1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * libata-core.c - helper library for ATA
4 *
5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
6 * Copyright 2003-2004 Jeff Garzik
7 *
8 * libata documentation is available via 'make {ps|pdf}docs',
9 * as Documentation/driver-api/libata.rst
10 *
11 * Hardware documentation available from http://www.t13.org/ and
12 * http://www.sata-io.org/
13 *
14 * Standards documents from:
15 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
16 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
17 * http://www.sata-io.org (SATA)
18 * http://www.compactflash.org (CF)
19 * http://www.qic.org (QIC157 - Tape and DSC)
20 * http://www.ce-ata.org (CE-ATA: not supported)
21 *
22 * libata is essentially a library of internal helper functions for
23 * low-level ATA host controller drivers. As such, the API/ABI is
24 * likely to change as new drivers are added and updated.
25 * Do not depend on ABI/API stability.
26 */
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/spinlock.h>
35 #include <linux/blkdev.h>
36 #include <linux/delay.h>
37 #include <linux/timer.h>
38 #include <linux/time.h>
39 #include <linux/interrupt.h>
40 #include <linux/completion.h>
41 #include <linux/suspend.h>
42 #include <linux/workqueue.h>
43 #include <linux/scatterlist.h>
44 #include <linux/io.h>
45 #include <linux/log2.h>
46 #include <linux/slab.h>
47 #include <linux/glob.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_cmnd.h>
50 #include <scsi/scsi_host.h>
51 #include <linux/libata.h>
52 #include <asm/byteorder.h>
53 #include <asm/unaligned.h>
54 #include <linux/cdrom.h>
55 #include <linux/ratelimit.h>
56 #include <linux/leds.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/platform_device.h>
59 #include <asm/setup.h>
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/libata.h>
63
64 #include "libata.h"
65 #include "libata-transport.h"
66
67 const struct ata_port_operations ata_base_port_ops = {
68 .prereset = ata_std_prereset,
69 .postreset = ata_std_postreset,
70 .error_handler = ata_std_error_handler,
71 .sched_eh = ata_std_sched_eh,
72 .end_eh = ata_std_end_eh,
73 };
74
75 const struct ata_port_operations sata_port_ops = {
76 .inherits = &ata_base_port_ops,
77
78 .qc_defer = ata_std_qc_defer,
79 .hardreset = sata_std_hardreset,
80 };
81 EXPORT_SYMBOL_GPL(sata_port_ops);
82
83 static unsigned int ata_dev_init_params(struct ata_device *dev,
84 u16 heads, u16 sectors);
85 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
86 static void ata_dev_xfermask(struct ata_device *dev);
87 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
88
89 atomic_t ata_print_id = ATOMIC_INIT(0);
90
91 #ifdef CONFIG_ATA_FORCE
92 struct ata_force_param {
93 const char *name;
94 u8 cbl;
95 u8 spd_limit;
96 unsigned long xfer_mask;
97 unsigned int horkage_on;
98 unsigned int horkage_off;
99 u16 lflags;
100 };
101
102 struct ata_force_ent {
103 int port;
104 int device;
105 struct ata_force_param param;
106 };
107
108 static struct ata_force_ent *ata_force_tbl;
109 static int ata_force_tbl_size;
110
111 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
112 /* param_buf is thrown away after initialization, disallow read */
113 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
114 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
115 #endif
116
117 static int atapi_enabled = 1;
118 module_param(atapi_enabled, int, 0444);
119 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
120
121 static int atapi_dmadir = 0;
122 module_param(atapi_dmadir, int, 0444);
123 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
124
125 int atapi_passthru16 = 1;
126 module_param(atapi_passthru16, int, 0444);
127 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
128
129 int libata_fua = 0;
130 module_param_named(fua, libata_fua, int, 0444);
131 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
132
133 static int ata_ignore_hpa;
134 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
135 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
136
137 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
138 module_param_named(dma, libata_dma_mask, int, 0444);
139 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
140
141 static int ata_probe_timeout;
142 module_param(ata_probe_timeout, int, 0444);
143 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
144
145 int libata_noacpi = 0;
146 module_param_named(noacpi, libata_noacpi, int, 0444);
147 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
148
149 int libata_allow_tpm = 0;
150 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
151 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
152
153 static int atapi_an;
154 module_param(atapi_an, int, 0444);
155 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
156
157 MODULE_AUTHOR("Jeff Garzik");
158 MODULE_DESCRIPTION("Library module for ATA devices");
159 MODULE_LICENSE("GPL");
160 MODULE_VERSION(DRV_VERSION);
161
162
ata_sstatus_online(u32 sstatus)163 static bool ata_sstatus_online(u32 sstatus)
164 {
165 return (sstatus & 0xf) == 0x3;
166 }
167
168 /**
169 * ata_link_next - link iteration helper
170 * @link: the previous link, NULL to start
171 * @ap: ATA port containing links to iterate
172 * @mode: iteration mode, one of ATA_LITER_*
173 *
174 * LOCKING:
175 * Host lock or EH context.
176 *
177 * RETURNS:
178 * Pointer to the next link.
179 */
ata_link_next(struct ata_link * link,struct ata_port * ap,enum ata_link_iter_mode mode)180 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
181 enum ata_link_iter_mode mode)
182 {
183 BUG_ON(mode != ATA_LITER_EDGE &&
184 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
185
186 /* NULL link indicates start of iteration */
187 if (!link)
188 switch (mode) {
189 case ATA_LITER_EDGE:
190 case ATA_LITER_PMP_FIRST:
191 if (sata_pmp_attached(ap))
192 return ap->pmp_link;
193 fallthrough;
194 case ATA_LITER_HOST_FIRST:
195 return &ap->link;
196 }
197
198 /* we just iterated over the host link, what's next? */
199 if (link == &ap->link)
200 switch (mode) {
201 case ATA_LITER_HOST_FIRST:
202 if (sata_pmp_attached(ap))
203 return ap->pmp_link;
204 fallthrough;
205 case ATA_LITER_PMP_FIRST:
206 if (unlikely(ap->slave_link))
207 return ap->slave_link;
208 fallthrough;
209 case ATA_LITER_EDGE:
210 return NULL;
211 }
212
213 /* slave_link excludes PMP */
214 if (unlikely(link == ap->slave_link))
215 return NULL;
216
217 /* we were over a PMP link */
218 if (++link < ap->pmp_link + ap->nr_pmp_links)
219 return link;
220
221 if (mode == ATA_LITER_PMP_FIRST)
222 return &ap->link;
223
224 return NULL;
225 }
226 EXPORT_SYMBOL_GPL(ata_link_next);
227
228 /**
229 * ata_dev_next - device iteration helper
230 * @dev: the previous device, NULL to start
231 * @link: ATA link containing devices to iterate
232 * @mode: iteration mode, one of ATA_DITER_*
233 *
234 * LOCKING:
235 * Host lock or EH context.
236 *
237 * RETURNS:
238 * Pointer to the next device.
239 */
ata_dev_next(struct ata_device * dev,struct ata_link * link,enum ata_dev_iter_mode mode)240 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
241 enum ata_dev_iter_mode mode)
242 {
243 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
244 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
245
246 /* NULL dev indicates start of iteration */
247 if (!dev)
248 switch (mode) {
249 case ATA_DITER_ENABLED:
250 case ATA_DITER_ALL:
251 dev = link->device;
252 goto check;
253 case ATA_DITER_ENABLED_REVERSE:
254 case ATA_DITER_ALL_REVERSE:
255 dev = link->device + ata_link_max_devices(link) - 1;
256 goto check;
257 }
258
259 next:
260 /* move to the next one */
261 switch (mode) {
262 case ATA_DITER_ENABLED:
263 case ATA_DITER_ALL:
264 if (++dev < link->device + ata_link_max_devices(link))
265 goto check;
266 return NULL;
267 case ATA_DITER_ENABLED_REVERSE:
268 case ATA_DITER_ALL_REVERSE:
269 if (--dev >= link->device)
270 goto check;
271 return NULL;
272 }
273
274 check:
275 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
276 !ata_dev_enabled(dev))
277 goto next;
278 return dev;
279 }
280 EXPORT_SYMBOL_GPL(ata_dev_next);
281
282 /**
283 * ata_dev_phys_link - find physical link for a device
284 * @dev: ATA device to look up physical link for
285 *
286 * Look up physical link which @dev is attached to. Note that
287 * this is different from @dev->link only when @dev is on slave
288 * link. For all other cases, it's the same as @dev->link.
289 *
290 * LOCKING:
291 * Don't care.
292 *
293 * RETURNS:
294 * Pointer to the found physical link.
295 */
ata_dev_phys_link(struct ata_device * dev)296 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
297 {
298 struct ata_port *ap = dev->link->ap;
299
300 if (!ap->slave_link)
301 return dev->link;
302 if (!dev->devno)
303 return &ap->link;
304 return ap->slave_link;
305 }
306
307 #ifdef CONFIG_ATA_FORCE
308 /**
309 * ata_force_cbl - force cable type according to libata.force
310 * @ap: ATA port of interest
311 *
312 * Force cable type according to libata.force and whine about it.
313 * The last entry which has matching port number is used, so it
314 * can be specified as part of device force parameters. For
315 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
316 * same effect.
317 *
318 * LOCKING:
319 * EH context.
320 */
ata_force_cbl(struct ata_port * ap)321 void ata_force_cbl(struct ata_port *ap)
322 {
323 int i;
324
325 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
326 const struct ata_force_ent *fe = &ata_force_tbl[i];
327
328 if (fe->port != -1 && fe->port != ap->print_id)
329 continue;
330
331 if (fe->param.cbl == ATA_CBL_NONE)
332 continue;
333
334 ap->cbl = fe->param.cbl;
335 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
336 return;
337 }
338 }
339
340 /**
341 * ata_force_link_limits - force link limits according to libata.force
342 * @link: ATA link of interest
343 *
344 * Force link flags and SATA spd limit according to libata.force
345 * and whine about it. When only the port part is specified
346 * (e.g. 1:), the limit applies to all links connected to both
347 * the host link and all fan-out ports connected via PMP. If the
348 * device part is specified as 0 (e.g. 1.00:), it specifies the
349 * first fan-out link not the host link. Device number 15 always
350 * points to the host link whether PMP is attached or not. If the
351 * controller has slave link, device number 16 points to it.
352 *
353 * LOCKING:
354 * EH context.
355 */
ata_force_link_limits(struct ata_link * link)356 static void ata_force_link_limits(struct ata_link *link)
357 {
358 bool did_spd = false;
359 int linkno = link->pmp;
360 int i;
361
362 if (ata_is_host_link(link))
363 linkno += 15;
364
365 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
366 const struct ata_force_ent *fe = &ata_force_tbl[i];
367
368 if (fe->port != -1 && fe->port != link->ap->print_id)
369 continue;
370
371 if (fe->device != -1 && fe->device != linkno)
372 continue;
373
374 /* only honor the first spd limit */
375 if (!did_spd && fe->param.spd_limit) {
376 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
377 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
378 fe->param.name);
379 did_spd = true;
380 }
381
382 /* let lflags stack */
383 if (fe->param.lflags) {
384 link->flags |= fe->param.lflags;
385 ata_link_notice(link,
386 "FORCE: link flag 0x%x forced -> 0x%x\n",
387 fe->param.lflags, link->flags);
388 }
389 }
390 }
391
392 /**
393 * ata_force_xfermask - force xfermask according to libata.force
394 * @dev: ATA device of interest
395 *
396 * Force xfer_mask according to libata.force and whine about it.
397 * For consistency with link selection, device number 15 selects
398 * the first device connected to the host link.
399 *
400 * LOCKING:
401 * EH context.
402 */
ata_force_xfermask(struct ata_device * dev)403 static void ata_force_xfermask(struct ata_device *dev)
404 {
405 int devno = dev->link->pmp + dev->devno;
406 int alt_devno = devno;
407 int i;
408
409 /* allow n.15/16 for devices attached to host port */
410 if (ata_is_host_link(dev->link))
411 alt_devno += 15;
412
413 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
414 const struct ata_force_ent *fe = &ata_force_tbl[i];
415 unsigned long pio_mask, mwdma_mask, udma_mask;
416
417 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
418 continue;
419
420 if (fe->device != -1 && fe->device != devno &&
421 fe->device != alt_devno)
422 continue;
423
424 if (!fe->param.xfer_mask)
425 continue;
426
427 ata_unpack_xfermask(fe->param.xfer_mask,
428 &pio_mask, &mwdma_mask, &udma_mask);
429 if (udma_mask)
430 dev->udma_mask = udma_mask;
431 else if (mwdma_mask) {
432 dev->udma_mask = 0;
433 dev->mwdma_mask = mwdma_mask;
434 } else {
435 dev->udma_mask = 0;
436 dev->mwdma_mask = 0;
437 dev->pio_mask = pio_mask;
438 }
439
440 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
441 fe->param.name);
442 return;
443 }
444 }
445
446 /**
447 * ata_force_horkage - force horkage according to libata.force
448 * @dev: ATA device of interest
449 *
450 * Force horkage according to libata.force and whine about it.
451 * For consistency with link selection, device number 15 selects
452 * the first device connected to the host link.
453 *
454 * LOCKING:
455 * EH context.
456 */
ata_force_horkage(struct ata_device * dev)457 static void ata_force_horkage(struct ata_device *dev)
458 {
459 int devno = dev->link->pmp + dev->devno;
460 int alt_devno = devno;
461 int i;
462
463 /* allow n.15/16 for devices attached to host port */
464 if (ata_is_host_link(dev->link))
465 alt_devno += 15;
466
467 for (i = 0; i < ata_force_tbl_size; i++) {
468 const struct ata_force_ent *fe = &ata_force_tbl[i];
469
470 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
471 continue;
472
473 if (fe->device != -1 && fe->device != devno &&
474 fe->device != alt_devno)
475 continue;
476
477 if (!(~dev->horkage & fe->param.horkage_on) &&
478 !(dev->horkage & fe->param.horkage_off))
479 continue;
480
481 dev->horkage |= fe->param.horkage_on;
482 dev->horkage &= ~fe->param.horkage_off;
483
484 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
485 fe->param.name);
486 }
487 }
488 #else
ata_force_link_limits(struct ata_link * link)489 static inline void ata_force_link_limits(struct ata_link *link) { }
ata_force_xfermask(struct ata_device * dev)490 static inline void ata_force_xfermask(struct ata_device *dev) { }
ata_force_horkage(struct ata_device * dev)491 static inline void ata_force_horkage(struct ata_device *dev) { }
492 #endif
493
494 /**
495 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
496 * @opcode: SCSI opcode
497 *
498 * Determine ATAPI command type from @opcode.
499 *
500 * LOCKING:
501 * None.
502 *
503 * RETURNS:
504 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
505 */
atapi_cmd_type(u8 opcode)506 int atapi_cmd_type(u8 opcode)
507 {
508 switch (opcode) {
509 case GPCMD_READ_10:
510 case GPCMD_READ_12:
511 return ATAPI_READ;
512
513 case GPCMD_WRITE_10:
514 case GPCMD_WRITE_12:
515 case GPCMD_WRITE_AND_VERIFY_10:
516 return ATAPI_WRITE;
517
518 case GPCMD_READ_CD:
519 case GPCMD_READ_CD_MSF:
520 return ATAPI_READ_CD;
521
522 case ATA_16:
523 case ATA_12:
524 if (atapi_passthru16)
525 return ATAPI_PASS_THRU;
526 fallthrough;
527 default:
528 return ATAPI_MISC;
529 }
530 }
531 EXPORT_SYMBOL_GPL(atapi_cmd_type);
532
533 static const u8 ata_rw_cmds[] = {
534 /* pio multi */
535 ATA_CMD_READ_MULTI,
536 ATA_CMD_WRITE_MULTI,
537 ATA_CMD_READ_MULTI_EXT,
538 ATA_CMD_WRITE_MULTI_EXT,
539 0,
540 0,
541 0,
542 ATA_CMD_WRITE_MULTI_FUA_EXT,
543 /* pio */
544 ATA_CMD_PIO_READ,
545 ATA_CMD_PIO_WRITE,
546 ATA_CMD_PIO_READ_EXT,
547 ATA_CMD_PIO_WRITE_EXT,
548 0,
549 0,
550 0,
551 0,
552 /* dma */
553 ATA_CMD_READ,
554 ATA_CMD_WRITE,
555 ATA_CMD_READ_EXT,
556 ATA_CMD_WRITE_EXT,
557 0,
558 0,
559 0,
560 ATA_CMD_WRITE_FUA_EXT
561 };
562
563 /**
564 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
565 * @tf: command to examine and configure
566 * @dev: device tf belongs to
567 *
568 * Examine the device configuration and tf->flags to calculate
569 * the proper read/write commands and protocol to use.
570 *
571 * LOCKING:
572 * caller.
573 */
ata_rwcmd_protocol(struct ata_taskfile * tf,struct ata_device * dev)574 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
575 {
576 u8 cmd;
577
578 int index, fua, lba48, write;
579
580 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
581 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
582 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
583
584 if (dev->flags & ATA_DFLAG_PIO) {
585 tf->protocol = ATA_PROT_PIO;
586 index = dev->multi_count ? 0 : 8;
587 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
588 /* Unable to use DMA due to host limitation */
589 tf->protocol = ATA_PROT_PIO;
590 index = dev->multi_count ? 0 : 8;
591 } else {
592 tf->protocol = ATA_PROT_DMA;
593 index = 16;
594 }
595
596 cmd = ata_rw_cmds[index + fua + lba48 + write];
597 if (cmd) {
598 tf->command = cmd;
599 return 0;
600 }
601 return -1;
602 }
603
604 /**
605 * ata_tf_read_block - Read block address from ATA taskfile
606 * @tf: ATA taskfile of interest
607 * @dev: ATA device @tf belongs to
608 *
609 * LOCKING:
610 * None.
611 *
612 * Read block address from @tf. This function can handle all
613 * three address formats - LBA, LBA48 and CHS. tf->protocol and
614 * flags select the address format to use.
615 *
616 * RETURNS:
617 * Block address read from @tf.
618 */
ata_tf_read_block(const struct ata_taskfile * tf,struct ata_device * dev)619 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
620 {
621 u64 block = 0;
622
623 if (tf->flags & ATA_TFLAG_LBA) {
624 if (tf->flags & ATA_TFLAG_LBA48) {
625 block |= (u64)tf->hob_lbah << 40;
626 block |= (u64)tf->hob_lbam << 32;
627 block |= (u64)tf->hob_lbal << 24;
628 } else
629 block |= (tf->device & 0xf) << 24;
630
631 block |= tf->lbah << 16;
632 block |= tf->lbam << 8;
633 block |= tf->lbal;
634 } else {
635 u32 cyl, head, sect;
636
637 cyl = tf->lbam | (tf->lbah << 8);
638 head = tf->device & 0xf;
639 sect = tf->lbal;
640
641 if (!sect) {
642 ata_dev_warn(dev,
643 "device reported invalid CHS sector 0\n");
644 return U64_MAX;
645 }
646
647 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
648 }
649
650 return block;
651 }
652
653 /**
654 * ata_build_rw_tf - Build ATA taskfile for given read/write request
655 * @tf: Target ATA taskfile
656 * @dev: ATA device @tf belongs to
657 * @block: Block address
658 * @n_block: Number of blocks
659 * @tf_flags: RW/FUA etc...
660 * @tag: tag
661 * @class: IO priority class
662 *
663 * LOCKING:
664 * None.
665 *
666 * Build ATA taskfile @tf for read/write request described by
667 * @block, @n_block, @tf_flags and @tag on @dev.
668 *
669 * RETURNS:
670 *
671 * 0 on success, -ERANGE if the request is too large for @dev,
672 * -EINVAL if the request is invalid.
673 */
ata_build_rw_tf(struct ata_taskfile * tf,struct ata_device * dev,u64 block,u32 n_block,unsigned int tf_flags,unsigned int tag,int class)674 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
675 u64 block, u32 n_block, unsigned int tf_flags,
676 unsigned int tag, int class)
677 {
678 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
679 tf->flags |= tf_flags;
680
681 if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) {
682 /* yay, NCQ */
683 if (!lba_48_ok(block, n_block))
684 return -ERANGE;
685
686 tf->protocol = ATA_PROT_NCQ;
687 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
688
689 if (tf->flags & ATA_TFLAG_WRITE)
690 tf->command = ATA_CMD_FPDMA_WRITE;
691 else
692 tf->command = ATA_CMD_FPDMA_READ;
693
694 tf->nsect = tag << 3;
695 tf->hob_feature = (n_block >> 8) & 0xff;
696 tf->feature = n_block & 0xff;
697
698 tf->hob_lbah = (block >> 40) & 0xff;
699 tf->hob_lbam = (block >> 32) & 0xff;
700 tf->hob_lbal = (block >> 24) & 0xff;
701 tf->lbah = (block >> 16) & 0xff;
702 tf->lbam = (block >> 8) & 0xff;
703 tf->lbal = block & 0xff;
704
705 tf->device = ATA_LBA;
706 if (tf->flags & ATA_TFLAG_FUA)
707 tf->device |= 1 << 7;
708
709 if (dev->flags & ATA_DFLAG_NCQ_PRIO) {
710 if (class == IOPRIO_CLASS_RT)
711 tf->hob_nsect |= ATA_PRIO_HIGH <<
712 ATA_SHIFT_PRIO;
713 }
714 } else if (dev->flags & ATA_DFLAG_LBA) {
715 tf->flags |= ATA_TFLAG_LBA;
716
717 if (lba_28_ok(block, n_block)) {
718 /* use LBA28 */
719 tf->device |= (block >> 24) & 0xf;
720 } else if (lba_48_ok(block, n_block)) {
721 if (!(dev->flags & ATA_DFLAG_LBA48))
722 return -ERANGE;
723
724 /* use LBA48 */
725 tf->flags |= ATA_TFLAG_LBA48;
726
727 tf->hob_nsect = (n_block >> 8) & 0xff;
728
729 tf->hob_lbah = (block >> 40) & 0xff;
730 tf->hob_lbam = (block >> 32) & 0xff;
731 tf->hob_lbal = (block >> 24) & 0xff;
732 } else
733 /* request too large even for LBA48 */
734 return -ERANGE;
735
736 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
737 return -EINVAL;
738
739 tf->nsect = n_block & 0xff;
740
741 tf->lbah = (block >> 16) & 0xff;
742 tf->lbam = (block >> 8) & 0xff;
743 tf->lbal = block & 0xff;
744
745 tf->device |= ATA_LBA;
746 } else {
747 /* CHS */
748 u32 sect, head, cyl, track;
749
750 /* The request -may- be too large for CHS addressing. */
751 if (!lba_28_ok(block, n_block))
752 return -ERANGE;
753
754 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
755 return -EINVAL;
756
757 /* Convert LBA to CHS */
758 track = (u32)block / dev->sectors;
759 cyl = track / dev->heads;
760 head = track % dev->heads;
761 sect = (u32)block % dev->sectors + 1;
762
763 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
764 (u32)block, track, cyl, head, sect);
765
766 /* Check whether the converted CHS can fit.
767 Cylinder: 0-65535
768 Head: 0-15
769 Sector: 1-255*/
770 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
771 return -ERANGE;
772
773 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
774 tf->lbal = sect;
775 tf->lbam = cyl;
776 tf->lbah = cyl >> 8;
777 tf->device |= head;
778 }
779
780 return 0;
781 }
782
783 /**
784 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
785 * @pio_mask: pio_mask
786 * @mwdma_mask: mwdma_mask
787 * @udma_mask: udma_mask
788 *
789 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
790 * unsigned int xfer_mask.
791 *
792 * LOCKING:
793 * None.
794 *
795 * RETURNS:
796 * Packed xfer_mask.
797 */
ata_pack_xfermask(unsigned long pio_mask,unsigned long mwdma_mask,unsigned long udma_mask)798 unsigned long ata_pack_xfermask(unsigned long pio_mask,
799 unsigned long mwdma_mask,
800 unsigned long udma_mask)
801 {
802 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
803 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
804 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
805 }
806 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
807
808 /**
809 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
810 * @xfer_mask: xfer_mask to unpack
811 * @pio_mask: resulting pio_mask
812 * @mwdma_mask: resulting mwdma_mask
813 * @udma_mask: resulting udma_mask
814 *
815 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
816 * Any NULL destination masks will be ignored.
817 */
ata_unpack_xfermask(unsigned long xfer_mask,unsigned long * pio_mask,unsigned long * mwdma_mask,unsigned long * udma_mask)818 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
819 unsigned long *mwdma_mask, unsigned long *udma_mask)
820 {
821 if (pio_mask)
822 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
823 if (mwdma_mask)
824 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
825 if (udma_mask)
826 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
827 }
828
829 static const struct ata_xfer_ent {
830 int shift, bits;
831 u8 base;
832 } ata_xfer_tbl[] = {
833 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
834 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
835 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
836 { -1, },
837 };
838
839 /**
840 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
841 * @xfer_mask: xfer_mask of interest
842 *
843 * Return matching XFER_* value for @xfer_mask. Only the highest
844 * bit of @xfer_mask is considered.
845 *
846 * LOCKING:
847 * None.
848 *
849 * RETURNS:
850 * Matching XFER_* value, 0xff if no match found.
