual base address and
1388 * allocation size to the fragment size.
1389 *
1390 * Starting with Vega10 the fragment size only controls the L1. The L2
1391 * is now directly feed with small/huge/giant pages from the walker.
1392 */
1393 unsigned max_frag;
1394
1395 if (params->adev->asic_type < CHIP_VEGA10)
1396 max_frag = params->adev->vm_manager.fragment_size;
1397 else
1398 max_frag = 31;
1399
1400 /* system pages are non continuously */
1401 if (params->pages_addr) {
1402 *frag = 0;
1403 *frag_end = end;
1404 return;
1405 }
1406
1407 /* This intentionally wraps around if no bit is set */
1408 *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1409 if (*frag >= max_frag) {
1410 *frag = max_frag;
1411 *frag_end = end & ~((1ULL << max_frag) - 1);
1412 } else {
1413 *frag_end = start + (1 << *frag);
1414 }
1415 }
1416
1417 /**
1418 * amdgpu_vm_update_ptes - make sure that page tables are valid
1419 *
1420 * @params: see amdgpu_vm_update_params definition
1421 * @start: start of GPU address range
1422 * @end: end of GPU address range
1423 * @dst: destination address to map to, the next dst inside the function
1424 * @flags: mapping flags
1425 *
1426 * Update the page tables in the range @start - @end.
1427 *
1428 * Returns:
1429 * 0 for success, -EINVAL for failure.
1430 */
amdgpu_vm_update_ptes(struct amdgpu_vm_update_params * params,uint64_t start,uint64_t end,uint64_t dst,uint64_t flags)1431 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params,
1432 uint64_t start, uint64_t end,
1433 uint64_t dst, uint64_t flags)
1434 {
1435 struct amdgpu_device *adev = params->adev;
1436 struct amdgpu_vm_pt_cursor cursor;
1437 uint64_t frag_start = start, frag_end;
1438 unsigned int frag;
1439 int r;
1440
1441 /* figure out the initial fragment */
1442 amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
1443
1444 /* walk over the address space and update the PTs */
1445 amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1446 while (cursor.pfn < end) {
1447 unsigned shift, parent_shift, mask;
1448 uint64_t incr, entry_end, pe_start;
1449 struct amdgpu_bo *pt;
1450
1451 if (!params->unlocked) {
1452 /* make sure that the page tables covering the
1453 * address range are actually allocated
1454 */
1455 r = amdgpu_vm_alloc_pts(params->adev, params->vm,
1456 &cursor, params->immediate);
1457 if (r)
1458 return r;
1459 }
1460
1461 shift = amdgpu_vm_level_shift(adev, cursor.level);
1462 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1463 if (params->unlocked) {
1464 /* Unlocked updates are only allowed on the leaves */
1465 if (amdgpu_vm_pt_descendant(adev, &cursor))
1466 continue;
1467 } else if (adev->asic_type < CHIP_VEGA10 &&
1468 (flags & AMDGPU_PTE_VALID)) {
1469 /* No huge page support before GMC v9 */
1470 if (cursor.level != AMDGPU_VM_PTB) {
1471 if (!amdgpu_vm_pt_descendant(adev, &cursor))
1472 return -ENOENT;
1473 continue;
1474 }
1475 } else if (frag < shift) {
1476 /* We can't use this level when the fragment size is
1477 * smaller than the address shift. Go to the next
1478 * child entry and try again.
1479 */
1480 if (amdgpu_vm_pt_descendant(adev, &cursor))
1481 continue;
1482 } else if (frag >= parent_shift) {
1483 /* If the fragment size is even larger than the parent
1484 * shift we should go up one level and check it again.
1485 */
1486 if (!amdgpu_vm_pt_ancestor(&cursor))
1487 return -EINVAL;
1488 continue;
1489 }
1490
1491 pt = cursor.entry->base.bo;
1492 if (!pt) {
1493 /* We need all PDs and PTs for mapping something, */
1494 if (flags & AMDGPU_PTE_VALID)
1495 return -ENOENT;
1496
1497 /* but unmapping something can happen at a higher
1498 * level.
1499 */
1500 if (!amdgpu_vm_pt_ancestor(&cursor))
1501 return -EINVAL;
1502
1503 pt = cursor.entry->base.bo;
1504 shift = parent_shift;
1505 frag_end = max(frag_end, ALIGN(frag_start + 1,
1506 1ULL << shift));
1507 }
1508
1509 /* Looks good so far, calculate parameters for the update */
1510 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
1511 mask = amdgpu_vm_entries_mask(adev, cursor.level);
1512 pe_start = ((cursor.pfn >> shift) & mask) * 8;
1513 entry_end = ((uint64_t)mask + 1) << shift;
1514 entry_end += cursor.pfn & ~(entry_end - 1);
1515 entry_end = min(entry_end, end);
1516
1517 do {
1518 struct amdgpu_vm *vm = params->vm;
1519 uint64_t upd_end = min(entry_end, frag_end);
1520 unsigned nptes = (upd_end - frag_start) >> shift;
1521 uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag);
1522
1523 /* This can happen when we set higher level PDs to
1524 * silent to stop fault floods.
1525 */
1526 nptes = max(nptes, 1u);
1527
1528 trace_amdgpu_vm_update_ptes(params, frag_start, upd_end,
1529 nptes, dst, incr, upd_flags,
1530 vm->task_info.pid,
1531 vm->immediate.fence_context);
1532 amdgpu_vm_update_flags(params, pt, cursor.level,
1533 pe_start, dst, nptes, incr,
1534 upd_flags);
1535
1536 pe_start += nptes * 8;
1537 dst += nptes * incr;
1538
1539 frag_start = upd_end;
1540 if (frag_start >= frag_end) {
1541 /* figure out the next fragment */
1542 amdgpu_vm_fragment(params, frag_start, end,
1543 flags, &frag, &frag_end);
1544 if (frag < shift)
1545 break;
1546 }
1547 } while (frag_start < entry_end);
1548
1549 if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1550 /* Free all child entries.
1551 * Update the tables with the flags and addresses and free up subsequent
1552 * tables in the case of huge pages or freed up areas.
1553 * This is the maximum you can free, because all other page tables are not
1554 * completely covered by the range and so potentially still in use.
1555 */
1556 while (cursor.pfn < frag_start) {
1557 amdgpu_vm_free_pts(adev, params->vm, &cursor);
1558 amdgpu_vm_pt_next(adev, &cursor);
1559 }
1560
1561 } else if (frag >= shift) {
1562 /* or just move on to the next on the same level. */
1563 amdgpu_vm_pt_next(adev, &cursor);
1564 }
1565 }
1566
1567 return 0;
1568 }
1569
1570 /**
1571 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1572 *
1573 * @adev: amdgpu_device pointer
1574 * @vm: requested vm
1575 * @immediate: immediate submission in a page fault
1576 * @unlocked: unlocked invalidation during MM callback
1577 * @resv: fences we need to sync to
1578 * @start: start of mapped range
1579 * @last: last mapped entry
1580 * @flags: flags for the entries
1581 * @addr: addr to set the area to
1582 * @pages_addr: DMA addresses to use for mapping
1583 * @fence: optional resulting fence
1584 *
1585 * Fill in the page table entries between @start and @last.
1586 *
1587 * Returns:
1588 * 0 for success, -EINVAL for failure.
1589 */
amdgpu_vm_bo_update_mapping(struct amdgpu_device * adev,struct amdgpu_vm * vm,bool immediate,bool unlocked,struct dma_resv * resv,uint64_t start,uint64_t last,uint64_t flags,uint64_t addr,dma_addr_t * pages_addr,struct dma_fence ** fence)1590 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1591 struct amdgpu_vm *vm, bool immediate,
1592 bool unlocked, struct dma_resv *resv,
1593 uint64_t start, uint64_t last,
1594 uint64_t flags, uint64_t addr,
1595 dma_addr_t *pages_addr,
1596 struct dma_fence **fence)
1597 {
1598 struct amdgpu_vm_update_params params;
1599 enum amdgpu_sync_mode sync_mode;
1600 int r;
1601
1602 memset(¶ms, 0, sizeof(params));
1603 params.adev = adev;
1604 params.vm = vm;
1605 params.immediate = immediate;
1606 params.pages_addr = pages_addr;
1607 params.unlocked = unlocked;
1608
1609 /* Implicitly sync to command submissions in the same VM before
1610 * unmapping. Sync to moving fences before mapping.
