1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4 *
5 * Uses a block device as cache for other block devices; optimized for SSDs.
6 * All allocation is done in buckets, which should match the erase block size
7 * of the device.
8 *
9 * Buckets containing cached data are kept on a heap sorted by priority;
10 * bucket priority is increased on cache hit, and periodically all the buckets
11 * on the heap have their priority scaled down. This currently is just used as
12 * an LRU but in the future should allow for more intelligent heuristics.
13 *
14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15 * counter. Garbage collection is used to remove stale pointers.
16 *
17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18 * as keys are inserted we only sort the pages that have not yet been written.
19 * When garbage collection is run, we resort the entire node.
20 *
21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
22 */
23
24 #include "bcache.h"
25 #include "btree.h"
26 #include "debug.h"
27 #include "extents.h"
28
29 #include <linux/slab.h>
30 #include <linux/bitops.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched/clock.h>
37 #include <linux/rculist.h>
38 #include <linux/delay.h>
39 #include <trace/events/bcache.h>
40
41 /*
42 * Todo:
43 * register_bcache: Return errors out to userspace correctly
44 *
45 * Writeback: don't undirty key until after a cache flush
46 *
47 * Create an iterator for key pointers
48 *
49 * On btree write error, mark bucket such that it won't be freed from the cache
50 *
51 * Journalling:
52 * Check for bad keys in replay
53 * Propagate barriers
54 * Refcount journal entries in journal_replay
55 *
56 * Garbage collection:
57 * Finish incremental gc
58 * Gc should free old UUIDs, data for invalid UUIDs
59 *
60 * Provide a way to list backing device UUIDs we have data cached for, and
61 * probably how long it's been since we've seen them, and a way to invalidate
62 * dirty data for devices that will never be attached again
63 *
64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
65 * that based on that and how much dirty data we have we can keep writeback
66 * from being starved
67 *
68 * Add a tracepoint or somesuch to watch for writeback starvation
69 *
70 * When btree depth > 1 and splitting an interior node, we have to make sure
71 * alloc_bucket() cannot fail. This should be true but is not completely
72 * obvious.
73 *
74 * Plugging?
75 *
76 * If data write is less than hard sector size of ssd, round up offset in open
77 * bucket to the next whole sector
78 *
79 * Superblock needs to be fleshed out for multiple cache devices
80 *
81 * Add a sysfs tunable for the number of writeback IOs in flight
82 *
83 * Add a sysfs tunable for the number of open data buckets
84 *
85 * IO tracking: Can we track when one process is doing io on behalf of another?
86 * IO tracking: Don't use just an average, weigh more recent stuff higher
87 *
88 * Test module load/unload
89 */
90
91 #define MAX_NEED_GC 64
92 #define MAX_SAVE_PRIO 72
93 #define MAX_GC_TIMES 100
94 #define MIN_GC_NODES 100
95 #define GC_SLEEP_MS 100
96
97 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
98
99 #define PTR_HASH(c, k) \
100 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
101
102 static struct workqueue_struct *btree_io_wq;
103
104 #define insert_lock(s, b) ((b)->level <= (s)->lock)
105
106
write_block(struct btree * b)107 static inline struct bset *write_block(struct btree *b)
108 {
109 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c->cache);
110 }
111
bch_btree_init_next(struct btree * b)112 static void bch_btree_init_next(struct btree *b)
113 {
114 /* If not a leaf node, always sort */
115 if (b->level && b->keys.nsets)
116 bch_btree_sort(&b->keys, &b->c->sort);
117 else
118 bch_btree_sort_lazy(&b->keys, &b->c->sort);
119
120 if (b->written < btree_blocks(b))
121 bch_bset_init_next(&b->keys, write_block(b),
122 bset_magic(&b->c->cache->sb));
123
124 }
125
126 /* Btree key manipulation */
127
bkey_put(struct cache_set * c,struct bkey * k)128 void bkey_put(struct cache_set *c, struct bkey *k)
129 {
130 unsigned int i;
131
132 for (i = 0; i < KEY_PTRS(k); i++)
133 if (ptr_available(c, k, i))
134 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
135 }
136
137 /* Btree IO */
138
btree_csum_set(struct btree * b,struct bset * i)139 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
140 {
141 uint64_t crc = b->key.ptr[0];
142 void *data = (void *) i + 8, *end = bset_bkey_last(i);
143
144 crc = bch_crc64_update(crc, data, end - data);
145 return crc ^ 0xffffffffffffffffULL;
146 }
147
bch_btree_node_read_done(struct btree * b)148 void bch_btree_node_read_done(struct btree *b)
149 {
150 const char *err = "bad btree header";
151 struct bset *i = btree_bset_first(b);
152 struct btree_iter *iter;
153
154 /*
155 * c->fill_iter can allocate an iterator with more memory space
156 * than static MAX_BSETS.
157 * See the comment arount cache_set->fill_iter.
158 */
159 iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
160 iter->size = b->c->cache->sb.bucket_size / b->c->cache->sb.block_size;
161 iter->used = 0;
162
163 #ifdef CONFIG_BCACHE_DEBUG
164 iter->b = &b->keys;
165 #endif
166
167 if (!i->seq)
168 goto err;
169
170 for (;
171 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
172 i = write_block(b)) {
173 err = "unsupported bset version";
174 if (i->version > BCACHE_BSET_VERSION)
175 goto err;
176
177 err = "bad btree header";
178 if (b->written + set_blocks(i, block_bytes(b->c->cache)) >
179 btree_blocks(b))
180 goto err;
181
182 err = "bad magic";
183 if (i->magic != bset_magic(&b->c->cache->sb))
184 goto err;
185
186 err = "bad checksum";
187 switch (i->version) {
188 case 0:
189 if (i->csum != csum_set(i))
190 goto err;
191 break;
192 case BCACHE_BSET_VERSION:
193 if (i->csum != btree_csum_set(b, i))
194 goto err;
195 break;
196 }
197
198 err = "empty set";
199 if (i != b->keys.set[0].data && !i->keys)
200 goto err;
201
202 bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
203
204 b->written += set_blocks(i, block_bytes(b->c->cache));
205 }
206
207 err = "corrupted btree";
208 for (i = write_block(b);
209 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
210 i = ((void *) i) + block_bytes(b->c->cache))
211 if (i->seq == b->keys.set[0].data->seq)
212 goto err;
213
214 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
215
216 i = b->keys.set[0].data;
217 err = "short btree key";
218 if (b->keys.set[0].size &&
219 bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
220 goto err;
221
222 if (b->written < btree_blocks(b))
223 bch_bset_init_next(&b->keys, write_block(b),
224 bset_magic(&b->c->cache->sb));
225 out:
226 mempool_free(iter, &b->c->fill_iter);
227 return;
228 err:
229 set_btree_node_io_error(b);
230 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
231 err, PTR_BUCKET_NR(b->c, &b->key, 0),
232 bset_block_offset(b, i), i->keys);
233 goto out;
234 }
235
btree_node_read_endio(struct bio * bio)236 static void btree_node_read_endio(struct bio *bio)
237 {
238 struct closure *cl = bio->bi_private;
239
240 closure_put(cl);
241 }
242
bch_btree_node_read(struct btree * b)243 static void bch_btree_node_read(struct btree *b)
244 {
245 uint64_t start_time = local_clock();
246 struct closure cl;
247 struct bio *bio;
248
249 trace_bcache_btree_read(b);
250
251 closure_init_stack(&cl);
252
253 bio = bch_bbio_alloc(b->c);
254 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
255 bio->bi_end_io = btree_node_read_endio;
256 bio->bi_private = &cl;
257 bio->bi_opf = REQ_OP_READ | REQ_META;
258
259 bch_bio_map(bio, b->keys.set[0].data);
260
261 bch_submit_bbio(bio, b->c, &b->key, 0);
262 closure_sync(&cl);
263
264 if (bio->bi_status)
265 set_btree_node_io_error(b);
266
267 bch_bbio_free(bio, b->c);
268
269 if (btree_node_io_error(b))
270 goto err;
271
272 bch_btree_node_read_done(b);
273 bch_time_stats_update(&b->c->btree_read_time, start_time);
274
275 return;
276 err:
277 bch_cache_set_error(b->c, "io error reading bucket %zu",
278 PTR_BUCKET_NR(b->c, &b->key, 0));
279 }
280
btree_complete_write(struct btree * b,struct btree_write * w)281 static void btree_complete_write(struct btree *b, struct btree_write *w)
282 {
283 if (w->prio_blocked &&
284 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
285 wake_up_allocators(b->c);
286
287 if (w->journal) {
288 atomic_dec_bug(w->journal);
289 __closure_wake_up(&b->c->journal.wait);
290 }
291
292 w->prio_blocked = 0;
293 w->journal = NULL;
294 }
295
btree_node_write_unlock(struct closure * cl)296 static void btree_node_write_unlock(struct closure *cl)
297 {
298 struct btree *b = container_of(cl, struct btree, io);
299
300 up(&b->io_mutex);
301 }
302
__btree_node_write_done(struct closure * cl)303 static void __btree_node_write_done(struct closure *cl)
304 {
305 struct btree *b = container_of(cl, struct btree, io);
306 struct btree_write *w = btree_prev_write(b);
307
308 bch_bbio_free(b->bio, b->c);
309 b->bio = NULL;
310 btree_complete_write(b, w);
311
312 if (btree_node_dirty(b))
313 queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
314
315 closure_return_with_destructor(cl, btree_node_write_unlock);
316 }
317
btree_node_write_done(struct closure * cl)318 static void btree_node_write_done(struct closure *cl)
319 {
320 struct btree *b = container_of(cl, struct btree, io);
321
322 bio_free_pages(b->bio);
323 __btree_node_write_done(cl);
324 }
325
btree_node_write_endio(struct bio * bio)326 static void btree_node_write_endio(struct bio *bio)
327 {
328 struct closure *cl = bio->bi_private;
329 struct btree *b = container_of(cl, struct btree, io);
330
331 if (bio->bi_status)
332 set_btree_node_io_error(b);
333
334 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
335 closure_put(cl);
336 }
337
do_btree_node_write(struct btree * b)338 static void do_btree_node_write(struct btree *b)
339 {
340 struct closure *cl = &b->io;
341 struct bset *i = btree_bset_last(b);
342 BKEY_PADDED(key) k;
343
344 i->version = BCACHE_BSET_VERSION;
345 i->csum = btree_csum_set(b, i);
346
347 BUG_ON(b->bio);
348 b->bio = bch_bbio_alloc(b->c);
349
350 b->bio->bi_end_io = btree_node_write_endio;
351 b->bio->bi_private = cl;
352 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c->cache));
353 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA;
354 bch_bio_map(b->bio, i);
355
356 /*
357 * If we're appending to a leaf node, we don't technically need FUA -
358 * this write just needs to be persisted before the next journal write,
359 * which will be marked FLUSH|FUA.
360 *
361 * Similarly if we're writing a new btree root - the pointer is going to
362 * be in the next journal entry.