851 */
ata_xfer_mask2mode(unsigned long xfer_mask)852 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
853 {
854 int highbit = fls(xfer_mask) - 1;
855 const struct ata_xfer_ent *ent;
856
857 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
858 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
859 return ent->base + highbit - ent->shift;
860 return 0xff;
861 }
862 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
863
864 /**
865 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
866 * @xfer_mode: XFER_* of interest
867 *
868 * Return matching xfer_mask for @xfer_mode.
869 *
870 * LOCKING:
871 * None.
872 *
873 * RETURNS:
874 * Matching xfer_mask, 0 if no match found.
875 */
ata_xfer_mode2mask(u8 xfer_mode)876 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
877 {
878 const struct ata_xfer_ent *ent;
879
880 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
881 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
882 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
883 & ~((1 << ent->shift) - 1);
884 return 0;
885 }
886 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
887
888 /**
889 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
890 * @xfer_mode: XFER_* of interest
891 *
892 * Return matching xfer_shift for @xfer_mode.
893 *
894 * LOCKING:
895 * None.
896 *
897 * RETURNS:
898 * Matching xfer_shift, -1 if no match found.
899 */
ata_xfer_mode2shift(unsigned long xfer_mode)900 int ata_xfer_mode2shift(unsigned long xfer_mode)
901 {
902 const struct ata_xfer_ent *ent;
903
904 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
905 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
906 return ent->shift;
907 return -1;
908 }
909 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
910
911 /**
912 * ata_mode_string - convert xfer_mask to string
913 * @xfer_mask: mask of bits supported; only highest bit counts.
914 *
915 * Determine string which represents the highest speed
916 * (highest bit in @modemask).
917 *
918 * LOCKING:
919 * None.
920 *
921 * RETURNS:
922 * Constant C string representing highest speed listed in
923 * @mode_mask, or the constant C string "<n/a>".
924 */
ata_mode_string(unsigned long xfer_mask)925 const char *ata_mode_string(unsigned long xfer_mask)
926 {
927 static const char * const xfer_mode_str[] = {
928 "PIO0",
929 "PIO1",
930 "PIO2",
931 "PIO3",
932 "PIO4",
933 "PIO5",
934 "PIO6",
935 "MWDMA0",
936 "MWDMA1",
937 "MWDMA2",
938 "MWDMA3",
939 "MWDMA4",
940 "UDMA/16",
941 "UDMA/25",
942 "UDMA/33",
943 "UDMA/44",
944 "UDMA/66",
945 "UDMA/100",
946 "UDMA/133",
947 "UDMA7",
948 };
949 int highbit;
950
951 highbit = fls(xfer_mask) - 1;
952 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
953 return xfer_mode_str[highbit];
954 return "<n/a>";
955 }
956 EXPORT_SYMBOL_GPL(ata_mode_string);
957
sata_spd_string(unsigned int spd)958 const char *sata_spd_string(unsigned int spd)
959 {
960 static const char * const spd_str[] = {
961 "1.5 Gbps",
962 "3.0 Gbps",
963 "6.0 Gbps",
964 };
965
966 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
967 return "<unknown>";
968 return spd_str[spd - 1];
969 }
970
971 /**
972 * ata_dev_classify - determine device type based on ATA-spec signature
973 * @tf: ATA taskfile register set for device to be identified
974 *
975 * Determine from taskfile register contents whether a device is
976 * ATA or ATAPI, as per "Signature and persistence" section
977 * of ATA/PI spec (volume 1, sect 5.14).
978 *
979 * LOCKING:
980 * None.
981 *
982 * RETURNS:
983 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
984 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
985 */
ata_dev_classify(const struct ata_taskfile * tf)986 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
987 {
988 /* Apple's open source Darwin code hints that some devices only
989 * put a proper signature into the LBA mid/high registers,
990 * So, we only check those. It's sufficient for uniqueness.
991 *
992 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
993 * signatures for ATA and ATAPI devices attached on SerialATA,
994 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
995 * spec has never mentioned about using different signatures
996 * for ATA/ATAPI devices. Then, Serial ATA II: Port
997 * Multiplier specification began to use 0x69/0x96 to identify
998 * port multpliers and 0x3c/0xc3 to identify SEMB device.
999 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1000 * 0x69/0x96 shortly and described them as reserved for
1001 * SerialATA.
1002 *
1003 * We follow the current spec and consider that 0x69/0x96
1004 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1005 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1006 * SEMB signature. This is worked around in
1007 * ata_dev_read_id().
1008 */
1009 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1010 DPRINTK("found ATA device by sig\n");
1011 return ATA_DEV_ATA;
1012 }
1013
1014 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1015 DPRINTK("found ATAPI device by sig\n");
1016 return ATA_DEV_ATAPI;
1017 }
1018
1019 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1020 DPRINTK("found PMP device by sig\n");
1021 return ATA_DEV_PMP;
1022 }
1023
1024 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1025 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1026 return ATA_DEV_SEMB;
1027 }
1028
1029 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1030 DPRINTK("found ZAC device by sig\n");
1031 return ATA_DEV_ZAC;
1032 }
1033
1034 DPRINTK("unknown device\n");
1035 return ATA_DEV_UNKNOWN;
1036 }
1037 EXPORT_SYMBOL_GPL(ata_dev_classify);
1038
1039 /**
1040 * ata_id_string - Convert IDENTIFY DEVICE page into string
1041 * @id: IDENTIFY DEVICE results we will examine
1042 * @s: string into which data is output
1043 * @ofs: offset into identify device page
1044 * @len: length of string to return. must be an even number.
1045 *
1046 * The strings in the IDENTIFY DEVICE page are broken up into
1047 * 16-bit chunks. Run through the string, and output each
1048 * 8-bit chunk linearly, regardless of platform.
1049 *
1050 * LOCKING:
1051 * caller.
1052 */
1053
ata_id_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1054 void ata_id_string(const u16 *id, unsigned char *s,
1055 unsigned int ofs, unsigned int len)
1056 {
1057 unsigned int c;
1058
1059 BUG_ON(len & 1);
1060
1061 while (len > 0) {
1062 c = id[ofs] >> 8;
1063 *s = c;
1064 s++;
1065
1066 c = id[ofs] & 0xff;
1067 *s = c;
1068 s++;
1069
1070 ofs++;
1071 len -= 2;
1072 }
1073 }
1074 EXPORT_SYMBOL_GPL(ata_id_string);
1075
1076 /**
1077 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1078 * @id: IDENTIFY DEVICE results we will examine
1079 * @s: string into which data is output
1080 * @ofs: offset into identify device page
1081 * @len: length of string to return. must be an odd number.
1082 *
1083 * This function is identical to ata_id_string except that it
1084 * trims trailing spaces and terminates the resulting string with
1085 * null. @len must be actual maximum length (even number) + 1.
1086 *
1087 * LOCKING:
1088 * caller.
1089 */
ata_id_c_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1090 void ata_id_c_string(const u16 *id, unsigned char *s,
1091 unsigned int ofs, unsigned int len)
1092 {
1093 unsigned char *p;
1094
1095 ata_id_string(id, s, ofs, len - 1);
1096
1097 p = s + strnlen(s, len - 1);
1098 while (p > s && p[-1] == ' ')
1099 p--;
1100 *p = '\0';
1101 }
1102 EXPORT_SYMBOL_GPL(ata_id_c_string);
1103
ata_id_n_sectors(const u16 * id)1104 static u64 ata_id_n_sectors(const u16 *id)
1105 {
1106 if (ata_id_has_lba(id)) {
1107 if (ata_id_has_lba48(id))
1108 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1109 else
1110 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1111 } else {
1112 if (ata_id_current_chs_valid(id))
1113 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1114 id[ATA_ID_CUR_SECTORS];
1115 else
1116 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1117 id[ATA_ID_SECTORS];
1118 }
1119 }
1120
ata_tf_to_lba48(const struct ata_taskfile * tf)1121 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1122 {
1123 u64 sectors = 0;
1124
1125 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1126 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1127 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1128 sectors |= (tf->lbah & 0xff) << 16;
1129 sectors |= (tf->lbam & 0xff) << 8;
1130 sectors |= (tf->lbal & 0xff);
1131
1132 return sectors;
1133 }
1134
ata_tf_to_lba(const struct ata_taskfile * tf)1135 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1136 {
1137 u64 sectors = 0;
1138
1139 sectors |= (tf->device & 0x0f) << 24;
1140 sectors |= (tf->lbah & 0xff) << 16;
1141 sectors |= (tf->lbam & 0xff) << 8;
1142 sectors |= (tf->lbal & 0xff);
1143
1144 return sectors;
1145 }
1146
1147 /**
1148 * ata_read_native_max_address - Read native max address
1149 * @dev: target device
1150 * @max_sectors: out parameter for the result native max address
1151 *
1152 * Perform an LBA48 or LBA28 native size query upon the device in
1153 * question.
1154 *
1155 * RETURNS:
1156 * 0 on success, -EACCES if command is aborted by the drive.
1157 * -EIO on other errors.
1158 */
ata_read_native_max_address(struct ata_device * dev,u64 * max_sectors)1159 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1160 {
1161 unsigned int err_mask;
1162 struct ata_taskfile tf;
1163 int lba48 = ata_id_has_lba48(dev->id);
1164
1165 ata_tf_init(dev, &tf);
1166
1167 /* always clear all address registers */
1168 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1169
1170 if (lba48) {
1171 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1172 tf.flags |= ATA_TFLAG_LBA48;
1173 } else
1174 tf.command = ATA_CMD_READ_NATIVE_MAX;
1175
1176 tf.protocol = ATA_PROT_NODATA;
1177 tf.device |= ATA_LBA;
1178
1179 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1180 if (err_mask) {
1181 ata_dev_warn(dev,
1182 "failed to read native max address (err_mask=0x%x)\n",
1183 err_mask);
1184 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1185 return -EACCES;
1186 return -EIO;
1187 }
1188
1189 if (lba48)
1190 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1191 else
1192 *max_sectors = ata_tf_to_lba(&tf) + 1;
1193 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1194 (*max_sectors)--;
1195 return 0;
1196 }
1197
1198 /**
1199 * ata_set_max_sectors - Set max sectors
1200 * @dev: target device
1201 * @new_sectors: new max sectors value to set for the device
1202 *
1203 * Set max sectors of @dev to @new_sectors.
1204 *
1205 * RETURNS:
1206 * 0 on success, -EACCES if command is aborted or denied (due to
1207 * previous non-volatile SET_MAX) by the drive. -EIO on other
1208 * errors.
1209 */
ata_set_max_sectors(struct ata_device * dev,u64 new_sectors)1210 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1211 {
1212 unsigned int err_mask;
1213 struct ata_taskfile tf;
1214 int lba48 = ata_id_has_lba48(dev->id);
1215
1216 new_sectors--;
1217
1218 ata_tf_init(dev, &tf);
1219
1220 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1221
1222 if (lba48) {
1223 tf.command = ATA_CMD_SET_MAX_EXT;
1224 tf.flags |= ATA_TFLAG_LBA48;
1225
1226 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1227 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1228 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1229 } else {
1230 tf.command = ATA_CMD_SET_MAX;
1231
1232 tf.device |= (new_sectors >> 24) & 0xf;
1233 }
1234
1235 tf.protocol = ATA_PROT_NODATA;
1236 tf.device |= ATA_LBA;
1237
1238 tf.lbal = (new_sectors >> 0) & 0xff;
1239 tf.lbam = (new_sectors >> 8) & 0xff;
1240 tf.lbah = (new_sectors >> 16) & 0xff;
1241
1242 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1243 if (err_mask) {
1244 ata_dev_warn(dev,
1245 "failed to set max address (err_mask=0x%x)\n",
1246 err_mask);
1247 if (err_mask == AC_ERR_DEV &&
1248 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1249 return -EACCES;
1250 return -EIO;
1251 }
1252
1253 return 0;
1254 }
1255
1256 /**
1257 * ata_hpa_resize - Resize a device with an HPA set
1258 * @dev: Device to resize
1259 *
1260 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1261 * it if required to the full size of the media. The caller must check
1262 * the drive has the HPA feature set enabled.
1263 *
1264 * RETURNS:
1265 * 0 on success, -errno on failure.
1266 */
ata_hpa_resize(struct ata_device * dev)1267 static int ata_hpa_resize(struct ata_device *dev)
1268 {
1269 struct ata_eh_context *ehc = &dev->link->eh_context;
1270 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1271 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1272 u64 sectors = ata_id_n_sectors(dev->id);
1273 u64 native_sectors;
1274 int rc;
1275
1276 /* do we need to do it? */
1277 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1278 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1279 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1280 return 0;
1281
1282 /* read native max address */
1283 rc = ata_read_native_max_address(dev, &native_sectors);
1284 if (rc) {
1285 /* If device aborted the command or HPA isn't going to
1286 * be unlocked, skip HPA resizing.
1287 */
1288 if (rc == -EACCES || !unlock_hpa) {
1289 ata_dev_warn(dev,
1290 "HPA support seems broken, skipping HPA handling\n");
1291 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1292
1293 /* we can continue if device aborted the command */
1294 if (rc == -EACCES)
1295 rc = 0;
1296 }
1297
1298 return rc;
1299 }
1300 dev->n_native_sectors = native_sectors;
1301
1302 /* nothing to do? */
1303 if (native_sectors <= sectors || !unlock_hpa) {
1304 if (!print_info || native_sectors == sectors)
1305 return 0;
1306
1307 if (native_sectors > sectors)
1308 ata_dev_info(dev,
1309 "HPA detected: current %llu, native %llu\n",
1310 (unsigned long long)sectors,
1311 (unsigned long long)native_sectors);
1312 else if (native_sectors < sectors)
1313 ata_dev_warn(dev,
1314 "native sectors (%llu) is smaller than sectors (%llu)\n",
1315 (unsigned long long)native_sectors,
1316 (unsigned long long)sectors);
1317 return 0;
1318 }
1319
1320 /* let's unlock HPA */
1321 rc = ata_set_max_sectors(dev, native_sectors);
1322 if (rc == -EACCES) {
1323 /* if device aborted the command, skip HPA resizing */
1324 ata_dev_warn(dev,
1325 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1326 (unsigned long long)sectors,
1327 (unsigned long long)native_sectors);
1328 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1329 return 0;
1330 } else if (rc)
1331 return rc;
1332
1333 /* re-read IDENTIFY data */
1334 rc = ata_dev_reread_id(dev, 0);
1335 if (rc) {
1336 ata_dev_err(dev,
1337 "failed to re-read IDENTIFY data after HPA resizing\n");
1338 return rc;
1339 }
1340
1341 if (print_info) {
1342 u64 new_sectors = ata_id_n_sectors(dev->id);
1343 ata_dev_info(dev,
1344 "HPA unlocked: %llu -> %llu, native %llu\n",
1345 (unsigned long long)sectors,
1346 (unsigned long long)new_sectors,
1347 (unsigned long long)native_sectors);
1348 }
1349
1350 return 0;
1351 }
1352
1353 /**
1354 * ata_dump_id - IDENTIFY DEVICE info debugging output
1355 * @id: IDENTIFY DEVICE page to dump
1356 *
1357 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1358 * page.
1359 *
1360 * LOCKING:
1361 * caller.
1362 */
1363
ata_dump_id(const u16 * id)1364 static inline void ata_dump_id(const u16 *id)
1365 {
1366 DPRINTK("49==0x%04x "
1367 "53==0x%04x "
1368 "63==0x%04x "
1369 "64==0x%04x "
1370 "75==0x%04x \n",
1371 id[49],
1372 id[53],
1373 id[63],
1374 id[64],
1375 id[75]);
1376 DPRINTK("80==0x%04x "
1377 "81==0x%04x "
1378 "82==0x%04x "
1379 "83==0x%04x "
1380 "84==0x%04x \n",
1381 id[80],
1382 id[81],
1383 id[82],
1384 id[83],
1385 id[84]);
1386 DPRINTK("88==0x%04x "
1387 "93==0x%04x\n",
1388 id[88],
1389 id[93]);
1390 }
1391
1392 /**
1393 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1394 * @id: IDENTIFY data to compute xfer mask from
1395 *
1396 * Compute the xfermask for this device. This is not as trivial
1397 * as it seems if we must consider early devices correctly.
1398 *
1399 * FIXME: pre IDE drive timing (do we care ?).
1400 *
1401 * LOCKING:
1402 * None.
1403 *
1404 * RETURNS:
1405 * Computed xfermask
1406 */
ata_id_xfermask(const u16 * id)1407 unsigned long ata_id_xfermask(const u16 *id)
1408 {
1409 unsigned long pio_mask, mwdma_mask, udma_mask;
1410
1411 /* Usual case. Word 53 indicates word 64 is valid */
1412 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1413 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1414 pio_mask <<= 3;
1415 pio_mask |= 0x7;
1416 } else {
1417 /* If word 64 isn't valid then Word 51 high byte holds
1418 * the PIO timing number for the maximum. Turn it into
1419 * a mask.
1420 */
1421 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1422 if (mode < 5) /* Valid PIO range */
1423 pio_mask = (2 << mode) - 1;
1424 else
1425 pio_mask = 1;
1426
1427 /* But wait.. there's more. Design your standards by
1428 * committee and you too can get a free iordy field to
1429 * process. However its the speeds not the modes that
1430 * are supported... Note drivers using the timing API
1431 * will get this right anyway
1432 */
1433 }
1434
1435 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1436
1437 if (ata_id_is_cfa(id)) {
1438 /*
1439 * Process compact flash extended modes
1440 */
1441 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1442 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1443
1444 if (pio)
1445 pio_mask |= (1 << 5);
1446 if (pio > 1)
1447 pio_mask |= (1 << 6);
1448 if (dma)
1449 mwdma_mask |= (1 << 3);
1450 if (dma > 1)
1451 mwdma_mask |= (1 << 4);
1452 }
1453
1454 udma_mask = 0;
1455 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1456 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1457
1458 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1459 }
1460 EXPORT_SYMBOL_GPL(ata_id_xfermask);
1461
ata_qc_complete_internal(struct ata_queued_cmd * qc)1462 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1463 {
1464 struct completion *waiting = qc->private_data;
1465
1466 complete(waiting);
1467 }
1468
1469 /**
1470 * ata_exec_internal_sg - execute libata internal command
1471 * @dev: Device to which the command is sent
1472 * @tf: Taskfile registers for the command and the result
1473 * @cdb: CDB for packet command
1474 * @dma_dir: Data transfer direction of the command
1475 * @sgl: sg list for the data buffer of the command
1476 * @n_elem: Number of sg entries
1477 * @timeout: Timeout in msecs (0 for default)
1478 *
1479 * Executes libata internal command with timeout. @tf contains
1480 * command on entry and result on return. Timeout and error
1481 * conditions are reported via return value. No recovery action
1482 * is taken after a command times out. It's caller's duty to
1483 * clean up after timeout.
1484 *
1485 * LOCKING:
1486 * None. Should be called with kernel context, might sleep.
1487 *
1488 * RETURNS:
1489 * Zero on success, AC_ERR_* mask on failure
1490 */
ata_exec_internal_sg(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,int dma_dir,struct scatterlist * sgl,unsigned int n_elem,unsigned long timeout)1491 unsigned ata_exec_internal_sg(struct ata_device *dev,
1492 struct ata_taskfile *tf, const u8 *cdb,
1493 int dma_dir, struct scatterlist *sgl,
1494 unsigned int n_elem, unsigned long timeout)
1495 {
1496 struct ata_link *link = dev->link;
1497 struct ata_port *ap = link->ap;
1498 u8 command = tf->command;
1499 int auto_timeout = 0;
1500 struct ata_queued_cmd *qc;
1501 unsigned int preempted_tag;
1502 u32 preempted_sactive;
1503 u64 preempted_qc_active;
1504 int preempted_nr_active_links;
1505 DECLARE_COMPLETION_ONSTACK(wait);
1506 unsigned long flags;
1507 unsigned int err_mask;
1508 int rc;
1509
1510 spin_lock_irqsave(ap->lock, flags);
1511
1512 /* no internal command while frozen */
1513 if (ap->pflags & ATA_PFLAG_FROZEN) {
1514 spin_unlock_irqrestore(ap->lock, flags);
1515 return AC_ERR_SYSTEM;
1516 }
1517
1518 /* initialize internal qc */
1519 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1520
1521 qc->tag = ATA_TAG_INTERNAL;
1522 qc->hw_tag = 0;
1523 qc->scsicmd = NULL;
1524 qc->ap = ap;
1525 qc->dev = dev;
1526 ata_qc_reinit(qc);
1527
1528 preempted_tag = link->active_tag;
1529 preempted_sactive = link->sactive;
1530 preempted_qc_active = ap->qc_active;
1531 preempted_nr_active_links = ap->nr_active_links;
1532 link->active_tag = ATA_TAG_POISON;
1533 link->sactive = 0;
1534 ap->qc_active = 0;
1535 ap->nr_active_links = 0;
1536
1537 /* prepare & issue qc */
1538 qc->tf = *tf;
1539 if (cdb)
1540 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1541
1542 /* some SATA bridges need us to indicate data xfer direction */
1543 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1544 dma_dir == DMA_FROM_DEVICE)
1545 qc->tf.feature |= ATAPI_DMADIR;
1546
1547 qc->flags |= ATA_QCFLAG_RESULT_TF;
1548 qc->dma_dir = dma_dir;
1549 if (dma_dir != DMA_NONE) {
1550 unsigned int i, buflen = 0;
1551 struct scatterlist *sg;
1552
1553 for_each_sg(sgl, sg, n_elem, i)
1554 buflen += sg->length;
1555
1556 ata_sg_init(qc, sgl, n_elem);
1557 qc->nbytes = buflen;
1558 }
1559
1560 qc->private_data = &wait;
1561 qc->complete_fn = ata_qc_complete_internal;
1562
1563 ata_qc_issue(qc);
1564
1565 spin_unlock_irqrestore(ap->lock, flags);
1566
1567 if (!timeout) {
1568 if (ata_probe_timeout)
1569 timeout = ata_probe_timeout * 1000;
1570 else {
1571 timeout = ata_internal_cmd_timeout(dev, command);
1572 auto_timeout = 1;
1573 }
1574 }
1575
1576 if (ap->ops->error_handler)
1577 ata_eh_release(ap);
1578
1579 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1580
1581 if (ap->ops->error_handler)
1582 ata_eh_acquire(ap);
1583
1584 ata_sff_flush_pio_task(ap);
1585
1586 if (!rc) {
1587 spin_lock_irqsave(ap->lock, flags);
1588
1589 /* We're racing with irq here. If we lose, the
1590 * following test prevents us from completing the qc
1591 * twice. If we win, the port is frozen and will be
1592 * cleaned up by ->post_internal_cmd().
1593 */
1594 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1595 qc->err_mask |= AC_ERR_TIMEOUT;
1596
1597 if (ap->ops->error_handler)
1598 ata_port_freeze(ap);
1599 else
1600 ata_qc_complete(qc);
1601
1602 if (ata_msg_warn(ap))
1603 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1604 command);
1605 }
1606
1607 spin_unlock_irqrestore(ap->lock, flags);
1608 }
1609
1610 /* do post_internal_cmd */
1611 if (ap->ops->post_internal_cmd)
1612 ap->ops->post_internal_cmd(qc);
1613
1614 /* perform minimal error analysis */
1615 if (qc->flags & ATA_QCFLAG_FAILED) {
1616 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1617 qc->err_mask |= AC_ERR_DEV;
1618
1619 if (!qc->err_mask)
1620 qc->err_mask |= AC_ERR_OTHER;
1621
1622 if (qc->err_mask & ~AC_ERR_OTHER)
1623 qc->err_mask &= ~AC_ERR_OTHER;
1624 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1625 qc->result_tf.command |= ATA_SENSE;
1626 }
1627
1628 /* finish up */
1629 spin_lock_irqsave(ap->lock, flags);
1630
1631 *tf = qc->result_tf;
1632 err_mask = qc->err_mask;
1633
1634 ata_qc_free(qc);
1635 link->active_tag = preempted_tag;
1636 link->sactive = preempted_sactive;
1637 ap->qc_active = preempted_qc_active;
1638 ap->nr_active_links = preempted_nr_active_links;
1639
1640 spin_unlock_irqrestore(ap->lock, flags);
1641
1642 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1643 ata_internal_cmd_timed_out(dev, command);
1644
1645 return err_mask;
1646 }
1647
1648 /**
1649 * ata_exec_internal - execute libata internal command
1650 * @dev: Device to which the command is sent
1651 * @tf: Taskfile registers for the command and the result
1652 * @cdb: CDB for packet command
1653 * @dma_dir: Data transfer direction of the command
1654 * @buf: Data buffer of the command
1655 * @buflen: Length of data buffer
1656 * @timeout: Timeout in msecs (0 for default)
1657 *
1658 * Wrapper around ata_exec_internal_sg() which takes simple
1659 * buffer instead of sg list.
1660 *
1661 * LOCKING:
1662 * None. Should be called with kernel context, might sleep.
