1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * AMD SVM support
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Yaniv Kamay <yaniv@qumranet.com>
12 * Avi Kivity <avi@qumranet.com>
13 */
14
15 #define pr_fmt(fmt) "SVM: " fmt
16
17 #include <linux/kvm_types.h>
18 #include <linux/hashtable.h>
19 #include <linux/amd-iommu.h>
20 #include <linux/kvm_host.h>
21
22 #include <asm/irq_remapping.h>
23
24 #include "trace.h"
25 #include "lapic.h"
26 #include "x86.h"
27 #include "irq.h"
28 #include "svm.h"
29
30 /* enable / disable AVIC */
31 int avic;
32 #ifdef CONFIG_X86_LOCAL_APIC
33 module_param(avic, int, S_IRUGO);
34 #endif
35
36 #define SVM_AVIC_DOORBELL 0xc001011b
37
38 #define AVIC_HPA_MASK ~((0xFFFULL << 52) | 0xFFF)
39
40 /*
41 * 0xff is broadcast, so the max index allowed for physical APIC ID
42 * table is 0xfe. APIC IDs above 0xff are reserved.
43 */
44 #define AVIC_MAX_PHYSICAL_ID_COUNT 255
45
46 #define AVIC_UNACCEL_ACCESS_WRITE_MASK 1
47 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK 0xFF0
48 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK 0xFFFFFFFF
49
50 /* AVIC GATAG is encoded using VM and VCPU IDs */
51 #define AVIC_VCPU_ID_BITS 8
52 #define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1)
53
54 #define AVIC_VM_ID_BITS 24
55 #define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS)
56 #define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1)
57
58 #define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
59 (y & AVIC_VCPU_ID_MASK))
60 #define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
61 #define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK)
62
63 /* Note:
64 * This hash table is used to map VM_ID to a struct kvm_svm,
65 * when handling AMD IOMMU GALOG notification to schedule in
66 * a particular vCPU.
67 */
68 #define SVM_VM_DATA_HASH_BITS 8
69 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
70 static u32 next_vm_id = 0;
71 static bool next_vm_id_wrapped = 0;
72 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
73
74 /*
75 * This is a wrapper of struct amd_iommu_ir_data.
76 */
77 struct amd_svm_iommu_ir {
78 struct list_head node; /* Used by SVM for per-vcpu ir_list */
79 void *data; /* Storing pointer to struct amd_ir_data */
80 };
81
82 enum avic_ipi_failure_cause {
83 AVIC_IPI_FAILURE_INVALID_INT_TYPE,
84 AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
85 AVIC_IPI_FAILURE_INVALID_TARGET,
86 AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
87 };
88
89 /* Note:
90 * This function is called from IOMMU driver to notify
91 * SVM to schedule in a particular vCPU of a particular VM.
92 */
avic_ga_log_notifier(u32 ga_tag)93 int avic_ga_log_notifier(u32 ga_tag)
94 {
95 unsigned long flags;
96 struct kvm_svm *kvm_svm;
97 struct kvm_vcpu *vcpu = NULL;
98 u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
99 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
100
101 pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
102 trace_kvm_avic_ga_log(vm_id, vcpu_id);
103
104 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
105 hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
106 if (kvm_svm->avic_vm_id != vm_id)
107 continue;
108 vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
109 break;
110 }
111 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
112
113 /* Note:
114 * At this point, the IOMMU should have already set the pending
115 * bit in the vAPIC backing page. So, we just need to schedule
116 * in the vcpu.
