• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 
31 #include <trace/events/block.h>
32 
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 
44 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
45 
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48 
blk_mq_poll_stats_bkt(const struct request * rq)49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51 	int ddir, sectors, bucket;
52 
53 	ddir = rq_data_dir(rq);
54 	sectors = blk_rq_stats_sectors(rq);
55 
56 	bucket = ddir + 2 * ilog2(sectors);
57 
58 	if (bucket < 0)
59 		return -1;
60 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62 
63 	return bucket;
64 }
65 
66 /*
67  * Check if any of the ctx, dispatch list or elevator
68  * have pending work in this hardware queue.
69  */
blk_mq_hctx_has_pending(struct blk_mq_hw_ctx * hctx)70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72 	return !list_empty_careful(&hctx->dispatch) ||
73 		sbitmap_any_bit_set(&hctx->ctx_map) ||
74 			blk_mq_sched_has_work(hctx);
75 }
76 
77 /*
78  * Mark this ctx as having pending work in this hardware queue
79  */
blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81 				     struct blk_mq_ctx *ctx)
82 {
83 	const int bit = ctx->index_hw[hctx->type];
84 
85 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86 		sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88 
blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90 				      struct blk_mq_ctx *ctx)
91 {
92 	const int bit = ctx->index_hw[hctx->type];
93 
94 	sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96 
97 struct mq_inflight {
98 	struct hd_struct *part;
99 	unsigned int inflight[2];
100 };
101 
blk_mq_check_inflight(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103 				  struct request *rq, void *priv,
104 				  bool reserved)
105 {
106 	struct mq_inflight *mi = priv;
107 
108 	if ((!mi->part->partno || rq->part == mi->part) &&
109 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
110 		mi->inflight[rq_data_dir(rq)]++;
111 
112 	return true;
113 }
114 
blk_mq_in_flight(struct request_queue * q,struct hd_struct * part)115 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
116 {
117 	struct mq_inflight mi = { .part = part };
118 
119 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 
121 	return mi.inflight[0] + mi.inflight[1];
122 }
123 
blk_mq_in_flight_rw(struct request_queue * q,struct hd_struct * part,unsigned int inflight[2])124 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
125 			 unsigned int inflight[2])
126 {
127 	struct mq_inflight mi = { .part = part };
128 
129 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
130 	inflight[0] = mi.inflight[0];
131 	inflight[1] = mi.inflight[1];
132 }
133 
blk_freeze_queue_start(struct request_queue * q)134 void blk_freeze_queue_start(struct request_queue *q)
135 {
136 	mutex_lock(&q->mq_freeze_lock);
137 	if (++q->mq_freeze_depth == 1) {
138 		percpu_ref_kill(&q->q_usage_counter);
139 		mutex_unlock(&q->mq_freeze_lock);
140 		if (queue_is_mq(q))
141 			blk_mq_run_hw_queues(q, false);
142 	} else {
143 		mutex_unlock(&q->mq_freeze_lock);
144 	}
145 }
146 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
147 
blk_mq_freeze_queue_wait(struct request_queue * q)148 void blk_mq_freeze_queue_wait(struct request_queue *q)
149 {
150 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
151 }
152 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
153 
blk_mq_freeze_queue_wait_timeout(struct request_queue * q,unsigned long timeout)154 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
155 				     unsigned long timeout)
156 {
157 	return wait_event_timeout(q->mq_freeze_wq,
158 					percpu_ref_is_zero(&q->q_usage_counter),
159 					timeout);
160 }
161 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
162 
163 /*
164  * Guarantee no request is in use, so we can change any data structure of
165  * the queue afterward.
166  */
blk_freeze_queue(struct request_queue * q)167 void blk_freeze_queue(struct request_queue *q)
168 {
169 	/*
170 	 * In the !blk_mq case we are only calling this to kill the
171 	 * q_usage_counter, otherwise this increases the freeze depth
172 	 * and waits for it to return to zero.  For this reason there is
173 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
174 	 * exported to drivers as the only user for unfreeze is blk_mq.
175 	 */
176 	blk_freeze_queue_start(q);
177 	blk_mq_freeze_queue_wait(q);
178 }
179 
blk_mq_freeze_queue(struct request_queue * q)180 void blk_mq_freeze_queue(struct request_queue *q)
181 {
182 	/*
183 	 * ...just an alias to keep freeze and unfreeze actions balanced
184 	 * in the blk_mq_* namespace
185 	 */
186 	blk_freeze_queue(q);
187 }
188 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
189 
blk_mq_unfreeze_queue(struct request_queue * q)190 void blk_mq_unfreeze_queue(struct request_queue *q)
191 {
192 	mutex_lock(&q->mq_freeze_lock);
193 	q->mq_freeze_depth--;
194 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
195 	if (!q->mq_freeze_depth) {
196 		percpu_ref_resurrect(&q->q_usage_counter);
197 		wake_up_all(&q->mq_freeze_wq);
198 	}
199 	mutex_unlock(&q->mq_freeze_lock);
200 }
201 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
202 
203 /*
204  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
205  * mpt3sas driver such that this function can be removed.
206  */
blk_mq_quiesce_queue_nowait(struct request_queue * q)207 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
208 {
209 	unsigned long flags;
210 
211 	spin_lock_irqsave(&q->queue_lock, flags);
212 	if (!q->quiesce_depth++)
213 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
214 	spin_unlock_irqrestore(&q->queue_lock, flags);
215 }
216 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
217 
218 /**
219  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
220  * @q: request queue.
221  *
222  * Note: this function does not prevent that the struct request end_io()
223  * callback function is invoked. Once this function is returned, we make
224  * sure no dispatch can happen until the queue is unquiesced via
225  * blk_mq_unquiesce_queue().
226  */
blk_mq_quiesce_queue(struct request_queue * q)227 void blk_mq_quiesce_queue(struct request_queue *q)
228 {
229 	struct blk_mq_hw_ctx *hctx;
230 	unsigned int i;
231 	bool rcu = false;
232 
233 	blk_mq_quiesce_queue_nowait(q);
234 
235 	queue_for_each_hw_ctx(q, hctx, i) {
236 		if (hctx->flags & BLK_MQ_F_BLOCKING)
237 			synchronize_srcu(hctx->srcu);
238 		else
239 			rcu = true;
240 	}
241 	if (rcu)
242 		synchronize_rcu();
243 }
244 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
245 
246 /*
247  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
248  * @q: request queue.
249  *
250  * This function recovers queue into the state before quiescing
251  * which is done by blk_mq_quiesce_queue.
252  */
blk_mq_unquiesce_queue(struct request_queue * q)253 void blk_mq_unquiesce_queue(struct request_queue *q)
254 {
255 	unsigned long flags;
256 	bool run_queue = false;
257 
258 	spin_lock_irqsave(&q->queue_lock, flags);
259 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
260 		;
261 	} else if (!--q->quiesce_depth) {
262 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
263 		run_queue = true;
264 	}
265 	spin_unlock_irqrestore(&q->queue_lock, flags);
266 
267 	/* dispatch requests which are inserted during quiescing */
268 	if (run_queue)
269 		blk_mq_run_hw_queues(q, true);
270 }
271 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
272 
blk_mq_wake_waiters(struct request_queue * q)273 void blk_mq_wake_waiters(struct request_queue *q)
274 {
275 	struct blk_mq_hw_ctx *hctx;
276 	unsigned int i;
277 
278 	queue_for_each_hw_ctx(q, hctx, i)
279 		if (blk_mq_hw_queue_mapped(hctx))
280 			blk_mq_tag_wakeup_all(hctx->tags, true);
281 }
282 
283 /*
284  * Only need start/end time stamping if we have iostat or
285  * blk stats enabled, or using an IO scheduler.
286  */
blk_mq_need_time_stamp(struct request * rq)287 static inline bool blk_mq_need_time_stamp(struct request *rq)
288 {
289 	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
290 }
291 
blk_mq_rq_ctx_init(struct blk_mq_alloc_data * data,unsigned int tag,u64 alloc_time_ns)292 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
293 		unsigned int tag, u64 alloc_time_ns)
294 {
295 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
296 	struct request *rq = tags->static_rqs[tag];
297 
298 	if (data->q->elevator) {
299 		rq->tag = BLK_MQ_NO_TAG;
300 		rq->internal_tag = tag;
301 	} else {
302 		rq->tag = tag;
303 		rq->internal_tag = BLK_MQ_NO_TAG;
304 	}
305 
306 	/* csd/requeue_work/fifo_time is initialized before use */
307 	rq->q = data->q;
308 	rq->mq_ctx = data->ctx;
309 	rq->mq_hctx = data->hctx;
310 	rq->rq_flags = 0;
311 	rq->cmd_flags = data->cmd_flags;
312 	if (data->flags & BLK_MQ_REQ_PM)
313 		rq->rq_flags |= RQF_PM;
314 	if (blk_queue_io_stat(data->q))
315 		rq->rq_flags |= RQF_IO_STAT;
316 	INIT_LIST_HEAD(&rq->queuelist);
317 	INIT_HLIST_NODE(&rq->hash);
318 	RB_CLEAR_NODE(&rq->rb_node);
319 	rq->rq_disk = NULL;
320 	rq->part = NULL;
321 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
322 	rq->alloc_time_ns = alloc_time_ns;
323 #endif
324 	if (blk_mq_need_time_stamp(rq))
325 		rq->start_time_ns = ktime_get_ns();
326 	else
327 		rq->start_time_ns = 0;
328 	rq->io_start_time_ns = 0;
329 	rq->stats_sectors = 0;
330 	rq->nr_phys_segments = 0;
331 #if defined(CONFIG_BLK_DEV_INTEGRITY)
332 	rq->nr_integrity_segments = 0;
333 #endif
334 	blk_crypto_rq_set_defaults(rq);
335 	/* tag was already set */
336 	WRITE_ONCE(rq->deadline, 0);
337 
338 	rq->timeout = 0;
339 
340 	rq->end_io = NULL;
341 	rq->end_io_data = NULL;
342 
343 	data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
344 	refcount_set(&rq->ref, 1);
345 
346 	if (!op_is_flush(data->cmd_flags)) {
347 		struct elevator_queue *e = data->q->elevator;
348 
349 		rq->elv.icq = NULL;
350 		if (e && e->type->ops.prepare_request) {
351 			if (e->type->icq_cache)
352 				blk_mq_sched_assign_ioc(rq);
353 
354 			e->type->ops.prepare_request(rq);
355 			rq->rq_flags |= RQF_ELVPRIV;
356 		}
357 	}
358 
359 	data->hctx->queued++;
360 	return rq;
361 }
362 
__blk_mq_alloc_request(struct blk_mq_alloc_data * data)363 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
364 {
365 	struct request_queue *q = data->q;
366 	struct elevator_queue *e = q->elevator;
367 	u64 alloc_time_ns = 0;
368 	unsigned int tag;
369 
370 	/* alloc_time includes depth and tag waits */
371 	if (blk_queue_rq_alloc_time(q))
372 		alloc_time_ns = ktime_get_ns();
373 
374 	if (data->cmd_flags & REQ_NOWAIT)
375 		data->flags |= BLK_MQ_REQ_NOWAIT;
376 
377 	if (e) {
378 		/*
379 		 * Flush requests are special and go directly to the
380 		 * dispatch list. Don't include reserved tags in the
381 		 * limiting, as it isn't useful.
382 		 */
383 		if (!op_is_flush(data->cmd_flags) &&
384 		    e->type->ops.limit_depth &&
385 		    !(data->flags & BLK_MQ_REQ_RESERVED))
386 			e->type->ops.limit_depth(data->cmd_flags, data);
387 	}
388 
389 retry:
390 	data->ctx = blk_mq_get_ctx(q);
391 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
392 	if (!e)
393 		blk_mq_tag_busy(data->hctx);
394 
395 	/*
396 	 * Waiting allocations only fail because of an inactive hctx.  In that
397 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
398 	 * should have migrated us to an online CPU by now.
399 	 */
400 	tag = blk_mq_get_tag(data);
401 	if (tag == BLK_MQ_NO_TAG) {
402 		if (data->flags & BLK_MQ_REQ_NOWAIT)
403 			return NULL;
404 
405 		/*
406 		 * Give up the CPU and sleep for a random short time to ensure
407 		 * that thread using a realtime scheduling class are migrated
408 		 * off the CPU, and thus off the hctx that is going away.
409 		 */
410 		msleep(3);
411 		goto retry;
412 	}
413 	return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
414 }
415 
blk_mq_alloc_request(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags)416 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
417 		blk_mq_req_flags_t flags)
418 {
419 	struct blk_mq_alloc_data data = {
420 		.q		= q,
421 		.flags		= flags,
422 		.cmd_flags	= op,
423 	};
424 	struct request *rq;
425 	int ret;
426 
427 	ret = blk_queue_enter(q, flags);
428 	if (ret)
429 		return ERR_PTR(ret);
430 
431 	rq = __blk_mq_alloc_request(&data);
432 	if (!rq)
433 		goto out_queue_exit;
434 	rq->__data_len = 0;
435 	rq->__sector = (sector_t) -1;
436 	rq->bio = rq->biotail = NULL;
437 	return rq;
438 out_queue_exit:
439 	blk_queue_exit(q);
440 	return ERR_PTR(-EWOULDBLOCK);
441 }
442 EXPORT_SYMBOL(blk_mq_alloc_request);
443 
blk_mq_alloc_request_hctx(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags,unsigned int hctx_idx)444 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
445 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
446 {
447 	struct blk_mq_alloc_data data = {
448 		.q		= q,
449 		.flags		= flags,
450 		.cmd_flags	= op,
451 	};
452 	u64 alloc_time_ns = 0;
453 	unsigned int cpu;
454 	unsigned int tag;
455 	int ret;
456 
457 	/* alloc_time includes depth and tag waits */
458 	if (blk_queue_rq_alloc_time(q))
459 		alloc_time_ns = ktime_get_ns();
460 
461 	/*
462 	 * If the tag allocator sleeps we could get an allocation for a
463 	 * different hardware context.  No need to complicate the low level
464 	 * allocator for this for the rare use case of a command tied to
465 	 * a specific queue.
466 	 */
467 	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
468 		return ERR_PTR(-EINVAL);
469 
470 	if (hctx_idx >= q->nr_hw_queues)
471 		return ERR_PTR(-EIO);
472 
473 	ret = blk_queue_enter(q, flags);
474 	if (ret)
475 		return ERR_PTR(ret);
476 
477 	/*
478 	 * Check if the hardware context is actually mapped to anything.
