1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/clocksource/arm_arch_timer.c
4 *
5 * Copyright (C) 2011 ARM Ltd.
6 * All Rights Reserved
7 */
8
9 #define pr_fmt(fmt) "arch_timer: " fmt
10
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/interrupt.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_address.h>
22 #include <linux/io.h>
23 #include <linux/slab.h>
24 #include <linux/sched/clock.h>
25 #include <linux/sched_clock.h>
26 #include <linux/acpi.h>
27
28 #include <asm/arch_timer.h>
29 #include <asm/virt.h>
30
31 #include <clocksource/arm_arch_timer.h>
32
33 #define CNTTIDR 0x08
34 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
35
36 #define CNTACR(n) (0x40 + ((n) * 4))
37 #define CNTACR_RPCT BIT(0)
38 #define CNTACR_RVCT BIT(1)
39 #define CNTACR_RFRQ BIT(2)
40 #define CNTACR_RVOFF BIT(3)
41 #define CNTACR_RWVT BIT(4)
42 #define CNTACR_RWPT BIT(5)
43
44 #define CNTVCT_LO 0x08
45 #define CNTVCT_HI 0x0c
46 #define CNTFRQ 0x10
47 #define CNTP_TVAL 0x28
48 #define CNTP_CTL 0x2c
49 #define CNTV_TVAL 0x38
50 #define CNTV_CTL 0x3c
51
52 static unsigned arch_timers_present __initdata;
53
54 static void __iomem *arch_counter_base;
55
56 struct arch_timer {
57 void __iomem *base;
58 struct clock_event_device evt;
59 };
60
61 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
62
63 static u32 arch_timer_rate;
64 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI];
65
66 static struct clock_event_device __percpu *arch_timer_evt;
67
68 static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI;
69 static bool arch_timer_c3stop;
70 static bool arch_timer_mem_use_virtual;
71 static bool arch_counter_suspend_stop;
72 #ifdef CONFIG_GENERIC_GETTIMEOFDAY
73 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
74 #else
75 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
76 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */
77
78 static cpumask_t evtstrm_available = CPU_MASK_NONE;
79 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
80
early_evtstrm_cfg(char * buf)81 static int __init early_evtstrm_cfg(char *buf)
82 {
83 return strtobool(buf, &evtstrm_enable);
84 }
85 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
86
87 /*
88 * Architected system timer support.
89 */
90
91 static __always_inline
arch_timer_reg_write(int access,enum arch_timer_reg reg,u32 val,struct clock_event_device * clk)92 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
93 struct clock_event_device *clk)
94 {
95 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
96 struct arch_timer *timer = to_arch_timer(clk);
97 switch (reg) {
98 case ARCH_TIMER_REG_CTRL:
99 writel_relaxed(val, timer->base + CNTP_CTL);
100 break;
101 case ARCH_TIMER_REG_TVAL:
102 writel_relaxed(val, timer->base + CNTP_TVAL);
103 break;
104 }
105 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
106 struct arch_timer *timer = to_arch_timer(clk);
107 switch (reg) {
108 case ARCH_TIMER_REG_CTRL:
109 writel_relaxed(val, timer->base + CNTV_CTL);
110 break;
111 case ARCH_TIMER_REG_TVAL:
112 writel_relaxed(val, timer->base + CNTV_TVAL);
113 break;
114 }
115 } else {
116 arch_timer_reg_write_cp15(access, reg, val);
117 }
118 }
119
120 static __always_inline
arch_timer_reg_read(int access,enum arch_timer_reg reg,struct clock_event_device * clk)121 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
122 struct clock_event_device *clk)
123 {
124 u32 val;
125
126 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
127 struct arch_timer *timer = to_arch_timer(clk);
128 switch (reg) {
129 case ARCH_TIMER_REG_CTRL:
130 val = readl_relaxed(timer->base + CNTP_CTL);
131 break;
132 case ARCH_TIMER_REG_TVAL:
133 val = readl_relaxed(timer->base + CNTP_TVAL);
134 break;
135 }
136 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
137 struct arch_timer *timer = to_arch_timer(clk);
138 switch (reg) {
139 case ARCH_TIMER_REG_CTRL:
140 val = readl_relaxed(timer->base + CNTV_CTL);
141 break;
142 case ARCH_TIMER_REG_TVAL:
143 val = readl_relaxed(timer->base + CNTV_TVAL);
144 break;
145 }
146 } else {
147 val = arch_timer_reg_read_cp15(access, reg);
148 }
149
150 return val;
151 }
152
arch_counter_get_cntpct_stable(void)153 static notrace u64 arch_counter_get_cntpct_stable(void)
154 {
155 return __arch_counter_get_cntpct_stable();
156 }
157
arch_counter_get_cntpct(void)158 static notrace u64 arch_counter_get_cntpct(void)
159 {
160 return __arch_counter_get_cntpct();
161 }
162
arch_counter_get_cntvct_stable(void)163 static notrace u64 arch_counter_get_cntvct_stable(void)
164 {
165 return __arch_counter_get_cntvct_stable();
166 }
167
arch_counter_get_cntvct(void)168 static notrace u64 arch_counter_get_cntvct(void)
169 {
170 return __arch_counter_get_cntvct();
171 }
172
173 /*
174 * Default to cp15 based access because arm64 uses this function for
175 * sched_clock() before DT is probed and the cp15 method is guaranteed
176 * to exist on arm64. arm doesn't use this before DT is probed so even
177 * if we don't have the cp15 accessors we won't have a problem.
178 */
179 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
180 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
181
arch_counter_read(struct clocksource * cs)182 static u64 arch_counter_read(struct clocksource *cs)
183 {
184 return arch_timer_read_counter();
185 }
186
arch_counter_read_cc(const struct cyclecounter * cc)187 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
188 {
189 return arch_timer_read_counter();
190 }
191
192 static struct clocksource clocksource_counter = {
193 .name = "arch_sys_counter",
194 .rating = 400,
195 .read = arch_counter_read,
196 .mask = CLOCKSOURCE_MASK(56),
197 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
198 };
199
200 static struct cyclecounter cyclecounter __ro_after_init = {
201 .read = arch_counter_read_cc,
202 .mask = CLOCKSOURCE_MASK(56),
203 };
204
205 struct ate_acpi_oem_info {
206 char oem_id[ACPI_OEM_ID_SIZE + 1];
207 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
208 u32 oem_revision;
209 };
210
211 #ifdef CONFIG_FSL_ERRATUM_A008585
212 /*
213 * The number of retries is an arbitrary value well beyond the highest number
214 * of iterations the loop has been observed to take.
