1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Implementation of the kernel access vector cache (AVC).
4 *
5 * Authors: Stephen Smalley, <sds@tycho.nsa.gov>
6 * James Morris <jmorris@redhat.com>
7 *
8 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com>
9 * Replaced the avc_lock spinlock by RCU.
10 *
11 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
12 */
13 #include <linux/types.h>
14 #include <linux/stddef.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/fs.h>
18 #include <linux/dcache.h>
19 #include <linux/init.h>
20 #include <linux/skbuff.h>
21 #include <linux/percpu.h>
22 #include <linux/list.h>
23 #include <net/sock.h>
24 #include <linux/un.h>
25 #include <net/af_unix.h>
26 #include <linux/ip.h>
27 #include <linux/audit.h>
28 #include <linux/ipv6.h>
29 #include <net/ipv6.h>
30 #include "avc.h"
31 #include "avc_ss.h"
32 #include "classmap.h"
33
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/avc.h>
36
37 #define AVC_CACHE_SLOTS 512
38 #define AVC_DEF_CACHE_THRESHOLD 512
39 #define AVC_CACHE_RECLAIM 16
40
41 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
42 #define avc_cache_stats_incr(field) this_cpu_inc(avc_cache_stats.field)
43 #else
44 #define avc_cache_stats_incr(field) do {} while (0)
45 #endif
46
47 struct avc_entry {
48 u32 ssid;
49 u32 tsid;
50 u16 tclass;
51 struct av_decision avd;
52 struct avc_xperms_node *xp_node;
53 };
54
55 struct avc_node {
56 struct avc_entry ae;
57 struct hlist_node list; /* anchored in avc_cache->slots[i] */
58 struct rcu_head rhead;
59 };
60
61 struct avc_xperms_decision_node {
62 struct extended_perms_decision xpd;
63 struct list_head xpd_list; /* list of extended_perms_decision */
64 };
65
66 struct avc_xperms_node {
67 struct extended_perms xp;
68 struct list_head xpd_head; /* list head of extended_perms_decision */
69 };
70
71 struct avc_cache {
72 struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
73 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
74 atomic_t lru_hint; /* LRU hint for reclaim scan */
75 atomic_t active_nodes;
76 u32 latest_notif; /* latest revocation notification */
77 };
78
79 struct avc_callback_node {
80 int (*callback) (u32 event);
81 u32 events;
82 struct avc_callback_node *next;
83 };
84
85 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
86 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
87 #endif
88
89 struct selinux_avc {
90 unsigned int avc_cache_threshold;
91 struct avc_cache avc_cache;
92 };
93
94 static struct selinux_avc selinux_avc;
95
selinux_avc_init(struct selinux_avc ** avc)96 void selinux_avc_init(struct selinux_avc **avc)
97 {
98 int i;
99
100 selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
101 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
102 INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]);
103 spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]);
104 }
105 atomic_set(&selinux_avc.avc_cache.active_nodes, 0);
106 atomic_set(&selinux_avc.avc_cache.lru_hint, 0);
107 *avc = &selinux_avc;
108 }
109
avc_get_cache_threshold(struct selinux_avc * avc)110 unsigned int avc_get_cache_threshold(struct selinux_avc *avc)
111 {
112 return avc->avc_cache_threshold;
113 }
114
avc_set_cache_threshold(struct selinux_avc * avc,unsigned int cache_threshold)115 void avc_set_cache_threshold(struct selinux_avc *avc,
116 unsigned int cache_threshold)
117 {
118 avc->avc_cache_threshold = cache_threshold;
119 }
120
121 static struct avc_callback_node *avc_callbacks;
122 static struct kmem_cache *avc_node_cachep;
123 static struct kmem_cache *avc_xperms_data_cachep;
124 static struct kmem_cache *avc_xperms_decision_cachep;
125 static struct kmem_cache *avc_xperms_cachep;
126
avc_hash(u32 ssid,u32 tsid,u16 tclass)127 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
128 {
129 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
130 }
131
132 /**
133 * avc_init - Initialize the AVC.
134 *
135 * Initialize the access vector cache.