363 *
364 * But if we're writing a new btree node (that isn't a root) or
365 * appending to a non leaf btree node, we need either FUA or a flush
366 * when we write the parent with the new pointer. FUA is cheaper than a
367 * flush, and writes appending to leaf nodes aren't blocking anything so
368 * just make all btree node writes FUA to keep things sane.
369 */
370
371 bkey_copy(&k.key, &b->key);
372 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
373 bset_sector_offset(&b->keys, i));
374
375 if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
376 struct bio_vec *bv;
377 void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
378 struct bvec_iter_all iter_all;
379
380 bio_for_each_segment_all(bv, b->bio, iter_all) {
381 memcpy(page_address(bv->bv_page), addr, PAGE_SIZE);
382 addr += PAGE_SIZE;
383 }
384
385 bch_submit_bbio(b->bio, b->c, &k.key, 0);
386
387 continue_at(cl, btree_node_write_done, NULL);
388 } else {
389 /*
390 * No problem for multipage bvec since the bio is
391 * just allocated
392 */
393 b->bio->bi_vcnt = 0;
394 bch_bio_map(b->bio, i);
395
396 bch_submit_bbio(b->bio, b->c, &k.key, 0);
397
398 closure_sync(cl);
399 continue_at_nobarrier(cl, __btree_node_write_done, NULL);
400 }
401 }
402
__bch_btree_node_write(struct btree * b,struct closure * parent)403 void __bch_btree_node_write(struct btree *b, struct closure *parent)
404 {
405 struct bset *i = btree_bset_last(b);
406
407 lockdep_assert_held(&b->write_lock);
408
409 trace_bcache_btree_write(b);
410
411 BUG_ON(current->bio_list);
412 BUG_ON(b->written >= btree_blocks(b));
413 BUG_ON(b->written && !i->keys);
414 BUG_ON(btree_bset_first(b)->seq != i->seq);
415 bch_check_keys(&b->keys, "writing");
416
417 cancel_delayed_work(&b->work);
418
419 /* If caller isn't waiting for write, parent refcount is cache set */
420 down(&b->io_mutex);
421 closure_init(&b->io, parent ?: &b->c->cl);
422
423 clear_bit(BTREE_NODE_dirty, &b->flags);
424 change_bit(BTREE_NODE_write_idx, &b->flags);
425
426 do_btree_node_write(b);
427
428 atomic_long_add(set_blocks(i, block_bytes(b->c->cache)) * b->c->cache->sb.block_size,
429 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
430
431 b->written += set_blocks(i, block_bytes(b->c->cache));
432 }
433
bch_btree_node_write(struct btree * b,struct closure * parent)434 void bch_btree_node_write(struct btree *b, struct closure *parent)
435 {
436 unsigned int nsets = b->keys.nsets;
437
438 lockdep_assert_held(&b->lock);
439
440 __bch_btree_node_write(b, parent);
441
442 /*
443 * do verify if there was more than one set initially (i.e. we did a
444 * sort) and we sorted down to a single set:
445 */
446 if (nsets && !b->keys.nsets)
447 bch_btree_verify(b);
448
449 bch_btree_init_next(b);
450 }
451
bch_btree_node_write_sync(struct btree * b)452 static void bch_btree_node_write_sync(struct btree *b)
453 {
454 struct closure cl;
455
456 closure_init_stack(&cl);
457
458 mutex_lock(&b->write_lock);
459 bch_btree_node_write(b, &cl);
460 mutex_unlock(&b->write_lock);
461
462 closure_sync(&cl);
463 }
464
btree_node_write_work(struct work_struct * w)465 static void btree_node_write_work(struct work_struct *w)
466 {
467 struct btree *b = container_of(to_delayed_work(w), struct btree, work);
468
469 mutex_lock(&b->write_lock);
470 if (btree_node_dirty(b))
471 __bch_btree_node_write(b, NULL);
472 mutex_unlock(&b->write_lock);
473 }
474
bch_btree_leaf_dirty(struct btree * b,atomic_t * journal_ref)475 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
476 {
477 struct bset *i = btree_bset_last(b);
478 struct btree_write *w = btree_current_write(b);
479
480 lockdep_assert_held(&b->write_lock);
481
482 BUG_ON(!b->written);
483 BUG_ON(!i->keys);
484
485 if (!btree_node_dirty(b))
486 queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
487
488 set_btree_node_dirty(b);
489
490 /*
491 * w->journal is always the oldest journal pin of all bkeys
492 * in the leaf node, to make sure the oldest jset seq won't
493 * be increased before this btree node is flushed.
494 */
495 if (journal_ref) {
496 if (w->journal &&
497 journal_pin_cmp(b->c, w->journal, journal_ref)) {
498 atomic_dec_bug(w->journal);
499 w->journal = NULL;
500 }
501
502 if (!w->journal) {
503 w->journal = journal_ref;
504 atomic_inc(w->journal);
505 }
506 }
507
508 /* Force write if set is too big */
509 if (set_bytes(i) > PAGE_SIZE - 48 &&
510 !current->bio_list)
511 bch_btree_node_write(b, NULL);
512 }
513
514 /*
515 * Btree in memory cache - allocation/freeing
516 * mca -> memory cache
517 */
518
519 #define mca_reserve(c) (((!IS_ERR_OR_NULL(c->root) && c->root->level) \
520 ? c->root->level : 1) * 8 + 16)
521 #define mca_can_free(c) \
522 max_t(int, 0, c->btree_cache_used - mca_reserve(c))
523
mca_data_free(struct btree * b)524 static void mca_data_free(struct btree *b)
525 {
526 BUG_ON(b->io_mutex.count != 1);
527
528 bch_btree_keys_free(&b->keys);
529
530 b->c->btree_cache_used--;
531 list_move(&b->list, &b->c->btree_cache_freed);
532 }
533
mca_bucket_free(struct btree * b)534 static void mca_bucket_free(struct btree *b)
535 {
536 BUG_ON(btree_node_dirty(b));
537
538 b->key.ptr[0] = 0;
539 hlist_del_init_rcu(&b->hash);
540 list_move(&b->list, &b->c->btree_cache_freeable);
541 }
542
btree_order(struct bkey * k)543 static unsigned int btree_order(struct bkey *k)
544 {
545 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
546 }
547
mca_data_alloc(struct btree * b,struct bkey * k,gfp_t gfp)548 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
549 {
550 if (!bch_btree_keys_alloc(&b->keys,
551 max_t(unsigned int,
552 ilog2(b->c->btree_pages),
553 btree_order(k)),
554 gfp)) {
555 b->c->btree_cache_used++;
556 list_move(&b->list, &b->c->btree_cache);
557 } else {
558 list_move(&b->list, &b->c->btree_cache_freed);
559 }
560 }
561
mca_bucket_alloc(struct cache_set * c,struct bkey * k,gfp_t gfp)562 static struct btree *mca_bucket_alloc(struct cache_set *c,
563 struct bkey *k, gfp_t gfp)
564 {
565 /*
566 * kzalloc() is necessary here for initialization,
567 * see code comments in bch_btree_keys_init().
568 */
569 struct btree *b = kzalloc(sizeof(struct btree), gfp);
570
571 if (!b)
572 return NULL;
573
574 init_rwsem(&b->lock);
575 lockdep_set_novalidate_class(&b->lock);
576 mutex_init(&b->write_lock);
577 lockdep_set_novalidate_class(&b->write_lock);
578 INIT_LIST_HEAD(&b->list);
579 INIT_DELAYED_WORK(&b->work, btree_node_write_work);
580 b->c = c;
581 sema_init(&b->io_mutex, 1);
582
583 mca_data_alloc(b, k, gfp);
584 return b;
585 }
586
mca_reap(struct btree * b,unsigned int min_order,bool flush)587 static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
588 {
589 struct closure cl;
590
591 closure_init_stack(&cl);
592 lockdep_assert_held(&b->c->bucket_lock);
593
594 if (!down_write_trylock(&b->lock))
595 return -ENOMEM;
596
597 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
598
599 if (b->keys.page_order < min_order)
600 goto out_unlock;
601
602 if (!flush) {
603 if (btree_node_dirty(b))
604 goto out_unlock;
605
606 if (down_trylock(&b->io_mutex))
607 goto out_unlock;
608 up(&b->io_mutex);
609 }
610
611 retry:
612 /*
613 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by
614 * __bch_btree_node_write(). To avoid an extra flush, acquire
615 * b->write_lock before checking BTREE_NODE_dirty bit.
616 */
617 mutex_lock(&b->write_lock);
618 /*
619 * If this btree node is selected in btree_flush_write() by journal
620 * code, delay and retry until the node is flushed by journal code
621 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write().
622 */
623 if (btree_node_journal_flush(b)) {
624 pr_debug("bnode %p is flushing by journal, retry\n", b);
625 mutex_unlock(&b->write_lock);
626 udelay(1);
627 goto retry;
628 }
629
630 if (btree_node_dirty(b))
631 __bch_btree_node_write(b, &cl);
632 mutex_unlock(&b->write_lock);
633
634 closure_sync(&cl);
635
636 /* wait for any in flight btree write */
637 down(&b->io_mutex);
638 up(&b->io_mutex);
639
640 return 0;
641 out_unlock:
642 rw_unlock(true, b);
643 return -ENOMEM;
644 }
645
bch_mca_scan(struct shrinker * shrink,struct shrink_control * sc)646 static unsigned long bch_mca_scan(struct shrinker *shrink,
647 struct shrink_control *sc)
648 {
649 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
650 struct btree *b, *t;
651 unsigned long i, nr = sc->nr_to_scan;
652 unsigned long freed = 0;
653 unsigned int btree_cache_used;
654
655 if (c->shrinker_disabled)
656 return SHRINK_STOP;
657
658 if (c->btree_cache_alloc_lock)
659 return SHRINK_STOP;
660
661 /* Return -1 if we can't do anything right now */
662 if (sc->gfp_mask & __GFP_IO)
663 mutex_lock(&c->bucket_lock);
664 else if (!mutex_trylock(&c->bucket_lock))
665 return -1;
666
667 /*
668 * It's _really_ critical that we don't free too many btree nodes - we
669 * have to always leave ourselves a reserve. The reserve is how we
670 * guarantee that allocating memory for a new btree node can always
671 * succeed, so that inserting keys into the btree can always succeed and
672 * IO can always make forward progress:
673 */
674 nr /= c->btree_pages;
675 if (nr == 0)
676 nr = 1;
677 nr = min_t(unsigned long, nr, mca_can_free(c));
678
679 i = 0;
680 btree_cache_used = c->btree_cache_used;
681 list_for_each_entry_safe_reverse(b, t, &c->btree_cache_freeable, list) {
682 if (nr <= 0)
683 goto out;
684
685 if (!mca_reap(b, 0, false)) {
686 mca_data_free(b);
687 rw_unlock(true, b);
688 freed++;
689 }
690 nr--;
691 i++;
692 }
693
694 list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) {
695 if (nr <= 0 || i >= btree_cache_used)
696 goto out;
697
698 if (!mca_reap(b, 0, false)) {
699 mca_bucket_free(b);
700 mca_data_free(b);
701 rw_unlock(true, b);
702 freed++;
703 }
704
705 nr--;
706 i++;
707 }
708 out:
709 mutex_unlock(&c->bucket_lock);
710 return freed * c->btree_pages;
711 }
712
bch_mca_count(struct shrinker * shrink,struct shrink_control * sc)713 static unsigned long bch_mca_count(struct shrinker *shrink,
714 struct shrink_control *sc)
715 {
716 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
717
718 if (c->shrinker_disabled)
719 return 0;
720
721 if (c->btree_cache_alloc_lock)
722 return 0;
723
724 return mca_can_free(c) * c->btree_pages;
725 }
726
bch_btree_cache_free(struct cache_set * c)727 void bch_btree_cache_free(struct cache_set *c)
728 {
729 struct btree *b;
730 struct closure cl;
731
732 closure_init_stack(&cl);
733
734 if (c->shrink.list.next)
735 unregister_shrinker(&c->shrink);
736
737 mutex_lock(&c->bucket_lock);
738
739 #ifdef CONFIG_BCACHE_DEBUG
740 if (c->verify_data)
741 list_move(&c->verify_data->list, &c->btree_cache);
742
743 free_pages((unsigned long) c->verify_ondisk, ilog2(meta_bucket_pages(&c->cache->sb)));
744 #endif
745
746 list_splice(&c->btree_cache_freeable,
747 &c->btree_cache);
748
749 while (!list_empty(&c->btree_cache)) {
750 b = list_first_entry(&c->btree_cache, struct btree, list);
751
752 /*
753 * This function is called by cache_set_free(), no I/O
754 * request on cache now, it is unnecessary to acquire
755 * b->write_lock before clearing BTREE_NODE_dirty anymore.