479 	 * If not tell the caller that it should skip this queue.
480 	 */
481 	ret = -EXDEV;
482 	data.hctx = q->queue_hw_ctx[hctx_idx];
483 	if (!blk_mq_hw_queue_mapped(data.hctx))
484 		goto out_queue_exit;
485 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
486 	data.ctx = __blk_mq_get_ctx(q, cpu);
487 
488 	if (!q->elevator)
489 		blk_mq_tag_busy(data.hctx);
490 
491 	ret = -EWOULDBLOCK;
492 	tag = blk_mq_get_tag(&data);
493 	if (tag == BLK_MQ_NO_TAG)
494 		goto out_queue_exit;
495 	return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
496 
497 out_queue_exit:
498 	blk_queue_exit(q);
499 	return ERR_PTR(ret);
500 }
501 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
502 
__blk_mq_free_request(struct request * rq)503 static void __blk_mq_free_request(struct request *rq)
504 {
505 	struct request_queue *q = rq->q;
506 	struct blk_mq_ctx *ctx = rq->mq_ctx;
507 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
508 	const int sched_tag = rq->internal_tag;
509 
510 	blk_crypto_free_request(rq);
511 	blk_pm_mark_last_busy(rq);
512 	rq->mq_hctx = NULL;
513 	if (rq->tag != BLK_MQ_NO_TAG)
514 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
515 	if (sched_tag != BLK_MQ_NO_TAG)
516 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
517 	blk_mq_sched_restart(hctx);
518 	blk_queue_exit(q);
519 }
520 
blk_mq_free_request(struct request * rq)521 void blk_mq_free_request(struct request *rq)
522 {
523 	struct request_queue *q = rq->q;
524 	struct elevator_queue *e = q->elevator;
525 	struct blk_mq_ctx *ctx = rq->mq_ctx;
526 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
527 
528 	if (rq->rq_flags & RQF_ELVPRIV) {
529 		if (e && e->type->ops.finish_request)
530 			e->type->ops.finish_request(rq);
531 		if (rq->elv.icq) {
532 			put_io_context(rq->elv.icq->ioc);
533 			rq->elv.icq = NULL;
534 		}
535 	}
536 
537 	ctx->rq_completed[rq_is_sync(rq)]++;
538 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
539 		__blk_mq_dec_active_requests(hctx);
540 
541 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
542 		laptop_io_completion(q->backing_dev_info);
543 
544 	rq_qos_done(q, rq);
545 
546 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
547 	if (refcount_dec_and_test(&rq->ref))
548 		__blk_mq_free_request(rq);
549 }
550 EXPORT_SYMBOL_GPL(blk_mq_free_request);
551 
__blk_mq_end_request(struct request * rq,blk_status_t error)552 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
553 {
554 	u64 now = 0;
555 
556 	if (blk_mq_need_time_stamp(rq))
557 		now = ktime_get_ns();
558 
559 	if (rq->rq_flags & RQF_STATS) {
560 		blk_mq_poll_stats_start(rq->q);
561 		blk_stat_add(rq, now);
562 	}
563 
564 	blk_mq_sched_completed_request(rq, now);
565 
566 	blk_account_io_done(rq, now);
567 
568 	if (rq->end_io) {
569 		rq_qos_done(rq->q, rq);
570 		rq->end_io(rq, error);
571 	} else {
572 		blk_mq_free_request(rq);
573 	}
574 }
575 EXPORT_SYMBOL(__blk_mq_end_request);
576 
blk_mq_end_request(struct request * rq,blk_status_t error)577 void blk_mq_end_request(struct request *rq, blk_status_t error)
578 {
579 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
580 		BUG();
581 	__blk_mq_end_request(rq, error);
582 }
583 EXPORT_SYMBOL(blk_mq_end_request);
584 
585 /*
586  * Softirq action handler - move entries to local list and loop over them
587  * while passing them to the queue registered handler.
588  */
blk_done_softirq(struct softirq_action * h)589 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
590 {
591 	struct list_head *cpu_list, local_list;
592 
593 	local_irq_disable();
594 	cpu_list = this_cpu_ptr(&blk_cpu_done);
595 	list_replace_init(cpu_list, &local_list);
596 	local_irq_enable();
597 
598 	while (!list_empty(&local_list)) {
599 		struct request *rq;
600 
601 		rq = list_entry(local_list.next, struct request, ipi_list);
602 		list_del_init(&rq->ipi_list);
603 		rq->q->mq_ops->complete(rq);
604 	}
605 }
606 
blk_mq_trigger_softirq(struct request * rq)607 static void blk_mq_trigger_softirq(struct request *rq)
608 {
609 	struct list_head *list;
610 	unsigned long flags;
611 
612 	local_irq_save(flags);
613 	list = this_cpu_ptr(&blk_cpu_done);
614 	list_add_tail(&rq->ipi_list, list);
615 
616 	/*
617 	 * If the list only contains our just added request, signal a raise of
618 	 * the softirq.  If there are already entries there, someone already
619 	 * raised the irq but it hasn't run yet.
620 	 */
621 	if (list->next == &rq->ipi_list)
622 		raise_softirq_irqoff(BLOCK_SOFTIRQ);
623 	local_irq_restore(flags);
624 }
625 
blk_softirq_cpu_dead(unsigned int cpu)626 static int blk_softirq_cpu_dead(unsigned int cpu)
627 {
628 	/*
629 	 * If a CPU goes away, splice its entries to the current CPU
630 	 * and trigger a run of the softirq
631 	 */
632 	local_irq_disable();
633 	list_splice_init(&per_cpu(blk_cpu_done, cpu),
634 			 this_cpu_ptr(&blk_cpu_done));
635 	raise_softirq_irqoff(BLOCK_SOFTIRQ);
636 	local_irq_enable();
637 
638 	return 0;
639 }
640 
641 
__blk_mq_complete_request_remote(void * data)642 static void __blk_mq_complete_request_remote(void *data)
643 {
644 	struct request *rq = data;
645 
646 	/*
647 	 * For most of single queue controllers, there is only one irq vector
648 	 * for handling I/O completion, and the only irq's affinity is set
649 	 * to all possible CPUs.  On most of ARCHs, this affinity means the irq
650 	 * is handled on one specific CPU.
651 	 *
652 	 * So complete I/O requests in softirq context in case of single queue
653 	 * devices to avoid degrading I/O performance due to irqsoff latency.
654 	 */
655 	if (rq->q->nr_hw_queues == 1)
656 		blk_mq_trigger_softirq(rq);
657 	else
658 		rq->q->mq_ops->complete(rq);
659 }
660 
blk_mq_complete_need_ipi(struct request * rq)661 static inline bool blk_mq_complete_need_ipi(struct request *rq)
662 {
663 	int cpu = raw_smp_processor_id();
664 
665 	if (!IS_ENABLED(CONFIG_SMP) ||
666 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
667 		return false;
668 
669 	/* same CPU or cache domain?  Complete locally */
670 	if (cpu == rq->mq_ctx->cpu ||
671 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
672 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
673 		return false;
674 
675 	/* don't try to IPI to an offline CPU */
676 	return cpu_online(rq->mq_ctx->cpu);
677 }
678 
blk_mq_complete_request_remote(struct request * rq)679 bool blk_mq_complete_request_remote(struct request *rq)
680 {
681 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
682 
683 	/*
684 	 * For a polled request, always complete locallly, it's pointless
685 	 * to redirect the completion.
686 	 */
687 	if (rq->cmd_flags & REQ_HIPRI)
688 		return false;
689 
690 	if (blk_mq_complete_need_ipi(rq)) {
691 		rq->csd.func = __blk_mq_complete_request_remote;
692 		rq->csd.info = rq;
693 		rq->csd.flags = 0;
694 		smp_call_function_single_async(rq->mq_ctx->cpu, &rq->csd);
695 	} else {
696 		if (rq->q->nr_hw_queues > 1)
697 			return false;
698 		blk_mq_trigger_softirq(rq);
699 	}
700 
701 	return true;
702 }
703 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
704 
705 /**
706  * blk_mq_complete_request - end I/O on a request
707  * @rq:		the request being processed
708  *
709  * Description:
710  *	Complete a request by scheduling the ->complete_rq operation.
711  **/
blk_mq_complete_request(struct request * rq)712 void blk_mq_complete_request(struct request *rq)
713 {
714 	if (!blk_mq_complete_request_remote(rq))
715 		rq->q->mq_ops->complete(rq);
716 }
717 EXPORT_SYMBOL(blk_mq_complete_request);
718 
hctx_unlock(struct blk_mq_hw_ctx * hctx,int srcu_idx)719 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
720 	__releases(hctx->srcu)
721 {
722 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
723 		rcu_read_unlock();
724 	else
725 		srcu_read_unlock(hctx->srcu, srcu_idx);
726 }
727 
hctx_lock(struct blk_mq_hw_ctx * hctx,int * srcu_idx)728 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
729 	__acquires(hctx->srcu)
730 {
731 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
732 		/* shut up gcc false positive */
733 		*srcu_idx = 0;
734 		rcu_read_lock();
735 	} else
736 		*srcu_idx = srcu_read_lock(hctx->srcu);
737 }
738 
739 /**
740  * blk_mq_start_request - Start processing a request
741  * @rq: Pointer to request to be started
742  *
743  * Function used by device drivers to notify the block layer that a request
744  * is going to be processed now, so blk layer can do proper initializations
745  * such as starting the timeout timer.
746  */
blk_mq_start_request(struct request * rq)747 void blk_mq_start_request(struct request *rq)
748 {
749 	struct request_queue *q = rq->q;
750 
751 	trace_block_rq_issue(q, rq);
752 
753 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
754 		rq->io_start_time_ns = ktime_get_ns();
755 		rq->stats_sectors = blk_rq_sectors(rq);
756 		rq->rq_flags |= RQF_STATS;
757 		rq_qos_issue(q, rq);
758 	}
759 
760 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
761 
762 	blk_add_timer(rq);
763 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
764 
765 #ifdef CONFIG_BLK_DEV_INTEGRITY
766 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
767 		q->integrity.profile->prepare_fn(rq);
768 #endif
769 }
770 EXPORT_SYMBOL(blk_mq_start_request);
771 
__blk_mq_requeue_request(struct request * rq)772 static void __blk_mq_requeue_request(struct request *rq)
773 {
774 	struct request_queue *q = rq->q;
775 
776 	blk_mq_put_driver_tag(rq);
777 
778 	trace_block_rq_requeue(q, rq);
779 	rq_qos_requeue(q, rq);
780 
781 	if (blk_mq_request_started(rq)) {
782 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
783 		rq->rq_flags &= ~RQF_TIMED_OUT;
784 	}
785 }
786 
blk_mq_requeue_request(struct request * rq,bool kick_requeue_list)787 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
788 {
789 	__blk_mq_requeue_request(rq);
790 
791 	/* this request will be re-inserted to io scheduler queue */
792 	blk_mq_sched_requeue_request(rq);
793 
794 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
795 }
796 EXPORT_SYMBOL(blk_mq_requeue_request);
797 
blk_mq_requeue_work(struct work_struct * work)798 static void blk_mq_requeue_work(struct work_struct *work)
799 {
800 	struct request_queue *q =
801 		container_of(work, struct request_queue, requeue_work.work);
802 	LIST_HEAD(rq_list);
803 	struct request *rq, *next;
804 
805 	spin_lock_irq(&q->requeue_lock);
806 	list_splice_init(&q->requeue_list, &rq_list);
807 	spin_unlock_irq(&q->requeue_lock);
808 
809 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
810 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
811 			continue;
812 
813 		rq->rq_flags &= ~RQF_SOFTBARRIER;
814 		list_del_init(&rq->queuelist);
815 		/*
816 		 * If RQF_DONTPREP, rq has contained some driver specific
817 		 * data, so insert it to hctx dispatch list to avoid any
818 		 * merge.
819 		 */
820 		if (rq->rq_flags & RQF_DONTPREP)
821 			blk_mq_request_bypass_insert(rq, false, false);
822 		else
823 			blk_mq_sched_insert_request(rq, true, false, false);
824 	}
825 
826 	while (!list_empty(&rq_list)) {
827 		rq = list_entry(rq_list.next, struct request, queuelist);
828 		list_del_init(&rq->queuelist);
829 		blk_mq_sched_insert_request(rq, false, false, false);
830 	}
831 
832 	blk_mq_run_hw_queues(q, false);
833 }
834 
blk_mq_add_to_requeue_list(struct request * rq,bool at_head,bool kick_requeue_list)835 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
836 				bool kick_requeue_list)
837 {
838 	struct request_queue *q = rq->q;
839 	unsigned long flags;
840 
841 	/*
842 	 * We abuse this flag that is otherwise used by the I/O scheduler to
843 	 * request head insertion from the workqueue.
844 	 */
845 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
846 
847 	spin_lock_irqsave(&q->requeue_lock, flags);
848 	if (at_head) {
849 		rq->rq_flags |= RQF_SOFTBARRIER;
850 		list_add(&rq->queuelist, &q->requeue_list);
851 	} else {
852 		list_add_tail(&rq->queuelist, &q->requeue_list);
853 	}
854 	spin_unlock_irqrestore(&q->requeue_lock, flags);
855 
856 	if (kick_requeue_list)
857 		blk_mq_kick_requeue_list(q);
858 }
859 
blk_mq_kick_requeue_list(struct request_queue * q)860 void blk_mq_kick_requeue_list(struct request_queue *q)
861 {
862 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
863 }
864 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
865 
blk_mq_delay_kick_requeue_list(struct request_queue * q,unsigned long msecs)866 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
867 				    unsigned long msecs)
868 {
869 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
870 				    msecs_to_jiffies(msecs));
871 }
872 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
873 
blk_mq_tag_to_rq(struct blk_mq_tags * tags,unsigned int tag)874 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
875 {
876 	if (tag < tags->nr_tags) {
877 		prefetch(tags->rqs[tag]);
878 		return tags->rqs[tag];
879 	}
880 
881 	return NULL;
882 }
883 EXPORT_SYMBOL(blk_mq_tag_to_rq);
884 
blk_mq_rq_inflight(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)885 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
886 			       void *priv, bool reserved)
887 {
888 	/*
889 	 * If we find a request that isn't idle and the queue matches,
890 	 * we know the queue is busy. Return false to stop the iteration.