1611 */
1612 if (!(flags & AMDGPU_PTE_VALID))
1613 sync_mode = AMDGPU_SYNC_EQ_OWNER;
1614 else
1615 sync_mode = AMDGPU_SYNC_EXPLICIT;
1616
1617 amdgpu_vm_eviction_lock(vm);
1618 if (vm->evicting) {
1619 r = -EBUSY;
1620 goto error_unlock;
1621 }
1622
1623 if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) {
1624 struct dma_fence *tmp = dma_fence_get_stub();
1625
1626 amdgpu_bo_fence(vm->root.base.bo, vm->last_unlocked, true);
1627 swap(vm->last_unlocked, tmp);
1628 dma_fence_put(tmp);
1629 }
1630
1631 r = vm->update_funcs->prepare(¶ms, resv, sync_mode);
1632 if (r)
1633 goto error_unlock;
1634
1635 r = amdgpu_vm_update_ptes(¶ms, start, last + 1, addr, flags);
1636 if (r)
1637 goto error_unlock;
1638
1639 r = vm->update_funcs->commit(¶ms, fence);
1640
1641 error_unlock:
1642 amdgpu_vm_eviction_unlock(vm);
1643 return r;
1644 }
1645
1646 /**
1647 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1648 *
1649 * @adev: amdgpu_device pointer
1650 * @resv: fences we need to sync to
1651 * @pages_addr: DMA addresses to use for mapping
1652 * @vm: requested vm
1653 * @mapping: mapped range and flags to use for the update
1654 * @flags: HW flags for the mapping
1655 * @bo_adev: amdgpu_device pointer that bo actually been allocated
1656 * @nodes: array of drm_mm_nodes with the MC addresses
1657 * @fence: optional resulting fence
1658 *
1659 * Split the mapping into smaller chunks so that each update fits
1660 * into a SDMA IB.
1661 *
1662 * Returns:
1663 * 0 for success, -EINVAL for failure.
1664 */
amdgpu_vm_bo_split_mapping(struct amdgpu_device * adev,struct dma_resv * resv,dma_addr_t * pages_addr,struct amdgpu_vm * vm,struct amdgpu_bo_va_mapping * mapping,uint64_t flags,struct amdgpu_device * bo_adev,struct drm_mm_node * nodes,struct dma_fence ** fence)1665 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1666 struct dma_resv *resv,
1667 dma_addr_t *pages_addr,
1668 struct amdgpu_vm *vm,
1669 struct amdgpu_bo_va_mapping *mapping,
1670 uint64_t flags,
1671 struct amdgpu_device *bo_adev,
1672 struct drm_mm_node *nodes,
1673 struct dma_fence **fence)
1674 {
1675 unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size;
1676 uint64_t pfn, start = mapping->start;
1677 int r;
1678
1679 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1680 * but in case of something, we filter the flags in first place
1681 */
1682 if (!(mapping->flags & AMDGPU_PTE_READABLE))
1683 flags &= ~AMDGPU_PTE_READABLE;
1684 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1685 flags &= ~AMDGPU_PTE_WRITEABLE;
1686
1687 /* Apply ASIC specific mapping flags */
1688 amdgpu_gmc_get_vm_pte(adev, mapping, &flags);
1689
1690 trace_amdgpu_vm_bo_update(mapping);
1691
1692 pfn = mapping->offset >> PAGE_SHIFT;
1693 if (nodes) {
1694 while (pfn >= nodes->size) {
1695 pfn -= nodes->size;
1696 ++nodes;
1697 }
1698 }
1699
1700 do {
1701 dma_addr_t *dma_addr = NULL;
1702 uint64_t max_entries;
1703 uint64_t addr, last;
1704
1705 max_entries = mapping->last - start + 1;
1706 if (nodes) {
1707 addr = nodes->start << PAGE_SHIFT;
1708 max_entries = min((nodes->size - pfn) *
1709 AMDGPU_GPU_PAGES_IN_CPU_PAGE, max_entries);
1710 } else {
1711 addr = 0;
1712 }
1713
1714 if (pages_addr) {
1715 uint64_t count;
1716
1717 for (count = 1;
1718 count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1719 ++count) {
1720 uint64_t idx = pfn + count;
1721
1722 if (pages_addr[idx] !=
1723 (pages_addr[idx - 1] + PAGE_SIZE))
1724 break;
1725 }
1726
1727 if (count < min_linear_pages) {
1728 addr = pfn << PAGE_SHIFT;
1729 dma_addr = pages_addr;
1730 } else {
1731 addr = pages_addr[pfn];
1732 max_entries = count *
1733 AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1734 }
1735
1736 } else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) {
1737 addr += bo_adev->vm_manager.vram_base_offset;
1738 addr += pfn << PAGE_SHIFT;
1739 }
1740
1741 last = start + max_entries - 1;
1742 r = amdgpu_vm_bo_update_mapping(adev, vm, false, false, resv,
1743 start, last, flags, addr,
1744 dma_addr, fence);
1745 if (r)
1746 return r;
1747
1748 pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1749 if (nodes && nodes->size == pfn) {
1750 pfn = 0;
1751 ++nodes;
1752 }
1753 start = last + 1;
1754
1755 } while (unlikely(start != mapping->last + 1));
1756
1757 return 0;
1758 }
1759
1760 /**
1761 * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1762 *
1763 * @adev: amdgpu_device pointer
1764 * @bo_va: requested BO and VM object
1765 * @clear: if true clear the entries
1766 *
1767 * Fill in the page table entries for @bo_va.
1768 *
1769 * Returns:
1770 * 0 for success, -EINVAL for failure.
1771 */
amdgpu_vm_bo_update(struct amdgpu_device * adev,struct amdgpu_bo_va * bo_va,bool clear)1772 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
1773 bool clear)
1774 {
1775 struct amdgpu_bo *bo = bo_va->base.bo;
1776 struct amdgpu_vm *vm = bo_va->base.vm;
1777 struct amdgpu_bo_va_mapping *mapping;
1778 dma_addr_t *pages_addr = NULL;
1779 struct ttm_resource *mem;
1780 struct drm_mm_node *nodes;
1781 struct dma_fence **last_update;
1782 struct dma_resv *resv;
1783 uint64_t flags;
1784 struct amdgpu_device *bo_adev = adev;
1785 int r;
1786
1787 if (clear || !bo) {
1788 mem = NULL;
1789 nodes = NULL;
1790 resv = vm->root.base.bo->tbo.base.resv;
1791 } else {
1792 struct drm_gem_object *obj = &bo->tbo.base;
1793 struct ttm_dma_tt *ttm;
1794
1795 resv = bo->tbo.base.resv;
1796 if (obj->import_attach && bo_va->is_xgmi) {
1797 struct dma_buf *dma_buf = obj->import_attach->dmabuf;
1798 struct drm_gem_object *gobj = dma_buf->priv;
1799 struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj);
1800
1801 if (abo->tbo.mem.mem_type == TTM_PL_VRAM)
1802 bo = gem_to_amdgpu_bo(gobj);
1803 }
1804 mem = &bo->tbo.mem;
1805 nodes = mem->mm_node;
1806 if (mem->mem_type == TTM_PL_TT) {
1807 ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm);
1808 pages_addr = ttm->dma_address;
1809 }
1810 }
1811
1812 if (bo) {
1813 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1814
1815 if (amdgpu_bo_encrypted(bo))
1816 flags |= AMDGPU_PTE_TMZ;
1817
1818 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1819 } else {
1820 flags = 0x0;
1821 }
1822
1823 if (clear || (bo && bo->tbo.base.resv ==
1824 vm->root.base.bo->tbo.base.resv))
1825 last_update = &vm->last_update;
1826 else
1827 last_update = &bo_va->last_pt_update;
1828
1829 if (!clear && bo_va->base.moved) {
1830 bo_va->base.moved = false;
1831 list_splice_init(&bo_va->valids, &bo_va->invalids);
1832
1833 } else if (bo_va->cleared != clear) {
1834 list_splice_init(&bo_va->valids, &bo_va->invalids);
1835 }
1836
1837 list_for_each_entry(mapping, &bo_va->invalids, list) {
1838 r = amdgpu_vm_bo_split_mapping(adev, resv, pages_addr, vm,
1839 mapping, flags, bo_adev, nodes,
1840 last_update);
1841 if (r)
1842 return r;
1843 }
1844
1845 /* If the BO is not in its preferred location add it back to
1846 * the evicted list so that it gets validated again on the
1847 * next command submission.
