• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to segment and merge handling
4  */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/scatterlist.h>
10 
11 #include <trace/events/block.h>
12 
13 #include "blk.h"
14 #include "blk-rq-qos.h"
15 
bio_will_gap(struct request_queue * q,struct request * prev_rq,struct bio * prev,struct bio * next)16 static inline bool bio_will_gap(struct request_queue *q,
17 		struct request *prev_rq, struct bio *prev, struct bio *next)
18 {
19 	struct bio_vec pb, nb;
20 
21 	if (!bio_has_data(prev) || !queue_virt_boundary(q))
22 		return false;
23 
24 	/*
25 	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
26 	 * is quite difficult to respect the sg gap limit.  We work hard to
27 	 * merge a huge number of small single bios in case of mkfs.
28 	 */
29 	if (prev_rq)
30 		bio_get_first_bvec(prev_rq->bio, &pb);
31 	else
32 		bio_get_first_bvec(prev, &pb);
33 	if (pb.bv_offset & queue_virt_boundary(q))
34 		return true;
35 
36 	/*
37 	 * We don't need to worry about the situation that the merged segment
38 	 * ends in unaligned virt boundary:
39 	 *
40 	 * - if 'pb' ends aligned, the merged segment ends aligned
41 	 * - if 'pb' ends unaligned, the next bio must include
42 	 *   one single bvec of 'nb', otherwise the 'nb' can't
43 	 *   merge with 'pb'
44 	 */
45 	bio_get_last_bvec(prev, &pb);
46 	bio_get_first_bvec(next, &nb);
47 	if (biovec_phys_mergeable(q, &pb, &nb))
48 		return false;
49 	return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
50 }
51 
req_gap_back_merge(struct request * req,struct bio * bio)52 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
53 {
54 	return bio_will_gap(req->q, req, req->biotail, bio);
55 }
56 
req_gap_front_merge(struct request * req,struct bio * bio)57 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
58 {
59 	return bio_will_gap(req->q, NULL, bio, req->bio);
60 }
61 
blk_bio_discard_split(struct request_queue * q,struct bio * bio,struct bio_set * bs,unsigned * nsegs)62 static struct bio *blk_bio_discard_split(struct request_queue *q,
63 					 struct bio *bio,
64 					 struct bio_set *bs,
65 					 unsigned *nsegs)
66 {
67 	unsigned int max_discard_sectors, granularity;
68 	int alignment;
69 	sector_t tmp;
70 	unsigned split_sectors;
71 
72 	*nsegs = 1;
73 
74 	/* Zero-sector (unknown) and one-sector granularities are the same.  */
75 	granularity = max(q->limits.discard_granularity >> 9, 1U);
76 
77 	max_discard_sectors = min(q->limits.max_discard_sectors,
78 			bio_allowed_max_sectors(q));
79 	max_discard_sectors -= max_discard_sectors % granularity;
80 
81 	if (unlikely(!max_discard_sectors)) {
82 		/* XXX: warn */
83 		return NULL;
84 	}
85 
86 	if (bio_sectors(bio) <= max_discard_sectors)
87 		return NULL;
88 
89 	split_sectors = max_discard_sectors;
90 
91 	/*
92 	 * If the next starting sector would be misaligned, stop the discard at
93 	 * the previous aligned sector.
94 	 */
95 	alignment = (q->limits.discard_alignment >> 9) % granularity;
96 
97 	tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
98 	tmp = sector_div(tmp, granularity);
99 
100 	if (split_sectors > tmp)
101 		split_sectors -= tmp;
102 
103 	return bio_split(bio, split_sectors, GFP_NOIO, bs);
104 }
105 
blk_bio_write_zeroes_split(struct request_queue * q,struct bio * bio,struct bio_set * bs,unsigned * nsegs)106 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
107 		struct bio *bio, struct bio_set *bs, unsigned *nsegs)
108 {
109 	*nsegs = 0;
110 
111 	if (!q->limits.max_write_zeroes_sectors)
112 		return NULL;
113 
114 	if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
115 		return NULL;
116 
117 	return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
118 }
119 
blk_bio_write_same_split(struct request_queue * q,struct bio * bio,struct bio_set * bs,unsigned * nsegs)120 static struct bio *blk_bio_write_same_split(struct request_queue *q,
121 					    struct bio *bio,
122 					    struct bio_set *bs,
123 					    unsigned *nsegs)
124 {
125 	*nsegs = 1;
126 
127 	if (!q->limits.max_write_same_sectors)
128 		return NULL;
129 
130 	if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
131 		return NULL;
132 
133 	return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
134 }
135 
136 /*
137  * Return the maximum number of sectors from the start of a bio that may be
138  * submitted as a single request to a block device. If enough sectors remain,
139  * align the end to the physical block size. Otherwise align the end to the
140  * logical block size. This approach minimizes the number of non-aligned
141  * requests that are submitted to a block device if the start of a bio is not
142  * aligned to a physical block boundary.