891 	 */
892 	if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
893 		bool *busy = priv;
894 
895 		*busy = true;
896 		return false;
897 	}
898 
899 	return true;
900 }
901 
blk_mq_queue_inflight(struct request_queue * q)902 bool blk_mq_queue_inflight(struct request_queue *q)
903 {
904 	bool busy = false;
905 
906 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
907 	return busy;
908 }
909 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
910 
blk_mq_rq_timed_out(struct request * req,bool reserved)911 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
912 {
913 	req->rq_flags |= RQF_TIMED_OUT;
914 	if (req->q->mq_ops->timeout) {
915 		enum blk_eh_timer_return ret;
916 
917 		ret = req->q->mq_ops->timeout(req, reserved);
918 		if (ret == BLK_EH_DONE)
919 			return;
920 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
921 	}
922 
923 	blk_add_timer(req);
924 }
925 
blk_mq_req_expired(struct request * rq,unsigned long * next)926 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
927 {
928 	unsigned long deadline;
929 
930 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
931 		return false;
932 	if (rq->rq_flags & RQF_TIMED_OUT)
933 		return false;
934 
935 	deadline = READ_ONCE(rq->deadline);
936 	if (time_after_eq(jiffies, deadline))
937 		return true;
938 
939 	if (*next == 0)
940 		*next = deadline;
941 	else if (time_after(*next, deadline))
942 		*next = deadline;
943 	return false;
944 }
945 
blk_mq_put_rq_ref(struct request * rq)946 void blk_mq_put_rq_ref(struct request *rq)
947 {
948 	if (is_flush_rq(rq))
949 		rq->end_io(rq, 0);
950 	else if (refcount_dec_and_test(&rq->ref))
951 		__blk_mq_free_request(rq);
952 }
953 
blk_mq_check_expired(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)954 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
955 		struct request *rq, void *priv, bool reserved)
956 {
957 	unsigned long *next = priv;
958 
959 	/*
960 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
961 	 * be reallocated underneath the timeout handler's processing, then
962 	 * the expire check is reliable. If the request is not expired, then
963 	 * it was completed and reallocated as a new request after returning
964 	 * from blk_mq_check_expired().
965 	 */
966 	if (blk_mq_req_expired(rq, next))
967 		blk_mq_rq_timed_out(rq, reserved);
968 	return true;
969 }
970 
blk_mq_timeout_work(struct work_struct * work)971 static void blk_mq_timeout_work(struct work_struct *work)
972 {
973 	struct request_queue *q =
974 		container_of(work, struct request_queue, timeout_work);
975 	unsigned long next = 0;
976 	struct blk_mq_hw_ctx *hctx;
977 	int i;
978 
979 	/* A deadlock might occur if a request is stuck requiring a
980 	 * timeout at the same time a queue freeze is waiting
981 	 * completion, since the timeout code would not be able to
982 	 * acquire the queue reference here.
983 	 *
984 	 * That's why we don't use blk_queue_enter here; instead, we use
985 	 * percpu_ref_tryget directly, because we need to be able to
986 	 * obtain a reference even in the short window between the queue
987 	 * starting to freeze, by dropping the first reference in
988 	 * blk_freeze_queue_start, and the moment the last request is
989 	 * consumed, marked by the instant q_usage_counter reaches
990 	 * zero.
991 	 */
992 	if (!percpu_ref_tryget(&q->q_usage_counter))
993 		return;
994 
995 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
996 
997 	if (next != 0) {
998 		mod_timer(&q->timeout, next);
999 	} else {
1000 		/*
1001 		 * Request timeouts are handled as a forward rolling timer. If
1002 		 * we end up here it means that no requests are pending and
1003 		 * also that no request has been pending for a while. Mark
1004 		 * each hctx as idle.
1005 		 */
1006 		queue_for_each_hw_ctx(q, hctx, i) {
1007 			/* the hctx may be unmapped, so check it here */
1008 			if (blk_mq_hw_queue_mapped(hctx))
1009 				blk_mq_tag_idle(hctx);
1010 		}
1011 	}
1012 	blk_queue_exit(q);
1013 }
1014 
1015 struct flush_busy_ctx_data {
1016 	struct blk_mq_hw_ctx *hctx;
1017 	struct list_head *list;
1018 };
1019 
flush_busy_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1020 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1021 {
1022 	struct flush_busy_ctx_data *flush_data = data;
1023 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1024 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1025 	enum hctx_type type = hctx->type;
1026 
1027 	spin_lock(&ctx->lock);
1028 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1029 	sbitmap_clear_bit(sb, bitnr);
1030 	spin_unlock(&ctx->lock);
1031 	return true;
1032 }
1033 
1034 /*
1035  * Process software queues that have been marked busy, splicing them
1036  * to the for-dispatch
1037  */
blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx * hctx,struct list_head * list)1038 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1039 {
1040 	struct flush_busy_ctx_data data = {
1041 		.hctx = hctx,
1042 		.list = list,
1043 	};
1044 
1045 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1046 }
1047 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1048 
1049 struct dispatch_rq_data {
1050 	struct blk_mq_hw_ctx *hctx;
1051 	struct request *rq;
1052 };
1053 
dispatch_rq_from_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1054 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1055 		void *data)
1056 {
1057 	struct dispatch_rq_data *dispatch_data = data;
1058 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1059 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1060 	enum hctx_type type = hctx->type;
1061 
1062 	spin_lock(&ctx->lock);
1063 	if (!list_empty(&ctx->rq_lists[type])) {
1064 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1065 		list_del_init(&dispatch_data->rq->queuelist);
1066 		if (list_empty(&ctx->rq_lists[type]))
1067 			sbitmap_clear_bit(sb, bitnr);
1068 	}
1069 	spin_unlock(&ctx->lock);
1070 
1071 	return !dispatch_data->rq;
1072 }
1073 
blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * start)1074 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1075 					struct blk_mq_ctx *start)
1076 {
1077 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1078 	struct dispatch_rq_data data = {
1079 		.hctx = hctx,
1080 		.rq   = NULL,
1081 	};
1082 
1083 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1084 			       dispatch_rq_from_ctx, &data);
1085 
1086 	return data.rq;
1087 }
1088 
queued_to_index(unsigned int queued)1089 static inline unsigned int queued_to_index(unsigned int queued)
1090 {
1091 	if (!queued)
1092 		return 0;
1093 
1094 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1095 }
1096 
__blk_mq_get_driver_tag(struct request * rq)1097 static bool __blk_mq_get_driver_tag(struct request *rq)
1098 {
1099 	struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1100 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1101 	int tag;
1102 
1103 	blk_mq_tag_busy(rq->mq_hctx);
1104 
1105 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1106 		bt = rq->mq_hctx->tags->breserved_tags;
1107 		tag_offset = 0;
1108 	} else {
1109 		if (!hctx_may_queue(rq->mq_hctx, bt))
1110 			return false;
1111 	}
1112 
1113 	tag = __sbitmap_queue_get(bt);
1114 	if (tag == BLK_MQ_NO_TAG)
1115 		return false;
1116 
1117 	rq->tag = tag + tag_offset;
1118 	return true;
1119 }
1120 
blk_mq_get_driver_tag(struct request * rq)1121 static bool blk_mq_get_driver_tag(struct request *rq)
1122 {
1123 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1124 
1125 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1126 		return false;
1127 
1128 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1129 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1130 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1131 		__blk_mq_inc_active_requests(hctx);
1132 	}
1133 	hctx->tags->rqs[rq->tag] = rq;
1134 	return true;
1135 }
1136 
blk_mq_dispatch_wake(wait_queue_entry_t * wait,unsigned mode,int flags,void * key)1137 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1138 				int flags, void *key)
1139 {
1140 	struct blk_mq_hw_ctx *hctx;
1141 
1142 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1143 
1144 	spin_lock(&hctx->dispatch_wait_lock);
1145 	if (!list_empty(&wait->entry)) {
1146 		struct sbitmap_queue *sbq;
1147 
1148 		list_del_init(&wait->entry);
1149 		sbq = hctx->tags->bitmap_tags;
1150 		atomic_dec(&sbq->ws_active);
1151 	}
1152 	spin_unlock(&hctx->dispatch_wait_lock);
1153 
1154 	blk_mq_run_hw_queue(hctx, true);
1155 	return 1;
1156 }
1157 
1158 /*
1159  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1160  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1161  * restart. For both cases, take care to check the condition again after
1162  * marking us as waiting.
1163  */
blk_mq_mark_tag_wait(struct blk_mq_hw_ctx * hctx,struct request * rq)1164 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1165 				 struct request *rq)
1166 {
1167 	struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1168 	struct wait_queue_head *wq;
1169 	wait_queue_entry_t *wait;
1170 	bool ret;
1171 
1172 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1173 		blk_mq_sched_mark_restart_hctx(hctx);
1174 
1175 		/*
1176 		 * It's possible that a tag was freed in the window between the
1177 		 * allocation failure and adding the hardware queue to the wait
1178 		 * queue.
1179 		 *
1180 		 * Don't clear RESTART here, someone else could have set it.
1181 		 * At most this will cost an extra queue run.
1182 		 */
1183 		return blk_mq_get_driver_tag(rq);
1184 	}
1185 
1186 	wait = &hctx->dispatch_wait;
1187 	if (!list_empty_careful(&wait->entry))
1188 		return false;
1189 
1190 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1191 
1192 	spin_lock_irq(&wq->lock);
1193 	spin_lock(&hctx->dispatch_wait_lock);
1194 	if (!list_empty(&wait->entry)) {
1195 		spin_unlock(&hctx->dispatch_wait_lock);
1196 		spin_unlock_irq(&wq->lock);
1197 		return false;
1198 	}
1199 
1200 	atomic_inc(&sbq->ws_active);
1201 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1202 	__add_wait_queue(wq, wait);
1203 
1204 	/*
1205 	 * It's possible that a tag was freed in the window between the
1206 	 * allocation failure and adding the hardware queue to the wait
1207 	 * queue.
1208 	 */
1209 	ret = blk_mq_get_driver_tag(rq);
1210 	if (!ret) {
1211 		spin_unlock(&hctx->dispatch_wait_lock);
1212 		spin_unlock_irq(&wq->lock);
1213 		return false;
1214 	}
1215 
1216 	/*
1217 	 * We got a tag, remove ourselves from the wait queue to ensure
1218 	 * someone else gets the wakeup.
1219 	 */
1220 	list_del_init(&wait->entry);
1221 	atomic_dec(&sbq->ws_active);
1222 	spin_unlock(&hctx->dispatch_wait_lock);
1223 	spin_unlock_irq(&wq->lock);
1224 
1225 	return true;
1226 }
1227 
1228 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1229 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1230 /*
1231  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1232  * - EWMA is one simple way to compute running average value
1233  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1234  * - take 4 as factor for avoiding to get too small(0) result, and this
1235  *   factor doesn't matter because EWMA decreases exponentially
1236  */
blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx * hctx,bool busy)1237 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1238 {
1239 	unsigned int ewma;
1240 
1241 	ewma = hctx->dispatch_busy;
1242 
1243 	if (!ewma && !busy)
1244 		return;
1245 
1246 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1247 	if (busy)
1248 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1249 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1250 
1251 	hctx->dispatch_busy = ewma;
1252 }
1253 
1254 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1255 
blk_mq_handle_dev_resource(struct request * rq,struct list_head * list)1256 static void blk_mq_handle_dev_resource(struct request *rq,
1257 				       struct list_head *list)
1258 {
1259 	struct request *next =
1260 		list_first_entry_or_null(list, struct request, queuelist);
1261 
1262 	/*
1263 	 * If an I/O scheduler has been configured and we got a driver tag for
1264 	 * the next request already, free it.
1265 	 */
1266 	if (next)
1267 		blk_mq_put_driver_tag(next);
1268 
1269 	list_add(&rq->queuelist, list);
1270 	__blk_mq_requeue_request(rq);
1271 }
1272 
blk_mq_handle_zone_resource(struct request * rq,struct list_head * zone_list)1273 static void blk_mq_handle_zone_resource(struct request *rq,
1274 					struct list_head *zone_list)
1275 {
1276 	/*
1277 	 * If we end up here it is because we cannot dispatch a request to a
1278 	 * specific zone due to LLD level zone-write locking or other zone
1279 	 * related resource not being available. In this case, set the request
1280 	 * aside in zone_list for retrying it later.
1281 	 */
1282 	list_add(&rq->queuelist, zone_list);
1283 	__blk_mq_requeue_request(rq);
1284 }
1285 
1286 enum prep_dispatch {
1287 	PREP_DISPATCH_OK,
1288 	PREP_DISPATCH_NO_TAG,
1289 	PREP_DISPATCH_NO_BUDGET,
1290 };
1291 
blk_mq_prep_dispatch_rq(struct request * rq,bool need_budget)1292 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1293 						  bool need_budget)
1294 {
1295 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1296 
1297 	if (need_budget && !blk_mq_get_dispatch_budget(rq->q)) {
1298 		blk_mq_put_driver_tag(rq);
1299 		return PREP_DISPATCH_NO_BUDGET;
1300 	}
1301 
1302 	if (!blk_mq_get_driver_tag(rq)) {
1303 		/*
1304 		 * The initial allocation attempt failed, so we need to
1305 		 * rerun the hardware queue when a tag is freed. The
1306 		 * waitqueue takes care of that. If the queue is run
1307 		 * before we add this entry back on the dispatch list,
1308 		 * we'll re-run it below.
1309 		 */
1310 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1311 			/*
1312 			 * All budgets not got from this function will be put
1313 			 * together during handling partial dispatch
1314 			 */
1315 			if (need_budget)
1316 				blk_mq_put_dispatch_budget(rq->q);
1317 			return PREP_DISPATCH_NO_TAG;
1318 		}
1319 	}
1320 
1321 	return PREP_DISPATCH_OK;
1322 }
1323 
1324 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
blk_mq_release_budgets(struct request_queue * q,unsigned int nr_budgets)1325 static void blk_mq_release_budgets(struct request_queue *q,
1326 		unsigned int nr_budgets)
1327 {
1328 	int i;
1329 
1330 	for (i = 0; i < nr_budgets; i++)
1331 		blk_mq_put_dispatch_budget(q);
1332 }
1333 
1334 /*
1335  * Returns true if we did some work AND can potentially do more.
