1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* audit.c -- Auditing support
3 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
4 * System-call specific features have moved to auditsc.c
5 *
6 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
7 * All Rights Reserved.
8 *
9 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
10 *
11 * Goals: 1) Integrate fully with Security Modules.
12 * 2) Minimal run-time overhead:
13 * a) Minimal when syscall auditing is disabled (audit_enable=0).
14 * b) Small when syscall auditing is enabled and no audit record
15 * is generated (defer as much work as possible to record
16 * generation time):
17 * i) context is allocated,
18 * ii) names from getname are stored without a copy, and
19 * iii) inode information stored from path_lookup.
20 * 3) Ability to disable syscall auditing at boot time (audit=0).
21 * 4) Usable by other parts of the kernel (if audit_log* is called,
22 * then a syscall record will be generated automatically for the
23 * current syscall).
24 * 5) Netlink interface to user-space.
25 * 6) Support low-overhead kernel-based filtering to minimize the
26 * information that must be passed to user-space.
27 *
28 * Audit userspace, documentation, tests, and bug/issue trackers:
29 * https://github.com/linux-audit
30 */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/file.h>
35 #include <linux/init.h>
36 #include <linux/types.h>
37 #include <linux/atomic.h>
38 #include <linux/mm.h>
39 #include <linux/export.h>
40 #include <linux/slab.h>
41 #include <linux/err.h>
42 #include <linux/kthread.h>
43 #include <linux/kernel.h>
44 #include <linux/syscalls.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/mutex.h>
48 #include <linux/gfp.h>
49 #include <linux/pid.h>
50
51 #include <linux/audit.h>
52
53 #include <net/sock.h>
54 #include <net/netlink.h>
55 #include <linux/skbuff.h>
56 #ifdef CONFIG_SECURITY
57 #include <linux/security.h>
58 #endif
59 #include <linux/freezer.h>
60 #include <linux/pid_namespace.h>
61 #include <net/netns/generic.h>
62
63 #include "audit.h"
64
65 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
66 * (Initialization happens after skb_init is called.) */
67 #define AUDIT_DISABLED -1
68 #define AUDIT_UNINITIALIZED 0
69 #define AUDIT_INITIALIZED 1
70 static int audit_initialized;
71
72 u32 audit_enabled = AUDIT_OFF;
73 bool audit_ever_enabled = !!AUDIT_OFF;
74
75 EXPORT_SYMBOL_GPL(audit_enabled);
76
77 /* Default state when kernel boots without any parameters. */
78 static u32 audit_default = AUDIT_OFF;
79
80 /* If auditing cannot proceed, audit_failure selects what happens. */
81 static u32 audit_failure = AUDIT_FAIL_PRINTK;
82
83 /* private audit network namespace index */
84 static unsigned int audit_net_id;
85
86 /**
87 * struct audit_net - audit private network namespace data
88 * @sk: communication socket
89 */
90 struct audit_net {
91 struct sock *sk;
92 };
93
94 /**
95 * struct auditd_connection - kernel/auditd connection state
96 * @pid: auditd PID
97 * @portid: netlink portid
98 * @net: the associated network namespace
99 * @rcu: RCU head
100 *
101 * Description:
102 * This struct is RCU protected; you must either hold the RCU lock for reading
103 * or the associated spinlock for writing.
104 */
105 struct auditd_connection {
106 struct pid *pid;
107 u32 portid;
108 struct net *net;
109 struct rcu_head rcu;
110 };
111 static struct auditd_connection __rcu *auditd_conn;
112 static DEFINE_SPINLOCK(auditd_conn_lock);
113
114 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
115 * to that number per second. This prevents DoS attacks, but results in
116 * audit records being dropped. */
117 static u32 audit_rate_limit;
118
119 /* Number of outstanding audit_buffers allowed.
120 * When set to zero, this means unlimited. */
121 static u32 audit_backlog_limit = 64;
122 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
123 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
124
125 /* The identity of the user shutting down the audit system. */
126 static kuid_t audit_sig_uid = INVALID_UID;
127 static pid_t audit_sig_pid = -1;
128 static u32 audit_sig_sid;
129
130 /* Records can be lost in several ways:
131 0) [suppressed in audit_alloc]
132 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
133 2) out of memory in audit_log_move [alloc_skb]
134 3) suppressed due to audit_rate_limit
135 4) suppressed due to audit_backlog_limit
136 */
137 static atomic_t audit_lost = ATOMIC_INIT(0);
138
139 /* Monotonically increasing sum of time the kernel has spent
140 * waiting while the backlog limit is exceeded.
141 */
142 static atomic_t audit_backlog_wait_time_actual = ATOMIC_INIT(0);
143
144 /* Hash for inode-based rules */
145 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
146
147 static struct kmem_cache *audit_buffer_cache;
148
149 /* queue msgs to send via kauditd_task */
150 static struct sk_buff_head audit_queue;
151 /* queue msgs due to temporary unicast send problems */
152 static struct sk_buff_head audit_retry_queue;
153 /* queue msgs waiting for new auditd connection */
154 static struct sk_buff_head audit_hold_queue;
155
156 /* queue servicing thread */
157 static struct task_struct *kauditd_task;
158 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
159
160 /* waitqueue for callers who are blocked on the audit backlog */
161 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
162
163 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
164 .mask = -1,
165 .features = 0,
166 .lock = 0,};
167
168 static char *audit_feature_names[2] = {
169 "only_unset_loginuid",
170 "loginuid_immutable",
171 };
172
173 /**
174 * struct audit_ctl_mutex - serialize requests from userspace
175 * @lock: the mutex used for locking
176 * @owner: the task which owns the lock
177 *
178 * Description:
179 * This is the lock struct used to ensure we only process userspace requests
180 * in an orderly fashion. We can't simply use a mutex/lock here because we
181 * need to track lock ownership so we don't end up blocking the lock owner in
182 * audit_log_start() or similar.
183 */
184 static struct audit_ctl_mutex {
185 struct mutex lock;
186 void *owner;
187 } audit_cmd_mutex;
188
189 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
190 * audit records. Since printk uses a 1024 byte buffer, this buffer
191 * should be at least that large. */
192 #define AUDIT_BUFSIZ 1024
193
194 /* The audit_buffer is used when formatting an audit record. The caller
195 * locks briefly to get the record off the freelist or to allocate the
196 * buffer, and locks briefly to send the buffer to the netlink layer or
197 * to place it on a transmit queue. Multiple audit_buffers can be in
198 * use simultaneously. */
199 struct audit_buffer {
200 struct sk_buff *skb; /* formatted skb ready to send */
201 struct audit_context *ctx; /* NULL or associated context */
202 gfp_t gfp_mask;
203 };
204
205 struct audit_reply {
206 __u32 portid;
207 struct net *net;
208 struct sk_buff *skb;
209 };
210
211 /**
212 * auditd_test_task - Check to see if a given task is an audit daemon
213 * @task: the task to check
214 *
215 * Description:
216 * Return 1 if the task is a registered audit daemon, 0 otherwise.
217 */
auditd_test_task(struct task_struct * task)218 int auditd_test_task(struct task_struct *task)
219 {
220 int rc;
221 struct auditd_connection *ac;
222
223 rcu_read_lock();
224 ac = rcu_dereference(auditd_conn);
225 rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
226 rcu_read_unlock();
227
228 return rc;
229 }
230
231 /**
232 * audit_ctl_lock - Take the audit control lock
233 */
audit_ctl_lock(void)234 void audit_ctl_lock(void)
235 {
236 mutex_lock(&audit_cmd_mutex.lock);
237 audit_cmd_mutex.owner = current;
238 }
239
240 /**
241 * audit_ctl_unlock - Drop the audit control lock
242 */
audit_ctl_unlock(void)243 void audit_ctl_unlock(void)
244 {
245 audit_cmd_mutex.owner = NULL;
246 mutex_unlock(&audit_cmd_mutex.lock);
247 }
248
249 /**
250 * audit_ctl_owner_current - Test to see if the current task owns the lock
251 *
252 * Description:
253 * Return true if the current task owns the audit control lock, false if it
254 * doesn't own the lock.
255 */
audit_ctl_owner_current(void)256 static bool audit_ctl_owner_current(void)
257 {
258 return (current == audit_cmd_mutex.owner);
259 }
260
261 /**
262 * auditd_pid_vnr - Return the auditd PID relative to the namespace
263 *
264 * Description:
265 * Returns the PID in relation to the namespace, 0 on failure.
266 */
auditd_pid_vnr(void)267 static pid_t auditd_pid_vnr(void)
268 {
269 pid_t pid;
270 const struct auditd_connection *ac;
271
272 rcu_read_lock();
273 ac = rcu_dereference(auditd_conn);
274 if (!ac || !ac->pid)
275 pid = 0;
276 else
277 pid = pid_vnr(ac->pid);
278 rcu_read_unlock();
279
280 return pid;
281 }
282
283 /**
284 * audit_get_sk - Return the audit socket for the given network namespace
285 * @net: the destination network namespace
286 *
287 * Description:
288 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure
289 * that a reference is held for the network namespace while the sock is in use.
290 */
audit_get_sk(const struct net * net)291 static struct sock *audit_get_sk(const struct net *net)
292 {
293 struct audit_net *aunet;
294
295 if (!net)
296 return NULL;
297
298 aunet = net_generic(net, audit_net_id);
299 return aunet->sk;
300 }
301
audit_panic(const char * message)302 void audit_panic(const char *message)
303 {
304 switch (audit_failure) {
305 case AUDIT_FAIL_SILENT:
306 break;
307 case AUDIT_FAIL_PRINTK:
308 if (printk_ratelimit())
309 pr_err("%s\n", message);
310 break;
311 case AUDIT_FAIL_PANIC:
312 panic("audit: %s\n", message);
313 break;
314 }
315 }
316
audit_rate_check(void)317 static inline int audit_rate_check(void)
318 {
319 static unsigned long last_check = 0;
320 static int messages = 0;
321 static DEFINE_SPINLOCK(lock);
322 unsigned long flags;
323 unsigned long now;
324 unsigned long elapsed;
325 int retval = 0;
326
327 if (!audit_rate_limit) return 1;
328
329 spin_lock_irqsave(&lock, flags);
330 if (++messages < audit_rate_limit) {
331 retval = 1;
332 } else {
333 now = jiffies;
334 elapsed = now - last_check;
335 if (elapsed > HZ) {
336 last_check = now;
337 messages = 0;
338 retval = 1;
339 }
340 }
341 spin_unlock_irqrestore(&lock, flags);
342
343 return retval;
344 }
345
346 /**
347 * audit_log_lost - conditionally log lost audit message event
348 * @message: the message stating reason for lost audit message
349 *
350 * Emit at least 1 message per second, even if audit_rate_check is
351 * throttling.