143  */
get_max_io_size(struct request_queue * q,struct bio * bio)144 static inline unsigned get_max_io_size(struct request_queue *q,
145 				       struct bio *bio)
146 {
147 	unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector, 0);
148 	unsigned max_sectors = sectors;
149 	unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT;
150 	unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT;
151 	unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1);
152 
153 	max_sectors += start_offset;
154 	max_sectors &= ~(pbs - 1);
155 	if (max_sectors > start_offset)
156 		return max_sectors - start_offset;
157 
158 	return sectors & ~(lbs - 1);
159 }
160 
get_max_segment_size(const struct request_queue * q,struct page * start_page,unsigned long offset)161 static inline unsigned get_max_segment_size(const struct request_queue *q,
162 					    struct page *start_page,
163 					    unsigned long offset)
164 {
165 	unsigned long mask = queue_segment_boundary(q);
166 
167 	offset = mask & (page_to_phys(start_page) + offset);
168 
169 	/*
170 	 * overflow may be triggered in case of zero page physical address
171 	 * on 32bit arch, use queue's max segment size when that happens.
172 	 */
173 	return min_not_zero(mask - offset + 1,
174 			(unsigned long)queue_max_segment_size(q));
175 }
176 
177 /**
178  * bvec_split_segs - verify whether or not a bvec should be split in the middle
179  * @q:        [in] request queue associated with the bio associated with @bv
180  * @bv:       [in] bvec to examine
181  * @nsegs:    [in,out] Number of segments in the bio being built. Incremented
182  *            by the number of segments from @bv that may be appended to that
183  *            bio without exceeding @max_segs
184  * @sectors:  [in,out] Number of sectors in the bio being built. Incremented
185  *            by the number of sectors from @bv that may be appended to that
186  *            bio without exceeding @max_sectors
187  * @max_segs: [in] upper bound for *@nsegs
188  * @max_sectors: [in] upper bound for *@sectors
189  *
190  * When splitting a bio, it can happen that a bvec is encountered that is too
191  * big to fit in a single segment and hence that it has to be split in the
192  * middle. This function verifies whether or not that should happen. The value
193  * %true is returned if and only if appending the entire @bv to a bio with
194  * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
195  * the block driver.
196  */
bvec_split_segs(const struct request_queue * q,const struct bio_vec * bv,unsigned * nsegs,unsigned * sectors,unsigned max_segs,unsigned max_sectors)197 static bool bvec_split_segs(const struct request_queue *q,
198 			    const struct bio_vec *bv, unsigned *nsegs,
199 			    unsigned *sectors, unsigned max_segs,
200 			    unsigned max_sectors)
201 {
202 	unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9;
203 	unsigned len = min(bv->bv_len, max_len);
204 	unsigned total_len = 0;
205 	unsigned seg_size = 0;
206 
207 	while (len && *nsegs < max_segs) {
208 		seg_size = get_max_segment_size(q, bv->bv_page,
209 						bv->bv_offset + total_len);
210 		seg_size = min(seg_size, len);
211 
212 		(*nsegs)++;
213 		total_len += seg_size;
214 		len -= seg_size;
215 
216 		if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
217 			break;
218 	}
219 
220 	*sectors += total_len >> 9;
221 
222 	/* tell the caller to split the bvec if it is too big to fit */
223 	return len > 0 || bv->bv_len > max_len;
224 }
225 
226 /**
227  * blk_bio_segment_split - split a bio in two bios
228  * @q:    [in] request queue pointer
229  * @bio:  [in] bio to be split
230  * @bs:	  [in] bio set to allocate the clone from
231  * @segs: [out] number of segments in the bio with the first half of the sectors
232  *
233  * Clone @bio, update the bi_iter of the clone to represent the first sectors
234  * of @bio and update @bio->bi_iter to represent the remaining sectors. The
235  * following is guaranteed for the cloned bio:
236  * - That it has at most get_max_io_size(@q, @bio) sectors.
237  * - That it has at most queue_max_segments(@q) segments.
238  *
239  * Except for discard requests the cloned bio will point at the bi_io_vec of
240  * the original bio. It is the responsibility of the caller to ensure that the
241  * original bio is not freed before the cloned bio. The caller is also
242  * responsible for ensuring that @bs is only destroyed after processing of the
243  * split bio has finished.
244  */
blk_bio_segment_split(struct request_queue * q,struct bio * bio,struct bio_set * bs,unsigned * segs)245 static struct bio *blk_bio_segment_split(struct request_queue *q,
246 					 struct bio *bio,
247 					 struct bio_set *bs,
248 					 unsigned *segs)
249 {
250 	struct bio_vec bv, bvprv, *bvprvp = NULL;
251 	struct bvec_iter iter;
252 	unsigned nsegs = 0, sectors = 0;
253 	const unsigned max_sectors = get_max_io_size(q, bio);
254 	const unsigned max_segs = queue_max_segments(q);
255 
256 	bio_for_each_bvec(bv, bio, iter) {
257 		/*
258 		 * If the queue doesn't support SG gaps and adding this
259 		 * offset would create a gap, disallow it.