1336  */
blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx * hctx,struct list_head * list,unsigned int nr_budgets)1337 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1338 			     unsigned int nr_budgets)
1339 {
1340 	enum prep_dispatch prep;
1341 	struct request_queue *q = hctx->queue;
1342 	struct request *rq, *nxt;
1343 	int errors, queued;
1344 	blk_status_t ret = BLK_STS_OK;
1345 	LIST_HEAD(zone_list);
1346 	bool needs_resource = false;
1347 
1348 	if (list_empty(list))
1349 		return false;
1350 
1351 	/*
1352 	 * Now process all the entries, sending them to the driver.
1353 	 */
1354 	errors = queued = 0;
1355 	do {
1356 		struct blk_mq_queue_data bd;
1357 
1358 		rq = list_first_entry(list, struct request, queuelist);
1359 
1360 		WARN_ON_ONCE(hctx != rq->mq_hctx);
1361 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1362 		if (prep != PREP_DISPATCH_OK)
1363 			break;
1364 
1365 		list_del_init(&rq->queuelist);
1366 
1367 		bd.rq = rq;
1368 
1369 		/*
1370 		 * Flag last if we have no more requests, or if we have more
1371 		 * but can't assign a driver tag to it.
1372 		 */
1373 		if (list_empty(list))
1374 			bd.last = true;
1375 		else {
1376 			nxt = list_first_entry(list, struct request, queuelist);
1377 			bd.last = !blk_mq_get_driver_tag(nxt);
1378 		}
1379 
1380 		/*
1381 		 * once the request is queued to lld, no need to cover the
1382 		 * budget any more
1383 		 */
1384 		if (nr_budgets)
1385 			nr_budgets--;
1386 		ret = q->mq_ops->queue_rq(hctx, &bd);
1387 		switch (ret) {
1388 		case BLK_STS_OK:
1389 			queued++;
1390 			break;
1391 		case BLK_STS_RESOURCE:
1392 			needs_resource = true;
1393 			fallthrough;
1394 		case BLK_STS_DEV_RESOURCE:
1395 			blk_mq_handle_dev_resource(rq, list);
1396 			goto out;
1397 		case BLK_STS_ZONE_RESOURCE:
1398 			/*
1399 			 * Move the request to zone_list and keep going through
1400 			 * the dispatch list to find more requests the drive can
1401 			 * accept.
1402 			 */
1403 			blk_mq_handle_zone_resource(rq, &zone_list);
1404 			needs_resource = true;
1405 			break;
1406 		default:
1407 			errors++;
1408 			blk_mq_end_request(rq, BLK_STS_IOERR);
1409 		}
1410 	} while (!list_empty(list));
1411 out:
1412 	if (!list_empty(&zone_list))
1413 		list_splice_tail_init(&zone_list, list);
1414 
1415 	hctx->dispatched[queued_to_index(queued)]++;
1416 
1417 	/* If we didn't flush the entire list, we could have told the driver
1418 	 * there was more coming, but that turned out to be a lie.
1419 	 */
1420 	if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1421 		q->mq_ops->commit_rqs(hctx);
1422 	/*
1423 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1424 	 * that is where we will continue on next queue run.
1425 	 */
1426 	if (!list_empty(list)) {
1427 		bool needs_restart;
1428 		/* For non-shared tags, the RESTART check will suffice */
1429 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1430 			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1431 
1432 		blk_mq_release_budgets(q, nr_budgets);
1433 
1434 		spin_lock(&hctx->lock);
1435 		list_splice_tail_init(list, &hctx->dispatch);
1436 		spin_unlock(&hctx->lock);
1437 
1438 		/*
1439 		 * Order adding requests to hctx->dispatch and checking
1440 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1441 		 * in blk_mq_sched_restart(). Avoid restart code path to
1442 		 * miss the new added requests to hctx->dispatch, meantime
1443 		 * SCHED_RESTART is observed here.
1444 		 */
1445 		smp_mb();
1446 
1447 		/*
1448 		 * If SCHED_RESTART was set by the caller of this function and
1449 		 * it is no longer set that means that it was cleared by another
1450 		 * thread and hence that a queue rerun is needed.
1451 		 *
1452 		 * If 'no_tag' is set, that means that we failed getting
1453 		 * a driver tag with an I/O scheduler attached. If our dispatch
1454 		 * waitqueue is no longer active, ensure that we run the queue
1455 		 * AFTER adding our entries back to the list.
1456 		 *
1457 		 * If no I/O scheduler has been configured it is possible that
1458 		 * the hardware queue got stopped and restarted before requests
1459 		 * were pushed back onto the dispatch list. Rerun the queue to
1460 		 * avoid starvation. Notes:
1461 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1462 		 *   been stopped before rerunning a queue.
1463 		 * - Some but not all block drivers stop a queue before
1464 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1465 		 *   and dm-rq.
1466 		 *
1467 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1468 		 * bit is set, run queue after a delay to avoid IO stalls
1469 		 * that could otherwise occur if the queue is idle.  We'll do
1470 		 * similar if we couldn't get budget or couldn't lock a zone
1471 		 * and SCHED_RESTART is set.
1472 		 */
1473 		needs_restart = blk_mq_sched_needs_restart(hctx);
1474 		if (prep == PREP_DISPATCH_NO_BUDGET)
1475 			needs_resource = true;
1476 		if (!needs_restart ||
1477 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1478 			blk_mq_run_hw_queue(hctx, true);
1479 		else if (needs_restart && needs_resource)
1480 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1481 
1482 		blk_mq_update_dispatch_busy(hctx, true);
1483 		return false;
1484 	} else
1485 		blk_mq_update_dispatch_busy(hctx, false);
1486 
1487 	return (queued + errors) != 0;
1488 }
1489 
1490 /**
1491  * __blk_mq_run_hw_queue - Run a hardware queue.
1492  * @hctx: Pointer to the hardware queue to run.
1493  *
1494  * Send pending requests to the hardware.
1495  */
__blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx)1496 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1497 {
1498 	int srcu_idx;
1499 
1500 	/*
1501 	 * We should be running this queue from one of the CPUs that
1502 	 * are mapped to it.
1503 	 *
1504 	 * There are at least two related races now between setting
1505 	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1506 	 * __blk_mq_run_hw_queue():
1507 	 *
1508 	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1509 	 *   but later it becomes online, then this warning is harmless
1510 	 *   at all
1511 	 *
1512 	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1513 	 *   but later it becomes offline, then the warning can't be
1514 	 *   triggered, and we depend on blk-mq timeout handler to
1515 	 *   handle dispatched requests to this hctx
1516 	 */
1517 	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1518 		cpu_online(hctx->next_cpu)) {
1519 		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1520 			raw_smp_processor_id(),
1521 			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1522 		dump_stack();
1523 	}
1524 
1525 	/*
1526 	 * We can't run the queue inline with ints disabled. Ensure that
1527 	 * we catch bad users of this early.
1528 	 */
1529 	WARN_ON_ONCE(in_interrupt());
1530 
1531 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1532 
1533 	hctx_lock(hctx, &srcu_idx);
1534 	blk_mq_sched_dispatch_requests(hctx);
1535 	hctx_unlock(hctx, srcu_idx);
1536 }
1537 
blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx * hctx)1538 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1539 {
1540 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1541 
1542 	if (cpu >= nr_cpu_ids)
1543 		cpu = cpumask_first(hctx->cpumask);
1544 	return cpu;
1545 }
1546 
1547 /*
1548  * It'd be great if the workqueue API had a way to pass
1549  * in a mask and had some smarts for more clever placement.
1550  * For now we just round-robin here, switching for every
1551  * BLK_MQ_CPU_WORK_BATCH queued items.
1552  */
blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx * hctx)1553 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1554 {
1555 	bool tried = false;
1556 	int next_cpu = hctx->next_cpu;
1557 
1558 	if (hctx->queue->nr_hw_queues == 1)
1559 		return WORK_CPU_UNBOUND;
1560 
1561 	if (--hctx->next_cpu_batch <= 0) {
1562 select_cpu:
1563 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1564 				cpu_online_mask);
1565 		if (next_cpu >= nr_cpu_ids)
1566 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1567 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1568 	}
1569 
1570 	/*
1571 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1572 	 * and it should only happen in the path of handling CPU DEAD.
1573 	 */
1574 	if (!cpu_online(next_cpu)) {
1575 		if (!tried) {
1576 			tried = true;
1577 			goto select_cpu;
1578 		}
1579 
1580 		/*
1581 		 * Make sure to re-select CPU next time once after CPUs
1582 		 * in hctx->cpumask become online again.
1583 		 */
1584 		hctx->next_cpu = next_cpu;
1585 		hctx->next_cpu_batch = 1;
1586 		return WORK_CPU_UNBOUND;
1587 	}
1588 
1589 	hctx->next_cpu = next_cpu;
1590 	return next_cpu;
1591 }
1592 
1593 /**
1594  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1595  * @hctx: Pointer to the hardware queue to run.
1596  * @async: If we want to run the queue asynchronously.
1597  * @msecs: Microseconds of delay to wait before running the queue.
1598  *
1599  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1600  * with a delay of @msecs.
1601  */
__blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async,unsigned long msecs)1602 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1603 					unsigned long msecs)
1604 {
1605 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1606 		return;
1607 
1608 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1609 		int cpu = get_cpu();
1610 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1611 			__blk_mq_run_hw_queue(hctx);
1612 			put_cpu();
1613 			return;
1614 		}
1615 
1616 		put_cpu();
1617 	}
1618 
1619 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1620 				    msecs_to_jiffies(msecs));
1621 }
1622 
1623 /**
1624  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1625  * @hctx: Pointer to the hardware queue to run.
1626  * @msecs: Microseconds of delay to wait before running the queue.
1627  *
1628  * Run a hardware queue asynchronously with a delay of @msecs.
1629  */
blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,unsigned long msecs)1630 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1631 {
1632 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1633 }
1634 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1635 
1636 /**
1637  * blk_mq_run_hw_queue - Start to run a hardware queue.
1638  * @hctx: Pointer to the hardware queue to run.
1639  * @async: If we want to run the queue asynchronously.
1640  *
1641  * Check if the request queue is not in a quiesced state and if there are
1642  * pending requests to be sent. If this is true, run the queue to send requests
1643  * to hardware.
1644  */
blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)1645 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1646 {
1647 	int srcu_idx;
1648 	bool need_run;
1649 
1650 	/*
1651 	 * When queue is quiesced, we may be switching io scheduler, or
1652 	 * updating nr_hw_queues, or other things, and we can't run queue
1653 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1654 	 *
1655 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1656 	 * quiesced.
1657 	 */
1658 	hctx_lock(hctx, &srcu_idx);
1659 	need_run = !blk_queue_quiesced(hctx->queue) &&
1660 		blk_mq_hctx_has_pending(hctx);
1661 	hctx_unlock(hctx, srcu_idx);
1662 
1663 	if (need_run)
1664 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1665 }
1666 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1667 
1668 /**
1669  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1670  * @q: Pointer to the request queue to run.
1671  * @async: If we want to run the queue asynchronously.
1672  */
blk_mq_run_hw_queues(struct request_queue * q,bool async)1673 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1674 {
1675 	struct blk_mq_hw_ctx *hctx;
1676 	int i;
1677 
1678 	queue_for_each_hw_ctx(q, hctx, i) {
1679 		if (blk_mq_hctx_stopped(hctx))
1680 			continue;
1681 
1682 		blk_mq_run_hw_queue(hctx, async);
1683 	}
1684 }
1685 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1686 
1687 /**
1688  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1689  * @q: Pointer to the request queue to run.
1690  * @msecs: Microseconds of delay to wait before running the queues.
1691  */
blk_mq_delay_run_hw_queues(struct request_queue * q,unsigned long msecs)1692 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1693 {
1694 	struct blk_mq_hw_ctx *hctx;
1695 	int i;
1696 
1697 	queue_for_each_hw_ctx(q, hctx, i) {
1698 		if (blk_mq_hctx_stopped(hctx))
1699 			continue;
1700 
1701 		blk_mq_delay_run_hw_queue(hctx, msecs);
1702 	}
1703 }
1704 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1705 
1706 /**
1707  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1708  * @q: request queue.
1709  *
1710  * The caller is responsible for serializing this function against
1711  * blk_mq_{start,stop}_hw_queue().
1712  */
blk_mq_queue_stopped(struct request_queue * q)1713 bool blk_mq_queue_stopped(struct request_queue *q)
1714 {
1715 	struct blk_mq_hw_ctx *hctx;
1716 	int i;
1717 
1718 	queue_for_each_hw_ctx(q, hctx, i)
1719 		if (blk_mq_hctx_stopped(hctx))
1720 			return true;
1721 
1722 	return false;
1723 }
1724 EXPORT_SYMBOL(blk_mq_queue_stopped);
1725 
1726 /*
1727  * This function is often used for pausing .queue_rq() by driver when
1728  * there isn't enough resource or some conditions aren't satisfied, and
1729  * BLK_STS_RESOURCE is usually returned.
1730  *
1731  * We do not guarantee that dispatch can be drained or blocked
1732  * after blk_mq_stop_hw_queue() returns. Please use
1733  * blk_mq_quiesce_queue() for that requirement.
1734  */
blk_mq_stop_hw_queue(struct blk_mq_hw_ctx * hctx)1735 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1736 {
1737 	cancel_delayed_work(&hctx->run_work);
1738 
1739 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1740 }
1741 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1742 
1743 /*
1744  * This function is often used for pausing .queue_rq() by driver when
1745  * there isn't enough resource or some conditions aren't satisfied, and
1746  * BLK_STS_RESOURCE is usually returned.
1747  *
1748  * We do not guarantee that dispatch can be drained or blocked
1749  * after blk_mq_stop_hw_queues() returns. Please use
1750  * blk_mq_quiesce_queue() for that requirement.