215 */
216 #define __fsl_a008585_read_reg(reg) ({ \
217 u64 _old, _new; \
218 int _retries = 200; \
219 \
220 do { \
221 _old = read_sysreg(reg); \
222 _new = read_sysreg(reg); \
223 _retries--; \
224 } while (unlikely(_old != _new) && _retries); \
225 \
226 WARN_ON_ONCE(!_retries); \
227 _new; \
228 })
229
fsl_a008585_read_cntp_tval_el0(void)230 static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
231 {
232 return __fsl_a008585_read_reg(cntp_tval_el0);
233 }
234
fsl_a008585_read_cntv_tval_el0(void)235 static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
236 {
237 return __fsl_a008585_read_reg(cntv_tval_el0);
238 }
239
fsl_a008585_read_cntpct_el0(void)240 static u64 notrace fsl_a008585_read_cntpct_el0(void)
241 {
242 return __fsl_a008585_read_reg(cntpct_el0);
243 }
244
fsl_a008585_read_cntvct_el0(void)245 static u64 notrace fsl_a008585_read_cntvct_el0(void)
246 {
247 return __fsl_a008585_read_reg(cntvct_el0);
248 }
249 #endif
250
251 #ifdef CONFIG_HISILICON_ERRATUM_161010101
252 /*
253 * Verify whether the value of the second read is larger than the first by
254 * less than 32 is the only way to confirm the value is correct, so clear the
255 * lower 5 bits to check whether the difference is greater than 32 or not.
256 * Theoretically the erratum should not occur more than twice in succession
257 * when reading the system counter, but it is possible that some interrupts
258 * may lead to more than twice read errors, triggering the warning, so setting
259 * the number of retries far beyond the number of iterations the loop has been
260 * observed to take.
261 */
262 #define __hisi_161010101_read_reg(reg) ({ \
263 u64 _old, _new; \
264 int _retries = 50; \
265 \
266 do { \
267 _old = read_sysreg(reg); \
268 _new = read_sysreg(reg); \
269 _retries--; \
270 } while (unlikely((_new - _old) >> 5) && _retries); \
271 \
272 WARN_ON_ONCE(!_retries); \
273 _new; \
274 })
275
hisi_161010101_read_cntp_tval_el0(void)276 static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
277 {
278 return __hisi_161010101_read_reg(cntp_tval_el0);
279 }
280
hisi_161010101_read_cntv_tval_el0(void)281 static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
282 {
283 return __hisi_161010101_read_reg(cntv_tval_el0);
284 }
285
hisi_161010101_read_cntpct_el0(void)286 static u64 notrace hisi_161010101_read_cntpct_el0(void)
287 {
288 return __hisi_161010101_read_reg(cntpct_el0);
289 }
290
hisi_161010101_read_cntvct_el0(void)291 static u64 notrace hisi_161010101_read_cntvct_el0(void)
292 {
293 return __hisi_161010101_read_reg(cntvct_el0);
294 }
295
296 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
297 /*
298 * Note that trailing spaces are required to properly match
299 * the OEM table information.
300 */
301 {
302 .oem_id = "HISI ",
303 .oem_table_id = "HIP05 ",
304 .oem_revision = 0,
305 },
306 {
307 .oem_id = "HISI ",
308 .oem_table_id = "HIP06 ",
309 .oem_revision = 0,
310 },
311 {
312 .oem_id = "HISI ",
313 .oem_table_id = "HIP07 ",
314 .oem_revision = 0,
315 },
316 { /* Sentinel indicating the end of the OEM array */ },
317 };
318 #endif
319
320 #ifdef CONFIG_ARM64_ERRATUM_858921
arm64_858921_read_cntpct_el0(void)321 static u64 notrace arm64_858921_read_cntpct_el0(void)
322 {
323 u64 old, new;
324
325 old = read_sysreg(cntpct_el0);
326 new = read_sysreg(cntpct_el0);
327 return (((old ^ new) >> 32) & 1) ? old : new;
328 }
329
arm64_858921_read_cntvct_el0(void)330 static u64 notrace arm64_858921_read_cntvct_el0(void)
331 {
332 u64 old, new;
333
334 old = read_sysreg(cntvct_el0);
335 new = read_sysreg(cntvct_el0);
336 return (((old ^ new) >> 32) & 1) ? old : new;
337 }
338 #endif
339
340 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
341 /*
342 * The low bits of the counter registers are indeterminate while bit 10 or
343 * greater is rolling over. Since the counter value can jump both backward
344 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
345 * with all ones or all zeros in the low bits. Bound the loop by the maximum
346 * number of CPU cycles in 3 consecutive 24 MHz counter periods.
