• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1991-1998  Linus Torvalds
4  * Re-organised Feb 1998 Russell King
5  */
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/ctype.h>
9 #include <linux/genhd.h>
10 #include <linux/vmalloc.h>
11 #include <linux/blktrace_api.h>
12 #include <linux/raid/detect.h>
13 #include "check.h"
14 
15 static int (*check_part[])(struct parsed_partitions *) = {
16 	/*
17 	 * Probe partition formats with tables at disk address 0
18 	 * that also have an ADFS boot block at 0xdc0.
19 	 */
20 #ifdef CONFIG_ACORN_PARTITION_ICS
21 	adfspart_check_ICS,
22 #endif
23 #ifdef CONFIG_ACORN_PARTITION_POWERTEC
24 	adfspart_check_POWERTEC,
25 #endif
26 #ifdef CONFIG_ACORN_PARTITION_EESOX
27 	adfspart_check_EESOX,
28 #endif
29 
30 	/*
31 	 * Now move on to formats that only have partition info at
32 	 * disk address 0xdc0.  Since these may also have stale
33 	 * PC/BIOS partition tables, they need to come before
34 	 * the msdos entry.
35 	 */
36 #ifdef CONFIG_ACORN_PARTITION_CUMANA
37 	adfspart_check_CUMANA,
38 #endif
39 #ifdef CONFIG_ACORN_PARTITION_ADFS
40 	adfspart_check_ADFS,
41 #endif
42 
43 #ifdef CONFIG_CMDLINE_PARTITION
44 	cmdline_partition,
45 #endif
46 #ifdef CONFIG_EFI_PARTITION
47 	efi_partition,		/* this must come before msdos */
48 #endif
49 #ifdef CONFIG_SGI_PARTITION
50 	sgi_partition,
51 #endif
52 #ifdef CONFIG_LDM_PARTITION
53 	ldm_partition,		/* this must come before msdos */
54 #endif
55 #ifdef CONFIG_MSDOS_PARTITION
56 	msdos_partition,
57 #endif
58 #ifdef CONFIG_OSF_PARTITION
59 	osf_partition,
60 #endif
61 #ifdef CONFIG_SUN_PARTITION
62 	sun_partition,
63 #endif
64 #ifdef CONFIG_AMIGA_PARTITION
65 	amiga_partition,
66 #endif
67 #ifdef CONFIG_ATARI_PARTITION
68 	atari_partition,
69 #endif
70 #ifdef CONFIG_MAC_PARTITION
71 	mac_partition,
72 #endif
73 #ifdef CONFIG_ULTRIX_PARTITION
74 	ultrix_partition,
75 #endif
76 #ifdef CONFIG_IBM_PARTITION
77 	ibm_partition,
78 #endif
79 #ifdef CONFIG_KARMA_PARTITION
80 	karma_partition,
81 #endif
82 #ifdef CONFIG_SYSV68_PARTITION
83 	sysv68_partition,
84 #endif
85 	NULL
86 };
87 
allocate_partitions(struct gendisk * hd)88 static struct parsed_partitions *allocate_partitions(struct gendisk *hd)
89 {
90 	struct parsed_partitions *state;
91 	int nr;
92 
93 	state = kzalloc(sizeof(*state), GFP_KERNEL);
94 	if (!state)
95 		return NULL;
96 
97 	nr = disk_max_parts(hd);
98 	state->parts = vzalloc(array_size(nr, sizeof(state->parts[0])));
99 	if (!state->parts) {
100 		kfree(state);
101 		return NULL;
102 	}
103 
104 	state->limit = nr;
105 
106 	return state;
107 }
108 
free_partitions(struct parsed_partitions * state)109 static void free_partitions(struct parsed_partitions *state)
110 {
111 	vfree(state->parts);
112 	kfree(state);
113 }
114 
check_partition(struct gendisk * hd,struct block_device * bdev)115 static struct parsed_partitions *check_partition(struct gendisk *hd,
116 		struct block_device *bdev)
117 {
118 	struct parsed_partitions *state;
119 	int i, res, err;
120 
121 	state = allocate_partitions(hd);
122 	if (!state)
123 		return NULL;
124 	state->pp_buf = (char *)__get_free_page(GFP_KERNEL);
125 	if (!state->pp_buf) {
126 		free_partitions(state);
127 		return NULL;
128 	}
129 	state->pp_buf[0] = '\0';
130 
131 	state->bdev = bdev;
132 	disk_name(hd, 0, state->name);
133 	snprintf(state->pp_buf, PAGE_SIZE, " %s:", state->name);
134 	if (isdigit(state->name[strlen(state->name)-1]))
135 		sprintf(state->name, "p");
136 
137 	i = res = err = 0;
138 	while (!res && check_part[i]) {
139 		memset(state->parts, 0, state->limit * sizeof(state->parts[0]));
140 		res = check_part[i++](state);
141 		if (res < 0) {
142 			/*
143 			 * We have hit an I/O error which we don't report now.