136 */
avc_init(void)137 void __init avc_init(void)
138 {
139 avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
140 0, SLAB_PANIC, NULL);
141 avc_xperms_cachep = kmem_cache_create("avc_xperms_node",
142 sizeof(struct avc_xperms_node),
143 0, SLAB_PANIC, NULL);
144 avc_xperms_decision_cachep = kmem_cache_create(
145 "avc_xperms_decision_node",
146 sizeof(struct avc_xperms_decision_node),
147 0, SLAB_PANIC, NULL);
148 avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data",
149 sizeof(struct extended_perms_data),
150 0, SLAB_PANIC, NULL);
151 }
152
avc_get_hash_stats(struct selinux_avc * avc,char * page)153 int avc_get_hash_stats(struct selinux_avc *avc, char *page)
154 {
155 int i, chain_len, max_chain_len, slots_used;
156 struct avc_node *node;
157 struct hlist_head *head;
158
159 rcu_read_lock();
160
161 slots_used = 0;
162 max_chain_len = 0;
163 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
164 head = &avc->avc_cache.slots[i];
165 if (!hlist_empty(head)) {
166 slots_used++;
167 chain_len = 0;
168 hlist_for_each_entry_rcu(node, head, list)
169 chain_len++;
170 if (chain_len > max_chain_len)
171 max_chain_len = chain_len;
172 }
173 }
174
175 rcu_read_unlock();
176
177 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
178 "longest chain: %d\n",
179 atomic_read(&avc->avc_cache.active_nodes),
180 slots_used, AVC_CACHE_SLOTS, max_chain_len);
181 }
182
183 /*
184 * using a linked list for extended_perms_decision lookup because the list is
185 * always small. i.e. less than 5, typically 1
186 */
avc_xperms_decision_lookup(u8 driver,struct avc_xperms_node * xp_node)187 static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver,
188 struct avc_xperms_node *xp_node)
189 {
190 struct avc_xperms_decision_node *xpd_node;
191
192 list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) {
193 if (xpd_node->xpd.driver == driver)
194 return &xpd_node->xpd;
195 }
196 return NULL;
197 }
198
199 static inline unsigned int
avc_xperms_has_perm(struct extended_perms_decision * xpd,u8 perm,u8 which)200 avc_xperms_has_perm(struct extended_perms_decision *xpd,
201 u8 perm, u8 which)
202 {
203 unsigned int rc = 0;
204
205 if ((which == XPERMS_ALLOWED) &&
206 (xpd->used & XPERMS_ALLOWED))
207 rc = security_xperm_test(xpd->allowed->p, perm);
208 else if ((which == XPERMS_AUDITALLOW) &&
209 (xpd->used & XPERMS_AUDITALLOW))
210 rc = security_xperm_test(xpd->auditallow->p, perm);
211 else if ((which == XPERMS_DONTAUDIT) &&
212 (xpd->used & XPERMS_DONTAUDIT))
213 rc = security_xperm_test(xpd->dontaudit->p, perm);
214 return rc;
215 }
216
avc_xperms_allow_perm(struct avc_xperms_node * xp_node,u8 driver,u8 perm)217 static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node,
218 u8 driver, u8 perm)
219 {
220 struct extended_perms_decision *xpd;
221 security_xperm_set(xp_node->xp.drivers.p, driver);
222 xpd = avc_xperms_decision_lookup(driver, xp_node);
223 if (xpd && xpd->allowed)
224 security_xperm_set(xpd->allowed->p, perm);
225 }
226
avc_xperms_decision_free(struct avc_xperms_decision_node * xpd_node)227 static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node)
228 {
229 struct extended_perms_decision *xpd;
230
231 xpd = &xpd_node->xpd;
232 if (xpd->allowed)
233 kmem_cache_free(avc_xperms_data_cachep, xpd->allowed);
234 if (xpd->auditallow)
235 kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow);
236 if (xpd->dontaudit)
237 kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit);
238 kmem_cache_free(avc_xperms_decision_cachep, xpd_node);
239 }
240
avc_xperms_free(struct avc_xperms_node * xp_node)241 static void avc_xperms_free(struct avc_xperms_node *xp_node)
242 {
243 struct avc_xperms_decision_node *xpd_node, *tmp;
244
245 if (!xp_node)
246 return;
247
248 list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) {
249 list_del(&xpd_node->xpd_list);
250 avc_xperms_decision_free(xpd_node);
251 }
252 kmem_cache_free(avc_xperms_cachep, xp_node);
253 }
254
avc_copy_xperms_decision(struct extended_perms_decision * dest,struct extended_perms_decision * src)255 static void avc_copy_xperms_decision(struct extended_perms_decision *dest,
256 struct extended_perms_decision *src)
257 {
258 dest->driver = src->driver;
259 dest->used = src->used;
260 if (dest->used & XPERMS_ALLOWED)
261 memcpy(dest->allowed->p, src->allowed->p,
262 sizeof(src->allowed->p));
263 if (dest->used & XPERMS_AUDITALLOW)
264 memcpy(dest->auditallow->p, src->auditallow->p,
265 sizeof(src->auditallow->p));
266 if (dest->used & XPERMS_DONTAUDIT)
267 memcpy(dest->dontaudit->p, src->dontaudit->p,
268 sizeof(src->dontaudit->p));
269 }
270
271 /*
272 * similar to avc_copy_xperms_decision, but only copy decision
273 * information relevant to this perm
274 */
avc_quick_copy_xperms_decision(u8 perm,struct extended_perms_decision * dest,struct extended_perms_decision * src)275 static inline void avc_quick_copy_xperms_decision(u8 perm,
276 struct extended_perms_decision *dest,
277 struct extended_perms_decision *src)
278 {
279 /*
280 * compute index of the u32 of the 256 bits (8 u32s) that contain this
281 * command permission
282 */
283 u8 i = perm >> 5;
284
285 dest->used = src->used;
286 if (dest->used & XPERMS_ALLOWED)