352 * Always increment the lost messages counter.
353 */
audit_log_lost(const char * message)354 void audit_log_lost(const char *message)
355 {
356 static unsigned long last_msg = 0;
357 static DEFINE_SPINLOCK(lock);
358 unsigned long flags;
359 unsigned long now;
360 int print;
361
362 atomic_inc(&audit_lost);
363
364 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
365
366 if (!print) {
367 spin_lock_irqsave(&lock, flags);
368 now = jiffies;
369 if (now - last_msg > HZ) {
370 print = 1;
371 last_msg = now;
372 }
373 spin_unlock_irqrestore(&lock, flags);
374 }
375
376 if (print) {
377 if (printk_ratelimit())
378 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
379 atomic_read(&audit_lost),
380 audit_rate_limit,
381 audit_backlog_limit);
382 audit_panic(message);
383 }
384 }
385
audit_log_config_change(char * function_name,u32 new,u32 old,int allow_changes)386 static int audit_log_config_change(char *function_name, u32 new, u32 old,
387 int allow_changes)
388 {
389 struct audit_buffer *ab;
390 int rc = 0;
391
392 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE);
393 if (unlikely(!ab))
394 return rc;
395 audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old);
396 audit_log_session_info(ab);
397 rc = audit_log_task_context(ab);
398 if (rc)
399 allow_changes = 0; /* Something weird, deny request */
400 audit_log_format(ab, " res=%d", allow_changes);
401 audit_log_end(ab);
402 return rc;
403 }
404
audit_do_config_change(char * function_name,u32 * to_change,u32 new)405 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
406 {
407 int allow_changes, rc = 0;
408 u32 old = *to_change;
409
410 /* check if we are locked */
411 if (audit_enabled == AUDIT_LOCKED)
412 allow_changes = 0;
413 else
414 allow_changes = 1;
415
416 if (audit_enabled != AUDIT_OFF) {
417 rc = audit_log_config_change(function_name, new, old, allow_changes);
418 if (rc)
419 allow_changes = 0;
420 }
421
422 /* If we are allowed, make the change */
423 if (allow_changes == 1)
424 *to_change = new;
425 /* Not allowed, update reason */
426 else if (rc == 0)
427 rc = -EPERM;
428 return rc;
429 }
430
audit_set_rate_limit(u32 limit)431 static int audit_set_rate_limit(u32 limit)
432 {
433 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
434 }
435
audit_set_backlog_limit(u32 limit)436 static int audit_set_backlog_limit(u32 limit)
437 {
438 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
439 }
440
audit_set_backlog_wait_time(u32 timeout)441 static int audit_set_backlog_wait_time(u32 timeout)
442 {
443 return audit_do_config_change("audit_backlog_wait_time",
444 &audit_backlog_wait_time, timeout);
445 }
446
audit_set_enabled(u32 state)447 static int audit_set_enabled(u32 state)
448 {
449 int rc;
450 if (state > AUDIT_LOCKED)
451 return -EINVAL;
452
453 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
454 if (!rc)
455 audit_ever_enabled |= !!state;
456
457 return rc;
458 }
459
audit_set_failure(u32 state)460 static int audit_set_failure(u32 state)
461 {
462 if (state != AUDIT_FAIL_SILENT
463 && state != AUDIT_FAIL_PRINTK
464 && state != AUDIT_FAIL_PANIC)
465 return -EINVAL;
466
467 return audit_do_config_change("audit_failure", &audit_failure, state);
468 }
469
470 /**
471 * auditd_conn_free - RCU helper to release an auditd connection struct
472 * @rcu: RCU head
473 *
474 * Description:
475 * Drop any references inside the auditd connection tracking struct and free
476 * the memory.
477 */
auditd_conn_free(struct rcu_head * rcu)478 static void auditd_conn_free(struct rcu_head *rcu)
479 {
480 struct auditd_connection *ac;
481
482 ac = container_of(rcu, struct auditd_connection, rcu);
483 put_pid(ac->pid);
484 put_net(ac->net);
485 kfree(ac);
486 }
487
488 /**
489 * auditd_set - Set/Reset the auditd connection state
490 * @pid: auditd PID
491 * @portid: auditd netlink portid
492 * @net: auditd network namespace pointer
493 *
494 * Description:
495 * This function will obtain and drop network namespace references as
496 * necessary. Returns zero on success, negative values on failure.
497 */
auditd_set(struct pid * pid,u32 portid,struct net * net)498 static int auditd_set(struct pid *pid, u32 portid, struct net *net)
499 {
500 unsigned long flags;
501 struct auditd_connection *ac_old, *ac_new;
502
503 if (!pid || !net)
504 return -EINVAL;
505
506 ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
507 if (!ac_new)
508 return -ENOMEM;
509 ac_new->pid = get_pid(pid);
510 ac_new->portid = portid;
511 ac_new->net = get_net(net);
512
513 spin_lock_irqsave(&auditd_conn_lock, flags);
514 ac_old = rcu_dereference_protected(auditd_conn,
515 lockdep_is_held(&auditd_conn_lock));
516 rcu_assign_pointer(auditd_conn, ac_new);
517 spin_unlock_irqrestore(&auditd_conn_lock, flags);
518
519 if (ac_old)
520 call_rcu(&ac_old->rcu, auditd_conn_free);
521
522 return 0;
523 }
524
525 /**
526 * kauditd_print_skb - Print the audit record to the ring buffer
527 * @skb: audit record
528 *
529 * Whatever the reason, this packet may not make it to the auditd connection
530 * so write it via printk so the information isn't completely lost.
531 */
kauditd_printk_skb(struct sk_buff * skb)532 static void kauditd_printk_skb(struct sk_buff *skb)
533 {
534 struct nlmsghdr *nlh = nlmsg_hdr(skb);
535 char *data = nlmsg_data(nlh);
536
537 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
538 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
539 }
540
541 /**
542 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
543 * @skb: audit record
544 *
545 * Description:
546 * This should only be used by the kauditd_thread when it fails to flush the
547 * hold queue.
548 */
kauditd_rehold_skb(struct sk_buff * skb)549 static void kauditd_rehold_skb(struct sk_buff *skb)
550 {
551 /* put the record back in the queue at the same place */
552 skb_queue_head(&audit_hold_queue, skb);
553 }
554
555 /**
556 * kauditd_hold_skb - Queue an audit record, waiting for auditd
557 * @skb: audit record
558 *
559 * Description:
560 * Queue the audit record, waiting for an instance of auditd. When this
561 * function is called we haven't given up yet on sending the record, but things
562 * are not looking good. The first thing we want to do is try to write the
563 * record via printk and then see if we want to try and hold on to the record
564 * and queue it, if we have room. If we want to hold on to the record, but we
565 * don't have room, record a record lost message.
566 */
kauditd_hold_skb(struct sk_buff * skb)567 static void kauditd_hold_skb(struct sk_buff *skb)
568 {
569 /* at this point it is uncertain if we will ever send this to auditd so
570 * try to send the message via printk before we go any further */
571 kauditd_printk_skb(skb);
572
573 /* can we just silently drop the message? */
574 if (!audit_default) {
575 kfree_skb(skb);
576 return;
577 }
578
579 /* if we have room, queue the message */
580 if (!audit_backlog_limit ||
581 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
582 skb_queue_tail(&audit_hold_queue, skb);
583 return;
584 }
585
586 /* we have no other options - drop the message */
587 audit_log_lost("kauditd hold queue overflow");
588 kfree_skb(skb);
589 }
590
591 /**
592 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
593 * @skb: audit record
594 *
595 * Description:
596 * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
597 * but for some reason we are having problems sending it audit records so
598 * queue the given record and attempt to resend.
599 */
kauditd_retry_skb(struct sk_buff * skb)600 static void kauditd_retry_skb(struct sk_buff *skb)
601 {
602 /* NOTE: because records should only live in the retry queue for a
603 * short period of time, before either being sent or moved to the hold
604 * queue, we don't currently enforce a limit on this queue */
605 skb_queue_tail(&audit_retry_queue, skb);
606 }
607
608 /**
609 * auditd_reset - Disconnect the auditd connection
610 * @ac: auditd connection state
611 *
612 * Description:
613 * Break the auditd/kauditd connection and move all the queued records into the
614 * hold queue in case auditd reconnects. It is important to note that the @ac
615 * pointer should never be dereferenced inside this function as it may be NULL
616 * or invalid, you can only compare the memory address! If @ac is NULL then
617 * the connection will always be reset.
618 */
auditd_reset(const struct auditd_connection * ac)619 static void auditd_reset(const struct auditd_connection *ac)
620 {
621 unsigned long flags;
622 struct sk_buff *skb;
623 struct auditd_connection *ac_old;
624
625 /* if it isn't already broken, break the connection */
626 spin_lock_irqsave(&auditd_conn_lock, flags);
627 ac_old = rcu_dereference_protected(auditd_conn,
628 lockdep_is_held(&auditd_conn_lock));
629 if (ac && ac != ac_old) {
630 /* someone already registered a new auditd connection */
631 spin_unlock_irqrestore(&auditd_conn_lock, flags);
632 return;
633 }
634 rcu_assign_pointer(auditd_conn, NULL);
635 spin_unlock_irqrestore(&auditd_conn_lock, flags);
636
637 if (ac_old)
638 call_rcu(&ac_old->rcu, auditd_conn_free);
639
640 /* flush the retry queue to the hold queue, but don't touch the main
641 * queue since we need to process that normally for multicast */
642 while ((skb = skb_dequeue(&audit_retry_queue)))
643 kauditd_hold_skb(skb);
644 }
645
646 /**
647 * auditd_send_unicast_skb - Send a record via unicast to auditd
648 * @skb: audit record
649 *
650 * Description:
651 * Send a skb to the audit daemon, returns positive/zero values on success and
652 * negative values on failure; in all cases the skb will be consumed by this
653 * function. If the send results in -ECONNREFUSED the connection with auditd
654 * will be reset. This function may sleep so callers should not hold any locks
655 * where this would cause a problem.