144 			 * But record it, and let the others do their job.
145 			 */
146 			err = res;
147 			res = 0;
148 		}
149 
150 	}
151 	if (res > 0) {
152 		printk(KERN_INFO "%s", state->pp_buf);
153 
154 		free_page((unsigned long)state->pp_buf);
155 		return state;
156 	}
157 	if (state->access_beyond_eod)
158 		err = -ENOSPC;
159 	/*
160 	 * The partition is unrecognized. So report I/O errors if there were any
161 	 */
162 	if (err)
163 		res = err;
164 	if (res) {
165 		strlcat(state->pp_buf,
166 			" unable to read partition table\n", PAGE_SIZE);
167 		printk(KERN_INFO "%s", state->pp_buf);
168 	}
169 
170 	free_page((unsigned long)state->pp_buf);
171 	free_partitions(state);
172 	return ERR_PTR(res);
173 }
174 
part_partition_show(struct device * dev,struct device_attribute * attr,char * buf)175 static ssize_t part_partition_show(struct device *dev,
176 				   struct device_attribute *attr, char *buf)
177 {
178 	struct hd_struct *p = dev_to_part(dev);
179 
180 	return sprintf(buf, "%d\n", p->partno);
181 }
182 
part_start_show(struct device * dev,struct device_attribute * attr,char * buf)183 static ssize_t part_start_show(struct device *dev,
184 			       struct device_attribute *attr, char *buf)
185 {
186 	struct hd_struct *p = dev_to_part(dev);
187 
188 	return sprintf(buf, "%llu\n",(unsigned long long)p->start_sect);
189 }
190 
part_ro_show(struct device * dev,struct device_attribute * attr,char * buf)191 static ssize_t part_ro_show(struct device *dev,
192 			    struct device_attribute *attr, char *buf)
193 {
194 	struct hd_struct *p = dev_to_part(dev);
195 	return sprintf(buf, "%d\n", p->policy ? 1 : 0);
196 }
197 
part_alignment_offset_show(struct device * dev,struct device_attribute * attr,char * buf)198 static ssize_t part_alignment_offset_show(struct device *dev,
199 					  struct device_attribute *attr, char *buf)
200 {
201 	struct hd_struct *p = dev_to_part(dev);
202 
203 	return sprintf(buf, "%u\n",
204 		queue_limit_alignment_offset(&part_to_disk(p)->queue->limits,
205 				p->start_sect));
206 }
207 
part_discard_alignment_show(struct device * dev,struct device_attribute * attr,char * buf)208 static ssize_t part_discard_alignment_show(struct device *dev,
209 					   struct device_attribute *attr, char *buf)
210 {
211 	struct hd_struct *p = dev_to_part(dev);
212 
213 	return sprintf(buf, "%u\n",
214 		queue_limit_discard_alignment(&part_to_disk(p)->queue->limits,
215 				p->start_sect));
216 }
217 
218 static DEVICE_ATTR(partition, 0444, part_partition_show, NULL);
219 static DEVICE_ATTR(start, 0444, part_start_show, NULL);
220 static DEVICE_ATTR(size, 0444, part_size_show, NULL);
221 static DEVICE_ATTR(ro, 0444, part_ro_show, NULL);
222 static DEVICE_ATTR(alignment_offset, 0444, part_alignment_offset_show, NULL);
223 static DEVICE_ATTR(discard_alignment, 0444, part_discard_alignment_show, NULL);
224 static DEVICE_ATTR(stat, 0444, part_stat_show, NULL);
225 static DEVICE_ATTR(inflight, 0444, part_inflight_show, NULL);
226 #ifdef CONFIG_FAIL_MAKE_REQUEST
227 static struct device_attribute dev_attr_fail =
228 	__ATTR(make-it-fail, 0644, part_fail_show, part_fail_store);
229 #endif
230 
231 static struct attribute *part_attrs[] = {
232 	&dev_attr_partition.attr,
233 	&dev_attr_start.attr,
234 	&dev_attr_size.attr,
235 	&dev_attr_ro.attr,
236 	&dev_attr_alignment_offset.attr,
237 	&dev_attr_discard_alignment.attr,
238 	&dev_attr_stat.attr,
239 	&dev_attr_inflight.attr,