1663 *
1664 * RETURNS:
1665 * Zero on success, AC_ERR_* mask on failure
1666 */
ata_exec_internal(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,int dma_dir,void * buf,unsigned int buflen,unsigned long timeout)1667 unsigned ata_exec_internal(struct ata_device *dev,
1668 struct ata_taskfile *tf, const u8 *cdb,
1669 int dma_dir, void *buf, unsigned int buflen,
1670 unsigned long timeout)
1671 {
1672 struct scatterlist *psg = NULL, sg;
1673 unsigned int n_elem = 0;
1674
1675 if (dma_dir != DMA_NONE) {
1676 WARN_ON(!buf);
1677 sg_init_one(&sg, buf, buflen);
1678 psg = &sg;
1679 n_elem++;
1680 }
1681
1682 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1683 timeout);
1684 }
1685
1686 /**
1687 * ata_pio_need_iordy - check if iordy needed
1688 * @adev: ATA device
1689 *
1690 * Check if the current speed of the device requires IORDY. Used
1691 * by various controllers for chip configuration.
1692 */
ata_pio_need_iordy(const struct ata_device * adev)1693 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1694 {
1695 /* Don't set IORDY if we're preparing for reset. IORDY may
1696 * lead to controller lock up on certain controllers if the
1697 * port is not occupied. See bko#11703 for details.
1698 */
1699 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1700 return 0;
1701 /* Controller doesn't support IORDY. Probably a pointless
1702 * check as the caller should know this.
1703 */
1704 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1705 return 0;
1706 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1707 if (ata_id_is_cfa(adev->id)
1708 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1709 return 0;
1710 /* PIO3 and higher it is mandatory */
1711 if (adev->pio_mode > XFER_PIO_2)
1712 return 1;
1713 /* We turn it on when possible */
1714 if (ata_id_has_iordy(adev->id))
1715 return 1;
1716 return 0;
1717 }
1718 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1719
1720 /**
1721 * ata_pio_mask_no_iordy - Return the non IORDY mask
1722 * @adev: ATA device
1723 *
1724 * Compute the highest mode possible if we are not using iordy. Return
1725 * -1 if no iordy mode is available.
1726 */
ata_pio_mask_no_iordy(const struct ata_device * adev)1727 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1728 {
1729 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1730 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1731 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1732 /* Is the speed faster than the drive allows non IORDY ? */
1733 if (pio) {
1734 /* This is cycle times not frequency - watch the logic! */
1735 if (pio > 240) /* PIO2 is 240nS per cycle */
1736 return 3 << ATA_SHIFT_PIO;
1737 return 7 << ATA_SHIFT_PIO;
1738 }
1739 }
1740 return 3 << ATA_SHIFT_PIO;
1741 }
1742
1743 /**
1744 * ata_do_dev_read_id - default ID read method
1745 * @dev: device
1746 * @tf: proposed taskfile
1747 * @id: data buffer
1748 *
1749 * Issue the identify taskfile and hand back the buffer containing
1750 * identify data. For some RAID controllers and for pre ATA devices
1751 * this function is wrapped or replaced by the driver
1752 */
ata_do_dev_read_id(struct ata_device * dev,struct ata_taskfile * tf,u16 * id)1753 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1754 struct ata_taskfile *tf, u16 *id)
1755 {
1756 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1757 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1758 }
1759 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1760
1761 /**
1762 * ata_dev_read_id - Read ID data from the specified device
1763 * @dev: target device
1764 * @p_class: pointer to class of the target device (may be changed)
1765 * @flags: ATA_READID_* flags
1766 * @id: buffer to read IDENTIFY data into
1767 *
1768 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1769 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1770 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1771 * for pre-ATA4 drives.
1772 *
1773 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1774 * now we abort if we hit that case.
1775 *
1776 * LOCKING:
1777 * Kernel thread context (may sleep)
1778 *
1779 * RETURNS:
1780 * 0 on success, -errno otherwise.
1781 */
ata_dev_read_id(struct ata_device * dev,unsigned int * p_class,unsigned int flags,u16 * id)1782 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1783 unsigned int flags, u16 *id)
1784 {
1785 struct ata_port *ap = dev->link->ap;
1786 unsigned int class = *p_class;
1787 struct ata_taskfile tf;
1788 unsigned int err_mask = 0;
1789 const char *reason;
1790 bool is_semb = class == ATA_DEV_SEMB;
1791 int may_fallback = 1, tried_spinup = 0;
1792 int rc;
1793
1794 if (ata_msg_ctl(ap))
1795 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1796
1797 retry:
1798 ata_tf_init(dev, &tf);
1799
1800 switch (class) {
1801 case ATA_DEV_SEMB:
1802 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1803 fallthrough;
1804 case ATA_DEV_ATA:
1805 case ATA_DEV_ZAC:
1806 tf.command = ATA_CMD_ID_ATA;
1807 break;
1808 case ATA_DEV_ATAPI:
1809 tf.command = ATA_CMD_ID_ATAPI;
1810 break;
1811 default:
1812 rc = -ENODEV;
1813 reason = "unsupported class";
1814 goto err_out;
1815 }
1816
1817 tf.protocol = ATA_PROT_PIO;
1818
1819 /* Some devices choke if TF registers contain garbage. Make
1820 * sure those are properly initialized.
1821 */
1822 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1823
1824 /* Device presence detection is unreliable on some
1825 * controllers. Always poll IDENTIFY if available.
1826 */
1827 tf.flags |= ATA_TFLAG_POLLING;
1828
1829 if (ap->ops->read_id)
1830 err_mask = ap->ops->read_id(dev, &tf, id);
1831 else
1832 err_mask = ata_do_dev_read_id(dev, &tf, id);
1833
1834 if (err_mask) {
1835 if (err_mask & AC_ERR_NODEV_HINT) {
1836 ata_dev_dbg(dev, "NODEV after polling detection\n");
1837 return -ENOENT;
1838 }
1839
1840 if (is_semb) {
1841 ata_dev_info(dev,
1842 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1843 /* SEMB is not supported yet */
1844 *p_class = ATA_DEV_SEMB_UNSUP;
1845 return 0;
1846 }
1847
1848 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1849 /* Device or controller might have reported
1850 * the wrong device class. Give a shot at the
1851 * other IDENTIFY if the current one is
1852 * aborted by the device.
1853 */
1854 if (may_fallback) {
1855 may_fallback = 0;
1856
1857 if (class == ATA_DEV_ATA)
1858 class = ATA_DEV_ATAPI;
1859 else
1860 class = ATA_DEV_ATA;
1861 goto retry;
1862 }
1863
1864 /* Control reaches here iff the device aborted
1865 * both flavors of IDENTIFYs which happens
1866 * sometimes with phantom devices.
1867 */
1868 ata_dev_dbg(dev,
1869 "both IDENTIFYs aborted, assuming NODEV\n");
1870 return -ENOENT;
1871 }
1872
1873 rc = -EIO;
1874 reason = "I/O error";
1875 goto err_out;
1876 }
1877
1878 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1879 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1880 "class=%d may_fallback=%d tried_spinup=%d\n",
1881 class, may_fallback, tried_spinup);
1882 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1883 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1884 }
1885
1886 /* Falling back doesn't make sense if ID data was read
1887 * successfully at least once.
1888 */
1889 may_fallback = 0;
1890
1891 swap_buf_le16(id, ATA_ID_WORDS);
1892
1893 /* sanity check */
1894 rc = -EINVAL;
1895 reason = "device reports invalid type";
1896
1897 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1898 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1899 goto err_out;
1900 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1901 ata_id_is_ata(id)) {
1902 ata_dev_dbg(dev,
1903 "host indicates ignore ATA devices, ignored\n");
1904 return -ENOENT;
1905 }
1906 } else {
1907 if (ata_id_is_ata(id))
1908 goto err_out;
1909 }
1910
1911 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1912 tried_spinup = 1;
1913 /*
1914 * Drive powered-up in standby mode, and requires a specific
1915 * SET_FEATURES spin-up subcommand before it will accept
1916 * anything other than the original IDENTIFY command.
1917 */
1918 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1919 if (err_mask && id[2] != 0x738c) {
1920 rc = -EIO;
1921 reason = "SPINUP failed";
1922 goto err_out;
1923 }
1924 /*
1925 * If the drive initially returned incomplete IDENTIFY info,
1926 * we now must reissue the IDENTIFY command.
1927 */
1928 if (id[2] == 0x37c8)
1929 goto retry;
1930 }
1931
1932 if ((flags & ATA_READID_POSTRESET) &&
1933 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1934 /*
1935 * The exact sequence expected by certain pre-ATA4 drives is:
1936 * SRST RESET
1937 * IDENTIFY (optional in early ATA)
1938 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1939 * anything else..
1940 * Some drives were very specific about that exact sequence.
1941 *
1942 * Note that ATA4 says lba is mandatory so the second check
1943 * should never trigger.
1944 */
1945 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1946 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1947 if (err_mask) {
1948 rc = -EIO;
1949 reason = "INIT_DEV_PARAMS failed";
1950 goto err_out;
1951 }
1952
1953 /* current CHS translation info (id[53-58]) might be
1954 * changed. reread the identify device info.
1955 */
1956 flags &= ~ATA_READID_POSTRESET;
1957 goto retry;
1958 }
1959 }
1960
1961 *p_class = class;
1962
1963 return 0;
1964
1965 err_out:
1966 if (ata_msg_warn(ap))
1967 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1968 reason, err_mask);
1969 return rc;
1970 }
1971
1972 /**
1973 * ata_read_log_page - read a specific log page
1974 * @dev: target device
1975 * @log: log to read
1976 * @page: page to read
1977 * @buf: buffer to store read page
1978 * @sectors: number of sectors to read
1979 *
1980 * Read log page using READ_LOG_EXT command.
1981 *
1982 * LOCKING:
1983 * Kernel thread context (may sleep).
1984 *
1985 * RETURNS:
1986 * 0 on success, AC_ERR_* mask otherwise.
1987 */
ata_read_log_page(struct ata_device * dev,u8 log,u8 page,void * buf,unsigned int sectors)1988 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
1989 u8 page, void *buf, unsigned int sectors)
1990 {
1991 unsigned long ap_flags = dev->link->ap->flags;
1992 struct ata_taskfile tf;
1993 unsigned int err_mask;
1994 bool dma = false;
1995
1996 DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page);
1997
1998 /*
1999 * Return error without actually issuing the command on controllers
2000 * which e.g. lockup on a read log page.
2001 */
2002 if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2003 return AC_ERR_DEV;
2004
2005 retry:
2006 ata_tf_init(dev, &tf);
2007 if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) &&
2008 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2009 tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2010 tf.protocol = ATA_PROT_DMA;
2011 dma = true;
2012 } else {
2013 tf.command = ATA_CMD_READ_LOG_EXT;
2014 tf.protocol = ATA_PROT_PIO;
2015 dma = false;
2016 }
2017 tf.lbal = log;
2018 tf.lbam = page;
2019 tf.nsect = sectors;
2020 tf.hob_nsect = sectors >> 8;
2021 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2022
2023 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2024 buf, sectors * ATA_SECT_SIZE, 0);
2025
2026 if (err_mask && dma) {
2027 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2028 ata_dev_warn(dev, "READ LOG DMA EXT failed, trying PIO\n");
2029 goto retry;
2030 }
2031
2032 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2033 return err_mask;
2034 }
2035
ata_log_supported(struct ata_device * dev,u8 log)2036 static bool ata_log_supported(struct ata_device *dev, u8 log)
2037 {
2038 struct ata_port *ap = dev->link->ap;
2039
2040 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2041 return false;
2042 return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2043 }
2044
ata_identify_page_supported(struct ata_device * dev,u8 page)2045 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2046 {
2047 struct ata_port *ap = dev->link->ap;
2048 unsigned int err, i;
2049
2050 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2051 ata_dev_warn(dev, "ATA Identify Device Log not supported\n");
2052 return false;
2053 }
2054
2055 /*
2056 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2057 * supported.
2058 */
2059 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2060 1);
2061 if (err) {
2062 ata_dev_info(dev,
2063 "failed to get Device Identify Log Emask 0x%x\n",
2064 err);
2065 return false;
2066 }
2067
2068 for (i = 0; i < ap->sector_buf[8]; i++) {
2069 if (ap->sector_buf[9 + i] == page)
2070 return true;
2071 }
2072
2073 return false;
2074 }
2075
ata_do_link_spd_horkage(struct ata_device * dev)2076 static int ata_do_link_spd_horkage(struct ata_device *dev)
2077 {
2078 struct ata_link *plink = ata_dev_phys_link(dev);
2079 u32 target, target_limit;
2080
2081 if (!sata_scr_valid(plink))
2082 return 0;
2083
2084 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2085 target = 1;
2086 else
2087 return 0;
2088
2089 target_limit = (1 << target) - 1;
2090
2091 /* if already on stricter limit, no need to push further */
2092 if (plink->sata_spd_limit <= target_limit)
2093 return 0;
2094
2095 plink->sata_spd_limit = target_limit;
2096
2097 /* Request another EH round by returning -EAGAIN if link is
2098 * going faster than the target speed. Forward progress is
2099 * guaranteed by setting sata_spd_limit to target_limit above.
2100 */
2101 if (plink->sata_spd > target) {
2102 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2103 sata_spd_string(target));
2104 return -EAGAIN;
2105 }
2106 return 0;
2107 }
2108
ata_dev_knobble(struct ata_device * dev)2109 static inline u8 ata_dev_knobble(struct ata_device *dev)
2110 {
2111 struct ata_port *ap = dev->link->ap;
2112
2113 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2114 return 0;
2115
2116 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2117 }
2118
ata_dev_config_ncq_send_recv(struct ata_device * dev)2119 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2120 {
2121 struct ata_port *ap = dev->link->ap;
2122 unsigned int err_mask;
2123
2124 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2125 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2126 return;
2127 }
2128 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2129 0, ap->sector_buf, 1);
2130 if (err_mask) {
2131 ata_dev_dbg(dev,
2132 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2133 err_mask);
2134 } else {
2135 u8 *cmds = dev->ncq_send_recv_cmds;
2136
2137 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2138 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2139
2140 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2141 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2142 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2143 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2144 }
2145 }
2146 }
2147
ata_dev_config_ncq_non_data(struct ata_device * dev)2148 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2149 {
2150 struct ata_port *ap = dev->link->ap;
2151 unsigned int err_mask;
2152
2153 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2154 ata_dev_warn(dev,
2155 "NCQ Send/Recv Log not supported\n");
2156 return;
2157 }
2158 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2159 0, ap->sector_buf, 1);
2160 if (err_mask) {
2161 ata_dev_dbg(dev,
2162 "failed to get NCQ Non-Data Log Emask 0x%x\n",
2163 err_mask);
2164 } else {
2165 u8 *cmds = dev->ncq_non_data_cmds;
2166
2167 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2168 }
2169 }
2170
ata_dev_config_ncq_prio(struct ata_device * dev)2171 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2172 {
2173 struct ata_port *ap = dev->link->ap;
2174 unsigned int err_mask;
2175
2176 if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) {
2177 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2178 return;
2179 }
2180
2181 err_mask = ata_read_log_page(dev,
2182 ATA_LOG_IDENTIFY_DEVICE,
2183 ATA_LOG_SATA_SETTINGS,
2184 ap->sector_buf,
2185 1);
2186 if (err_mask) {
2187 ata_dev_dbg(dev,
2188 "failed to get Identify Device data, Emask 0x%x\n",
2189 err_mask);
2190 return;
2191 }
2192
2193 if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) {
2194 dev->flags |= ATA_DFLAG_NCQ_PRIO;
2195 } else {
2196 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2197 ata_dev_dbg(dev, "SATA page does not support priority\n");
2198 }
2199
2200 }
2201
ata_dev_check_adapter(struct ata_device * dev,unsigned short vendor_id)2202 static bool ata_dev_check_adapter(struct ata_device *dev,
2203 unsigned short vendor_id)
2204 {
2205 struct pci_dev *pcidev = NULL;
2206 struct device *parent_dev = NULL;
2207
2208 for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2209 parent_dev = parent_dev->parent) {
2210 if (dev_is_pci(parent_dev)) {
2211 pcidev = to_pci_dev(parent_dev);
2212 if (pcidev->vendor == vendor_id)
2213 return true;
2214 break;
2215 }
2216 }
2217
2218 return false;
2219 }
2220
ata_dev_config_ncq(struct ata_device * dev,char * desc,size_t desc_sz)2221 static int ata_dev_config_ncq(struct ata_device *dev,
2222 char *desc, size_t desc_sz)
2223 {
2224 struct ata_port *ap = dev->link->ap;
2225 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2226 unsigned int err_mask;
2227 char *aa_desc = "";
2228
2229 if (!ata_id_has_ncq(dev->id)) {
2230 desc[0] = '\0';
2231 return 0;
2232 }
2233 if (!IS_ENABLED(CONFIG_SATA_HOST))
2234 return 0;
2235 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2236 snprintf(desc, desc_sz, "NCQ (not used)");
2237 return 0;
2238 }
2239
2240 if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI &&
2241 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2242 snprintf(desc, desc_sz, "NCQ (not used)");
2243 return 0;
2244 }
2245
2246 if (ap->flags & ATA_FLAG_NCQ) {
2247 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2248 dev->flags |= ATA_DFLAG_NCQ;
2249 }
2250
2251 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2252 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2253 ata_id_has_fpdma_aa(dev->id)) {
2254 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2255 SATA_FPDMA_AA);
2256 if (err_mask) {
2257 ata_dev_err(dev,
2258 "failed to enable AA (error_mask=0x%x)\n",
2259 err_mask);
2260 if (err_mask != AC_ERR_DEV) {
2261 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2262 return -EIO;
2263 }
2264 } else
2265 aa_desc = ", AA";
2266 }
2267
2268 if (hdepth >= ddepth)
2269 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2270 else
2271 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2272 ddepth, aa_desc);
2273
2274 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2275 if (ata_id_has_ncq_send_and_recv(dev->id))
2276 ata_dev_config_ncq_send_recv(dev);
2277 if (ata_id_has_ncq_non_data(dev->id))
2278 ata_dev_config_ncq_non_data(dev);
2279 if (ata_id_has_ncq_prio(dev->id))
2280 ata_dev_config_ncq_prio(dev);
2281 }
2282
2283 return 0;
2284 }
2285
ata_dev_config_sense_reporting(struct ata_device * dev)2286 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2287 {
2288 unsigned int err_mask;
2289
2290 if (!ata_id_has_sense_reporting(dev->id))
2291 return;
2292
2293 if (ata_id_sense_reporting_enabled(dev->id))
2294 return;
2295
2296 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2297 if (err_mask) {
2298 ata_dev_dbg(dev,
2299 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2300 err_mask);
2301 }
2302 }
2303
ata_dev_config_zac(struct ata_device * dev)2304 static void ata_dev_config_zac(struct ata_device *dev)
2305 {
2306 struct ata_port *ap = dev->link->ap;
2307 unsigned int err_mask;
2308 u8 *identify_buf = ap->sector_buf;
2309
2310 dev->zac_zones_optimal_open = U32_MAX;
2311 dev->zac_zones_optimal_nonseq = U32_MAX;
2312 dev->zac_zones_max_open = U32_MAX;
2313
2314 /*
2315 * Always set the 'ZAC' flag for Host-managed devices.
2316 */
2317 if (dev->class == ATA_DEV_ZAC)
2318 dev->flags |= ATA_DFLAG_ZAC;
2319 else if (ata_id_zoned_cap(dev->id) == 0x01)
2320 /*
2321 * Check for host-aware devices.
2322 */
2323 dev->flags |= ATA_DFLAG_ZAC;
2324
2325 if (!(dev->flags & ATA_DFLAG_ZAC))
2326 return;
2327
2328 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2329 ata_dev_warn(dev,
2330 "ATA Zoned Information Log not supported\n");
2331 return;
2332 }
2333
2334 /*
2335 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2336 */
2337 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2338 ATA_LOG_ZONED_INFORMATION,
2339 identify_buf, 1);
2340 if (!err_mask) {
2341 u64 zoned_cap, opt_open, opt_nonseq, max_open;
2342
2343 zoned_cap = get_unaligned_le64(&identify_buf[8]);
2344 if ((zoned_cap >> 63))
2345 dev->zac_zoned_cap = (zoned_cap & 1);
2346 opt_open = get_unaligned_le64(&identify_buf[24]);
2347 if ((opt_open >> 63))
2348 dev->zac_zones_optimal_open = (u32)opt_open;
2349 opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2350 if ((opt_nonseq >> 63))
2351 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2352 max_open = get_unaligned_le64(&identify_buf[40]);
2353 if ((max_open >> 63))
2354 dev->zac_zones_max_open = (u32)max_open;
2355 }
2356 }
2357
ata_dev_config_trusted(struct ata_device * dev)2358 static void ata_dev_config_trusted(struct ata_device *dev)
2359 {
2360 struct ata_port *ap = dev->link->ap;
2361 u64 trusted_cap;
2362 unsigned int err;
2363
2364 if (!ata_id_has_trusted(dev->id))
2365 return;
2366
2367 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2368 ata_dev_warn(dev,
2369 "Security Log not supported\n");
2370 return;
2371 }
2372
2373 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2374 ap->sector_buf, 1);
2375 if (err) {
2376 ata_dev_dbg(dev,
2377 "failed to read Security Log, Emask 0x%x\n", err);
2378 return;
2379 }
2380
2381 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2382 if (!(trusted_cap & (1ULL << 63))) {
2383 ata_dev_dbg(dev,
2384 "Trusted Computing capability qword not valid!\n");
2385 return;
2386 }
2387
2388 if (trusted_cap & (1 << 0))
2389 dev->flags |= ATA_DFLAG_TRUSTED;
2390 }
2391
2392 /**
2393 * ata_dev_configure - Configure the specified ATA/ATAPI device
2394 * @dev: Target device to configure
2395 *
2396 * Configure @dev according to @dev->id. Generic and low-level
2397 * driver specific fixups are also applied.
2398 *
2399 * LOCKING:
2400 * Kernel thread context (may sleep)
2401 *
2402 * RETURNS:
2403 * 0 on success, -errno otherwise
2404 */
ata_dev_configure(struct ata_device * dev)2405 int ata_dev_configure(struct ata_device *dev)
2406 {
2407 struct ata_port *ap = dev->link->ap;
2408 struct ata_eh_context *ehc = &dev->link->eh_context;
2409 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2410 const u16 *id = dev->id;
2411 unsigned long xfer_mask;
2412 unsigned int err_mask;
2413 char revbuf[7]; /* XYZ-99\0 */
2414 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2415 char modelbuf[ATA_ID_PROD_LEN+1];
2416 int rc;
2417
2418 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2419 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2420 return 0;
2421 }
2422
2423 if (ata_msg_probe(ap))
2424 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2425
2426 /* set horkage */
2427 dev->horkage |= ata_dev_blacklisted(dev);
2428 ata_force_horkage(dev);
2429
2430 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2431 ata_dev_info(dev, "unsupported device, disabling\n");
2432 ata_dev_disable(dev);
2433 return 0;
2434 }
2435
2436 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2437 dev->class == ATA_DEV_ATAPI) {
2438 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2439 atapi_enabled ? "not supported with this driver"
2440 : "disabled");
2441 ata_dev_disable(dev);
2442 return 0;
2443 }
2444
2445 rc = ata_do_link_spd_horkage(dev);
2446 if (rc)
2447 return rc;
2448
2449 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2450 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2451 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2452 dev->horkage |= ATA_HORKAGE_NOLPM;
2453
2454 if (ap->flags & ATA_FLAG_NO_LPM)
2455 dev->horkage |= ATA_HORKAGE_NOLPM;
2456
2457 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2458 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2459 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2460 }
2461
2462 /* let ACPI work its magic */
2463 rc = ata_acpi_on_devcfg(dev);
2464 if (rc)
2465 return rc;
2466
2467 /* massage HPA, do it early as it might change IDENTIFY data */
2468 rc = ata_hpa_resize(dev);
2469 if (rc)
2470 return rc;
2471
2472 /* print device capabilities */
2473 if (ata_msg_probe(ap))
2474 ata_dev_dbg(dev,
2475 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2476 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2477 __func__,
2478 id[49], id[82], id[83], id[84],
2479 id[85], id[86], id[87], id[88]);
2480
2481 /* initialize to-be-configured parameters */
2482 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2483 dev->max_sectors = 0;
2484 dev->cdb_len = 0;
2485 dev->n_sectors = 0;
2486 dev->cylinders = 0;
2487 dev->heads = 0;
2488 dev->sectors = 0;
2489 dev->multi_count = 0;
2490
2491 /*
2492 * common ATA, ATAPI feature tests
2493 */
2494
2495 /* find max transfer mode; for printk only */
2496 xfer_mask = ata_id_xfermask(id);
2497
2498 if (ata_msg_probe(ap))
2499 ata_dump_id(id);
2500
2501 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2502 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2503 sizeof(fwrevbuf));
2504
2505 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2506 sizeof(modelbuf));
2507
2508 /* ATA-specific feature tests */
2509 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2510 if (ata_id_is_cfa(id)) {
2511 /* CPRM may make this media unusable */
2512 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2513 ata_dev_warn(dev,
2514 "supports DRM functions and may not be fully accessible\n");
2515 snprintf(revbuf, 7, "CFA");
2516 } else {
2517 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2518 /* Warn the user if the device has TPM extensions */
2519 if (ata_id_has_tpm(id))
2520 ata_dev_warn(dev,
2521 "supports DRM functions and may not be fully accessible\n");
2522 }
2523
2524 dev->n_sectors = ata_id_n_sectors(id);
2525
2526 /* get current R/W Multiple count setting */
2527 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2528 unsigned int max = dev->id[47] & 0xff;
2529 unsigned int cnt = dev->id[59] & 0xff;
2530 /* only recognize/allow powers of two here */
2531 if (is_power_of_2(max) && is_power_of_2(cnt))
2532 if (cnt <= max)
2533 dev->multi_count = cnt;
2534 }
2535
2536 if (ata_id_has_lba(id)) {
2537 const char *lba_desc;
2538 char ncq_desc[24];
2539
2540 lba_desc = "LBA";
2541 dev->flags |= ATA_DFLAG_LBA;
2542 if (ata_id_has_lba48(id)) {
2543 dev->flags |= ATA_DFLAG_LBA48;
2544 lba_desc = "LBA48";
2545
2546 if (dev->n_sectors >= (1UL << 28) &&
2547 ata_id_has_flush_ext(id))
2548 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2549 }
2550
2551 /* config NCQ */
2552 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2553 if (rc)
2554 return rc;
2555
2556 /* print device info to dmesg */
2557 if (ata_msg_drv(ap) && print_info) {
2558 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2559 revbuf, modelbuf, fwrevbuf,
2560 ata_mode_string(xfer_mask));
2561 ata_dev_info(dev,
2562 "%llu sectors, multi %u: %s %s\n",
2563 (unsigned long long)dev->n_sectors,
2564 dev->multi_count, lba_desc, ncq_desc);
2565 }
2566 } else {
2567 /* CHS */
2568
2569 /* Default translation */
2570 dev->cylinders = id[1];
2571 dev->heads = id[3];
2572 dev->sectors = id[6];
2573
2574 if (ata_id_current_chs_valid(id)) {
2575 /* Current CHS translation is valid. */
2576 dev->cylinders = id[54];
2577 dev->heads = id[55];
2578 dev->sectors = id[56];
2579 }
2580
2581 /* print device info to dmesg */
2582 if (ata_msg_drv(ap) && print_info) {
2583 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2584 revbuf, modelbuf, fwrevbuf,
2585 ata_mode_string(xfer_mask));
2586 ata_dev_info(dev,
2587 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2588 (unsigned long long)dev->n_sectors,
2589 dev->multi_count, dev->cylinders,
2590 dev->heads, dev->sectors);
2591 }
2592 }
2593
2594 /* Check and mark DevSlp capability. Get DevSlp timing variables
2595 * from SATA Settings page of Identify Device Data Log.