260 		 */
261 		if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
262 			goto split;
263 
264 		if (nsegs < max_segs &&
265 		    sectors + (bv.bv_len >> 9) <= max_sectors &&
266 		    bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
267 			nsegs++;
268 			sectors += bv.bv_len >> 9;
269 		} else if (bvec_split_segs(q, &bv, &nsegs, &sectors, max_segs,
270 					 max_sectors)) {
271 			goto split;
272 		}
273 
274 		bvprv = bv;
275 		bvprvp = &bvprv;
276 	}
277 
278 	*segs = nsegs;
279 	return NULL;
280 split:
281 	*segs = nsegs;
282 	return bio_split(bio, sectors, GFP_NOIO, bs);
283 }
284 
285 /**
286  * __blk_queue_split - split a bio and submit the second half
287  * @bio:     [in, out] bio to be split
288  * @nr_segs: [out] number of segments in the first bio
289  *
290  * Split a bio into two bios, chain the two bios, submit the second half and
291  * store a pointer to the first half in *@bio. If the second bio is still too
292  * big it will be split by a recursive call to this function. Since this
293  * function may allocate a new bio from @bio->bi_disk->queue->bio_split, it is
294  * the responsibility of the caller to ensure that
295  * @bio->bi_disk->queue->bio_split is only released after processing of the
296  * split bio has finished.
297  */
__blk_queue_split(struct bio ** bio,unsigned int * nr_segs)298 void __blk_queue_split(struct bio **bio, unsigned int *nr_segs)
299 {
300 	struct request_queue *q = (*bio)->bi_disk->queue;
301 	struct bio *split = NULL;
302 
303 	switch (bio_op(*bio)) {
304 	case REQ_OP_DISCARD:
305 	case REQ_OP_SECURE_ERASE:
306 		split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs);
307 		break;
308 	case REQ_OP_WRITE_ZEROES:
309 		split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split,
310 				nr_segs);
311 		break;
312 	case REQ_OP_WRITE_SAME:
313 		split = blk_bio_write_same_split(q, *bio, &q->bio_split,
314 				nr_segs);
315 		break;
316 	default:
317 		/*
318 		 * All drivers must accept single-segments bios that are <=
319 		 * PAGE_SIZE.  This is a quick and dirty check that relies on
320 		 * the fact that bi_io_vec[0] is always valid if a bio has data.
321 		 * The check might lead to occasional false negatives when bios
322 		 * are cloned, but compared to the performance impact of cloned
323 		 * bios themselves the loop below doesn't matter anyway.
324 		 */
325 		if (!q->limits.chunk_sectors &&
326 		    (*bio)->bi_vcnt == 1 &&
327 		    ((*bio)->bi_io_vec[0].bv_len +
328 		     (*bio)->bi_io_vec[0].bv_offset) <= PAGE_SIZE) {
329 			*nr_segs = 1;
330 			break;
331 		}
332 		split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs);
333 		break;
334 	}
335 
336 	if (split) {
337 		/* there isn't chance to merge the splitted bio */
338 		split->bi_opf |= REQ_NOMERGE;
339 
340 		bio_chain(split, *bio);
341 		trace_block_split(q, split, (*bio)->bi_iter.bi_sector);
342 		submit_bio_noacct(*bio);
343 		*bio = split;
344 
345 		blk_throtl_charge_bio_split(*bio);
346 	}
347 }
348 
349 /**
350  * blk_queue_split - split a bio and submit the second half
351  * @bio: [in, out] bio to be split
352  *
353  * Split a bio into two bios, chains the two bios, submit the second half and
354  * store a pointer to the first half in *@bio. Since this function may allocate
355  * a new bio from @bio->bi_disk->queue->bio_split, it is the responsibility of
356  * the caller to ensure that @bio->bi_disk->queue->bio_split is only released
357  * after processing of the split bio has finished.
358  */
blk_queue_split(struct bio ** bio)359 void blk_queue_split(struct bio **bio)
360 {
361 	unsigned int nr_segs;
362 
363 	__blk_queue_split(bio, &nr_segs);
364 }
365 EXPORT_SYMBOL(blk_queue_split);
366 
blk_recalc_rq_segments(struct request * rq)367 unsigned int blk_recalc_rq_segments(struct request *rq)
368 {
369 	unsigned int nr_phys_segs = 0;
370 	unsigned int nr_sectors = 0;
371 	struct req_iterator iter;
372 	struct bio_vec bv;
373 
374 	if (!rq->bio)
375 		return 0;
376 
377 	switch (bio_op(rq->bio)) {
378 	case REQ_OP_DISCARD:
379 	case REQ_OP_SECURE_ERASE:
380 		if (queue_max_discard_segments(rq->q) > 1) {
381 			struct bio *bio = rq->bio;
382 
383 			for_each_bio(bio)
384 				nr_phys_segs++;
385 			return nr_phys_segs;
386 		}
387 		return 1;
388 	case REQ_OP_WRITE_ZEROES:
389 		return 0;
390 	case REQ_OP_WRITE_SAME:
391 		return 1;
392 	}
393 
394 	rq_for_each_bvec(bv, rq, iter)
395 		bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors,
396 				UINT_MAX, UINT_MAX);
397 	return nr_phys_segs;
398 }
399 
blk_next_sg(struct scatterlist ** sg,struct scatterlist * sglist)400 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
401 		struct scatterlist *sglist)
402 {
403 	if (!*sg)
404 		return sglist;
405 
406 	/*
407 	 * If the driver previously mapped a shorter list, we could see a
408 	 * termination bit prematurely unless it fully inits the sg table
409 	 * on each mapping. We KNOW that there must be more entries here
410 	 * or the driver would be buggy, so force clear the termination bit
411 	 * to avoid doing a full sg_init_table() in drivers for each command.