240 #ifdef CONFIG_FAIL_MAKE_REQUEST
241 	&dev_attr_fail.attr,
242 #endif
243 	NULL
244 };
245 
246 static struct attribute_group part_attr_group = {
247 	.attrs = part_attrs,
248 };
249 
250 static const struct attribute_group *part_attr_groups[] = {
251 	&part_attr_group,
252 #ifdef CONFIG_BLK_DEV_IO_TRACE
253 	&blk_trace_attr_group,
254 #endif
255 	NULL
256 };
257 
part_release(struct device * dev)258 static void part_release(struct device *dev)
259 {
260 	struct hd_struct *p = dev_to_part(dev);
261 	blk_free_devt(dev->devt);
262 	hd_free_part(p);
263 	kfree(p);
264 }
265 
part_uevent(struct device * dev,struct kobj_uevent_env * env)266 static int part_uevent(struct device *dev, struct kobj_uevent_env *env)
267 {
268 	struct hd_struct *part = dev_to_part(dev);
269 
270 	add_uevent_var(env, "PARTN=%u", part->partno);
271 	if (part->info && part->info->volname[0])
272 		add_uevent_var(env, "PARTNAME=%s", part->info->volname);
273 	return 0;
274 }
275 
276 struct device_type part_type = {
277 	.name		= "partition",
278 	.groups		= part_attr_groups,
279 	.release	= part_release,
280 	.uevent		= part_uevent,
281 };
282 
hd_struct_free_work(struct work_struct * work)283 static void hd_struct_free_work(struct work_struct *work)
284 {
285 	struct hd_struct *part =
286 		container_of(to_rcu_work(work), struct hd_struct, rcu_work);
287 	struct gendisk *disk = part_to_disk(part);
288 
289 	/*
290 	 * Release the disk reference acquired in delete_partition here.
291 	 * We can't release it in hd_struct_free because the final put_device
292 	 * needs process context and thus can't be run directly from a
293 	 * percpu_ref ->release handler.
294 	 */
295 	put_device(disk_to_dev(disk));
296 
297 	part->start_sect = 0;
298 	part->nr_sects = 0;
299 	part_stat_set_all(part, 0);
300 	put_device(part_to_dev(part));
301 }
302 
hd_struct_free(struct percpu_ref * ref)303 static void hd_struct_free(struct percpu_ref *ref)
304 {
305 	struct hd_struct *part = container_of(ref, struct hd_struct, ref);
306 	struct gendisk *disk = part_to_disk(part);
307 	struct disk_part_tbl *ptbl =
308 		rcu_dereference_protected(disk->part_tbl, 1);
309 
310 	rcu_assign_pointer(ptbl->last_lookup, NULL);
311 
312 	INIT_RCU_WORK(&part->rcu_work, hd_struct_free_work);
313 	queue_rcu_work(system_wq, &part->rcu_work);
314 }
315 
hd_ref_init(struct hd_struct * part)316 int hd_ref_init(struct hd_struct *part)
317 {
318 	if (percpu_ref_init(&part->ref, hd_struct_free, 0, GFP_KERNEL))
319 		return -ENOMEM;
320 	return 0;
321 }
322 
323 /*
324  * Must be called either with bd_mutex held, before a disk can be opened or
325  * after all disk users are gone.
326  */
delete_partition(struct hd_struct * part)327 void delete_partition(struct hd_struct *part)
328 {
329 	struct gendisk *disk = part_to_disk(part);
330 	struct disk_part_tbl *ptbl =
331 		rcu_dereference_protected(disk->part_tbl, 1);
332 
333 	/*
334 	 * ->part_tbl is referenced in this part's release handler, so
335 	 *  we have to hold the disk device
336 	 */
337 	get_device(disk_to_dev(disk));
338 	rcu_assign_pointer(ptbl->part[part->partno], NULL);
339 	kobject_put(part->holder_dir);
340 	device_del(part_to_dev(part));
341 
342 	/*
343 	 * Remove gendisk pointer from idr so that it cannot be looked up
344 	 * while RCU period before freeing gendisk is running to prevent
345 	 * use-after-free issues. Note that the device number stays
346 	 * "in-use" until we really free the gendisk.