117 */
118 if (vcpu)
119 kvm_vcpu_wake_up(vcpu);
120
121 return 0;
122 }
123
avic_vm_destroy(struct kvm * kvm)124 void avic_vm_destroy(struct kvm *kvm)
125 {
126 unsigned long flags;
127 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
128
129 if (!avic)
130 return;
131
132 if (kvm_svm->avic_logical_id_table_page)
133 __free_page(kvm_svm->avic_logical_id_table_page);
134 if (kvm_svm->avic_physical_id_table_page)
135 __free_page(kvm_svm->avic_physical_id_table_page);
136
137 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
138 hash_del(&kvm_svm->hnode);
139 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
140 }
141
avic_vm_init(struct kvm * kvm)142 int avic_vm_init(struct kvm *kvm)
143 {
144 unsigned long flags;
145 int err = -ENOMEM;
146 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
147 struct kvm_svm *k2;
148 struct page *p_page;
149 struct page *l_page;
150 u32 vm_id;
151
152 if (!avic)
153 return 0;
154
155 /* Allocating physical APIC ID table (4KB) */
156 p_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
157 if (!p_page)
158 goto free_avic;
159
160 kvm_svm->avic_physical_id_table_page = p_page;
161
162 /* Allocating logical APIC ID table (4KB) */
163 l_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
164 if (!l_page)
165 goto free_avic;
166
167 kvm_svm->avic_logical_id_table_page = l_page;
168
169 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
170 again:
171 vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
172 if (vm_id == 0) { /* id is 1-based, zero is not okay */
173 next_vm_id_wrapped = 1;
174 goto again;
175 }
176 /* Is it still in use? Only possible if wrapped at least once */
177 if (next_vm_id_wrapped) {
178 hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
179 if (k2->avic_vm_id == vm_id)
180 goto again;
181 }
182 }
183 kvm_svm->avic_vm_id = vm_id;
184 hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
185 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
186
187 return 0;
188
189 free_avic:
190 avic_vm_destroy(kvm);
191 return err;
192 }
193
avic_init_vmcb(struct vcpu_svm * svm)194 void avic_init_vmcb(struct vcpu_svm *svm)
195 {
196 struct vmcb *vmcb = svm->vmcb;
197 struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
198 phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
199 phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
200 phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
201
202 vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
203 vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
204 vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
205 vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
206 if (kvm_apicv_activated(svm->vcpu.kvm))
207 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
208 else
209 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
210 }
211
avic_get_physical_id_entry(struct kvm_vcpu * vcpu,unsigned int index)212 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
213 unsigned int index)
214 {
215 u64 *avic_physical_id_table;
216 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
217
218 if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
219 return NULL;
220
221 avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
222
223 return &avic_physical_id_table[index];
224 }
225
226 /**
227 * Note:
228 * AVIC hardware walks the nested page table to check permissions,
229 * but does not use the SPA address specified in the leaf page
230 * table entry since it uses address in the AVIC_BACKING_PAGE pointer
231 * field of the VMCB. Therefore, we set up the
232 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
233 */
avic_update_access_page(struct kvm * kvm,bool activate)234 static int avic_update_access_page(struct kvm *kvm, bool activate)
235 {
236 int ret = 0;
237
238 mutex_lock(&kvm->slots_lock);
239 /*
240 * During kvm_destroy_vm(), kvm_pit_set_reinject() could trigger
241 * APICv mode change, which update APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
242 * memory region. So, we need to ensure that kvm->mm == current->mm.