412 	 */
413 	sg_unmark_end(*sg);
414 	return sg_next(*sg);
415 }
416 
blk_bvec_map_sg(struct request_queue * q,struct bio_vec * bvec,struct scatterlist * sglist,struct scatterlist ** sg)417 static unsigned blk_bvec_map_sg(struct request_queue *q,
418 		struct bio_vec *bvec, struct scatterlist *sglist,
419 		struct scatterlist **sg)
420 {
421 	unsigned nbytes = bvec->bv_len;
422 	unsigned nsegs = 0, total = 0;
423 
424 	while (nbytes > 0) {
425 		unsigned offset = bvec->bv_offset + total;
426 		unsigned len = min(get_max_segment_size(q, bvec->bv_page,
427 					offset), nbytes);
428 		struct page *page = bvec->bv_page;
429 
430 		/*
431 		 * Unfortunately a fair number of drivers barf on scatterlists
432 		 * that have an offset larger than PAGE_SIZE, despite other
433 		 * subsystems dealing with that invariant just fine.  For now
434 		 * stick to the legacy format where we never present those from
435 		 * the block layer, but the code below should be removed once
436 		 * these offenders (mostly MMC/SD drivers) are fixed.
437 		 */
438 		page += (offset >> PAGE_SHIFT);
439 		offset &= ~PAGE_MASK;
440 
441 		*sg = blk_next_sg(sg, sglist);
442 		sg_set_page(*sg, page, len, offset);
443 
444 		total += len;
445 		nbytes -= len;
446 		nsegs++;
447 	}
448 
449 	return nsegs;
450 }
451 
__blk_bvec_map_sg(struct bio_vec bv,struct scatterlist * sglist,struct scatterlist ** sg)452 static inline int __blk_bvec_map_sg(struct bio_vec bv,
453 		struct scatterlist *sglist, struct scatterlist **sg)
454 {
455 	*sg = blk_next_sg(sg, sglist);
456 	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
457 	return 1;
458 }
459 
460 /* only try to merge bvecs into one sg if they are from two bios */
461 static inline bool
__blk_segment_map_sg_merge(struct request_queue * q,struct bio_vec * bvec,struct bio_vec * bvprv,struct scatterlist ** sg)462 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
463 			   struct bio_vec *bvprv, struct scatterlist **sg)
464 {
465 
466 	int nbytes = bvec->bv_len;
467 
468 	if (!*sg)
469 		return false;
470 
471 	if ((*sg)->length + nbytes > queue_max_segment_size(q))
472 		return false;
473 
474 	if (!biovec_phys_mergeable(q, bvprv, bvec))
475 		return false;
476 
477 	(*sg)->length += nbytes;
478 
479 	return true;
480 }
481 
__blk_bios_map_sg(struct request_queue * q,struct bio * bio,struct scatterlist * sglist,struct scatterlist ** sg)482 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
483 			     struct scatterlist *sglist,
484 			     struct scatterlist **sg)
485 {
486 	struct bio_vec bvec, bvprv = { NULL };
487 	struct bvec_iter iter;
488 	int nsegs = 0;
489 	bool new_bio = false;
490 
491 	for_each_bio(bio) {
492 		bio_for_each_bvec(bvec, bio, iter) {
493 			/*
494 			 * Only try to merge bvecs from two bios given we
495 			 * have done bio internal merge when adding pages
496 			 * to bio
497 			 */
498 			if (new_bio &&
499 			    __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
500 				goto next_bvec;
501 
502 			if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
503 				nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
504 			else
505 				nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
506  next_bvec:
507 			new_bio = false;
508 		}
509 		if (likely(bio->bi_iter.bi_size)) {
510 			bvprv = bvec;
511 			new_bio = true;
512 		}
513 	}
514 
515 	return nsegs;
516 }
517 
518 /*
519  * map a request to scatterlist, return number of sg entries setup. Caller
520  * must make sure sg can hold rq->nr_phys_segments entries
521  */
__blk_rq_map_sg(struct request_queue * q,struct request * rq,struct scatterlist * sglist,struct scatterlist ** last_sg)522 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
523 		struct scatterlist *sglist, struct scatterlist **last_sg)
524 {
525 	int nsegs = 0;
526 
527 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
528 		nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
529 	else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
530 		nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, last_sg);
531 	else if (rq->bio)
532 		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
533 
534 	if (*last_sg)
535 		sg_mark_end(*last_sg);
536 
537 	/*
538 	 * Something must have been wrong if the figured number of
539 	 * segment is bigger than number of req's physical segments
540 	 */
541 	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
542 
543 	return nsegs;
544 }
545 EXPORT_SYMBOL(__blk_rq_map_sg);
546 
blk_rq_get_max_segments(struct request * rq)547 static inline unsigned int blk_rq_get_max_segments(struct request *rq)
548 {
549 	if (req_op(rq) == REQ_OP_DISCARD)
550 		return queue_max_discard_segments(rq->q);
551 	return queue_max_segments(rq->q);
552 }
553 
ll_new_hw_segment(struct request * req,struct bio * bio,unsigned int nr_phys_segs)554 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
555 		unsigned int nr_phys_segs)
556 {
557 	if (blk_integrity_merge_bio(req->q, req, bio) == false)
558 		goto no_merge;
559 
560 	/* discard request merge won't add new segment */
561 	if (req_op(req) == REQ_OP_DISCARD)
562 		return 1;
563 
564 	if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
565 		goto no_merge;
566 
567 	/*
568 	 * This will form the start of a new hw segment.  Bump both
569 	 * counters.