347 	 */
348 	blk_invalidate_devt(part_devt(part));
349 	percpu_ref_kill(&part->ref);
350 }
351 
whole_disk_show(struct device * dev,struct device_attribute * attr,char * buf)352 static ssize_t whole_disk_show(struct device *dev,
353 			       struct device_attribute *attr, char *buf)
354 {
355 	return 0;
356 }
357 static DEVICE_ATTR(whole_disk, 0444, whole_disk_show, NULL);
358 
359 /*
360  * Must be called either with bd_mutex held, before a disk can be opened or
361  * after all disk users are gone.
362  */
add_partition(struct gendisk * disk,int partno,sector_t start,sector_t len,int flags,struct partition_meta_info * info)363 static struct hd_struct *add_partition(struct gendisk *disk, int partno,
364 				sector_t start, sector_t len, int flags,
365 				struct partition_meta_info *info)
366 {
367 	struct hd_struct *p;
368 	dev_t devt = MKDEV(0, 0);
369 	struct device *ddev = disk_to_dev(disk);
370 	struct device *pdev;
371 	struct disk_part_tbl *ptbl;
372 	const char *dname;
373 	int err;
374 
375 	/*
376 	 * Partitions are not supported on zoned block devices that are used as
377 	 * such.
378 	 */
379 	switch (disk->queue->limits.zoned) {
380 	case BLK_ZONED_HM:
381 		pr_warn("%s: partitions not supported on host managed zoned block device\n",
382 			disk->disk_name);
383 		return ERR_PTR(-ENXIO);
384 	case BLK_ZONED_HA:
385 		pr_info("%s: disabling host aware zoned block device support due to partitions\n",
386 			disk->disk_name);
387 		disk->queue->limits.zoned = BLK_ZONED_NONE;
388 		break;
389 	case BLK_ZONED_NONE:
390 		break;
391 	}
392 
393 	err = disk_expand_part_tbl(disk, partno);
394 	if (err)
395 		return ERR_PTR(err);
396 	ptbl = rcu_dereference_protected(disk->part_tbl, 1);
397 
398 	if (ptbl->part[partno])
399 		return ERR_PTR(-EBUSY);
400 
401 	p = kzalloc(sizeof(*p), GFP_KERNEL);
402 	if (!p)
403 		return ERR_PTR(-EBUSY);
404 
405 	p->dkstats = alloc_percpu(struct disk_stats);
406 	if (!p->dkstats) {
407 		err = -ENOMEM;
408 		goto out_free;
409 	}
410 
411 	hd_sects_seq_init(p);
412 	pdev = part_to_dev(p);
413 
414 	p->start_sect = start;
415 	p->nr_sects = len;
416 	p->partno = partno;
417 	p->policy = get_disk_ro(disk);
418 
419 	if (info) {
420 		struct partition_meta_info *pinfo;
421 
422 		pinfo = kzalloc_node(sizeof(*pinfo), GFP_KERNEL, disk->node_id);
423 		if (!pinfo) {
424 			err = -ENOMEM;
425 			goto out_free_stats;
426 		}
427 		memcpy(pinfo, info, sizeof(*info));
428 		p->info = pinfo;
429 	}
430 
431 	dname = dev_name(ddev);
432 	if (isdigit(dname[strlen(dname) - 1]))
433 		dev_set_name(pdev, "%sp%d", dname, partno);
434 	else
435 		dev_set_name(pdev, "%s%d", dname, partno);
436 
437 	device_initialize(pdev);
438 	pdev->class = &block_class;
439 	pdev->type = &part_type;
440 	pdev->parent = ddev;
441 
442 	err = blk_alloc_devt(p, &devt);
443 	if (err)
444 		goto out_free_info;
445 	pdev->devt = devt;
446 
447 	/* delay uevent until 'holders' subdir is created */
448 	dev_set_uevent_suppress(pdev, 1);
449 	err = device_add(pdev);
450 	if (err)
451 		goto out_put;
452 
453 	err = -ENOMEM;
454 	p->holder_dir = kobject_create_and_add("holders", &pdev->kobj);
455 	if (!p->holder_dir)
456 		goto out_del;
457 
458 	dev_set_uevent_suppress(pdev, 0);