2596 */
2597 if (ata_id_has_devslp(dev->id)) {
2598 u8 *sata_setting = ap->sector_buf;
2599 int i, j;
2600
2601 dev->flags |= ATA_DFLAG_DEVSLP;
2602 err_mask = ata_read_log_page(dev,
2603 ATA_LOG_IDENTIFY_DEVICE,
2604 ATA_LOG_SATA_SETTINGS,
2605 sata_setting,
2606 1);
2607 if (err_mask)
2608 ata_dev_dbg(dev,
2609 "failed to get Identify Device Data, Emask 0x%x\n",
2610 err_mask);
2611 else
2612 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2613 j = ATA_LOG_DEVSLP_OFFSET + i;
2614 dev->devslp_timing[i] = sata_setting[j];
2615 }
2616 }
2617 ata_dev_config_sense_reporting(dev);
2618 ata_dev_config_zac(dev);
2619 ata_dev_config_trusted(dev);
2620 dev->cdb_len = 32;
2621 }
2622
2623 /* ATAPI-specific feature tests */
2624 else if (dev->class == ATA_DEV_ATAPI) {
2625 const char *cdb_intr_string = "";
2626 const char *atapi_an_string = "";
2627 const char *dma_dir_string = "";
2628 u32 sntf;
2629
2630 rc = atapi_cdb_len(id);
2631 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2632 if (ata_msg_warn(ap))
2633 ata_dev_warn(dev, "unsupported CDB len\n");
2634 rc = -EINVAL;
2635 goto err_out_nosup;
2636 }
2637 dev->cdb_len = (unsigned int) rc;
2638
2639 /* Enable ATAPI AN if both the host and device have
2640 * the support. If PMP is attached, SNTF is required
2641 * to enable ATAPI AN to discern between PHY status
2642 * changed notifications and ATAPI ANs.
2643 */
2644 if (atapi_an &&
2645 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2646 (!sata_pmp_attached(ap) ||
2647 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2648 /* issue SET feature command to turn this on */
2649 err_mask = ata_dev_set_feature(dev,
2650 SETFEATURES_SATA_ENABLE, SATA_AN);
2651 if (err_mask)
2652 ata_dev_err(dev,
2653 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2654 err_mask);
2655 else {
2656 dev->flags |= ATA_DFLAG_AN;
2657 atapi_an_string = ", ATAPI AN";
2658 }
2659 }
2660
2661 if (ata_id_cdb_intr(dev->id)) {
2662 dev->flags |= ATA_DFLAG_CDB_INTR;
2663 cdb_intr_string = ", CDB intr";
2664 }
2665
2666 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2667 dev->flags |= ATA_DFLAG_DMADIR;
2668 dma_dir_string = ", DMADIR";
2669 }
2670
2671 if (ata_id_has_da(dev->id)) {
2672 dev->flags |= ATA_DFLAG_DA;
2673 zpodd_init(dev);
2674 }
2675
2676 /* print device info to dmesg */
2677 if (ata_msg_drv(ap) && print_info)
2678 ata_dev_info(dev,
2679 "ATAPI: %s, %s, max %s%s%s%s\n",
2680 modelbuf, fwrevbuf,
2681 ata_mode_string(xfer_mask),
2682 cdb_intr_string, atapi_an_string,
2683 dma_dir_string);
2684 }
2685
2686 /* determine max_sectors */
2687 dev->max_sectors = ATA_MAX_SECTORS;
2688 if (dev->flags & ATA_DFLAG_LBA48)
2689 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2690
2691 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2692 200 sectors */
2693 if (ata_dev_knobble(dev)) {
2694 if (ata_msg_drv(ap) && print_info)
2695 ata_dev_info(dev, "applying bridge limits\n");
2696 dev->udma_mask &= ATA_UDMA5;
2697 dev->max_sectors = ATA_MAX_SECTORS;
2698 }
2699
2700 if ((dev->class == ATA_DEV_ATAPI) &&
2701 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2702 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2703 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2704 }
2705
2706 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2707 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2708 dev->max_sectors);
2709
2710 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2711 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2712 dev->max_sectors);
2713
2714 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2715 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2716
2717 if (ap->ops->dev_config)
2718 ap->ops->dev_config(dev);
2719
2720 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2721 /* Let the user know. We don't want to disallow opens for
2722 rescue purposes, or in case the vendor is just a blithering
2723 idiot. Do this after the dev_config call as some controllers
2724 with buggy firmware may want to avoid reporting false device
2725 bugs */
2726
2727 if (print_info) {
2728 ata_dev_warn(dev,
2729 "Drive reports diagnostics failure. This may indicate a drive\n");
2730 ata_dev_warn(dev,
2731 "fault or invalid emulation. Contact drive vendor for information.\n");
2732 }
2733 }
2734
2735 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2736 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2737 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2738 }
2739
2740 return 0;
2741
2742 err_out_nosup:
2743 if (ata_msg_probe(ap))
2744 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2745 return rc;
2746 }
2747
2748 /**
2749 * ata_cable_40wire - return 40 wire cable type
2750 * @ap: port
2751 *
2752 * Helper method for drivers which want to hardwire 40 wire cable
2753 * detection.
2754 */
2755
ata_cable_40wire(struct ata_port * ap)2756 int ata_cable_40wire(struct ata_port *ap)
2757 {
2758 return ATA_CBL_PATA40;
2759 }
2760 EXPORT_SYMBOL_GPL(ata_cable_40wire);
2761
2762 /**
2763 * ata_cable_80wire - return 80 wire cable type
2764 * @ap: port
2765 *
2766 * Helper method for drivers which want to hardwire 80 wire cable
2767 * detection.
2768 */
2769
ata_cable_80wire(struct ata_port * ap)2770 int ata_cable_80wire(struct ata_port *ap)
2771 {
2772 return ATA_CBL_PATA80;
2773 }
2774 EXPORT_SYMBOL_GPL(ata_cable_80wire);
2775
2776 /**
2777 * ata_cable_unknown - return unknown PATA cable.
2778 * @ap: port
2779 *
2780 * Helper method for drivers which have no PATA cable detection.
2781 */
2782
ata_cable_unknown(struct ata_port * ap)2783 int ata_cable_unknown(struct ata_port *ap)
2784 {
2785 return ATA_CBL_PATA_UNK;
2786 }
2787 EXPORT_SYMBOL_GPL(ata_cable_unknown);
2788
2789 /**
2790 * ata_cable_ignore - return ignored PATA cable.
2791 * @ap: port
2792 *
2793 * Helper method for drivers which don't use cable type to limit
2794 * transfer mode.
2795 */
ata_cable_ignore(struct ata_port * ap)2796 int ata_cable_ignore(struct ata_port *ap)
2797 {
2798 return ATA_CBL_PATA_IGN;
2799 }
2800 EXPORT_SYMBOL_GPL(ata_cable_ignore);
2801
2802 /**
2803 * ata_cable_sata - return SATA cable type
2804 * @ap: port
2805 *
2806 * Helper method for drivers which have SATA cables
2807 */
2808
ata_cable_sata(struct ata_port * ap)2809 int ata_cable_sata(struct ata_port *ap)
2810 {
2811 return ATA_CBL_SATA;
2812 }
2813 EXPORT_SYMBOL_GPL(ata_cable_sata);
2814
2815 /**
2816 * ata_bus_probe - Reset and probe ATA bus
2817 * @ap: Bus to probe
2818 *
2819 * Master ATA bus probing function. Initiates a hardware-dependent
2820 * bus reset, then attempts to identify any devices found on
2821 * the bus.
2822 *
2823 * LOCKING:
2824 * PCI/etc. bus probe sem.
2825 *
2826 * RETURNS:
2827 * Zero on success, negative errno otherwise.
2828 */
2829
ata_bus_probe(struct ata_port * ap)2830 int ata_bus_probe(struct ata_port *ap)
2831 {
2832 unsigned int classes[ATA_MAX_DEVICES];
2833 int tries[ATA_MAX_DEVICES];
2834 int rc;
2835 struct ata_device *dev;
2836
2837 ata_for_each_dev(dev, &ap->link, ALL)
2838 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2839
2840 retry:
2841 ata_for_each_dev(dev, &ap->link, ALL) {
2842 /* If we issue an SRST then an ATA drive (not ATAPI)
2843 * may change configuration and be in PIO0 timing. If
2844 * we do a hard reset (or are coming from power on)
2845 * this is true for ATA or ATAPI. Until we've set a
2846 * suitable controller mode we should not touch the
2847 * bus as we may be talking too fast.
2848 */
2849 dev->pio_mode = XFER_PIO_0;
2850 dev->dma_mode = 0xff;
2851
2852 /* If the controller has a pio mode setup function
2853 * then use it to set the chipset to rights. Don't
2854 * touch the DMA setup as that will be dealt with when
2855 * configuring devices.
2856 */
2857 if (ap->ops->set_piomode)
2858 ap->ops->set_piomode(ap, dev);
2859 }
2860
2861 /* reset and determine device classes */
2862 ap->ops->phy_reset(ap);
2863
2864 ata_for_each_dev(dev, &ap->link, ALL) {
2865 if (dev->class != ATA_DEV_UNKNOWN)
2866 classes[dev->devno] = dev->class;
2867 else
2868 classes[dev->devno] = ATA_DEV_NONE;
2869
2870 dev->class = ATA_DEV_UNKNOWN;
2871 }
2872
2873 /* read IDENTIFY page and configure devices. We have to do the identify
2874 specific sequence bass-ackwards so that PDIAG- is released by
2875 the slave device */
2876
2877 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2878 if (tries[dev->devno])
2879 dev->class = classes[dev->devno];
2880
2881 if (!ata_dev_enabled(dev))
2882 continue;
2883
2884 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2885 dev->id);
2886 if (rc)
2887 goto fail;
2888 }
2889
2890 /* Now ask for the cable type as PDIAG- should have been released */
2891 if (ap->ops->cable_detect)
2892 ap->cbl = ap->ops->cable_detect(ap);
2893
2894 /* We may have SATA bridge glue hiding here irrespective of
2895 * the reported cable types and sensed types. When SATA
2896 * drives indicate we have a bridge, we don't know which end
2897 * of the link the bridge is which is a problem.
2898 */
2899 ata_for_each_dev(dev, &ap->link, ENABLED)
2900 if (ata_id_is_sata(dev->id))
2901 ap->cbl = ATA_CBL_SATA;
2902
2903 /* After the identify sequence we can now set up the devices. We do
2904 this in the normal order so that the user doesn't get confused */
2905
2906 ata_for_each_dev(dev, &ap->link, ENABLED) {
2907 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2908 rc = ata_dev_configure(dev);
2909 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2910 if (rc)
2911 goto fail;
2912 }
2913
2914 /* configure transfer mode */
2915 rc = ata_set_mode(&ap->link, &dev);
2916 if (rc)
2917 goto fail;
2918
2919 ata_for_each_dev(dev, &ap->link, ENABLED)
2920 return 0;
2921
2922 return -ENODEV;
2923
2924 fail:
2925 tries[dev->devno]--;
2926
2927 switch (rc) {
2928 case -EINVAL:
2929 /* eeek, something went very wrong, give up */
2930 tries[dev->devno] = 0;
2931 break;
2932
2933 case -ENODEV:
2934 /* give it just one more chance */
2935 tries[dev->devno] = min(tries[dev->devno], 1);
2936 fallthrough;
2937 case -EIO:
2938 if (tries[dev->devno] == 1) {
2939 /* This is the last chance, better to slow
2940 * down than lose it.
2941 */
2942 sata_down_spd_limit(&ap->link, 0);
2943 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2944 }
2945 }
2946
2947 if (!tries[dev->devno])
2948 ata_dev_disable(dev);
2949
2950 goto retry;
2951 }
2952
2953 /**
2954 * sata_print_link_status - Print SATA link status
2955 * @link: SATA link to printk link status about
2956 *
2957 * This function prints link speed and status of a SATA link.
2958 *
2959 * LOCKING:
2960 * None.
2961 */
sata_print_link_status(struct ata_link * link)2962 static void sata_print_link_status(struct ata_link *link)
2963 {
2964 u32 sstatus, scontrol, tmp;
2965
2966 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2967 return;
2968 sata_scr_read(link, SCR_CONTROL, &scontrol);
2969
2970 if (ata_phys_link_online(link)) {
2971 tmp = (sstatus >> 4) & 0xf;
2972 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2973 sata_spd_string(tmp), sstatus, scontrol);
2974 } else {
2975 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2976 sstatus, scontrol);
2977 }
2978 }
2979
2980 /**
2981 * ata_dev_pair - return other device on cable
2982 * @adev: device
2983 *
2984 * Obtain the other device on the same cable, or if none is
2985 * present NULL is returned
2986 */
2987
ata_dev_pair(struct ata_device * adev)2988 struct ata_device *ata_dev_pair(struct ata_device *adev)
2989 {
2990 struct ata_link *link = adev->link;
2991 struct ata_device *pair = &link->device[1 - adev->devno];
2992 if (!ata_dev_enabled(pair))
2993 return NULL;
2994 return pair;
2995 }
2996 EXPORT_SYMBOL_GPL(ata_dev_pair);
2997
2998 /**
2999 * sata_down_spd_limit - adjust SATA spd limit downward
3000 * @link: Link to adjust SATA spd limit for
3001 * @spd_limit: Additional limit
3002 *
3003 * Adjust SATA spd limit of @link downward. Note that this
3004 * function only adjusts the limit. The change must be applied
3005 * using sata_set_spd().
3006 *
3007 * If @spd_limit is non-zero, the speed is limited to equal to or
3008 * lower than @spd_limit if such speed is supported. If
3009 * @spd_limit is slower than any supported speed, only the lowest
3010 * supported speed is allowed.
3011 *
3012 * LOCKING:
3013 * Inherited from caller.
3014 *
3015 * RETURNS:
3016 * 0 on success, negative errno on failure
3017 */
sata_down_spd_limit(struct ata_link * link,u32 spd_limit)3018 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3019 {
3020 u32 sstatus, spd, mask;
3021 int rc, bit;
3022
3023 if (!sata_scr_valid(link))
3024 return -EOPNOTSUPP;
3025
3026 /* If SCR can be read, use it to determine the current SPD.
3027 * If not, use cached value in link->sata_spd.
3028 */
3029 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3030 if (rc == 0 && ata_sstatus_online(sstatus))
3031 spd = (sstatus >> 4) & 0xf;
3032 else
3033 spd = link->sata_spd;
3034
3035 mask = link->sata_spd_limit;
3036 if (mask <= 1)
3037 return -EINVAL;
3038
3039 /* unconditionally mask off the highest bit */
3040 bit = fls(mask) - 1;
3041 mask &= ~(1 << bit);
3042
3043 /*
3044 * Mask off all speeds higher than or equal to the current one. At
3045 * this point, if current SPD is not available and we previously
3046 * recorded the link speed from SStatus, the driver has already
3047 * masked off the highest bit so mask should already be 1 or 0.
3048 * Otherwise, we should not force 1.5Gbps on a link where we have
3049 * not previously recorded speed from SStatus. Just return in this
3050 * case.
3051 */
3052 if (spd > 1)
3053 mask &= (1 << (spd - 1)) - 1;
3054 else
3055 return -EINVAL;
3056
3057 /* were we already at the bottom? */
3058 if (!mask)
3059 return -EINVAL;
3060
3061 if (spd_limit) {
3062 if (mask & ((1 << spd_limit) - 1))
3063 mask &= (1 << spd_limit) - 1;
3064 else {
3065 bit = ffs(mask) - 1;
3066 mask = 1 << bit;
3067 }
3068 }
3069
3070 link->sata_spd_limit = mask;
3071
3072 ata_link_warn(link, "limiting SATA link speed to %s\n",
3073 sata_spd_string(fls(mask)));
3074
3075 return 0;
3076 }
3077
3078 #ifdef CONFIG_ATA_ACPI
3079 /**
3080 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3081 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3082 * @cycle: cycle duration in ns
3083 *
3084 * Return matching xfer mode for @cycle. The returned mode is of
3085 * the transfer type specified by @xfer_shift. If @cycle is too
3086 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3087 * than the fastest known mode, the fasted mode is returned.
3088 *
3089 * LOCKING:
3090 * None.
3091 *
3092 * RETURNS:
3093 * Matching xfer_mode, 0xff if no match found.
3094 */
ata_timing_cycle2mode(unsigned int xfer_shift,int cycle)3095 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3096 {
3097 u8 base_mode = 0xff, last_mode = 0xff;
3098 const struct ata_xfer_ent *ent;
3099 const struct ata_timing *t;
3100
3101 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3102 if (ent->shift == xfer_shift)
3103 base_mode = ent->base;
3104
3105 for (t = ata_timing_find_mode(base_mode);
3106 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3107 unsigned short this_cycle;
3108
3109 switch (xfer_shift) {
3110 case ATA_SHIFT_PIO:
3111 case ATA_SHIFT_MWDMA:
3112 this_cycle = t->cycle;
3113 break;
3114 case ATA_SHIFT_UDMA:
3115 this_cycle = t->udma;
3116 break;
3117 default:
3118 return 0xff;
3119 }
3120
3121 if (cycle > this_cycle)
3122 break;
3123
3124 last_mode = t->mode;
3125 }
3126
3127 return last_mode;
3128 }
3129 #endif
3130
3131 /**
3132 * ata_down_xfermask_limit - adjust dev xfer masks downward
3133 * @dev: Device to adjust xfer masks
3134 * @sel: ATA_DNXFER_* selector
3135 *
3136 * Adjust xfer masks of @dev downward. Note that this function
3137 * does not apply the change. Invoking ata_set_mode() afterwards
3138 * will apply the limit.
3139 *
3140 * LOCKING:
3141 * Inherited from caller.
3142 *
3143 * RETURNS:
3144 * 0 on success, negative errno on failure
3145 */
ata_down_xfermask_limit(struct ata_device * dev,unsigned int sel)3146 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3147 {
3148 char buf[32];
3149 unsigned long orig_mask, xfer_mask;
3150 unsigned long pio_mask, mwdma_mask, udma_mask;
3151 int quiet, highbit;
3152
3153 quiet = !!(sel & ATA_DNXFER_QUIET);
3154 sel &= ~ATA_DNXFER_QUIET;
3155
3156 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3157 dev->mwdma_mask,
3158 dev->udma_mask);
3159 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3160
3161 switch (sel) {
3162 case ATA_DNXFER_PIO:
3163 highbit = fls(pio_mask) - 1;
3164 pio_mask &= ~(1 << highbit);
3165 break;
3166
3167 case ATA_DNXFER_DMA:
3168 if (udma_mask) {
3169 highbit = fls(udma_mask) - 1;
3170 udma_mask &= ~(1 << highbit);
3171 if (!udma_mask)
3172 return -ENOENT;
3173 } else if (mwdma_mask) {
3174 highbit = fls(mwdma_mask) - 1;
3175 mwdma_mask &= ~(1 << highbit);
3176 if (!mwdma_mask)
3177 return -ENOENT;
3178 }
3179 break;
3180
3181 case ATA_DNXFER_40C:
3182 udma_mask &= ATA_UDMA_MASK_40C;
3183 break;
3184
3185 case ATA_DNXFER_FORCE_PIO0:
3186 pio_mask &= 1;
3187 fallthrough;
3188 case ATA_DNXFER_FORCE_PIO:
3189 mwdma_mask = 0;
3190 udma_mask = 0;
3191 break;
3192
3193 default:
3194 BUG();
3195 }
3196
3197 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3198
3199 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3200 return -ENOENT;
3201
3202 if (!quiet) {
3203 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3204 snprintf(buf, sizeof(buf), "%s:%s",
3205 ata_mode_string(xfer_mask),
3206 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3207 else
3208 snprintf(buf, sizeof(buf), "%s",
3209 ata_mode_string(xfer_mask));
3210
3211 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3212 }
3213
3214 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3215 &dev->udma_mask);
3216
3217 return 0;
3218 }
3219
ata_dev_set_mode(struct ata_device * dev)3220 static int ata_dev_set_mode(struct ata_device *dev)
3221 {
3222 struct ata_port *ap = dev->link->ap;
3223 struct ata_eh_context *ehc = &dev->link->eh_context;
3224 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3225 const char *dev_err_whine = "";
3226 int ign_dev_err = 0;
3227 unsigned int err_mask = 0;
3228 int rc;
3229
3230 dev->flags &= ~ATA_DFLAG_PIO;
3231 if (dev->xfer_shift == ATA_SHIFT_PIO)
3232 dev->flags |= ATA_DFLAG_PIO;
3233
3234 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3235 dev_err_whine = " (SET_XFERMODE skipped)";
3236 else {
3237 if (nosetxfer)
3238 ata_dev_warn(dev,
3239 "NOSETXFER but PATA detected - can't "
3240 "skip SETXFER, might malfunction\n");
3241 err_mask = ata_dev_set_xfermode(dev);
3242 }
3243
3244 if (err_mask & ~AC_ERR_DEV)
3245 goto fail;
3246
3247 /* revalidate */
3248 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3249 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3250 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3251 if (rc)
3252 return rc;
3253
3254 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3255 /* Old CFA may refuse this command, which is just fine */
3256 if (ata_id_is_cfa(dev->id))
3257 ign_dev_err = 1;
3258 /* Catch several broken garbage emulations plus some pre
3259 ATA devices */
3260 if (ata_id_major_version(dev->id) == 0 &&
3261 dev->pio_mode <= XFER_PIO_2)
3262 ign_dev_err = 1;
3263 /* Some very old devices and some bad newer ones fail
3264 any kind of SET_XFERMODE request but support PIO0-2
3265 timings and no IORDY */
3266 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3267 ign_dev_err = 1;
3268 }
3269 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3270 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3271 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3272 dev->dma_mode == XFER_MW_DMA_0 &&
3273 (dev->id[63] >> 8) & 1)
3274 ign_dev_err = 1;
3275
3276 /* if the device is actually configured correctly, ignore dev err */
3277 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3278 ign_dev_err = 1;
3279
3280 if (err_mask & AC_ERR_DEV) {
3281 if (!ign_dev_err)
3282 goto fail;
3283 else
3284 dev_err_whine = " (device error ignored)";
3285 }
3286
3287 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3288 dev->xfer_shift, (int)dev->xfer_mode);
3289
3290 if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3291 ehc->i.flags & ATA_EHI_DID_HARDRESET)
3292 ata_dev_info(dev, "configured for %s%s\n",
3293 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3294 dev_err_whine);
3295
3296 return 0;
3297
3298 fail:
3299 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3300 return -EIO;
3301 }
3302
3303 /**
3304 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3305 * @link: link on which timings will be programmed
3306 * @r_failed_dev: out parameter for failed device
3307 *
3308 * Standard implementation of the function used to tune and set
3309 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3310 * ata_dev_set_mode() fails, pointer to the failing device is
3311 * returned in @r_failed_dev.