347 */
348 #define __sun50i_a64_read_reg(reg) ({ \
349 u64 _val; \
350 int _retries = 150; \
351 \
352 do { \
353 _val = read_sysreg(reg); \
354 _retries--; \
355 } while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries); \
356 \
357 WARN_ON_ONCE(!_retries); \
358 _val; \
359 })
360
sun50i_a64_read_cntpct_el0(void)361 static u64 notrace sun50i_a64_read_cntpct_el0(void)
362 {
363 return __sun50i_a64_read_reg(cntpct_el0);
364 }
365
sun50i_a64_read_cntvct_el0(void)366 static u64 notrace sun50i_a64_read_cntvct_el0(void)
367 {
368 return __sun50i_a64_read_reg(cntvct_el0);
369 }
370
sun50i_a64_read_cntp_tval_el0(void)371 static u32 notrace sun50i_a64_read_cntp_tval_el0(void)
372 {
373 return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0();
374 }
375
sun50i_a64_read_cntv_tval_el0(void)376 static u32 notrace sun50i_a64_read_cntv_tval_el0(void)
377 {
378 return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0();
379 }
380 #endif
381
382 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
383 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
384 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
385
386 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
387
erratum_set_next_event_tval_generic(const int access,unsigned long evt,struct clock_event_device * clk)388 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
389 struct clock_event_device *clk)
390 {
391 unsigned long ctrl;
392 u64 cval;
393
394 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
395 ctrl |= ARCH_TIMER_CTRL_ENABLE;
396 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
397
398 if (access == ARCH_TIMER_PHYS_ACCESS) {
399 cval = evt + arch_counter_get_cntpct_stable();
400 write_sysreg(cval, cntp_cval_el0);
401 } else {
402 cval = evt + arch_counter_get_cntvct_stable();
403 write_sysreg(cval, cntv_cval_el0);
404 }
405
406 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
407 }
408
erratum_set_next_event_tval_virt(unsigned long evt,struct clock_event_device * clk)409 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
410 struct clock_event_device *clk)
411 {
412 erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
413 return 0;
414 }
415
erratum_set_next_event_tval_phys(unsigned long evt,struct clock_event_device * clk)416 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
417 struct clock_event_device *clk)
418 {
419 erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
420 return 0;
421 }
422
423 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
424 #ifdef CONFIG_FSL_ERRATUM_A008585
425 {
426 .match_type = ate_match_dt,
427 .id = "fsl,erratum-a008585",
428 .desc = "Freescale erratum a005858",
429 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
430 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
431 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
432 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
433 .set_next_event_phys = erratum_set_next_event_tval_phys,
434 .set_next_event_virt = erratum_set_next_event_tval_virt,
435 },
436 #endif
437 #ifdef CONFIG_HISILICON_ERRATUM_161010101
438 {
439 .match_type = ate_match_dt,
440 .id = "hisilicon,erratum-161010101",
441 .desc = "HiSilicon erratum 161010101",
442 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
443 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
444 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
445 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
446 .set_next_event_phys = erratum_set_next_event_tval_phys,
447 .set_next_event_virt = erratum_set_next_event_tval_virt,
448 },
449 {
450 .match_type = ate_match_acpi_oem_info,
451 .id = hisi_161010101_oem_info,
452 .desc = "HiSilicon erratum 161010101",
453 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
454 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
455 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
456 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
457 .set_next_event_phys = erratum_set_next_event_tval_phys,
458 .set_next_event_virt = erratum_set_next_event_tval_virt,
459 },
460 #endif
461 #ifdef CONFIG_ARM64_ERRATUM_858921
462 {
463 .match_type = ate_match_local_cap_id,
464 .id = (void *)ARM64_WORKAROUND_858921,
465 .desc = "ARM erratum 858921",
466 .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
467 .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
468 },
469 #endif
470 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
471 {
472 .match_type = ate_match_dt,
473 .id = "allwinner,erratum-unknown1",
474 .desc = "Allwinner erratum UNKNOWN1",
475 .read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0,
476 .read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0,
477 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
478 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
479 .set_next_event_phys = erratum_set_next_event_tval_phys,
480 .set_next_event_virt = erratum_set_next_event_tval_virt,
481 },
482 #endif
483 #ifdef CONFIG_ARM64_ERRATUM_1418040
484 {
485 .match_type = ate_match_local_cap_id,
486 .id = (void *)ARM64_WORKAROUND_1418040,
487 .desc = "ARM erratum 1418040",
488 .disable_compat_vdso = true,
489 },
490 #endif
491 };
492
493 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
494 const void *);
495
496 static
arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround * wa,const void * arg)497 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
498 const void *arg)
499 {
500 const struct device_node *np = arg;
501
502 return of_property_read_bool(np, wa->id);
503 }
504
505 static
arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround * wa,const void * arg)506 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
507 const void *arg)
508 {
509 return this_cpu_has_cap((uintptr_t)wa->id);
510 }
511
512
513 static
arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround * wa,const void * arg)514 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
515 const void *arg)
516 {
517 static const struct ate_acpi_oem_info empty_oem_info = {};
518 const struct ate_acpi_oem_info *info = wa->id;
519 const struct acpi_table_header *table = arg;
520
521 /* Iterate over the ACPI OEM info array, looking for a match */
522 while (memcmp(info, &empty_oem_info, sizeof(*info))) {
523 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
524 !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
525 info->oem_revision == table->oem_revision)
526 return true;
527
528 info++;
529 }
530
531 return false;
532 }
533
534 static const struct arch_timer_erratum_workaround *
arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,ate_match_fn_t match_fn,void * arg)535 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
536 ate_match_fn_t match_fn,
537 void *arg)
538 {
539 int i;
540
541 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
542 if (ool_workarounds[i].match_type != type)
543 continue;
544
545 if (match_fn(&ool_workarounds[i], arg))
546 return &ool_workarounds[i];
547 }
548
549 return NULL;
550 }
551
552 static
arch_timer_enable_workaround(const struct arch_timer_erratum_workaround * wa,bool local)553 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
554 bool local)
555 {
556 int i;
557
558 if (local) {
559 __this_cpu_write(timer_unstable_counter_workaround, wa);
560 } else {
561 for_each_possible_cpu(i)
562 per_cpu(timer_unstable_counter_workaround, i) = wa;
563 }
564
565 if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
566 atomic_set(&timer_unstable_counter_workaround_in_use, 1);
567
568 /*
569 * Don't use the vdso fastpath if errata require using the
570 * out-of-line counter accessor. We may change our mind pretty
571 * late in the game (with a per-CPU erratum, for example), so
572 * change both the default value and the vdso itself.