243 */
244 if ((kvm->arch.apic_access_page_done == activate) ||
245 (kvm->mm != current->mm))
246 goto out;
247
248 ret = __x86_set_memory_region(kvm,
249 APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
250 APIC_DEFAULT_PHYS_BASE,
251 activate ? PAGE_SIZE : 0);
252 if (ret)
253 goto out;
254
255 kvm->arch.apic_access_page_done = activate;
256 out:
257 mutex_unlock(&kvm->slots_lock);
258 return ret;
259 }
260
avic_init_backing_page(struct kvm_vcpu * vcpu)261 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
262 {
263 u64 *entry, new_entry;
264 int id = vcpu->vcpu_id;
265 struct vcpu_svm *svm = to_svm(vcpu);
266
267 if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
268 return -EINVAL;
269
270 if (!svm->vcpu.arch.apic->regs)
271 return -EINVAL;
272
273 if (kvm_apicv_activated(vcpu->kvm)) {
274 int ret;
275
276 ret = avic_update_access_page(vcpu->kvm, true);
277 if (ret)
278 return ret;
279 }
280
281 svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
282
283 /* Setting AVIC backing page address in the phy APIC ID table */
284 entry = avic_get_physical_id_entry(vcpu, id);
285 if (!entry)
286 return -EINVAL;
287
288 new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
289 AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
290 AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
291 WRITE_ONCE(*entry, new_entry);
292
293 svm->avic_physical_id_cache = entry;
294
295 return 0;
296 }
297
avic_incomplete_ipi_interception(struct vcpu_svm * svm)298 int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
299 {
300 u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
301 u32 icrl = svm->vmcb->control.exit_info_1;
302 u32 id = svm->vmcb->control.exit_info_2 >> 32;
303 u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
304 struct kvm_lapic *apic = svm->vcpu.arch.apic;
305
306 trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
307
308 switch (id) {
309 case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
310 /*
311 * AVIC hardware handles the generation of
312 * IPIs when the specified Message Type is Fixed
313 * (also known as fixed delivery mode) and
314 * the Trigger Mode is edge-triggered. The hardware
315 * also supports self and broadcast delivery modes
316 * specified via the Destination Shorthand(DSH)
317 * field of the ICRL. Logical and physical APIC ID
318 * formats are supported. All other IPI types cause
319 * a #VMEXIT, which needs to emulated.
320 */
321 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
322 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
323 break;
324 case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
325 int i;
326 struct kvm_vcpu *vcpu;
327 struct kvm *kvm = svm->vcpu.kvm;
328 struct kvm_lapic *apic = svm->vcpu.arch.apic;
329
330 /*
331 * At this point, we expect that the AVIC HW has already
332 * set the appropriate IRR bits on the valid target
333 * vcpus. So, we just need to kick the appropriate vcpu.
334 */
335 kvm_for_each_vcpu(i, vcpu, kvm) {
336 bool m = kvm_apic_match_dest(vcpu, apic,
337 icrl & APIC_SHORT_MASK,
338 GET_APIC_DEST_FIELD(icrh),
339 icrl & APIC_DEST_MASK);
340
341 if (m && !avic_vcpu_is_running(vcpu))
342 kvm_vcpu_wake_up(vcpu);
343 }
344 break;
345 }
346 case AVIC_IPI_FAILURE_INVALID_TARGET:
347 WARN_ONCE(1, "Invalid IPI target: index=%u, vcpu=%d, icr=%#0x:%#0x\n",
348 index, svm->vcpu.vcpu_id, icrh, icrl);
349 break;
350 case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
351 WARN_ONCE(1, "Invalid backing page\n");
352 break;
353 default:
354 pr_err("Unknown IPI interception\n");
355 }
356
357 return 1;
358 }
359
avic_get_logical_id_entry(struct kvm_vcpu * vcpu,u32 ldr,bool flat)360 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
361 {
362 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
363 int index;
364 u32 *logical_apic_id_table;
365 int dlid = GET_APIC_LOGICAL_ID(ldr);
366
367 if (!dlid)
368 return NULL;
369
370 if (flat) { /* flat */
371 index = ffs(dlid) - 1;
372 if (index > 7)
373 return NULL;