570 	 */
571 	req->nr_phys_segments += nr_phys_segs;
572 	return 1;
573 
574 no_merge:
575 	req_set_nomerge(req->q, req);
576 	return 0;
577 }
578 
ll_back_merge_fn(struct request * req,struct bio * bio,unsigned int nr_segs)579 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
580 {
581 	if (req_gap_back_merge(req, bio))
582 		return 0;
583 	if (blk_integrity_rq(req) &&
584 	    integrity_req_gap_back_merge(req, bio))
585 		return 0;
586 	if (!bio_crypt_ctx_back_mergeable(req, bio))
587 		return 0;
588 	if (blk_rq_sectors(req) + bio_sectors(bio) >
589 	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
590 		req_set_nomerge(req->q, req);
591 		return 0;
592 	}
593 
594 	return ll_new_hw_segment(req, bio, nr_segs);
595 }
596 
ll_front_merge_fn(struct request * req,struct bio * bio,unsigned int nr_segs)597 static int ll_front_merge_fn(struct request *req, struct bio *bio,
598 		unsigned int nr_segs)
599 {
600 	if (req_gap_front_merge(req, bio))
601 		return 0;
602 	if (blk_integrity_rq(req) &&
603 	    integrity_req_gap_front_merge(req, bio))
604 		return 0;
605 	if (!bio_crypt_ctx_front_mergeable(req, bio))
606 		return 0;
607 	if (blk_rq_sectors(req) + bio_sectors(bio) >
608 	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
609 		req_set_nomerge(req->q, req);
610 		return 0;
611 	}
612 
613 	return ll_new_hw_segment(req, bio, nr_segs);
614 }
615 
req_attempt_discard_merge(struct request_queue * q,struct request * req,struct request * next)616 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
617 		struct request *next)
618 {
619 	unsigned short segments = blk_rq_nr_discard_segments(req);
620 
621 	if (segments >= queue_max_discard_segments(q))
622 		goto no_merge;
623 	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
624 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
625 		goto no_merge;
626 
627 	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
628 	return true;
629 no_merge:
630 	req_set_nomerge(q, req);
631 	return false;
632 }
633 
ll_merge_requests_fn(struct request_queue * q,struct request * req,struct request * next)634 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
635 				struct request *next)
636 {
637 	int total_phys_segments;
638 
639 	if (req_gap_back_merge(req, next->bio))
640 		return 0;
641 
642 	/*
643 	 * Will it become too large?
644 	 */
645 	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
646 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
647 		return 0;
648 
649 	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
650 	if (total_phys_segments > blk_rq_get_max_segments(req))
651 		return 0;
652 
653 	if (blk_integrity_merge_rq(q, req, next) == false)
654 		return 0;
655 
656 	if (!bio_crypt_ctx_merge_rq(req, next))
657 		return 0;
658 
659 	/* Merge is OK... */
660 	req->nr_phys_segments = total_phys_segments;
661 	return 1;
662 }
663 
664 /**
665  * blk_rq_set_mixed_merge - mark a request as mixed merge
666  * @rq: request to mark as mixed merge
667  *
668  * Description:
669  *     @rq is about to be mixed merged.  Make sure the attributes
670  *     which can be mixed are set in each bio and mark @rq as mixed
671  *     merged.
672  */
blk_rq_set_mixed_merge(struct request * rq)673 void blk_rq_set_mixed_merge(struct request *rq)
674 {
675 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
676 	struct bio *bio;
677 
678 	if (rq->rq_flags & RQF_MIXED_MERGE)
679 		return;
680 
681 	/*
682 	 * @rq will no longer represent mixable attributes for all the
683 	 * contained bios.  It will just track those of the first one.
684 	 * Distributes the attributs to each bio.