573 */
574 if (wa->read_cntvct_el0) {
575 clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
576 vdso_default = VDSO_CLOCKMODE_NONE;
577 } else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
578 vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
579 clocksource_counter.vdso_clock_mode = vdso_default;
580 }
581 }
582
arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,void * arg)583 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
584 void *arg)
585 {
586 const struct arch_timer_erratum_workaround *wa, *__wa;
587 ate_match_fn_t match_fn = NULL;
588 bool local = false;
589
590 switch (type) {
591 case ate_match_dt:
592 match_fn = arch_timer_check_dt_erratum;
593 break;
594 case ate_match_local_cap_id:
595 match_fn = arch_timer_check_local_cap_erratum;
596 local = true;
597 break;
598 case ate_match_acpi_oem_info:
599 match_fn = arch_timer_check_acpi_oem_erratum;
600 break;
601 default:
602 WARN_ON(1);
603 return;
604 }
605
606 wa = arch_timer_iterate_errata(type, match_fn, arg);
607 if (!wa)
608 return;
609
610 __wa = __this_cpu_read(timer_unstable_counter_workaround);
611 if (__wa && wa != __wa)
612 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
613 wa->desc, __wa->desc);
614
615 if (__wa)
616 return;
617
618 arch_timer_enable_workaround(wa, local);
619 pr_info("Enabling %s workaround for %s\n",
620 local ? "local" : "global", wa->desc);
621 }
622
arch_timer_this_cpu_has_cntvct_wa(void)623 static bool arch_timer_this_cpu_has_cntvct_wa(void)
624 {
625 return has_erratum_handler(read_cntvct_el0);
626 }
627
arch_timer_counter_has_wa(void)628 static bool arch_timer_counter_has_wa(void)
629 {
630 return atomic_read(&timer_unstable_counter_workaround_in_use);
631 }
632 #else
633 #define arch_timer_check_ool_workaround(t,a) do { } while(0)
634 #define arch_timer_this_cpu_has_cntvct_wa() ({false;})
635 #define arch_timer_counter_has_wa() ({false;})
636 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
637
timer_handler(const int access,struct clock_event_device * evt)638 static __always_inline irqreturn_t timer_handler(const int access,
639 struct clock_event_device *evt)
640 {
641 unsigned long ctrl;
642
643 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
644 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
645 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
646 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
647 evt->event_handler(evt);
648 return IRQ_HANDLED;
649 }
650
651 return IRQ_NONE;
652 }
653
arch_timer_handler_virt(int irq,void * dev_id)654 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
655 {
656 struct clock_event_device *evt = dev_id;
657
658 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
659 }
660
arch_timer_handler_phys(int irq,void * dev_id)661 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
662 {
663 struct clock_event_device *evt = dev_id;
664
665 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
666 }
667
arch_timer_handler_phys_mem(int irq,void * dev_id)668 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
669 {
670 struct clock_event_device *evt = dev_id;
671
672 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
673 }
674
arch_timer_handler_virt_mem(int irq,void * dev_id)675 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
676 {
677 struct clock_event_device *evt = dev_id;
678
679 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
680 }
681
timer_shutdown(const int access,struct clock_event_device * clk)682 static __always_inline int timer_shutdown(const int access,
683 struct clock_event_device *clk)
684 {
685 unsigned long ctrl;
686
687 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
688 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
689 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
690
691 return 0;
692 }
693
arch_timer_shutdown_virt(struct clock_event_device * clk)694 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
695 {
696 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
697 }
698
arch_timer_shutdown_phys(struct clock_event_device * clk)699 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
700 {
701 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
702 }
703
arch_timer_shutdown_virt_mem(struct clock_event_device * clk)704 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
705 {
706 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
707 }
708
arch_timer_shutdown_phys_mem(struct clock_event_device * clk)709 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
710 {
711 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
712 }
713
set_next_event(const int access,unsigned long evt,struct clock_event_device * clk)714 static __always_inline void set_next_event(const int access, unsigned long evt,
715 struct clock_event_device *clk)
716 {
717 unsigned long ctrl;
718 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
719 ctrl |= ARCH_TIMER_CTRL_ENABLE;
720 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
721 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
722 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
723 }
724
arch_timer_set_next_event_virt(unsigned long evt,struct clock_event_device * clk)725 static int arch_timer_set_next_event_virt(unsigned long evt,
726 struct clock_event_device *clk)
727 {
728 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
729 return 0;
730 }
731
arch_timer_set_next_event_phys(unsigned long evt,struct clock_event_device * clk)732 static int arch_timer_set_next_event_phys(unsigned long evt,
733 struct clock_event_device *clk)
734 {
735 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
736 return 0;
737 }
738
arch_timer_set_next_event_virt_mem(unsigned long evt,struct clock_event_device * clk)739 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
740 struct clock_event_device *clk)
741 {
742 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
743 return 0;
744 }
745
arch_timer_set_next_event_phys_mem(unsigned long evt,struct clock_event_device * clk)746 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
747 struct clock_event_device *clk)
748 {
749 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
750 return 0;
751 }
752
__arch_timer_setup(unsigned type,struct clock_event_device * clk)753 static void __arch_timer_setup(unsigned type,
754 struct clock_event_device *clk)
755 {
756 clk->features = CLOCK_EVT_FEAT_ONESHOT;
757
758 if (type == ARCH_TIMER_TYPE_CP15) {
759 typeof(clk->set_next_event) sne;
760
761 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
762
763 if (arch_timer_c3stop)
764 clk->features |= CLOCK_EVT_FEAT_C3STOP;
765 clk->name = "arch_sys_timer";
766 clk->rating = 450;
767 clk->cpumask = cpumask_of(smp_processor_id());
768 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
769 switch (arch_timer_uses_ppi) {
770 case ARCH_TIMER_VIRT_PPI:
771 clk->set_state_shutdown = arch_timer_shutdown_virt;
772 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
773 sne = erratum_handler(set_next_event_virt);
774 break;
775 case ARCH_TIMER_PHYS_SECURE_PPI:
776 case ARCH_TIMER_PHYS_NONSECURE_PPI:
777 case ARCH_TIMER_HYP_PPI:
778 clk->set_state_shutdown = arch_timer_shutdown_phys;
779 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
780 sne = erratum_handler(set_next_event_phys);
781 break;
782 default:
783 BUG();
784 }
785
786 clk->set_next_event = sne;
787 } else {
788 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
789 clk->name = "arch_mem_timer";
790 clk->rating = 400;
791 clk->cpumask = cpu_possible_mask;
792 if (arch_timer_mem_use_virtual) {
793 clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
794 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
795 clk->set_next_event =
796 arch_timer_set_next_event_virt_mem;
797 } else {
798 clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
799 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
800 clk->set_next_event =
801 arch_timer_set_next_event_phys_mem;
802 }
803 }
804
805 clk->set_state_shutdown(clk);
806
807 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
808 }
809
arch_timer_evtstrm_enable(int divider)810 static void arch_timer_evtstrm_enable(int divider)
811 {
812 u32 cntkctl = arch_timer_get_cntkctl();
813
814 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
815 /* Set the divider and enable virtual event stream */
816 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
817 | ARCH_TIMER_VIRT_EVT_EN;
818 arch_timer_set_cntkctl(cntkctl);
819 arch_timer_set_evtstrm_feature();
820 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
821 }
822
arch_timer_configure_evtstream(void)823 static void arch_timer_configure_evtstream(void)
824 {
825 int evt_stream_div, lsb;
826
827 /*
828 * As the event stream can at most be generated at half the frequency
829 * of the counter, use half the frequency when computing the divider.