287 dest->allowed->p[i] = src->allowed->p[i];
288 if (dest->used & XPERMS_AUDITALLOW)
289 dest->auditallow->p[i] = src->auditallow->p[i];
290 if (dest->used & XPERMS_DONTAUDIT)
291 dest->dontaudit->p[i] = src->dontaudit->p[i];
292 }
293
294 static struct avc_xperms_decision_node
avc_xperms_decision_alloc(u8 which)295 *avc_xperms_decision_alloc(u8 which)
296 {
297 struct avc_xperms_decision_node *xpd_node;
298 struct extended_perms_decision *xpd;
299
300 xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep,
301 GFP_NOWAIT | __GFP_NOWARN);
302 if (!xpd_node)
303 return NULL;
304
305 xpd = &xpd_node->xpd;
306 if (which & XPERMS_ALLOWED) {
307 xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep,
308 GFP_NOWAIT | __GFP_NOWARN);
309 if (!xpd->allowed)
310 goto error;
311 }
312 if (which & XPERMS_AUDITALLOW) {
313 xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep,
314 GFP_NOWAIT | __GFP_NOWARN);
315 if (!xpd->auditallow)
316 goto error;
317 }
318 if (which & XPERMS_DONTAUDIT) {
319 xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep,
320 GFP_NOWAIT | __GFP_NOWARN);
321 if (!xpd->dontaudit)
322 goto error;
323 }
324 return xpd_node;
325 error:
326 avc_xperms_decision_free(xpd_node);
327 return NULL;
328 }
329
avc_add_xperms_decision(struct avc_node * node,struct extended_perms_decision * src)330 static int avc_add_xperms_decision(struct avc_node *node,
331 struct extended_perms_decision *src)
332 {
333 struct avc_xperms_decision_node *dest_xpd;
334
335 node->ae.xp_node->xp.len++;
336 dest_xpd = avc_xperms_decision_alloc(src->used);
337 if (!dest_xpd)
338 return -ENOMEM;
339 avc_copy_xperms_decision(&dest_xpd->xpd, src);
340 list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head);
341 return 0;
342 }
343
avc_xperms_alloc(void)344 static struct avc_xperms_node *avc_xperms_alloc(void)
345 {
346 struct avc_xperms_node *xp_node;
347
348 xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT | __GFP_NOWARN);
349 if (!xp_node)
350 return xp_node;
351 INIT_LIST_HEAD(&xp_node->xpd_head);
352 return xp_node;
353 }
354
avc_xperms_populate(struct avc_node * node,struct avc_xperms_node * src)355 static int avc_xperms_populate(struct avc_node *node,
356 struct avc_xperms_node *src)
357 {
358 struct avc_xperms_node *dest;
359 struct avc_xperms_decision_node *dest_xpd;
360 struct avc_xperms_decision_node *src_xpd;
361
362 if (src->xp.len == 0)
363 return 0;
364 dest = avc_xperms_alloc();
365 if (!dest)
366 return -ENOMEM;
367
368 memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p));
369 dest->xp.len = src->xp.len;
370
371 /* for each source xpd allocate a destination xpd and copy */
372 list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) {
373 dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used);
374 if (!dest_xpd)
375 goto error;
376 avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd);
377 list_add(&dest_xpd->xpd_list, &dest->xpd_head);
378 }
379 node->ae.xp_node = dest;
380 return 0;
381 error:
382 avc_xperms_free(dest);
383 return -ENOMEM;
384
385 }
386
avc_xperms_audit_required(u32 requested,struct av_decision * avd,struct extended_perms_decision * xpd,u8 perm,int result,u32 * deniedp)387 static inline u32 avc_xperms_audit_required(u32 requested,
388 struct av_decision *avd,
389 struct extended_perms_decision *xpd,
390 u8 perm,
391 int result,
392 u32 *deniedp)
393 {
394 u32 denied, audited;
395
396 denied = requested & ~avd->allowed;
397 if (unlikely(denied)) {
398 audited = denied & avd->auditdeny;
399 if (audited && xpd) {
400 if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT))
401 audited &= ~requested;
402 }
403 } else if (result) {
404 audited = denied = requested;
405 } else {
406 audited = requested & avd->auditallow;
407 if (audited && xpd) {
408 if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW))
409 audited &= ~requested;
410 }
411 }
412
413 *deniedp = denied;
414 return audited;
415 }
416
avc_xperms_audit(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 requested,struct av_decision * avd,struct extended_perms_decision * xpd,u8 perm,int result,struct common_audit_data * ad)417 static inline int avc_xperms_audit(struct selinux_state *state,
418 u32 ssid, u32 tsid, u16 tclass,
419 u32 requested, struct av_decision *avd,
420 struct extended_perms_decision *xpd,
421 u8 perm, int result,
422 struct common_audit_data *ad)
423 {
424 u32 audited, denied;
425
426 audited = avc_xperms_audit_required(
427 requested, avd, xpd, perm, result, &denied);
428 if (likely(!audited))
429 return 0;
430 return slow_avc_audit(state, ssid, tsid, tclass, requested,
431 audited, denied, result, ad);
432 }
433
avc_node_free(struct rcu_head * rhead)434 static void avc_node_free(struct rcu_head *rhead)
435 {
436 struct avc_node *node = container_of(rhead, struct avc_node, rhead);
437 avc_xperms_free(node->ae.xp_node);
438 kmem_cache_free(avc_node_cachep, node);
439 avc_cache_stats_incr(frees);
440 }
441
avc_node_delete(struct selinux_avc * avc,struct avc_node * node)442 static void avc_node_delete(struct selinux_avc *avc, struct avc_node *node)
443 {
444 hlist_del_rcu(&node->list);
445 call_rcu(&node->rhead, avc_node_free);
446 atomic_dec(&avc->avc_cache.active_nodes);