3312 *
3313 * LOCKING:
3314 * PCI/etc. bus probe sem.
3315 *
3316 * RETURNS:
3317 * 0 on success, negative errno otherwise
3318 */
3319
ata_do_set_mode(struct ata_link * link,struct ata_device ** r_failed_dev)3320 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3321 {
3322 struct ata_port *ap = link->ap;
3323 struct ata_device *dev;
3324 int rc = 0, used_dma = 0, found = 0;
3325
3326 /* step 1: calculate xfer_mask */
3327 ata_for_each_dev(dev, link, ENABLED) {
3328 unsigned long pio_mask, dma_mask;
3329 unsigned int mode_mask;
3330
3331 mode_mask = ATA_DMA_MASK_ATA;
3332 if (dev->class == ATA_DEV_ATAPI)
3333 mode_mask = ATA_DMA_MASK_ATAPI;
3334 else if (ata_id_is_cfa(dev->id))
3335 mode_mask = ATA_DMA_MASK_CFA;
3336
3337 ata_dev_xfermask(dev);
3338 ata_force_xfermask(dev);
3339
3340 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3341
3342 if (libata_dma_mask & mode_mask)
3343 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3344 dev->udma_mask);
3345 else
3346 dma_mask = 0;
3347
3348 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3349 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3350
3351 found = 1;
3352 if (ata_dma_enabled(dev))
3353 used_dma = 1;
3354 }
3355 if (!found)
3356 goto out;
3357
3358 /* step 2: always set host PIO timings */
3359 ata_for_each_dev(dev, link, ENABLED) {
3360 if (dev->pio_mode == 0xff) {
3361 ata_dev_warn(dev, "no PIO support\n");
3362 rc = -EINVAL;
3363 goto out;
3364 }
3365
3366 dev->xfer_mode = dev->pio_mode;
3367 dev->xfer_shift = ATA_SHIFT_PIO;
3368 if (ap->ops->set_piomode)
3369 ap->ops->set_piomode(ap, dev);
3370 }
3371
3372 /* step 3: set host DMA timings */
3373 ata_for_each_dev(dev, link, ENABLED) {
3374 if (!ata_dma_enabled(dev))
3375 continue;
3376
3377 dev->xfer_mode = dev->dma_mode;
3378 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3379 if (ap->ops->set_dmamode)
3380 ap->ops->set_dmamode(ap, dev);
3381 }
3382
3383 /* step 4: update devices' xfer mode */
3384 ata_for_each_dev(dev, link, ENABLED) {
3385 rc = ata_dev_set_mode(dev);
3386 if (rc)
3387 goto out;
3388 }
3389
3390 /* Record simplex status. If we selected DMA then the other
3391 * host channels are not permitted to do so.
3392 */
3393 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3394 ap->host->simplex_claimed = ap;
3395
3396 out:
3397 if (rc)
3398 *r_failed_dev = dev;
3399 return rc;
3400 }
3401 EXPORT_SYMBOL_GPL(ata_do_set_mode);
3402
3403 /**
3404 * ata_wait_ready - wait for link to become ready
3405 * @link: link to be waited on
3406 * @deadline: deadline jiffies for the operation
3407 * @check_ready: callback to check link readiness
3408 *
3409 * Wait for @link to become ready. @check_ready should return
3410 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3411 * link doesn't seem to be occupied, other errno for other error
3412 * conditions.
3413 *
3414 * Transient -ENODEV conditions are allowed for
3415 * ATA_TMOUT_FF_WAIT.
3416 *
3417 * LOCKING:
3418 * EH context.
3419 *
3420 * RETURNS:
3421 * 0 if @link is ready before @deadline; otherwise, -errno.
3422 */
ata_wait_ready(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3423 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3424 int (*check_ready)(struct ata_link *link))
3425 {
3426 unsigned long start = jiffies;
3427 unsigned long nodev_deadline;
3428 int warned = 0;
3429
3430 /* choose which 0xff timeout to use, read comment in libata.h */
3431 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3432 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3433 else
3434 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3435
3436 /* Slave readiness can't be tested separately from master. On
3437 * M/S emulation configuration, this function should be called
3438 * only on the master and it will handle both master and slave.
3439 */
3440 WARN_ON(link == link->ap->slave_link);
3441
3442 if (time_after(nodev_deadline, deadline))
3443 nodev_deadline = deadline;
3444
3445 while (1) {
3446 unsigned long now = jiffies;
3447 int ready, tmp;
3448
3449 ready = tmp = check_ready(link);
3450 if (ready > 0)
3451 return 0;
3452
3453 /*
3454 * -ENODEV could be transient. Ignore -ENODEV if link
3455 * is online. Also, some SATA devices take a long
3456 * time to clear 0xff after reset. Wait for
3457 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3458 * offline.
3459 *
3460 * Note that some PATA controllers (pata_ali) explode
3461 * if status register is read more than once when
3462 * there's no device attached.
3463 */
3464 if (ready == -ENODEV) {
3465 if (ata_link_online(link))
3466 ready = 0;
3467 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3468 !ata_link_offline(link) &&
3469 time_before(now, nodev_deadline))
3470 ready = 0;
3471 }
3472
3473 if (ready)
3474 return ready;
3475 if (time_after(now, deadline))
3476 return -EBUSY;
3477
3478 if (!warned && time_after(now, start + 5 * HZ) &&
3479 (deadline - now > 3 * HZ)) {
3480 ata_link_warn(link,
3481 "link is slow to respond, please be patient "
3482 "(ready=%d)\n", tmp);
3483 warned = 1;
3484 }
3485
3486 ata_msleep(link->ap, 50);
3487 }
3488 }
3489
3490 /**
3491 * ata_wait_after_reset - wait for link to become ready after reset
3492 * @link: link to be waited on
3493 * @deadline: deadline jiffies for the operation
3494 * @check_ready: callback to check link readiness
3495 *
3496 * Wait for @link to become ready after reset.
3497 *
3498 * LOCKING:
3499 * EH context.
3500 *
3501 * RETURNS:
3502 * 0 if @link is ready before @deadline; otherwise, -errno.
3503 */
ata_wait_after_reset(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3504 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3505 int (*check_ready)(struct ata_link *link))
3506 {
3507 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3508
3509 return ata_wait_ready(link, deadline, check_ready);
3510 }
3511 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3512
3513 /**
3514 * ata_std_prereset - prepare for reset
3515 * @link: ATA link to be reset
3516 * @deadline: deadline jiffies for the operation
3517 *
3518 * @link is about to be reset. Initialize it. Failure from
3519 * prereset makes libata abort whole reset sequence and give up
3520 * that port, so prereset should be best-effort. It does its
3521 * best to prepare for reset sequence but if things go wrong, it
3522 * should just whine, not fail.
3523 *
3524 * LOCKING:
3525 * Kernel thread context (may sleep)
3526 *
3527 * RETURNS:
3528 * 0 on success, -errno otherwise.
3529 */
ata_std_prereset(struct ata_link * link,unsigned long deadline)3530 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3531 {
3532 struct ata_port *ap = link->ap;
3533 struct ata_eh_context *ehc = &link->eh_context;
3534 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3535 int rc;
3536
3537 /* if we're about to do hardreset, nothing more to do */
3538 if (ehc->i.action & ATA_EH_HARDRESET)
3539 return 0;
3540
3541 /* if SATA, resume link */
3542 if (ap->flags & ATA_FLAG_SATA) {
3543 rc = sata_link_resume(link, timing, deadline);
3544 /* whine about phy resume failure but proceed */
3545 if (rc && rc != -EOPNOTSUPP)
3546 ata_link_warn(link,
3547 "failed to resume link for reset (errno=%d)\n",
3548 rc);
3549 }
3550
3551 /* no point in trying softreset on offline link */
3552 if (ata_phys_link_offline(link))
3553 ehc->i.action &= ~ATA_EH_SOFTRESET;
3554
3555 return 0;
3556 }
3557 EXPORT_SYMBOL_GPL(ata_std_prereset);
3558
3559 /**
3560 * sata_std_hardreset - COMRESET w/o waiting or classification
3561 * @link: link to reset
3562 * @class: resulting class of attached device
3563 * @deadline: deadline jiffies for the operation
3564 *
3565 * Standard SATA COMRESET w/o waiting or classification.
3566 *
3567 * LOCKING:
3568 * Kernel thread context (may sleep)
3569 *
3570 * RETURNS:
3571 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3572 */
sata_std_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)3573 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3574 unsigned long deadline)
3575 {
3576 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3577 bool online;
3578 int rc;
3579
3580 /* do hardreset */
3581 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3582 return online ? -EAGAIN : rc;
3583 }
3584 EXPORT_SYMBOL_GPL(sata_std_hardreset);
3585
3586 /**
3587 * ata_std_postreset - standard postreset callback
3588 * @link: the target ata_link
3589 * @classes: classes of attached devices
3590 *
3591 * This function is invoked after a successful reset. Note that
3592 * the device might have been reset more than once using
3593 * different reset methods before postreset is invoked.
3594 *
3595 * LOCKING:
3596 * Kernel thread context (may sleep)
3597 */
ata_std_postreset(struct ata_link * link,unsigned int * classes)3598 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3599 {
3600 u32 serror;
3601
3602 DPRINTK("ENTER\n");
3603
3604 /* reset complete, clear SError */
3605 if (!sata_scr_read(link, SCR_ERROR, &serror))
3606 sata_scr_write(link, SCR_ERROR, serror);
3607
3608 /* print link status */
3609 sata_print_link_status(link);
3610
3611 DPRINTK("EXIT\n");
3612 }
3613 EXPORT_SYMBOL_GPL(ata_std_postreset);
3614
3615 /**
3616 * ata_dev_same_device - Determine whether new ID matches configured device
3617 * @dev: device to compare against
3618 * @new_class: class of the new device
3619 * @new_id: IDENTIFY page of the new device
3620 *
3621 * Compare @new_class and @new_id against @dev and determine
3622 * whether @dev is the device indicated by @new_class and
3623 * @new_id.
3624 *
3625 * LOCKING:
3626 * None.
3627 *
3628 * RETURNS:
3629 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3630 */
ata_dev_same_device(struct ata_device * dev,unsigned int new_class,const u16 * new_id)3631 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3632 const u16 *new_id)
3633 {
3634 const u16 *old_id = dev->id;
3635 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3636 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3637
3638 if (dev->class != new_class) {
3639 ata_dev_info(dev, "class mismatch %d != %d\n",
3640 dev->class, new_class);
3641 return 0;
3642 }
3643
3644 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3645 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3646 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3647 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3648
3649 if (strcmp(model[0], model[1])) {
3650 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3651 model[0], model[1]);
3652 return 0;
3653 }
3654
3655 if (strcmp(serial[0], serial[1])) {
3656 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3657 serial[0], serial[1]);
3658 return 0;
3659 }
3660
3661 return 1;
3662 }
3663
3664 /**
3665 * ata_dev_reread_id - Re-read IDENTIFY data
3666 * @dev: target ATA device
3667 * @readid_flags: read ID flags
3668 *
3669 * Re-read IDENTIFY page and make sure @dev is still attached to
3670 * the port.
3671 *
3672 * LOCKING:
3673 * Kernel thread context (may sleep)
3674 *
3675 * RETURNS:
3676 * 0 on success, negative errno otherwise
3677 */
ata_dev_reread_id(struct ata_device * dev,unsigned int readid_flags)3678 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3679 {
3680 unsigned int class = dev->class;
3681 u16 *id = (void *)dev->link->ap->sector_buf;
3682 int rc;
3683
3684 /* read ID data */
3685 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3686 if (rc)
3687 return rc;
3688
3689 /* is the device still there? */
3690 if (!ata_dev_same_device(dev, class, id))
3691 return -ENODEV;
3692
3693 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3694 return 0;
3695 }
3696
3697 /**
3698 * ata_dev_revalidate - Revalidate ATA device
3699 * @dev: device to revalidate
3700 * @new_class: new class code
3701 * @readid_flags: read ID flags
3702 *
3703 * Re-read IDENTIFY page, make sure @dev is still attached to the
3704 * port and reconfigure it according to the new IDENTIFY page.
3705 *
3706 * LOCKING:
3707 * Kernel thread context (may sleep)
3708 *
3709 * RETURNS:
3710 * 0 on success, negative errno otherwise
3711 */
ata_dev_revalidate(struct ata_device * dev,unsigned int new_class,unsigned int readid_flags)3712 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3713 unsigned int readid_flags)
3714 {
3715 u64 n_sectors = dev->n_sectors;
3716 u64 n_native_sectors = dev->n_native_sectors;
3717 int rc;
3718
3719 if (!ata_dev_enabled(dev))
3720 return -ENODEV;
3721
3722 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3723 if (ata_class_enabled(new_class) &&
3724 new_class != ATA_DEV_ATA &&
3725 new_class != ATA_DEV_ATAPI &&
3726 new_class != ATA_DEV_ZAC &&
3727 new_class != ATA_DEV_SEMB) {
3728 ata_dev_info(dev, "class mismatch %u != %u\n",
3729 dev->class, new_class);
3730 rc = -ENODEV;
3731 goto fail;
3732 }
3733
3734 /* re-read ID */
3735 rc = ata_dev_reread_id(dev, readid_flags);
3736 if (rc)
3737 goto fail;
3738
3739 /* configure device according to the new ID */
3740 rc = ata_dev_configure(dev);
3741 if (rc)
3742 goto fail;
3743
3744 /* verify n_sectors hasn't changed */
3745 if (dev->class != ATA_DEV_ATA || !n_sectors ||
3746 dev->n_sectors == n_sectors)
3747 return 0;
3748
3749 /* n_sectors has changed */
3750 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3751 (unsigned long long)n_sectors,
3752 (unsigned long long)dev->n_sectors);
3753
3754 /*
3755 * Something could have caused HPA to be unlocked
3756 * involuntarily. If n_native_sectors hasn't changed and the
3757 * new size matches it, keep the device.
3758 */
3759 if (dev->n_native_sectors == n_native_sectors &&
3760 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3761 ata_dev_warn(dev,
3762 "new n_sectors matches native, probably "
3763 "late HPA unlock, n_sectors updated\n");
3764 /* use the larger n_sectors */
3765 return 0;
3766 }
3767
3768 /*
3769 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
3770 * unlocking HPA in those cases.
3771 *
3772 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3773 */
3774 if (dev->n_native_sectors == n_native_sectors &&
3775 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3776 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
3777 ata_dev_warn(dev,
3778 "old n_sectors matches native, probably "
3779 "late HPA lock, will try to unlock HPA\n");
3780 /* try unlocking HPA */
3781 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3782 rc = -EIO;
3783 } else
3784 rc = -ENODEV;
3785
3786 /* restore original n_[native_]sectors and fail */
3787 dev->n_native_sectors = n_native_sectors;
3788 dev->n_sectors = n_sectors;
3789 fail:
3790 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3791 return rc;
3792 }
3793
3794 struct ata_blacklist_entry {
3795 const char *model_num;
3796 const char *model_rev;
3797 unsigned long horkage;
3798 };
3799
3800 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3801 /* Devices with DMA related problems under Linux */
3802 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3803 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3804 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3805 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3806 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3807 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3808 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3809 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3810 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3811 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
3812 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3813 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3814 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3815 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3816 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3817 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
3818 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3819 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3820 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3821 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3822 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3823 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3824 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3825 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3826 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3827 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3828 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
3829 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3830 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
3831 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA },
3832 /* Odd clown on sil3726/4726 PMPs */
3833 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
3834 /* Similar story with ASMedia 1092 */
3835 { "ASMT109x- Config", NULL, ATA_HORKAGE_DISABLE },
3836
3837 /* Weird ATAPI devices */
3838 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
3839 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
3840 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
3841 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
3842
3843 /*
3844 * Causes silent data corruption with higher max sects.
3845 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
3846 */
3847 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 },
3848
3849 /*
3850 * These devices time out with higher max sects.
3851 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
3852 */
3853 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 },
3854 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 },
3855
3856 /* Devices we expect to fail diagnostics */
3857
3858 /* Devices where NCQ should be avoided */
3859 /* NCQ is slow */
3860 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3861 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
3862 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3863 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3864 /* NCQ is broken */
3865 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
3866 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
3867 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
3868 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
3869 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
3870
3871 /* Seagate NCQ + FLUSH CACHE firmware bug */
3872 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
3873 ATA_HORKAGE_FIRMWARE_WARN },
3874
3875 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
3876 ATA_HORKAGE_FIRMWARE_WARN },
3877
3878 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
3879 ATA_HORKAGE_FIRMWARE_WARN },
3880
3881 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
3882 ATA_HORKAGE_FIRMWARE_WARN },
3883
3884 /* drives which fail FPDMA_AA activation (some may freeze afterwards)
3885 the ST disks also have LPM issues */
3886 { "ST1000LM024 HN-M101MBB", NULL, ATA_HORKAGE_BROKEN_FPDMA_AA |
3887 ATA_HORKAGE_NOLPM, },
3888 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA },
3889
3890 /* Blacklist entries taken from Silicon Image 3124/3132
3891 Windows driver .inf file - also several Linux problem reports */
3892 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3893 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3894 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3895
3896 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
3897 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
3898
3899 /* Sandisk SD7/8/9s lock up hard on large trims */
3900 { "SanDisk SD[789]*", NULL, ATA_HORKAGE_MAX_TRIM_128M, },
3901
3902 /* devices which puke on READ_NATIVE_MAX */
3903 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
3904 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3905 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3906 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
3907
3908 /* this one allows HPA unlocking but fails IOs on the area */
3909 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
3910
3911 /* Devices which report 1 sector over size HPA */
3912 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
3913 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
3914 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
3915
3916 /* Devices which get the IVB wrong */
3917 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
3918 /* Maybe we should just blacklist TSSTcorp... */
3919 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
3920
3921 /* Devices that do not need bridging limits applied */
3922 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
3923 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
3924
3925 /* Devices which aren't very happy with higher link speeds */
3926 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
3927 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
3928
3929 /*
3930 * Devices which choke on SETXFER. Applies only if both the
3931 * device and controller are SATA.
3932 */
3933 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
3934 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
3935 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
3936 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
3937 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
3938
3939 /* Crucial BX100 SSD 500GB has broken LPM support */
3940 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM },
3941
3942 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
3943 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
3944 ATA_HORKAGE_ZERO_AFTER_TRIM |
3945 ATA_HORKAGE_NOLPM, },
3946 /* 512GB MX100 with newer firmware has only LPM issues */
3947 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM |
3948 ATA_HORKAGE_NOLPM, },
3949
3950 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
3951 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
3952 ATA_HORKAGE_ZERO_AFTER_TRIM |
3953 ATA_HORKAGE_NOLPM, },
3954 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
3955 ATA_HORKAGE_ZERO_AFTER_TRIM |
3956 ATA_HORKAGE_NOLPM, },
3957
3958 /* These specific Samsung models/firmware-revs do not handle LPM well */
3959 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, },
3960 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM, },
3961 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_HORKAGE_NOLPM, },
3962 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM, },
3963
3964 /* devices that don't properly handle queued TRIM commands */
3965 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
3966 ATA_HORKAGE_ZERO_AFTER_TRIM, },
3967 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
3968 ATA_HORKAGE_ZERO_AFTER_TRIM, },
3969 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
3970 ATA_HORKAGE_ZERO_AFTER_TRIM, },
3971 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
3972 ATA_HORKAGE_ZERO_AFTER_TRIM, },
3973 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
3974 ATA_HORKAGE_ZERO_AFTER_TRIM, },
3975 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
3976 ATA_HORKAGE_ZERO_AFTER_TRIM, },
3977 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
3978 ATA_HORKAGE_ZERO_AFTER_TRIM, },
3979 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
3980 ATA_HORKAGE_ZERO_AFTER_TRIM, },
3981 { "Samsung SSD 860*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
3982 ATA_HORKAGE_ZERO_AFTER_TRIM |
3983 ATA_HORKAGE_NO_NCQ_ON_ATI, },
3984 { "Samsung SSD 870*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
3985 ATA_HORKAGE_ZERO_AFTER_TRIM |
3986 ATA_HORKAGE_NO_NCQ_ON_ATI, },
3987 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
3988 ATA_HORKAGE_ZERO_AFTER_TRIM, },
3989
3990 /* devices that don't properly handle TRIM commands */
3991 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, },
3992
3993 /*
3994 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
3995 * (Return Zero After Trim) flags in the ATA Command Set are
3996 * unreliable in the sense that they only define what happens if
3997 * the device successfully executed the DSM TRIM command. TRIM
3998 * is only advisory, however, and the device is free to silently
3999 * ignore all or parts of the request.
4000 *
4001 * Whitelist drives that are known to reliably return zeroes
4002 * after TRIM.
4003 */
4004
4005 /*
4006 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4007 * that model before whitelisting all other intel SSDs.
4008 */
4009 { "INTEL*SSDSC2MH*", NULL, 0, },
4010
4011 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4012 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4013 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4014 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4015 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4016 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4017 { "SAMSUNG*MZ7KM*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4018 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4019
4020 /*
4021 * Some WD SATA-I drives spin up and down erratically when the link
4022 * is put into the slumber mode. We don't have full list of the
4023 * affected devices. Disable LPM if the device matches one of the
4024 * known prefixes and is SATA-1. As a side effect LPM partial is
4025 * lost too.
4026 *
4027 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4028 */
4029 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4030 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4031 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4032 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4033 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4034 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4035 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4036
4037 /* End Marker */
4038 { }
4039 };
4040
ata_dev_blacklisted(const struct ata_device * dev)4041 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4042 {
4043 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4044 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4045 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4046
4047 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4048 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4049
4050 while (ad->model_num) {
4051 if (glob_match(ad->model_num, model_num)) {
4052 if (ad->model_rev == NULL)
4053 return ad->horkage;
4054 if (glob_match(ad->model_rev, model_rev))
4055 return ad->horkage;
4056 }
4057 ad++;
4058 }
4059 return 0;
4060 }
4061
ata_dma_blacklisted(const struct ata_device * dev)4062 static int ata_dma_blacklisted(const struct ata_device *dev)
4063 {
4064 /* We don't support polling DMA.
4065 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4066 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4067 */
4068 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4069 (dev->flags & ATA_DFLAG_CDB_INTR))
4070 return 1;
4071 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4072 }
4073
4074 /**
4075 * ata_is_40wire - check drive side detection
4076 * @dev: device
4077 *
4078 * Perform drive side detection decoding, allowing for device vendors
4079 * who can't follow the documentation.
4080 */
4081
ata_is_40wire(struct ata_device * dev)4082 static int ata_is_40wire(struct ata_device *dev)
4083 {
4084 if (dev->horkage & ATA_HORKAGE_IVB)
4085 return ata_drive_40wire_relaxed(dev->id);
4086 return ata_drive_40wire(dev->id);
4087 }
4088
4089 /**
4090 * cable_is_40wire - 40/80/SATA decider
4091 * @ap: port to consider
4092 *
4093 * This function encapsulates the policy for speed management
4094 * in one place. At the moment we don't cache the result but
4095 * there is a good case for setting ap->cbl to the result when
4096 * we are called with unknown cables (and figuring out if it
4097 * impacts hotplug at all).
4098 *
4099 * Return 1 if the cable appears to be 40 wire.
4100 */
4101
cable_is_40wire(struct ata_port * ap)4102 static int cable_is_40wire(struct ata_port *ap)
4103 {
4104 struct ata_link *link;
4105 struct ata_device *dev;
4106
4107 /* If the controller thinks we are 40 wire, we are. */
4108 if (ap->cbl == ATA_CBL_PATA40)
4109 return 1;
4110
4111 /* If the controller thinks we are 80 wire, we are. */
4112 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4113 return 0;
4114
4115 /* If the system is known to be 40 wire short cable (eg
4116 * laptop), then we allow 80 wire modes even if the drive
4117 * isn't sure.
4118 */
4119 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4120 return 0;
4121
4122 /* If the controller doesn't know, we scan.
4123 *
4124 * Note: We look for all 40 wire detects at this point. Any
4125 * 80 wire detect is taken to be 80 wire cable because
4126 * - in many setups only the one drive (slave if present) will
4127 * give a valid detect
4128 * - if you have a non detect capable drive you don't want it
4129 * to colour the choice
4130 */
4131 ata_for_each_link(link, ap, EDGE) {
4132 ata_for_each_dev(dev, link, ENABLED) {
4133 if (!ata_is_40wire(dev))
4134 return 0;
4135 }
4136 }
4137 return 1;
4138 }
4139
4140 /**
4141 * ata_dev_xfermask - Compute supported xfermask of the given device
4142 * @dev: Device to compute xfermask for
4143 *
4144 * Compute supported xfermask of @dev and store it in
4145 * dev->*_mask. This function is responsible for applying all
4146 * known limits including host controller limits, device
4147 * blacklist, etc...
4148 *
4149 * LOCKING:
4150 * None.