685 	 */
686 	for (bio = rq->bio; bio; bio = bio->bi_next) {
687 		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
688 			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
689 		bio->bi_opf |= ff;
690 	}
691 	rq->rq_flags |= RQF_MIXED_MERGE;
692 }
693 
blk_account_io_merge_request(struct request * req)694 static void blk_account_io_merge_request(struct request *req)
695 {
696 	if (blk_do_io_stat(req)) {
697 		part_stat_lock();
698 		part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
699 		part_stat_unlock();
700 
701 		hd_struct_put(req->part);
702 	}
703 }
704 
blk_try_req_merge(struct request * req,struct request * next)705 static enum elv_merge blk_try_req_merge(struct request *req,
706 					struct request *next)
707 {
708 	if (blk_discard_mergable(req))
709 		return ELEVATOR_DISCARD_MERGE;
710 	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
711 		return ELEVATOR_BACK_MERGE;
712 
713 	return ELEVATOR_NO_MERGE;
714 }
715 
716 /*
717  * For non-mq, this has to be called with the request spinlock acquired.
718  * For mq with scheduling, the appropriate queue wide lock should be held.
719  */
attempt_merge(struct request_queue * q,struct request * req,struct request * next)720 static struct request *attempt_merge(struct request_queue *q,
721 				     struct request *req, struct request *next)
722 {
723 	if (!rq_mergeable(req) || !rq_mergeable(next))
724 		return NULL;
725 
726 	if (req_op(req) != req_op(next))
727 		return NULL;
728 
729 	if (rq_data_dir(req) != rq_data_dir(next)
730 	    || req->rq_disk != next->rq_disk)
731 		return NULL;
732 
733 	if (req_op(req) == REQ_OP_WRITE_SAME &&
734 	    !blk_write_same_mergeable(req->bio, next->bio))
735 		return NULL;
736 
737 	/*
738 	 * Don't allow merge of different write hints, or for a hint with
739 	 * non-hint IO.
740 	 */
741 	if (req->write_hint != next->write_hint)
742 		return NULL;
743 
744 	if (req->ioprio != next->ioprio)
745 		return NULL;
746 
747 	/*
748 	 * If we are allowed to merge, then append bio list
749 	 * from next to rq and release next. merge_requests_fn
750 	 * will have updated segment counts, update sector
751 	 * counts here. Handle DISCARDs separately, as they
752 	 * have separate settings.
753 	 */
754 
755 	switch (blk_try_req_merge(req, next)) {
756 	case ELEVATOR_DISCARD_MERGE:
757 		if (!req_attempt_discard_merge(q, req, next))
758 			return NULL;
759 		break;
760 	case ELEVATOR_BACK_MERGE:
761 		if (!ll_merge_requests_fn(q, req, next))
762 			return NULL;
763 		break;
764 	default:
765 		return NULL;
766 	}
767 
768 	/*
769 	 * If failfast settings disagree or any of the two is already
770 	 * a mixed merge, mark both as mixed before proceeding.  This
771 	 * makes sure that all involved bios have mixable attributes
772 	 * set properly.
773 	 */
774 	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
775 	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
776 	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
777 		blk_rq_set_mixed_merge(req);
778 		blk_rq_set_mixed_merge(next);
779 	}
780 
781 	/*
782 	 * At this point we have either done a back merge or front merge. We
783 	 * need the smaller start_time_ns of the merged requests to be the
784 	 * current request for accounting purposes.
785 	 */
786 	if (next->start_time_ns < req->start_time_ns)
787 		req->start_time_ns = next->start_time_ns;
788 
789 	req->biotail->bi_next = next->bio;
790 	req->biotail = next->biotail;
791 
792 	req->__data_len += blk_rq_bytes(next);
793 
794 	if (!blk_discard_mergable(req))
795 		elv_merge_requests(q, req, next);
796 
797 	/*
798 	 * 'next' is going away, so update stats accordingly
799 	 */
800 	blk_account_io_merge_request(next);
801 
802 	trace_block_rq_merge(q, next);
803 
804 	/*
805 	 * ownership of bio passed from next to req, return 'next' for
806 	 * the caller to free
807 	 */
808 	next->bio = NULL;
809 	return next;
810 }
811 
attempt_back_merge(struct request_queue * q,struct request * rq)812 static struct request *attempt_back_merge(struct request_queue *q,
813 		struct request *rq)
814 {
815 	struct request *next = elv_latter_request(q, rq);
816 
817 	if (next)
818 		return attempt_merge(q, rq, next);
819 
820 	return NULL;
821 }
822 
attempt_front_merge(struct request_queue * q,struct request * rq)823 static struct request *attempt_front_merge(struct request_queue *q,
824 		struct request *rq)
825 {
826 	struct request *prev = elv_former_request(q, rq);
827 
828 	if (prev)
829 		return attempt_merge(q, prev, rq);
830 
831 	return NULL;
832 }
833 
834 /*
835  * Try to merge 'next' into 'rq'. Return true if the merge happened, false
836  * otherwise. The caller is responsible for freeing 'next' if the merge
837  * happened.