447 }
448
avc_node_kill(struct selinux_avc * avc,struct avc_node * node)449 static void avc_node_kill(struct selinux_avc *avc, struct avc_node *node)
450 {
451 avc_xperms_free(node->ae.xp_node);
452 kmem_cache_free(avc_node_cachep, node);
453 avc_cache_stats_incr(frees);
454 atomic_dec(&avc->avc_cache.active_nodes);
455 }
456
avc_node_replace(struct selinux_avc * avc,struct avc_node * new,struct avc_node * old)457 static void avc_node_replace(struct selinux_avc *avc,
458 struct avc_node *new, struct avc_node *old)
459 {
460 hlist_replace_rcu(&old->list, &new->list);
461 call_rcu(&old->rhead, avc_node_free);
462 atomic_dec(&avc->avc_cache.active_nodes);
463 }
464
avc_reclaim_node(struct selinux_avc * avc)465 static inline int avc_reclaim_node(struct selinux_avc *avc)
466 {
467 struct avc_node *node;
468 int hvalue, try, ecx;
469 unsigned long flags;
470 struct hlist_head *head;
471 spinlock_t *lock;
472
473 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
474 hvalue = atomic_inc_return(&avc->avc_cache.lru_hint) &
475 (AVC_CACHE_SLOTS - 1);
476 head = &avc->avc_cache.slots[hvalue];
477 lock = &avc->avc_cache.slots_lock[hvalue];
478
479 if (!spin_trylock_irqsave(lock, flags))
480 continue;
481
482 rcu_read_lock();
483 hlist_for_each_entry(node, head, list) {
484 avc_node_delete(avc, node);
485 avc_cache_stats_incr(reclaims);
486 ecx++;
487 if (ecx >= AVC_CACHE_RECLAIM) {
488 rcu_read_unlock();
489 spin_unlock_irqrestore(lock, flags);
490 goto out;
491 }
492 }
493 rcu_read_unlock();
494 spin_unlock_irqrestore(lock, flags);
495 }
496 out:
497 return ecx;
498 }
499
avc_alloc_node(struct selinux_avc * avc)500 static struct avc_node *avc_alloc_node(struct selinux_avc *avc)
501 {
502 struct avc_node *node;
503
504 node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT | __GFP_NOWARN);
505 if (!node)
506 goto out;
507
508 INIT_HLIST_NODE(&node->list);
509 avc_cache_stats_incr(allocations);
510
511 if (atomic_inc_return(&avc->avc_cache.active_nodes) >
512 avc->avc_cache_threshold)
513 avc_reclaim_node(avc);
514
515 out:
516 return node;
517 }
518
avc_node_populate(struct avc_node * node,u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)519 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
520 {
521 node->ae.ssid = ssid;
522 node->ae.tsid = tsid;
523 node->ae.tclass = tclass;
524 memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
525 }
526
avc_search_node(struct selinux_avc * avc,u32 ssid,u32 tsid,u16 tclass)527 static inline struct avc_node *avc_search_node(struct selinux_avc *avc,
528 u32 ssid, u32 tsid, u16 tclass)
529 {
530 struct avc_node *node, *ret = NULL;
531 int hvalue;
532 struct hlist_head *head;
533
534 hvalue = avc_hash(ssid, tsid, tclass);
535 head = &avc->avc_cache.slots[hvalue];
536 hlist_for_each_entry_rcu(node, head, list) {
537 if (ssid == node->ae.ssid &&
538 tclass == node->ae.tclass &&
539 tsid == node->ae.tsid) {
540 ret = node;
541 break;
542 }
543 }
544
545 return ret;
546 }
547
548 /**
549 * avc_lookup - Look up an AVC entry.
550 * @ssid: source security identifier
551 * @tsid: target security identifier
552 * @tclass: target security class
553 *
554 * Look up an AVC entry that is valid for the
555 * (@ssid, @tsid), interpreting the permissions
556 * based on @tclass. If a valid AVC entry exists,
557 * then this function returns the avc_node.
558 * Otherwise, this function returns NULL.
559 */
avc_lookup(struct selinux_avc * avc,u32 ssid,u32 tsid,u16 tclass)560 static struct avc_node *avc_lookup(struct selinux_avc *avc,
561 u32 ssid, u32 tsid, u16 tclass)
562 {
563 struct avc_node *node;
564
565 avc_cache_stats_incr(lookups);
566 node = avc_search_node(avc, ssid, tsid, tclass);
567
568 if (node)
569 return node;
570
571 avc_cache_stats_incr(misses);
572 return NULL;
573 }
574
avc_latest_notif_update(struct selinux_avc * avc,int seqno,int is_insert)575 static int avc_latest_notif_update(struct selinux_avc *avc,
576 int seqno, int is_insert)
577 {
578 int ret = 0;
579 static DEFINE_SPINLOCK(notif_lock);
580 unsigned long flag;
581
582 spin_lock_irqsave(¬if_lock, flag);
583 if (is_insert) {
584 if (seqno < avc->avc_cache.latest_notif) {
585 pr_warn("SELinux: avc: seqno %d < latest_notif %d\n",
586 seqno, avc->avc_cache.latest_notif);
587 ret = -EAGAIN;
588 }
589 } else {
590 if (seqno > avc->avc_cache.latest_notif)
591 avc->avc_cache.latest_notif = seqno;
592 }
593 spin_unlock_irqrestore(¬if_lock, flag);
594
595 return ret;
596 }
597
598 /**
599 * avc_insert - Insert an AVC entry.
600 * @ssid: source security identifier
601 * @tsid: target security identifier
602 * @tclass: target security class
603 * @avd: resulting av decision
604 * @xp_node: resulting extended permissions
605 *
606 * Insert an AVC entry for the SID pair
607 * (@ssid, @tsid) and class @tclass.
608 * The access vectors and the sequence number are
609 * normally provided by the security server in
610 * response to a security_compute_av() call. If the
611 * sequence number @avd->seqno is not less than the latest
612 * revocation notification, then the function copies
613 * the access vectors into a cache entry, returns
614 * avc_node inserted. Otherwise, this function returns NULL.