756 */
757 if (btree_node_dirty(b)) {
758 btree_complete_write(b, btree_current_write(b));
759 clear_bit(BTREE_NODE_dirty, &b->flags);
760 }
761 mca_data_free(b);
762 }
763
764 while (!list_empty(&c->btree_cache_freed)) {
765 b = list_first_entry(&c->btree_cache_freed,
766 struct btree, list);
767 list_del(&b->list);
768 cancel_delayed_work_sync(&b->work);
769 kfree(b);
770 }
771
772 mutex_unlock(&c->bucket_lock);
773 }
774
bch_btree_cache_alloc(struct cache_set * c)775 int bch_btree_cache_alloc(struct cache_set *c)
776 {
777 unsigned int i;
778
779 for (i = 0; i < mca_reserve(c); i++)
780 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
781 return -ENOMEM;
782
783 list_splice_init(&c->btree_cache,
784 &c->btree_cache_freeable);
785
786 #ifdef CONFIG_BCACHE_DEBUG
787 mutex_init(&c->verify_lock);
788
789 c->verify_ondisk = (void *)
790 __get_free_pages(GFP_KERNEL|__GFP_COMP,
791 ilog2(meta_bucket_pages(&c->cache->sb)));
792 if (!c->verify_ondisk) {
793 /*
794 * Don't worry about the mca_rereserve buckets
795 * allocated in previous for-loop, they will be
796 * handled properly in bch_cache_set_unregister().
797 */
798 return -ENOMEM;
799 }
800
801 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
802
803 if (c->verify_data &&
804 c->verify_data->keys.set->data)
805 list_del_init(&c->verify_data->list);
806 else
807 c->verify_data = NULL;
808 #endif
809
810 c->shrink.count_objects = bch_mca_count;
811 c->shrink.scan_objects = bch_mca_scan;
812 c->shrink.seeks = 4;
813 c->shrink.batch = c->btree_pages * 2;
814
815 if (register_shrinker(&c->shrink))
816 pr_warn("bcache: %s: could not register shrinker\n",
817 __func__);
818
819 return 0;
820 }
821
822 /* Btree in memory cache - hash table */
823
mca_hash(struct cache_set * c,struct bkey * k)824 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
825 {
826 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
827 }
828
mca_find(struct cache_set * c,struct bkey * k)829 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
830 {
831 struct btree *b;
832
833 rcu_read_lock();
834 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
835 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
836 goto out;
837 b = NULL;
838 out:
839 rcu_read_unlock();
840 return b;
841 }
842
mca_cannibalize_lock(struct cache_set * c,struct btree_op * op)843 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
844 {
845 spin_lock(&c->btree_cannibalize_lock);
846 if (likely(c->btree_cache_alloc_lock == NULL)) {
847 c->btree_cache_alloc_lock = current;
848 } else if (c->btree_cache_alloc_lock != current) {
849 if (op)
850 prepare_to_wait(&c->btree_cache_wait, &op->wait,
851 TASK_UNINTERRUPTIBLE);
852 spin_unlock(&c->btree_cannibalize_lock);
853 return -EINTR;
854 }
855 spin_unlock(&c->btree_cannibalize_lock);
856
857 return 0;
858 }
859
mca_cannibalize(struct cache_set * c,struct btree_op * op,struct bkey * k)860 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
861 struct bkey *k)
862 {
863 struct btree *b;
864
865 trace_bcache_btree_cache_cannibalize(c);
866
867 if (mca_cannibalize_lock(c, op))
868 return ERR_PTR(-EINTR);
869
870 list_for_each_entry_reverse(b, &c->btree_cache, list)
871 if (!mca_reap(b, btree_order(k), false))
872 return b;
873
874 list_for_each_entry_reverse(b, &c->btree_cache, list)
875 if (!mca_reap(b, btree_order(k), true))
876 return b;
877
878 WARN(1, "btree cache cannibalize failed\n");
879 return ERR_PTR(-ENOMEM);
880 }
881
882 /*
883 * We can only have one thread cannibalizing other cached btree nodes at a time,
884 * or we'll deadlock. We use an open coded mutex to ensure that, which a
885 * cannibalize_bucket() will take. This means every time we unlock the root of
886 * the btree, we need to release this lock if we have it held.
887 */
bch_cannibalize_unlock(struct cache_set * c)888 static void bch_cannibalize_unlock(struct cache_set *c)
889 {
890 spin_lock(&c->btree_cannibalize_lock);
891 if (c->btree_cache_alloc_lock == current) {
892 c->btree_cache_alloc_lock = NULL;
893 wake_up(&c->btree_cache_wait);
894 }
895 spin_unlock(&c->btree_cannibalize_lock);
896 }
897
mca_alloc(struct cache_set * c,struct btree_op * op,struct bkey * k,int level)898 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
899 struct bkey *k, int level)
900 {
901 struct btree *b;
902
903 BUG_ON(current->bio_list);
904
905 lockdep_assert_held(&c->bucket_lock);
906
907 if (mca_find(c, k))
908 return NULL;
909
910 /* btree_free() doesn't free memory; it sticks the node on the end of
911 * the list. Check if there's any freed nodes there:
912 */
913 list_for_each_entry(b, &c->btree_cache_freeable, list)
914 if (!mca_reap(b, btree_order(k), false))
915 goto out;
916
917 /* We never free struct btree itself, just the memory that holds the on
918 * disk node. Check the freed list before allocating a new one:
919 */
920 list_for_each_entry(b, &c->btree_cache_freed, list)
921 if (!mca_reap(b, 0, false)) {
922 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
923 if (!b->keys.set[0].data)
924 goto err;
925 else
926 goto out;
927 }
928
929 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
930 if (!b)
931 goto err;
932
933 BUG_ON(!down_write_trylock(&b->lock));
934 if (!b->keys.set->data)
935 goto err;
936 out:
937 BUG_ON(b->io_mutex.count != 1);
938
939 bkey_copy(&b->key, k);
940 list_move(&b->list, &c->btree_cache);
941 hlist_del_init_rcu(&b->hash);
942 hlist_add_head_rcu(&b->hash, mca_hash(c, k));
943
944 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
945 b->parent = (void *) ~0UL;
946 b->flags = 0;
947 b->written = 0;
948 b->level = level;
949
950 if (!b->level)
951 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
952 &b->c->expensive_debug_checks);
953 else
954 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
955 &b->c->expensive_debug_checks);
956
957 return b;
958 err:
959 if (b)
960 rw_unlock(true, b);
961
962 b = mca_cannibalize(c, op, k);
963 if (!IS_ERR(b))
964 goto out;
965
966 return b;
967 }
968
969 /*
970 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
971 * in from disk if necessary.
972 *
973 * If IO is necessary and running under submit_bio_noacct, returns -EAGAIN.
974 *
975 * The btree node will have either a read or a write lock held, depending on
976 * level and op->lock.
977 */
bch_btree_node_get(struct cache_set * c,struct btree_op * op,struct bkey * k,int level,bool write,struct btree * parent)978 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
979 struct bkey *k, int level, bool write,
980 struct btree *parent)
981 {
982 int i = 0;
983 struct btree *b;
984
985 BUG_ON(level < 0);
986 retry:
987 b = mca_find(c, k);
988
989 if (!b) {
990 if (current->bio_list)
991 return ERR_PTR(-EAGAIN);
992
993 mutex_lock(&c->bucket_lock);
994 b = mca_alloc(c, op, k, level);
995 mutex_unlock(&c->bucket_lock);
996
997 if (!b)
998 goto retry;
999 if (IS_ERR(b))
1000 return b;
1001
1002 bch_btree_node_read(b);
1003
1004 if (!write)
1005 downgrade_write(&b->lock);
1006 } else {
1007 rw_lock(write, b, level);
1008 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1009 rw_unlock(write, b);
1010 goto retry;
1011 }
1012 BUG_ON(b->level != level);
1013 }
1014
1015 if (btree_node_io_error(b)) {
1016 rw_unlock(write, b);
1017 return ERR_PTR(-EIO);
1018 }
1019
1020 BUG_ON(!b->written);
1021
1022 b->parent = parent;
1023
1024 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1025 prefetch(b->keys.set[i].tree);
1026 prefetch(b->keys.set[i].data);
1027 }
1028
1029 for (; i <= b->keys.nsets; i++)
1030 prefetch(b->keys.set[i].data);
1031
1032 return b;
1033 }
1034
btree_node_prefetch(struct btree * parent,struct bkey * k)1035 static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1036 {
1037 struct btree *b;
1038
1039 mutex_lock(&parent->c->bucket_lock);
1040 b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1041 mutex_unlock(&parent->c->bucket_lock);
1042
1043 if (!IS_ERR_OR_NULL(b)) {
1044 b->parent = parent;
1045 bch_btree_node_read(b);
1046 rw_unlock(true, b);
1047 }
1048 }
1049
1050 /* Btree alloc */
1051
btree_node_free(struct btree * b)1052 static void btree_node_free(struct btree *b)
1053 {
1054 trace_bcache_btree_node_free(b);
1055
1056 BUG_ON(b == b->c->root);
1057
1058 retry:
1059 mutex_lock(&b->write_lock);
1060 /*
1061 * If the btree node is selected and flushing in btree_flush_write(),
1062 * delay and retry until the BTREE_NODE_journal_flush bit cleared,
1063 * then it is safe to free the btree node here. Otherwise this btree
1064 * node will be in race condition.