656 */
auditd_send_unicast_skb(struct sk_buff * skb)657 static int auditd_send_unicast_skb(struct sk_buff *skb)
658 {
659 int rc;
660 u32 portid;
661 struct net *net;
662 struct sock *sk;
663 struct auditd_connection *ac;
664
665 /* NOTE: we can't call netlink_unicast while in the RCU section so
666 * take a reference to the network namespace and grab local
667 * copies of the namespace, the sock, and the portid; the
668 * namespace and sock aren't going to go away while we hold a
669 * reference and if the portid does become invalid after the RCU
670 * section netlink_unicast() should safely return an error */
671
672 rcu_read_lock();
673 ac = rcu_dereference(auditd_conn);
674 if (!ac) {
675 rcu_read_unlock();
676 kfree_skb(skb);
677 rc = -ECONNREFUSED;
678 goto err;
679 }
680 net = get_net(ac->net);
681 sk = audit_get_sk(net);
682 portid = ac->portid;
683 rcu_read_unlock();
684
685 rc = netlink_unicast(sk, skb, portid, 0);
686 put_net(net);
687 if (rc < 0)
688 goto err;
689
690 return rc;
691
692 err:
693 if (ac && rc == -ECONNREFUSED)
694 auditd_reset(ac);
695 return rc;
696 }
697
698 /**
699 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
700 * @sk: the sending sock
701 * @portid: the netlink destination
702 * @queue: the skb queue to process
703 * @retry_limit: limit on number of netlink unicast failures
704 * @skb_hook: per-skb hook for additional processing
705 * @err_hook: hook called if the skb fails the netlink unicast send
706 *
707 * Description:
708 * Run through the given queue and attempt to send the audit records to auditd,
709 * returns zero on success, negative values on failure. It is up to the caller
710 * to ensure that the @sk is valid for the duration of this function.
711 *
712 */
kauditd_send_queue(struct sock * sk,u32 portid,struct sk_buff_head * queue,unsigned int retry_limit,void (* skb_hook)(struct sk_buff * skb),void (* err_hook)(struct sk_buff * skb))713 static int kauditd_send_queue(struct sock *sk, u32 portid,
714 struct sk_buff_head *queue,
715 unsigned int retry_limit,
716 void (*skb_hook)(struct sk_buff *skb),
717 void (*err_hook)(struct sk_buff *skb))
718 {
719 int rc = 0;
720 struct sk_buff *skb;
721 unsigned int failed = 0;
722
723 /* NOTE: kauditd_thread takes care of all our locking, we just use
724 * the netlink info passed to us (e.g. sk and portid) */
725
726 while ((skb = skb_dequeue(queue))) {
727 /* call the skb_hook for each skb we touch */
728 if (skb_hook)
729 (*skb_hook)(skb);
730
731 /* can we send to anyone via unicast? */
732 if (!sk) {
733 if (err_hook)
734 (*err_hook)(skb);
735 continue;
736 }
737
738 retry:
739 /* grab an extra skb reference in case of error */
740 skb_get(skb);
741 rc = netlink_unicast(sk, skb, portid, 0);
742 if (rc < 0) {
743 /* send failed - try a few times unless fatal error */
744 if (++failed >= retry_limit ||
745 rc == -ECONNREFUSED || rc == -EPERM) {
746 sk = NULL;
747 if (err_hook)
748 (*err_hook)(skb);
749 if (rc == -EAGAIN)
750 rc = 0;
751 /* continue to drain the queue */
752 continue;
753 } else
754 goto retry;
755 } else {
756 /* skb sent - drop the extra reference and continue */
757 consume_skb(skb);
758 failed = 0;
759 }
760 }
761
762 return (rc >= 0 ? 0 : rc);
763 }
764
765 /*
766 * kauditd_send_multicast_skb - Send a record to any multicast listeners
767 * @skb: audit record
768 *
769 * Description:
770 * Write a multicast message to anyone listening in the initial network
771 * namespace. This function doesn't consume an skb as might be expected since
772 * it has to copy it anyways.
773 */
kauditd_send_multicast_skb(struct sk_buff * skb)774 static void kauditd_send_multicast_skb(struct sk_buff *skb)
775 {
776 struct sk_buff *copy;
777 struct sock *sock = audit_get_sk(&init_net);
778 struct nlmsghdr *nlh;
779
780 /* NOTE: we are not taking an additional reference for init_net since
781 * we don't have to worry about it going away */
782
783 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
784 return;
785
786 /*
787 * The seemingly wasteful skb_copy() rather than bumping the refcount
788 * using skb_get() is necessary because non-standard mods are made to
789 * the skb by the original kaudit unicast socket send routine. The
790 * existing auditd daemon assumes this breakage. Fixing this would
791 * require co-ordinating a change in the established protocol between
792 * the kaudit kernel subsystem and the auditd userspace code. There is
793 * no reason for new multicast clients to continue with this
794 * non-compliance.
795 */
796 copy = skb_copy(skb, GFP_KERNEL);
797 if (!copy)
798 return;
799 nlh = nlmsg_hdr(copy);
800 nlh->nlmsg_len = skb->len;
801
802 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
803 }
804
805 /**
806 * kauditd_thread - Worker thread to send audit records to userspace
807 * @dummy: unused
808 */
kauditd_thread(void * dummy)809 static int kauditd_thread(void *dummy)
810 {
811 int rc;
812 u32 portid = 0;
813 struct net *net = NULL;
814 struct sock *sk = NULL;
815 struct auditd_connection *ac;
816
817 #define UNICAST_RETRIES 5
818
819 set_freezable();
820 while (!kthread_should_stop()) {
821 /* NOTE: see the lock comments in auditd_send_unicast_skb() */
822 rcu_read_lock();
823 ac = rcu_dereference(auditd_conn);
824 if (!ac) {
825 rcu_read_unlock();
826 goto main_queue;
827 }
828 net = get_net(ac->net);
829 sk = audit_get_sk(net);
830 portid = ac->portid;
831 rcu_read_unlock();
832
833 /* attempt to flush the hold queue */
834 rc = kauditd_send_queue(sk, portid,
835 &audit_hold_queue, UNICAST_RETRIES,
836 NULL, kauditd_rehold_skb);
837 if (rc < 0) {
838 sk = NULL;
839 auditd_reset(ac);
840 goto main_queue;
841 }
842
843 /* attempt to flush the retry queue */
844 rc = kauditd_send_queue(sk, portid,
845 &audit_retry_queue, UNICAST_RETRIES,
846 NULL, kauditd_hold_skb);
847 if (rc < 0) {
848 sk = NULL;
849 auditd_reset(ac);
850 goto main_queue;
851 }
852
853 main_queue:
854 /* process the main queue - do the multicast send and attempt
855 * unicast, dump failed record sends to the retry queue; if
856 * sk == NULL due to previous failures we will just do the
857 * multicast send and move the record to the hold queue */
858 rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
859 kauditd_send_multicast_skb,
860 (sk ?
861 kauditd_retry_skb : kauditd_hold_skb));
862 if (ac && rc < 0)
863 auditd_reset(ac);
864 sk = NULL;
865
866 /* drop our netns reference, no auditd sends past this line */
867 if (net) {
868 put_net(net);
869 net = NULL;
870 }
871
872 /* we have processed all the queues so wake everyone */
873 wake_up(&audit_backlog_wait);
874
875 /* NOTE: we want to wake up if there is anything on the queue,
876 * regardless of if an auditd is connected, as we need to
877 * do the multicast send and rotate records from the
878 * main queue to the retry/hold queues */
879 wait_event_freezable(kauditd_wait,
880 (skb_queue_len(&audit_queue) ? 1 : 0));
881 }
882
883 return 0;
884 }
885
audit_send_list_thread(void * _dest)886 int audit_send_list_thread(void *_dest)
887 {
888 struct audit_netlink_list *dest = _dest;
889 struct sk_buff *skb;
890 struct sock *sk = audit_get_sk(dest->net);
891
892 /* wait for parent to finish and send an ACK */
893 audit_ctl_lock();
894 audit_ctl_unlock();
895
896 while ((skb = __skb_dequeue(&dest->q)) != NULL)
897 netlink_unicast(sk, skb, dest->portid, 0);
898
899 put_net(dest->net);
900 kfree(dest);
901
902 return 0;
903 }
904
audit_make_reply(int seq,int type,int done,int multi,const void * payload,int size)905 struct sk_buff *audit_make_reply(int seq, int type, int done,
906 int multi, const void *payload, int size)
907 {
908 struct sk_buff *skb;
909 struct nlmsghdr *nlh;
910 void *data;
911 int flags = multi ? NLM_F_MULTI : 0;
912 int t = done ? NLMSG_DONE : type;
913
914 skb = nlmsg_new(size, GFP_KERNEL);
915 if (!skb)
916 return NULL;
917
918 nlh = nlmsg_put(skb, 0, seq, t, size, flags);
919 if (!nlh)
920 goto out_kfree_skb;
921 data = nlmsg_data(nlh);
922 memcpy(data, payload, size);
923 return skb;
924
925 out_kfree_skb:
926 kfree_skb(skb);
927 return NULL;
928 }
929
audit_free_reply(struct audit_reply * reply)930 static void audit_free_reply(struct audit_reply *reply)
931 {
932 if (!reply)
933 return;
934
935 kfree_skb(reply->skb);
936 if (reply->net)
937 put_net(reply->net);
938 kfree(reply);
939 }
940
audit_send_reply_thread(void * arg)941 static int audit_send_reply_thread(void *arg)
942 {
943 struct audit_reply *reply = (struct audit_reply *)arg;
944
945 audit_ctl_lock();
946 audit_ctl_unlock();
947
948 /* Ignore failure. It'll only happen if the sender goes away,
949 because our timeout is set to infinite. */
950 netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0);
951 reply->skb = NULL;
952 audit_free_reply(reply);
953 return 0;
954 }
955
956 /**
957 * audit_send_reply - send an audit reply message via netlink
958 * @request_skb: skb of request we are replying to (used to target the reply)
959 * @seq: sequence number
960 * @type: audit message type
961 * @done: done (last) flag
962 * @multi: multi-part message flag
963 * @payload: payload data
964 * @size: payload size
965 *
966 * Allocates a skb, builds the netlink message, and sends it to the port id.