615 */
avc_insert(struct selinux_avc * avc,u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd,struct avc_xperms_node * xp_node)616 static struct avc_node *avc_insert(struct selinux_avc *avc,
617 u32 ssid, u32 tsid, u16 tclass,
618 struct av_decision *avd,
619 struct avc_xperms_node *xp_node)
620 {
621 struct avc_node *pos, *node = NULL;
622 int hvalue;
623 unsigned long flag;
624 spinlock_t *lock;
625 struct hlist_head *head;
626
627 if (avc_latest_notif_update(avc, avd->seqno, 1))
628 return NULL;
629
630 node = avc_alloc_node(avc);
631 if (!node)
632 return NULL;
633
634 avc_node_populate(node, ssid, tsid, tclass, avd);
635 if (avc_xperms_populate(node, xp_node)) {
636 avc_node_kill(avc, node);
637 return NULL;
638 }
639
640 hvalue = avc_hash(ssid, tsid, tclass);
641 head = &avc->avc_cache.slots[hvalue];
642 lock = &avc->avc_cache.slots_lock[hvalue];
643 spin_lock_irqsave(lock, flag);
644 hlist_for_each_entry(pos, head, list) {
645 if (pos->ae.ssid == ssid &&
646 pos->ae.tsid == tsid &&
647 pos->ae.tclass == tclass) {
648 avc_node_replace(avc, node, pos);
649 goto found;
650 }
651 }
652 hlist_add_head_rcu(&node->list, head);
653 found:
654 spin_unlock_irqrestore(lock, flag);
655 return node;
656 }
657
658 /**
659 * avc_audit_pre_callback - SELinux specific information
660 * will be called by generic audit code
661 * @ab: the audit buffer
662 * @a: audit_data
663 */
avc_audit_pre_callback(struct audit_buffer * ab,void * a)664 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
665 {
666 struct common_audit_data *ad = a;
667 struct selinux_audit_data *sad = ad->selinux_audit_data;
668 u32 av = sad->audited;
669 const char **perms;
670 int i, perm;
671
672 audit_log_format(ab, "avc: %s ", sad->denied ? "denied" : "granted");
673
674 if (av == 0) {
675 audit_log_format(ab, " null");
676 return;
677 }
678
679 perms = secclass_map[sad->tclass-1].perms;
680
681 audit_log_format(ab, " {");
682 i = 0;
683 perm = 1;
684 while (i < (sizeof(av) * 8)) {
685 if ((perm & av) && perms[i]) {
686 audit_log_format(ab, " %s", perms[i]);
687 av &= ~perm;
688 }
689 i++;
690 perm <<= 1;
691 }
692
693 if (av)
694 audit_log_format(ab, " 0x%x", av);
695
696 audit_log_format(ab, " } for ");
697 }
698
699 /**
700 * avc_audit_post_callback - SELinux specific information
701 * will be called by generic audit code
702 * @ab: the audit buffer
703 * @a: audit_data
704 */
avc_audit_post_callback(struct audit_buffer * ab,void * a)705 static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
706 {
707 struct common_audit_data *ad = a;
708 struct selinux_audit_data *sad = ad->selinux_audit_data;
709 char *scontext = NULL;
710 char *tcontext = NULL;
711 const char *tclass = NULL;
712 u32 scontext_len;
713 u32 tcontext_len;
714 int rc;
715
716 rc = security_sid_to_context(sad->state, sad->ssid, &scontext,
717 &scontext_len);
718 if (rc)
719 audit_log_format(ab, " ssid=%d", sad->ssid);
720 else
721 audit_log_format(ab, " scontext=%s", scontext);
722
723 rc = security_sid_to_context(sad->state, sad->tsid, &tcontext,
724 &tcontext_len);
725 if (rc)
726 audit_log_format(ab, " tsid=%d", sad->tsid);
727 else
728 audit_log_format(ab, " tcontext=%s", tcontext);
729
730 tclass = secclass_map[sad->tclass-1].name;
731 audit_log_format(ab, " tclass=%s", tclass);
732
733 if (sad->denied)
734 audit_log_format(ab, " permissive=%u", sad->result ? 0 : 1);
735
736 trace_selinux_audited(sad, scontext, tcontext, tclass);
737 kfree(tcontext);
738 kfree(scontext);
739
740 /* in case of invalid context report also the actual context string */
741 rc = security_sid_to_context_inval(sad->state, sad->ssid, &scontext,
742 &scontext_len);
743 if (!rc && scontext) {
744 if (scontext_len && scontext[scontext_len - 1] == '\0')
745 scontext_len--;
746 audit_log_format(ab, " srawcon=");
747 audit_log_n_untrustedstring(ab, scontext, scontext_len);
748 kfree(scontext);
749 }
750
751 rc = security_sid_to_context_inval(sad->state, sad->tsid, &scontext,
752 &scontext_len);
753 if (!rc && scontext) {
754 if (scontext_len && scontext[scontext_len - 1] == '\0')
755 scontext_len--;
756 audit_log_format(ab, " trawcon=");
757 audit_log_n_untrustedstring(ab, scontext, scontext_len);
758 kfree(scontext);
759 }
760 }
761
762 /* This is the slow part of avc audit with big stack footprint */
slow_avc_audit(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 requested,u32 audited,u32 denied,int result,struct common_audit_data * a)763 noinline int slow_avc_audit(struct selinux_state *state,
764 u32 ssid, u32 tsid, u16 tclass,
765 u32 requested, u32 audited, u32 denied, int result,
766 struct common_audit_data *a)
767 {
768 struct common_audit_data stack_data;
769 struct selinux_audit_data sad;
770
771 if (WARN_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map)))
772 return -EINVAL;
773
774 if (!a) {
775 a = &stack_data;
776 a->type = LSM_AUDIT_DATA_NONE;
777 }
778
779 sad.tclass = tclass;
780 sad.requested = requested;
781 sad.ssid = ssid;
782 sad.tsid = tsid;
783 sad.audited = audited;
784 sad.denied = denied;
785 sad.result = result;
786 sad.state = state;
787
788 a->selinux_audit_data = &sad;
789
790 common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
791 return 0;
792 }
793
794 /**
795 * avc_add_callback - Register a callback for security events.
796 * @callback: callback function
797 * @events: security events
798 *
799 * Register a callback function for events in the set @events.