1848 */
1849 if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
1850 uint32_t mem_type = bo->tbo.mem.mem_type;
1851
1852 if (!(bo->preferred_domains &
1853 amdgpu_mem_type_to_domain(mem_type)))
1854 amdgpu_vm_bo_evicted(&bo_va->base);
1855 else
1856 amdgpu_vm_bo_idle(&bo_va->base);
1857 } else {
1858 amdgpu_vm_bo_done(&bo_va->base);
1859 }
1860
1861 list_splice_init(&bo_va->invalids, &bo_va->valids);
1862 bo_va->cleared = clear;
1863
1864 if (trace_amdgpu_vm_bo_mapping_enabled()) {
1865 list_for_each_entry(mapping, &bo_va->valids, list)
1866 trace_amdgpu_vm_bo_mapping(mapping);
1867 }
1868
1869 return 0;
1870 }
1871
1872 /**
1873 * amdgpu_vm_update_prt_state - update the global PRT state
1874 *
1875 * @adev: amdgpu_device pointer
1876 */
amdgpu_vm_update_prt_state(struct amdgpu_device * adev)1877 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1878 {
1879 unsigned long flags;
1880 bool enable;
1881
1882 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1883 enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1884 adev->gmc.gmc_funcs->set_prt(adev, enable);
1885 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1886 }
1887
1888 /**
1889 * amdgpu_vm_prt_get - add a PRT user
1890 *
1891 * @adev: amdgpu_device pointer
1892 */
amdgpu_vm_prt_get(struct amdgpu_device * adev)1893 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1894 {
1895 if (!adev->gmc.gmc_funcs->set_prt)
1896 return;
1897
1898 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1899 amdgpu_vm_update_prt_state(adev);
1900 }
1901
1902 /**
1903 * amdgpu_vm_prt_put - drop a PRT user
1904 *
1905 * @adev: amdgpu_device pointer
1906 */
amdgpu_vm_prt_put(struct amdgpu_device * adev)1907 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1908 {
1909 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1910 amdgpu_vm_update_prt_state(adev);
1911 }
1912
1913 /**
1914 * amdgpu_vm_prt_cb - callback for updating the PRT status
1915 *
1916 * @fence: fence for the callback
1917 * @_cb: the callback function
1918 */
amdgpu_vm_prt_cb(struct dma_fence * fence,struct dma_fence_cb * _cb)1919 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1920 {
1921 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1922
1923 amdgpu_vm_prt_put(cb->adev);
1924 kfree(cb);
1925 }
1926
1927 /**
1928 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1929 *
1930 * @adev: amdgpu_device pointer
1931 * @fence: fence for the callback
1932 */
amdgpu_vm_add_prt_cb(struct amdgpu_device * adev,struct dma_fence * fence)1933 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1934 struct dma_fence *fence)
1935 {
1936 struct amdgpu_prt_cb *cb;
1937
1938 if (!adev->gmc.gmc_funcs->set_prt)
1939 return;
1940
1941 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1942 if (!cb) {
1943 /* Last resort when we are OOM */
1944 if (fence)
1945 dma_fence_wait(fence, false);
1946
1947 amdgpu_vm_prt_put(adev);
1948 } else {
1949 cb->adev = adev;
1950 if (!fence || dma_fence_add_callback(fence, &cb->cb,
1951 amdgpu_vm_prt_cb))
1952 amdgpu_vm_prt_cb(fence, &cb->cb);
1953 }
1954 }
1955
1956 /**
1957 * amdgpu_vm_free_mapping - free a mapping
1958 *
1959 * @adev: amdgpu_device pointer
1960 * @vm: requested vm
1961 * @mapping: mapping to be freed
1962 * @fence: fence of the unmap operation
1963 *
1964 * Free a mapping and make sure we decrease the PRT usage count if applicable.
1965 */
amdgpu_vm_free_mapping(struct amdgpu_device * adev,struct amdgpu_vm * vm,struct amdgpu_bo_va_mapping * mapping,struct dma_fence * fence)1966 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1967 struct amdgpu_vm *vm,
1968 struct amdgpu_bo_va_mapping *mapping,
1969 struct dma_fence *fence)
1970 {
1971 if (mapping->flags & AMDGPU_PTE_PRT)
1972 amdgpu_vm_add_prt_cb(adev, fence);
1973 kfree(mapping);
1974 }
1975
1976 /**
1977 * amdgpu_vm_prt_fini - finish all prt mappings
1978 *
1979 * @adev: amdgpu_device pointer
1980 * @vm: requested vm
1981 *
1982 * Register a cleanup callback to disable PRT support after VM dies.
1983 */
amdgpu_vm_prt_fini(struct amdgpu_device * adev,struct amdgpu_vm * vm)1984 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1985 {
1986 struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
1987 struct dma_fence *excl, **shared;
1988 unsigned i, shared_count;
1989 int r;
1990
1991 r = dma_resv_get_fences_rcu(resv, &excl,
1992 &shared_count, &shared);
1993 if (r) {
1994 /* Not enough memory to grab the fence list, as last resort
1995 * block for all the fences to complete.
1996 */
1997 dma_resv_wait_timeout_rcu(resv, true, false,
1998 MAX_SCHEDULE_TIMEOUT);
1999 return;
2000 }
2001
2002 /* Add a callback for each fence in the reservation object */
2003 amdgpu_vm_prt_get(adev);
2004 amdgpu_vm_add_prt_cb(adev, excl);
2005
2006 for (i = 0; i < shared_count; ++i) {
2007 amdgpu_vm_prt_get(adev);
2008 amdgpu_vm_add_prt_cb(adev, shared[i]);
2009 }
2010
2011 kfree(shared);
2012 }
2013
2014 /**
2015 * amdgpu_vm_clear_freed - clear freed BOs in the PT
2016 *
2017 * @adev: amdgpu_device pointer
2018 * @vm: requested vm
2019 * @fence: optional resulting fence (unchanged if no work needed to be done
2020 * or if an error occurred)
2021 *
2022 * Make sure all freed BOs are cleared in the PT.
2023 * PTs have to be reserved and mutex must be locked!
2024 *
2025 * Returns:
2026 * 0 for success.
2027 *
2028 */
amdgpu_vm_clear_freed(struct amdgpu_device * adev,struct amdgpu_vm * vm,struct dma_fence ** fence)2029 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
2030 struct amdgpu_vm *vm,
2031 struct dma_fence **fence)
2032 {
2033 struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
2034 struct amdgpu_bo_va_mapping *mapping;
2035 uint64_t init_pte_value = 0;
2036 struct dma_fence *f = NULL;
2037 int r;
2038
2039 while (!list_empty(&vm->freed)) {
2040 mapping = list_first_entry(&vm->freed,
2041 struct amdgpu_bo_va_mapping, list);
2042 list_del(&mapping->list);
2043
2044 if (vm->pte_support_ats &&
2045 mapping->start < AMDGPU_GMC_HOLE_START)
2046 init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
2047
2048 r = amdgpu_vm_bo_update_mapping(adev, vm, false, false, resv,
2049 mapping->start, mapping->last,
2050 init_pte_value, 0, NULL, &f);
2051 amdgpu_vm_free_mapping(adev, vm, mapping, f);
2052 if (r) {
2053 dma_fence_put(f);
2054 return r;
2055 }
2056 }
2057
2058 if (fence && f) {
2059 dma_fence_put(*fence);
2060 *fence = f;
2061 } else {
2062 dma_fence_put(f);
2063 }
2064
2065 return 0;
2066
2067 }
2068
2069 /**
2070 * amdgpu_vm_handle_moved - handle moved BOs in the PT
2071 *
2072 * @adev: amdgpu_device pointer
2073 * @vm: requested vm
2074 *
2075 * Make sure all BOs which are moved are updated in the PTs.
2076 *
2077 * Returns:
2078 * 0 for success.
2079 *
2080 * PTs have to be reserved!
2081 */
amdgpu_vm_handle_moved(struct amdgpu_device * adev,struct amdgpu_vm * vm)2082 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
2083 struct amdgpu_vm *vm)
2084 {
2085 struct amdgpu_bo_va *bo_va, *tmp;
2086 struct dma_resv *resv;
2087 bool clear;
2088 int r;
2089
2090 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
2091 /* Per VM BOs never need to bo cleared in the page tables */
2092 r = amdgpu_vm_bo_update(adev, bo_va, false);
2093 if (r)
2094 return r;
2095 }
2096
2097 spin_lock(&vm->invalidated_lock);
2098 while (!list_empty(&vm->invalidated)) {
2099 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
2100 base.vm_status);
2101 resv = bo_va->base.bo->tbo.base.resv;
2102 spin_unlock(&vm->invalidated_lock);
2103
2104 /* Try to reserve the BO to avoid clearing its ptes */
2105 if (!amdgpu_vm_debug && dma_resv_trylock(resv))
2106 clear = false;
2107 /* Somebody else is using the BO right now */
2108 else
2109 clear = true;
2110
2111 r = amdgpu_vm_bo_update(adev, bo_va, clear);
2112 if (r)
2113 return r;
2114
2115 if (!clear)
2116 dma_resv_unlock(resv);
2117 spin_lock(&vm->invalidated_lock);
2118 }
2119 spin_unlock(&vm->invalidated_lock);
2120
2121 return 0;
2122 }
2123
2124 /**
2125 * amdgpu_vm_bo_add - add a bo to a specific vm
2126 *
2127 * @adev: amdgpu_device pointer
2128 * @vm: requested vm
2129 * @bo: amdgpu buffer object
2130 *
2131 * Add @bo into the requested vm.