459 	if (flags & ADDPART_FLAG_WHOLEDISK) {
460 		err = device_create_file(pdev, &dev_attr_whole_disk);
461 		if (err)
462 			goto out_del;
463 	}
464 
465 	err = hd_ref_init(p);
466 	if (err) {
467 		if (flags & ADDPART_FLAG_WHOLEDISK)
468 			goto out_remove_file;
469 		goto out_del;
470 	}
471 
472 	/* everything is up and running, commence */
473 	rcu_assign_pointer(ptbl->part[partno], p);
474 
475 	/* suppress uevent if the disk suppresses it */
476 	if (!dev_get_uevent_suppress(ddev))
477 		kobject_uevent(&pdev->kobj, KOBJ_ADD);
478 	return p;
479 
480 out_free_info:
481 	kfree(p->info);
482 out_free_stats:
483 	free_percpu(p->dkstats);
484 out_free:
485 	kfree(p);
486 	return ERR_PTR(err);
487 out_remove_file:
488 	device_remove_file(pdev, &dev_attr_whole_disk);
489 out_del:
490 	kobject_put(p->holder_dir);
491 	device_del(pdev);
492 out_put:
493 	put_device(pdev);
494 	return ERR_PTR(err);
495 }
496 
partition_overlaps(struct gendisk * disk,sector_t start,sector_t length,int skip_partno)497 static bool partition_overlaps(struct gendisk *disk, sector_t start,
498 		sector_t length, int skip_partno)
499 {
500 	struct disk_part_iter piter;
501 	struct hd_struct *part;
502 	bool overlap = false;
503 
504 	disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
505 	while ((part = disk_part_iter_next(&piter))) {
506 		if (part->partno == skip_partno ||
507 		    start >= part->start_sect + part->nr_sects ||
508 		    start + length <= part->start_sect)
509 			continue;
510 		overlap = true;
511 		break;
512 	}
513 
514 	disk_part_iter_exit(&piter);
515 	return overlap;
516 }
517 
bdev_add_partition(struct block_device * bdev,int partno,sector_t start,sector_t length)518 int bdev_add_partition(struct block_device *bdev, int partno,
519 		sector_t start, sector_t length)
520 {
521 	struct hd_struct *part;
522 	struct gendisk *disk = bdev->bd_disk;
523 	int ret;
524 
525 	mutex_lock(&bdev->bd_mutex);
526 	if (!(disk->flags & GENHD_FL_UP)) {
527 		ret = -ENXIO;
528 		goto out;
529 	}
530 
531 	if (partition_overlaps(disk, start, length, -1)) {
532 		ret = -EBUSY;
533 		goto out;
534 	}
535 
536 	part = add_partition(disk, partno, start, length,
537 			ADDPART_FLAG_NONE, NULL);
538 	ret = PTR_ERR_OR_ZERO(part);
539 out:
540 	mutex_unlock(&bdev->bd_mutex);
541 	return ret;
542 }
543 
bdev_del_partition(struct block_device * bdev,int partno)544 int bdev_del_partition(struct block_device *bdev, int partno)
545 {
546 	struct block_device *bdevp;
547 	struct hd_struct *part = NULL;
548 	int ret;
549 
550 	bdevp = bdget_disk(bdev->bd_disk, partno);
551 	if (!bdevp)
552 		return -ENXIO;
553 
554 	mutex_lock(&bdevp->bd_mutex);
555 	mutex_lock_nested(&bdev->bd_mutex, 1);
556 
557 	ret = -ENXIO;
558 	part = disk_get_part(bdev->bd_disk, partno);
559 	if (!part)
560 		goto out_unlock;
561 
562 	ret = -EBUSY;
563 	if (bdevp->bd_openers)
564 		goto out_unlock;
565 
566 	sync_blockdev(bdevp);
567 	invalidate_bdev(bdevp);
568 
569 	delete_partition(part);
570 	ret = 0;
571 out_unlock:
572 	mutex_unlock(&bdev->bd_mutex);
573 	mutex_unlock(&bdevp->bd_mutex);
574 	bdput(bdevp);
575 	if (part)
576 		disk_put_part(part);
577 	return ret;
578 }
579 
bdev_resize_partition(struct block_device * bdev,int partno,sector_t start,sector_t length)580 int bdev_resize_partition(struct block_device *bdev, int partno,