4151 */
ata_dev_xfermask(struct ata_device * dev)4152 static void ata_dev_xfermask(struct ata_device *dev)
4153 {
4154 struct ata_link *link = dev->link;
4155 struct ata_port *ap = link->ap;
4156 struct ata_host *host = ap->host;
4157 unsigned long xfer_mask;
4158
4159 /* controller modes available */
4160 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4161 ap->mwdma_mask, ap->udma_mask);
4162
4163 /* drive modes available */
4164 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4165 dev->mwdma_mask, dev->udma_mask);
4166 xfer_mask &= ata_id_xfermask(dev->id);
4167
4168 /*
4169 * CFA Advanced TrueIDE timings are not allowed on a shared
4170 * cable
4171 */
4172 if (ata_dev_pair(dev)) {
4173 /* No PIO5 or PIO6 */
4174 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4175 /* No MWDMA3 or MWDMA 4 */
4176 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4177 }
4178
4179 if (ata_dma_blacklisted(dev)) {
4180 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4181 ata_dev_warn(dev,
4182 "device is on DMA blacklist, disabling DMA\n");
4183 }
4184
4185 if ((host->flags & ATA_HOST_SIMPLEX) &&
4186 host->simplex_claimed && host->simplex_claimed != ap) {
4187 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4188 ata_dev_warn(dev,
4189 "simplex DMA is claimed by other device, disabling DMA\n");
4190 }
4191
4192 if (ap->flags & ATA_FLAG_NO_IORDY)
4193 xfer_mask &= ata_pio_mask_no_iordy(dev);
4194
4195 if (ap->ops->mode_filter)
4196 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4197
4198 /* Apply cable rule here. Don't apply it early because when
4199 * we handle hot plug the cable type can itself change.
4200 * Check this last so that we know if the transfer rate was
4201 * solely limited by the cable.
4202 * Unknown or 80 wire cables reported host side are checked
4203 * drive side as well. Cases where we know a 40wire cable
4204 * is used safely for 80 are not checked here.
4205 */
4206 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4207 /* UDMA/44 or higher would be available */
4208 if (cable_is_40wire(ap)) {
4209 ata_dev_warn(dev,
4210 "limited to UDMA/33 due to 40-wire cable\n");
4211 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4212 }
4213
4214 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4215 &dev->mwdma_mask, &dev->udma_mask);
4216 }
4217
4218 /**
4219 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4220 * @dev: Device to which command will be sent
4221 *
4222 * Issue SET FEATURES - XFER MODE command to device @dev
4223 * on port @ap.
4224 *
4225 * LOCKING:
4226 * PCI/etc. bus probe sem.
4227 *
4228 * RETURNS:
4229 * 0 on success, AC_ERR_* mask otherwise.
4230 */
4231
ata_dev_set_xfermode(struct ata_device * dev)4232 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4233 {
4234 struct ata_taskfile tf;
4235 unsigned int err_mask;
4236
4237 /* set up set-features taskfile */
4238 DPRINTK("set features - xfer mode\n");
4239
4240 /* Some controllers and ATAPI devices show flaky interrupt
4241 * behavior after setting xfer mode. Use polling instead.
4242 */
4243 ata_tf_init(dev, &tf);
4244 tf.command = ATA_CMD_SET_FEATURES;
4245 tf.feature = SETFEATURES_XFER;
4246 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4247 tf.protocol = ATA_PROT_NODATA;
4248 /* If we are using IORDY we must send the mode setting command */
4249 if (ata_pio_need_iordy(dev))
4250 tf.nsect = dev->xfer_mode;
4251 /* If the device has IORDY and the controller does not - turn it off */
4252 else if (ata_id_has_iordy(dev->id))
4253 tf.nsect = 0x01;
4254 else /* In the ancient relic department - skip all of this */
4255 return 0;
4256
4257 /* On some disks, this command causes spin-up, so we need longer timeout */
4258 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4259
4260 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4261 return err_mask;
4262 }
4263
4264 /**
4265 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4266 * @dev: Device to which command will be sent
4267 * @enable: Whether to enable or disable the feature
4268 * @feature: The sector count represents the feature to set
4269 *
4270 * Issue SET FEATURES - SATA FEATURES command to device @dev
4271 * on port @ap with sector count
4272 *
4273 * LOCKING:
4274 * PCI/etc. bus probe sem.
4275 *
4276 * RETURNS:
4277 * 0 on success, AC_ERR_* mask otherwise.
4278 */
ata_dev_set_feature(struct ata_device * dev,u8 enable,u8 feature)4279 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4280 {
4281 struct ata_taskfile tf;
4282 unsigned int err_mask;
4283 unsigned long timeout = 0;
4284
4285 /* set up set-features taskfile */
4286 DPRINTK("set features - SATA features\n");
4287
4288 ata_tf_init(dev, &tf);
4289 tf.command = ATA_CMD_SET_FEATURES;
4290 tf.feature = enable;
4291 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4292 tf.protocol = ATA_PROT_NODATA;
4293 tf.nsect = feature;
4294
4295 if (enable == SETFEATURES_SPINUP)
4296 timeout = ata_probe_timeout ?
4297 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4298 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4299
4300 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4301 return err_mask;
4302 }
4303 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4304
4305 /**
4306 * ata_dev_init_params - Issue INIT DEV PARAMS command
4307 * @dev: Device to which command will be sent
4308 * @heads: Number of heads (taskfile parameter)
4309 * @sectors: Number of sectors (taskfile parameter)
4310 *
4311 * LOCKING:
4312 * Kernel thread context (may sleep)
4313 *
4314 * RETURNS:
4315 * 0 on success, AC_ERR_* mask otherwise.
4316 */
ata_dev_init_params(struct ata_device * dev,u16 heads,u16 sectors)4317 static unsigned int ata_dev_init_params(struct ata_device *dev,
4318 u16 heads, u16 sectors)
4319 {
4320 struct ata_taskfile tf;
4321 unsigned int err_mask;
4322
4323 /* Number of sectors per track 1-255. Number of heads 1-16 */
4324 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4325 return AC_ERR_INVALID;
4326
4327 /* set up init dev params taskfile */
4328 DPRINTK("init dev params \n");
4329
4330 ata_tf_init(dev, &tf);
4331 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4332 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4333 tf.protocol = ATA_PROT_NODATA;
4334 tf.nsect = sectors;
4335 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4336
4337 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4338 /* A clean abort indicates an original or just out of spec drive
4339 and we should continue as we issue the setup based on the
4340 drive reported working geometry */
4341 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4342 err_mask = 0;
4343
4344 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4345 return err_mask;
4346 }
4347
4348 /**
4349 * atapi_check_dma - Check whether ATAPI DMA can be supported
4350 * @qc: Metadata associated with taskfile to check
4351 *
4352 * Allow low-level driver to filter ATA PACKET commands, returning
4353 * a status indicating whether or not it is OK to use DMA for the
4354 * supplied PACKET command.
4355 *
4356 * LOCKING:
4357 * spin_lock_irqsave(host lock)
4358 *
4359 * RETURNS: 0 when ATAPI DMA can be used
4360 * nonzero otherwise
4361 */
atapi_check_dma(struct ata_queued_cmd * qc)4362 int atapi_check_dma(struct ata_queued_cmd *qc)
4363 {
4364 struct ata_port *ap = qc->ap;
4365
4366 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4367 * few ATAPI devices choke on such DMA requests.
4368 */
4369 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4370 unlikely(qc->nbytes & 15))
4371 return 1;
4372
4373 if (ap->ops->check_atapi_dma)
4374 return ap->ops->check_atapi_dma(qc);
4375
4376 return 0;
4377 }
4378
4379 /**
4380 * ata_std_qc_defer - Check whether a qc needs to be deferred
4381 * @qc: ATA command in question
4382 *
4383 * Non-NCQ commands cannot run with any other command, NCQ or
4384 * not. As upper layer only knows the queue depth, we are
4385 * responsible for maintaining exclusion. This function checks
4386 * whether a new command @qc can be issued.
4387 *
4388 * LOCKING:
4389 * spin_lock_irqsave(host lock)
4390 *
4391 * RETURNS:
4392 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4393 */
ata_std_qc_defer(struct ata_queued_cmd * qc)4394 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4395 {
4396 struct ata_link *link = qc->dev->link;
4397
4398 if (ata_is_ncq(qc->tf.protocol)) {
4399 if (!ata_tag_valid(link->active_tag))
4400 return 0;
4401 } else {
4402 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4403 return 0;
4404 }
4405
4406 return ATA_DEFER_LINK;
4407 }
4408 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4409
ata_noop_qc_prep(struct ata_queued_cmd * qc)4410 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc)
4411 {
4412 return AC_ERR_OK;
4413 }
4414 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
4415
4416 /**
4417 * ata_sg_init - Associate command with scatter-gather table.
4418 * @qc: Command to be associated
4419 * @sg: Scatter-gather table.
4420 * @n_elem: Number of elements in s/g table.
4421 *
4422 * Initialize the data-related elements of queued_cmd @qc
4423 * to point to a scatter-gather table @sg, containing @n_elem
4424 * elements.
4425 *
4426 * LOCKING:
4427 * spin_lock_irqsave(host lock)
4428 */
ata_sg_init(struct ata_queued_cmd * qc,struct scatterlist * sg,unsigned int n_elem)4429 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4430 unsigned int n_elem)
4431 {
4432 qc->sg = sg;
4433 qc->n_elem = n_elem;
4434 qc->cursg = qc->sg;
4435 }
4436
4437 #ifdef CONFIG_HAS_DMA
4438
4439 /**
4440 * ata_sg_clean - Unmap DMA memory associated with command
4441 * @qc: Command containing DMA memory to be released
4442 *
4443 * Unmap all mapped DMA memory associated with this command.
4444 *
4445 * LOCKING:
4446 * spin_lock_irqsave(host lock)
4447 */
ata_sg_clean(struct ata_queued_cmd * qc)4448 static void ata_sg_clean(struct ata_queued_cmd *qc)
4449 {
4450 struct ata_port *ap = qc->ap;
4451 struct scatterlist *sg = qc->sg;
4452 int dir = qc->dma_dir;
4453
4454 WARN_ON_ONCE(sg == NULL);
4455
4456 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4457
4458 if (qc->n_elem)
4459 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4460
4461 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4462 qc->sg = NULL;
4463 }
4464
4465 /**
4466 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4467 * @qc: Command with scatter-gather table to be mapped.
4468 *
4469 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4470 *
4471 * LOCKING:
4472 * spin_lock_irqsave(host lock)
4473 *
4474 * RETURNS:
4475 * Zero on success, negative on error.
4476 *
4477 */
ata_sg_setup(struct ata_queued_cmd * qc)4478 static int ata_sg_setup(struct ata_queued_cmd *qc)
4479 {
4480 struct ata_port *ap = qc->ap;
4481 unsigned int n_elem;
4482
4483 VPRINTK("ENTER, ata%u\n", ap->print_id);
4484
4485 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4486 if (n_elem < 1)
4487 return -1;
4488
4489 VPRINTK("%d sg elements mapped\n", n_elem);
4490 qc->orig_n_elem = qc->n_elem;
4491 qc->n_elem = n_elem;
4492 qc->flags |= ATA_QCFLAG_DMAMAP;
4493
4494 return 0;
4495 }
4496
4497 #else /* !CONFIG_HAS_DMA */
4498
ata_sg_clean(struct ata_queued_cmd * qc)4499 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
ata_sg_setup(struct ata_queued_cmd * qc)4500 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4501
4502 #endif /* !CONFIG_HAS_DMA */
4503
4504 /**
4505 * swap_buf_le16 - swap halves of 16-bit words in place
4506 * @buf: Buffer to swap
4507 * @buf_words: Number of 16-bit words in buffer.
4508 *
4509 * Swap halves of 16-bit words if needed to convert from
4510 * little-endian byte order to native cpu byte order, or
4511 * vice-versa.
4512 *
4513 * LOCKING:
4514 * Inherited from caller.
4515 */
swap_buf_le16(u16 * buf,unsigned int buf_words)4516 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4517 {
4518 #ifdef __BIG_ENDIAN
4519 unsigned int i;
4520
4521 for (i = 0; i < buf_words; i++)
4522 buf[i] = le16_to_cpu(buf[i]);
4523 #endif /* __BIG_ENDIAN */
4524 }
4525
4526 /**
4527 * ata_qc_new_init - Request an available ATA command, and initialize it
4528 * @dev: Device from whom we request an available command structure
4529 * @tag: tag
4530 *
4531 * LOCKING:
4532 * None.
4533 */
4534
ata_qc_new_init(struct ata_device * dev,int tag)4535 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
4536 {
4537 struct ata_port *ap = dev->link->ap;
4538 struct ata_queued_cmd *qc;
4539
4540 /* no command while frozen */
4541 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4542 return NULL;
4543
4544 /* libsas case */
4545 if (ap->flags & ATA_FLAG_SAS_HOST) {
4546 tag = ata_sas_allocate_tag(ap);
4547 if (tag < 0)
4548 return NULL;
4549 }
4550
4551 qc = __ata_qc_from_tag(ap, tag);
4552 qc->tag = qc->hw_tag = tag;
4553 qc->scsicmd = NULL;
4554 qc->ap = ap;
4555 qc->dev = dev;
4556
4557 ata_qc_reinit(qc);
4558
4559 return qc;
4560 }
4561
4562 /**
4563 * ata_qc_free - free unused ata_queued_cmd
4564 * @qc: Command to complete
4565 *
4566 * Designed to free unused ata_queued_cmd object
4567 * in case something prevents using it.
4568 *
4569 * LOCKING:
4570 * spin_lock_irqsave(host lock)
4571 */
ata_qc_free(struct ata_queued_cmd * qc)4572 void ata_qc_free(struct ata_queued_cmd *qc)
4573 {
4574 struct ata_port *ap;
4575 unsigned int tag;
4576
4577 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4578 ap = qc->ap;
4579
4580 qc->flags = 0;
4581 tag = qc->tag;
4582 if (ata_tag_valid(tag)) {
4583 qc->tag = ATA_TAG_POISON;
4584 if (ap->flags & ATA_FLAG_SAS_HOST)
4585 ata_sas_free_tag(tag, ap);
4586 }
4587 }
4588
__ata_qc_complete(struct ata_queued_cmd * qc)4589 void __ata_qc_complete(struct ata_queued_cmd *qc)
4590 {
4591 struct ata_port *ap;
4592 struct ata_link *link;
4593
4594 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4595 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4596 ap = qc->ap;
4597 link = qc->dev->link;
4598
4599 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4600 ata_sg_clean(qc);
4601
4602 /* command should be marked inactive atomically with qc completion */
4603 if (ata_is_ncq(qc->tf.protocol)) {
4604 link->sactive &= ~(1 << qc->hw_tag);
4605 if (!link->sactive)
4606 ap->nr_active_links--;
4607 } else {
4608 link->active_tag = ATA_TAG_POISON;
4609 ap->nr_active_links--;
4610 }
4611
4612 /* clear exclusive status */
4613 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4614 ap->excl_link == link))
4615 ap->excl_link = NULL;
4616
4617 /* atapi: mark qc as inactive to prevent the interrupt handler
4618 * from completing the command twice later, before the error handler
4619 * is called. (when rc != 0 and atapi request sense is needed)
4620 */
4621 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4622 ap->qc_active &= ~(1ULL << qc->tag);
4623
4624 /* call completion callback */
4625 qc->complete_fn(qc);
4626 }
4627
fill_result_tf(struct ata_queued_cmd * qc)4628 static void fill_result_tf(struct ata_queued_cmd *qc)
4629 {
4630 struct ata_port *ap = qc->ap;
4631
4632 qc->result_tf.flags = qc->tf.flags;
4633 ap->ops->qc_fill_rtf(qc);
4634 }
4635
ata_verify_xfer(struct ata_queued_cmd * qc)4636 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4637 {
4638 struct ata_device *dev = qc->dev;
4639
4640 if (!ata_is_data(qc->tf.protocol))
4641 return;
4642
4643 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4644 return;
4645
4646 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4647 }
4648
4649 /**
4650 * ata_qc_complete - Complete an active ATA command
4651 * @qc: Command to complete
4652 *
4653 * Indicate to the mid and upper layers that an ATA command has
4654 * completed, with either an ok or not-ok status.
4655 *
4656 * Refrain from calling this function multiple times when
4657 * successfully completing multiple NCQ commands.
4658 * ata_qc_complete_multiple() should be used instead, which will
4659 * properly update IRQ expect state.
4660 *
4661 * LOCKING:
4662 * spin_lock_irqsave(host lock)
4663 */
ata_qc_complete(struct ata_queued_cmd * qc)4664 void ata_qc_complete(struct ata_queued_cmd *qc)
4665 {
4666 struct ata_port *ap = qc->ap;
4667
4668 /* Trigger the LED (if available) */
4669 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4670
4671 /* XXX: New EH and old EH use different mechanisms to
4672 * synchronize EH with regular execution path.
4673 *
4674 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4675 * Normal execution path is responsible for not accessing a
4676 * failed qc. libata core enforces the rule by returning NULL
4677 * from ata_qc_from_tag() for failed qcs.
4678 *
4679 * Old EH depends on ata_qc_complete() nullifying completion
4680 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4681 * not synchronize with interrupt handler. Only PIO task is
4682 * taken care of.
4683 */
4684 if (ap->ops->error_handler) {
4685 struct ata_device *dev = qc->dev;
4686 struct ata_eh_info *ehi = &dev->link->eh_info;
4687
4688 if (unlikely(qc->err_mask))
4689 qc->flags |= ATA_QCFLAG_FAILED;
4690
4691 /*
4692 * Finish internal commands without any further processing
4693 * and always with the result TF filled.
4694 */
4695 if (unlikely(ata_tag_internal(qc->tag))) {
4696 fill_result_tf(qc);
4697 trace_ata_qc_complete_internal(qc);
4698 __ata_qc_complete(qc);
4699 return;
4700 }
4701
4702 /*
4703 * Non-internal qc has failed. Fill the result TF and
4704 * summon EH.
4705 */
4706 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4707 fill_result_tf(qc);
4708 trace_ata_qc_complete_failed(qc);
4709 ata_qc_schedule_eh(qc);
4710 return;
4711 }
4712
4713 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4714
4715 /* read result TF if requested */
4716 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4717 fill_result_tf(qc);
4718
4719 trace_ata_qc_complete_done(qc);
4720 /* Some commands need post-processing after successful
4721 * completion.
4722 */
4723 switch (qc->tf.command) {
4724 case ATA_CMD_SET_FEATURES:
4725 if (qc->tf.feature != SETFEATURES_WC_ON &&
4726 qc->tf.feature != SETFEATURES_WC_OFF &&
4727 qc->tf.feature != SETFEATURES_RA_ON &&
4728 qc->tf.feature != SETFEATURES_RA_OFF)
4729 break;
4730 fallthrough;
4731 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4732 case ATA_CMD_SET_MULTI: /* multi_count changed */
4733 /* revalidate device */
4734 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4735 ata_port_schedule_eh(ap);
4736 break;
4737
4738 case ATA_CMD_SLEEP:
4739 dev->flags |= ATA_DFLAG_SLEEPING;
4740 break;
4741 }
4742
4743 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4744 ata_verify_xfer(qc);
4745
4746 __ata_qc_complete(qc);
4747 } else {
4748 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4749 return;
4750
4751 /* read result TF if failed or requested */
4752 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4753 fill_result_tf(qc);
4754
4755 __ata_qc_complete(qc);
4756 }
4757 }
4758 EXPORT_SYMBOL_GPL(ata_qc_complete);
4759
4760 /**
4761 * ata_qc_get_active - get bitmask of active qcs
4762 * @ap: port in question
4763 *
4764 * LOCKING:
4765 * spin_lock_irqsave(host lock)
4766 *
4767 * RETURNS:
4768 * Bitmask of active qcs
4769 */
ata_qc_get_active(struct ata_port * ap)4770 u64 ata_qc_get_active(struct ata_port *ap)
4771 {
4772 u64 qc_active = ap->qc_active;
4773
4774 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */
4775 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
4776 qc_active |= (1 << 0);
4777 qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
4778 }
4779
4780 return qc_active;
4781 }
4782 EXPORT_SYMBOL_GPL(ata_qc_get_active);
4783
4784 /**
4785 * ata_qc_issue - issue taskfile to device
4786 * @qc: command to issue to device
4787 *
4788 * Prepare an ATA command to submission to device.
4789 * This includes mapping the data into a DMA-able
4790 * area, filling in the S/G table, and finally
4791 * writing the taskfile to hardware, starting the command.
4792 *
4793 * LOCKING:
4794 * spin_lock_irqsave(host lock)
4795 */
ata_qc_issue(struct ata_queued_cmd * qc)4796 void ata_qc_issue(struct ata_queued_cmd *qc)
4797 {
4798 struct ata_port *ap = qc->ap;
4799 struct ata_link *link = qc->dev->link;
4800 u8 prot = qc->tf.protocol;
4801
4802 /* Make sure only one non-NCQ command is outstanding. The
4803 * check is skipped for old EH because it reuses active qc to
4804 * request ATAPI sense.
4805 */
4806 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4807
4808 if (ata_is_ncq(prot)) {
4809 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
4810
4811 if (!link->sactive)
4812 ap->nr_active_links++;
4813 link->sactive |= 1 << qc->hw_tag;
4814 } else {
4815 WARN_ON_ONCE(link->sactive);
4816
4817 ap->nr_active_links++;
4818 link->active_tag = qc->tag;
4819 }
4820
4821 qc->flags |= ATA_QCFLAG_ACTIVE;
4822 ap->qc_active |= 1ULL << qc->tag;
4823
4824 /*
4825 * We guarantee to LLDs that they will have at least one
4826 * non-zero sg if the command is a data command.
4827 */
4828 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
4829 goto sys_err;
4830
4831 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4832 (ap->flags & ATA_FLAG_PIO_DMA)))
4833 if (ata_sg_setup(qc))
4834 goto sys_err;
4835
4836 /* if device is sleeping, schedule reset and abort the link */
4837 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4838 link->eh_info.action |= ATA_EH_RESET;
4839 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4840 ata_link_abort(link);
4841 return;
4842 }
4843
4844 qc->err_mask |= ap->ops->qc_prep(qc);
4845 if (unlikely(qc->err_mask))
4846 goto err;
4847 trace_ata_qc_issue(qc);
4848 qc->err_mask |= ap->ops->qc_issue(qc);
4849 if (unlikely(qc->err_mask))
4850 goto err;
4851 return;
4852
4853 sys_err:
4854 qc->err_mask |= AC_ERR_SYSTEM;
4855 err:
4856 ata_qc_complete(qc);
4857 }
4858
4859 /**
4860 * ata_phys_link_online - test whether the given link is online
4861 * @link: ATA link to test
4862 *
4863 * Test whether @link is online. Note that this function returns
4864 * 0 if online status of @link cannot be obtained, so
4865 * ata_link_online(link) != !ata_link_offline(link).
4866 *
4867 * LOCKING:
4868 * None.
4869 *
4870 * RETURNS:
4871 * True if the port online status is available and online.
4872 */
ata_phys_link_online(struct ata_link * link)4873 bool ata_phys_link_online(struct ata_link *link)
4874 {
4875 u32 sstatus;
4876
4877 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4878 ata_sstatus_online(sstatus))
4879 return true;
4880 return false;
4881 }
4882
4883 /**
4884 * ata_phys_link_offline - test whether the given link is offline
4885 * @link: ATA link to test
4886 *
4887 * Test whether @link is offline. Note that this function
4888 * returns 0 if offline status of @link cannot be obtained, so
4889 * ata_link_online(link) != !ata_link_offline(link).
4890 *
4891 * LOCKING:
4892 * None.
4893 *
4894 * RETURNS:
4895 * True if the port offline status is available and offline.
4896 */
ata_phys_link_offline(struct ata_link * link)4897 bool ata_phys_link_offline(struct ata_link *link)
4898 {
4899 u32 sstatus;
4900
4901 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4902 !ata_sstatus_online(sstatus))
4903 return true;
4904 return false;
4905 }
4906
4907 /**
4908 * ata_link_online - test whether the given link is online
4909 * @link: ATA link to test
4910 *
4911 * Test whether @link is online. This is identical to
4912 * ata_phys_link_online() when there's no slave link. When
4913 * there's a slave link, this function should only be called on
4914 * the master link and will return true if any of M/S links is
4915 * online.
4916 *
4917 * LOCKING:
4918 * None.
4919 *
4920 * RETURNS:
4921 * True if the port online status is available and online.
4922 */
ata_link_online(struct ata_link * link)4923 bool ata_link_online(struct ata_link *link)
4924 {
4925 struct ata_link *slave = link->ap->slave_link;
4926
4927 WARN_ON(link == slave); /* shouldn't be called on slave link */
4928
4929 return ata_phys_link_online(link) ||
4930 (slave && ata_phys_link_online(slave));
4931 }
4932 EXPORT_SYMBOL_GPL(ata_link_online);
4933
4934 /**
4935 * ata_link_offline - test whether the given link is offline
4936 * @link: ATA link to test
4937 *
4938 * Test whether @link is offline. This is identical to
4939 * ata_phys_link_offline() when there's no slave link. When
4940 * there's a slave link, this function should only be called on
4941 * the master link and will return true if both M/S links are
4942 * offline.
4943 *
4944 * LOCKING:
4945 * None.