2132 * Add @bo to the list of bos associated with the vm
2133 *
2134 * Returns:
2135 * Newly added bo_va or NULL for failure
2136 *
2137 * Object has to be reserved!
2138 */
amdgpu_vm_bo_add(struct amdgpu_device * adev,struct amdgpu_vm * vm,struct amdgpu_bo * bo)2139 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2140 struct amdgpu_vm *vm,
2141 struct amdgpu_bo *bo)
2142 {
2143 struct amdgpu_bo_va *bo_va;
2144
2145 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2146 if (bo_va == NULL) {
2147 return NULL;
2148 }
2149 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
2150
2151 bo_va->ref_count = 1;
2152 INIT_LIST_HEAD(&bo_va->valids);
2153 INIT_LIST_HEAD(&bo_va->invalids);
2154
2155 if (!bo)
2156 return bo_va;
2157
2158 if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) {
2159 bo_va->is_xgmi = true;
2160 /* Power up XGMI if it can be potentially used */
2161 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20);
2162 }
2163
2164 return bo_va;
2165 }
2166
2167
2168 /**
2169 * amdgpu_vm_bo_insert_mapping - insert a new mapping
2170 *
2171 * @adev: amdgpu_device pointer
2172 * @bo_va: bo_va to store the address
2173 * @mapping: the mapping to insert
2174 *
2175 * Insert a new mapping into all structures.
2176 */
amdgpu_vm_bo_insert_map(struct amdgpu_device * adev,struct amdgpu_bo_va * bo_va,struct amdgpu_bo_va_mapping * mapping)2177 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2178 struct amdgpu_bo_va *bo_va,
2179 struct amdgpu_bo_va_mapping *mapping)
2180 {
2181 struct amdgpu_vm *vm = bo_va->base.vm;
2182 struct amdgpu_bo *bo = bo_va->base.bo;
2183
2184 mapping->bo_va = bo_va;
2185 list_add(&mapping->list, &bo_va->invalids);
2186 amdgpu_vm_it_insert(mapping, &vm->va);
2187
2188 if (mapping->flags & AMDGPU_PTE_PRT)
2189 amdgpu_vm_prt_get(adev);
2190
2191 if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv &&
2192 !bo_va->base.moved) {
2193 list_move(&bo_va->base.vm_status, &vm->moved);
2194 }
2195 trace_amdgpu_vm_bo_map(bo_va, mapping);
2196 }
2197
2198 /**
2199 * amdgpu_vm_bo_map - map bo inside a vm
2200 *
2201 * @adev: amdgpu_device pointer
2202 * @bo_va: bo_va to store the address
2203 * @saddr: where to map the BO
2204 * @offset: requested offset in the BO
2205 * @size: BO size in bytes
2206 * @flags: attributes of pages (read/write/valid/etc.)
2207 *
2208 * Add a mapping of the BO at the specefied addr into the VM.
2209 *
2210 * Returns:
2211 * 0 for success, error for failure.
2212 *
2213 * Object has to be reserved and unreserved outside!
2214 */
amdgpu_vm_bo_map(struct amdgpu_device * adev,struct amdgpu_bo_va * bo_va,uint64_t saddr,uint64_t offset,uint64_t size,uint64_t flags)2215 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2216 struct amdgpu_bo_va *bo_va,
2217 uint64_t saddr, uint64_t offset,
2218 uint64_t size, uint64_t flags)
2219 {
2220 struct amdgpu_bo_va_mapping *mapping, *tmp;
2221 struct amdgpu_bo *bo = bo_va->base.bo;
2222 struct amdgpu_vm *vm = bo_va->base.vm;
2223 uint64_t eaddr;
2224
2225 /* validate the parameters */
2226 if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK ||
2227 size == 0 || size & ~PAGE_MASK)
2228 return -EINVAL;
2229
2230 /* make sure object fit at this offset */
2231 eaddr = saddr + size - 1;
2232 if (saddr >= eaddr ||
2233 (bo && offset + size > amdgpu_bo_size(bo)) ||
2234 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2235 return -EINVAL;
2236
2237 saddr /= AMDGPU_GPU_PAGE_SIZE;
2238 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2239
2240 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2241 if (tmp) {
2242 /* bo and tmp overlap, invalid addr */
2243 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2244 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2245 tmp->start, tmp->last + 1);
2246 return -EINVAL;
2247 }
2248
2249 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2250 if (!mapping)
2251 return -ENOMEM;
2252
2253 mapping->start = saddr;
2254 mapping->last = eaddr;
2255 mapping->offset = offset;
2256 mapping->flags = flags;
2257
2258 amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2259
2260 return 0;
2261 }
2262
2263 /**
2264 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2265 *
2266 * @adev: amdgpu_device pointer
2267 * @bo_va: bo_va to store the address
2268 * @saddr: where to map the BO
2269 * @offset: requested offset in the BO
2270 * @size: BO size in bytes
2271 * @flags: attributes of pages (read/write/valid/etc.)
2272 *
2273 * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2274 * mappings as we do so.
2275 *
2276 * Returns:
2277 * 0 for success, error for failure.
2278 *
2279 * Object has to be reserved and unreserved outside!
2280 */
amdgpu_vm_bo_replace_map(struct amdgpu_device * adev,struct amdgpu_bo_va * bo_va,uint64_t saddr,uint64_t offset,uint64_t size,uint64_t flags)2281 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2282 struct amdgpu_bo_va *bo_va,
2283 uint64_t saddr, uint64_t offset,
2284 uint64_t size, uint64_t flags)
2285 {
2286 struct amdgpu_bo_va_mapping *mapping;
2287 struct amdgpu_bo *bo = bo_va->base.bo;
2288 uint64_t eaddr;
2289 int r;
2290
2291 /* validate the parameters */
2292 if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK ||
2293 size == 0 || size & ~PAGE_MASK)
2294 return -EINVAL;
2295
2296 /* make sure object fit at this offset */
2297 eaddr = saddr + size - 1;
2298 if (saddr >= eaddr ||
2299 (bo && offset + size > amdgpu_bo_size(bo)) ||
2300 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2301 return -EINVAL;
2302
2303 /* Allocate all the needed memory */
2304 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2305 if (!mapping)
2306 return -ENOMEM;
2307
2308 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2309 if (r) {
2310 kfree(mapping);
2311 return r;
2312 }
2313
2314 saddr /= AMDGPU_GPU_PAGE_SIZE;
2315 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2316
2317 mapping->start = saddr;
2318 mapping->last = eaddr;
2319 mapping->offset = offset;
2320 mapping->flags = flags;
2321
2322 amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2323
2324 return 0;
2325 }
2326
2327 /**
2328 * amdgpu_vm_bo_unmap - remove bo mapping from vm
2329 *
2330 * @adev: amdgpu_device pointer
2331 * @bo_va: bo_va to remove the address from
2332 * @saddr: where to the BO is mapped
2333 *
2334 * Remove a mapping of the BO at the specefied addr from the VM.
2335 *
2336 * Returns:
2337 * 0 for success, error for failure.
2338 *
2339 * Object has to be reserved and unreserved outside!
2340 */
amdgpu_vm_bo_unmap(struct amdgpu_device * adev,struct amdgpu_bo_va * bo_va,uint64_t saddr)2341 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2342 struct amdgpu_bo_va *bo_va,
2343 uint64_t saddr)
2344 {
2345 struct amdgpu_bo_va_mapping *mapping;
2346 struct amdgpu_vm *vm = bo_va->base.vm;
2347 bool valid = true;
2348
2349 saddr /= AMDGPU_GPU_PAGE_SIZE;
2350
2351 list_for_each_entry(mapping, &bo_va->valids, list) {
2352 if (mapping->start == saddr)
2353 break;
2354 }
2355
2356 if (&mapping->list == &bo_va->valids) {
2357 valid = false;
2358
2359 list_for_each_entry(mapping, &bo_va->invalids, list) {
2360 if (mapping->start == saddr)
2361 break;
2362 }
2363
2364 if (&mapping->list == &bo_va->invalids)
2365 return -ENOENT;
2366 }
2367
2368 list_del(&mapping->list);
2369 amdgpu_vm_it_remove(mapping, &vm->va);
2370 mapping->bo_va = NULL;
2371 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2372
2373 if (valid)
2374 list_add(&mapping->list, &vm->freed);
2375 else
2376 amdgpu_vm_free_mapping(adev, vm, mapping,
2377 bo_va->last_pt_update);
2378
2379 return 0;
2380 }
2381
2382 /**
2383 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2384 *
2385 * @adev: amdgpu_device pointer
2386 * @vm: VM structure to use
2387 * @saddr: start of the range
2388 * @size: size of the range
2389 *
2390 * Remove all mappings in a range, split them as appropriate.