581 		sector_t start, sector_t length)
582 {
583 	struct block_device *bdevp;
584 	struct hd_struct *part;
585 	int ret = 0;
586 
587 	part = disk_get_part(bdev->bd_disk, partno);
588 	if (!part)
589 		return -ENXIO;
590 
591 	ret = -ENOMEM;
592 	bdevp = bdget_part(part);
593 	if (!bdevp)
594 		goto out_put_part;
595 
596 	mutex_lock(&bdevp->bd_mutex);
597 	mutex_lock_nested(&bdev->bd_mutex, 1);
598 
599 	ret = -EINVAL;
600 	if (start != part->start_sect)
601 		goto out_unlock;
602 
603 	ret = -EBUSY;
604 	if (partition_overlaps(bdev->bd_disk, start, length, partno))
605 		goto out_unlock;
606 
607 	part_nr_sects_write(part, length);
608 	bd_set_nr_sectors(bdevp, length);
609 
610 	ret = 0;
611 out_unlock:
612 	mutex_unlock(&bdevp->bd_mutex);
613 	mutex_unlock(&bdev->bd_mutex);
614 	bdput(bdevp);
615 out_put_part:
616 	disk_put_part(part);
617 	return ret;
618 }
619 
disk_unlock_native_capacity(struct gendisk * disk)620 static bool disk_unlock_native_capacity(struct gendisk *disk)
621 {
622 	const struct block_device_operations *bdops = disk->fops;
623 
624 	if (bdops->unlock_native_capacity &&
625 	    !(disk->flags & GENHD_FL_NATIVE_CAPACITY)) {
626 		printk(KERN_CONT "enabling native capacity\n");
627 		bdops->unlock_native_capacity(disk);
628 		disk->flags |= GENHD_FL_NATIVE_CAPACITY;
629 		return true;
630 	} else {
631 		printk(KERN_CONT "truncated\n");
632 		return false;
633 	}
634 }
635 
blk_drop_partitions(struct block_device * bdev)636 int blk_drop_partitions(struct block_device *bdev)
637 {
638 	struct disk_part_iter piter;
639 	struct hd_struct *part;
640 
641 	if (bdev->bd_part_count)
642 		return -EBUSY;
643 
644 	sync_blockdev(bdev);
645 	invalidate_bdev(bdev);
646 
647 	disk_part_iter_init(&piter, bdev->bd_disk, DISK_PITER_INCL_EMPTY);
648 	while ((part = disk_part_iter_next(&piter)))
649 		delete_partition(part);
650 	disk_part_iter_exit(&piter);
651 
652 	return 0;
653 }
654 #ifdef CONFIG_S390
655 /* for historic reasons in the DASD driver */
656 EXPORT_SYMBOL_GPL(blk_drop_partitions);
657 #endif
658 
blk_add_partition(struct gendisk * disk,struct block_device * bdev,struct parsed_partitions * state,int p)659 static bool blk_add_partition(struct gendisk *disk, struct block_device *bdev,
660 		struct parsed_partitions *state, int p)
661 {
662 	sector_t size = state->parts[p].size;
663 	sector_t from = state->parts[p].from;
664 	struct hd_struct *part;
665 
666 	if (!size)
667 		return true;
668 
669 	if (from >= get_capacity(disk)) {
670 		printk(KERN_WARNING
671 		       "%s: p%d start %llu is beyond EOD, ",
672 		       disk->disk_name, p, (unsigned long long) from);
673 		if (disk_unlock_native_capacity(disk))
674 			return false;
675 		return true;
676 	}
677 
678 	if (from + size > get_capacity(disk)) {
679 		printk(KERN_WARNING
680 		       "%s: p%d size %llu extends beyond EOD, ",
681 		       disk->disk_name, p, (unsigned long long) size);
682 
683 		if (disk_unlock_native_capacity(disk))
684 			return false;
685 
686 		/*
687 		 * We can not ignore partitions of broken tables created by for
688 		 * example camera firmware, but we limit them to the end of the
689 		 * disk to avoid creating invalid block devices.