800 * Returns %0 on success or -%ENOMEM if insufficient memory
801 * exists to add the callback.
802 */
avc_add_callback(int (* callback)(u32 event),u32 events)803 int __init avc_add_callback(int (*callback)(u32 event), u32 events)
804 {
805 struct avc_callback_node *c;
806 int rc = 0;
807
808 c = kmalloc(sizeof(*c), GFP_KERNEL);
809 if (!c) {
810 rc = -ENOMEM;
811 goto out;
812 }
813
814 c->callback = callback;
815 c->events = events;
816 c->next = avc_callbacks;
817 avc_callbacks = c;
818 out:
819 return rc;
820 }
821
822 /**
823 * avc_update_node Update an AVC entry
824 * @event : Updating event
825 * @perms : Permission mask bits
826 * @ssid,@tsid,@tclass : identifier of an AVC entry
827 * @seqno : sequence number when decision was made
828 * @xpd: extended_perms_decision to be added to the node
829 * @flags: the AVC_* flags, e.g. AVC_NONBLOCKING, AVC_EXTENDED_PERMS, or 0.
830 *
831 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
832 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
833 * otherwise, this function updates the AVC entry. The original AVC-entry object
834 * will release later by RCU.
835 */
avc_update_node(struct selinux_avc * avc,u32 event,u32 perms,u8 driver,u8 xperm,u32 ssid,u32 tsid,u16 tclass,u32 seqno,struct extended_perms_decision * xpd,u32 flags)836 static int avc_update_node(struct selinux_avc *avc,
837 u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid,
838 u32 tsid, u16 tclass, u32 seqno,
839 struct extended_perms_decision *xpd,
840 u32 flags)
841 {
842 int hvalue, rc = 0;
843 unsigned long flag;
844 struct avc_node *pos, *node, *orig = NULL;
845 struct hlist_head *head;
846 spinlock_t *lock;
847
848 /*
849 * If we are in a non-blocking code path, e.g. VFS RCU walk,
850 * then we must not add permissions to a cache entry
851 * because we will not audit the denial. Otherwise,
852 * during the subsequent blocking retry (e.g. VFS ref walk), we
853 * will find the permissions already granted in the cache entry
854 * and won't audit anything at all, leading to silent denials in
855 * permissive mode that only appear when in enforcing mode.
856 *
857 * See the corresponding handling of MAY_NOT_BLOCK in avc_audit()
858 * and selinux_inode_permission().
859 */
860 if (flags & AVC_NONBLOCKING)
861 return 0;
862
863 node = avc_alloc_node(avc);
864 if (!node) {
865 rc = -ENOMEM;
866 goto out;
867 }
868
869 /* Lock the target slot */
870 hvalue = avc_hash(ssid, tsid, tclass);
871
872 head = &avc->avc_cache.slots[hvalue];
873 lock = &avc->avc_cache.slots_lock[hvalue];
874
875 spin_lock_irqsave(lock, flag);
876
877 hlist_for_each_entry(pos, head, list) {
878 if (ssid == pos->ae.ssid &&
879 tsid == pos->ae.tsid &&
880 tclass == pos->ae.tclass &&
881 seqno == pos->ae.avd.seqno){
882 orig = pos;
883 break;
884 }
885 }
886
887 if (!orig) {
888 rc = -ENOENT;
889 avc_node_kill(avc, node);
890 goto out_unlock;
891 }
892
893 /*
894 * Copy and replace original node.
895 */
896
897 avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
898
899 if (orig->ae.xp_node) {
900 rc = avc_xperms_populate(node, orig->ae.xp_node);
901 if (rc) {
902 avc_node_kill(avc, node);
903 goto out_unlock;
904 }
905 }
906
907 switch (event) {
908 case AVC_CALLBACK_GRANT:
909 node->ae.avd.allowed |= perms;
910 if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS))
911 avc_xperms_allow_perm(node->ae.xp_node, driver, xperm);
912 break;
913 case AVC_CALLBACK_TRY_REVOKE:
914 case AVC_CALLBACK_REVOKE:
915 node->ae.avd.allowed &= ~perms;
916 break;
917 case AVC_CALLBACK_AUDITALLOW_ENABLE:
918 node->ae.avd.auditallow |= perms;
919 break;
920 case AVC_CALLBACK_AUDITALLOW_DISABLE:
921 node->ae.avd.auditallow &= ~perms;
922 break;
923 case AVC_CALLBACK_AUDITDENY_ENABLE:
924 node->ae.avd.auditdeny |= perms;
925 break;
926 case AVC_CALLBACK_AUDITDENY_DISABLE:
927 node->ae.avd.auditdeny &= ~perms;
928 break;
929 case AVC_CALLBACK_ADD_XPERMS:
930 avc_add_xperms_decision(node, xpd);
931 break;
932 }
933 avc_node_replace(avc, node, orig);
934 out_unlock:
935 spin_unlock_irqrestore(lock, flag);
936 out:
937 return rc;
938 }
939
940 /**
941 * avc_flush - Flush the cache
942 */
avc_flush(struct selinux_avc * avc)943 static void avc_flush(struct selinux_avc *avc)
944 {
945 struct hlist_head *head;
946 struct avc_node *node;
947 spinlock_t *lock;
948 unsigned long flag;
949 int i;
950
951 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
952 head = &avc->avc_cache.slots[i];
953 lock = &avc->avc_cache.slots_lock[i];
954
955 spin_lock_irqsave(lock, flag);
956 /*
957 * With preemptable RCU, the outer spinlock does not
958 * prevent RCU grace periods from ending.