1751  */
blk_mq_stop_hw_queues(struct request_queue * q)1752 void blk_mq_stop_hw_queues(struct request_queue *q)
1753 {
1754 	struct blk_mq_hw_ctx *hctx;
1755 	int i;
1756 
1757 	queue_for_each_hw_ctx(q, hctx, i)
1758 		blk_mq_stop_hw_queue(hctx);
1759 }
1760 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1761 
blk_mq_start_hw_queue(struct blk_mq_hw_ctx * hctx)1762 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1763 {
1764 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1765 
1766 	blk_mq_run_hw_queue(hctx, false);
1767 }
1768 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1769 
blk_mq_start_hw_queues(struct request_queue * q)1770 void blk_mq_start_hw_queues(struct request_queue *q)
1771 {
1772 	struct blk_mq_hw_ctx *hctx;
1773 	int i;
1774 
1775 	queue_for_each_hw_ctx(q, hctx, i)
1776 		blk_mq_start_hw_queue(hctx);
1777 }
1778 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1779 
blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)1780 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1781 {
1782 	if (!blk_mq_hctx_stopped(hctx))
1783 		return;
1784 
1785 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1786 	blk_mq_run_hw_queue(hctx, async);
1787 }
1788 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1789 
blk_mq_start_stopped_hw_queues(struct request_queue * q,bool async)1790 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1791 {
1792 	struct blk_mq_hw_ctx *hctx;
1793 	int i;
1794 
1795 	queue_for_each_hw_ctx(q, hctx, i)
1796 		blk_mq_start_stopped_hw_queue(hctx, async);
1797 }
1798 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1799 
blk_mq_run_work_fn(struct work_struct * work)1800 static void blk_mq_run_work_fn(struct work_struct *work)
1801 {
1802 	struct blk_mq_hw_ctx *hctx;
1803 
1804 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1805 
1806 	/*
1807 	 * If we are stopped, don't run the queue.
1808 	 */
1809 	if (blk_mq_hctx_stopped(hctx))
1810 		return;
1811 
1812 	__blk_mq_run_hw_queue(hctx);
1813 }
1814 
__blk_mq_insert_req_list(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)1815 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1816 					    struct request *rq,
1817 					    bool at_head)
1818 {
1819 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1820 	enum hctx_type type = hctx->type;
1821 
1822 	lockdep_assert_held(&ctx->lock);
1823 
1824 	trace_block_rq_insert(hctx->queue, rq);
1825 
1826 	if (at_head)
1827 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1828 	else
1829 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1830 }
1831 
__blk_mq_insert_request(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)1832 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1833 			     bool at_head)
1834 {
1835 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1836 
1837 	lockdep_assert_held(&ctx->lock);
1838 
1839 	__blk_mq_insert_req_list(hctx, rq, at_head);
1840 	blk_mq_hctx_mark_pending(hctx, ctx);
1841 }
1842 
1843 /**
1844  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1845  * @rq: Pointer to request to be inserted.
1846  * @at_head: true if the request should be inserted at the head of the list.
1847  * @run_queue: If we should run the hardware queue after inserting the request.
1848  *
1849  * Should only be used carefully, when the caller knows we want to
1850  * bypass a potential IO scheduler on the target device.
1851  */
blk_mq_request_bypass_insert(struct request * rq,bool at_head,bool run_queue)1852 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1853 				  bool run_queue)
1854 {
1855 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1856 
1857 	spin_lock(&hctx->lock);
1858 	if (at_head)
1859 		list_add(&rq->queuelist, &hctx->dispatch);
1860 	else
1861 		list_add_tail(&rq->queuelist, &hctx->dispatch);
1862 	spin_unlock(&hctx->lock);
1863 
1864 	if (run_queue)
1865 		blk_mq_run_hw_queue(hctx, false);
1866 }
1867 
blk_mq_insert_requests(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx,struct list_head * list)1868 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1869 			    struct list_head *list)
1870 
1871 {
1872 	struct request *rq;
1873 	enum hctx_type type = hctx->type;
1874 
1875 	/*
1876 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1877 	 * offline now
1878 	 */
1879 	list_for_each_entry(rq, list, queuelist) {
1880 		BUG_ON(rq->mq_ctx != ctx);
1881 		trace_block_rq_insert(hctx->queue, rq);
1882 	}
1883 
1884 	spin_lock(&ctx->lock);
1885 	list_splice_tail_init(list, &ctx->rq_lists[type]);
1886 	blk_mq_hctx_mark_pending(hctx, ctx);
1887 	spin_unlock(&ctx->lock);
1888 }
1889 
plug_rq_cmp(void * priv,const struct list_head * a,const struct list_head * b)1890 static int plug_rq_cmp(void *priv, const struct list_head *a,
1891 		       const struct list_head *b)
1892 {
1893 	struct request *rqa = container_of(a, struct request, queuelist);
1894 	struct request *rqb = container_of(b, struct request, queuelist);
1895 
1896 	if (rqa->mq_ctx != rqb->mq_ctx)
1897 		return rqa->mq_ctx > rqb->mq_ctx;
1898 	if (rqa->mq_hctx != rqb->mq_hctx)
1899 		return rqa->mq_hctx > rqb->mq_hctx;
1900 
1901 	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1902 }
1903 
blk_mq_flush_plug_list(struct blk_plug * plug,bool from_schedule)1904 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1905 {
1906 	LIST_HEAD(list);
1907 
1908 	if (list_empty(&plug->mq_list))
1909 		return;
1910 	list_splice_init(&plug->mq_list, &list);
1911 
1912 	if (plug->rq_count > 2 && plug->multiple_queues)
1913 		list_sort(NULL, &list, plug_rq_cmp);
1914 
1915 	plug->rq_count = 0;
1916 
1917 	do {
1918 		struct list_head rq_list;
1919 		struct request *rq, *head_rq = list_entry_rq(list.next);
1920 		struct list_head *pos = &head_rq->queuelist; /* skip first */
1921 		struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1922 		struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1923 		unsigned int depth = 1;
1924 
1925 		list_for_each_continue(pos, &list) {
1926 			rq = list_entry_rq(pos);
1927 			BUG_ON(!rq->q);
1928 			if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1929 				break;
1930 			depth++;
1931 		}
1932 
1933 		list_cut_before(&rq_list, &list, pos);
1934 		trace_block_unplug(head_rq->q, depth, !from_schedule);
1935 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1936 						from_schedule);
1937 	} while(!list_empty(&list));
1938 }
1939 
blk_mq_bio_to_request(struct request * rq,struct bio * bio,unsigned int nr_segs)1940 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1941 		unsigned int nr_segs)
1942 {
1943 	int err;
1944 
1945 	if (bio->bi_opf & REQ_RAHEAD)
1946 		rq->cmd_flags |= REQ_FAILFAST_MASK;
1947 
1948 	rq->__sector = bio->bi_iter.bi_sector;
1949 	rq->write_hint = bio->bi_write_hint;
1950 	blk_rq_bio_prep(rq, bio, nr_segs);
1951 
1952 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1953 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1954 	WARN_ON_ONCE(err);
1955 
1956 	blk_account_io_start(rq);
1957 }
1958 
__blk_mq_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie,bool last)1959 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1960 					    struct request *rq,
1961 					    blk_qc_t *cookie, bool last)
1962 {
1963 	struct request_queue *q = rq->q;
1964 	struct blk_mq_queue_data bd = {
1965 		.rq = rq,
1966 		.last = last,
1967 	};
1968 	blk_qc_t new_cookie;
1969 	blk_status_t ret;
1970 
1971 	new_cookie = request_to_qc_t(hctx, rq);
1972 
1973 	/*
1974 	 * For OK queue, we are done. For error, caller may kill it.
1975 	 * Any other error (busy), just add it to our list as we
1976 	 * previously would have done.
1977 	 */
1978 	ret = q->mq_ops->queue_rq(hctx, &bd);
1979 	switch (ret) {
1980 	case BLK_STS_OK:
1981 		blk_mq_update_dispatch_busy(hctx, false);
1982 		*cookie = new_cookie;
1983 		break;
1984 	case BLK_STS_RESOURCE:
1985 	case BLK_STS_DEV_RESOURCE:
1986 		blk_mq_update_dispatch_busy(hctx, true);
1987 		__blk_mq_requeue_request(rq);
1988 		break;
1989 	default:
1990 		blk_mq_update_dispatch_busy(hctx, false);
1991 		*cookie = BLK_QC_T_NONE;
1992 		break;
1993 	}
1994 
1995 	return ret;
1996 }
1997 
__blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie,bool bypass_insert,bool last)1998 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1999 						struct request *rq,
2000 						blk_qc_t *cookie,
2001 						bool bypass_insert, bool last)
2002 {
2003 	struct request_queue *q = rq->q;
2004 	bool run_queue = true;
2005 
2006 	/*
2007 	 * RCU or SRCU read lock is needed before checking quiesced flag.
2008 	 *
2009 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2010 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2011 	 * and avoid driver to try to dispatch again.
2012 	 */
2013 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2014 		run_queue = false;
2015 		bypass_insert = false;
2016 		goto insert;
2017 	}
2018 
2019 	if (q->elevator && !bypass_insert)
2020 		goto insert;
2021 
2022 	if (!blk_mq_get_dispatch_budget(q))
2023 		goto insert;
2024 
2025 	if (!blk_mq_get_driver_tag(rq)) {
2026 		blk_mq_put_dispatch_budget(q);
2027 		goto insert;
2028 	}
2029 
2030 	return __blk_mq_issue_directly(hctx, rq, cookie, last);
2031 insert:
2032 	if (bypass_insert)
2033 		return BLK_STS_RESOURCE;
2034 
2035 	blk_mq_sched_insert_request(rq, false, run_queue, false);
2036 
2037 	return BLK_STS_OK;
2038 }
2039 
2040 /**
2041  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2042  * @hctx: Pointer of the associated hardware queue.
2043  * @rq: Pointer to request to be sent.
2044  * @cookie: Request queue cookie.
2045  *
2046  * If the device has enough resources to accept a new request now, send the
2047  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2048  * we can try send it another time in the future. Requests inserted at this
2049  * queue have higher priority.
2050  */
blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie)2051 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2052 		struct request *rq, blk_qc_t *cookie)
2053 {
2054 	blk_status_t ret;
2055 	int srcu_idx;
2056 
2057 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2058 
2059 	hctx_lock(hctx, &srcu_idx);
2060 
2061 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2062 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2063 		blk_mq_request_bypass_insert(rq, false, true);
2064 	else if (ret != BLK_STS_OK)
2065 		blk_mq_end_request(rq, ret);
2066 
2067 	hctx_unlock(hctx, srcu_idx);
2068 }
2069 
blk_mq_request_issue_directly(struct request * rq,bool last)2070 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2071 {
2072 	blk_status_t ret;
2073 	int srcu_idx;
2074 	blk_qc_t unused_cookie;
2075 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2076 
2077 	hctx_lock(hctx, &srcu_idx);
2078 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2079 	hctx_unlock(hctx, srcu_idx);
2080 
2081 	return ret;
2082 }
2083 
blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx * hctx,struct list_head * list)2084 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2085 		struct list_head *list)
2086 {
2087 	int queued = 0;
2088 	int errors = 0;
2089 
2090 	while (!list_empty(list)) {
2091 		blk_status_t ret;
2092 		struct request *rq = list_first_entry(list, struct request,
2093 				queuelist);
2094 
2095 		list_del_init(&rq->queuelist);
2096 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2097 		if (ret != BLK_STS_OK) {
2098 			if (ret == BLK_STS_RESOURCE ||
2099 					ret == BLK_STS_DEV_RESOURCE) {
2100 				blk_mq_request_bypass_insert(rq, false,
2101 							list_empty(list));
2102 				break;
2103 			}
2104 			blk_mq_end_request(rq, ret);
2105 			errors++;
2106 		} else
2107 			queued++;
2108 	}
2109 
2110 	/*
2111 	 * If we didn't flush the entire list, we could have told
2112 	 * the driver there was more coming, but that turned out to
2113 	 * be a lie.
2114 	 */
2115 	if ((!list_empty(list) || errors) &&
2116 	     hctx->queue->mq_ops->commit_rqs && queued)
2117 		hctx->queue->mq_ops->commit_rqs(hctx);
2118 }
2119 
blk_add_rq_to_plug(struct blk_plug * plug,struct request * rq)2120 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2121 {
2122 	list_add_tail(&rq->queuelist, &plug->mq_list);
2123 	plug->rq_count++;
2124 	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2125 		struct request *tmp;
2126 
2127 		tmp = list_first_entry(&plug->mq_list, struct request,
2128 						queuelist);
2129 		if (tmp->q != rq->q)
2130 			plug->multiple_queues = true;
2131 	}
2132 }
2133 
2134 /*
2135  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2136  * queues. This is important for md arrays to benefit from merging
2137  * requests.
2138  */
blk_plug_max_rq_count(struct blk_plug * plug)2139 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2140 {
2141 	if (plug->multiple_queues)
2142 		return BLK_MAX_REQUEST_COUNT * 2;
2143 	return BLK_MAX_REQUEST_COUNT;
2144 }
2145 
2146 /**
2147  * blk_mq_submit_bio - Create and send a request to block device.
2148  * @bio: Bio pointer.
2149  *
2150  * Builds up a request structure from @q and @bio and send to the device. The
2151  * request may not be queued directly to hardware if:
2152  * * This request can be merged with another one
2153  * * We want to place request at plug queue for possible future merging
2154  * * There is an IO scheduler active at this queue
2155  *
2156  * It will not queue the request if there is an error with the bio, or at the
2157  * request creation.
2158  *
2159  * Returns: Request queue cookie.
2160  */
blk_mq_submit_bio(struct bio * bio)2161 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2162 {
2163 	struct request_queue *q = bio->bi_disk->queue;
2164 	const int is_sync = op_is_sync(bio->bi_opf);
2165 	const int is_flush_fua = op_is_flush(bio->bi_opf);
2166 	struct blk_mq_alloc_data data = {
2167 		.q		= q,
2168 	};
2169 	struct request *rq;
2170 	struct blk_plug *plug;
2171 	struct request *same_queue_rq = NULL;
2172 	unsigned int nr_segs;
2173 	blk_qc_t cookie;
2174 	blk_status_t ret;
2175 
2176 	blk_queue_bounce(q, &bio);
2177 	__blk_queue_split(&bio, &nr_segs);
2178 
2179 	if (!bio_integrity_prep(bio))
2180 		goto queue_exit;
2181 
2182 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
2183 	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2184 		goto queue_exit;
2185 
2186 	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2187 		goto queue_exit;
2188 
2189 	rq_qos_throttle(q, bio);
2190 
2191 	data.cmd_flags = bio->bi_opf;
2192 	rq = __blk_mq_alloc_request(&data);
2193 	if (unlikely(!rq)) {
2194 		rq_qos_cleanup(q, bio);
2195 		if (bio->bi_opf & REQ_NOWAIT)
2196 			bio_wouldblock_error(bio);
2197 		goto queue_exit;
2198 	}
2199 
2200 	trace_block_getrq(q, bio, bio->bi_opf);
2201 
2202 	rq_qos_track(q, rq, bio);
2203 
2204 	cookie = request_to_qc_t(data.hctx, rq);
2205 
2206 	blk_mq_bio_to_request(rq, bio, nr_segs);
2207 
2208 	ret = blk_crypto_init_request(rq);
2209 	if (ret != BLK_STS_OK) {
2210 		bio->bi_status = ret;
2211 		bio_endio(bio);
2212 		blk_mq_free_request(rq);
2213 		return BLK_QC_T_NONE;
2214 	}
2215 
2216 	plug = blk_mq_plug(q, bio);
2217 	if (unlikely(is_flush_fua)) {
2218 		/* Bypass scheduler for flush requests */
2219 		blk_insert_flush(rq);
2220 		blk_mq_run_hw_queue(data.hctx, true);
2221 	} else if (plug && (q->nr_hw_queues == 1 ||
2222 		   blk_mq_is_sbitmap_shared(rq->mq_hctx->flags) ||
2223 		   q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2224 		/*
2225 		 * Use plugging if we have a ->commit_rqs() hook as well, as
2226 		 * we know the driver uses bd->last in a smart fashion.