4946 *
4947 * RETURNS:
4948 * True if the port offline status is available and offline.
4949 */
ata_link_offline(struct ata_link * link)4950 bool ata_link_offline(struct ata_link *link)
4951 {
4952 struct ata_link *slave = link->ap->slave_link;
4953
4954 WARN_ON(link == slave); /* shouldn't be called on slave link */
4955
4956 return ata_phys_link_offline(link) &&
4957 (!slave || ata_phys_link_offline(slave));
4958 }
4959 EXPORT_SYMBOL_GPL(ata_link_offline);
4960
4961 #ifdef CONFIG_PM
ata_port_request_pm(struct ata_port * ap,pm_message_t mesg,unsigned int action,unsigned int ehi_flags,bool async)4962 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
4963 unsigned int action, unsigned int ehi_flags,
4964 bool async)
4965 {
4966 struct ata_link *link;
4967 unsigned long flags;
4968
4969 /* Previous resume operation might still be in
4970 * progress. Wait for PM_PENDING to clear.
4971 */
4972 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
4973 ata_port_wait_eh(ap);
4974 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
4975 }
4976
4977 /* request PM ops to EH */
4978 spin_lock_irqsave(ap->lock, flags);
4979
4980 ap->pm_mesg = mesg;
4981 ap->pflags |= ATA_PFLAG_PM_PENDING;
4982 ata_for_each_link(link, ap, HOST_FIRST) {
4983 link->eh_info.action |= action;
4984 link->eh_info.flags |= ehi_flags;
4985 }
4986
4987 ata_port_schedule_eh(ap);
4988
4989 spin_unlock_irqrestore(ap->lock, flags);
4990
4991 if (!async) {
4992 ata_port_wait_eh(ap);
4993 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
4994 }
4995 }
4996
4997 /*
4998 * On some hardware, device fails to respond after spun down for suspend. As
4999 * the device won't be used before being resumed, we don't need to touch the
5000 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5001 *
5002 * http://thread.gmane.org/gmane.linux.ide/46764
5003 */
5004 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5005 | ATA_EHI_NO_AUTOPSY
5006 | ATA_EHI_NO_RECOVERY;
5007
ata_port_suspend(struct ata_port * ap,pm_message_t mesg)5008 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5009 {
5010 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5011 }
5012
ata_port_suspend_async(struct ata_port * ap,pm_message_t mesg)5013 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5014 {
5015 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5016 }
5017
ata_port_pm_suspend(struct device * dev)5018 static int ata_port_pm_suspend(struct device *dev)
5019 {
5020 struct ata_port *ap = to_ata_port(dev);
5021
5022 if (pm_runtime_suspended(dev))
5023 return 0;
5024
5025 ata_port_suspend(ap, PMSG_SUSPEND);
5026 return 0;
5027 }
5028
ata_port_pm_freeze(struct device * dev)5029 static int ata_port_pm_freeze(struct device *dev)
5030 {
5031 struct ata_port *ap = to_ata_port(dev);
5032
5033 if (pm_runtime_suspended(dev))
5034 return 0;
5035
5036 ata_port_suspend(ap, PMSG_FREEZE);
5037 return 0;
5038 }
5039
ata_port_pm_poweroff(struct device * dev)5040 static int ata_port_pm_poweroff(struct device *dev)
5041 {
5042 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5043 return 0;
5044 }
5045
5046 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5047 | ATA_EHI_QUIET;
5048
ata_port_resume(struct ata_port * ap,pm_message_t mesg)5049 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5050 {
5051 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5052 }
5053
ata_port_resume_async(struct ata_port * ap,pm_message_t mesg)5054 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5055 {
5056 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5057 }
5058
ata_port_pm_resume(struct device * dev)5059 static int ata_port_pm_resume(struct device *dev)
5060 {
5061 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5062 pm_runtime_disable(dev);
5063 pm_runtime_set_active(dev);
5064 pm_runtime_enable(dev);
5065 return 0;
5066 }
5067
5068 /*
5069 * For ODDs, the upper layer will poll for media change every few seconds,
5070 * which will make it enter and leave suspend state every few seconds. And
5071 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5072 * is very little and the ODD may malfunction after constantly being reset.
5073 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5074 * ODD is attached to the port.
5075 */
ata_port_runtime_idle(struct device * dev)5076 static int ata_port_runtime_idle(struct device *dev)
5077 {
5078 struct ata_port *ap = to_ata_port(dev);
5079 struct ata_link *link;
5080 struct ata_device *adev;
5081
5082 ata_for_each_link(link, ap, HOST_FIRST) {
5083 ata_for_each_dev(adev, link, ENABLED)
5084 if (adev->class == ATA_DEV_ATAPI &&
5085 !zpodd_dev_enabled(adev))
5086 return -EBUSY;
5087 }
5088
5089 return 0;
5090 }
5091
ata_port_runtime_suspend(struct device * dev)5092 static int ata_port_runtime_suspend(struct device *dev)
5093 {
5094 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5095 return 0;
5096 }
5097
ata_port_runtime_resume(struct device * dev)5098 static int ata_port_runtime_resume(struct device *dev)
5099 {
5100 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5101 return 0;
5102 }
5103
5104 static const struct dev_pm_ops ata_port_pm_ops = {
5105 .suspend = ata_port_pm_suspend,
5106 .resume = ata_port_pm_resume,
5107 .freeze = ata_port_pm_freeze,
5108 .thaw = ata_port_pm_resume,
5109 .poweroff = ata_port_pm_poweroff,
5110 .restore = ata_port_pm_resume,
5111
5112 .runtime_suspend = ata_port_runtime_suspend,
5113 .runtime_resume = ata_port_runtime_resume,
5114 .runtime_idle = ata_port_runtime_idle,
5115 };
5116
5117 /* sas ports don't participate in pm runtime management of ata_ports,
5118 * and need to resume ata devices at the domain level, not the per-port
5119 * level. sas suspend/resume is async to allow parallel port recovery
5120 * since sas has multiple ata_port instances per Scsi_Host.
5121 */
ata_sas_port_suspend(struct ata_port * ap)5122 void ata_sas_port_suspend(struct ata_port *ap)
5123 {
5124 ata_port_suspend_async(ap, PMSG_SUSPEND);
5125 }
5126 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5127
ata_sas_port_resume(struct ata_port * ap)5128 void ata_sas_port_resume(struct ata_port *ap)
5129 {
5130 ata_port_resume_async(ap, PMSG_RESUME);
5131 }
5132 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5133
5134 /**
5135 * ata_host_suspend - suspend host
5136 * @host: host to suspend
5137 * @mesg: PM message
5138 *
5139 * Suspend @host. Actual operation is performed by port suspend.
5140 */
ata_host_suspend(struct ata_host * host,pm_message_t mesg)5141 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5142 {
5143 host->dev->power.power_state = mesg;
5144 return 0;
5145 }
5146 EXPORT_SYMBOL_GPL(ata_host_suspend);
5147
5148 /**
5149 * ata_host_resume - resume host
5150 * @host: host to resume
5151 *
5152 * Resume @host. Actual operation is performed by port resume.
5153 */
ata_host_resume(struct ata_host * host)5154 void ata_host_resume(struct ata_host *host)
5155 {
5156 host->dev->power.power_state = PMSG_ON;
5157 }
5158 EXPORT_SYMBOL_GPL(ata_host_resume);
5159 #endif
5160
5161 const struct device_type ata_port_type = {
5162 .name = "ata_port",
5163 #ifdef CONFIG_PM
5164 .pm = &ata_port_pm_ops,
5165 #endif
5166 };
5167
5168 /**
5169 * ata_dev_init - Initialize an ata_device structure
5170 * @dev: Device structure to initialize
5171 *
5172 * Initialize @dev in preparation for probing.
5173 *
5174 * LOCKING:
5175 * Inherited from caller.
5176 */
ata_dev_init(struct ata_device * dev)5177 void ata_dev_init(struct ata_device *dev)
5178 {
5179 struct ata_link *link = ata_dev_phys_link(dev);
5180 struct ata_port *ap = link->ap;
5181 unsigned long flags;
5182
5183 /* SATA spd limit is bound to the attached device, reset together */
5184 link->sata_spd_limit = link->hw_sata_spd_limit;
5185 link->sata_spd = 0;
5186
5187 /* High bits of dev->flags are used to record warm plug
5188 * requests which occur asynchronously. Synchronize using
5189 * host lock.
5190 */
5191 spin_lock_irqsave(ap->lock, flags);
5192 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5193 dev->horkage = 0;
5194 spin_unlock_irqrestore(ap->lock, flags);
5195
5196 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5197 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5198 dev->pio_mask = UINT_MAX;
5199 dev->mwdma_mask = UINT_MAX;
5200 dev->udma_mask = UINT_MAX;
5201 }
5202
5203 /**
5204 * ata_link_init - Initialize an ata_link structure
5205 * @ap: ATA port link is attached to
5206 * @link: Link structure to initialize
5207 * @pmp: Port multiplier port number
5208 *
5209 * Initialize @link.
5210 *
5211 * LOCKING:
5212 * Kernel thread context (may sleep)
5213 */
ata_link_init(struct ata_port * ap,struct ata_link * link,int pmp)5214 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5215 {
5216 int i;
5217
5218 /* clear everything except for devices */
5219 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5220 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5221
5222 link->ap = ap;
5223 link->pmp = pmp;
5224 link->active_tag = ATA_TAG_POISON;
5225 link->hw_sata_spd_limit = UINT_MAX;
5226
5227 /* can't use iterator, ap isn't initialized yet */
5228 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5229 struct ata_device *dev = &link->device[i];
5230
5231 dev->link = link;
5232 dev->devno = dev - link->device;
5233 #ifdef CONFIG_ATA_ACPI
5234 dev->gtf_filter = ata_acpi_gtf_filter;
5235 #endif
5236 ata_dev_init(dev);
5237 }
5238 }
5239
5240 /**
5241 * sata_link_init_spd - Initialize link->sata_spd_limit
5242 * @link: Link to configure sata_spd_limit for
5243 *
5244 * Initialize ``link->[hw_]sata_spd_limit`` to the currently
5245 * configured value.
5246 *
5247 * LOCKING:
5248 * Kernel thread context (may sleep).
5249 *
5250 * RETURNS:
5251 * 0 on success, -errno on failure.
5252 */
sata_link_init_spd(struct ata_link * link)5253 int sata_link_init_spd(struct ata_link *link)
5254 {
5255 u8 spd;
5256 int rc;
5257
5258 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5259 if (rc)
5260 return rc;
5261
5262 spd = (link->saved_scontrol >> 4) & 0xf;
5263 if (spd)
5264 link->hw_sata_spd_limit &= (1 << spd) - 1;
5265
5266 ata_force_link_limits(link);
5267
5268 link->sata_spd_limit = link->hw_sata_spd_limit;
5269
5270 return 0;
5271 }
5272
5273 /**
5274 * ata_port_alloc - allocate and initialize basic ATA port resources
5275 * @host: ATA host this allocated port belongs to
5276 *
5277 * Allocate and initialize basic ATA port resources.
5278 *
5279 * RETURNS:
5280 * Allocate ATA port on success, NULL on failure.
5281 *
5282 * LOCKING:
5283 * Inherited from calling layer (may sleep).
5284 */
ata_port_alloc(struct ata_host * host)5285 struct ata_port *ata_port_alloc(struct ata_host *host)
5286 {
5287 struct ata_port *ap;
5288
5289 DPRINTK("ENTER\n");
5290
5291 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5292 if (!ap)
5293 return NULL;
5294
5295 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5296 ap->lock = &host->lock;
5297 ap->print_id = -1;
5298 ap->local_port_no = -1;
5299 ap->host = host;
5300 ap->dev = host->dev;
5301
5302 #if defined(ATA_VERBOSE_DEBUG)
5303 /* turn on all debugging levels */
5304 ap->msg_enable = 0x00FF;
5305 #elif defined(ATA_DEBUG)
5306 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5307 #else
5308 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5309 #endif
5310
5311 mutex_init(&ap->scsi_scan_mutex);
5312 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5313 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5314 INIT_LIST_HEAD(&ap->eh_done_q);
5315 init_waitqueue_head(&ap->eh_wait_q);
5316 init_completion(&ap->park_req_pending);
5317 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5318 TIMER_DEFERRABLE);
5319
5320 ap->cbl = ATA_CBL_NONE;
5321
5322 ata_link_init(ap, &ap->link, 0);
5323
5324 #ifdef ATA_IRQ_TRAP
5325 ap->stats.unhandled_irq = 1;
5326 ap->stats.idle_irq = 1;
5327 #endif
5328 ata_sff_port_init(ap);
5329
5330 return ap;
5331 }
5332
ata_devres_release(struct device * gendev,void * res)5333 static void ata_devres_release(struct device *gendev, void *res)
5334 {
5335 struct ata_host *host = dev_get_drvdata(gendev);
5336 int i;
5337
5338 for (i = 0; i < host->n_ports; i++) {
5339 struct ata_port *ap = host->ports[i];
5340
5341 if (!ap)
5342 continue;
5343
5344 if (ap->scsi_host)
5345 scsi_host_put(ap->scsi_host);
5346
5347 }
5348
5349 dev_set_drvdata(gendev, NULL);
5350 ata_host_put(host);
5351 }
5352
ata_host_release(struct kref * kref)5353 static void ata_host_release(struct kref *kref)
5354 {
5355 struct ata_host *host = container_of(kref, struct ata_host, kref);
5356 int i;
5357
5358 for (i = 0; i < host->n_ports; i++) {
5359 struct ata_port *ap = host->ports[i];
5360
5361 kfree(ap->pmp_link);
5362 kfree(ap->slave_link);
5363 kfree(ap);
5364 host->ports[i] = NULL;
5365 }
5366 kfree(host);
5367 }
5368
ata_host_get(struct ata_host * host)5369 void ata_host_get(struct ata_host *host)
5370 {
5371 kref_get(&host->kref);
5372 }
5373
ata_host_put(struct ata_host * host)5374 void ata_host_put(struct ata_host *host)
5375 {
5376 kref_put(&host->kref, ata_host_release);
5377 }
5378 EXPORT_SYMBOL_GPL(ata_host_put);
5379
5380 /**
5381 * ata_host_alloc - allocate and init basic ATA host resources
5382 * @dev: generic device this host is associated with
5383 * @max_ports: maximum number of ATA ports associated with this host
5384 *
5385 * Allocate and initialize basic ATA host resources. LLD calls
5386 * this function to allocate a host, initializes it fully and
5387 * attaches it using ata_host_register().
5388 *
5389 * @max_ports ports are allocated and host->n_ports is
5390 * initialized to @max_ports. The caller is allowed to decrease
5391 * host->n_ports before calling ata_host_register(). The unused
5392 * ports will be automatically freed on registration.
5393 *
5394 * RETURNS:
5395 * Allocate ATA host on success, NULL on failure.
5396 *
5397 * LOCKING:
5398 * Inherited from calling layer (may sleep).
5399 */
ata_host_alloc(struct device * dev,int max_ports)5400 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5401 {
5402 struct ata_host *host;
5403 size_t sz;
5404 int i;
5405 void *dr;
5406
5407 DPRINTK("ENTER\n");
5408
5409 /* alloc a container for our list of ATA ports (buses) */
5410 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5411 host = kzalloc(sz, GFP_KERNEL);
5412 if (!host)
5413 return NULL;
5414
5415 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5416 goto err_free;
5417
5418 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5419 if (!dr)
5420 goto err_out;
5421
5422 devres_add(dev, dr);
5423 dev_set_drvdata(dev, host);
5424
5425 spin_lock_init(&host->lock);
5426 mutex_init(&host->eh_mutex);
5427 host->dev = dev;
5428 host->n_ports = max_ports;
5429 kref_init(&host->kref);
5430
5431 /* allocate ports bound to this host */
5432 for (i = 0; i < max_ports; i++) {
5433 struct ata_port *ap;
5434
5435 ap = ata_port_alloc(host);
5436 if (!ap)
5437 goto err_out;
5438
5439 ap->port_no = i;
5440 host->ports[i] = ap;
5441 }
5442
5443 devres_remove_group(dev, NULL);
5444 return host;
5445
5446 err_out:
5447 devres_release_group(dev, NULL);
5448 err_free:
5449 kfree(host);
5450 return NULL;
5451 }
5452 EXPORT_SYMBOL_GPL(ata_host_alloc);
5453
5454 /**
5455 * ata_host_alloc_pinfo - alloc host and init with port_info array
5456 * @dev: generic device this host is associated with
5457 * @ppi: array of ATA port_info to initialize host with
5458 * @n_ports: number of ATA ports attached to this host
5459 *
5460 * Allocate ATA host and initialize with info from @ppi. If NULL
5461 * terminated, @ppi may contain fewer entries than @n_ports. The
5462 * last entry will be used for the remaining ports.
5463 *
5464 * RETURNS:
5465 * Allocate ATA host on success, NULL on failure.
5466 *
5467 * LOCKING:
5468 * Inherited from calling layer (may sleep).
5469 */
ata_host_alloc_pinfo(struct device * dev,const struct ata_port_info * const * ppi,int n_ports)5470 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5471 const struct ata_port_info * const * ppi,
5472 int n_ports)
5473 {
5474 const struct ata_port_info *pi;
5475 struct ata_host *host;
5476 int i, j;
5477
5478 host = ata_host_alloc(dev, n_ports);
5479 if (!host)
5480 return NULL;
5481
5482 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5483 struct ata_port *ap = host->ports[i];
5484
5485 if (ppi[j])
5486 pi = ppi[j++];
5487
5488 ap->pio_mask = pi->pio_mask;
5489 ap->mwdma_mask = pi->mwdma_mask;
5490 ap->udma_mask = pi->udma_mask;
5491 ap->flags |= pi->flags;
5492 ap->link.flags |= pi->link_flags;
5493 ap->ops = pi->port_ops;
5494
5495 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5496 host->ops = pi->port_ops;
5497 }
5498
5499 return host;
5500 }
5501 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5502
ata_host_stop(struct device * gendev,void * res)5503 static void ata_host_stop(struct device *gendev, void *res)
5504 {
5505 struct ata_host *host = dev_get_drvdata(gendev);
5506 int i;
5507
5508 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5509
5510 for (i = 0; i < host->n_ports; i++) {
5511 struct ata_port *ap = host->ports[i];
5512
5513 if (ap->ops->port_stop)
5514 ap->ops->port_stop(ap);
5515 }
5516
5517 if (host->ops->host_stop)
5518 host->ops->host_stop(host);
5519 }
5520
5521 /**
5522 * ata_finalize_port_ops - finalize ata_port_operations
5523 * @ops: ata_port_operations to finalize
5524 *
5525 * An ata_port_operations can inherit from another ops and that
5526 * ops can again inherit from another. This can go on as many
5527 * times as necessary as long as there is no loop in the
5528 * inheritance chain.
5529 *
5530 * Ops tables are finalized when the host is started. NULL or
5531 * unspecified entries are inherited from the closet ancestor
5532 * which has the method and the entry is populated with it.
5533 * After finalization, the ops table directly points to all the
5534 * methods and ->inherits is no longer necessary and cleared.
5535 *
5536 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5537 *
5538 * LOCKING:
5539 * None.
5540 */
ata_finalize_port_ops(struct ata_port_operations * ops)5541 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5542 {
5543 static DEFINE_SPINLOCK(lock);
5544 const struct ata_port_operations *cur;
5545 void **begin = (void **)ops;
5546 void **end = (void **)&ops->inherits;
5547 void **pp;
5548
5549 if (!ops || !ops->inherits)
5550 return;
5551
5552 spin_lock(&lock);
5553
5554 for (cur = ops->inherits; cur; cur = cur->inherits) {
5555 void **inherit = (void **)cur;
5556
5557 for (pp = begin; pp < end; pp++, inherit++)
5558 if (!*pp)
5559 *pp = *inherit;
5560 }
5561
5562 for (pp = begin; pp < end; pp++)
5563 if (IS_ERR(*pp))
5564 *pp = NULL;
5565
5566 ops->inherits = NULL;
5567
5568 spin_unlock(&lock);
5569 }
5570
5571 /**
5572 * ata_host_start - start and freeze ports of an ATA host
5573 * @host: ATA host to start ports for
5574 *
5575 * Start and then freeze ports of @host. Started status is
5576 * recorded in host->flags, so this function can be called
5577 * multiple times. Ports are guaranteed to get started only
5578 * once. If host->ops isn't initialized yet, its set to the
5579 * first non-dummy port ops.
5580 *
5581 * LOCKING:
5582 * Inherited from calling layer (may sleep).
5583 *
5584 * RETURNS:
5585 * 0 if all ports are started successfully, -errno otherwise.
5586 */
ata_host_start(struct ata_host * host)5587 int ata_host_start(struct ata_host *host)
5588 {
5589 int have_stop = 0;
5590 void *start_dr = NULL;
5591 int i, rc;
5592
5593 if (host->flags & ATA_HOST_STARTED)
5594 return 0;
5595
5596 ata_finalize_port_ops(host->ops);
5597
5598 for (i = 0; i < host->n_ports; i++) {
5599 struct ata_port *ap = host->ports[i];
5600
5601 ata_finalize_port_ops(ap->ops);
5602
5603 if (!host->ops && !ata_port_is_dummy(ap))
5604 host->ops = ap->ops;
5605
5606 if (ap->ops->port_stop)
5607 have_stop = 1;
5608 }
5609
5610 if (host->ops && host->ops->host_stop)
5611 have_stop = 1;
5612
5613 if (have_stop) {
5614 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5615 if (!start_dr)
5616 return -ENOMEM;
5617 }
5618
5619 for (i = 0; i < host->n_ports; i++) {
5620 struct ata_port *ap = host->ports[i];
5621
5622 if (ap->ops->port_start) {
5623 rc = ap->ops->port_start(ap);
5624 if (rc) {
5625 if (rc != -ENODEV)
5626 dev_err(host->dev,
5627 "failed to start port %d (errno=%d)\n",
5628 i, rc);
5629 goto err_out;
5630 }
5631 }
5632 ata_eh_freeze_port(ap);
5633 }
5634
5635 if (start_dr)
5636 devres_add(host->dev, start_dr);
5637 host->flags |= ATA_HOST_STARTED;
5638 return 0;
5639
5640 err_out:
5641 while (--i >= 0) {
5642 struct ata_port *ap = host->ports[i];
5643
5644 if (ap->ops->port_stop)
5645 ap->ops->port_stop(ap);
5646 }
5647 devres_free(start_dr);
5648 return rc;
5649 }
5650 EXPORT_SYMBOL_GPL(ata_host_start);
5651
5652 /**
5653 * ata_host_init - Initialize a host struct for sas (ipr, libsas)
5654 * @host: host to initialize
5655 * @dev: device host is attached to
5656 * @ops: port_ops
5657 *
5658 */
ata_host_init(struct ata_host * host,struct device * dev,struct ata_port_operations * ops)5659 void ata_host_init(struct ata_host *host, struct device *dev,
5660 struct ata_port_operations *ops)
5661 {
5662 spin_lock_init(&host->lock);
5663 mutex_init(&host->eh_mutex);
5664 host->n_tags = ATA_MAX_QUEUE;
5665 host->dev = dev;
5666 host->ops = ops;
5667 kref_init(&host->kref);
5668 }
5669 EXPORT_SYMBOL_GPL(ata_host_init);
5670
__ata_port_probe(struct ata_port * ap)5671 void __ata_port_probe(struct ata_port *ap)
5672 {
5673 struct ata_eh_info *ehi = &ap->link.eh_info;
5674 unsigned long flags;
5675
5676 /* kick EH for boot probing */
5677 spin_lock_irqsave(ap->lock, flags);
5678
5679 ehi->probe_mask |= ATA_ALL_DEVICES;
5680 ehi->action |= ATA_EH_RESET;
5681 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5682
5683 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5684 ap->pflags |= ATA_PFLAG_LOADING;
5685 ata_port_schedule_eh(ap);
5686
5687 spin_unlock_irqrestore(ap->lock, flags);
5688 }
5689
ata_port_probe(struct ata_port * ap)5690 int ata_port_probe(struct ata_port *ap)
5691 {
5692 int rc = 0;
5693
5694 if (ap->ops->error_handler) {
5695 __ata_port_probe(ap);
5696 ata_port_wait_eh(ap);
5697 } else {
5698 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5699 rc = ata_bus_probe(ap);
5700 DPRINTK("ata%u: bus probe end\n", ap->print_id);
5701 }
5702 return rc;
5703 }
5704
5705
async_port_probe(void * data,async_cookie_t cookie)5706 static void async_port_probe(void *data, async_cookie_t cookie)
5707 {
5708 struct ata_port *ap = data;
5709
5710 /*
5711 * If we're not allowed to scan this host in parallel,
5712 * we need to wait until all previous scans have completed
5713 * before going further.
5714 * Jeff Garzik says this is only within a controller, so we
5715 * don't need to wait for port 0, only for later ports.