1065 */
1066 if (btree_node_journal_flush(b)) {
1067 mutex_unlock(&b->write_lock);
1068 pr_debug("bnode %p journal_flush set, retry\n", b);
1069 udelay(1);
1070 goto retry;
1071 }
1072
1073 if (btree_node_dirty(b)) {
1074 btree_complete_write(b, btree_current_write(b));
1075 clear_bit(BTREE_NODE_dirty, &b->flags);
1076 }
1077
1078 mutex_unlock(&b->write_lock);
1079
1080 cancel_delayed_work(&b->work);
1081
1082 mutex_lock(&b->c->bucket_lock);
1083 bch_bucket_free(b->c, &b->key);
1084 mca_bucket_free(b);
1085 mutex_unlock(&b->c->bucket_lock);
1086 }
1087
__bch_btree_node_alloc(struct cache_set * c,struct btree_op * op,int level,bool wait,struct btree * parent)1088 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1089 int level, bool wait,
1090 struct btree *parent)
1091 {
1092 BKEY_PADDED(key) k;
1093 struct btree *b = ERR_PTR(-EAGAIN);
1094
1095 mutex_lock(&c->bucket_lock);
1096 retry:
1097 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, wait))
1098 goto err;
1099
1100 bkey_put(c, &k.key);
1101 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1102
1103 b = mca_alloc(c, op, &k.key, level);
1104 if (IS_ERR(b))
1105 goto err_free;
1106
1107 if (!b) {
1108 cache_bug(c,
1109 "Tried to allocate bucket that was in btree cache");
1110 goto retry;
1111 }
1112
1113 b->parent = parent;
1114 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->cache->sb));
1115
1116 mutex_unlock(&c->bucket_lock);
1117
1118 trace_bcache_btree_node_alloc(b);
1119 return b;
1120 err_free:
1121 bch_bucket_free(c, &k.key);
1122 err:
1123 mutex_unlock(&c->bucket_lock);
1124
1125 trace_bcache_btree_node_alloc_fail(c);
1126 return b;
1127 }
1128
bch_btree_node_alloc(struct cache_set * c,struct btree_op * op,int level,struct btree * parent)1129 static struct btree *bch_btree_node_alloc(struct cache_set *c,
1130 struct btree_op *op, int level,
1131 struct btree *parent)
1132 {
1133 return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1134 }
1135
btree_node_alloc_replacement(struct btree * b,struct btree_op * op)1136 static struct btree *btree_node_alloc_replacement(struct btree *b,
1137 struct btree_op *op)
1138 {
1139 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1140
1141 if (!IS_ERR_OR_NULL(n)) {
1142 mutex_lock(&n->write_lock);
1143 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1144 bkey_copy_key(&n->key, &b->key);
1145 mutex_unlock(&n->write_lock);
1146 }
1147
1148 return n;
1149 }
1150
make_btree_freeing_key(struct btree * b,struct bkey * k)1151 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1152 {
1153 unsigned int i;
1154
1155 mutex_lock(&b->c->bucket_lock);
1156
1157 atomic_inc(&b->c->prio_blocked);
1158
1159 bkey_copy(k, &b->key);
1160 bkey_copy_key(k, &ZERO_KEY);
1161
1162 for (i = 0; i < KEY_PTRS(k); i++)
1163 SET_PTR_GEN(k, i,
1164 bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1165 PTR_BUCKET(b->c, &b->key, i)));
1166
1167 mutex_unlock(&b->c->bucket_lock);
1168 }
1169
btree_check_reserve(struct btree * b,struct btree_op * op)1170 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1171 {
1172 struct cache_set *c = b->c;
1173 struct cache *ca = c->cache;
1174 unsigned int reserve = (c->root->level - b->level) * 2 + 1;
1175
1176 mutex_lock(&c->bucket_lock);
1177
1178 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1179 if (op)
1180 prepare_to_wait(&c->btree_cache_wait, &op->wait,
1181 TASK_UNINTERRUPTIBLE);
1182 mutex_unlock(&c->bucket_lock);
1183 return -EINTR;
1184 }
1185
1186 mutex_unlock(&c->bucket_lock);
1187
1188 return mca_cannibalize_lock(b->c, op);
1189 }
1190
1191 /* Garbage collection */
1192
__bch_btree_mark_key(struct cache_set * c,int level,struct bkey * k)1193 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1194 struct bkey *k)
1195 {
1196 uint8_t stale = 0;
1197 unsigned int i;
1198 struct bucket *g;
1199
1200 /*
1201 * ptr_invalid() can't return true for the keys that mark btree nodes as
1202 * freed, but since ptr_bad() returns true we'll never actually use them
1203 * for anything and thus we don't want mark their pointers here
1204 */
1205 if (!bkey_cmp(k, &ZERO_KEY))
1206 return stale;
1207
1208 for (i = 0; i < KEY_PTRS(k); i++) {
1209 if (!ptr_available(c, k, i))
1210 continue;
1211
1212 g = PTR_BUCKET(c, k, i);
1213
1214 if (gen_after(g->last_gc, PTR_GEN(k, i)))
1215 g->last_gc = PTR_GEN(k, i);
1216
1217 if (ptr_stale(c, k, i)) {
1218 stale = max(stale, ptr_stale(c, k, i));
1219 continue;
1220 }
1221
1222 cache_bug_on(GC_MARK(g) &&
1223 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1224 c, "inconsistent ptrs: mark = %llu, level = %i",
1225 GC_MARK(g), level);
1226
1227 if (level)
1228 SET_GC_MARK(g, GC_MARK_METADATA);
1229 else if (KEY_DIRTY(k))
1230 SET_GC_MARK(g, GC_MARK_DIRTY);
1231 else if (!GC_MARK(g))
1232 SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1233
1234 /* guard against overflow */
1235 SET_GC_SECTORS_USED(g, min_t(unsigned int,
1236 GC_SECTORS_USED(g) + KEY_SIZE(k),
1237 MAX_GC_SECTORS_USED));
1238
1239 BUG_ON(!GC_SECTORS_USED(g));
1240 }
1241
1242 return stale;
1243 }
1244
1245 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
1246
bch_initial_mark_key(struct cache_set * c,int level,struct bkey * k)1247 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1248 {
1249 unsigned int i;
1250
1251 for (i = 0; i < KEY_PTRS(k); i++)
1252 if (ptr_available(c, k, i) &&
1253 !ptr_stale(c, k, i)) {
1254 struct bucket *b = PTR_BUCKET(c, k, i);
1255
1256 b->gen = PTR_GEN(k, i);
1257
1258 if (level && bkey_cmp(k, &ZERO_KEY))
1259 b->prio = BTREE_PRIO;
1260 else if (!level && b->prio == BTREE_PRIO)
1261 b->prio = INITIAL_PRIO;
1262 }
1263
1264 __bch_btree_mark_key(c, level, k);
1265 }
1266
bch_update_bucket_in_use(struct cache_set * c,struct gc_stat * stats)1267 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1268 {
1269 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1270 }
1271
btree_gc_mark_node(struct btree * b,struct gc_stat * gc)1272 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1273 {
1274 uint8_t stale = 0;
1275 unsigned int keys = 0, good_keys = 0;
1276 struct bkey *k;
1277 struct btree_iter iter;
1278 struct bset_tree *t;
1279
1280 gc->nodes++;
1281
1282 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1283 stale = max(stale, btree_mark_key(b, k));
1284 keys++;
1285
1286 if (bch_ptr_bad(&b->keys, k))
1287 continue;
1288
1289 gc->key_bytes += bkey_u64s(k);
1290 gc->nkeys++;
1291 good_keys++;
1292
1293 gc->data += KEY_SIZE(k);
1294 }
1295
1296 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1297 btree_bug_on(t->size &&
1298 bset_written(&b->keys, t) &&
1299 bkey_cmp(&b->key, &t->end) < 0,
1300 b, "found short btree key in gc");
1301
1302 if (b->c->gc_always_rewrite)
1303 return true;
1304
1305 if (stale > 10)
1306 return true;
1307
1308 if ((keys - good_keys) * 2 > keys)
1309 return true;
1310
1311 return false;
1312 }
1313
1314 #define GC_MERGE_NODES 4U
1315
1316 struct gc_merge_info {
1317 struct btree *b;
1318 unsigned int keys;
1319 };
1320
1321 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
1322 struct keylist *insert_keys,
1323 atomic_t *journal_ref,
1324 struct bkey *replace_key);
1325
btree_gc_coalesce(struct btree * b,struct btree_op * op,struct gc_stat * gc,struct gc_merge_info * r)1326 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1327 struct gc_stat *gc, struct gc_merge_info *r)
1328 {
1329 unsigned int i, nodes = 0, keys = 0, blocks;
1330 struct btree *new_nodes[GC_MERGE_NODES];
1331 struct keylist keylist;
1332 struct closure cl;
1333 struct bkey *k;
1334
1335 bch_keylist_init(&keylist);
1336
1337 if (btree_check_reserve(b, NULL))
1338 return 0;
1339
1340 memset(new_nodes, 0, sizeof(new_nodes));
1341 closure_init_stack(&cl);
1342
1343 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1344 keys += r[nodes++].keys;
1345
1346 blocks = btree_default_blocks(b->c) * 2 / 3;
1347
1348 if (nodes < 2 ||
1349 __set_blocks(b->keys.set[0].data, keys,
1350 block_bytes(b->c->cache)) > blocks * (nodes - 1))
1351 return 0;
1352
1353 for (i = 0; i < nodes; i++) {
1354 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1355 if (IS_ERR_OR_NULL(new_nodes[i]))
1356 goto out_nocoalesce;
1357 }
1358
1359 /*
1360 * We have to check the reserve here, after we've allocated our new
1361 * nodes, to make sure the insert below will succeed - we also check
1362 * before as an optimization to potentially avoid a bunch of expensive
1363 * allocs/sorts
1364 */
1365 if (btree_check_reserve(b, NULL))
1366 goto out_nocoalesce;
1367
1368 for (i = 0; i < nodes; i++)
1369 mutex_lock(&new_nodes[i]->write_lock);
1370
1371 for (i = nodes - 1; i > 0; --i) {
1372 struct bset *n1 = btree_bset_first(new_nodes[i]);
1373 struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1374 struct bkey *k, *last = NULL;
1375
1376 keys = 0;
1377
1378 if (i > 1) {
1379 for (k = n2->start;
1380 k < bset_bkey_last(n2);
1381 k = bkey_next(k)) {
1382 if (__set_blocks(n1, n1->keys + keys +
1383 bkey_u64s(k),
1384 block_bytes(b->c->cache)) > blocks)
1385 break;
1386
1387 last = k;
1388 keys += bkey_u64s(k);
1389 }
1390 } else {
1391 /*
1392 * Last node we're not getting rid of - we're getting
1393 * rid of the node at r[0]. Have to try and fit all of
1394 * the remaining keys into this node; we can't ensure
1395 * they will always fit due to rounding and variable