967 */
audit_send_reply(struct sk_buff * request_skb,int seq,int type,int done,int multi,const void * payload,int size)968 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
969 int multi, const void *payload, int size)
970 {
971 struct task_struct *tsk;
972 struct audit_reply *reply;
973
974 reply = kzalloc(sizeof(*reply), GFP_KERNEL);
975 if (!reply)
976 return;
977
978 reply->skb = audit_make_reply(seq, type, done, multi, payload, size);
979 if (!reply->skb)
980 goto err;
981 reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk));
982 reply->portid = NETLINK_CB(request_skb).portid;
983
984 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
985 if (IS_ERR(tsk))
986 goto err;
987
988 return;
989
990 err:
991 audit_free_reply(reply);
992 }
993
994 /*
995 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
996 * control messages.
997 */
audit_netlink_ok(struct sk_buff * skb,u16 msg_type)998 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
999 {
1000 int err = 0;
1001
1002 /* Only support initial user namespace for now. */
1003 /*
1004 * We return ECONNREFUSED because it tricks userspace into thinking
1005 * that audit was not configured into the kernel. Lots of users
1006 * configure their PAM stack (because that's what the distro does)
1007 * to reject login if unable to send messages to audit. If we return
1008 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
1009 * configured in and will let login proceed. If we return EPERM
1010 * userspace will reject all logins. This should be removed when we
1011 * support non init namespaces!!
1012 */
1013 if (current_user_ns() != &init_user_ns)
1014 return -ECONNREFUSED;
1015
1016 switch (msg_type) {
1017 case AUDIT_LIST:
1018 case AUDIT_ADD:
1019 case AUDIT_DEL:
1020 return -EOPNOTSUPP;
1021 case AUDIT_GET:
1022 case AUDIT_SET:
1023 case AUDIT_GET_FEATURE:
1024 case AUDIT_SET_FEATURE:
1025 case AUDIT_LIST_RULES:
1026 case AUDIT_ADD_RULE:
1027 case AUDIT_DEL_RULE:
1028 case AUDIT_SIGNAL_INFO:
1029 case AUDIT_TTY_GET:
1030 case AUDIT_TTY_SET:
1031 case AUDIT_TRIM:
1032 case AUDIT_MAKE_EQUIV:
1033 /* Only support auditd and auditctl in initial pid namespace
1034 * for now. */
1035 if (task_active_pid_ns(current) != &init_pid_ns)
1036 return -EPERM;
1037
1038 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1039 err = -EPERM;
1040 break;
1041 case AUDIT_USER:
1042 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1043 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1044 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1045 err = -EPERM;
1046 break;
1047 default: /* bad msg */
1048 err = -EINVAL;
1049 }
1050
1051 return err;
1052 }
1053
audit_log_common_recv_msg(struct audit_context * context,struct audit_buffer ** ab,u16 msg_type)1054 static void audit_log_common_recv_msg(struct audit_context *context,
1055 struct audit_buffer **ab, u16 msg_type)
1056 {
1057 uid_t uid = from_kuid(&init_user_ns, current_uid());
1058 pid_t pid = task_tgid_nr(current);
1059
1060 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1061 *ab = NULL;
1062 return;
1063 }
1064
1065 *ab = audit_log_start(context, GFP_KERNEL, msg_type);
1066 if (unlikely(!*ab))
1067 return;
1068 audit_log_format(*ab, "pid=%d uid=%u ", pid, uid);
1069 audit_log_session_info(*ab);
1070 audit_log_task_context(*ab);
1071 }
1072
audit_log_user_recv_msg(struct audit_buffer ** ab,u16 msg_type)1073 static inline void audit_log_user_recv_msg(struct audit_buffer **ab,
1074 u16 msg_type)
1075 {
1076 audit_log_common_recv_msg(NULL, ab, msg_type);
1077 }
1078
is_audit_feature_set(int i)1079 int is_audit_feature_set(int i)
1080 {
1081 return af.features & AUDIT_FEATURE_TO_MASK(i);
1082 }
1083
1084
audit_get_feature(struct sk_buff * skb)1085 static int audit_get_feature(struct sk_buff *skb)
1086 {
1087 u32 seq;
1088
1089 seq = nlmsg_hdr(skb)->nlmsg_seq;
1090
1091 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1092
1093 return 0;
1094 }
1095
audit_log_feature_change(int which,u32 old_feature,u32 new_feature,u32 old_lock,u32 new_lock,int res)1096 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1097 u32 old_lock, u32 new_lock, int res)
1098 {
1099 struct audit_buffer *ab;
1100
1101 if (audit_enabled == AUDIT_OFF)
1102 return;
1103
1104 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1105 if (!ab)
1106 return;
1107 audit_log_task_info(ab);
1108 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1109 audit_feature_names[which], !!old_feature, !!new_feature,
1110 !!old_lock, !!new_lock, res);
1111 audit_log_end(ab);
1112 }
1113
audit_set_feature(struct audit_features * uaf)1114 static int audit_set_feature(struct audit_features *uaf)
1115 {
1116 int i;
1117
1118 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1119
1120 /* if there is ever a version 2 we should handle that here */
1121
1122 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1123 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1124 u32 old_feature, new_feature, old_lock, new_lock;
1125
1126 /* if we are not changing this feature, move along */
1127 if (!(feature & uaf->mask))
1128 continue;
1129
1130 old_feature = af.features & feature;
1131 new_feature = uaf->features & feature;
1132 new_lock = (uaf->lock | af.lock) & feature;
1133 old_lock = af.lock & feature;
1134
1135 /* are we changing a locked feature? */
1136 if (old_lock && (new_feature != old_feature)) {
1137 audit_log_feature_change(i, old_feature, new_feature,
1138 old_lock, new_lock, 0);
1139 return -EPERM;
1140 }
1141 }
1142 /* nothing invalid, do the changes */
1143 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1144 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1145 u32 old_feature, new_feature, old_lock, new_lock;
1146
1147 /* if we are not changing this feature, move along */
1148 if (!(feature & uaf->mask))
1149 continue;
1150
1151 old_feature = af.features & feature;
1152 new_feature = uaf->features & feature;
1153 old_lock = af.lock & feature;
1154 new_lock = (uaf->lock | af.lock) & feature;
1155
1156 if (new_feature != old_feature)
1157 audit_log_feature_change(i, old_feature, new_feature,
1158 old_lock, new_lock, 1);
1159
1160 if (new_feature)
1161 af.features |= feature;
1162 else
1163 af.features &= ~feature;
1164 af.lock |= new_lock;
1165 }
1166
1167 return 0;
1168 }
1169
audit_replace(struct pid * pid)1170 static int audit_replace(struct pid *pid)
1171 {
1172 pid_t pvnr;
1173 struct sk_buff *skb;
1174
1175 pvnr = pid_vnr(pid);
1176 skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1177 if (!skb)
1178 return -ENOMEM;
1179 return auditd_send_unicast_skb(skb);
1180 }
1181
audit_receive_msg(struct sk_buff * skb,struct nlmsghdr * nlh)1182 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
1183 {
1184 u32 seq;
1185 void *data;
1186 int data_len;
1187 int err;
1188 struct audit_buffer *ab;
1189 u16 msg_type = nlh->nlmsg_type;
1190 struct audit_sig_info *sig_data;
1191 char *ctx = NULL;
1192 u32 len;
1193
1194 err = audit_netlink_ok(skb, msg_type);
1195 if (err)
1196 return err;
1197
1198 seq = nlh->nlmsg_seq;
1199 data = nlmsg_data(nlh);
1200 data_len = nlmsg_len(nlh);
1201
1202 switch (msg_type) {
1203 case AUDIT_GET: {
1204 struct audit_status s;
1205 memset(&s, 0, sizeof(s));
1206 s.enabled = audit_enabled;
1207 s.failure = audit_failure;
1208 /* NOTE: use pid_vnr() so the PID is relative to the current
1209 * namespace */
1210 s.pid = auditd_pid_vnr();
1211 s.rate_limit = audit_rate_limit;
1212 s.backlog_limit = audit_backlog_limit;
1213 s.lost = atomic_read(&audit_lost);
1214 s.backlog = skb_queue_len(&audit_queue);
1215 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
1216 s.backlog_wait_time = audit_backlog_wait_time;
1217 s.backlog_wait_time_actual = atomic_read(&audit_backlog_wait_time_actual);
1218 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1219 break;
1220 }
1221 case AUDIT_SET: {
1222 struct audit_status s;
1223 memset(&s, 0, sizeof(s));
1224 /* guard against past and future API changes */
1225 memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1226 if (s.mask & AUDIT_STATUS_ENABLED) {
1227 err = audit_set_enabled(s.enabled);
1228 if (err < 0)
1229 return err;
1230 }
1231 if (s.mask & AUDIT_STATUS_FAILURE) {
1232 err = audit_set_failure(s.failure);
1233 if (err < 0)
1234 return err;