374 } else { /* cluster */
375 int cluster = (dlid & 0xf0) >> 4;
376 int apic = ffs(dlid & 0x0f) - 1;
377
378 if ((apic < 0) || (apic > 7) ||
379 (cluster >= 0xf))
380 return NULL;
381 index = (cluster << 2) + apic;
382 }
383
384 logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
385
386 return &logical_apic_id_table[index];
387 }
388
avic_ldr_write(struct kvm_vcpu * vcpu,u8 g_physical_id,u32 ldr)389 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr)
390 {
391 bool flat;
392 u32 *entry, new_entry;
393
394 flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
395 entry = avic_get_logical_id_entry(vcpu, ldr, flat);
396 if (!entry)
397 return -EINVAL;
398
399 new_entry = READ_ONCE(*entry);
400 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
401 new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
402 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
403 WRITE_ONCE(*entry, new_entry);
404
405 return 0;
406 }
407
avic_invalidate_logical_id_entry(struct kvm_vcpu * vcpu)408 static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu)
409 {
410 struct vcpu_svm *svm = to_svm(vcpu);
411 bool flat = svm->dfr_reg == APIC_DFR_FLAT;
412 u32 *entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat);
413
414 if (entry)
415 clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry);
416 }
417
avic_handle_ldr_update(struct kvm_vcpu * vcpu)418 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
419 {
420 int ret = 0;
421 struct vcpu_svm *svm = to_svm(vcpu);
422 u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
423 u32 id = kvm_xapic_id(vcpu->arch.apic);
424
425 if (ldr == svm->ldr_reg)
426 return 0;
427
428 avic_invalidate_logical_id_entry(vcpu);
429
430 if (ldr)
431 ret = avic_ldr_write(vcpu, id, ldr);
432
433 if (!ret)
434 svm->ldr_reg = ldr;
435
436 return ret;
437 }
438
avic_handle_apic_id_update(struct kvm_vcpu * vcpu)439 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
440 {
441 u64 *old, *new;
442 struct vcpu_svm *svm = to_svm(vcpu);
443 u32 id = kvm_xapic_id(vcpu->arch.apic);
444
445 if (vcpu->vcpu_id == id)
446 return 0;
447
448 old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
449 new = avic_get_physical_id_entry(vcpu, id);
450 if (!new || !old)
451 return 1;
452
453 /* We need to move physical_id_entry to new offset */
454 *new = *old;
455 *old = 0ULL;
456 to_svm(vcpu)->avic_physical_id_cache = new;
457
458 /*
459 * Also update the guest physical APIC ID in the logical
460 * APIC ID table entry if already setup the LDR.
461 */
462 if (svm->ldr_reg)
463 avic_handle_ldr_update(vcpu);
464
465 return 0;
466 }
467
avic_handle_dfr_update(struct kvm_vcpu * vcpu)468 static void avic_handle_dfr_update(struct kvm_vcpu *vcpu)
469 {
470 struct vcpu_svm *svm = to_svm(vcpu);
471 u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
472
473 if (svm->dfr_reg == dfr)
474 return;
475
476 avic_invalidate_logical_id_entry(vcpu);
477 svm->dfr_reg = dfr;
478 }
479
avic_unaccel_trap_write(struct vcpu_svm * svm)480 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
481 {
482 struct kvm_lapic *apic = svm->vcpu.arch.apic;
483 u32 offset = svm->vmcb->control.exit_info_1 &
484 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
485
486 switch (offset) {
487 case APIC_ID:
488 if (avic_handle_apic_id_update(&svm->vcpu))
489 return 0;
490 break;
491 case APIC_LDR:
492 if (avic_handle_ldr_update(&svm->vcpu))
493 return 0;
494 break;
495 case APIC_DFR:
496 avic_handle_dfr_update(&svm->vcpu);
497 break;
498 default:
499 break;
500 }
501
502 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
503
504 return 1;
505 }
506
is_avic_unaccelerated_access_trap(u32 offset)507 static bool is_avic_unaccelerated_access_trap(u32 offset)
508 {
509 bool ret = false;
510
511 switch (offset) {
512 case APIC_ID:
513 case APIC_EOI:
514 case APIC_RRR:
515 case APIC_LDR:
516 case APIC_DFR:
517 case APIC_SPIV:
518 case APIC_ESR:
519 case APIC_ICR:
520 case APIC_LVTT:
521 case APIC_LVTTHMR:
522 case APIC_LVTPC:
523 case APIC_LVT0:
524 case APIC_LVT1:
525 case APIC_LVTERR:
526 case APIC_TMICT:
527 case APIC_TDCR:
528 ret = true;
529 break;
530 default:
531 break;
532 }
533 return ret;
534 }
535
avic_unaccelerated_access_interception(struct vcpu_svm * svm)536 int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
537 {
538 int ret = 0;
539 u32 offset = svm->vmcb->control.exit_info_1 &
540 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
541 u32 vector = svm->vmcb->control.exit_info_2 &
542 AVIC_UNACCEL_ACCESS_VECTOR_MASK;
543 bool write = (svm->vmcb->control.exit_info_1 >> 32) &
544 AVIC_UNACCEL_ACCESS_WRITE_MASK;
545 bool trap = is_avic_unaccelerated_access_trap(offset);
546
547 trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
548 trap, write, vector);
549 if (trap) {
550 /* Handling Trap */
551 WARN_ONCE(!write, "svm: Handling trap read.\n");
552 ret = avic_unaccel_trap_write(svm);
553 } else {
554 /* Handling Fault */
555 ret = kvm_emulate_instruction(&svm->vcpu, 0);
556 }
557
558 return ret;
559 }
560
avic_init_vcpu(struct vcpu_svm * svm)561 int avic_init_vcpu(struct vcpu_svm *svm)
562 {
563 int ret;
564 struct kvm_vcpu *vcpu = &svm->vcpu;
565
566 if (!avic || !irqchip_in_kernel(vcpu->kvm))
567 return 0;
568
569 ret = avic_init_backing_page(&svm->vcpu);
570 if (ret)
571 return ret;
572
573 INIT_LIST_HEAD(&svm->ir_list);
574 spin_lock_init(&svm->ir_list_lock);
575 svm->dfr_reg = APIC_DFR_FLAT;
576
577 return ret;
578 }
579
avic_post_state_restore(struct kvm_vcpu * vcpu)580 void avic_post_state_restore(struct kvm_vcpu *vcpu)
581 {
582 if (avic_handle_apic_id_update(vcpu) != 0)
583 return;
584 avic_handle_dfr_update(vcpu);
585 avic_handle_ldr_update(vcpu);
586 }
587
svm_toggle_avic_for_irq_window(struct kvm_vcpu * vcpu,bool activate)588 void svm_toggle_avic_for_irq_window(struct kvm_vcpu *vcpu, bool activate)
589 {
590 if (!avic || !lapic_in_kernel(vcpu))
591 return;
592
593 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
594 kvm_request_apicv_update(vcpu->kvm, activate,
595 APICV_INHIBIT_REASON_IRQWIN);
596 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
597 }
598
svm_set_virtual_apic_mode(struct kvm_vcpu * vcpu)599 void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
600 {
601 return;
602 }
603
svm_hwapic_irr_update(struct kvm_vcpu * vcpu,int max_irr)604 void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
605 {
606 }
607
svm_hwapic_isr_update(struct kvm_vcpu * vcpu,int max_isr)608 void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
609 {
610 }
611
svm_set_pi_irte_mode(struct kvm_vcpu * vcpu,bool activate)612 static int svm_set_pi_irte_mode(struct kvm_vcpu *vcpu, bool activate)
613 {
614 int ret = 0;
615 unsigned long flags;
616 struct amd_svm_iommu_ir *ir;
617 struct vcpu_svm *svm = to_svm(vcpu);
618
619 if (!kvm_arch_has_assigned_device(vcpu->kvm))
620 return 0;
621
622 /*
623 * Here, we go through the per-vcpu ir_list to update all existing
624 * interrupt remapping table entry targeting this vcpu.
625 */
626 spin_lock_irqsave(&svm->ir_list_lock, flags);
627
628 if (list_empty(&svm->ir_list))
629 goto out;
630
631 list_for_each_entry(ir, &svm->ir_list, node) {
632 if (activate)
633 ret = amd_iommu_activate_guest_mode(ir->data);
634 else
635 ret = amd_iommu_deactivate_guest_mode(ir->data);
636 if (ret)
637 break;
638 }
639 out:
640 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
641 return ret;
642 }
643
svm_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)644 void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
645 {
646 struct vcpu_svm *svm = to_svm(vcpu);
647 struct vmcb *vmcb = svm->vmcb;
648 bool activated = kvm_vcpu_apicv_active(vcpu);
649
650 if (!avic)
651 return;
652
653 if (activated) {
654 /**
655 * During AVIC temporary deactivation, guest could update
656 * APIC ID, DFR and LDR registers, which would not be trapped
657 * by avic_unaccelerated_access_interception(). In this case,
658 * we need to check and update the AVIC logical APIC ID table
659 * accordingly before re-activating.