830 */
831 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
832
833 /*
834 * Find the closest power of two to the divisor. If the adjacent bit
835 * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
836 */
837 lsb = fls(evt_stream_div) - 1;
838 if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
839 lsb++;
840
841 /* enable event stream */
842 arch_timer_evtstrm_enable(max(0, min(lsb, 15)));
843 }
844
arch_counter_set_user_access(void)845 static void arch_counter_set_user_access(void)
846 {
847 u32 cntkctl = arch_timer_get_cntkctl();
848
849 /* Disable user access to the timers and both counters */
850 /* Also disable virtual event stream */
851 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
852 | ARCH_TIMER_USR_VT_ACCESS_EN
853 | ARCH_TIMER_USR_VCT_ACCESS_EN
854 | ARCH_TIMER_VIRT_EVT_EN
855 | ARCH_TIMER_USR_PCT_ACCESS_EN);
856
857 /*
858 * Enable user access to the virtual counter if it doesn't
859 * need to be workaround. The vdso may have been already
860 * disabled though.
861 */
862 if (arch_timer_this_cpu_has_cntvct_wa())
863 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
864 else
865 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
866
867 arch_timer_set_cntkctl(cntkctl);
868 }
869
arch_timer_has_nonsecure_ppi(void)870 static bool arch_timer_has_nonsecure_ppi(void)
871 {
872 return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
873 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
874 }
875
check_ppi_trigger(int irq)876 static u32 check_ppi_trigger(int irq)
877 {
878 u32 flags = irq_get_trigger_type(irq);
879
880 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
881 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
882 pr_warn("WARNING: Please fix your firmware\n");
883 flags = IRQF_TRIGGER_LOW;
884 }
885
886 return flags;
887 }
888
arch_timer_starting_cpu(unsigned int cpu)889 static int arch_timer_starting_cpu(unsigned int cpu)
890 {
891 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
892 u32 flags;
893
894 __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
895
896 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
897 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
898
899 if (arch_timer_has_nonsecure_ppi()) {
900 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
901 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
902 flags);
903 }
904
905 arch_counter_set_user_access();
906 if (evtstrm_enable)
907 arch_timer_configure_evtstream();
908
909 return 0;
910 }
911
validate_timer_rate(void)912 static int validate_timer_rate(void)
913 {
914 if (!arch_timer_rate)
915 return -EINVAL;
916
917 /* Arch timer frequency < 1MHz can cause trouble */
918 WARN_ON(arch_timer_rate < 1000000);
919
920 return 0;
921 }
922
923 /*
924 * For historical reasons, when probing with DT we use whichever (non-zero)
925 * rate was probed first, and don't verify that others match. If the first node
926 * probed has a clock-frequency property, this overrides the HW register.
927 */
arch_timer_of_configure_rate(u32 rate,struct device_node * np)928 static void arch_timer_of_configure_rate(u32 rate, struct device_node *np)
929 {
930 /* Who has more than one independent system counter? */
931 if (arch_timer_rate)
932 return;
933
934 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
935 arch_timer_rate = rate;
936
937 /* Check the timer frequency. */
938 if (validate_timer_rate())
939 pr_warn("frequency not available\n");
940 }
941
arch_timer_banner(unsigned type)942 static void arch_timer_banner(unsigned type)
943 {
944 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
945 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
946 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
947 " and " : "",
948 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
949 (unsigned long)arch_timer_rate / 1000000,
950 (unsigned long)(arch_timer_rate / 10000) % 100,
951 type & ARCH_TIMER_TYPE_CP15 ?
952 (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
953 "",
954 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
955 type & ARCH_TIMER_TYPE_MEM ?
956 arch_timer_mem_use_virtual ? "virt" : "phys" :
957 "");
958 }
959
arch_timer_get_rate(void)960 u32 arch_timer_get_rate(void)
961 {
962 return arch_timer_rate;
963 }
964
arch_timer_evtstrm_available(void)965 bool arch_timer_evtstrm_available(void)
966 {
967 /*
968 * We might get called from a preemptible context. This is fine
969 * because availability of the event stream should be always the same
970 * for a preemptible context and context where we might resume a task.