1235 }
1236 if (s.mask & AUDIT_STATUS_PID) {
1237 /* NOTE: we are using the vnr PID functions below
1238 * because the s.pid value is relative to the
1239 * namespace of the caller; at present this
1240 * doesn't matter much since you can really only
1241 * run auditd from the initial pid namespace, but
1242 * something to keep in mind if this changes */
1243 pid_t new_pid = s.pid;
1244 pid_t auditd_pid;
1245 struct pid *req_pid = task_tgid(current);
1246
1247 /* Sanity check - PID values must match. Setting
1248 * pid to 0 is how auditd ends auditing. */
1249 if (new_pid && (new_pid != pid_vnr(req_pid)))
1250 return -EINVAL;
1251
1252 /* test the auditd connection */
1253 audit_replace(req_pid);
1254
1255 auditd_pid = auditd_pid_vnr();
1256 if (auditd_pid) {
1257 /* replacing a healthy auditd is not allowed */
1258 if (new_pid) {
1259 audit_log_config_change("audit_pid",
1260 new_pid, auditd_pid, 0);
1261 return -EEXIST;
1262 }
1263 /* only current auditd can unregister itself */
1264 if (pid_vnr(req_pid) != auditd_pid) {
1265 audit_log_config_change("audit_pid",
1266 new_pid, auditd_pid, 0);
1267 return -EACCES;
1268 }
1269 }
1270
1271 if (new_pid) {
1272 /* register a new auditd connection */
1273 err = auditd_set(req_pid,
1274 NETLINK_CB(skb).portid,
1275 sock_net(NETLINK_CB(skb).sk));
1276 if (audit_enabled != AUDIT_OFF)
1277 audit_log_config_change("audit_pid",
1278 new_pid,
1279 auditd_pid,
1280 err ? 0 : 1);
1281 if (err)
1282 return err;
1283
1284 /* try to process any backlog */
1285 wake_up_interruptible(&kauditd_wait);
1286 } else {
1287 if (audit_enabled != AUDIT_OFF)
1288 audit_log_config_change("audit_pid",
1289 new_pid,
1290 auditd_pid, 1);
1291
1292 /* unregister the auditd connection */
1293 auditd_reset(NULL);
1294 }
1295 }
1296 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1297 err = audit_set_rate_limit(s.rate_limit);
1298 if (err < 0)
1299 return err;
1300 }
1301 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1302 err = audit_set_backlog_limit(s.backlog_limit);
1303 if (err < 0)
1304 return err;
1305 }
1306 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1307 if (sizeof(s) > (size_t)nlh->nlmsg_len)
1308 return -EINVAL;
1309 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1310 return -EINVAL;
1311 err = audit_set_backlog_wait_time(s.backlog_wait_time);
1312 if (err < 0)
1313 return err;
1314 }
1315 if (s.mask == AUDIT_STATUS_LOST) {
1316 u32 lost = atomic_xchg(&audit_lost, 0);
1317
1318 audit_log_config_change("lost", 0, lost, 1);
1319 return lost;
1320 }
1321 if (s.mask == AUDIT_STATUS_BACKLOG_WAIT_TIME_ACTUAL) {
1322 u32 actual = atomic_xchg(&audit_backlog_wait_time_actual, 0);
1323
1324 audit_log_config_change("backlog_wait_time_actual", 0, actual, 1);
1325 return actual;
1326 }
1327 break;
1328 }
1329 case AUDIT_GET_FEATURE:
1330 err = audit_get_feature(skb);
1331 if (err)
1332 return err;
1333 break;
1334 case AUDIT_SET_FEATURE:
1335 if (data_len < sizeof(struct audit_features))
1336 return -EINVAL;
1337 err = audit_set_feature(data);
1338 if (err)
1339 return err;
1340 break;
1341 case AUDIT_USER:
1342 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1343 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1344 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1345 return 0;
1346 /* exit early if there isn't at least one character to print */
1347 if (data_len < 2)
1348 return -EINVAL;
1349
1350 err = audit_filter(msg_type, AUDIT_FILTER_USER);
1351 if (err == 1) { /* match or error */
1352 char *str = data;
1353
1354 err = 0;
1355 if (msg_type == AUDIT_USER_TTY) {
1356 err = tty_audit_push();
1357 if (err)
1358 break;
1359 }
1360 audit_log_user_recv_msg(&ab, msg_type);
1361 if (msg_type != AUDIT_USER_TTY) {
1362 /* ensure NULL termination */
1363 str[data_len - 1] = '\0';
1364 audit_log_format(ab, " msg='%.*s'",
1365 AUDIT_MESSAGE_TEXT_MAX,
1366 str);
1367 } else {
1368 audit_log_format(ab, " data=");
1369 if (data_len > 0 && str[data_len - 1] == '\0')
1370 data_len--;
1371 audit_log_n_untrustedstring(ab, str, data_len);
1372 }
1373 audit_log_end(ab);
1374 }
1375 break;
1376 case AUDIT_ADD_RULE:
1377 case AUDIT_DEL_RULE:
1378 if (data_len < sizeof(struct audit_rule_data))
1379 return -EINVAL;
1380 if (audit_enabled == AUDIT_LOCKED) {
1381 audit_log_common_recv_msg(audit_context(), &ab,
1382 AUDIT_CONFIG_CHANGE);
1383 audit_log_format(ab, " op=%s audit_enabled=%d res=0",
1384 msg_type == AUDIT_ADD_RULE ?
1385 "add_rule" : "remove_rule",
1386 audit_enabled);
1387 audit_log_end(ab);
1388 return -EPERM;
1389 }
1390 err = audit_rule_change(msg_type, seq, data, data_len);
1391 break;
1392 case AUDIT_LIST_RULES:
1393 err = audit_list_rules_send(skb, seq);
1394 break;
1395 case AUDIT_TRIM:
1396 audit_trim_trees();
1397 audit_log_common_recv_msg(audit_context(), &ab,
1398 AUDIT_CONFIG_CHANGE);
1399 audit_log_format(ab, " op=trim res=1");
1400 audit_log_end(ab);
1401 break;
1402 case AUDIT_MAKE_EQUIV: {
1403 void *bufp = data;
1404 u32 sizes[2];
1405 size_t msglen = data_len;
1406 char *old, *new;
1407
1408 err = -EINVAL;
1409 if (msglen < 2 * sizeof(u32))
1410 break;
1411 memcpy(sizes, bufp, 2 * sizeof(u32));
1412 bufp += 2 * sizeof(u32);
1413 msglen -= 2 * sizeof(u32);
1414 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1415 if (IS_ERR(old)) {
1416 err = PTR_ERR(old);
1417 break;
1418 }
1419 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1420 if (IS_ERR(new)) {
1421 err = PTR_ERR(new);
1422 kfree(old);
1423 break;
1424 }
1425 /* OK, here comes... */
1426 err = audit_tag_tree(old, new);
1427
1428 audit_log_common_recv_msg(audit_context(), &ab,
1429 AUDIT_CONFIG_CHANGE);
1430 audit_log_format(ab, " op=make_equiv old=");
1431 audit_log_untrustedstring(ab, old);
1432 audit_log_format(ab, " new=");
1433 audit_log_untrustedstring(ab, new);
1434 audit_log_format(ab, " res=%d", !err);
1435 audit_log_end(ab);
1436 kfree(old);
1437 kfree(new);
1438 break;
1439 }
1440 case AUDIT_SIGNAL_INFO:
1441 len = 0;
1442 if (audit_sig_sid) {
1443 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1444 if (err)
1445 return err;
1446 }
1447 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1448 if (!sig_data) {
1449 if (audit_sig_sid)
1450 security_release_secctx(ctx, len);
1451 return -ENOMEM;
1452 }
1453 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1454 sig_data->pid = audit_sig_pid;
1455 if (audit_sig_sid) {
1456 memcpy(sig_data->ctx, ctx, len);
1457 security_release_secctx(ctx, len);
1458 }
1459 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1460 sig_data, sizeof(*sig_data) + len);
1461 kfree(sig_data);
1462 break;
1463 case AUDIT_TTY_GET: {
1464 struct audit_tty_status s;
1465 unsigned int t;
1466
1467 t = READ_ONCE(current->signal->audit_tty);
1468 s.enabled = t & AUDIT_TTY_ENABLE;
1469 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1470
1471 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1472 break;
1473 }
1474 case AUDIT_TTY_SET: {
1475 struct audit_tty_status s, old;
1476 struct audit_buffer *ab;
1477 unsigned int t;
1478
1479 memset(&s, 0, sizeof(s));
1480 /* guard against past and future API changes */
1481 memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1482 /* check if new data is valid */
1483 if ((s.enabled != 0 && s.enabled != 1) ||
1484 (s.log_passwd != 0 && s.log_passwd != 1))
1485 err = -EINVAL;
1486
1487 if (err)
1488 t = READ_ONCE(current->signal->audit_tty);
1489 else {
1490 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1491 t = xchg(¤t->signal->audit_tty, t);
1492 }
1493 old.enabled = t & AUDIT_TTY_ENABLE;
1494 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1495
1496 audit_log_common_recv_msg(audit_context(), &ab,
1497 AUDIT_CONFIG_CHANGE);
1498 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1499 " old-log_passwd=%d new-log_passwd=%d res=%d",
1500 old.enabled, s.enabled, old.log_passwd,
1501 s.log_passwd, !err);
1502 audit_log_end(ab);
1503 break;
1504 }
1505 default:
1506 err = -EINVAL;
1507 break;
1508 }
1509
1510 return err < 0 ? err : 0;
1511 }
1512
1513 /**
1514 * audit_receive - receive messages from a netlink control socket
1515 * @skb: the message buffer
1516 *
1517 * Parse the provided skb and deal with any messages that may be present,
1518 * malformed skbs are discarded.