2391 *
2392 * Returns:
2393 * 0 for success, error for failure.
2394 */
amdgpu_vm_bo_clear_mappings(struct amdgpu_device * adev,struct amdgpu_vm * vm,uint64_t saddr,uint64_t size)2395 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2396 struct amdgpu_vm *vm,
2397 uint64_t saddr, uint64_t size)
2398 {
2399 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2400 LIST_HEAD(removed);
2401 uint64_t eaddr;
2402
2403 eaddr = saddr + size - 1;
2404 saddr /= AMDGPU_GPU_PAGE_SIZE;
2405 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2406
2407 /* Allocate all the needed memory */
2408 before = kzalloc(sizeof(*before), GFP_KERNEL);
2409 if (!before)
2410 return -ENOMEM;
2411 INIT_LIST_HEAD(&before->list);
2412
2413 after = kzalloc(sizeof(*after), GFP_KERNEL);
2414 if (!after) {
2415 kfree(before);
2416 return -ENOMEM;
2417 }
2418 INIT_LIST_HEAD(&after->list);
2419
2420 /* Now gather all removed mappings */
2421 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2422 while (tmp) {
2423 /* Remember mapping split at the start */
2424 if (tmp->start < saddr) {
2425 before->start = tmp->start;
2426 before->last = saddr - 1;
2427 before->offset = tmp->offset;
2428 before->flags = tmp->flags;
2429 before->bo_va = tmp->bo_va;
2430 list_add(&before->list, &tmp->bo_va->invalids);
2431 }
2432
2433 /* Remember mapping split at the end */
2434 if (tmp->last > eaddr) {
2435 after->start = eaddr + 1;
2436 after->last = tmp->last;
2437 after->offset = tmp->offset;
2438 after->offset += (after->start - tmp->start) << PAGE_SHIFT;
2439 after->flags = tmp->flags;
2440 after->bo_va = tmp->bo_va;
2441 list_add(&after->list, &tmp->bo_va->invalids);
2442 }
2443
2444 list_del(&tmp->list);
2445 list_add(&tmp->list, &removed);
2446
2447 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2448 }
2449
2450 /* And free them up */
2451 list_for_each_entry_safe(tmp, next, &removed, list) {
2452 amdgpu_vm_it_remove(tmp, &vm->va);
2453 list_del(&tmp->list);
2454
2455 if (tmp->start < saddr)
2456 tmp->start = saddr;
2457 if (tmp->last > eaddr)
2458 tmp->last = eaddr;
2459
2460 tmp->bo_va = NULL;
2461 list_add(&tmp->list, &vm->freed);
2462 trace_amdgpu_vm_bo_unmap(NULL, tmp);
2463 }
2464
2465 /* Insert partial mapping before the range */
2466 if (!list_empty(&before->list)) {
2467 amdgpu_vm_it_insert(before, &vm->va);
2468 if (before->flags & AMDGPU_PTE_PRT)
2469 amdgpu_vm_prt_get(adev);
2470 } else {
2471 kfree(before);
2472 }
2473
2474 /* Insert partial mapping after the range */
2475 if (!list_empty(&after->list)) {
2476 amdgpu_vm_it_insert(after, &vm->va);
2477 if (after->flags & AMDGPU_PTE_PRT)
2478 amdgpu_vm_prt_get(adev);
2479 } else {
2480 kfree(after);
2481 }
2482
2483 return 0;
2484 }
2485
2486 /**
2487 * amdgpu_vm_bo_lookup_mapping - find mapping by address
2488 *
2489 * @vm: the requested VM
2490 * @addr: the address
2491 *
2492 * Find a mapping by it's address.
2493 *
2494 * Returns:
2495 * The amdgpu_bo_va_mapping matching for addr or NULL
2496 *
2497 */
amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm * vm,uint64_t addr)2498 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2499 uint64_t addr)
2500 {
2501 return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2502 }
2503
2504 /**
2505 * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2506 *
2507 * @vm: the requested vm
2508 * @ticket: CS ticket
2509 *
2510 * Trace all mappings of BOs reserved during a command submission.
2511 */
amdgpu_vm_bo_trace_cs(struct amdgpu_vm * vm,struct ww_acquire_ctx * ticket)2512 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2513 {
2514 struct amdgpu_bo_va_mapping *mapping;
2515
2516 if (!trace_amdgpu_vm_bo_cs_enabled())
2517 return;
2518
2519 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2520 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2521 if (mapping->bo_va && mapping->bo_va->base.bo) {
2522 struct amdgpu_bo *bo;
2523
2524 bo = mapping->bo_va->base.bo;
2525 if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
2526 ticket)
2527 continue;
2528 }
2529
2530 trace_amdgpu_vm_bo_cs(mapping);
2531 }
2532 }
2533
2534 /**
2535 * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2536 *
2537 * @adev: amdgpu_device pointer
2538 * @bo_va: requested bo_va
2539 *
2540 * Remove @bo_va->bo from the requested vm.
2541 *
2542 * Object have to be reserved!
2543 */
amdgpu_vm_bo_rmv(struct amdgpu_device * adev,struct amdgpu_bo_va * bo_va)2544 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2545 struct amdgpu_bo_va *bo_va)
2546 {
2547 struct amdgpu_bo_va_mapping *mapping, *next;
2548 struct amdgpu_bo *bo = bo_va->base.bo;
2549 struct amdgpu_vm *vm = bo_va->base.vm;
2550 struct amdgpu_vm_bo_base **base;
2551
2552 if (bo) {
2553 if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2554 vm->bulk_moveable = false;
2555
2556 for (base = &bo_va->base.bo->vm_bo; *base;
2557 base = &(*base)->next) {
2558 if (*base != &bo_va->base)
2559 continue;
2560
2561 *base = bo_va->base.next;
2562 break;
2563 }
2564 }
2565
2566 spin_lock(&vm->invalidated_lock);
2567 list_del(&bo_va->base.vm_status);
2568 spin_unlock(&vm->invalidated_lock);
2569
2570 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2571 list_del(&mapping->list);
2572 amdgpu_vm_it_remove(mapping, &vm->va);
2573 mapping->bo_va = NULL;
2574 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2575 list_add(&mapping->list, &vm->freed);
2576 }
2577 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2578 list_del(&mapping->list);
2579 amdgpu_vm_it_remove(mapping, &vm->va);
2580 amdgpu_vm_free_mapping(adev, vm, mapping,
2581 bo_va->last_pt_update);
2582 }
2583
2584 dma_fence_put(bo_va->last_pt_update);
2585
2586 if (bo && bo_va->is_xgmi)
2587 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN);
2588
2589 kfree(bo_va);
2590 }
2591
2592 /**
2593 * amdgpu_vm_evictable - check if we can evict a VM
2594 *
2595 * @bo: A page table of the VM.
2596 *
2597 * Check if it is possible to evict a VM.
2598 */
amdgpu_vm_evictable(struct amdgpu_bo * bo)2599 bool amdgpu_vm_evictable(struct amdgpu_bo *bo)
2600 {
2601 struct amdgpu_vm_bo_base *bo_base = bo->vm_bo;
2602
2603 /* Page tables of a destroyed VM can go away immediately */
2604 if (!bo_base || !bo_base->vm)
2605 return true;
2606
2607 /* Don't evict VM page tables while they are busy */
2608 if (!dma_resv_test_signaled_rcu(bo->tbo.base.resv, true))
2609 return false;
2610
2611 /* Try to block ongoing updates */
2612 if (!amdgpu_vm_eviction_trylock(bo_base->vm))
2613 return false;
2614
2615 /* Don't evict VM page tables while they are updated */
2616 if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) {
2617 amdgpu_vm_eviction_unlock(bo_base->vm);
2618 return false;
2619 }
2620
2621 bo_base->vm->evicting = true;
2622 amdgpu_vm_eviction_unlock(bo_base->vm);
2623 return true;
2624 }
2625
2626 /**
2627 * amdgpu_vm_bo_invalidate - mark the bo as invalid
2628 *
2629 * @adev: amdgpu_device pointer
2630 * @bo: amdgpu buffer object
2631 * @evicted: is the BO evicted
2632 *
2633 * Mark @bo as invalid.