660 */
661 avic_post_state_restore(vcpu);
662 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
663 } else {
664 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
665 }
666 vmcb_mark_dirty(vmcb, VMCB_AVIC);
667
668 svm_set_pi_irte_mode(vcpu, activated);
669 }
670
svm_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)671 void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
672 {
673 return;
674 }
675
svm_deliver_avic_intr(struct kvm_vcpu * vcpu,int vec)676 int svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
677 {
678 if (!vcpu->arch.apicv_active)
679 return -1;
680
681 kvm_lapic_set_irr(vec, vcpu->arch.apic);
682 smp_mb__after_atomic();
683
684 if (avic_vcpu_is_running(vcpu)) {
685 int cpuid = vcpu->cpu;
686
687 if (cpuid != get_cpu())
688 wrmsrl(SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpuid));
689 put_cpu();
690 } else
691 kvm_vcpu_wake_up(vcpu);
692
693 return 0;
694 }
695
svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu * vcpu)696 bool svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
697 {
698 return false;
699 }
700
svm_ir_list_del(struct vcpu_svm * svm,struct amd_iommu_pi_data * pi)701 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
702 {
703 unsigned long flags;
704 struct amd_svm_iommu_ir *cur;
705
706 spin_lock_irqsave(&svm->ir_list_lock, flags);
707 list_for_each_entry(cur, &svm->ir_list, node) {
708 if (cur->data != pi->ir_data)
709 continue;
710 list_del(&cur->node);
711 kfree(cur);
712 break;
713 }
714 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
715 }
716
svm_ir_list_add(struct vcpu_svm * svm,struct amd_iommu_pi_data * pi)717 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
718 {
719 int ret = 0;
720 unsigned long flags;
721 struct amd_svm_iommu_ir *ir;
722
723 /**
724 * In some cases, the existing irte is updaed and re-set,
725 * so we need to check here if it's already been * added
726 * to the ir_list.
727 */
728 if (pi->ir_data && (pi->prev_ga_tag != 0)) {
729 struct kvm *kvm = svm->vcpu.kvm;
730 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
731 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
732 struct vcpu_svm *prev_svm;
733
734 if (!prev_vcpu) {
735 ret = -EINVAL;
736 goto out;
737 }
738
739 prev_svm = to_svm(prev_vcpu);
740 svm_ir_list_del(prev_svm, pi);
741 }
742
743 /**
744 * Allocating new amd_iommu_pi_data, which will get
745 * add to the per-vcpu ir_list.
746 */
747 ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT);
748 if (!ir) {
749 ret = -ENOMEM;
750 goto out;
751 }
752 ir->data = pi->ir_data;
753
754 spin_lock_irqsave(&svm->ir_list_lock, flags);
755 list_add(&ir->node, &svm->ir_list);
756 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
757 out:
758 return ret;
759 }
760
761 /**
762 * Note:
763 * The HW cannot support posting multicast/broadcast
764 * interrupts to a vCPU. So, we still use legacy interrupt
765 * remapping for these kind of interrupts.
766 *
767 * For lowest-priority interrupts, we only support
768 * those with single CPU as the destination, e.g. user
769 * configures the interrupts via /proc/irq or uses
770 * irqbalance to make the interrupts single-CPU.