1519 */
audit_receive(struct sk_buff * skb)1520 static void audit_receive(struct sk_buff *skb)
1521 {
1522 struct nlmsghdr *nlh;
1523 /*
1524 * len MUST be signed for nlmsg_next to be able to dec it below 0
1525 * if the nlmsg_len was not aligned
1526 */
1527 int len;
1528 int err;
1529
1530 nlh = nlmsg_hdr(skb);
1531 len = skb->len;
1532
1533 audit_ctl_lock();
1534 while (nlmsg_ok(nlh, len)) {
1535 err = audit_receive_msg(skb, nlh);
1536 /* if err or if this message says it wants a response */
1537 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1538 netlink_ack(skb, nlh, err, NULL);
1539
1540 nlh = nlmsg_next(nlh, &len);
1541 }
1542 audit_ctl_unlock();
1543
1544 /* can't block with the ctrl lock, so penalize the sender now */
1545 if (audit_backlog_limit &&
1546 (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1547 DECLARE_WAITQUEUE(wait, current);
1548
1549 /* wake kauditd to try and flush the queue */
1550 wake_up_interruptible(&kauditd_wait);
1551
1552 add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1553 set_current_state(TASK_UNINTERRUPTIBLE);
1554 schedule_timeout(audit_backlog_wait_time);
1555 remove_wait_queue(&audit_backlog_wait, &wait);
1556 }
1557 }
1558
1559 /* Log information about who is connecting to the audit multicast socket */
audit_log_multicast(int group,const char * op,int err)1560 static void audit_log_multicast(int group, const char *op, int err)
1561 {
1562 const struct cred *cred;
1563 struct tty_struct *tty;
1564 char comm[sizeof(current->comm)];
1565 struct audit_buffer *ab;
1566
1567 if (!audit_enabled)
1568 return;
1569
1570 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_EVENT_LISTENER);
1571 if (!ab)
1572 return;
1573
1574 cred = current_cred();
1575 tty = audit_get_tty();
1576 audit_log_format(ab, "pid=%u uid=%u auid=%u tty=%s ses=%u",
1577 task_pid_nr(current),
1578 from_kuid(&init_user_ns, cred->uid),
1579 from_kuid(&init_user_ns, audit_get_loginuid(current)),
1580 tty ? tty_name(tty) : "(none)",
1581 audit_get_sessionid(current));
1582 audit_put_tty(tty);
1583 audit_log_task_context(ab); /* subj= */
1584 audit_log_format(ab, " comm=");
1585 audit_log_untrustedstring(ab, get_task_comm(comm, current));
1586 audit_log_d_path_exe(ab, current->mm); /* exe= */
1587 audit_log_format(ab, " nl-mcgrp=%d op=%s res=%d", group, op, !err);
1588 audit_log_end(ab);
1589 }
1590
1591 /* Run custom bind function on netlink socket group connect or bind requests. */
audit_multicast_bind(struct net * net,int group)1592 static int audit_multicast_bind(struct net *net, int group)
1593 {
1594 int err = 0;
1595
1596 if (!capable(CAP_AUDIT_READ))
1597 err = -EPERM;
1598 audit_log_multicast(group, "connect", err);
1599 return err;
1600 }
1601
audit_multicast_unbind(struct net * net,int group)1602 static void audit_multicast_unbind(struct net *net, int group)
1603 {
1604 audit_log_multicast(group, "disconnect", 0);
1605 }
1606
audit_net_init(struct net * net)1607 static int __net_init audit_net_init(struct net *net)
1608 {
1609 struct netlink_kernel_cfg cfg = {
1610 .input = audit_receive,
1611 .bind = audit_multicast_bind,
1612 .unbind = audit_multicast_unbind,
1613 .flags = NL_CFG_F_NONROOT_RECV,
1614 .groups = AUDIT_NLGRP_MAX,
1615 };
1616
1617 struct audit_net *aunet = net_generic(net, audit_net_id);
1618
1619 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1620 if (aunet->sk == NULL) {
1621 audit_panic("cannot initialize netlink socket in namespace");
1622 return -ENOMEM;
1623 }
1624 /* limit the timeout in case auditd is blocked/stopped */
1625 aunet->sk->sk_sndtimeo = HZ / 10;
1626
1627 return 0;
1628 }
1629
audit_net_exit(struct net * net)1630 static void __net_exit audit_net_exit(struct net *net)
1631 {
1632 struct audit_net *aunet = net_generic(net, audit_net_id);
1633
1634 /* NOTE: you would think that we would want to check the auditd
1635 * connection and potentially reset it here if it lives in this
1636 * namespace, but since the auditd connection tracking struct holds a
1637 * reference to this namespace (see auditd_set()) we are only ever
1638 * going to get here after that connection has been released */
1639
1640 netlink_kernel_release(aunet->sk);
1641 }
1642
1643 static struct pernet_operations audit_net_ops __net_initdata = {
1644 .init = audit_net_init,
1645 .exit = audit_net_exit,
1646 .id = &audit_net_id,
1647 .size = sizeof(struct audit_net),
1648 };
1649
1650 /* Initialize audit support at boot time. */
audit_init(void)1651 static int __init audit_init(void)
1652 {
1653 int i;
1654
1655 if (audit_initialized == AUDIT_DISABLED)
1656 return 0;
1657
1658 audit_buffer_cache = kmem_cache_create("audit_buffer",
1659 sizeof(struct audit_buffer),
1660 0, SLAB_PANIC, NULL);
1661
1662 skb_queue_head_init(&audit_queue);
1663 skb_queue_head_init(&audit_retry_queue);
1664 skb_queue_head_init(&audit_hold_queue);
1665
1666 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1667 INIT_LIST_HEAD(&audit_inode_hash[i]);
1668
1669 mutex_init(&audit_cmd_mutex.lock);
1670 audit_cmd_mutex.owner = NULL;
1671
1672 pr_info("initializing netlink subsys (%s)\n",
1673 audit_default ? "enabled" : "disabled");
1674 register_pernet_subsys(&audit_net_ops);
1675
1676 audit_initialized = AUDIT_INITIALIZED;
1677
1678 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1679 if (IS_ERR(kauditd_task)) {
1680 int err = PTR_ERR(kauditd_task);
1681 panic("audit: failed to start the kauditd thread (%d)\n", err);
1682 }
1683
1684 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1685 "state=initialized audit_enabled=%u res=1",
1686 audit_enabled);
1687
1688 return 0;
1689 }
1690 postcore_initcall(audit_init);
1691
1692 /*
1693 * Process kernel command-line parameter at boot time.
1694 * audit={0|off} or audit={1|on}.
1695 */
audit_enable(char * str)1696 static int __init audit_enable(char *str)
1697 {
1698 if (!strcasecmp(str, "off") || !strcmp(str, "0"))
1699 audit_default = AUDIT_OFF;
1700 else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
1701 audit_default = AUDIT_ON;
1702 else {
1703 pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
1704 audit_default = AUDIT_ON;
1705 }
1706
1707 if (audit_default == AUDIT_OFF)
1708 audit_initialized = AUDIT_DISABLED;
1709 if (audit_set_enabled(audit_default))
1710 pr_err("audit: error setting audit state (%d)\n",
1711 audit_default);
1712
1713 pr_info("%s\n", audit_default ?
1714 "enabled (after initialization)" : "disabled (until reboot)");
1715
1716 return 1;
1717 }
1718 __setup("audit=", audit_enable);
1719
1720 /* Process kernel command-line parameter at boot time.
1721 * audit_backlog_limit=<n> */
audit_backlog_limit_set(char * str)1722 static int __init audit_backlog_limit_set(char *str)
1723 {
1724 u32 audit_backlog_limit_arg;
1725
1726 pr_info("audit_backlog_limit: ");
1727 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1728 pr_cont("using default of %u, unable to parse %s\n",
1729 audit_backlog_limit, str);
1730 return 1;
1731 }
1732
1733 audit_backlog_limit = audit_backlog_limit_arg;
1734 pr_cont("%d\n", audit_backlog_limit);
1735
1736 return 1;
1737 }
1738 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1739
audit_buffer_free(struct audit_buffer * ab)1740 static void audit_buffer_free(struct audit_buffer *ab)
1741 {
1742 if (!ab)
1743 return;
1744
1745 kfree_skb(ab->skb);
1746 kmem_cache_free(audit_buffer_cache, ab);
1747 }
1748
audit_buffer_alloc(struct audit_context * ctx,gfp_t gfp_mask,int type)1749 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1750 gfp_t gfp_mask, int type)
1751 {
1752 struct audit_buffer *ab;
1753
1754 ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1755 if (!ab)
1756 return NULL;
1757
1758 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1759 if (!ab->skb)
1760 goto err;
1761 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1762 goto err;
1763
1764 ab->ctx = ctx;
1765 ab->gfp_mask = gfp_mask;
1766
1767 return ab;
1768
1769 err:
1770 audit_buffer_free(ab);
1771 return NULL;
1772 }
1773
1774 /**
1775 * audit_serial - compute a serial number for the audit record
1776 *
1777 * Compute a serial number for the audit record. Audit records are
1778 * written to user-space as soon as they are generated, so a complete
1779 * audit record may be written in several pieces. The timestamp of the
1780 * record and this serial number are used by the user-space tools to
1781 * determine which pieces belong to the same audit record. The
1782 * (timestamp,serial) tuple is unique for each syscall and is live from
1783 * syscall entry to syscall exit.
1784 *
1785 * NOTE: Another possibility is to store the formatted records off the
1786 * audit context (for those records that have a context), and emit them
1787 * all at syscall exit. However, this could delay the reporting of
1788 * significant errors until syscall exit (or never, if the system
1789 * halts).
1790 */
audit_serial(void)1791 unsigned int audit_serial(void)
1792 {
1793 static atomic_t serial = ATOMIC_INIT(0);
1794
1795 return atomic_add_return(1, &serial);
1796 }
1797
audit_get_stamp(struct audit_context * ctx,struct timespec64 * t,unsigned int * serial)1798 static inline void audit_get_stamp(struct audit_context *ctx,
1799 struct timespec64 *t, unsigned int *serial)
1800 {
1801 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1802 ktime_get_coarse_real_ts64(t);
1803 *serial = audit_serial();
1804 }
1805 }
1806
1807 /**
1808 * audit_log_start - obtain an audit buffer
1809 * @ctx: audit_context (may be NULL)
1810 * @gfp_mask: type of allocation
1811 * @type: audit message type
1812 *
1813 * Returns audit_buffer pointer on success or NULL on error.
1814 *
1815 * Obtain an audit buffer. This routine does locking to obtain the
1816 * audit buffer, but then no locking is required for calls to
1817 * audit_log_*format. If the task (ctx) is a task that is currently in a
1818 * syscall, then the syscall is marked as auditable and an audit record
1819 * will be written at syscall exit. If there is no associated task, then
1820 * task context (ctx) should be NULL.