2634 */
amdgpu_vm_bo_invalidate(struct amdgpu_device * adev,struct amdgpu_bo * bo,bool evicted)2635 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2636 struct amdgpu_bo *bo, bool evicted)
2637 {
2638 struct amdgpu_vm_bo_base *bo_base;
2639
2640 /* shadow bo doesn't have bo base, its validation needs its parent */
2641 if (bo->parent && bo->parent->shadow == bo)
2642 bo = bo->parent;
2643
2644 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2645 struct amdgpu_vm *vm = bo_base->vm;
2646
2647 if (evicted && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
2648 amdgpu_vm_bo_evicted(bo_base);
2649 continue;
2650 }
2651
2652 if (bo_base->moved)
2653 continue;
2654 bo_base->moved = true;
2655
2656 if (bo->tbo.type == ttm_bo_type_kernel)
2657 amdgpu_vm_bo_relocated(bo_base);
2658 else if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2659 amdgpu_vm_bo_moved(bo_base);
2660 else
2661 amdgpu_vm_bo_invalidated(bo_base);
2662 }
2663 }
2664
2665 /**
2666 * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2667 *
2668 * @vm_size: VM size
2669 *
2670 * Returns:
2671 * VM page table as power of two
2672 */
amdgpu_vm_get_block_size(uint64_t vm_size)2673 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2674 {
2675 /* Total bits covered by PD + PTs */
2676 unsigned bits = ilog2(vm_size) + 18;
2677
2678 /* Make sure the PD is 4K in size up to 8GB address space.
2679 Above that split equal between PD and PTs */
2680 if (vm_size <= 8)
2681 return (bits - 9);
2682 else
2683 return ((bits + 3) / 2);
2684 }
2685
2686 /**
2687 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2688 *
2689 * @adev: amdgpu_device pointer
2690 * @min_vm_size: the minimum vm size in GB if it's set auto
2691 * @fragment_size_default: Default PTE fragment size
2692 * @max_level: max VMPT level
2693 * @max_bits: max address space size in bits
2694 *
2695 */
amdgpu_vm_adjust_size(struct amdgpu_device * adev,uint32_t min_vm_size,uint32_t fragment_size_default,unsigned max_level,unsigned max_bits)2696 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2697 uint32_t fragment_size_default, unsigned max_level,
2698 unsigned max_bits)
2699 {
2700 unsigned int max_size = 1 << (max_bits - 30);
2701 unsigned int vm_size;
2702 uint64_t tmp;
2703
2704 /* adjust vm size first */
2705 if (amdgpu_vm_size != -1) {
2706 vm_size = amdgpu_vm_size;
2707 if (vm_size > max_size) {
2708 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2709 amdgpu_vm_size, max_size);
2710 vm_size = max_size;
2711 }
2712 } else {
2713 struct sysinfo si;
2714 unsigned int phys_ram_gb;
2715
2716 /* Optimal VM size depends on the amount of physical
2717 * RAM available. Underlying requirements and
2718 * assumptions:
2719 *
2720 * - Need to map system memory and VRAM from all GPUs
2721 * - VRAM from other GPUs not known here
2722 * - Assume VRAM <= system memory
2723 * - On GFX8 and older, VM space can be segmented for
2724 * different MTYPEs
2725 * - Need to allow room for fragmentation, guard pages etc.
2726 *
2727 * This adds up to a rough guess of system memory x3.
2728 * Round up to power of two to maximize the available
2729 * VM size with the given page table size.
2730 */
2731 si_meminfo(&si);
2732 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2733 (1 << 30) - 1) >> 30;
2734 vm_size = roundup_pow_of_two(
2735 min(max(phys_ram_gb * 3, min_vm_size), max_size));
2736 }
2737
2738 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2739
2740 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2741 if (amdgpu_vm_block_size != -1)
2742 tmp >>= amdgpu_vm_block_size - 9;
2743 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2744 adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2745 switch (adev->vm_manager.num_level) {
2746 case 3:
2747 adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2748 break;
2749 case 2:
2750 adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2751 break;
2752 case 1:
2753 adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2754 break;
2755 default:
2756 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2757 }
2758 /* block size depends on vm size and hw setup*/
2759 if (amdgpu_vm_block_size != -1)
2760 adev->vm_manager.block_size =
2761 min((unsigned)amdgpu_vm_block_size, max_bits
2762 - AMDGPU_GPU_PAGE_SHIFT
2763 - 9 * adev->vm_manager.num_level);
2764 else if (adev->vm_manager.num_level > 1)
2765 adev->vm_manager.block_size = 9;
2766 else
2767 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2768
2769 if (amdgpu_vm_fragment_size == -1)
2770 adev->vm_manager.fragment_size = fragment_size_default;
2771 else
2772 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2773
2774 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2775 vm_size, adev->vm_manager.num_level + 1,
2776 adev->vm_manager.block_size,
2777 adev->vm_manager.fragment_size);
2778 }
2779
2780 /**
2781 * amdgpu_vm_wait_idle - wait for the VM to become idle
2782 *
2783 * @vm: VM object to wait for
2784 * @timeout: timeout to wait for VM to become idle
2785 */
amdgpu_vm_wait_idle(struct amdgpu_vm * vm,long timeout)2786 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2787 {
2788 timeout = dma_resv_wait_timeout_rcu(vm->root.base.bo->tbo.base.resv,
2789 true, true, timeout);
2790 if (timeout <= 0)
2791 return timeout;
2792
2793 return dma_fence_wait_timeout(vm->last_unlocked, true, timeout);
2794 }
2795
2796 /**
2797 * amdgpu_vm_init - initialize a vm instance
2798 *
2799 * @adev: amdgpu_device pointer
2800 * @vm: requested vm
2801 * @vm_context: Indicates if it GFX or Compute context
2802 * @pasid: Process address space identifier
2803 *
2804 * Init @vm fields.
2805 *
2806 * Returns:
2807 * 0 for success, error for failure.