1396 * length keys (shouldn't be possible in practice,
1397 * though)
1398 */
1399 if (__set_blocks(n1, n1->keys + n2->keys,
1400 block_bytes(b->c->cache)) >
1401 btree_blocks(new_nodes[i]))
1402 goto out_unlock_nocoalesce;
1403
1404 keys = n2->keys;
1405 /* Take the key of the node we're getting rid of */
1406 last = &r->b->key;
1407 }
1408
1409 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c->cache)) >
1410 btree_blocks(new_nodes[i]));
1411
1412 if (last)
1413 bkey_copy_key(&new_nodes[i]->key, last);
1414
1415 memcpy(bset_bkey_last(n1),
1416 n2->start,
1417 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1418
1419 n1->keys += keys;
1420 r[i].keys = n1->keys;
1421
1422 memmove(n2->start,
1423 bset_bkey_idx(n2, keys),
1424 (void *) bset_bkey_last(n2) -
1425 (void *) bset_bkey_idx(n2, keys));
1426
1427 n2->keys -= keys;
1428
1429 if (__bch_keylist_realloc(&keylist,
1430 bkey_u64s(&new_nodes[i]->key)))
1431 goto out_unlock_nocoalesce;
1432
1433 bch_btree_node_write(new_nodes[i], &cl);
1434 bch_keylist_add(&keylist, &new_nodes[i]->key);
1435 }
1436
1437 for (i = 0; i < nodes; i++)
1438 mutex_unlock(&new_nodes[i]->write_lock);
1439
1440 closure_sync(&cl);
1441
1442 /* We emptied out this node */
1443 BUG_ON(btree_bset_first(new_nodes[0])->keys);
1444 btree_node_free(new_nodes[0]);
1445 rw_unlock(true, new_nodes[0]);
1446 new_nodes[0] = NULL;
1447
1448 for (i = 0; i < nodes; i++) {
1449 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1450 goto out_nocoalesce;
1451
1452 make_btree_freeing_key(r[i].b, keylist.top);
1453 bch_keylist_push(&keylist);
1454 }
1455
1456 bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1457 BUG_ON(!bch_keylist_empty(&keylist));
1458
1459 for (i = 0; i < nodes; i++) {
1460 btree_node_free(r[i].b);
1461 rw_unlock(true, r[i].b);
1462
1463 r[i].b = new_nodes[i];
1464 }
1465
1466 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1467 r[nodes - 1].b = ERR_PTR(-EINTR);
1468
1469 trace_bcache_btree_gc_coalesce(nodes);
1470 gc->nodes--;
1471
1472 bch_keylist_free(&keylist);
1473
1474 /* Invalidated our iterator */
1475 return -EINTR;
1476
1477 out_unlock_nocoalesce:
1478 for (i = 0; i < nodes; i++)
1479 mutex_unlock(&new_nodes[i]->write_lock);
1480
1481 out_nocoalesce:
1482 closure_sync(&cl);
1483
1484 while ((k = bch_keylist_pop(&keylist)))
1485 if (!bkey_cmp(k, &ZERO_KEY))
1486 atomic_dec(&b->c->prio_blocked);
1487 bch_keylist_free(&keylist);
1488
1489 for (i = 0; i < nodes; i++)
1490 if (!IS_ERR_OR_NULL(new_nodes[i])) {
1491 btree_node_free(new_nodes[i]);
1492 rw_unlock(true, new_nodes[i]);
1493 }
1494 return 0;
1495 }
1496
btree_gc_rewrite_node(struct btree * b,struct btree_op * op,struct btree * replace)1497 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1498 struct btree *replace)
1499 {
1500 struct keylist keys;
1501 struct btree *n;
1502
1503 if (btree_check_reserve(b, NULL))
1504 return 0;
1505
1506 n = btree_node_alloc_replacement(replace, NULL);
1507
1508 /* recheck reserve after allocating replacement node */
1509 if (btree_check_reserve(b, NULL)) {
1510 btree_node_free(n);
1511 rw_unlock(true, n);
1512 return 0;
1513 }
1514
1515 bch_btree_node_write_sync(n);
1516
1517 bch_keylist_init(&keys);
1518 bch_keylist_add(&keys, &n->key);
1519
1520 make_btree_freeing_key(replace, keys.top);
1521 bch_keylist_push(&keys);
1522
1523 bch_btree_insert_node(b, op, &keys, NULL, NULL);
1524 BUG_ON(!bch_keylist_empty(&keys));
1525
1526 btree_node_free(replace);
1527 rw_unlock(true, n);
1528
1529 /* Invalidated our iterator */
1530 return -EINTR;
1531 }
1532
btree_gc_count_keys(struct btree * b)1533 static unsigned int btree_gc_count_keys(struct btree *b)
1534 {
1535 struct bkey *k;
1536 struct btree_iter iter;
1537 unsigned int ret = 0;
1538
1539 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1540 ret += bkey_u64s(k);
1541
1542 return ret;
1543 }
1544
btree_gc_min_nodes(struct cache_set * c)1545 static size_t btree_gc_min_nodes(struct cache_set *c)
1546 {
1547 size_t min_nodes;
1548
1549 /*
1550 * Since incremental GC would stop 100ms when front
1551 * side I/O comes, so when there are many btree nodes,
1552 * if GC only processes constant (100) nodes each time,
1553 * GC would last a long time, and the front side I/Os
1554 * would run out of the buckets (since no new bucket
1555 * can be allocated during GC), and be blocked again.
1556 * So GC should not process constant nodes, but varied
1557 * nodes according to the number of btree nodes, which
1558 * realized by dividing GC into constant(100) times,
1559 * so when there are many btree nodes, GC can process
1560 * more nodes each time, otherwise, GC will process less
1561 * nodes each time (but no less than MIN_GC_NODES)
1562 */
1563 min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
1564 if (min_nodes < MIN_GC_NODES)
1565 min_nodes = MIN_GC_NODES;
1566
1567 return min_nodes;
1568 }
1569
1570
btree_gc_recurse(struct btree * b,struct btree_op * op,struct closure * writes,struct gc_stat * gc)1571 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1572 struct closure *writes, struct gc_stat *gc)
1573 {
1574 int ret = 0;
1575 bool should_rewrite;
1576 struct bkey *k;
1577 struct btree_iter iter;
1578 struct gc_merge_info r[GC_MERGE_NODES];
1579 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1580
1581 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1582
1583 for (i = r; i < r + ARRAY_SIZE(r); i++)
1584 i->b = ERR_PTR(-EINTR);
1585
1586 while (1) {
1587 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1588 if (k) {
1589 r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1590 true, b);
1591 if (IS_ERR(r->b)) {
1592 ret = PTR_ERR(r->b);
1593 break;
1594 }
1595
1596 r->keys = btree_gc_count_keys(r->b);
1597
1598 ret = btree_gc_coalesce(b, op, gc, r);
1599 if (ret)
1600 break;
1601 }
1602
1603 if (!last->b)
1604 break;
1605
1606 if (!IS_ERR(last->b)) {
1607 should_rewrite = btree_gc_mark_node(last->b, gc);
1608 if (should_rewrite) {
1609 ret = btree_gc_rewrite_node(b, op, last->b);
1610 if (ret)
1611 break;
1612 }
1613
1614 if (last->b->level) {
1615 ret = btree_gc_recurse(last->b, op, writes, gc);
1616 if (ret)
1617 break;
1618 }
1619
1620 bkey_copy_key(&b->c->gc_done, &last->b->key);
1621
1622 /*
1623 * Must flush leaf nodes before gc ends, since replace
1624 * operations aren't journalled
1625 */
1626 mutex_lock(&last->b->write_lock);
1627 if (btree_node_dirty(last->b))
1628 bch_btree_node_write(last->b, writes);
1629 mutex_unlock(&last->b->write_lock);
1630 rw_unlock(true, last->b);
1631 }
1632
1633 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1634 r->b = NULL;
1635
1636 if (atomic_read(&b->c->search_inflight) &&
1637 gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
1638 gc->nodes_pre = gc->nodes;
1639 ret = -EAGAIN;
1640 break;
1641 }
1642
1643 if (need_resched()) {
1644 ret = -EAGAIN;
1645 break;
1646 }
1647 }
1648
1649 for (i = r; i < r + ARRAY_SIZE(r); i++)
1650 if (!IS_ERR_OR_NULL(i->b)) {
1651 mutex_lock(&i->b->write_lock);
1652 if (btree_node_dirty(i->b))
1653 bch_btree_node_write(i->b, writes);
1654 mutex_unlock(&i->b->write_lock);
1655 rw_unlock(true, i->b);
1656 }
1657
1658 return ret;
1659 }
1660
bch_btree_gc_root(struct btree * b,struct btree_op * op,struct closure * writes,struct gc_stat * gc)1661 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1662 struct closure *writes, struct gc_stat *gc)
1663 {
1664 struct btree *n = NULL;
1665 int ret = 0;
1666 bool should_rewrite;
1667
1668 should_rewrite = btree_gc_mark_node(b, gc);
1669 if (should_rewrite) {
1670 n = btree_node_alloc_replacement(b, NULL);
1671
1672 if (!IS_ERR_OR_NULL(n)) {
1673 bch_btree_node_write_sync(n);
1674
1675 bch_btree_set_root(n);
1676 btree_node_free(b);
1677 rw_unlock(true, n);
1678
1679 return -EINTR;
1680 }
1681 }
1682
1683 __bch_btree_mark_key(b->c, b->level + 1, &b->key);
1684
1685 if (b->level) {
1686 ret = btree_gc_recurse(b, op, writes, gc);
1687 if (ret)
1688 return ret;
1689 }
1690
1691 bkey_copy_key(&b->c->gc_done, &b->key);
1692
1693 return ret;
1694 }
1695
btree_gc_start(struct cache_set * c)1696 static void btree_gc_start(struct cache_set *c)
1697 {
1698 struct cache *ca;
1699 struct bucket *b;
1700
1701 if (!c->gc_mark_valid)
1702 return;
1703
1704 mutex_lock(&c->bucket_lock);
1705
1706 c->gc_mark_valid = 0;
1707 c->gc_done = ZERO_KEY;
1708
1709 ca = c->cache;
1710 for_each_bucket(b, ca) {
1711 b->last_gc = b->gen;
1712 if (!atomic_read(&b->pin)) {
1713 SET_GC_MARK(b, 0);
1714 SET_GC_SECTORS_USED(b, 0);
1715 }
1716 }
1717
1718 mutex_unlock(&c->bucket_lock);
1719 }
1720
bch_btree_gc_finish(struct cache_set * c)1721 static void bch_btree_gc_finish(struct cache_set *c)
1722 {
1723 struct bucket *b;
1724 struct cache *ca;
1725 unsigned int i, j;
1726 uint64_t *k;
1727
1728 mutex_lock(&c->bucket_lock);
1729
1730 set_gc_sectors(c);
1731 c->gc_mark_valid = 1;
1732 c->need_gc = 0;
1733
1734 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1735 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1736 GC_MARK_METADATA);
1737
1738 /* don't reclaim buckets to which writeback keys point */
1739 rcu_read_lock();
1740 for (i = 0; i < c->devices_max_used; i++) {
1741 struct bcache_device *d = c->devices[i];
1742 struct cached_dev *dc;
1743 struct keybuf_key *w, *n;
1744
1745 if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1746 continue;