1821 */
audit_log_start(struct audit_context * ctx,gfp_t gfp_mask,int type)1822 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1823 int type)
1824 {
1825 struct audit_buffer *ab;
1826 struct timespec64 t;
1827 unsigned int serial;
1828
1829 if (audit_initialized != AUDIT_INITIALIZED)
1830 return NULL;
1831
1832 if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE)))
1833 return NULL;
1834
1835 /* NOTE: don't ever fail/sleep on these two conditions:
1836 * 1. auditd generated record - since we need auditd to drain the
1837 * queue; also, when we are checking for auditd, compare PIDs using
1838 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1839 * using a PID anchored in the caller's namespace
1840 * 2. generator holding the audit_cmd_mutex - we don't want to block
1841 * while holding the mutex, although we do penalize the sender
1842 * later in audit_receive() when it is safe to block
1843 */
1844 if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
1845 long stime = audit_backlog_wait_time;
1846
1847 while (audit_backlog_limit &&
1848 (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1849 /* wake kauditd to try and flush the queue */
1850 wake_up_interruptible(&kauditd_wait);
1851
1852 /* sleep if we are allowed and we haven't exhausted our
1853 * backlog wait limit */
1854 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1855 long rtime = stime;
1856
1857 DECLARE_WAITQUEUE(wait, current);
1858
1859 add_wait_queue_exclusive(&audit_backlog_wait,
1860 &wait);
1861 set_current_state(TASK_UNINTERRUPTIBLE);
1862 stime = schedule_timeout(rtime);
1863 atomic_add(rtime - stime, &audit_backlog_wait_time_actual);
1864 remove_wait_queue(&audit_backlog_wait, &wait);
1865 } else {
1866 if (audit_rate_check() && printk_ratelimit())
1867 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1868 skb_queue_len(&audit_queue),
1869 audit_backlog_limit);
1870 audit_log_lost("backlog limit exceeded");
1871 return NULL;
1872 }
1873 }
1874 }
1875
1876 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1877 if (!ab) {
1878 audit_log_lost("out of memory in audit_log_start");
1879 return NULL;
1880 }
1881
1882 audit_get_stamp(ab->ctx, &t, &serial);
1883 audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1884 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1885
1886 return ab;
1887 }
1888
1889 /**
1890 * audit_expand - expand skb in the audit buffer
1891 * @ab: audit_buffer
1892 * @extra: space to add at tail of the skb
1893 *
1894 * Returns 0 (no space) on failed expansion, or available space if
1895 * successful.
1896 */
audit_expand(struct audit_buffer * ab,int extra)1897 static inline int audit_expand(struct audit_buffer *ab, int extra)
1898 {
1899 struct sk_buff *skb = ab->skb;
1900 int oldtail = skb_tailroom(skb);
1901 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1902 int newtail = skb_tailroom(skb);
1903
1904 if (ret < 0) {
1905 audit_log_lost("out of memory in audit_expand");
1906 return 0;
1907 }
1908
1909 skb->truesize += newtail - oldtail;
1910 return newtail;
1911 }
1912
1913 /*
1914 * Format an audit message into the audit buffer. If there isn't enough
1915 * room in the audit buffer, more room will be allocated and vsnprint
1916 * will be called a second time. Currently, we assume that a printk
1917 * can't format message larger than 1024 bytes, so we don't either.
1918 */
audit_log_vformat(struct audit_buffer * ab,const char * fmt,va_list args)1919 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1920 va_list args)
1921 {
1922 int len, avail;
1923 struct sk_buff *skb;
1924 va_list args2;
1925
1926 if (!ab)
1927 return;
1928
1929 BUG_ON(!ab->skb);
1930 skb = ab->skb;
1931 avail = skb_tailroom(skb);
1932 if (avail == 0) {
1933 avail = audit_expand(ab, AUDIT_BUFSIZ);
1934 if (!avail)
1935 goto out;
1936 }
1937 va_copy(args2, args);
1938 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1939 if (len >= avail) {
1940 /* The printk buffer is 1024 bytes long, so if we get
1941 * here and AUDIT_BUFSIZ is at least 1024, then we can
1942 * log everything that printk could have logged. */
1943 avail = audit_expand(ab,
1944 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1945 if (!avail)
1946 goto out_va_end;
1947 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1948 }
1949 if (len > 0)
1950 skb_put(skb, len);
1951 out_va_end:
1952 va_end(args2);
1953 out:
1954 return;
1955 }
1956
1957 /**
1958 * audit_log_format - format a message into the audit buffer.
1959 * @ab: audit_buffer
1960 * @fmt: format string
1961 * @...: optional parameters matching @fmt string
1962 *
1963 * All the work is done in audit_log_vformat.
1964 */
audit_log_format(struct audit_buffer * ab,const char * fmt,...)1965 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1966 {
1967 va_list args;
1968
1969 if (!ab)
1970 return;
1971 va_start(args, fmt);
1972 audit_log_vformat(ab, fmt, args);
1973 va_end(args);
1974 }
1975
1976 /**
1977 * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
1978 * @ab: the audit_buffer
1979 * @buf: buffer to convert to hex
1980 * @len: length of @buf to be converted
1981 *
1982 * No return value; failure to expand is silently ignored.
1983 *
1984 * This function will take the passed buf and convert it into a string of
1985 * ascii hex digits. The new string is placed onto the skb.
1986 */
audit_log_n_hex(struct audit_buffer * ab,const unsigned char * buf,size_t len)1987 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1988 size_t len)
1989 {
1990 int i, avail, new_len;
1991 unsigned char *ptr;
1992 struct sk_buff *skb;
1993
1994 if (!ab)
1995 return;
1996
1997 BUG_ON(!ab->skb);
1998 skb = ab->skb;
1999 avail = skb_tailroom(skb);
2000 new_len = len<<1;
2001 if (new_len >= avail) {
2002 /* Round the buffer request up to the next multiple */
2003 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
2004 avail = audit_expand(ab, new_len);
2005 if (!avail)
2006 return;
2007 }
2008
2009 ptr = skb_tail_pointer(skb);
2010 for (i = 0; i < len; i++)
2011 ptr = hex_byte_pack_upper(ptr, buf[i]);
2012 *ptr = 0;
2013 skb_put(skb, len << 1); /* new string is twice the old string */
2014 }
2015
2016 /*
2017 * Format a string of no more than slen characters into the audit buffer,
2018 * enclosed in quote marks.
2019 */
audit_log_n_string(struct audit_buffer * ab,const char * string,size_t slen)2020 void audit_log_n_string(struct audit_buffer *ab, const char *string,
2021 size_t slen)
2022 {
2023 int avail, new_len;
2024 unsigned char *ptr;
2025 struct sk_buff *skb;
2026
2027 if (!ab)
2028 return;
2029
2030 BUG_ON(!ab->skb);
2031 skb = ab->skb;
2032 avail = skb_tailroom(skb);
2033 new_len = slen + 3; /* enclosing quotes + null terminator */
2034 if (new_len > avail) {
2035 avail = audit_expand(ab, new_len);
2036 if (!avail)
2037 return;
2038 }
2039 ptr = skb_tail_pointer(skb);
2040 *ptr++ = '"';
2041 memcpy(ptr, string, slen);
2042 ptr += slen;
2043 *ptr++ = '"';
2044 *ptr = 0;
2045 skb_put(skb, slen + 2); /* don't include null terminator */
2046 }
2047
2048 /**
2049 * audit_string_contains_control - does a string need to be logged in hex
2050 * @string: string to be checked
2051 * @len: max length of the string to check
2052 */
audit_string_contains_control(const char * string,size_t len)2053 bool audit_string_contains_control(const char *string, size_t len)
2054 {
2055 const unsigned char *p;
2056 for (p = string; p < (const unsigned char *)string + len; p++) {
2057 if (*p == '"' || *p < 0x21 || *p > 0x7e)
2058 return true;
2059 }
2060 return false;
2061 }
2062
2063 /**
2064 * audit_log_n_untrustedstring - log a string that may contain random characters
2065 * @ab: audit_buffer
2066 * @len: length of string (not including trailing null)
2067 * @string: string to be logged
2068 *
2069 * This code will escape a string that is passed to it if the string
2070 * contains a control character, unprintable character, double quote mark,
2071 * or a space. Unescaped strings will start and end with a double quote mark.
2072 * Strings that are escaped are printed in hex (2 digits per char).
2073 *
2074 * The caller specifies the number of characters in the string to log, which may
2075 * or may not be the entire string.
2076 */
audit_log_n_untrustedstring(struct audit_buffer * ab,const char * string,size_t len)2077 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
2078 size_t len)
2079 {
2080 if (audit_string_contains_control(string, len))
2081 audit_log_n_hex(ab, string, len);
2082 else
2083 audit_log_n_string(ab, string, len);
2084 }
2085
2086 /**
2087 * audit_log_untrustedstring - log a string that may contain random characters
2088 * @ab: audit_buffer
2089 * @string: string to be logged
2090 *
2091 * Same as audit_log_n_untrustedstring(), except that strlen is used to
2092 * determine string length.