2808 */
amdgpu_vm_init(struct amdgpu_device * adev,struct amdgpu_vm * vm,int vm_context,u32 pasid)2809 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2810 int vm_context, u32 pasid)
2811 {
2812 struct amdgpu_bo_param bp;
2813 struct amdgpu_bo *root;
2814 int r, i;
2815
2816 vm->va = RB_ROOT_CACHED;
2817 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2818 vm->reserved_vmid[i] = NULL;
2819 INIT_LIST_HEAD(&vm->evicted);
2820 INIT_LIST_HEAD(&vm->relocated);
2821 INIT_LIST_HEAD(&vm->moved);
2822 INIT_LIST_HEAD(&vm->idle);
2823 INIT_LIST_HEAD(&vm->invalidated);
2824 spin_lock_init(&vm->invalidated_lock);
2825 INIT_LIST_HEAD(&vm->freed);
2826
2827
2828 /* create scheduler entities for page table updates */
2829 r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL,
2830 adev->vm_manager.vm_pte_scheds,
2831 adev->vm_manager.vm_pte_num_scheds, NULL);
2832 if (r)
2833 return r;
2834
2835 r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL,
2836 adev->vm_manager.vm_pte_scheds,
2837 adev->vm_manager.vm_pte_num_scheds, NULL);
2838 if (r)
2839 goto error_free_immediate;
2840
2841 vm->pte_support_ats = false;
2842 vm->is_compute_context = false;
2843
2844 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) {
2845 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2846 AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2847
2848 if (adev->asic_type == CHIP_RAVEN)
2849 vm->pte_support_ats = true;
2850 } else {
2851 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2852 AMDGPU_VM_USE_CPU_FOR_GFX);
2853 }
2854 DRM_DEBUG_DRIVER("VM update mode is %s\n",
2855 vm->use_cpu_for_update ? "CPU" : "SDMA");
2856 WARN_ONCE((vm->use_cpu_for_update &&
2857 !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2858 "CPU update of VM recommended only for large BAR system\n");
2859
2860 if (vm->use_cpu_for_update)
2861 vm->update_funcs = &amdgpu_vm_cpu_funcs;
2862 else
2863 vm->update_funcs = &amdgpu_vm_sdma_funcs;
2864 vm->last_update = NULL;
2865 vm->last_unlocked = dma_fence_get_stub();
2866
2867 mutex_init(&vm->eviction_lock);
2868 vm->evicting = false;
2869
2870 amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, false, &bp);
2871 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE)
2872 bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW;
2873 r = amdgpu_bo_create(adev, &bp, &root);
2874 if (r)
2875 goto error_free_delayed;
2876
2877 r = amdgpu_bo_reserve(root, true);
2878 if (r)
2879 goto error_free_root;
2880
2881 r = dma_resv_reserve_shared(root->tbo.base.resv, 1);
2882 if (r)
2883 goto error_unreserve;
2884
2885 amdgpu_vm_bo_base_init(&vm->root.base, vm, root);
2886
2887 r = amdgpu_vm_clear_bo(adev, vm, root, false);
2888 if (r)
2889 goto error_unreserve;
2890
2891 amdgpu_bo_unreserve(vm->root.base.bo);
2892
2893 if (pasid) {
2894 unsigned long flags;
2895
2896 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2897 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2898 GFP_ATOMIC);
2899 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2900 if (r < 0)
2901 goto error_free_root;
2902
2903 vm->pasid = pasid;
2904 }
2905
2906 INIT_KFIFO(vm->faults);
2907
2908 return 0;
2909
2910 error_unreserve:
2911 amdgpu_bo_unreserve(vm->root.base.bo);
2912
2913 error_free_root:
2914 amdgpu_bo_unref(&vm->root.base.bo->shadow);
2915 amdgpu_bo_unref(&vm->root.base.bo);
2916 vm->root.base.bo = NULL;
2917
2918 error_free_delayed:
2919 dma_fence_put(vm->last_unlocked);
2920 drm_sched_entity_destroy(&vm->delayed);
2921
2922 error_free_immediate:
2923 drm_sched_entity_destroy(&vm->immediate);
2924
2925 return r;
2926 }
2927
2928 /**
2929 * amdgpu_vm_check_clean_reserved - check if a VM is clean
2930 *
2931 * @adev: amdgpu_device pointer
2932 * @vm: the VM to check
2933 *
2934 * check all entries of the root PD, if any subsequent PDs are allocated,
2935 * it means there are page table creating and filling, and is no a clean
2936 * VM
2937 *
2938 * Returns:
2939 * 0 if this VM is clean
2940 */
amdgpu_vm_check_clean_reserved(struct amdgpu_device * adev,struct amdgpu_vm * vm)2941 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev,
2942 struct amdgpu_vm *vm)
2943 {
2944 enum amdgpu_vm_level root = adev->vm_manager.root_level;
2945 unsigned int entries = amdgpu_vm_num_entries(adev, root);
2946 unsigned int i = 0;
2947
2948 if (!(vm->root.entries))
2949 return 0;
2950
2951 for (i = 0; i < entries; i++) {
2952 if (vm->root.entries[i].base.bo)
2953 return -EINVAL;
2954 }
2955
2956 return 0;
2957 }
2958
2959 /**
2960 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
2961 *
2962 * @adev: amdgpu_device pointer
2963 * @vm: requested vm
2964 * @pasid: pasid to use
2965 *
2966 * This only works on GFX VMs that don't have any BOs added and no
2967 * page tables allocated yet.
2968 *
2969 * Changes the following VM parameters:
2970 * - use_cpu_for_update
2971 * - pte_supports_ats
2972 * - pasid (old PASID is released, because compute manages its own PASIDs)
2973 *
2974 * Reinitializes the page directory to reflect the changed ATS
2975 * setting.
2976 *
2977 * Returns:
2978 * 0 for success, -errno for errors.
2979 */
amdgpu_vm_make_compute(struct amdgpu_device * adev,struct amdgpu_vm * vm,u32 pasid)2980 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2981 u32 pasid)
2982 {
2983 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
2984 int r;
2985
2986 r = amdgpu_bo_reserve(vm->root.base.bo, true);
2987 if (r)
2988 return r;
2989
2990 /* Sanity checks */
2991 r = amdgpu_vm_check_clean_reserved(adev, vm);
2992 if (r)
2993 goto unreserve_bo;
2994
2995 if (pasid) {
2996 unsigned long flags;
2997
2998 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2999 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
3000 GFP_ATOMIC);
3001 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3002
3003 if (r == -ENOSPC)
3004 goto unreserve_bo;
3005 r = 0;
3006 }
3007
3008 /* Check if PD needs to be reinitialized and do it before
3009 * changing any other state, in case it fails.
3010 */
3011 if (pte_support_ats != vm->pte_support_ats) {
3012 vm->pte_support_ats = pte_support_ats;
3013 r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, false);
3014 if (r)
3015 goto free_idr;
3016 }
3017
3018 /* Update VM state */
3019 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
3020 AMDGPU_VM_USE_CPU_FOR_COMPUTE);
3021 DRM_DEBUG_DRIVER("VM update mode is %s\n",
3022 vm->use_cpu_for_update ? "CPU" : "SDMA");
3023 WARN_ONCE((vm->use_cpu_for_update &&
3024 !amdgpu_gmc_vram_full_visible(&adev->gmc)),
3025 "CPU update of VM recommended only for large BAR system\n");
3026
3027 if (vm->use_cpu_for_update) {
3028 /* Sync with last SDMA update/clear before switching to CPU */
3029 r = amdgpu_bo_sync_wait(vm->root.base.bo,
3030 AMDGPU_FENCE_OWNER_UNDEFINED, true);
3031 if (r)
3032 goto free_idr;
3033
3034 vm->update_funcs = &amdgpu_vm_cpu_funcs;
3035 } else {
3036 vm->update_funcs = &amdgpu_vm_sdma_funcs;
3037 }
3038 dma_fence_put(vm->last_update);
3039 vm->last_update = NULL;
3040 vm->is_compute_context = true;
3041
3042 if (vm->pasid) {
3043 unsigned long flags;
3044
3045 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3046 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3047 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3048
3049 /* Free the original amdgpu allocated pasid
3050 * Will be replaced with kfd allocated pasid
3051 */
3052 amdgpu_pasid_free(vm->pasid);
3053 vm->pasid = 0;
3054 }
3055
3056 /* Free the shadow bo for compute VM */
3057 amdgpu_bo_unref(&vm->root.base.bo->shadow);
3058
3059 if (pasid)
3060 vm->pasid = pasid;
3061
3062 goto unreserve_bo;
3063
3064 free_idr:
3065 if (pasid) {
3066 unsigned long flags;
3067
3068 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3069 idr_remove(&adev->vm_manager.pasid_idr, pasid);
3070 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3071 }
3072 unreserve_bo:
3073 amdgpu_bo_unreserve(vm->root.base.bo);
3074 return r;
3075 }
3076
3077 /**
3078 * amdgpu_vm_release_compute - release a compute vm
3079 * @adev: amdgpu_device pointer
3080 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
3081 *
3082 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
3083 * pasid from vm. Compute should stop use of vm after this call.
3084 */
amdgpu_vm_release_compute(struct amdgpu_device * adev,struct amdgpu_vm * vm)3085 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3086 {
3087 if (vm->pasid) {
3088 unsigned long flags;
3089
3090 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3091 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3092 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3093 }
3094 vm->pasid = 0;
3095 vm->is_compute_context = false;
3096 }
3097
3098 /**
3099 * amdgpu_vm_fini - tear down a vm instance
3100 *
3101 * @adev: amdgpu_device pointer
3102 * @vm: requested vm
3103 *
3104 * Tear down @vm.
3105 * Unbind the VM and remove all bos from the vm bo list
3106 */
amdgpu_vm_fini(struct amdgpu_device * adev,struct amdgpu_vm * vm)3107 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3108 {
3109 struct amdgpu_bo_va_mapping *mapping, *tmp;
3110 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
3111 struct amdgpu_bo *root;
3112 int i;
3113
3114 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
3115
3116 root = amdgpu_bo_ref(vm->root.base.bo);
3117 amdgpu_bo_reserve(root, true);
3118 if (vm->pasid) {
3119 unsigned long flags;
3120
3121 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3122 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3123 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3124 vm->pasid = 0;
3125 }
3126
3127 dma_fence_wait(vm->last_unlocked, false);
3128 dma_fence_put(vm->last_unlocked);
3129
3130 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
3131 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
3132 amdgpu_vm_prt_fini(adev, vm);
3133 prt_fini_needed = false;
3134 }
3135
3136 list_del(&mapping->list);
3137 amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
3138 }
3139
3140 amdgpu_vm_free_pts(adev, vm, NULL);
3141 amdgpu_bo_unreserve(root);
3142 amdgpu_bo_unref(&root);
3143 WARN_ON(vm->root.base.bo);
3144
3145 drm_sched_entity_destroy(&vm->immediate);
3146 drm_sched_entity_destroy(&vm->delayed);
3147
3148 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
3149 dev_err(adev->dev, "still active bo inside vm\n");
3150 }
3151 rbtree_postorder_for_each_entry_safe(mapping, tmp,
3152 &vm->va.rb_root, rb) {
3153 /* Don't remove the mapping here, we don't want to trigger a
3154 * rebalance and the tree is about to be destroyed anyway.