971 */
972 return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
973 }
974
arch_counter_get_cntvct_mem(void)975 static u64 arch_counter_get_cntvct_mem(void)
976 {
977 u32 vct_lo, vct_hi, tmp_hi;
978
979 do {
980 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
981 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
982 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
983 } while (vct_hi != tmp_hi);
984
985 return ((u64) vct_hi << 32) | vct_lo;
986 }
987
988 static struct arch_timer_kvm_info arch_timer_kvm_info;
989
arch_timer_get_kvm_info(void)990 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
991 {
992 return &arch_timer_kvm_info;
993 }
994
arch_counter_register(unsigned type)995 static void __init arch_counter_register(unsigned type)
996 {
997 u64 start_count;
998
999 /* Register the CP15 based counter if we have one */
1000 if (type & ARCH_TIMER_TYPE_CP15) {
1001 u64 (*rd)(void);
1002
1003 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1004 arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
1005 if (arch_timer_counter_has_wa())
1006 rd = arch_counter_get_cntvct_stable;
1007 else
1008 rd = arch_counter_get_cntvct;
1009 } else {
1010 if (arch_timer_counter_has_wa())
1011 rd = arch_counter_get_cntpct_stable;
1012 else
1013 rd = arch_counter_get_cntpct;
1014 }
1015
1016 arch_timer_read_counter = rd;
1017 clocksource_counter.vdso_clock_mode = vdso_default;
1018 } else {
1019 arch_timer_read_counter = arch_counter_get_cntvct_mem;
1020 }
1021
1022 if (!arch_counter_suspend_stop)
1023 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1024 start_count = arch_timer_read_counter();
1025 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1026 cyclecounter.mult = clocksource_counter.mult;
1027 cyclecounter.shift = clocksource_counter.shift;
1028 timecounter_init(&arch_timer_kvm_info.timecounter,
1029 &cyclecounter, start_count);
1030
1031 /* 56 bits minimum, so we assume worst case rollover */
1032 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
1033 }
1034
arch_timer_stop(struct clock_event_device * clk)1035 static void arch_timer_stop(struct clock_event_device *clk)
1036 {
1037 pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1038
1039 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1040 if (arch_timer_has_nonsecure_ppi())
1041 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1042
1043 clk->set_state_shutdown(clk);
1044 }
1045
arch_timer_dying_cpu(unsigned int cpu)1046 static int arch_timer_dying_cpu(unsigned int cpu)
1047 {
1048 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1049
1050 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1051
1052 arch_timer_stop(clk);
1053 return 0;
1054 }
1055
1056 #ifdef CONFIG_CPU_PM
1057 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
arch_timer_cpu_pm_notify(struct notifier_block * self,unsigned long action,void * hcpu)1058 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1059 unsigned long action, void *hcpu)
1060 {
1061 if (action == CPU_PM_ENTER) {
1062 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1063
1064 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1065 } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1066 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1067
1068 if (arch_timer_have_evtstrm_feature())
1069 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1070 }
1071 return NOTIFY_OK;
1072 }
1073
1074 static struct notifier_block arch_timer_cpu_pm_notifier = {
1075 .notifier_call = arch_timer_cpu_pm_notify,
1076 };
1077
arch_timer_cpu_pm_init(void)1078 static int __init arch_timer_cpu_pm_init(void)
1079 {
1080 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1081 }
1082
arch_timer_cpu_pm_deinit(void)1083 static void __init arch_timer_cpu_pm_deinit(void)
1084 {
1085 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1086 }
1087
1088 #else
arch_timer_cpu_pm_init(void)1089 static int __init arch_timer_cpu_pm_init(void)
1090 {
1091 return 0;
1092 }
1093
arch_timer_cpu_pm_deinit(void)1094 static void __init arch_timer_cpu_pm_deinit(void)
1095 {
1096 }
1097 #endif
1098
arch_timer_register(void)1099 static int __init arch_timer_register(void)
1100 {
1101 int err;
1102 int ppi;
1103
1104 arch_timer_evt = alloc_percpu(struct clock_event_device);
1105 if (!arch_timer_evt) {
1106 err = -ENOMEM;
1107 goto out;
1108 }
1109
1110 ppi = arch_timer_ppi[arch_timer_uses_ppi];
1111 switch (arch_timer_uses_ppi) {
1112 case ARCH_TIMER_VIRT_PPI:
1113 err = request_percpu_irq(ppi, arch_timer_handler_virt,
1114 "arch_timer", arch_timer_evt);
1115 break;
1116 case ARCH_TIMER_PHYS_SECURE_PPI:
1117 case ARCH_TIMER_PHYS_NONSECURE_PPI:
1118 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1119 "arch_timer", arch_timer_evt);
1120 if (!err && arch_timer_has_nonsecure_ppi()) {
1121 ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1122 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1123 "arch_timer", arch_timer_evt);
1124 if (err)
1125 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1126 arch_timer_evt);
1127 }
1128 break;
1129 case ARCH_TIMER_HYP_PPI:
1130 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1131 "arch_timer", arch_timer_evt);
1132 break;
1133 default:
1134 BUG();
1135 }
1136
1137 if (err) {
1138 pr_err("can't register interrupt %d (%d)\n", ppi, err);
1139 goto out_free;
1140 }
1141
1142 err = arch_timer_cpu_pm_init();
1143 if (err)
1144 goto out_unreg_notify;
1145
1146 /* Register and immediately configure the timer on the boot CPU */
1147 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1148 "clockevents/arm/arch_timer:starting",
1149 arch_timer_starting_cpu, arch_timer_dying_cpu);
1150 if (err)
1151 goto out_unreg_cpupm;
1152 return 0;
1153
1154 out_unreg_cpupm:
1155 arch_timer_cpu_pm_deinit();
1156
1157 out_unreg_notify:
1158 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1159 if (arch_timer_has_nonsecure_ppi())
1160 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1161 arch_timer_evt);
1162
1163 out_free:
1164 free_percpu(arch_timer_evt);
1165 out:
1166 return err;
1167 }
1168
arch_timer_mem_register(void __iomem * base,unsigned int irq)1169 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1170 {
1171 int ret;
1172 irq_handler_t func;
1173 struct arch_timer *t;
1174
1175 t = kzalloc(sizeof(*t), GFP_KERNEL);
1176 if (!t)
1177 return -ENOMEM;
1178
1179 t->base = base;
1180 t->evt.irq = irq;
1181 __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1182
1183 if (arch_timer_mem_use_virtual)
1184 func = arch_timer_handler_virt_mem;
1185 else
1186 func = arch_timer_handler_phys_mem;
1187
1188 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1189 if (ret) {
1190 pr_err("Failed to request mem timer irq\n");
1191 kfree(t);
1192 }
1193
1194 return ret;
1195 }
1196
1197 static const struct of_device_id arch_timer_of_match[] __initconst = {
1198 { .compatible = "arm,armv7-timer", },
1199 { .compatible = "arm,armv8-timer", },
1200 {},
1201 };
1202
1203 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1204 { .compatible = "arm,armv7-timer-mem", },
1205 {},
1206 };
1207
arch_timer_needs_of_probing(void)1208 static bool __init arch_timer_needs_of_probing(void)
1209 {
1210 struct device_node *dn;
1211 bool needs_probing = false;
1212 unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1213
1214 /* We have two timers, and both device-tree nodes are probed. */
1215 if ((arch_timers_present & mask) == mask)
1216 return false;
1217
1218 /*
1219 * Only one type of timer is probed,
1220 * check if we have another type of timer node in device-tree.