959 */
960 rcu_read_lock();
961 hlist_for_each_entry(node, head, list)
962 avc_node_delete(avc, node);
963 rcu_read_unlock();
964 spin_unlock_irqrestore(lock, flag);
965 }
966 }
967
968 /**
969 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
970 * @seqno: policy sequence number
971 */
avc_ss_reset(struct selinux_avc * avc,u32 seqno)972 int avc_ss_reset(struct selinux_avc *avc, u32 seqno)
973 {
974 struct avc_callback_node *c;
975 int rc = 0, tmprc;
976
977 avc_flush(avc);
978
979 for (c = avc_callbacks; c; c = c->next) {
980 if (c->events & AVC_CALLBACK_RESET) {
981 tmprc = c->callback(AVC_CALLBACK_RESET);
982 /* save the first error encountered for the return
983 value and continue processing the callbacks */
984 if (!rc)
985 rc = tmprc;
986 }
987 }
988
989 avc_latest_notif_update(avc, seqno, 0);
990 return rc;
991 }
992
993 /*
994 * Slow-path helper function for avc_has_perm_noaudit,
995 * when the avc_node lookup fails. We get called with
996 * the RCU read lock held, and need to return with it
997 * still held, but drop if for the security compute.
998 *
999 * Don't inline this, since it's the slow-path and just
1000 * results in a bigger stack frame.
1001 */
1002 static noinline
avc_compute_av(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd,struct avc_xperms_node * xp_node)1003 struct avc_node *avc_compute_av(struct selinux_state *state,
1004 u32 ssid, u32 tsid,
1005 u16 tclass, struct av_decision *avd,
1006 struct avc_xperms_node *xp_node)
1007 {
1008 rcu_read_unlock();
1009 INIT_LIST_HEAD(&xp_node->xpd_head);
1010 security_compute_av(state, ssid, tsid, tclass, avd, &xp_node->xp);
1011 rcu_read_lock();
1012 return avc_insert(state->avc, ssid, tsid, tclass, avd, xp_node);
1013 }
1014
avc_denied(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 requested,u8 driver,u8 xperm,unsigned int flags,struct av_decision * avd)1015 static noinline int avc_denied(struct selinux_state *state,
1016 u32 ssid, u32 tsid,
1017 u16 tclass, u32 requested,
1018 u8 driver, u8 xperm, unsigned int flags,
1019 struct av_decision *avd)
1020 {
1021 if (flags & AVC_STRICT)
1022 return -EACCES;
1023
1024 if (enforcing_enabled(state) &&
1025 !(avd->flags & AVD_FLAGS_PERMISSIVE))
1026 return -EACCES;
1027
1028 avc_update_node(state->avc, AVC_CALLBACK_GRANT, requested, driver,
1029 xperm, ssid, tsid, tclass, avd->seqno, NULL, flags);
1030 return 0;
1031 }
1032
1033 /*
1034 * The avc extended permissions logic adds an additional 256 bits of
1035 * permissions to an avc node when extended permissions for that node are
1036 * specified in the avtab. If the additional 256 permissions is not adequate,
1037 * as-is the case with ioctls, then multiple may be chained together and the
1038 * driver field is used to specify which set contains the permission.
1039 */
avc_has_extended_perms(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 requested,u8 driver,u8 xperm,struct common_audit_data * ad)1040 int avc_has_extended_perms(struct selinux_state *state,
1041 u32 ssid, u32 tsid, u16 tclass, u32 requested,
1042 u8 driver, u8 xperm, struct common_audit_data *ad)
1043 {
1044 struct avc_node *node;
1045 struct av_decision avd;
1046 u32 denied;
1047 struct extended_perms_decision local_xpd;
1048 struct extended_perms_decision *xpd = NULL;
1049 struct extended_perms_data allowed;
1050 struct extended_perms_data auditallow;
1051 struct extended_perms_data dontaudit;
1052 struct avc_xperms_node local_xp_node;
1053 struct avc_xperms_node *xp_node;
1054 int rc = 0, rc2;
1055
1056 xp_node = &local_xp_node;
1057 if (WARN_ON(!requested))
1058 return -EACCES;
1059
1060 rcu_read_lock();
1061
1062 node = avc_lookup(state->avc, ssid, tsid, tclass);
1063 if (unlikely(!node)) {
1064 node = avc_compute_av(state, ssid, tsid, tclass, &avd, xp_node);
1065 } else {
1066 memcpy(&avd, &node->ae.avd, sizeof(avd));
1067 xp_node = node->ae.xp_node;
1068 }
1069 /* if extended permissions are not defined, only consider av_decision */
1070 if (!xp_node || !xp_node->xp.len)
1071 goto decision;
1072
1073 local_xpd.allowed = &allowed;
1074 local_xpd.auditallow = &auditallow;
1075 local_xpd.dontaudit = &dontaudit;
1076
1077 xpd = avc_xperms_decision_lookup(driver, xp_node);
1078 if (unlikely(!xpd)) {
1079 /*
1080 * Compute the extended_perms_decision only if the driver
1081 * is flagged
1082 */
1083 if (!security_xperm_test(xp_node->xp.drivers.p, driver)) {
1084 avd.allowed &= ~requested;
1085 goto decision;
1086 }
1087 rcu_read_unlock();
1088 security_compute_xperms_decision(state, ssid, tsid, tclass,
1089 driver, &local_xpd);
1090 rcu_read_lock();
1091 avc_update_node(state->avc, AVC_CALLBACK_ADD_XPERMS, requested,
1092 driver, xperm, ssid, tsid, tclass, avd.seqno,
1093 &local_xpd, 0);
1094 } else {
1095 avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd);
1096 }
1097 xpd = &local_xpd;
1098
1099 if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED))
1100 avd.allowed &= ~requested;
1101
1102 decision:
1103 denied = requested & ~(avd.allowed);
1104 if (unlikely(denied))
1105 rc = avc_denied(state, ssid, tsid, tclass, requested,
1106 driver, xperm, AVC_EXTENDED_PERMS, &avd);
1107
1108 rcu_read_unlock();
1109
1110 rc2 = avc_xperms_audit(state, ssid, tsid, tclass, requested,
1111 &avd, xpd, xperm, rc, ad);
1112 if (rc2)
1113 return rc2;
1114 return rc;
1115 }
1116
1117 /**
1118 * avc_has_perm_noaudit - Check permissions but perform no auditing.