771 */
772 static int
get_pi_vcpu_info(struct kvm * kvm,struct kvm_kernel_irq_routing_entry * e,struct vcpu_data * vcpu_info,struct vcpu_svm ** svm)773 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
774 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
775 {
776 struct kvm_lapic_irq irq;
777 struct kvm_vcpu *vcpu = NULL;
778
779 kvm_set_msi_irq(kvm, e, &irq);
780
781 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
782 !kvm_irq_is_postable(&irq)) {
783 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
784 __func__, irq.vector);
785 return -1;
786 }
787
788 pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
789 irq.vector);
790 *svm = to_svm(vcpu);
791 vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
792 vcpu_info->vector = irq.vector;
793
794 return 0;
795 }
796
797 /*
798 * svm_update_pi_irte - set IRTE for Posted-Interrupts
799 *
800 * @kvm: kvm
801 * @host_irq: host irq of the interrupt
802 * @guest_irq: gsi of the interrupt
803 * @set: set or unset PI
804 * returns 0 on success, < 0 on failure
805 */
svm_update_pi_irte(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)806 int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
807 uint32_t guest_irq, bool set)
808 {
809 struct kvm_kernel_irq_routing_entry *e;
810 struct kvm_irq_routing_table *irq_rt;
811 int idx, ret = -EINVAL;
812
813 if (!kvm_arch_has_assigned_device(kvm) ||
814 !irq_remapping_cap(IRQ_POSTING_CAP))
815 return 0;
816
817 pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
818 __func__, host_irq, guest_irq, set);
819
820 idx = srcu_read_lock(&kvm->irq_srcu);
821 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
822 WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
823
824 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
825 struct vcpu_data vcpu_info;
826 struct vcpu_svm *svm = NULL;
827
828 if (e->type != KVM_IRQ_ROUTING_MSI)
829 continue;
830
831 /**
832 * Here, we setup with legacy mode in the following cases:
833 * 1. When cannot target interrupt to a specific vcpu.
834 * 2. Unsetting posted interrupt.
835 * 3. APIC virtialization is disabled for the vcpu.
836 * 4. IRQ has incompatible delivery mode (SMI, INIT, etc)
837 */
838 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
839 kvm_vcpu_apicv_active(&svm->vcpu)) {
840 struct amd_iommu_pi_data pi;
841
842 /* Try to enable guest_mode in IRTE */
843 pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
844 AVIC_HPA_MASK);
845 pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
846 svm->vcpu.vcpu_id);
847 pi.is_guest_mode = true;
848 pi.vcpu_data = &vcpu_info;
849 ret = irq_set_vcpu_affinity(host_irq, &pi);
850
851 /**
852 * Here, we successfully setting up vcpu affinity in
853 * IOMMU guest mode. Now, we need to store the posted
854 * interrupt information in a per-vcpu ir_list so that
855 * we can reference to them directly when we update vcpu
856 * scheduling information in IOMMU irte.
857 */
858 if (!ret && pi.is_guest_mode)
859 svm_ir_list_add(svm, &pi);
860 } else {
861 /* Use legacy mode in IRTE */
862 struct amd_iommu_pi_data pi;
863
864 /**
865 * Here, pi is used to:
866 * - Tell IOMMU to use legacy mode for this interrupt.
867 * - Retrieve ga_tag of prior interrupt remapping data.
868 */
869 pi.prev_ga_tag = 0;
870 pi.is_guest_mode = false;
871 ret = irq_set_vcpu_affinity(host_irq, &pi);
872
873 /**
874 * Check if the posted interrupt was previously
875 * setup with the guest_mode by checking if the ga_tag
876 * was cached. If so, we need to clean up the per-vcpu
877 * ir_list.