1221 */
1222 if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1223 dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1224 else
1225 dn = of_find_matching_node(NULL, arch_timer_of_match);
1226
1227 if (dn && of_device_is_available(dn))
1228 needs_probing = true;
1229
1230 of_node_put(dn);
1231
1232 return needs_probing;
1233 }
1234
arch_timer_common_init(void)1235 static int __init arch_timer_common_init(void)
1236 {
1237 arch_timer_banner(arch_timers_present);
1238 arch_counter_register(arch_timers_present);
1239 return arch_timer_arch_init();
1240 }
1241
1242 /**
1243 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1244 *
1245 * If HYP mode is available, we know that the physical timer
1246 * has been configured to be accessible from PL1. Use it, so
1247 * that a guest can use the virtual timer instead.
1248 *
1249 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1250 * accesses to CNTP_*_EL1 registers are silently redirected to
1251 * their CNTHP_*_EL2 counterparts, and use a different PPI
1252 * number.
1253 *
1254 * If no interrupt provided for virtual timer, we'll have to
1255 * stick to the physical timer. It'd better be accessible...
1256 * For arm64 we never use the secure interrupt.
1257 *
1258 * Return: a suitable PPI type for the current system.
1259 */
arch_timer_select_ppi(void)1260 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1261 {
1262 if (is_kernel_in_hyp_mode())
1263 return ARCH_TIMER_HYP_PPI;
1264
1265 if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1266 return ARCH_TIMER_VIRT_PPI;
1267
1268 if (IS_ENABLED(CONFIG_ARM64))
1269 return ARCH_TIMER_PHYS_NONSECURE_PPI;
1270
1271 return ARCH_TIMER_PHYS_SECURE_PPI;
1272 }
1273
arch_timer_populate_kvm_info(void)1274 static void __init arch_timer_populate_kvm_info(void)
1275 {
1276 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1277 if (is_kernel_in_hyp_mode())
1278 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1279 }
1280
arch_timer_of_init(struct device_node * np)1281 static int __init arch_timer_of_init(struct device_node *np)
1282 {
1283 int i, ret;
1284 u32 rate;
1285
1286 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1287 pr_warn("multiple nodes in dt, skipping\n");
1288 return 0;
1289 }
1290
1291 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1292 for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
1293 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
1294
1295 arch_timer_populate_kvm_info();
1296
1297 rate = arch_timer_get_cntfrq();
1298 arch_timer_of_configure_rate(rate, np);
1299
1300 arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1301
1302 /* Check for globally applicable workarounds */
1303 arch_timer_check_ool_workaround(ate_match_dt, np);
1304
1305 /*
1306 * If we cannot rely on firmware initializing the timer registers then
1307 * we should use the physical timers instead.
1308 */
1309 if (IS_ENABLED(CONFIG_ARM) &&
1310 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1311 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1312 else
1313 arch_timer_uses_ppi = arch_timer_select_ppi();
1314
1315 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1316 pr_err("No interrupt available, giving up\n");
1317 return -EINVAL;
1318 }
1319
1320 /* On some systems, the counter stops ticking when in suspend. */
1321 arch_counter_suspend_stop = of_property_read_bool(np,
1322 "arm,no-tick-in-suspend");
1323
1324 ret = arch_timer_register();
1325 if (ret)
1326 return ret;
1327
1328 if (arch_timer_needs_of_probing())
1329 return 0;
1330
1331 return arch_timer_common_init();
1332 }
1333 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1334 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1335
1336 static u32 __init
arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame * frame)1337 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1338 {
1339 void __iomem *base;
1340 u32 rate;
1341
1342 base = ioremap(frame->cntbase, frame->size);
1343 if (!base) {
1344 pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1345 return 0;
1346 }
1347
1348 rate = readl_relaxed(base + CNTFRQ);
1349
1350 iounmap(base);
1351
1352 return rate;
1353 }
1354
1355 static struct arch_timer_mem_frame * __init
arch_timer_mem_find_best_frame(struct arch_timer_mem * timer_mem)1356 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1357 {
1358 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1359 void __iomem *cntctlbase;
1360 u32 cnttidr;
1361 int i;
1362
1363 cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1364 if (!cntctlbase) {
1365 pr_err("Can't map CNTCTLBase @ %pa\n",
1366 &timer_mem->cntctlbase);
1367 return NULL;
1368 }
1369
1370 cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1371
1372 /*
1373 * Try to find a virtual capable frame. Otherwise fall back to a
1374 * physical capable frame.
1375 */
1376 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1377 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1378 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1379
1380 frame = &timer_mem->frame[i];
1381 if (!frame->valid)
1382 continue;
1383
1384 /* Try enabling everything, and see what sticks */
1385 writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1386 cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1387
1388 if ((cnttidr & CNTTIDR_VIRT(i)) &&
1389 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1390 best_frame = frame;
1391 arch_timer_mem_use_virtual = true;
1392 break;
1393 }
1394
1395 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1396 continue;
1397
1398 best_frame = frame;
1399 }
1400
1401 iounmap(cntctlbase);
1402
1403 return best_frame;
1404 }
1405
1406 static int __init
arch_timer_mem_frame_register(struct arch_timer_mem_frame * frame)1407 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1408 {
1409 void __iomem *base;
1410 int ret, irq = 0;
1411
1412 if (arch_timer_mem_use_virtual)
1413 irq = frame->virt_irq;
1414 else
1415 irq = frame->phys_irq;
1416
1417 if (!irq) {
1418 pr_err("Frame missing %s irq.\n",
1419 arch_timer_mem_use_virtual ? "virt" : "phys");
1420 return -EINVAL;
1421 }
1422
1423 if (!request_mem_region(frame->cntbase, frame->size,
1424 "arch_mem_timer"))
1425 return -EBUSY;
1426
1427 base = ioremap(frame->cntbase, frame->size);
1428 if (!base) {
1429 pr_err("Can't map frame's registers\n");
1430 return -ENXIO;
1431 }
1432
1433 ret = arch_timer_mem_register(base, irq);
1434 if (ret) {
1435 iounmap(base);