5716 */
5717 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5718 async_synchronize_cookie(cookie);
5719
5720 (void)ata_port_probe(ap);
5721
5722 /* in order to keep device order, we need to synchronize at this point */
5723 async_synchronize_cookie(cookie);
5724
5725 ata_scsi_scan_host(ap, 1);
5726 }
5727
5728 /**
5729 * ata_host_register - register initialized ATA host
5730 * @host: ATA host to register
5731 * @sht: template for SCSI host
5732 *
5733 * Register initialized ATA host. @host is allocated using
5734 * ata_host_alloc() and fully initialized by LLD. This function
5735 * starts ports, registers @host with ATA and SCSI layers and
5736 * probe registered devices.
5737 *
5738 * LOCKING:
5739 * Inherited from calling layer (may sleep).
5740 *
5741 * RETURNS:
5742 * 0 on success, -errno otherwise.
5743 */
ata_host_register(struct ata_host * host,struct scsi_host_template * sht)5744 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5745 {
5746 int i, rc;
5747
5748 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5749
5750 /* host must have been started */
5751 if (!(host->flags & ATA_HOST_STARTED)) {
5752 dev_err(host->dev, "BUG: trying to register unstarted host\n");
5753 WARN_ON(1);
5754 return -EINVAL;
5755 }
5756
5757 /* Blow away unused ports. This happens when LLD can't
5758 * determine the exact number of ports to allocate at
5759 * allocation time.
5760 */
5761 for (i = host->n_ports; host->ports[i]; i++)
5762 kfree(host->ports[i]);
5763
5764 /* give ports names and add SCSI hosts */
5765 for (i = 0; i < host->n_ports; i++) {
5766 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
5767 host->ports[i]->local_port_no = i + 1;
5768 }
5769
5770 /* Create associated sysfs transport objects */
5771 for (i = 0; i < host->n_ports; i++) {
5772 rc = ata_tport_add(host->dev,host->ports[i]);
5773 if (rc) {
5774 goto err_tadd;
5775 }
5776 }
5777
5778 rc = ata_scsi_add_hosts(host, sht);
5779 if (rc)
5780 goto err_tadd;
5781
5782 /* set cable, sata_spd_limit and report */
5783 for (i = 0; i < host->n_ports; i++) {
5784 struct ata_port *ap = host->ports[i];
5785 unsigned long xfer_mask;
5786
5787 /* set SATA cable type if still unset */
5788 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5789 ap->cbl = ATA_CBL_SATA;
5790
5791 /* init sata_spd_limit to the current value */
5792 sata_link_init_spd(&ap->link);
5793 if (ap->slave_link)
5794 sata_link_init_spd(ap->slave_link);
5795
5796 /* print per-port info to dmesg */
5797 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5798 ap->udma_mask);
5799
5800 if (!ata_port_is_dummy(ap)) {
5801 ata_port_info(ap, "%cATA max %s %s\n",
5802 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5803 ata_mode_string(xfer_mask),
5804 ap->link.eh_info.desc);
5805 ata_ehi_clear_desc(&ap->link.eh_info);
5806 } else
5807 ata_port_info(ap, "DUMMY\n");
5808 }
5809
5810 /* perform each probe asynchronously */
5811 for (i = 0; i < host->n_ports; i++) {
5812 struct ata_port *ap = host->ports[i];
5813 ap->cookie = async_schedule(async_port_probe, ap);
5814 }
5815
5816 return 0;
5817
5818 err_tadd:
5819 while (--i >= 0) {
5820 ata_tport_delete(host->ports[i]);
5821 }
5822 return rc;
5823
5824 }
5825 EXPORT_SYMBOL_GPL(ata_host_register);
5826
5827 /**
5828 * ata_host_activate - start host, request IRQ and register it
5829 * @host: target ATA host
5830 * @irq: IRQ to request
5831 * @irq_handler: irq_handler used when requesting IRQ
5832 * @irq_flags: irq_flags used when requesting IRQ
5833 * @sht: scsi_host_template to use when registering the host
5834 *
5835 * After allocating an ATA host and initializing it, most libata
5836 * LLDs perform three steps to activate the host - start host,
5837 * request IRQ and register it. This helper takes necessary
5838 * arguments and performs the three steps in one go.
5839 *
5840 * An invalid IRQ skips the IRQ registration and expects the host to
5841 * have set polling mode on the port. In this case, @irq_handler
5842 * should be NULL.
5843 *
5844 * LOCKING:
5845 * Inherited from calling layer (may sleep).
5846 *
5847 * RETURNS:
5848 * 0 on success, -errno otherwise.
5849 */
ata_host_activate(struct ata_host * host,int irq,irq_handler_t irq_handler,unsigned long irq_flags,struct scsi_host_template * sht)5850 int ata_host_activate(struct ata_host *host, int irq,
5851 irq_handler_t irq_handler, unsigned long irq_flags,
5852 struct scsi_host_template *sht)
5853 {
5854 int i, rc;
5855 char *irq_desc;
5856
5857 rc = ata_host_start(host);
5858 if (rc)
5859 return rc;
5860
5861 /* Special case for polling mode */
5862 if (!irq) {
5863 WARN_ON(irq_handler);
5864 return ata_host_register(host, sht);
5865 }
5866
5867 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
5868 dev_driver_string(host->dev),
5869 dev_name(host->dev));
5870 if (!irq_desc)
5871 return -ENOMEM;
5872
5873 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5874 irq_desc, host);
5875 if (rc)
5876 return rc;
5877
5878 for (i = 0; i < host->n_ports; i++)
5879 ata_port_desc(host->ports[i], "irq %d", irq);
5880
5881 rc = ata_host_register(host, sht);
5882 /* if failed, just free the IRQ and leave ports alone */
5883 if (rc)
5884 devm_free_irq(host->dev, irq, host);
5885
5886 return rc;
5887 }
5888 EXPORT_SYMBOL_GPL(ata_host_activate);
5889
5890 /**
5891 * ata_port_detach - Detach ATA port in preparation of device removal
5892 * @ap: ATA port to be detached
5893 *
5894 * Detach all ATA devices and the associated SCSI devices of @ap;
5895 * then, remove the associated SCSI host. @ap is guaranteed to
5896 * be quiescent on return from this function.
5897 *
5898 * LOCKING:
5899 * Kernel thread context (may sleep).
5900 */
ata_port_detach(struct ata_port * ap)5901 static void ata_port_detach(struct ata_port *ap)
5902 {
5903 unsigned long flags;
5904 struct ata_link *link;
5905 struct ata_device *dev;
5906
5907 if (!ap->ops->error_handler)
5908 goto skip_eh;
5909
5910 /* tell EH we're leaving & flush EH */
5911 spin_lock_irqsave(ap->lock, flags);
5912 ap->pflags |= ATA_PFLAG_UNLOADING;
5913 ata_port_schedule_eh(ap);
5914 spin_unlock_irqrestore(ap->lock, flags);
5915
5916 /* wait till EH commits suicide */
5917 ata_port_wait_eh(ap);
5918
5919 /* it better be dead now */
5920 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
5921
5922 cancel_delayed_work_sync(&ap->hotplug_task);
5923
5924 skip_eh:
5925 /* clean up zpodd on port removal */
5926 ata_for_each_link(link, ap, HOST_FIRST) {
5927 ata_for_each_dev(dev, link, ALL) {
5928 if (zpodd_dev_enabled(dev))
5929 zpodd_exit(dev);
5930 }
5931 }
5932 if (ap->pmp_link) {
5933 int i;
5934 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
5935 ata_tlink_delete(&ap->pmp_link[i]);
5936 }
5937 /* remove the associated SCSI host */
5938 scsi_remove_host(ap->scsi_host);
5939 ata_tport_delete(ap);
5940 }
5941
5942 /**
5943 * ata_host_detach - Detach all ports of an ATA host
5944 * @host: Host to detach
5945 *
5946 * Detach all ports of @host.
5947 *
5948 * LOCKING:
5949 * Kernel thread context (may sleep).
5950 */
ata_host_detach(struct ata_host * host)5951 void ata_host_detach(struct ata_host *host)
5952 {
5953 int i;
5954
5955 for (i = 0; i < host->n_ports; i++) {
5956 /* Ensure ata_port probe has completed */
5957 async_synchronize_cookie(host->ports[i]->cookie + 1);
5958 ata_port_detach(host->ports[i]);
5959 }
5960
5961 /* the host is dead now, dissociate ACPI */
5962 ata_acpi_dissociate(host);
5963 }
5964 EXPORT_SYMBOL_GPL(ata_host_detach);
5965
5966 #ifdef CONFIG_PCI
5967
5968 /**
5969 * ata_pci_remove_one - PCI layer callback for device removal
5970 * @pdev: PCI device that was removed
5971 *
5972 * PCI layer indicates to libata via this hook that hot-unplug or
5973 * module unload event has occurred. Detach all ports. Resource
5974 * release is handled via devres.
5975 *
5976 * LOCKING:
5977 * Inherited from PCI layer (may sleep).
5978 */
ata_pci_remove_one(struct pci_dev * pdev)5979 void ata_pci_remove_one(struct pci_dev *pdev)
5980 {
5981 struct ata_host *host = pci_get_drvdata(pdev);
5982
5983 ata_host_detach(host);
5984 }
5985 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5986
ata_pci_shutdown_one(struct pci_dev * pdev)5987 void ata_pci_shutdown_one(struct pci_dev *pdev)
5988 {
5989 struct ata_host *host = pci_get_drvdata(pdev);
5990 int i;
5991
5992 for (i = 0; i < host->n_ports; i++) {
5993 struct ata_port *ap = host->ports[i];
5994
5995 ap->pflags |= ATA_PFLAG_FROZEN;
5996
5997 /* Disable port interrupts */
5998 if (ap->ops->freeze)
5999 ap->ops->freeze(ap);
6000
6001 /* Stop the port DMA engines */
6002 if (ap->ops->port_stop)
6003 ap->ops->port_stop(ap);
6004 }
6005 }
6006 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6007
6008 /* move to PCI subsystem */
pci_test_config_bits(struct pci_dev * pdev,const struct pci_bits * bits)6009 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6010 {
6011 unsigned long tmp = 0;
6012
6013 switch (bits->width) {
6014 case 1: {
6015 u8 tmp8 = 0;
6016 pci_read_config_byte(pdev, bits->reg, &tmp8);
6017 tmp = tmp8;
6018 break;
6019 }
6020 case 2: {
6021 u16 tmp16 = 0;
6022 pci_read_config_word(pdev, bits->reg, &tmp16);
6023 tmp = tmp16;
6024 break;
6025 }
6026 case 4: {
6027 u32 tmp32 = 0;
6028 pci_read_config_dword(pdev, bits->reg, &tmp32);
6029 tmp = tmp32;
6030 break;
6031 }
6032
6033 default:
6034 return -EINVAL;
6035 }
6036
6037 tmp &= bits->mask;
6038
6039 return (tmp == bits->val) ? 1 : 0;
6040 }
6041 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6042
6043 #ifdef CONFIG_PM
ata_pci_device_do_suspend(struct pci_dev * pdev,pm_message_t mesg)6044 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6045 {
6046 pci_save_state(pdev);
6047 pci_disable_device(pdev);
6048
6049 if (mesg.event & PM_EVENT_SLEEP)
6050 pci_set_power_state(pdev, PCI_D3hot);
6051 }
6052 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6053
ata_pci_device_do_resume(struct pci_dev * pdev)6054 int ata_pci_device_do_resume(struct pci_dev *pdev)
6055 {
6056 int rc;
6057
6058 pci_set_power_state(pdev, PCI_D0);
6059 pci_restore_state(pdev);
6060
6061 rc = pcim_enable_device(pdev);
6062 if (rc) {
6063 dev_err(&pdev->dev,
6064 "failed to enable device after resume (%d)\n", rc);
6065 return rc;
6066 }
6067
6068 pci_set_master(pdev);
6069 return 0;
6070 }
6071 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6072
ata_pci_device_suspend(struct pci_dev * pdev,pm_message_t mesg)6073 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6074 {
6075 struct ata_host *host = pci_get_drvdata(pdev);
6076 int rc = 0;
6077
6078 rc = ata_host_suspend(host, mesg);
6079 if (rc)
6080 return rc;
6081
6082 ata_pci_device_do_suspend(pdev, mesg);
6083
6084 return 0;
6085 }
6086 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6087
ata_pci_device_resume(struct pci_dev * pdev)6088 int ata_pci_device_resume(struct pci_dev *pdev)
6089 {
6090 struct ata_host *host = pci_get_drvdata(pdev);
6091 int rc;
6092
6093 rc = ata_pci_device_do_resume(pdev);
6094 if (rc == 0)
6095 ata_host_resume(host);
6096 return rc;
6097 }
6098 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6099 #endif /* CONFIG_PM */
6100 #endif /* CONFIG_PCI */
6101
6102 /**
6103 * ata_platform_remove_one - Platform layer callback for device removal
6104 * @pdev: Platform device that was removed
6105 *
6106 * Platform layer indicates to libata via this hook that hot-unplug or
6107 * module unload event has occurred. Detach all ports. Resource
6108 * release is handled via devres.
6109 *
6110 * LOCKING:
6111 * Inherited from platform layer (may sleep).
6112 */
ata_platform_remove_one(struct platform_device * pdev)6113 int ata_platform_remove_one(struct platform_device *pdev)
6114 {
6115 struct ata_host *host = platform_get_drvdata(pdev);
6116
6117 ata_host_detach(host);
6118
6119 return 0;
6120 }
6121 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6122
6123 #ifdef CONFIG_ATA_FORCE
ata_parse_force_one(char ** cur,struct ata_force_ent * force_ent,const char ** reason)6124 static int __init ata_parse_force_one(char **cur,
6125 struct ata_force_ent *force_ent,
6126 const char **reason)
6127 {
6128 static const struct ata_force_param force_tbl[] __initconst = {
6129 { "40c", .cbl = ATA_CBL_PATA40 },
6130 { "80c", .cbl = ATA_CBL_PATA80 },
6131 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6132 { "unk", .cbl = ATA_CBL_PATA_UNK },
6133 { "ign", .cbl = ATA_CBL_PATA_IGN },
6134 { "sata", .cbl = ATA_CBL_SATA },
6135 { "1.5Gbps", .spd_limit = 1 },
6136 { "3.0Gbps", .spd_limit = 2 },
6137 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6138 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6139 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM },
6140 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM },
6141 { "noncqati", .horkage_on = ATA_HORKAGE_NO_NCQ_ON_ATI },
6142 { "ncqati", .horkage_off = ATA_HORKAGE_NO_NCQ_ON_ATI },
6143 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6144 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6145 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6146 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6147 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6148 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6149 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6150 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6151 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6152 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6153 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6154 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6155 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6156 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6157 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6158 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6159 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6160 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6161 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6162 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6163 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6164 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6165 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6166 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6167 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6168 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6169 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6170 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6171 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6172 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6173 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6174 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6175 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6176 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6177 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6178 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6179 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6180 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6181 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
6182 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR },
6183 { "disable", .horkage_on = ATA_HORKAGE_DISABLE },
6184 };
6185 char *start = *cur, *p = *cur;
6186 char *id, *val, *endp;
6187 const struct ata_force_param *match_fp = NULL;
6188 int nr_matches = 0, i;
6189
6190 /* find where this param ends and update *cur */
6191 while (*p != '\0' && *p != ',')
6192 p++;
6193
6194 if (*p == '\0')
6195 *cur = p;
6196 else
6197 *cur = p + 1;
6198
6199 *p = '\0';
6200
6201 /* parse */
6202 p = strchr(start, ':');
6203 if (!p) {
6204 val = strstrip(start);
6205 goto parse_val;
6206 }
6207 *p = '\0';
6208
6209 id = strstrip(start);
6210 val = strstrip(p + 1);
6211
6212 /* parse id */
6213 p = strchr(id, '.');
6214 if (p) {
6215 *p++ = '\0';
6216 force_ent->device = simple_strtoul(p, &endp, 10);
6217 if (p == endp || *endp != '\0') {
6218 *reason = "invalid device";
6219 return -EINVAL;
6220 }
6221 }
6222
6223 force_ent->port = simple_strtoul(id, &endp, 10);
6224 if (id == endp || *endp != '\0') {
6225 *reason = "invalid port/link";
6226 return -EINVAL;
6227 }
6228
6229 parse_val:
6230 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6231 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6232 const struct ata_force_param *fp = &force_tbl[i];
6233
6234 if (strncasecmp(val, fp->name, strlen(val)))
6235 continue;
6236
6237 nr_matches++;
6238 match_fp = fp;
6239
6240 if (strcasecmp(val, fp->name) == 0) {
6241 nr_matches = 1;
6242 break;
6243 }
6244 }
6245
6246 if (!nr_matches) {
6247 *reason = "unknown value";
6248 return -EINVAL;
6249 }
6250 if (nr_matches > 1) {
6251 *reason = "ambiguous value";
6252 return -EINVAL;
6253 }
6254
6255 force_ent->param = *match_fp;
6256
6257 return 0;
6258 }
6259
ata_parse_force_param(void)6260 static void __init ata_parse_force_param(void)
6261 {
6262 int idx = 0, size = 1;
6263 int last_port = -1, last_device = -1;
6264 char *p, *cur, *next;
6265
6266 /* calculate maximum number of params and allocate force_tbl */
6267 for (p = ata_force_param_buf; *p; p++)
6268 if (*p == ',')
6269 size++;
6270
6271 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6272 if (!ata_force_tbl) {
6273 printk(KERN_WARNING "ata: failed to extend force table, "
6274 "libata.force ignored\n");
6275 return;
6276 }
6277
6278 /* parse and populate the table */
6279 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6280 const char *reason = "";
6281 struct ata_force_ent te = { .port = -1, .device = -1 };
6282
6283 next = cur;
6284 if (ata_parse_force_one(&next, &te, &reason)) {
6285 printk(KERN_WARNING "ata: failed to parse force "
6286 "parameter \"%s\" (%s)\n",
6287 cur, reason);
6288 continue;
6289 }
6290
6291 if (te.port == -1) {
6292 te.port = last_port;
6293 te.device = last_device;
6294 }
6295
6296 ata_force_tbl[idx++] = te;
6297
6298 last_port = te.port;
6299 last_device = te.device;
6300 }
6301
6302 ata_force_tbl_size = idx;
6303 }
6304
ata_free_force_param(void)6305 static void ata_free_force_param(void)
6306 {
6307 kfree(ata_force_tbl);
6308 }
6309 #else
ata_parse_force_param(void)6310 static inline void ata_parse_force_param(void) { }
ata_free_force_param(void)6311 static inline void ata_free_force_param(void) { }
6312 #endif
6313
ata_init(void)6314 static int __init ata_init(void)
6315 {
6316 int rc;
6317
6318 ata_parse_force_param();
6319
6320 rc = ata_sff_init();
6321 if (rc) {
6322 ata_free_force_param();
6323 return rc;
6324 }
6325
6326 libata_transport_init();
6327 ata_scsi_transport_template = ata_attach_transport();
6328 if (!ata_scsi_transport_template) {
6329 ata_sff_exit();
6330 rc = -ENOMEM;
6331 goto err_out;
6332 }
6333
6334 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6335 return 0;
6336
6337 err_out:
6338 return rc;
6339 }
6340
ata_exit(void)6341 static void __exit ata_exit(void)
6342 {
6343 ata_release_transport(ata_scsi_transport_template);
6344 libata_transport_exit();
6345 ata_sff_exit();
6346 ata_free_force_param();
6347 }
6348
6349 subsys_initcall(ata_init);
6350 module_exit(ata_exit);
6351
6352 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6353
ata_ratelimit(void)6354 int ata_ratelimit(void)
6355 {
6356 return __ratelimit(&ratelimit);
6357 }
6358 EXPORT_SYMBOL_GPL(ata_ratelimit);
6359
6360 /**
6361 * ata_msleep - ATA EH owner aware msleep
6362 * @ap: ATA port to attribute the sleep to
6363 * @msecs: duration to sleep in milliseconds
6364 *
6365 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6366 * ownership is released before going to sleep and reacquired
6367 * after the sleep is complete. IOW, other ports sharing the
6368 * @ap->host will be allowed to own the EH while this task is
6369 * sleeping.
6370 *
6371 * LOCKING:
6372 * Might sleep.
6373 */
ata_msleep(struct ata_port * ap,unsigned int msecs)6374 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6375 {
6376 bool owns_eh = ap && ap->host->eh_owner == current;
6377
6378 if (owns_eh)
6379 ata_eh_release(ap);
6380
6381 if (msecs < 20) {
6382 unsigned long usecs = msecs * USEC_PER_MSEC;
6383 usleep_range(usecs, usecs + 50);
6384 } else {
6385 msleep(msecs);
6386 }
6387
6388 if (owns_eh)
6389 ata_eh_acquire(ap);
6390 }
6391 EXPORT_SYMBOL_GPL(ata_msleep);
6392
6393 /**
6394 * ata_wait_register - wait until register value changes
6395 * @ap: ATA port to wait register for, can be NULL
6396 * @reg: IO-mapped register
6397 * @mask: Mask to apply to read register value
6398 * @val: Wait condition
6399 * @interval: polling interval in milliseconds
6400 * @timeout: timeout in milliseconds
6401 *
6402 * Waiting for some bits of register to change is a common
6403 * operation for ATA controllers. This function reads 32bit LE
6404 * IO-mapped register @reg and tests for the following condition.
6405 *
6406 * (*@reg & mask) != val
6407 *
6408 * If the condition is met, it returns; otherwise, the process is
6409 * repeated after @interval_msec until timeout.
6410 *
6411 * LOCKING:
6412 * Kernel thread context (may sleep)
6413 *
6414 * RETURNS:
6415 * The final register value.
6416 */
ata_wait_register(struct ata_port * ap,void __iomem * reg,u32 mask,u32 val,unsigned long interval,unsigned long timeout)6417 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6418 unsigned long interval, unsigned long timeout)
6419 {
6420 unsigned long deadline;
6421 u32 tmp;
6422
6423 tmp = ioread32(reg);
6424
6425 /* Calculate timeout _after_ the first read to make sure
6426 * preceding writes reach the controller before starting to
6427 * eat away the timeout.
6428 */
6429 deadline = ata_deadline(jiffies, timeout);
6430
6431 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6432 ata_msleep(ap, interval);
6433 tmp = ioread32(reg);
6434 }
6435
6436 return tmp;
6437 }
6438 EXPORT_SYMBOL_GPL(ata_wait_register);
6439
6440 /*
6441 * Dummy port_ops
6442 */
ata_dummy_qc_issue(struct ata_queued_cmd * qc)6443 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6444 {
6445 return AC_ERR_SYSTEM;
6446 }
6447
ata_dummy_error_handler(struct ata_port * ap)6448 static void ata_dummy_error_handler(struct ata_port *ap)
6449 {
6450 /* truly dummy */
6451 }
6452
6453 struct ata_port_operations ata_dummy_port_ops = {
6454 .qc_prep = ata_noop_qc_prep,
6455 .qc_issue = ata_dummy_qc_issue,
6456 .error_handler = ata_dummy_error_handler,
6457 .sched_eh = ata_std_sched_eh,
6458 .end_eh = ata_std_end_eh,
6459 };
6460 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6461
6462 const struct ata_port_info ata_dummy_port_info = {
6463 .port_ops = &ata_dummy_port_ops,
6464 };
6465 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6466
6467 /*
6468 * Utility print functions
6469 */
ata_port_printk(const struct ata_port * ap,const char * level,const char * fmt,...)6470 void ata_port_printk(const struct ata_port *ap, const char *level,
6471 const char *fmt, ...)
6472 {
6473 struct va_format vaf;
6474 va_list args;
6475
6476 va_start(args, fmt);
6477
6478 vaf.fmt = fmt;
6479 vaf.va = &args;
6480
6481 printk("%sata%u: %pV", level, ap->print_id, &vaf);
6482
6483 va_end(args);
6484 }
6485 EXPORT_SYMBOL(ata_port_printk);
6486
ata_link_printk(const struct ata_link * link,const char * level,const char * fmt,...)6487 void ata_link_printk(const struct ata_link *link, const char *level,
6488 const char *fmt, ...)
6489 {
6490 struct va_format vaf;
6491 va_list args;
6492
6493 va_start(args, fmt);
6494
6495 vaf.fmt = fmt;
6496 vaf.va = &args;
6497
6498 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6499 printk("%sata%u.%02u: %pV",
6500 level, link->ap->print_id, link->pmp, &vaf);
6501 else
6502 printk("%sata%u: %pV",
6503 level, link->ap->print_id, &vaf);
6504
6505 va_end(args);
6506 }
6507 EXPORT_SYMBOL(ata_link_printk);
6508
ata_dev_printk(const struct ata_device * dev,const char * level,const char * fmt,...)6509 void ata_dev_printk(const struct ata_device *dev, const char *level,
6510 const char *fmt, ...)
6511 {
6512 struct va_format vaf;
6513 va_list args;
6514
6515 va_start(args, fmt);
6516
6517 vaf.fmt = fmt;
6518 vaf.va = &args;
6519
6520 printk("%sata%u.%02u: %pV",
6521 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6522 &vaf);
6523
6524 va_end(args);
6525 }
6526 EXPORT_SYMBOL(ata_dev_printk);
6527
ata_print_version(const struct device * dev,const char * version)6528 void ata_print_version(const struct device *dev, const char *version)
6529 {
6530 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6531 }
6532 EXPORT_SYMBOL(ata_print_version);
6533