1747 dc = container_of(d, struct cached_dev, disk);
1748
1749 spin_lock(&dc->writeback_keys.lock);
1750 rbtree_postorder_for_each_entry_safe(w, n,
1751 &dc->writeback_keys.keys, node)
1752 for (j = 0; j < KEY_PTRS(&w->key); j++)
1753 SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1754 GC_MARK_DIRTY);
1755 spin_unlock(&dc->writeback_keys.lock);
1756 }
1757 rcu_read_unlock();
1758
1759 c->avail_nbuckets = 0;
1760
1761 ca = c->cache;
1762 ca->invalidate_needs_gc = 0;
1763
1764 for (k = ca->sb.d; k < ca->sb.d + ca->sb.keys; k++)
1765 SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA);
1766
1767 for (k = ca->prio_buckets;
1768 k < ca->prio_buckets + prio_buckets(ca) * 2; k++)
1769 SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA);
1770
1771 for_each_bucket(b, ca) {
1772 c->need_gc = max(c->need_gc, bucket_gc_gen(b));
1773
1774 if (atomic_read(&b->pin))
1775 continue;
1776
1777 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1778
1779 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1780 c->avail_nbuckets++;
1781 }
1782
1783 mutex_unlock(&c->bucket_lock);
1784 }
1785
bch_btree_gc(struct cache_set * c)1786 static void bch_btree_gc(struct cache_set *c)
1787 {
1788 int ret;
1789 struct gc_stat stats;
1790 struct closure writes;
1791 struct btree_op op;
1792 uint64_t start_time = local_clock();
1793
1794 trace_bcache_gc_start(c);
1795
1796 memset(&stats, 0, sizeof(struct gc_stat));
1797 closure_init_stack(&writes);
1798 bch_btree_op_init(&op, SHRT_MAX);
1799
1800 btree_gc_start(c);
1801
1802 /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1803 do {
1804 ret = bcache_btree_root(gc_root, c, &op, &writes, &stats);
1805 closure_sync(&writes);
1806 cond_resched();
1807
1808 if (ret == -EAGAIN)
1809 schedule_timeout_interruptible(msecs_to_jiffies
1810 (GC_SLEEP_MS));
1811 else if (ret)
1812 pr_warn("gc failed!\n");
1813 } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1814
1815 bch_btree_gc_finish(c);
1816 wake_up_allocators(c);
1817
1818 bch_time_stats_update(&c->btree_gc_time, start_time);
1819
1820 stats.key_bytes *= sizeof(uint64_t);
1821 stats.data <<= 9;
1822 bch_update_bucket_in_use(c, &stats);
1823 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1824
1825 trace_bcache_gc_end(c);
1826
1827 bch_moving_gc(c);
1828 }
1829
gc_should_run(struct cache_set * c)1830 static bool gc_should_run(struct cache_set *c)
1831 {
1832 struct cache *ca = c->cache;
1833
1834 if (ca->invalidate_needs_gc)
1835 return true;
1836
1837 if (atomic_read(&c->sectors_to_gc) < 0)
1838 return true;
1839
1840 return false;
1841 }
1842
bch_gc_thread(void * arg)1843 static int bch_gc_thread(void *arg)
1844 {
1845 struct cache_set *c = arg;
1846
1847 while (1) {
1848 wait_event_interruptible(c->gc_wait,
1849 kthread_should_stop() ||
1850 test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1851 gc_should_run(c));
1852
1853 if (kthread_should_stop() ||
1854 test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1855 break;
1856
1857 set_gc_sectors(c);
1858 bch_btree_gc(c);
1859 }
1860
1861 wait_for_kthread_stop();
1862 return 0;
1863 }
1864
bch_gc_thread_start(struct cache_set * c)1865 int bch_gc_thread_start(struct cache_set *c)
1866 {
1867 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1868 return PTR_ERR_OR_ZERO(c->gc_thread);
1869 }
1870
1871 /* Initial partial gc */
1872
bch_btree_check_recurse(struct btree * b,struct btree_op * op)1873 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1874 {
1875 int ret = 0;
1876 struct bkey *k, *p = NULL;
1877 struct btree_iter iter;
1878
1879 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1880 bch_initial_mark_key(b->c, b->level, k);
1881
1882 bch_initial_mark_key(b->c, b->level + 1, &b->key);
1883
1884 if (b->level) {
1885 bch_btree_iter_init(&b->keys, &iter, NULL);
1886
1887 do {
1888 k = bch_btree_iter_next_filter(&iter, &b->keys,
1889 bch_ptr_bad);
1890 if (k) {
1891 btree_node_prefetch(b, k);
1892 /*
1893 * initiallize c->gc_stats.nodes
1894 * for incremental GC
1895 */
1896 b->c->gc_stats.nodes++;
1897 }
1898
1899 if (p)
1900 ret = bcache_btree(check_recurse, p, b, op);
1901
1902 p = k;
1903 } while (p && !ret);
1904 }
1905
1906 return ret;
1907 }
1908
1909
bch_btree_check_thread(void * arg)1910 static int bch_btree_check_thread(void *arg)
1911 {
1912 int ret;
1913 struct btree_check_info *info = arg;
1914 struct btree_check_state *check_state = info->state;
1915 struct cache_set *c = check_state->c;
1916 struct btree_iter iter;
1917 struct bkey *k, *p;
1918 int cur_idx, prev_idx, skip_nr;
1919
1920 k = p = NULL;
1921 cur_idx = prev_idx = 0;
1922 ret = 0;
1923
1924 /* root node keys are checked before thread created */
1925 bch_btree_iter_init(&c->root->keys, &iter, NULL);
1926 k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad);
1927 BUG_ON(!k);
1928
1929 p = k;
1930 while (k) {
1931 /*
1932 * Fetch a root node key index, skip the keys which
1933 * should be fetched by other threads, then check the
1934 * sub-tree indexed by the fetched key.
1935 */
1936 spin_lock(&check_state->idx_lock);
1937 cur_idx = check_state->key_idx;
1938 check_state->key_idx++;
1939 spin_unlock(&check_state->idx_lock);
1940
1941 skip_nr = cur_idx - prev_idx;
1942
1943 while (skip_nr) {
1944 k = bch_btree_iter_next_filter(&iter,
1945 &c->root->keys,
1946 bch_ptr_bad);
1947 if (k)
1948 p = k;
1949 else {
1950 /*
1951 * No more keys to check in root node,
1952 * current checking threads are enough,
1953 * stop creating more.
1954 */
1955 atomic_set(&check_state->enough, 1);
1956 /* Update check_state->enough earlier */
1957 smp_mb__after_atomic();
1958 goto out;
1959 }
1960 skip_nr--;
1961 cond_resched();
1962 }
1963
1964 if (p) {
1965 struct btree_op op;
1966
1967 btree_node_prefetch(c->root, p);
1968 c->gc_stats.nodes++;
1969 bch_btree_op_init(&op, 0);
1970 ret = bcache_btree(check_recurse, p, c->root, &op);
1971 if (ret)
1972 goto out;
1973 }
1974 p = NULL;
1975 prev_idx = cur_idx;
1976 cond_resched();
1977 }
1978
1979 out:
1980 info->result = ret;
1981 /* update check_state->started among all CPUs */
1982 smp_mb__before_atomic();
1983 if (atomic_dec_and_test(&check_state->started))
1984 wake_up(&check_state->wait);
1985
1986 return ret;
1987 }
1988
1989
1990
bch_btree_chkthread_nr(void)1991 static int bch_btree_chkthread_nr(void)
1992 {
1993 int n = num_online_cpus()/2;
1994
1995 if (n == 0)
1996 n = 1;
1997 else if (n > BCH_BTR_CHKTHREAD_MAX)
1998 n = BCH_BTR_CHKTHREAD_MAX;
1999
2000 return n;
2001 }
2002
bch_btree_check(struct cache_set * c)2003 int bch_btree_check(struct cache_set *c)
2004 {
2005 int ret = 0;
2006 int i;
2007 struct bkey *k = NULL;
2008 struct btree_iter iter;
2009 struct btree_check_state *check_state;
2010 char name[32];
2011
2012 /* check and mark root node keys */
2013 for_each_key_filter(&c->root->keys, k, &iter, bch_ptr_invalid)
2014 bch_initial_mark_key(c, c->root->level, k);
2015
2016 bch_initial_mark_key(c, c->root->level + 1, &c->root->key);
2017
2018 if (c->root->level == 0)
2019 return 0;
2020
2021 check_state = kzalloc(sizeof(struct btree_check_state), GFP_KERNEL);
2022 if (!check_state)
2023 return -ENOMEM;
2024
2025 check_state->c = c;
2026 check_state->total_threads = bch_btree_chkthread_nr();
2027 check_state->key_idx = 0;
2028 spin_lock_init(&check_state->idx_lock);
2029 atomic_set(&check_state->started, 0);
2030 atomic_set(&check_state->enough, 0);
2031 init_waitqueue_head(&check_state->wait);
2032
2033 /*
2034 * Run multiple threads to check btree nodes in parallel,
2035 * if check_state->enough is non-zero, it means current
2036 * running check threads are enough, unncessary to create
2037 * more.
2038 */
2039 for (i = 0; i < check_state->total_threads; i++) {
2040 /* fetch latest check_state->enough earlier */
2041 smp_mb__before_atomic();
2042 if (atomic_read(&check_state->enough))
2043 break;
2044
2045 check_state->infos[i].result = 0;
2046 check_state->infos[i].state = check_state;
2047 snprintf(name, sizeof(name), "bch_btrchk[%u]", i);
2048 atomic_inc(&check_state->started);
2049
2050 check_state->infos[i].thread =
2051 kthread_run(bch_btree_check_thread,
2052 &check_state->infos[i],
2053 name);
2054 if (IS_ERR(check_state->infos[i].thread)) {
2055 pr_err("fails to run thread bch_btrchk[%d]\n", i);
2056 for (--i; i >= 0; i--)
2057 kthread_stop(check_state->infos[i].thread);
2058 ret = -ENOMEM;
2059 goto out;
2060 }
2061 }
2062
2063 wait_event_interruptible(check_state->wait,
2064 atomic_read(&check_state->started) == 0 ||
2065 test_bit(CACHE_SET_IO_DISABLE, &c->flags));
2066
2067 for (i = 0; i < check_state->total_threads; i++) {
2068 if (check_state->infos[i].result) {
2069 ret = check_state->infos[i].result;
2070 goto out;
2071 }
2072 }
2073
2074 out:
2075 kfree(check_state);
2076 return ret;
2077 }
2078
bch_initial_gc_finish(struct cache_set * c)2079 void bch_initial_gc_finish(struct cache_set *c)
2080 {
2081 struct cache *ca = c->cache;
2082 struct bucket *b;
2083
2084 bch_btree_gc_finish(c);
2085
2086 mutex_lock(&c->bucket_lock);
2087
2088 /*
2089 * We need to put some unused buckets directly on the prio freelist in
2090 * order to get the allocator thread started - it needs freed buckets in
2091 * order to rewrite the prios and gens, and it needs to rewrite prios
2092 * and gens in order to free buckets.