3155 */
3156 list_del(&mapping->list);
3157 kfree(mapping);
3158 }
3159
3160 dma_fence_put(vm->last_update);
3161 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
3162 amdgpu_vmid_free_reserved(adev, vm, i);
3163 }
3164
3165 /**
3166 * amdgpu_vm_manager_init - init the VM manager
3167 *
3168 * @adev: amdgpu_device pointer
3169 *
3170 * Initialize the VM manager structures
3171 */
amdgpu_vm_manager_init(struct amdgpu_device * adev)3172 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
3173 {
3174 unsigned i;
3175
3176 /* Concurrent flushes are only possible starting with Vega10 and
3177 * are broken on Navi10 and Navi14.
3178 */
3179 adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 ||
3180 adev->asic_type == CHIP_NAVI10 ||
3181 adev->asic_type == CHIP_NAVI14);
3182 amdgpu_vmid_mgr_init(adev);
3183
3184 adev->vm_manager.fence_context =
3185 dma_fence_context_alloc(AMDGPU_MAX_RINGS);
3186 for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
3187 adev->vm_manager.seqno[i] = 0;
3188
3189 spin_lock_init(&adev->vm_manager.prt_lock);
3190 atomic_set(&adev->vm_manager.num_prt_users, 0);
3191
3192 /* If not overridden by the user, by default, only in large BAR systems
3193 * Compute VM tables will be updated by CPU
3194 */
3195 #ifdef CONFIG_X86_64
3196 if (amdgpu_vm_update_mode == -1) {
3197 if (amdgpu_gmc_vram_full_visible(&adev->gmc))
3198 adev->vm_manager.vm_update_mode =
3199 AMDGPU_VM_USE_CPU_FOR_COMPUTE;
3200 else
3201 adev->vm_manager.vm_update_mode = 0;
3202 } else
3203 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
3204 #else
3205 adev->vm_manager.vm_update_mode = 0;
3206 #endif
3207
3208 idr_init(&adev->vm_manager.pasid_idr);
3209 spin_lock_init(&adev->vm_manager.pasid_lock);
3210 }
3211
3212 /**
3213 * amdgpu_vm_manager_fini - cleanup VM manager
3214 *
3215 * @adev: amdgpu_device pointer
3216 *
3217 * Cleanup the VM manager and free resources.
3218 */
amdgpu_vm_manager_fini(struct amdgpu_device * adev)3219 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
3220 {
3221 WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
3222 idr_destroy(&adev->vm_manager.pasid_idr);
3223
3224 amdgpu_vmid_mgr_fini(adev);
3225 }
3226
3227 /**
3228 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
3229 *
3230 * @dev: drm device pointer
3231 * @data: drm_amdgpu_vm
3232 * @filp: drm file pointer
3233 *
3234 * Returns:
3235 * 0 for success, -errno for errors.
3236 */
amdgpu_vm_ioctl(struct drm_device * dev,void * data,struct drm_file * filp)3237 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3238 {
3239 union drm_amdgpu_vm *args = data;
3240 struct amdgpu_device *adev = drm_to_adev(dev);
3241 struct amdgpu_fpriv *fpriv = filp->driver_priv;
3242 long timeout = msecs_to_jiffies(2000);
3243 int r;
3244
3245 switch (args->in.op) {
3246 case AMDGPU_VM_OP_RESERVE_VMID:
3247 /* We only have requirement to reserve vmid from gfxhub */
3248 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm,
3249 AMDGPU_GFXHUB_0);
3250 if (r)
3251 return r;
3252 break;
3253 case AMDGPU_VM_OP_UNRESERVE_VMID:
3254 if (amdgpu_sriov_runtime(adev))
3255 timeout = 8 * timeout;
3256
3257 /* Wait vm idle to make sure the vmid set in SPM_VMID is
3258 * not referenced anymore.
3259 */
3260 r = amdgpu_bo_reserve(fpriv->vm.root.base.bo, true);
3261 if (r)
3262 return r;
3263
3264 r = amdgpu_vm_wait_idle(&fpriv->vm, timeout);
3265 if (r < 0)
3266 return r;
3267
3268 amdgpu_bo_unreserve(fpriv->vm.root.base.bo);
3269 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0);
3270 break;
3271 default:
3272 return -EINVAL;
3273 }
3274
3275 return 0;
3276 }
3277
3278 /**
3279 * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3280 *
3281 * @adev: drm device pointer
3282 * @pasid: PASID identifier for VM
3283 * @task_info: task_info to fill.
3284 */
amdgpu_vm_get_task_info(struct amdgpu_device * adev,u32 pasid,struct amdgpu_task_info * task_info)3285 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid,
3286 struct amdgpu_task_info *task_info)
3287 {
3288 struct amdgpu_vm *vm;
3289 unsigned long flags;
3290
3291 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3292
3293 vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3294 if (vm)
3295 *task_info = vm->task_info;
3296
3297 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3298 }
3299
3300 /**
3301 * amdgpu_vm_set_task_info - Sets VMs task info.
3302 *
3303 * @vm: vm for which to set the info
3304 */
amdgpu_vm_set_task_info(struct amdgpu_vm * vm)3305 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
3306 {
3307 if (vm->task_info.pid)
3308 return;
3309
3310 vm->task_info.pid = current->pid;
3311 get_task_comm(vm->task_info.task_name, current);
3312
3313 if (current->group_leader->mm != current->mm)
3314 return;
3315
3316 vm->task_info.tgid = current->group_leader->pid;
3317 get_task_comm(vm->task_info.process_name, current->group_leader);
3318 }
3319
3320 /**
3321 * amdgpu_vm_handle_fault - graceful handling of VM faults.
3322 * @adev: amdgpu device pointer
3323 * @pasid: PASID of the VM
3324 * @addr: Address of the fault
3325 *
3326 * Try to gracefully handle a VM fault. Return true if the fault was handled and
3327 * shouldn't be reported any more.
3328 */
amdgpu_vm_handle_fault(struct amdgpu_device * adev,u32 pasid,uint64_t addr)3329 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid,
3330 uint64_t addr)
3331 {
3332 struct amdgpu_bo *root;
3333 uint64_t value, flags;
3334 struct amdgpu_vm *vm;
3335 long r;
3336
3337 spin_lock(&adev->vm_manager.pasid_lock);
3338 vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3339 if (vm)
3340 root = amdgpu_bo_ref(vm->root.base.bo);
3341 else
3342 root = NULL;
3343 spin_unlock(&adev->vm_manager.pasid_lock);
3344
3345 if (!root)
3346 return false;
3347
3348 r = amdgpu_bo_reserve(root, true);
3349 if (r)
3350 goto error_unref;
3351
3352 /* Double check that the VM still exists */
3353 spin_lock(&adev->vm_manager.pasid_lock);
3354 vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3355 if (vm && vm->root.base.bo != root)
3356 vm = NULL;
3357 spin_unlock(&adev->vm_manager.pasid_lock);
3358 if (!vm)
3359 goto error_unlock;
3360
3361 addr /= AMDGPU_GPU_PAGE_SIZE;
3362 flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
3363 AMDGPU_PTE_SYSTEM;
3364
3365 if (vm->is_compute_context) {
3366 /* Intentionally setting invalid PTE flag
3367 * combination to force a no-retry-fault
3368 */
3369 flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE |
3370 AMDGPU_PTE_TF;
3371 value = 0;
3372
3373 } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
3374 /* Redirect the access to the dummy page */
3375 value = adev->dummy_page_addr;
3376 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
3377 AMDGPU_PTE_WRITEABLE;
3378
3379 } else {
3380 /* Let the hw retry silently on the PTE */
3381 value = 0;
3382 }
3383
3384 r = amdgpu_vm_bo_update_mapping(adev, vm, true, false, NULL, addr,
3385 addr + 1, flags, value, NULL, NULL);
3386 if (r)
3387 goto error_unlock;
3388
3389 r = amdgpu_vm_update_pdes(adev, vm, true);
3390
3391 error_unlock:
3392 amdgpu_bo_unreserve(root);
3393 if (r < 0)
3394 DRM_ERROR("Can't handle page fault (%ld)\n", r);
3395
3396 error_unref:
3397 amdgpu_bo_unref(&root);
3398
3399 return false;
3400 }
3401