1119 * @ssid: source security identifier
1120 * @tsid: target security identifier
1121 * @tclass: target security class
1122 * @requested: requested permissions, interpreted based on @tclass
1123 * @flags: AVC_STRICT, AVC_NONBLOCKING, or 0
1124 * @avd: access vector decisions
1125 *
1126 * Check the AVC to determine whether the @requested permissions are granted
1127 * for the SID pair (@ssid, @tsid), interpreting the permissions
1128 * based on @tclass, and call the security server on a cache miss to obtain
1129 * a new decision and add it to the cache. Return a copy of the decisions
1130 * in @avd. Return %0 if all @requested permissions are granted,
1131 * -%EACCES if any permissions are denied, or another -errno upon
1132 * other errors. This function is typically called by avc_has_perm(),
1133 * but may also be called directly to separate permission checking from
1134 * auditing, e.g. in cases where a lock must be held for the check but
1135 * should be released for the auditing.
1136 */
avc_has_perm_noaudit(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 requested,unsigned int flags,struct av_decision * avd)1137 inline int avc_has_perm_noaudit(struct selinux_state *state,
1138 u32 ssid, u32 tsid,
1139 u16 tclass, u32 requested,
1140 unsigned int flags,
1141 struct av_decision *avd)
1142 {
1143 struct avc_node *node;
1144 struct avc_xperms_node xp_node;
1145 int rc = 0;
1146 u32 denied;
1147
1148 if (WARN_ON(!requested))
1149 return -EACCES;
1150
1151 rcu_read_lock();
1152
1153 node = avc_lookup(state->avc, ssid, tsid, tclass);
1154 if (unlikely(!node))
1155 node = avc_compute_av(state, ssid, tsid, tclass, avd, &xp_node);
1156 else
1157 memcpy(avd, &node->ae.avd, sizeof(*avd));
1158
1159 denied = requested & ~(avd->allowed);
1160 if (unlikely(denied))
1161 rc = avc_denied(state, ssid, tsid, tclass, requested, 0, 0,
1162 flags, avd);
1163
1164 rcu_read_unlock();
1165 return rc;
1166 }
1167
1168 /**
1169 * avc_has_perm - Check permissions and perform any appropriate auditing.
1170 * @ssid: source security identifier
1171 * @tsid: target security identifier
1172 * @tclass: target security class
1173 * @requested: requested permissions, interpreted based on @tclass
1174 * @auditdata: auxiliary audit data
1175 *
1176 * Check the AVC to determine whether the @requested permissions are granted
1177 * for the SID pair (@ssid, @tsid), interpreting the permissions
1178 * based on @tclass, and call the security server on a cache miss to obtain
1179 * a new decision and add it to the cache. Audit the granting or denial of
1180 * permissions in accordance with the policy. Return %0 if all @requested
1181 * permissions are granted, -%EACCES if any permissions are denied, or
1182 * another -errno upon other errors.
1183 */
avc_has_perm(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 requested,struct common_audit_data * auditdata)1184 int avc_has_perm(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass,
1185 u32 requested, struct common_audit_data *auditdata)
1186 {
1187 struct av_decision avd;
1188 int rc, rc2;
1189
1190 rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested, 0,
1191 &avd);
1192
1193 rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc,
1194 auditdata, 0);
1195 if (rc2)
1196 return rc2;
1197 return rc;
1198 }
1199
avc_has_perm_flags(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 requested,struct common_audit_data * auditdata,int flags)1200 int avc_has_perm_flags(struct selinux_state *state,
1201 u32 ssid, u32 tsid, u16 tclass, u32 requested,
1202 struct common_audit_data *auditdata,
1203 int flags)
1204 {
1205 struct av_decision avd;
1206 int rc, rc2;
1207
1208 rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested,
1209 (flags & MAY_NOT_BLOCK) ? AVC_NONBLOCKING : 0,
1210 &avd);
1211
1212 rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc,
1213 auditdata, flags);
1214 if (rc2)
1215 return rc2;
1216 return rc;
1217 }
1218
avc_policy_seqno(struct selinux_state * state)1219 u32 avc_policy_seqno(struct selinux_state *state)
1220 {
1221 return state->avc->avc_cache.latest_notif;
1222 }
1223
avc_disable(void)1224 void avc_disable(void)
1225 {
1226 /*
1227 * If you are looking at this because you have realized that we are
1228 * not destroying the avc_node_cachep it might be easy to fix, but
1229 * I don't know the memory barrier semantics well enough to know. It's
1230 * possible that some other task dereferenced security_ops when
1231 * it still pointed to selinux operations. If that is the case it's
1232 * possible that it is about to use the avc and is about to need the
1233 * avc_node_cachep. I know I could wrap the security.c security_ops call
1234 * in an rcu_lock, but seriously, it's not worth it. Instead I just flush
1235 * the cache and get that memory back.
1236 */
1237 if (avc_node_cachep) {
1238 avc_flush(selinux_state.avc);
1239 /* kmem_cache_destroy(avc_node_cachep); */
1240 }
1241 }
1242