2093 *
2094 * This is only safe for buckets that have no live data in them, which
2095 * there should always be some of.
2096 */
2097 for_each_bucket(b, ca) {
2098 if (fifo_full(&ca->free[RESERVE_PRIO]) &&
2099 fifo_full(&ca->free[RESERVE_BTREE]))
2100 break;
2101
2102 if (bch_can_invalidate_bucket(ca, b) &&
2103 !GC_MARK(b)) {
2104 __bch_invalidate_one_bucket(ca, b);
2105 if (!fifo_push(&ca->free[RESERVE_PRIO],
2106 b - ca->buckets))
2107 fifo_push(&ca->free[RESERVE_BTREE],
2108 b - ca->buckets);
2109 }
2110 }
2111
2112 mutex_unlock(&c->bucket_lock);
2113 }
2114
2115 /* Btree insertion */
2116
btree_insert_key(struct btree * b,struct bkey * k,struct bkey * replace_key)2117 static bool btree_insert_key(struct btree *b, struct bkey *k,
2118 struct bkey *replace_key)
2119 {
2120 unsigned int status;
2121
2122 BUG_ON(bkey_cmp(k, &b->key) > 0);
2123
2124 status = bch_btree_insert_key(&b->keys, k, replace_key);
2125 if (status != BTREE_INSERT_STATUS_NO_INSERT) {
2126 bch_check_keys(&b->keys, "%u for %s", status,
2127 replace_key ? "replace" : "insert");
2128
2129 trace_bcache_btree_insert_key(b, k, replace_key != NULL,
2130 status);
2131 return true;
2132 } else
2133 return false;
2134 }
2135
insert_u64s_remaining(struct btree * b)2136 static size_t insert_u64s_remaining(struct btree *b)
2137 {
2138 long ret = bch_btree_keys_u64s_remaining(&b->keys);
2139
2140 /*
2141 * Might land in the middle of an existing extent and have to split it
2142 */
2143 if (b->keys.ops->is_extents)
2144 ret -= KEY_MAX_U64S;
2145
2146 return max(ret, 0L);
2147 }
2148
bch_btree_insert_keys(struct btree * b,struct btree_op * op,struct keylist * insert_keys,struct bkey * replace_key)2149 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
2150 struct keylist *insert_keys,
2151 struct bkey *replace_key)
2152 {
2153 bool ret = false;
2154 int oldsize = bch_count_data(&b->keys);
2155
2156 while (!bch_keylist_empty(insert_keys)) {
2157 struct bkey *k = insert_keys->keys;
2158
2159 if (bkey_u64s(k) > insert_u64s_remaining(b))
2160 break;
2161
2162 if (bkey_cmp(k, &b->key) <= 0) {
2163 if (!b->level)
2164 bkey_put(b->c, k);
2165
2166 ret |= btree_insert_key(b, k, replace_key);
2167 bch_keylist_pop_front(insert_keys);
2168 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
2169 BKEY_PADDED(key) temp;
2170 bkey_copy(&temp.key, insert_keys->keys);
2171
2172 bch_cut_back(&b->key, &temp.key);
2173 bch_cut_front(&b->key, insert_keys->keys);
2174
2175 ret |= btree_insert_key(b, &temp.key, replace_key);
2176 break;
2177 } else {
2178 break;
2179 }
2180 }
2181
2182 if (!ret)
2183 op->insert_collision = true;
2184
2185 BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
2186
2187 BUG_ON(bch_count_data(&b->keys) < oldsize);
2188 return ret;
2189 }
2190
btree_split(struct btree * b,struct btree_op * op,struct keylist * insert_keys,struct bkey * replace_key)2191 static int btree_split(struct btree *b, struct btree_op *op,
2192 struct keylist *insert_keys,
2193 struct bkey *replace_key)
2194 {
2195 bool split;
2196 struct btree *n1, *n2 = NULL, *n3 = NULL;
2197 uint64_t start_time = local_clock();
2198 struct closure cl;
2199 struct keylist parent_keys;
2200
2201 closure_init_stack(&cl);
2202 bch_keylist_init(&parent_keys);
2203
2204 if (btree_check_reserve(b, op)) {
2205 if (!b->level)
2206 return -EINTR;
2207 else
2208 WARN(1, "insufficient reserve for split\n");
2209 }
2210
2211 n1 = btree_node_alloc_replacement(b, op);
2212 if (IS_ERR(n1))
2213 goto err;
2214
2215 split = set_blocks(btree_bset_first(n1),
2216 block_bytes(n1->c->cache)) > (btree_blocks(b) * 4) / 5;
2217
2218 if (split) {
2219 unsigned int keys = 0;
2220
2221 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
2222
2223 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2224 if (IS_ERR(n2))
2225 goto err_free1;
2226
2227 if (!b->parent) {
2228 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2229 if (IS_ERR(n3))
2230 goto err_free2;
2231 }
2232
2233 mutex_lock(&n1->write_lock);
2234 mutex_lock(&n2->write_lock);
2235
2236 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2237
2238 /*
2239 * Has to be a linear search because we don't have an auxiliary
2240 * search tree yet
2241 */
2242
2243 while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2244 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2245 keys));
2246
2247 bkey_copy_key(&n1->key,
2248 bset_bkey_idx(btree_bset_first(n1), keys));
2249 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2250
2251 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2252 btree_bset_first(n1)->keys = keys;
2253
2254 memcpy(btree_bset_first(n2)->start,
2255 bset_bkey_last(btree_bset_first(n1)),
2256 btree_bset_first(n2)->keys * sizeof(uint64_t));
2257
2258 bkey_copy_key(&n2->key, &b->key);
2259
2260 bch_keylist_add(&parent_keys, &n2->key);
2261 bch_btree_node_write(n2, &cl);
2262 mutex_unlock(&n2->write_lock);
2263 rw_unlock(true, n2);
2264 } else {
2265 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2266
2267 mutex_lock(&n1->write_lock);
2268 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2269 }
2270
2271 bch_keylist_add(&parent_keys, &n1->key);
2272 bch_btree_node_write(n1, &cl);
2273 mutex_unlock(&n1->write_lock);
2274
2275 if (n3) {
2276 /* Depth increases, make a new root */
2277 mutex_lock(&n3->write_lock);
2278 bkey_copy_key(&n3->key, &MAX_KEY);
2279 bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2280 bch_btree_node_write(n3, &cl);
2281 mutex_unlock(&n3->write_lock);
2282
2283 closure_sync(&cl);
2284 bch_btree_set_root(n3);
2285 rw_unlock(true, n3);
2286 } else if (!b->parent) {
2287 /* Root filled up but didn't need to be split */
2288 closure_sync(&cl);
2289 bch_btree_set_root(n1);
2290 } else {
2291 /* Split a non root node */
2292 closure_sync(&cl);
2293 make_btree_freeing_key(b, parent_keys.top);
2294 bch_keylist_push(&parent_keys);
2295
2296 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2297 BUG_ON(!bch_keylist_empty(&parent_keys));
2298 }
2299
2300 btree_node_free(b);
2301 rw_unlock(true, n1);
2302
2303 bch_time_stats_update(&b->c->btree_split_time, start_time);
2304
2305 return 0;
2306 err_free2:
2307 bkey_put(b->c, &n2->key);
2308 btree_node_free(n2);
2309 rw_unlock(true, n2);
2310 err_free1:
2311 bkey_put(b->c, &n1->key);
2312 btree_node_free(n1);
2313 rw_unlock(true, n1);
2314 err:
2315 WARN(1, "bcache: btree split failed (level %u)", b->level);
2316
2317 if (n3 == ERR_PTR(-EAGAIN) ||
2318 n2 == ERR_PTR(-EAGAIN) ||
2319 n1 == ERR_PTR(-EAGAIN))
2320 return -EAGAIN;
2321
2322 return -ENOMEM;
2323 }
2324
bch_btree_insert_node(struct btree * b,struct btree_op * op,struct keylist * insert_keys,atomic_t * journal_ref,struct bkey * replace_key)2325 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2326 struct keylist *insert_keys,
2327 atomic_t *journal_ref,
2328 struct bkey *replace_key)
2329 {
2330 struct closure cl;
2331
2332 BUG_ON(b->level && replace_key);
2333
2334 closure_init_stack(&cl);
2335
2336 mutex_lock(&b->write_lock);
2337
2338 if (write_block(b) != btree_bset_last(b) &&
2339 b->keys.last_set_unwritten)
2340 bch_btree_init_next(b); /* just wrote a set */
2341
2342 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2343 mutex_unlock(&b->write_lock);
2344 goto split;
2345 }
2346
2347 BUG_ON(write_block(b) != btree_bset_last(b));
2348
2349 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2350 if (!b->level)
2351 bch_btree_leaf_dirty(b, journal_ref);
2352 else
2353 bch_btree_node_write(b, &cl);
2354 }
2355
2356 mutex_unlock(&b->write_lock);
2357
2358 /* wait for btree node write if necessary, after unlock */
2359 closure_sync(&cl);
2360
2361 return 0;
2362 split:
2363 if (current->bio_list) {
2364 op->lock = b->c->root->level + 1;
2365 return -EAGAIN;
2366 } else if (op->lock <= b->c->root->level) {
2367 op->lock = b->c->root->level + 1;
2368 return -EINTR;
2369 } else {
2370 /* Invalidated all iterators */
2371 int ret = btree_split(b, op, insert_keys, replace_key);
2372
2373 if (bch_keylist_empty(insert_keys))
2374 return 0;
2375 else if (!ret)
2376 return -EINTR;
2377 return ret;
2378 }
2379 }
2380
bch_btree_insert_check_key(struct btree * b,struct btree_op * op,struct bkey * check_key)2381 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2382 struct bkey *check_key)
2383 {
2384 int ret = -EINTR;
2385 uint64_t btree_ptr = b->key.ptr[0];
2386 unsigned long seq = b->seq;
2387 struct keylist insert;
2388 bool upgrade = op->lock == -1;
2389
2390 bch_keylist_init(&insert);
2391
2392 if (upgrade) {
2393 rw_unlock(false, b);
2394 rw_lock(true, b, b->level);
2395
2396 if (b->key.ptr[0] != btree_ptr ||
2397 b->seq != seq + 1) {
2398 op->lock = b->level;
2399 goto out;
2400 }
2401 }
2402
2403 SET_KEY_PTRS(check_key, 1);
2404 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2405
2406 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2407
2408 bch_keylist_add(&insert, check_key);
2409
2410 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2411
2412 BUG_ON(!ret && !bch_keylist_empty(&insert));
2413 out:
2414 if (upgrade)
2415 downgrade_write(&b->lock);
2416 return ret;
2417 }
2418
2419 struct btree_insert_op {
2420 struct btree_op op;
2421 struct keylist *keys;
2422 atomic_t *journal_ref;
2423 struct bkey *replace_key;
2424 };
2425
btree_insert_fn(struct btree_op * b_op,struct btree * b)2426 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2427 {
2428 struct btree_insert_op *op = container_of(b_op,
2429 struct btree_insert_op, op);
2430