2227 		 *
2228 		 * Use normal plugging if this disk is slow HDD, as sequential
2229 		 * IO may benefit a lot from plug merging.
2230 		 */
2231 		unsigned int request_count = plug->rq_count;
2232 		struct request *last = NULL;
2233 
2234 		if (!request_count)
2235 			trace_block_plug(q);
2236 		else
2237 			last = list_entry_rq(plug->mq_list.prev);
2238 
2239 		if (request_count >= blk_plug_max_rq_count(plug) || (last &&
2240 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2241 			blk_flush_plug_list(plug, false);
2242 			trace_block_plug(q);
2243 		}
2244 
2245 		blk_add_rq_to_plug(plug, rq);
2246 	} else if (q->elevator) {
2247 		/* Insert the request at the IO scheduler queue */
2248 		blk_mq_sched_insert_request(rq, false, true, true);
2249 	} else if (plug && !blk_queue_nomerges(q)) {
2250 		/*
2251 		 * We do limited plugging. If the bio can be merged, do that.
2252 		 * Otherwise the existing request in the plug list will be
2253 		 * issued. So the plug list will have one request at most
2254 		 * The plug list might get flushed before this. If that happens,
2255 		 * the plug list is empty, and same_queue_rq is invalid.
2256 		 */
2257 		if (list_empty(&plug->mq_list))
2258 			same_queue_rq = NULL;
2259 		if (same_queue_rq) {
2260 			list_del_init(&same_queue_rq->queuelist);
2261 			plug->rq_count--;
2262 		}
2263 		blk_add_rq_to_plug(plug, rq);
2264 		trace_block_plug(q);
2265 
2266 		if (same_queue_rq) {
2267 			data.hctx = same_queue_rq->mq_hctx;
2268 			trace_block_unplug(q, 1, true);
2269 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2270 					&cookie);
2271 		}
2272 	} else if ((q->nr_hw_queues > 1 && is_sync) ||
2273 			!data.hctx->dispatch_busy) {
2274 		/*
2275 		 * There is no scheduler and we can try to send directly
2276 		 * to the hardware.
2277 		 */
2278 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2279 	} else {
2280 		/* Default case. */
2281 		blk_mq_sched_insert_request(rq, false, true, true);
2282 	}
2283 
2284 	return cookie;
2285 queue_exit:
2286 	blk_queue_exit(q);
2287 	return BLK_QC_T_NONE;
2288 }
2289 
order_to_size(unsigned int order)2290 static size_t order_to_size(unsigned int order)
2291 {
2292 	return (size_t)PAGE_SIZE << order;
2293 }
2294 
2295 /* called before freeing request pool in @tags */
blk_mq_clear_rq_mapping(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)2296 static void blk_mq_clear_rq_mapping(struct blk_mq_tag_set *set,
2297 		struct blk_mq_tags *tags, unsigned int hctx_idx)
2298 {
2299 	struct blk_mq_tags *drv_tags = set->tags[hctx_idx];
2300 	struct page *page;
2301 	unsigned long flags;
2302 
2303 	list_for_each_entry(page, &tags->page_list, lru) {
2304 		unsigned long start = (unsigned long)page_address(page);
2305 		unsigned long end = start + order_to_size(page->private);
2306 		int i;
2307 
2308 		for (i = 0; i < set->queue_depth; i++) {
2309 			struct request *rq = drv_tags->rqs[i];
2310 			unsigned long rq_addr = (unsigned long)rq;
2311 
2312 			if (rq_addr >= start && rq_addr < end) {
2313 				WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
2314 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
2315 			}
2316 		}
2317 	}
2318 
2319 	/*
2320 	 * Wait until all pending iteration is done.
2321 	 *
2322 	 * Request reference is cleared and it is guaranteed to be observed
2323 	 * after the ->lock is released.
2324 	 */
2325 	spin_lock_irqsave(&drv_tags->lock, flags);
2326 	spin_unlock_irqrestore(&drv_tags->lock, flags);
2327 }
2328 
blk_mq_free_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)2329 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2330 		     unsigned int hctx_idx)
2331 {
2332 	struct page *page;
2333 
2334 	if (tags->rqs && set->ops->exit_request) {
2335 		int i;
2336 
2337 		for (i = 0; i < tags->nr_tags; i++) {
2338 			struct request *rq = tags->static_rqs[i];
2339 
2340 			if (!rq)
2341 				continue;
2342 			set->ops->exit_request(set, rq, hctx_idx);
2343 			tags->static_rqs[i] = NULL;
2344 		}
2345 	}
2346 
2347 	blk_mq_clear_rq_mapping(set, tags, hctx_idx);
2348 
2349 	while (!list_empty(&tags->page_list)) {
2350 		page = list_first_entry(&tags->page_list, struct page, lru);
2351 		list_del_init(&page->lru);
2352 		/*
2353 		 * Remove kmemleak object previously allocated in
2354 		 * blk_mq_alloc_rqs().
2355 		 */
2356 		kmemleak_free(page_address(page));
2357 		__free_pages(page, page->private);
2358 	}
2359 }
2360 
blk_mq_free_rq_map(struct blk_mq_tags * tags,unsigned int flags)2361 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2362 {
2363 	kfree(tags->rqs);
2364 	tags->rqs = NULL;
2365 	kfree(tags->static_rqs);
2366 	tags->static_rqs = NULL;
2367 
2368 	blk_mq_free_tags(tags, flags);
2369 }
2370 
blk_mq_alloc_rq_map(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int nr_tags,unsigned int reserved_tags,unsigned int flags)2371 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2372 					unsigned int hctx_idx,
2373 					unsigned int nr_tags,
2374 					unsigned int reserved_tags,
2375 					unsigned int flags)
2376 {
2377 	struct blk_mq_tags *tags;
2378 	int node;
2379 
2380 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2381 	if (node == NUMA_NO_NODE)
2382 		node = set->numa_node;
2383 
2384 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2385 	if (!tags)
2386 		return NULL;
2387 
2388 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2389 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2390 				 node);
2391 	if (!tags->rqs) {
2392 		blk_mq_free_tags(tags, flags);
2393 		return NULL;
2394 	}
2395 
2396 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2397 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2398 					node);
2399 	if (!tags->static_rqs) {
2400 		kfree(tags->rqs);
2401 		blk_mq_free_tags(tags, flags);
2402 		return NULL;
2403 	}
2404 
2405 	return tags;
2406 }
2407 
blk_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,int node)2408 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2409 			       unsigned int hctx_idx, int node)
2410 {
2411 	int ret;
2412 
2413 	if (set->ops->init_request) {
2414 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2415 		if (ret)
2416 			return ret;
2417 	}
2418 
2419 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2420 	return 0;
2421 }
2422 
blk_mq_alloc_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx,unsigned int depth)2423 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2424 		     unsigned int hctx_idx, unsigned int depth)
2425 {
2426 	unsigned int i, j, entries_per_page, max_order = 4;
2427 	size_t rq_size, left;
2428 	int node;
2429 
2430 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2431 	if (node == NUMA_NO_NODE)
2432 		node = set->numa_node;
2433 
2434 	INIT_LIST_HEAD(&tags->page_list);
2435 
2436 	/*
2437 	 * rq_size is the size of the request plus driver payload, rounded
2438 	 * to the cacheline size
2439 	 */
2440 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2441 				cache_line_size());
2442 	left = rq_size * depth;
2443 
2444 	for (i = 0; i < depth; ) {
2445 		int this_order = max_order;
2446 		struct page *page;
2447 		int to_do;
2448 		void *p;
2449 
2450 		while (this_order && left < order_to_size(this_order - 1))
2451 			this_order--;
2452 
2453 		do {
2454 			page = alloc_pages_node(node,
2455 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2456 				this_order);
2457 			if (page)
2458 				break;
2459 			if (!this_order--)
2460 				break;
2461 			if (order_to_size(this_order) < rq_size)
2462 				break;
2463 		} while (1);
2464 
2465 		if (!page)
2466 			goto fail;
2467 
2468 		page->private = this_order;
2469 		list_add_tail(&page->lru, &tags->page_list);
2470 
2471 		p = page_address(page);
2472 		/*
2473 		 * Allow kmemleak to scan these pages as they contain pointers
2474 		 * to additional allocations like via ops->init_request().
2475 		 */
2476 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2477 		entries_per_page = order_to_size(this_order) / rq_size;
2478 		to_do = min(entries_per_page, depth - i);
2479 		left -= to_do * rq_size;
2480 		for (j = 0; j < to_do; j++) {
2481 			struct request *rq = p;
2482 
2483 			tags->static_rqs[i] = rq;
2484 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2485 				tags->static_rqs[i] = NULL;
2486 				goto fail;
2487 			}
2488 
2489 			p += rq_size;
2490 			i++;
2491 		}
2492 	}
2493 	return 0;
2494 
2495 fail:
2496 	blk_mq_free_rqs(set, tags, hctx_idx);
2497 	return -ENOMEM;
2498 }
2499 
2500 struct rq_iter_data {
2501 	struct blk_mq_hw_ctx *hctx;
2502 	bool has_rq;
2503 };
2504 
blk_mq_has_request(struct request * rq,void * data,bool reserved)2505 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2506 {
2507 	struct rq_iter_data *iter_data = data;
2508 
2509 	if (rq->mq_hctx != iter_data->hctx)
2510 		return true;
2511 	iter_data->has_rq = true;
2512 	return false;
2513 }
2514 
blk_mq_hctx_has_requests(struct blk_mq_hw_ctx * hctx)2515 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2516 {
2517 	struct blk_mq_tags *tags = hctx->sched_tags ?
2518 			hctx->sched_tags : hctx->tags;
2519 	struct rq_iter_data data = {
2520 		.hctx	= hctx,
2521 	};
2522 
2523 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2524 	return data.has_rq;
2525 }
2526 
blk_mq_last_cpu_in_hctx(unsigned int cpu,struct blk_mq_hw_ctx * hctx)2527 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2528 		struct blk_mq_hw_ctx *hctx)
2529 {
2530 	if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2531 		return false;
2532 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2533 		return false;
2534 	return true;
2535 }
2536 
blk_mq_hctx_notify_offline(unsigned int cpu,struct hlist_node * node)2537 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2538 {
2539 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2540 			struct blk_mq_hw_ctx, cpuhp_online);
2541 
2542 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2543 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
2544 		return 0;
2545 
2546 	/*
2547 	 * Prevent new request from being allocated on the current hctx.
2548 	 *
2549 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
2550 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2551 	 * seen once we return from the tag allocator.
2552 	 */
2553 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2554 	smp_mb__after_atomic();
2555 
2556 	/*
2557 	 * Try to grab a reference to the queue and wait for any outstanding
2558 	 * requests.  If we could not grab a reference the queue has been
2559 	 * frozen and there are no requests.
2560 	 */
2561 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2562 		while (blk_mq_hctx_has_requests(hctx))
2563 			msleep(5);
2564 		percpu_ref_put(&hctx->queue->q_usage_counter);
2565 	}
2566 
2567 	return 0;
2568 }
2569 
blk_mq_hctx_notify_online(unsigned int cpu,struct hlist_node * node)2570 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2571 {
2572 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2573 			struct blk_mq_hw_ctx, cpuhp_online);
2574 
2575 	if (cpumask_test_cpu(cpu, hctx->cpumask))
2576 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2577 	return 0;
2578 }
2579 
2580 /*
2581  * 'cpu' is going away. splice any existing rq_list entries from this
2582  * software queue to the hw queue dispatch list, and ensure that it
2583  * gets run.
2584  */
blk_mq_hctx_notify_dead(unsigned int cpu,struct hlist_node * node)2585 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2586 {
2587 	struct blk_mq_hw_ctx *hctx;
2588 	struct blk_mq_ctx *ctx;
2589 	LIST_HEAD(tmp);
2590 	enum hctx_type type;
2591 
2592 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2593 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
2594 		return 0;
2595 
2596 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2597 	type = hctx->type;
2598 
2599 	spin_lock(&ctx->lock);
2600 	if (!list_empty(&ctx->rq_lists[type])) {
2601 		list_splice_init(&ctx->rq_lists[type], &tmp);
2602 		blk_mq_hctx_clear_pending(hctx, ctx);
2603 	}
2604 	spin_unlock(&ctx->lock);
2605 
2606 	if (list_empty(&tmp))
2607 		return 0;
2608 
2609 	spin_lock(&hctx->lock);
2610 	list_splice_tail_init(&tmp, &hctx->dispatch);
2611 	spin_unlock(&hctx->lock);
2612 
2613 	blk_mq_run_hw_queue(hctx, true);
2614 	return 0;
2615 }
2616 
blk_mq_remove_cpuhp(struct blk_mq_hw_ctx * hctx)2617 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2618 {
2619 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2620 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2621 						    &hctx->cpuhp_online);
2622 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2623 					    &hctx->cpuhp_dead);
2624 }
2625 
2626 /*
2627  * Before freeing hw queue, clearing the flush request reference in
2628  * tags->rqs[] for avoiding potential UAF.
2629  */
blk_mq_clear_flush_rq_mapping(struct blk_mq_tags * tags,unsigned int queue_depth,struct request * flush_rq)2630 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
2631 		unsigned int queue_depth, struct request *flush_rq)
2632 {
2633 	int i;
2634 	unsigned long flags;
2635 
2636 	/* The hw queue may not be mapped yet */
2637 	if (!tags)
2638 		return;
2639 
2640 	WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);
2641 
2642 	for (i = 0; i < queue_depth; i++)
2643 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
2644 
2645 	/*
2646 	 * Wait until all pending iteration is done.