2093 */
audit_log_untrustedstring(struct audit_buffer * ab,const char * string)2094 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
2095 {
2096 audit_log_n_untrustedstring(ab, string, strlen(string));
2097 }
2098
2099 /* This is a helper-function to print the escaped d_path */
audit_log_d_path(struct audit_buffer * ab,const char * prefix,const struct path * path)2100 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
2101 const struct path *path)
2102 {
2103 char *p, *pathname;
2104
2105 if (prefix)
2106 audit_log_format(ab, "%s", prefix);
2107
2108 /* We will allow 11 spaces for ' (deleted)' to be appended */
2109 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
2110 if (!pathname) {
2111 audit_log_format(ab, "\"<no_memory>\"");
2112 return;
2113 }
2114 p = d_path(path, pathname, PATH_MAX+11);
2115 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
2116 /* FIXME: can we save some information here? */
2117 audit_log_format(ab, "\"<too_long>\"");
2118 } else
2119 audit_log_untrustedstring(ab, p);
2120 kfree(pathname);
2121 }
2122
audit_log_session_info(struct audit_buffer * ab)2123 void audit_log_session_info(struct audit_buffer *ab)
2124 {
2125 unsigned int sessionid = audit_get_sessionid(current);
2126 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
2127
2128 audit_log_format(ab, "auid=%u ses=%u", auid, sessionid);
2129 }
2130
audit_log_key(struct audit_buffer * ab,char * key)2131 void audit_log_key(struct audit_buffer *ab, char *key)
2132 {
2133 audit_log_format(ab, " key=");
2134 if (key)
2135 audit_log_untrustedstring(ab, key);
2136 else
2137 audit_log_format(ab, "(null)");
2138 }
2139
audit_log_task_context(struct audit_buffer * ab)2140 int audit_log_task_context(struct audit_buffer *ab)
2141 {
2142 char *ctx = NULL;
2143 unsigned len;
2144 int error;
2145 u32 sid;
2146
2147 security_task_getsecid(current, &sid);
2148 if (!sid)
2149 return 0;
2150
2151 error = security_secid_to_secctx(sid, &ctx, &len);
2152 if (error) {
2153 if (error != -EINVAL)
2154 goto error_path;
2155 return 0;
2156 }
2157
2158 audit_log_format(ab, " subj=%s", ctx);
2159 security_release_secctx(ctx, len);
2160 return 0;
2161
2162 error_path:
2163 audit_panic("error in audit_log_task_context");
2164 return error;
2165 }
2166 EXPORT_SYMBOL(audit_log_task_context);
2167
audit_log_d_path_exe(struct audit_buffer * ab,struct mm_struct * mm)2168 void audit_log_d_path_exe(struct audit_buffer *ab,
2169 struct mm_struct *mm)
2170 {
2171 struct file *exe_file;
2172
2173 if (!mm)
2174 goto out_null;
2175
2176 exe_file = get_mm_exe_file(mm);
2177 if (!exe_file)
2178 goto out_null;
2179
2180 audit_log_d_path(ab, " exe=", &exe_file->f_path);
2181 fput(exe_file);
2182 return;
2183 out_null:
2184 audit_log_format(ab, " exe=(null)");
2185 }
2186
audit_get_tty(void)2187 struct tty_struct *audit_get_tty(void)
2188 {
2189 struct tty_struct *tty = NULL;
2190 unsigned long flags;
2191
2192 spin_lock_irqsave(¤t->sighand->siglock, flags);
2193 if (current->signal)
2194 tty = tty_kref_get(current->signal->tty);
2195 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
2196 return tty;
2197 }
2198
audit_put_tty(struct tty_struct * tty)2199 void audit_put_tty(struct tty_struct *tty)
2200 {
2201 tty_kref_put(tty);
2202 }
2203
audit_log_task_info(struct audit_buffer * ab)2204 void audit_log_task_info(struct audit_buffer *ab)
2205 {
2206 const struct cred *cred;
2207 char comm[sizeof(current->comm)];
2208 struct tty_struct *tty;
2209
2210 if (!ab)
2211 return;
2212
2213 cred = current_cred();
2214 tty = audit_get_tty();
2215 audit_log_format(ab,
2216 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2217 " euid=%u suid=%u fsuid=%u"
2218 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2219 task_ppid_nr(current),
2220 task_tgid_nr(current),
2221 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2222 from_kuid(&init_user_ns, cred->uid),
2223 from_kgid(&init_user_ns, cred->gid),
2224 from_kuid(&init_user_ns, cred->euid),
2225 from_kuid(&init_user_ns, cred->suid),
2226 from_kuid(&init_user_ns, cred->fsuid),
2227 from_kgid(&init_user_ns, cred->egid),
2228 from_kgid(&init_user_ns, cred->sgid),
2229 from_kgid(&init_user_ns, cred->fsgid),
2230 tty ? tty_name(tty) : "(none)",
2231 audit_get_sessionid(current));
2232 audit_put_tty(tty);
2233 audit_log_format(ab, " comm=");
2234 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2235 audit_log_d_path_exe(ab, current->mm);
2236 audit_log_task_context(ab);
2237 }
2238 EXPORT_SYMBOL(audit_log_task_info);
2239
2240 /**
2241 * audit_log_path_denied - report a path restriction denial
2242 * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc)
2243 * @operation: specific operation name
2244 */
audit_log_path_denied(int type,const char * operation)2245 void audit_log_path_denied(int type, const char *operation)
2246 {
2247 struct audit_buffer *ab;
2248
2249 if (!audit_enabled || audit_dummy_context())
2250 return;
2251
2252 /* Generate log with subject, operation, outcome. */
2253 ab = audit_log_start(audit_context(), GFP_KERNEL, type);
2254 if (!ab)
2255 return;
2256 audit_log_format(ab, "op=%s", operation);
2257 audit_log_task_info(ab);
2258 audit_log_format(ab, " res=0");
2259 audit_log_end(ab);
2260 }
2261
2262 /* global counter which is incremented every time something logs in */
2263 static atomic_t session_id = ATOMIC_INIT(0);
2264
audit_set_loginuid_perm(kuid_t loginuid)2265 static int audit_set_loginuid_perm(kuid_t loginuid)
2266 {
2267 /* if we are unset, we don't need privs */
2268 if (!audit_loginuid_set(current))
2269 return 0;
2270 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2271 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2272 return -EPERM;
2273 /* it is set, you need permission */
2274 if (!capable(CAP_AUDIT_CONTROL))
2275 return -EPERM;
2276 /* reject if this is not an unset and we don't allow that */
2277 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID)
2278 && uid_valid(loginuid))
2279 return -EPERM;
2280 return 0;
2281 }
2282
audit_log_set_loginuid(kuid_t koldloginuid,kuid_t kloginuid,unsigned int oldsessionid,unsigned int sessionid,int rc)2283 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2284 unsigned int oldsessionid,
2285 unsigned int sessionid, int rc)
2286 {
2287 struct audit_buffer *ab;
2288 uid_t uid, oldloginuid, loginuid;
2289 struct tty_struct *tty;
2290
2291 if (!audit_enabled)
2292 return;
2293
2294 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN);
2295 if (!ab)
2296 return;
2297
2298 uid = from_kuid(&init_user_ns, task_uid(current));
2299 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2300 loginuid = from_kuid(&init_user_ns, kloginuid),
2301 tty = audit_get_tty();
2302
2303 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2304 audit_log_task_context(ab);
2305 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2306 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2307 oldsessionid, sessionid, !rc);
2308 audit_put_tty(tty);
2309 audit_log_end(ab);
2310 }
2311
2312 /**
2313 * audit_set_loginuid - set current task's loginuid
2314 * @loginuid: loginuid value
2315 *
2316 * Returns 0.
2317 *
2318 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2319 */
audit_set_loginuid(kuid_t loginuid)2320 int audit_set_loginuid(kuid_t loginuid)
2321 {
2322 unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET;
2323 kuid_t oldloginuid;
2324 int rc;
2325
2326 oldloginuid = audit_get_loginuid(current);
2327 oldsessionid = audit_get_sessionid(current);
2328
2329 rc = audit_set_loginuid_perm(loginuid);
2330 if (rc)
2331 goto out;
2332
2333 /* are we setting or clearing? */
2334 if (uid_valid(loginuid)) {
2335 sessionid = (unsigned int)atomic_inc_return(&session_id);
2336 if (unlikely(sessionid == AUDIT_SID_UNSET))
2337 sessionid = (unsigned int)atomic_inc_return(&session_id);
2338 }
2339
2340 current->sessionid = sessionid;
2341 current->loginuid = loginuid;
2342 out:
2343 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2344 return rc;
2345 }
2346
2347 /**
2348 * audit_signal_info - record signal info for shutting down audit subsystem
2349 * @sig: signal value
2350 * @t: task being signaled
2351 *
2352 * If the audit subsystem is being terminated, record the task (pid)
2353 * and uid that is doing that.
2354 */
audit_signal_info(int sig,struct task_struct * t)2355 int audit_signal_info(int sig, struct task_struct *t)
2356 {
2357 kuid_t uid = current_uid(), auid;
2358
2359 if (auditd_test_task(t) &&
2360 (sig == SIGTERM || sig == SIGHUP ||
2361 sig == SIGUSR1 || sig == SIGUSR2)) {
2362 audit_sig_pid = task_tgid_nr(current);
2363 auid = audit_get_loginuid(current);
2364 if (uid_valid(auid))
2365 audit_sig_uid = auid;
2366 else
2367 audit_sig_uid = uid;
2368 security_task_getsecid(current, &audit_sig_sid);
2369 }
2370
2371 return audit_signal_info_syscall(t);
2372 }
2373
2374 /**
2375 * audit_log_end - end one audit record
2376 * @ab: the audit_buffer
2377 *
2378 * We can not do a netlink send inside an irq context because it blocks (last
2379 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2380 * queue and a tasklet is scheduled to remove them from the queue outside the
2381 * irq context. May be called in any context.
2382 */
audit_log_end(struct audit_buffer * ab)2383 void audit_log_end(struct audit_buffer *ab)
2384 {
2385 struct sk_buff *skb;
2386 struct nlmsghdr *nlh;
2387
2388 if (!ab)
2389 return;
2390
2391 if (audit_rate_check()) {
2392 skb = ab->skb;
2393 ab->skb = NULL;
2394
2395 /* setup the netlink header, see the comments in
2396 * kauditd_send_multicast_skb() for length quirks */
2397 nlh = nlmsg_hdr(skb);
2398 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2399
2400 /* queue the netlink packet and poke the kauditd thread */
2401 skb_queue_tail(&audit_queue, skb);
2402 wake_up_interruptible(&kauditd_wait);
2403 } else
2404 audit_log_lost("rate limit exceeded");
2405
2406 audit_buffer_free(ab);
2407 }
2408
2409 /**
2410 * audit_log - Log an audit record
2411 * @ctx: audit context
2412 * @gfp_mask: type of allocation
2413 * @type: audit message type
2414 * @fmt: format string to use
2415 * @...: variable parameters matching the format string
2416 *
2417 * This is a convenience function that calls audit_log_start,
2418 * audit_log_vformat, and audit_log_end. It may be called
2419 * in any context.
2420 */
audit_log(struct audit_context * ctx,gfp_t gfp_mask,int type,const char * fmt,...)2421 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2422 const char *fmt, ...)
2423 {
2424 struct audit_buffer *ab;
2425 va_list args;
2426
2427 ab = audit_log_start(ctx, gfp_mask, type);
2428 if (ab) {
2429 va_start(args, fmt);
2430 audit_log_vformat(ab, fmt, args);
2431 va_end(args);
2432 audit_log_end(ab);
2433 }
2434 }
2435
2436 EXPORT_SYMBOL(audit_log_start);
2437 EXPORT_SYMBOL(audit_log_end);
2438 EXPORT_SYMBOL(audit_log_format);
2439 EXPORT_SYMBOL(audit_log);
2440