2431 int ret = bch_btree_insert_node(b, &op->op, op->keys,
2432 op->journal_ref, op->replace_key);
2433 if (ret && !bch_keylist_empty(op->keys))
2434 return ret;
2435 else
2436 return MAP_DONE;
2437 }
2438
bch_btree_insert(struct cache_set * c,struct keylist * keys,atomic_t * journal_ref,struct bkey * replace_key)2439 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2440 atomic_t *journal_ref, struct bkey *replace_key)
2441 {
2442 struct btree_insert_op op;
2443 int ret = 0;
2444
2445 BUG_ON(current->bio_list);
2446 BUG_ON(bch_keylist_empty(keys));
2447
2448 bch_btree_op_init(&op.op, 0);
2449 op.keys = keys;
2450 op.journal_ref = journal_ref;
2451 op.replace_key = replace_key;
2452
2453 while (!ret && !bch_keylist_empty(keys)) {
2454 op.op.lock = 0;
2455 ret = bch_btree_map_leaf_nodes(&op.op, c,
2456 &START_KEY(keys->keys),
2457 btree_insert_fn);
2458 }
2459
2460 if (ret) {
2461 struct bkey *k;
2462
2463 pr_err("error %i\n", ret);
2464
2465 while ((k = bch_keylist_pop(keys)))
2466 bkey_put(c, k);
2467 } else if (op.op.insert_collision)
2468 ret = -ESRCH;
2469
2470 return ret;
2471 }
2472
bch_btree_set_root(struct btree * b)2473 void bch_btree_set_root(struct btree *b)
2474 {
2475 unsigned int i;
2476 struct closure cl;
2477
2478 closure_init_stack(&cl);
2479
2480 trace_bcache_btree_set_root(b);
2481
2482 BUG_ON(!b->written);
2483
2484 for (i = 0; i < KEY_PTRS(&b->key); i++)
2485 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2486
2487 mutex_lock(&b->c->bucket_lock);
2488 list_del_init(&b->list);
2489 mutex_unlock(&b->c->bucket_lock);
2490
2491 b->c->root = b;
2492
2493 bch_journal_meta(b->c, &cl);
2494 closure_sync(&cl);
2495 }
2496
2497 /* Map across nodes or keys */
2498
bch_btree_map_nodes_recurse(struct btree * b,struct btree_op * op,struct bkey * from,btree_map_nodes_fn * fn,int flags)2499 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2500 struct bkey *from,
2501 btree_map_nodes_fn *fn, int flags)
2502 {
2503 int ret = MAP_CONTINUE;
2504
2505 if (b->level) {
2506 struct bkey *k;
2507 struct btree_iter iter;
2508
2509 bch_btree_iter_init(&b->keys, &iter, from);
2510
2511 while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2512 bch_ptr_bad))) {
2513 ret = bcache_btree(map_nodes_recurse, k, b,
2514 op, from, fn, flags);
2515 from = NULL;
2516
2517 if (ret != MAP_CONTINUE)
2518 return ret;
2519 }
2520 }
2521
2522 if (!b->level || flags == MAP_ALL_NODES)
2523 ret = fn(op, b);
2524
2525 return ret;
2526 }
2527
__bch_btree_map_nodes(struct btree_op * op,struct cache_set * c,struct bkey * from,btree_map_nodes_fn * fn,int flags)2528 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2529 struct bkey *from, btree_map_nodes_fn *fn, int flags)
2530 {
2531 return bcache_btree_root(map_nodes_recurse, c, op, from, fn, flags);
2532 }
2533
bch_btree_map_keys_recurse(struct btree * b,struct btree_op * op,struct bkey * from,btree_map_keys_fn * fn,int flags)2534 int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2535 struct bkey *from, btree_map_keys_fn *fn,
2536 int flags)
2537 {
2538 int ret = MAP_CONTINUE;
2539 struct bkey *k;
2540 struct btree_iter iter;
2541
2542 bch_btree_iter_init(&b->keys, &iter, from);
2543
2544 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2545 ret = !b->level
2546 ? fn(op, b, k)
2547 : bcache_btree(map_keys_recurse, k,
2548 b, op, from, fn, flags);
2549 from = NULL;
2550
2551 if (ret != MAP_CONTINUE)
2552 return ret;
2553 }
2554
2555 if (!b->level && (flags & MAP_END_KEY))
2556 ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2557 KEY_OFFSET(&b->key), 0));
2558
2559 return ret;
2560 }
2561
bch_btree_map_keys(struct btree_op * op,struct cache_set * c,struct bkey * from,btree_map_keys_fn * fn,int flags)2562 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2563 struct bkey *from, btree_map_keys_fn *fn, int flags)
2564 {
2565 return bcache_btree_root(map_keys_recurse, c, op, from, fn, flags);
2566 }
2567
2568 /* Keybuf code */
2569
keybuf_cmp(struct keybuf_key * l,struct keybuf_key * r)2570 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2571 {
2572 /* Overlapping keys compare equal */
2573 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2574 return -1;
2575 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2576 return 1;
2577 return 0;
2578 }
2579
keybuf_nonoverlapping_cmp(struct keybuf_key * l,struct keybuf_key * r)2580 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2581 struct keybuf_key *r)
2582 {
2583 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2584 }
2585
2586 struct refill {
2587 struct btree_op op;
2588 unsigned int nr_found;
2589 struct keybuf *buf;
2590 struct bkey *end;
2591 keybuf_pred_fn *pred;
2592 };
2593
refill_keybuf_fn(struct btree_op * op,struct btree * b,struct bkey * k)2594 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2595 struct bkey *k)
2596 {
2597 struct refill *refill = container_of(op, struct refill, op);
2598 struct keybuf *buf = refill->buf;
2599 int ret = MAP_CONTINUE;
2600
2601 if (bkey_cmp(k, refill->end) > 0) {
2602 ret = MAP_DONE;
2603 goto out;
2604 }
2605
2606 if (!KEY_SIZE(k)) /* end key */
2607 goto out;
2608
2609 if (refill->pred(buf, k)) {
2610 struct keybuf_key *w;
2611
2612 spin_lock(&buf->lock);
2613
2614 w = array_alloc(&buf->freelist);
2615 if (!w) {
2616 spin_unlock(&buf->lock);
2617 return MAP_DONE;
2618 }
2619
2620 w->private = NULL;
2621 bkey_copy(&w->key, k);
2622
2623 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2624 array_free(&buf->freelist, w);
2625 else
2626 refill->nr_found++;
2627
2628 if (array_freelist_empty(&buf->freelist))
2629 ret = MAP_DONE;
2630
2631 spin_unlock(&buf->lock);
2632 }
2633 out:
2634 buf->last_scanned = *k;
2635 return ret;
2636 }
2637
bch_refill_keybuf(struct cache_set * c,struct keybuf * buf,struct bkey * end,keybuf_pred_fn * pred)2638 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2639 struct bkey *end, keybuf_pred_fn *pred)
2640 {
2641 struct bkey start = buf->last_scanned;
2642 struct refill refill;
2643
2644 cond_resched();
2645
2646 bch_btree_op_init(&refill.op, -1);
2647 refill.nr_found = 0;
2648 refill.buf = buf;
2649 refill.end = end;
2650 refill.pred = pred;
2651
2652 bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2653 refill_keybuf_fn, MAP_END_KEY);
2654
2655 trace_bcache_keyscan(refill.nr_found,
2656 KEY_INODE(&start), KEY_OFFSET(&start),
2657 KEY_INODE(&buf->last_scanned),
2658 KEY_OFFSET(&buf->last_scanned));
2659
2660 spin_lock(&buf->lock);
2661
2662 if (!RB_EMPTY_ROOT(&buf->keys)) {
2663 struct keybuf_key *w;
2664
2665 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2666 buf->start = START_KEY(&w->key);
2667
2668 w = RB_LAST(&buf->keys, struct keybuf_key, node);
2669 buf->end = w->key;
2670 } else {
2671 buf->start = MAX_KEY;
2672 buf->end = MAX_KEY;
2673 }
2674
2675 spin_unlock(&buf->lock);
2676 }
2677
__bch_keybuf_del(struct keybuf * buf,struct keybuf_key * w)2678 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2679 {
2680 rb_erase(&w->node, &buf->keys);
2681 array_free(&buf->freelist, w);
2682 }
2683
bch_keybuf_del(struct keybuf * buf,struct keybuf_key * w)2684 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2685 {
2686 spin_lock(&buf->lock);
2687 __bch_keybuf_del(buf, w);
2688 spin_unlock(&buf->lock);
2689 }
2690
bch_keybuf_check_overlapping(struct keybuf * buf,struct bkey * start,struct bkey * end)2691 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2692 struct bkey *end)
2693 {
2694 bool ret = false;
2695 struct keybuf_key *p, *w, s;
2696
2697 s.key = *start;
2698
2699 if (bkey_cmp(end, &buf->start) <= 0 ||
2700 bkey_cmp(start, &buf->end) >= 0)
2701 return false;
2702
2703 spin_lock(&buf->lock);
2704 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2705
2706 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2707 p = w;
2708 w = RB_NEXT(w, node);
2709
2710 if (p->private)
2711 ret = true;
2712 else
2713 __bch_keybuf_del(buf, p);
2714 }
2715
2716 spin_unlock(&buf->lock);
2717 return ret;
2718 }
2719
bch_keybuf_next(struct keybuf * buf)2720 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2721 {
2722 struct keybuf_key *w;
2723
2724 spin_lock(&buf->lock);
2725
2726 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2727
2728 while (w && w->private)
2729 w = RB_NEXT(w, node);
2730
2731 if (w)
2732 w->private = ERR_PTR(-EINTR);
2733
2734 spin_unlock(&buf->lock);
2735 return w;
2736 }
2737
bch_keybuf_next_rescan(struct cache_set * c,struct keybuf * buf,struct bkey * end,keybuf_pred_fn * pred)2738 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2739 struct keybuf *buf,
2740 struct bkey *end,
2741 keybuf_pred_fn *pred)
2742 {
2743 struct keybuf_key *ret;
2744
2745 while (1) {
2746 ret = bch_keybuf_next(buf);
2747 if (ret)
2748 break;
2749
2750 if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2751 pr_debug("scan finished\n");
2752 break;
2753 }
2754
2755 bch_refill_keybuf(c, buf, end, pred);
2756 }
2757
2758 return ret;
2759 }
2760
bch_keybuf_init(struct keybuf * buf)2761 void bch_keybuf_init(struct keybuf *buf)
2762 {
2763 buf->last_scanned = MAX_KEY;
2764 buf->keys = RB_ROOT;
2765
2766 spin_lock_init(&buf->lock);
2767 array_allocator_init(&buf->freelist);
2768 }
2769
bch_btree_exit(void)2770 void bch_btree_exit(void)
2771 {
2772 if (btree_io_wq)
2773 destroy_workqueue(btree_io_wq);
2774 }
2775
bch_btree_init(void)2776 int __init bch_btree_init(void)
2777 {
2778 btree_io_wq = alloc_workqueue("bch_btree_io", WQ_MEM_RECLAIM, 0);
2779 if (!btree_io_wq)
2780 return -ENOMEM;
2781
2782 return 0;
2783 }
2784