2647 	 *
2648 	 * Request reference is cleared and it is guaranteed to be observed
2649 	 * after the ->lock is released.
2650 	 */
2651 	spin_lock_irqsave(&tags->lock, flags);
2652 	spin_unlock_irqrestore(&tags->lock, flags);
2653 }
2654 
2655 /* hctx->ctxs will be freed in queue's release handler */
blk_mq_exit_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)2656 static void blk_mq_exit_hctx(struct request_queue *q,
2657 		struct blk_mq_tag_set *set,
2658 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2659 {
2660 	struct request *flush_rq = hctx->fq->flush_rq;
2661 
2662 	if (blk_mq_hw_queue_mapped(hctx))
2663 		blk_mq_tag_idle(hctx);
2664 
2665 	blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
2666 			set->queue_depth, flush_rq);
2667 	if (set->ops->exit_request)
2668 		set->ops->exit_request(set, flush_rq, hctx_idx);
2669 
2670 	if (set->ops->exit_hctx)
2671 		set->ops->exit_hctx(hctx, hctx_idx);
2672 
2673 	blk_mq_remove_cpuhp(hctx);
2674 
2675 	spin_lock(&q->unused_hctx_lock);
2676 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
2677 	spin_unlock(&q->unused_hctx_lock);
2678 }
2679 
blk_mq_exit_hw_queues(struct request_queue * q,struct blk_mq_tag_set * set,int nr_queue)2680 static void blk_mq_exit_hw_queues(struct request_queue *q,
2681 		struct blk_mq_tag_set *set, int nr_queue)
2682 {
2683 	struct blk_mq_hw_ctx *hctx;
2684 	unsigned int i;
2685 
2686 	queue_for_each_hw_ctx(q, hctx, i) {
2687 		if (i == nr_queue)
2688 			break;
2689 		blk_mq_debugfs_unregister_hctx(hctx);
2690 		blk_mq_exit_hctx(q, set, hctx, i);
2691 	}
2692 }
2693 
blk_mq_hw_ctx_size(struct blk_mq_tag_set * tag_set)2694 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2695 {
2696 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2697 
2698 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2699 			   __alignof__(struct blk_mq_hw_ctx)) !=
2700 		     sizeof(struct blk_mq_hw_ctx));
2701 
2702 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2703 		hw_ctx_size += sizeof(struct srcu_struct);
2704 
2705 	return hw_ctx_size;
2706 }
2707 
blk_mq_init_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned hctx_idx)2708 static int blk_mq_init_hctx(struct request_queue *q,
2709 		struct blk_mq_tag_set *set,
2710 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2711 {
2712 	hctx->queue_num = hctx_idx;
2713 
2714 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2715 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2716 				&hctx->cpuhp_online);
2717 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2718 
2719 	hctx->tags = set->tags[hctx_idx];
2720 
2721 	if (set->ops->init_hctx &&
2722 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2723 		goto unregister_cpu_notifier;
2724 
2725 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2726 				hctx->numa_node))
2727 		goto exit_hctx;
2728 	return 0;
2729 
2730  exit_hctx:
2731 	if (set->ops->exit_hctx)
2732 		set->ops->exit_hctx(hctx, hctx_idx);
2733  unregister_cpu_notifier:
2734 	blk_mq_remove_cpuhp(hctx);
2735 	return -1;
2736 }
2737 
2738 static struct blk_mq_hw_ctx *
blk_mq_alloc_hctx(struct request_queue * q,struct blk_mq_tag_set * set,int node)2739 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2740 		int node)
2741 {
2742 	struct blk_mq_hw_ctx *hctx;
2743 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2744 
2745 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2746 	if (!hctx)
2747 		goto fail_alloc_hctx;
2748 
2749 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2750 		goto free_hctx;
2751 
2752 	atomic_set(&hctx->nr_active, 0);
2753 	atomic_set(&hctx->elevator_queued, 0);
2754 	if (node == NUMA_NO_NODE)
2755 		node = set->numa_node;
2756 	hctx->numa_node = node;
2757 
2758 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2759 	spin_lock_init(&hctx->lock);
2760 	INIT_LIST_HEAD(&hctx->dispatch);
2761 	hctx->queue = q;
2762 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2763 
2764 	INIT_LIST_HEAD(&hctx->hctx_list);
2765 
2766 	/*
2767 	 * Allocate space for all possible cpus to avoid allocation at
2768 	 * runtime
2769 	 */
2770 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2771 			gfp, node);
2772 	if (!hctx->ctxs)
2773 		goto free_cpumask;
2774 
2775 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2776 				gfp, node))
2777 		goto free_ctxs;
2778 	hctx->nr_ctx = 0;
2779 
2780 	spin_lock_init(&hctx->dispatch_wait_lock);
2781 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2782 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2783 
2784 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2785 	if (!hctx->fq)
2786 		goto free_bitmap;
2787 
2788 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2789 		init_srcu_struct(hctx->srcu);
2790 	blk_mq_hctx_kobj_init(hctx);
2791 
2792 	return hctx;
2793 
2794  free_bitmap:
2795 	sbitmap_free(&hctx->ctx_map);
2796  free_ctxs:
2797 	kfree(hctx->ctxs);
2798  free_cpumask:
2799 	free_cpumask_var(hctx->cpumask);
2800  free_hctx:
2801 	kfree(hctx);
2802  fail_alloc_hctx:
2803 	return NULL;
2804 }
2805 
blk_mq_init_cpu_queues(struct request_queue * q,unsigned int nr_hw_queues)2806 static void blk_mq_init_cpu_queues(struct request_queue *q,
2807 				   unsigned int nr_hw_queues)
2808 {
2809 	struct blk_mq_tag_set *set = q->tag_set;
2810 	unsigned int i, j;
2811 
2812 	for_each_possible_cpu(i) {
2813 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2814 		struct blk_mq_hw_ctx *hctx;
2815 		int k;
2816 
2817 		__ctx->cpu = i;
2818 		spin_lock_init(&__ctx->lock);
2819 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2820 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2821 
2822 		__ctx->queue = q;
2823 
2824 		/*
2825 		 * Set local node, IFF we have more than one hw queue. If
2826 		 * not, we remain on the home node of the device
2827 		 */
2828 		for (j = 0; j < set->nr_maps; j++) {
2829 			hctx = blk_mq_map_queue_type(q, j, i);
2830 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2831 				hctx->numa_node = cpu_to_node(i);
2832 		}
2833 	}
2834 }
2835 
__blk_mq_alloc_map_and_request(struct blk_mq_tag_set * set,int hctx_idx)2836 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2837 					int hctx_idx)
2838 {
2839 	unsigned int flags = set->flags;
2840 	int ret = 0;
2841 
2842 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2843 					set->queue_depth, set->reserved_tags, flags);
2844 	if (!set->tags[hctx_idx])
2845 		return false;
2846 
2847 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2848 				set->queue_depth);
2849 	if (!ret)
2850 		return true;
2851 
2852 	blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2853 	set->tags[hctx_idx] = NULL;
2854 	return false;
2855 }
2856 
blk_mq_free_map_and_requests(struct blk_mq_tag_set * set,unsigned int hctx_idx)2857 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2858 					 unsigned int hctx_idx)
2859 {
2860 	unsigned int flags = set->flags;
2861 
2862 	if (set->tags && set->tags[hctx_idx]) {
2863 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2864 		blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2865 		set->tags[hctx_idx] = NULL;
2866 	}
2867 }
2868 
blk_mq_map_swqueue(struct request_queue * q)2869 static void blk_mq_map_swqueue(struct request_queue *q)
2870 {
2871 	unsigned int i, j, hctx_idx;
2872 	struct blk_mq_hw_ctx *hctx;
2873 	struct blk_mq_ctx *ctx;
2874 	struct blk_mq_tag_set *set = q->tag_set;
2875 
2876 	queue_for_each_hw_ctx(q, hctx, i) {
2877 		cpumask_clear(hctx->cpumask);
2878 		hctx->nr_ctx = 0;
2879 		hctx->dispatch_from = NULL;
2880 	}
2881 
2882 	/*
2883 	 * Map software to hardware queues.
2884 	 *
2885 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2886 	 */
2887 	for_each_possible_cpu(i) {
2888 
2889 		ctx = per_cpu_ptr(q->queue_ctx, i);
2890 		for (j = 0; j < set->nr_maps; j++) {
2891 			if (!set->map[j].nr_queues) {
2892 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
2893 						HCTX_TYPE_DEFAULT, i);
2894 				continue;
2895 			}
2896 			hctx_idx = set->map[j].mq_map[i];
2897 			/* unmapped hw queue can be remapped after CPU topo changed */
2898 			if (!set->tags[hctx_idx] &&
2899 			    !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2900 				/*
2901 				 * If tags initialization fail for some hctx,
2902 				 * that hctx won't be brought online.  In this
2903 				 * case, remap the current ctx to hctx[0] which
2904 				 * is guaranteed to always have tags allocated
2905 				 */
2906 				set->map[j].mq_map[i] = 0;
2907 			}
2908 
2909 			hctx = blk_mq_map_queue_type(q, j, i);
2910 			ctx->hctxs[j] = hctx;
2911 			/*
2912 			 * If the CPU is already set in the mask, then we've
2913 			 * mapped this one already. This can happen if
2914 			 * devices share queues across queue maps.
2915 			 */
2916 			if (cpumask_test_cpu(i, hctx->cpumask))
2917 				continue;
2918 
2919 			cpumask_set_cpu(i, hctx->cpumask);
2920 			hctx->type = j;
2921 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2922 			hctx->ctxs[hctx->nr_ctx++] = ctx;
2923 
2924 			/*
2925 			 * If the nr_ctx type overflows, we have exceeded the
2926 			 * amount of sw queues we can support.
2927 			 */
2928 			BUG_ON(!hctx->nr_ctx);
2929 		}
2930 
2931 		for (; j < HCTX_MAX_TYPES; j++)
2932 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
2933 					HCTX_TYPE_DEFAULT, i);
2934 	}
2935 
2936 	queue_for_each_hw_ctx(q, hctx, i) {
2937 		/*
2938 		 * If no software queues are mapped to this hardware queue,
2939 		 * disable it and free the request entries.
2940 		 */
2941 		if (!hctx->nr_ctx) {
2942 			/* Never unmap queue 0.  We need it as a
2943 			 * fallback in case of a new remap fails
2944 			 * allocation
2945 			 */
2946 			if (i && set->tags[i])
2947 				blk_mq_free_map_and_requests(set, i);
2948 
2949 			hctx->tags = NULL;
2950 			continue;
2951 		}
2952 
2953 		hctx->tags = set->tags[i];
2954 		WARN_ON(!hctx->tags);
2955 
2956 		/*
2957 		 * Set the map size to the number of mapped software queues.
2958 		 * This is more accurate and more efficient than looping
2959 		 * over all possibly mapped software queues.
2960 		 */
2961 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2962 
2963 		/*
2964 		 * Initialize batch roundrobin counts
2965 		 */
2966 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2967 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2968 	}
2969 }
2970 
2971 /*
2972  * Caller needs to ensure that we're either frozen/quiesced, or that
2973  * the queue isn't live yet.
2974  */
queue_set_hctx_shared(struct request_queue * q,bool shared)2975 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2976 {
2977 	struct blk_mq_hw_ctx *hctx;
2978 	int i;
2979 
2980 	queue_for_each_hw_ctx(q, hctx, i) {
2981 		if (shared) {
2982 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2983 		} else {
2984 			blk_mq_tag_idle(hctx);
2985 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2986 		}
2987 	}
2988 }
2989 
blk_mq_update_tag_set_shared(struct blk_mq_tag_set * set,bool shared)2990 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
2991 					 bool shared)
2992 {
2993 	struct request_queue *q;
2994 
2995 	lockdep_assert_held(&set->tag_list_lock);
2996 
2997 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2998 		blk_mq_freeze_queue(q);
2999 		queue_set_hctx_shared(q, shared);
3000 		blk_mq_unfreeze_queue(q);
3001 	}
3002 }
3003 
blk_mq_del_queue_tag_set(struct request_queue * q)3004 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3005 {
3006 	struct blk_mq_tag_set *set = q->tag_set;
3007 
3008 	mutex_lock(&set->tag_list_lock);
3009 	list_del(&q->tag_set_list);
3010 	if (list_is_singular(&set->tag_list)) {
3011 		/* just transitioned to unshared */
3012 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3013 		/* update existing queue */
3014 		blk_mq_update_tag_set_shared(set, false);
3015 	}
3016 	mutex_unlock(&set->tag_list_lock);
3017 	INIT_LIST_HEAD(&q->tag_set_list);
3018 }
3019 
blk_mq_add_queue_tag_set(struct blk_mq_tag_set * set,struct request_queue * q)3020 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3021 				     struct request_queue *q)
3022 {
3023 	mutex_lock(&set->tag_list_lock);
3024 
3025 	/*
3026 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3027 	 */
3028 	if (!list_empty(&set->tag_list) &&
3029 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3030 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3031 		/* update existing queue */
3032 		blk_mq_update_tag_set_shared(set, true);
3033 	}
3034 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3035 		queue_set_hctx_shared(q, true);
3036 	list_add_tail(&q->tag_set_list, &set->tag_list);
3037 
3038 	mutex_unlock(&set->tag_list_lock);
3039 }
3040 
3041 /* All allocations will be freed in release handler of q->mq_kobj */
blk_mq_alloc_ctxs(struct request_queue * q)3042 static int blk_mq_alloc_ctxs(struct request_queue *q)
3043 {
3044 	struct blk_mq_ctxs *ctxs;
3045 	int cpu;
3046 
3047 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3048 	if (!ctxs)
3049 		return -ENOMEM;
3050 
3051 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3052 	if (!ctxs->queue_ctx)
3053 		goto fail;
3054 
3055 	for_each_possible_cpu(cpu) {
3056 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3057 		ctx->ctxs = ctxs;
3058 	}
3059 
3060 	q->mq_kobj = &ctxs->kobj;
3061 	q->queue_ctx = ctxs->queue_ctx;
3062 
3063 	return 0;
3064  fail:
3065 	kfree(ctxs);
3066 	return -ENOMEM;
3067 }
3068 
3069 /*
3070  * It is the actual release handler for mq, but we do it from
3071  * request queue's release handler for avoiding use-after-free
3072  * and headache because q->mq_kobj shouldn't have been introduced,
3073  * but we can't group ctx/kctx kobj without it.