838  */
blk_attempt_req_merge(struct request_queue * q,struct request * rq,struct request * next)839 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
840 			   struct request *next)
841 {
842 	return attempt_merge(q, rq, next);
843 }
844 
blk_rq_merge_ok(struct request * rq,struct bio * bio)845 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
846 {
847 	if (!rq_mergeable(rq) || !bio_mergeable(bio))
848 		return false;
849 
850 	if (req_op(rq) != bio_op(bio))
851 		return false;
852 
853 	/* different data direction or already started, don't merge */
854 	if (bio_data_dir(bio) != rq_data_dir(rq))
855 		return false;
856 
857 	/* must be same device */
858 	if (rq->rq_disk != bio->bi_disk)
859 		return false;
860 
861 	/* only merge integrity protected bio into ditto rq */
862 	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
863 		return false;
864 
865 	/* Only merge if the crypt contexts are compatible */
866 	if (!bio_crypt_rq_ctx_compatible(rq, bio))
867 		return false;
868 
869 	/* must be using the same buffer */
870 	if (req_op(rq) == REQ_OP_WRITE_SAME &&
871 	    !blk_write_same_mergeable(rq->bio, bio))
872 		return false;
873 
874 	/*
875 	 * Don't allow merge of different write hints, or for a hint with
876 	 * non-hint IO.
877 	 */
878 	if (rq->write_hint != bio->bi_write_hint)
879 		return false;
880 
881 	if (rq->ioprio != bio_prio(bio))
882 		return false;
883 
884 	return true;
885 }
886 
blk_try_merge(struct request * rq,struct bio * bio)887 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
888 {
889 	if (blk_discard_mergable(rq))
890 		return ELEVATOR_DISCARD_MERGE;
891 	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
892 		return ELEVATOR_BACK_MERGE;
893 	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
894 		return ELEVATOR_FRONT_MERGE;
895 	return ELEVATOR_NO_MERGE;
896 }
897 
blk_account_io_merge_bio(struct request * req)898 static void blk_account_io_merge_bio(struct request *req)
899 {
900 	if (!blk_do_io_stat(req))
901 		return;
902 
903 	part_stat_lock();
904 	part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
905 	part_stat_unlock();
906 }
907 
908 enum bio_merge_status {
909 	BIO_MERGE_OK,
910 	BIO_MERGE_NONE,
911 	BIO_MERGE_FAILED,
912 };
913 
bio_attempt_back_merge(struct request * req,struct bio * bio,unsigned int nr_segs)914 static enum bio_merge_status bio_attempt_back_merge(struct request *req,
915 		struct bio *bio, unsigned int nr_segs)
916 {
917 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
918 
919 	if (!ll_back_merge_fn(req, bio, nr_segs))
920 		return BIO_MERGE_FAILED;
921 
922 	trace_block_bio_backmerge(req->q, req, bio);
923 	rq_qos_merge(req->q, req, bio);
924 
925 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
926 		blk_rq_set_mixed_merge(req);
927 
928 	req->biotail->bi_next = bio;
929 	req->biotail = bio;
930 	req->__data_len += bio->bi_iter.bi_size;
931 
932 	bio_crypt_free_ctx(bio);
933 
934 	blk_account_io_merge_bio(req);
935 	return BIO_MERGE_OK;
936 }
937 
bio_attempt_front_merge(struct request * req,struct bio * bio,unsigned int nr_segs)938 static enum bio_merge_status bio_attempt_front_merge(struct request *req,
939 		struct bio *bio, unsigned int nr_segs)
940 {
941 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
942 
943 	if (!ll_front_merge_fn(req, bio, nr_segs))
944 		return BIO_MERGE_FAILED;
945 
946 	trace_block_bio_frontmerge(req->q, req, bio);
947 	rq_qos_merge(req->q, req, bio);
948 
949 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
950 		blk_rq_set_mixed_merge(req);
951 
952 	bio->bi_next = req->bio;
953 	req->bio = bio;
954 
955 	req->__sector = bio->bi_iter.bi_sector;
956 	req->__data_len += bio->bi_iter.bi_size;
957 
958 	bio_crypt_do_front_merge(req, bio);
959 
960 	blk_account_io_merge_bio(req);
961 	return BIO_MERGE_OK;
962 }
963 
bio_attempt_discard_merge(struct request_queue * q,struct request * req,struct bio * bio)964 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
965 		struct request *req, struct bio *bio)
966 {
967 	unsigned short segments = blk_rq_nr_discard_segments(req);
968 
969 	if (segments >= queue_max_discard_segments(q))
970 		goto no_merge;
971 	if (blk_rq_sectors(req) + bio_sectors(bio) >
972 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
973 		goto no_merge;
974 
975 	rq_qos_merge(q, req, bio);
976 
977 	req->biotail->bi_next = bio;
978 	req->biotail = bio;
979 	req->__data_len += bio->bi_iter.bi_size;
980 	req->nr_phys_segments = segments + 1;
981 
982 	blk_account_io_merge_bio(req);
983 	return BIO_MERGE_OK;
984 no_merge:
985 	req_set_nomerge(q, req);
986 	return BIO_MERGE_FAILED;
987 }
988 
blk_attempt_bio_merge(struct request_queue * q,struct request * rq,struct bio * bio,unsigned int nr_segs,bool sched_allow_merge)989 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
990 						   struct request *rq,