878 */
879 if (!ret && pi.prev_ga_tag) {
880 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
881 struct kvm_vcpu *vcpu;
882
883 vcpu = kvm_get_vcpu_by_id(kvm, id);
884 if (vcpu)
885 svm_ir_list_del(to_svm(vcpu), &pi);
886 }
887 }
888
889 if (!ret && svm) {
890 trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
891 e->gsi, vcpu_info.vector,
892 vcpu_info.pi_desc_addr, set);
893 }
894
895 if (ret < 0) {
896 pr_err("%s: failed to update PI IRTE\n", __func__);
897 goto out;
898 }
899 }
900
901 ret = 0;
902 out:
903 srcu_read_unlock(&kvm->irq_srcu, idx);
904 return ret;
905 }
906
svm_check_apicv_inhibit_reasons(ulong bit)907 bool svm_check_apicv_inhibit_reasons(ulong bit)
908 {
909 ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
910 BIT(APICV_INHIBIT_REASON_HYPERV) |
911 BIT(APICV_INHIBIT_REASON_NESTED) |
912 BIT(APICV_INHIBIT_REASON_IRQWIN) |
913 BIT(APICV_INHIBIT_REASON_PIT_REINJ) |
914 BIT(APICV_INHIBIT_REASON_X2APIC);
915
916 return supported & BIT(bit);
917 }
918
svm_pre_update_apicv_exec_ctrl(struct kvm * kvm,bool activate)919 void svm_pre_update_apicv_exec_ctrl(struct kvm *kvm, bool activate)
920 {
921 avic_update_access_page(kvm, activate);
922 }
923
924 static inline int
avic_update_iommu_vcpu_affinity(struct kvm_vcpu * vcpu,int cpu,bool r)925 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
926 {
927 int ret = 0;
928 unsigned long flags;
929 struct amd_svm_iommu_ir *ir;
930 struct vcpu_svm *svm = to_svm(vcpu);
931
932 if (!kvm_arch_has_assigned_device(vcpu->kvm))
933 return 0;
934
935 /*
936 * Here, we go through the per-vcpu ir_list to update all existing
937 * interrupt remapping table entry targeting this vcpu.
938 */
939 spin_lock_irqsave(&svm->ir_list_lock, flags);
940
941 if (list_empty(&svm->ir_list))
942 goto out;
943
944 list_for_each_entry(ir, &svm->ir_list, node) {
945 ret = amd_iommu_update_ga(cpu, r, ir->data);
946 if (ret)
947 break;
948 }
949 out:
950 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
951 return ret;
952 }
953
avic_vcpu_load(struct kvm_vcpu * vcpu,int cpu)954 void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
955 {
956 u64 entry;
957 /* ID = 0xff (broadcast), ID > 0xff (reserved) */
958 int h_physical_id = kvm_cpu_get_apicid(cpu);
959 struct vcpu_svm *svm = to_svm(vcpu);
960
961 if (!kvm_vcpu_apicv_active(vcpu))
962 return;
963
964 /*
965 * Since the host physical APIC id is 8 bits,
966 * we can support host APIC ID upto 255.
967 */
968 if (WARN_ON(h_physical_id > AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK))
969 return;
970
971 entry = READ_ONCE(*(svm->avic_physical_id_cache));
972 WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
973
974 entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
975 entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
976
977 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
978 if (svm->avic_is_running)
979 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
980
981 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
982 avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
983 svm->avic_is_running);
984 }
985
avic_vcpu_put(struct kvm_vcpu * vcpu)986 void avic_vcpu_put(struct kvm_vcpu *vcpu)
987 {
988 u64 entry;
989 struct vcpu_svm *svm = to_svm(vcpu);
990
991 if (!kvm_vcpu_apicv_active(vcpu))
992 return;
993
994 entry = READ_ONCE(*(svm->avic_physical_id_cache));
995 if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
996 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
997
998 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
999 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1000 }
1001
1002 /**
1003 * This function is called during VCPU halt/unhalt.
1004 */
avic_set_running(struct kvm_vcpu * vcpu,bool is_run)1005 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
1006 {
1007 struct vcpu_svm *svm = to_svm(vcpu);
1008
1009 svm->avic_is_running = is_run;
1010 if (is_run)
1011 avic_vcpu_load(vcpu, vcpu->cpu);
1012 else
1013 avic_vcpu_put(vcpu);
1014 }
1015
svm_vcpu_blocking(struct kvm_vcpu * vcpu)1016 void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
1017 {
1018 avic_set_running(vcpu, false);
1019 }
1020
svm_vcpu_unblocking(struct kvm_vcpu * vcpu)1021 void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
1022 {
1023 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
1024 kvm_vcpu_update_apicv(vcpu);
1025 avic_set_running(vcpu, true);
1026 }
1027