• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //  Copyright (c) 2006 Xiaogang Zhang
2 //  Use, modification and distribution are subject to the
3 //  Boost Software License, Version 1.0. (See accompanying file
4 //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5 
6 #ifndef BOOST_MATH_BESSEL_J0_HPP
7 #define BOOST_MATH_BESSEL_J0_HPP
8 
9 #ifdef _MSC_VER
10 #pragma once
11 #endif
12 
13 #include <boost/math/constants/constants.hpp>
14 #include <boost/math/tools/rational.hpp>
15 #include <boost/math/tools/big_constant.hpp>
16 #include <boost/assert.hpp>
17 
18 #if defined(__GNUC__) && defined(BOOST_MATH_USE_FLOAT128)
19 //
20 // This is the only way we can avoid
21 // warning: non-standard suffix on floating constant [-Wpedantic]
22 // when building with -Wall -pedantic.  Neither __extension__
23 // nor #pragma diagnostic ignored work :(
24 //
25 #pragma GCC system_header
26 #endif
27 
28 // Bessel function of the first kind of order zero
29 // x <= 8, minimax rational approximations on root-bracketing intervals
30 // x > 8, Hankel asymptotic expansion in Hart, Computer Approximations, 1968
31 
32 namespace boost { namespace math { namespace detail{
33 
34 template <typename T>
35 T bessel_j0(T x);
36 
37 template <class T>
38 struct bessel_j0_initializer
39 {
40    struct init
41    {
initboost::math::detail::bessel_j0_initializer::init42       init()
43       {
44          do_init();
45       }
do_initboost::math::detail::bessel_j0_initializer::init46       static void do_init()
47       {
48          bessel_j0(T(1));
49       }
force_instantiateboost::math::detail::bessel_j0_initializer::init50       void force_instantiate()const{}
51    };
52    static const init initializer;
force_instantiateboost::math::detail::bessel_j0_initializer53    static void force_instantiate()
54    {
55       initializer.force_instantiate();
56    }
57 };
58 
59 template <class T>
60 const typename bessel_j0_initializer<T>::init bessel_j0_initializer<T>::initializer;
61 
62 template <typename T>
bessel_j0(T x)63 T bessel_j0(T x)
64 {
65     bessel_j0_initializer<T>::force_instantiate();
66 
67     static const T P1[] = {
68          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.1298668500990866786e+11)),
69          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.7282507878605942706e+10)),
70          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.2140700423540120665e+08)),
71          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.6302997904833794242e+06)),
72          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.6629814655107086448e+04)),
73          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0344222815443188943e+02)),
74          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2117036164593528341e-01))
75     };
76     static const T Q1[] = {
77          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.3883787996332290397e+12)),
78          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.6328198300859648632e+10)),
79          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3985097372263433271e+08)),
80          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.5612696224219938200e+05)),
81          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 9.3614022392337710626e+02)),
82          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
83          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.0))
84     };
85     static const T P2[] = {
86          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.8319397969392084011e+03)),
87          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2254078161378989535e+04)),
88          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -7.2879702464464618998e+03)),
89          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0341910641583726701e+04)),
90          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1725046279757103576e+04)),
91          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.4176707025325087628e+03)),
92          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.4321196680624245801e+02)),
93          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.8591703355916499363e+01))
94     };
95     static const T Q2[] = {
96          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.5783478026152301072e+05)),
97          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.4599102262586308984e+05)),
98          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.4055062591169562211e+04)),
99          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8680990008359188352e+04)),
100          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.9458766545509337327e+03)),
101          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.3307310774649071172e+02)),
102          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.5258076240801555057e+01)),
103          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0))
104     };
105     static const T PC[] = {
106          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.2779090197304684302e+04)),
107          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.1345386639580765797e+04)),
108          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1170523380864944322e+04)),
109          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.4806486443249270347e+03)),
110          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.5376201909008354296e+02)),
111          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.8961548424210455236e-01))
112     };
113     static const T QC[] = {
114          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.2779090197304684318e+04)),
115          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.1370412495510416640e+04)),
116          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1215350561880115730e+04)),
117          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.5028735138235608207e+03)),
118          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.5711159858080893649e+02)),
119          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0))
120     };
121     static const T PS[] = {
122         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.9226600200800094098e+01)),
123         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.8591953644342993800e+02)),
124         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.1183429920482737611e+02)),
125         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2300261666214198472e+01)),
126         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2441026745835638459e+00)),
127         static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.8033303048680751817e-03))
128     };
129     static const T QS[] = {
130          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.7105024128512061905e+03)),
131          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1951131543434613647e+04)),
132          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.2642780169211018836e+03)),
133          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.4887231232283756582e+03)),
134          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 9.0593769594993125859e+01)),
135          static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0))
136     };
137     static const T x1  =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.4048255576957727686e+00)),
138                    x2  =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.5200781102863106496e+00)),
139                    x11 =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.160e+02)),
140                    x12 =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.42444230422723137837e-03)),
141                    x21 =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.4130e+03)),
142                    x22 =  static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.46860286310649596604e-04));
143 
144     T value, factor, r, rc, rs;
145 
146     BOOST_MATH_STD_USING
147     using namespace boost::math::tools;
148     using namespace boost::math::constants;
149 
150     if (x < 0)
151     {
152         x = -x;                         // even function
153     }
154     if (x == 0)
155     {
156         return static_cast<T>(1);
157     }
158     if (x <= 4)                       // x in (0, 4]
159     {
160         T y = x * x;
161         BOOST_ASSERT(sizeof(P1) == sizeof(Q1));
162         r = evaluate_rational(P1, Q1, y);
163         factor = (x + x1) * ((x - x11/256) - x12);
164         value = factor * r;
165     }
166     else if (x <= 8.0)                  // x in (4, 8]
167     {
168         T y = 1 - (x * x)/64;
169         BOOST_ASSERT(sizeof(P2) == sizeof(Q2));
170         r = evaluate_rational(P2, Q2, y);
171         factor = (x + x2) * ((x - x21/256) - x22);
172         value = factor * r;
173     }
174     else                                // x in (8, \infty)
175     {
176         T y = 8 / x;
177         T y2 = y * y;
178         BOOST_ASSERT(sizeof(PC) == sizeof(QC));
179         BOOST_ASSERT(sizeof(PS) == sizeof(QS));
180         rc = evaluate_rational(PC, QC, y2);
181         rs = evaluate_rational(PS, QS, y2);
182         factor = constants::one_div_root_pi<T>() / sqrt(x);
183         //
184         // What follows is really just:
185         //
186         // T z = x - pi/4;
187         // value = factor * (rc * cos(z) - y * rs * sin(z));
188         //
189         // But using the addition formulae for sin and cos, plus
190         // the special values for sin/cos of pi/4.
191         //
192         T sx = sin(x);
193         T cx = cos(x);
194         value = factor * (rc * (cx + sx) - y * rs * (sx - cx));
195     }
196 
197     return value;
198 }
199 
200 }}} // namespaces
201 
202 #endif // BOOST_MATH_BESSEL_J0_HPP
203 
204