1436 return ret;
1437 }
1438
1439 arch_counter_base = base;
1440 arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1441
1442 return 0;
1443 }
1444
arch_timer_mem_of_init(struct device_node * np)1445 static int __init arch_timer_mem_of_init(struct device_node *np)
1446 {
1447 struct arch_timer_mem *timer_mem;
1448 struct arch_timer_mem_frame *frame;
1449 struct device_node *frame_node;
1450 struct resource res;
1451 int ret = -EINVAL;
1452 u32 rate;
1453
1454 timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1455 if (!timer_mem)
1456 return -ENOMEM;
1457
1458 if (of_address_to_resource(np, 0, &res))
1459 goto out;
1460 timer_mem->cntctlbase = res.start;
1461 timer_mem->size = resource_size(&res);
1462
1463 for_each_available_child_of_node(np, frame_node) {
1464 u32 n;
1465 struct arch_timer_mem_frame *frame;
1466
1467 if (of_property_read_u32(frame_node, "frame-number", &n)) {
1468 pr_err(FW_BUG "Missing frame-number.\n");
1469 of_node_put(frame_node);
1470 goto out;
1471 }
1472 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1473 pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1474 ARCH_TIMER_MEM_MAX_FRAMES - 1);
1475 of_node_put(frame_node);
1476 goto out;
1477 }
1478 frame = &timer_mem->frame[n];
1479
1480 if (frame->valid) {
1481 pr_err(FW_BUG "Duplicated frame-number.\n");
1482 of_node_put(frame_node);
1483 goto out;
1484 }
1485
1486 if (of_address_to_resource(frame_node, 0, &res)) {
1487 of_node_put(frame_node);
1488 goto out;
1489 }
1490 frame->cntbase = res.start;
1491 frame->size = resource_size(&res);
1492
1493 frame->virt_irq = irq_of_parse_and_map(frame_node,
1494 ARCH_TIMER_VIRT_SPI);
1495 frame->phys_irq = irq_of_parse_and_map(frame_node,
1496 ARCH_TIMER_PHYS_SPI);
1497
1498 frame->valid = true;
1499 }
1500
1501 frame = arch_timer_mem_find_best_frame(timer_mem);
1502 if (!frame) {
1503 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1504 &timer_mem->cntctlbase);
1505 ret = -EINVAL;
1506 goto out;
1507 }
1508
1509 rate = arch_timer_mem_frame_get_cntfrq(frame);
1510 arch_timer_of_configure_rate(rate, np);
1511
1512 ret = arch_timer_mem_frame_register(frame);
1513 if (!ret && !arch_timer_needs_of_probing())
1514 ret = arch_timer_common_init();
1515 out:
1516 kfree(timer_mem);
1517 return ret;
1518 }
1519 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1520 arch_timer_mem_of_init);
1521
1522 #ifdef CONFIG_ACPI_GTDT
1523 static int __init
arch_timer_mem_verify_cntfrq(struct arch_timer_mem * timer_mem)1524 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1525 {
1526 struct arch_timer_mem_frame *frame;
1527 u32 rate;
1528 int i;
1529
1530 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1531 frame = &timer_mem->frame[i];
1532
1533 if (!frame->valid)
1534 continue;
1535
1536 rate = arch_timer_mem_frame_get_cntfrq(frame);
1537 if (rate == arch_timer_rate)
1538 continue;
1539
1540 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1541 &frame->cntbase,
1542 (unsigned long)rate, (unsigned long)arch_timer_rate);
1543
1544 return -EINVAL;
1545 }
1546
1547 return 0;
1548 }
1549
arch_timer_mem_acpi_init(int platform_timer_count)1550 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1551 {
1552 struct arch_timer_mem *timers, *timer;
1553 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1554 int timer_count, i, ret = 0;
1555
1556 timers = kcalloc(platform_timer_count, sizeof(*timers),
1557 GFP_KERNEL);
1558 if (!timers)
1559 return -ENOMEM;
1560
1561 ret = acpi_arch_timer_mem_init(timers, &timer_count);
1562 if (ret || !timer_count)
1563 goto out;
1564
1565 /*
1566 * While unlikely, it's theoretically possible that none of the frames
1567 * in a timer expose the combination of feature we want.
1568 */
1569 for (i = 0; i < timer_count; i++) {
1570 timer = &timers[i];
1571
1572 frame = arch_timer_mem_find_best_frame(timer);
1573 if (!best_frame)
1574 best_frame = frame;
1575
1576 ret = arch_timer_mem_verify_cntfrq(timer);
1577 if (ret) {
1578 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1579 goto out;
1580 }
1581
1582 if (!best_frame) /* implies !frame */
1583 /*
1584 * Only complain about missing suitable frames if we
1585 * haven't already found one in a previous iteration.
1586 */
1587 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1588 &timer->cntctlbase);
1589 }
1590
1591 if (best_frame)
1592 ret = arch_timer_mem_frame_register(best_frame);
1593 out:
1594 kfree(timers);
1595 return ret;
1596 }
1597
1598 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
arch_timer_acpi_init(struct acpi_table_header * table)1599 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1600 {
1601 int ret, platform_timer_count;
1602
1603 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1604 pr_warn("already initialized, skipping\n");
1605 return -EINVAL;
1606 }
1607
1608 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1609
1610 ret = acpi_gtdt_init(table, &platform_timer_count);
1611 if (ret)
1612 return ret;
1613
1614 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1615 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1616
1617 arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1618 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1619
1620 arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1621 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1622
1623 arch_timer_populate_kvm_info();
1624
1625 /*
1626 * When probing via ACPI, we have no mechanism to override the sysreg
1627 * CNTFRQ value. This *must* be correct.
1628 */
1629 arch_timer_rate = arch_timer_get_cntfrq();
1630 ret = validate_timer_rate();
1631 if (ret) {
1632 pr_err(FW_BUG "frequency not available.\n");
1633 return ret;
1634 }
1635
1636 arch_timer_uses_ppi = arch_timer_select_ppi();
1637 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1638 pr_err("No interrupt available, giving up\n");
1639 return -EINVAL;
1640 }
1641
1642 /* Always-on capability */
1643 arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1644
1645 /* Check for globally applicable workarounds */
1646 arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1647
1648 ret = arch_timer_register();
1649 if (ret)
1650 return ret;
1651
1652 if (platform_timer_count &&
1653 arch_timer_mem_acpi_init(platform_timer_count))
1654 pr_err("Failed to initialize memory-mapped timer.\n");
1655
1656 return arch_timer_common_init();
1657 }
1658 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1659 #endif
1660