690 		 */
691 		size = get_capacity(disk) - from;
692 	}
693 
694 	part = add_partition(disk, p, from, size, state->parts[p].flags,
695 			     &state->parts[p].info);
696 	if (IS_ERR(part) && PTR_ERR(part) != -ENXIO) {
697 		printk(KERN_ERR " %s: p%d could not be added: %ld\n",
698 		       disk->disk_name, p, -PTR_ERR(part));
699 		return true;
700 	}
701 
702 	if (IS_BUILTIN(CONFIG_BLK_DEV_MD) &&
703 	    (state->parts[p].flags & ADDPART_FLAG_RAID))
704 		md_autodetect_dev(part_to_dev(part)->devt);
705 
706 	return true;
707 }
708 
blk_add_partitions(struct gendisk * disk,struct block_device * bdev)709 int blk_add_partitions(struct gendisk *disk, struct block_device *bdev)
710 {
711 	struct parsed_partitions *state;
712 	int ret = -EAGAIN, p, highest;
713 
714 	if (!disk_part_scan_enabled(disk))
715 		return 0;
716 
717 	state = check_partition(disk, bdev);
718 	if (!state)
719 		return 0;
720 	if (IS_ERR(state)) {
721 		/*
722 		 * I/O error reading the partition table.  If we tried to read
723 		 * beyond EOD, retry after unlocking the native capacity.
724 		 */
725 		if (PTR_ERR(state) == -ENOSPC) {
726 			printk(KERN_WARNING "%s: partition table beyond EOD, ",
727 			       disk->disk_name);
728 			if (disk_unlock_native_capacity(disk))
729 				return -EAGAIN;
730 		}
731 		return -EIO;
732 	}
733 
734 	/*
735 	 * Partitions are not supported on host managed zoned block devices.
736 	 */
737 	if (disk->queue->limits.zoned == BLK_ZONED_HM) {
738 		pr_warn("%s: ignoring partition table on host managed zoned block device\n",
739 			disk->disk_name);
740 		ret = 0;
741 		goto out_free_state;
742 	}
743 
744 	/*
745 	 * If we read beyond EOD, try unlocking native capacity even if the
746 	 * partition table was successfully read as we could be missing some
747 	 * partitions.
748 	 */
749 	if (state->access_beyond_eod) {
750 		printk(KERN_WARNING
751 		       "%s: partition table partially beyond EOD, ",
752 		       disk->disk_name);
753 		if (disk_unlock_native_capacity(disk))
754 			goto out_free_state;
755 	}
756 
757 	/* tell userspace that the media / partition table may have changed */
758 	kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE);
759 
760 	/*
761 	 * Detect the highest partition number and preallocate disk->part_tbl.
762 	 * This is an optimization and not strictly necessary.
763 	 */
764 	for (p = 1, highest = 0; p < state->limit; p++)
765 		if (state->parts[p].size)
766 			highest = p;
767 	disk_expand_part_tbl(disk, highest);
768 
769 	for (p = 1; p < state->limit; p++)
770 		if (!blk_add_partition(disk, bdev, state, p))
771 			goto out_free_state;
772 
773 	ret = 0;
774 out_free_state:
775 	free_partitions(state);
776 	return ret;
777 }
778 
read_part_sector(struct parsed_partitions * state,sector_t n,Sector * p)779 void *read_part_sector(struct parsed_partitions *state, sector_t n, Sector *p)
780 {
781 	struct address_space *mapping = state->bdev->bd_inode->i_mapping;
782 	struct page *page;
783 
784 	if (n >= get_capacity(state->bdev->bd_disk)) {
785 		state->access_beyond_eod = true;
786 		return NULL;
787 	}
788 
789 	page = read_mapping_page(mapping,
790 			(pgoff_t)(n >> (PAGE_SHIFT - 9)), NULL);
791 	if (IS_ERR(page))
792 		goto out;
793 	if (PageError(page))
794 		goto out_put_page;
795 
796 	p->v = page;
797 	return (unsigned char *)page_address(page) +
798 			((n & ((1 << (PAGE_SHIFT - 9)) - 1)) << SECTOR_SHIFT);
799 out_put_page:
800 	put_page(page);
801 out:
802 	p->v = NULL;
803 	return NULL;
804 }
805