991 						   struct bio *bio,
992 						   unsigned int nr_segs,
993 						   bool sched_allow_merge)
994 {
995 	if (!blk_rq_merge_ok(rq, bio))
996 		return BIO_MERGE_NONE;
997 
998 	switch (blk_try_merge(rq, bio)) {
999 	case ELEVATOR_BACK_MERGE:
1000 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1001 			return bio_attempt_back_merge(rq, bio, nr_segs);
1002 		break;
1003 	case ELEVATOR_FRONT_MERGE:
1004 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1005 			return bio_attempt_front_merge(rq, bio, nr_segs);
1006 		break;
1007 	case ELEVATOR_DISCARD_MERGE:
1008 		return bio_attempt_discard_merge(q, rq, bio);
1009 	default:
1010 		return BIO_MERGE_NONE;
1011 	}
1012 
1013 	return BIO_MERGE_FAILED;
1014 }
1015 
1016 /**
1017  * blk_attempt_plug_merge - try to merge with %current's plugged list
1018  * @q: request_queue new bio is being queued at
1019  * @bio: new bio being queued
1020  * @nr_segs: number of segments in @bio
1021  * @same_queue_rq: pointer to &struct request that gets filled in when
1022  * another request associated with @q is found on the plug list
1023  * (optional, may be %NULL)
1024  *
1025  * Determine whether @bio being queued on @q can be merged with a request
1026  * on %current's plugged list.  Returns %true if merge was successful,
1027  * otherwise %false.
1028  *
1029  * Plugging coalesces IOs from the same issuer for the same purpose without
1030  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1031  * than scheduling, and the request, while may have elvpriv data, is not
1032  * added on the elevator at this point.  In addition, we don't have
1033  * reliable access to the elevator outside queue lock.  Only check basic
1034  * merging parameters without querying the elevator.
1035  *
1036  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1037  */
blk_attempt_plug_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs,struct request ** same_queue_rq)1038 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1039 		unsigned int nr_segs, struct request **same_queue_rq)
1040 {
1041 	struct blk_plug *plug;
1042 	struct request *rq;
1043 	struct list_head *plug_list;
1044 
1045 	plug = blk_mq_plug(q, bio);
1046 	if (!plug)
1047 		return false;
1048 
1049 	plug_list = &plug->mq_list;
1050 
1051 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1052 		if (rq->q == q && same_queue_rq) {
1053 			/*
1054 			 * Only blk-mq multiple hardware queues case checks the
1055 			 * rq in the same queue, there should be only one such
1056 			 * rq in a queue
1057 			 **/
1058 			*same_queue_rq = rq;
1059 		}
1060 
1061 		if (rq->q != q)
1062 			continue;
1063 
1064 		if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1065 		    BIO_MERGE_OK)
1066 			return true;
1067 	}
1068 
1069 	return false;
1070 }
1071 
1072 /*
1073  * Iterate list of requests and see if we can merge this bio with any
1074  * of them.
1075  */
blk_bio_list_merge(struct request_queue * q,struct list_head * list,struct bio * bio,unsigned int nr_segs)1076 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1077 			struct bio *bio, unsigned int nr_segs)
1078 {
1079 	struct request *rq;
1080 	int checked = 8;
1081 
1082 	list_for_each_entry_reverse(rq, list, queuelist) {
1083 		if (!checked--)
1084 			break;
1085 
1086 		switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1087 		case BIO_MERGE_NONE:
1088 			continue;
1089 		case BIO_MERGE_OK:
1090 			return true;
1091 		case BIO_MERGE_FAILED:
1092 			return false;
1093 		}
1094 
1095 	}
1096 
1097 	return false;
1098 }
1099 EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1100 
blk_mq_sched_try_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs,struct request ** merged_request)1101 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1102 		unsigned int nr_segs, struct request **merged_request)
1103 {
1104 	struct request *rq;
1105 
1106 	switch (elv_merge(q, &rq, bio)) {
1107 	case ELEVATOR_BACK_MERGE:
1108 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1109 			return false;
1110 		if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1111 			return false;
1112 		*merged_request = attempt_back_merge(q, rq);
1113 		if (!*merged_request)
1114 			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1115 		return true;
1116 	case ELEVATOR_FRONT_MERGE:
1117 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1118 			return false;
1119 		if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1120 			return false;
1121 		*merged_request = attempt_front_merge(q, rq);
1122 		if (!*merged_request)
1123 			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1124 		return true;
1125 	case ELEVATOR_DISCARD_MERGE:
1126 		return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1127 	default:
1128 		return false;
1129 	}
1130 }
1131 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
1132