3074  */
blk_mq_release(struct request_queue * q)3075 void blk_mq_release(struct request_queue *q)
3076 {
3077 	struct blk_mq_hw_ctx *hctx, *next;
3078 	int i;
3079 
3080 	queue_for_each_hw_ctx(q, hctx, i)
3081 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3082 
3083 	/* all hctx are in .unused_hctx_list now */
3084 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3085 		list_del_init(&hctx->hctx_list);
3086 		kobject_put(&hctx->kobj);
3087 	}
3088 
3089 	kfree(q->queue_hw_ctx);
3090 
3091 	/*
3092 	 * release .mq_kobj and sw queue's kobject now because
3093 	 * both share lifetime with request queue.
3094 	 */
3095 	blk_mq_sysfs_deinit(q);
3096 }
3097 
blk_mq_init_queue_data(struct blk_mq_tag_set * set,void * queuedata)3098 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3099 		void *queuedata)
3100 {
3101 	struct request_queue *uninit_q, *q;
3102 
3103 	uninit_q = blk_alloc_queue(set->numa_node);
3104 	if (!uninit_q)
3105 		return ERR_PTR(-ENOMEM);
3106 	uninit_q->queuedata = queuedata;
3107 
3108 	/*
3109 	 * Initialize the queue without an elevator. device_add_disk() will do
3110 	 * the initialization.
3111 	 */
3112 	q = blk_mq_init_allocated_queue(set, uninit_q, false);
3113 	if (IS_ERR(q))
3114 		blk_cleanup_queue(uninit_q);
3115 
3116 	return q;
3117 }
3118 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3119 
blk_mq_init_queue(struct blk_mq_tag_set * set)3120 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3121 {
3122 	return blk_mq_init_queue_data(set, NULL);
3123 }
3124 EXPORT_SYMBOL(blk_mq_init_queue);
3125 
3126 /*
3127  * Helper for setting up a queue with mq ops, given queue depth, and
3128  * the passed in mq ops flags.
3129  */
blk_mq_init_sq_queue(struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int queue_depth,unsigned int set_flags)3130 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
3131 					   const struct blk_mq_ops *ops,
3132 					   unsigned int queue_depth,
3133 					   unsigned int set_flags)
3134 {
3135 	struct request_queue *q;
3136 	int ret;
3137 
3138 	memset(set, 0, sizeof(*set));
3139 	set->ops = ops;
3140 	set->nr_hw_queues = 1;
3141 	set->nr_maps = 1;
3142 	set->queue_depth = queue_depth;
3143 	set->numa_node = NUMA_NO_NODE;
3144 	set->flags = set_flags;
3145 
3146 	ret = blk_mq_alloc_tag_set(set);
3147 	if (ret)
3148 		return ERR_PTR(ret);
3149 
3150 	q = blk_mq_init_queue(set);
3151 	if (IS_ERR(q)) {
3152 		blk_mq_free_tag_set(set);
3153 		return q;
3154 	}
3155 
3156 	return q;
3157 }
3158 EXPORT_SYMBOL(blk_mq_init_sq_queue);
3159 
blk_mq_alloc_and_init_hctx(struct blk_mq_tag_set * set,struct request_queue * q,int hctx_idx,int node)3160 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3161 		struct blk_mq_tag_set *set, struct request_queue *q,
3162 		int hctx_idx, int node)
3163 {
3164 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3165 
3166 	/* reuse dead hctx first */
3167 	spin_lock(&q->unused_hctx_lock);
3168 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3169 		if (tmp->numa_node == node) {
3170 			hctx = tmp;
3171 			break;
3172 		}
3173 	}
3174 	if (hctx)
3175 		list_del_init(&hctx->hctx_list);
3176 	spin_unlock(&q->unused_hctx_lock);
3177 
3178 	if (!hctx)
3179 		hctx = blk_mq_alloc_hctx(q, set, node);
3180 	if (!hctx)
3181 		goto fail;
3182 
3183 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3184 		goto free_hctx;
3185 
3186 	return hctx;
3187 
3188  free_hctx:
3189 	kobject_put(&hctx->kobj);
3190  fail:
3191 	return NULL;
3192 }
3193 
blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set * set,struct request_queue * q)3194 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3195 						struct request_queue *q)
3196 {
3197 	int i, j, end;
3198 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3199 
3200 	if (q->nr_hw_queues < set->nr_hw_queues) {
3201 		struct blk_mq_hw_ctx **new_hctxs;
3202 
3203 		new_hctxs = kcalloc_node(set->nr_hw_queues,
3204 				       sizeof(*new_hctxs), GFP_KERNEL,
3205 				       set->numa_node);
3206 		if (!new_hctxs)
3207 			return;
3208 		if (hctxs)
3209 			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3210 			       sizeof(*hctxs));
3211 		q->queue_hw_ctx = new_hctxs;
3212 		kfree(hctxs);
3213 		hctxs = new_hctxs;
3214 	}
3215 
3216 	/* protect against switching io scheduler  */
3217 	mutex_lock(&q->sysfs_lock);
3218 	for (i = 0; i < set->nr_hw_queues; i++) {
3219 		int node;
3220 		struct blk_mq_hw_ctx *hctx;
3221 
3222 		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3223 		/*
3224 		 * If the hw queue has been mapped to another numa node,
3225 		 * we need to realloc the hctx. If allocation fails, fallback
3226 		 * to use the previous one.
3227 		 */
3228 		if (hctxs[i] && (hctxs[i]->numa_node == node))
3229 			continue;
3230 
3231 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3232 		if (hctx) {
3233 			if (hctxs[i])
3234 				blk_mq_exit_hctx(q, set, hctxs[i], i);
3235 			hctxs[i] = hctx;
3236 		} else {
3237 			if (hctxs[i])
3238 				pr_warn("Allocate new hctx on node %d fails,\
3239 						fallback to previous one on node %d\n",
3240 						node, hctxs[i]->numa_node);
3241 			else
3242 				break;
3243 		}
3244 	}
3245 	/*
3246 	 * Increasing nr_hw_queues fails. Free the newly allocated
3247 	 * hctxs and keep the previous q->nr_hw_queues.
3248 	 */
3249 	if (i != set->nr_hw_queues) {
3250 		j = q->nr_hw_queues;
3251 		end = i;
3252 	} else {
3253 		j = i;
3254 		end = q->nr_hw_queues;
3255 		q->nr_hw_queues = set->nr_hw_queues;
3256 	}
3257 
3258 	for (; j < end; j++) {
3259 		struct blk_mq_hw_ctx *hctx = hctxs[j];
3260 
3261 		if (hctx) {
3262 			blk_mq_exit_hctx(q, set, hctx, j);
3263 			hctxs[j] = NULL;
3264 		}
3265 	}
3266 	mutex_unlock(&q->sysfs_lock);
3267 }
3268 
blk_mq_init_allocated_queue(struct blk_mq_tag_set * set,struct request_queue * q,bool elevator_init)3269 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3270 						  struct request_queue *q,
3271 						  bool elevator_init)
3272 {
3273 	/* mark the queue as mq asap */
3274 	q->mq_ops = set->ops;
3275 
3276 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3277 					     blk_mq_poll_stats_bkt,
3278 					     BLK_MQ_POLL_STATS_BKTS, q);
3279 	if (!q->poll_cb)
3280 		goto err_exit;
3281 
3282 	if (blk_mq_alloc_ctxs(q))
3283 		goto err_poll;
3284 
3285 	/* init q->mq_kobj and sw queues' kobjects */
3286 	blk_mq_sysfs_init(q);
3287 
3288 	INIT_LIST_HEAD(&q->unused_hctx_list);
3289 	spin_lock_init(&q->unused_hctx_lock);
3290 
3291 	blk_mq_realloc_hw_ctxs(set, q);
3292 	if (!q->nr_hw_queues)
3293 		goto err_hctxs;
3294 
3295 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3296 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3297 
3298 	q->tag_set = set;
3299 
3300 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3301 	if (set->nr_maps > HCTX_TYPE_POLL &&
3302 	    set->map[HCTX_TYPE_POLL].nr_queues)
3303 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3304 
3305 	q->sg_reserved_size = INT_MAX;
3306 
3307 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3308 	INIT_LIST_HEAD(&q->requeue_list);
3309 	spin_lock_init(&q->requeue_lock);
3310 
3311 	q->nr_requests = set->queue_depth;
3312 
3313 	/*
3314 	 * Default to classic polling
3315 	 */
3316 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3317 
3318 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3319 	blk_mq_add_queue_tag_set(set, q);
3320 	blk_mq_map_swqueue(q);
3321 
3322 	if (elevator_init)
3323 		elevator_init_mq(q);
3324 
3325 	return q;
3326 
3327 err_hctxs:
3328 	kfree(q->queue_hw_ctx);
3329 	q->nr_hw_queues = 0;
3330 	blk_mq_sysfs_deinit(q);
3331 err_poll:
3332 	blk_stat_free_callback(q->poll_cb);
3333 	q->poll_cb = NULL;
3334 err_exit:
3335 	q->mq_ops = NULL;
3336 	return ERR_PTR(-ENOMEM);
3337 }
3338 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3339 
3340 /* tags can _not_ be used after returning from blk_mq_exit_queue */
blk_mq_exit_queue(struct request_queue * q)3341 void blk_mq_exit_queue(struct request_queue *q)
3342 {
3343 	struct blk_mq_tag_set *set = q->tag_set;
3344 
3345 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
3346 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3347 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
3348 	blk_mq_del_queue_tag_set(q);
3349 }
3350 
__blk_mq_alloc_rq_maps(struct blk_mq_tag_set * set)3351 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3352 {
3353 	int i;
3354 
3355 	for (i = 0; i < set->nr_hw_queues; i++) {
3356 		if (!__blk_mq_alloc_map_and_request(set, i))
3357 			goto out_unwind;
3358 		cond_resched();
3359 	}
3360 
3361 	return 0;
3362 
3363 out_unwind:
3364 	while (--i >= 0)
3365 		blk_mq_free_map_and_requests(set, i);
3366 
3367 	return -ENOMEM;
3368 }
3369 
3370 /*
3371  * Allocate the request maps associated with this tag_set. Note that this
3372  * may reduce the depth asked for, if memory is tight. set->queue_depth
3373  * will be updated to reflect the allocated depth.
3374  */
blk_mq_alloc_map_and_requests(struct blk_mq_tag_set * set)3375 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3376 {
3377 	unsigned int depth;
3378 	int err;
3379 
3380 	depth = set->queue_depth;
3381 	do {
3382 		err = __blk_mq_alloc_rq_maps(set);
3383 		if (!err)
3384 			break;
3385 
3386 		set->queue_depth >>= 1;
3387 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3388 			err = -ENOMEM;
3389 			break;
3390 		}
3391 	} while (set->queue_depth);
3392 
3393 	if (!set->queue_depth || err) {
3394 		pr_err("blk-mq: failed to allocate request map\n");
3395 		return -ENOMEM;
3396 	}
3397 
3398 	if (depth != set->queue_depth)
3399 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3400 						depth, set->queue_depth);
3401 
3402 	return 0;
3403 }
3404 
blk_mq_update_queue_map(struct blk_mq_tag_set * set)3405 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3406 {
3407 	/*
3408 	 * blk_mq_map_queues() and multiple .map_queues() implementations
3409 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3410 	 * number of hardware queues.
3411 	 */
3412 	if (set->nr_maps == 1)
3413 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3414 
3415 	if (set->ops->map_queues && !is_kdump_kernel()) {
3416 		int i;
3417 
3418 		/*
3419 		 * transport .map_queues is usually done in the following
3420 		 * way:
3421 		 *
3422 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3423 		 * 	mask = get_cpu_mask(queue)
3424 		 * 	for_each_cpu(cpu, mask)
3425 		 * 		set->map[x].mq_map[cpu] = queue;
3426 		 * }
3427 		 *
3428 		 * When we need to remap, the table has to be cleared for
3429 		 * killing stale mapping since one CPU may not be mapped
3430 		 * to any hw queue.
3431 		 */
3432 		for (i = 0; i < set->nr_maps; i++)
3433 			blk_mq_clear_mq_map(&set->map[i]);
3434 
3435 		return set->ops->map_queues(set);
3436 	} else {
3437 		BUG_ON(set->nr_maps > 1);
3438 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3439 	}
3440 }
3441 
blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set * set,int cur_nr_hw_queues,int new_nr_hw_queues)3442 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3443 				  int cur_nr_hw_queues, int new_nr_hw_queues)
3444 {
3445 	struct blk_mq_tags **new_tags;
3446 
3447 	if (cur_nr_hw_queues >= new_nr_hw_queues)
3448 		return 0;
3449 
3450 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3451 				GFP_KERNEL, set->numa_node);
3452 	if (!new_tags)
3453 		return -ENOMEM;
3454 
3455 	if (set->tags)
3456 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
3457 		       sizeof(*set->tags));
3458 	kfree(set->tags);
3459 	set->tags = new_tags;
3460 	set->nr_hw_queues = new_nr_hw_queues;
3461 
3462 	return 0;
3463 }
3464 
3465 /*
3466  * Alloc a tag set to be associated with one or more request queues.
3467  * May fail with EINVAL for various error conditions. May adjust the
3468  * requested depth down, if it's too large. In that case, the set
3469  * value will be stored in set->queue_depth.
3470  */
blk_mq_alloc_tag_set(struct blk_mq_tag_set * set)3471 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3472 {
3473 	int i, ret;
3474 
3475 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3476 
3477 	if (!set->nr_hw_queues)
3478 		return -EINVAL;
3479 	if (!set->queue_depth)
3480 		return -EINVAL;
3481 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3482 		return -EINVAL;
3483 
3484 	if (!set->ops->queue_rq)
3485 		return -EINVAL;
3486 
3487 	if (!set->ops->get_budget ^ !set->ops->put_budget)
3488 		return -EINVAL;
3489 
3490 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3491 		pr_info("blk-mq: reduced tag depth to %u\n",
3492 			BLK_MQ_MAX_DEPTH);
3493 		set->queue_depth = BLK_MQ_MAX_DEPTH;
3494 	}
3495 
3496 	if (!set->nr_maps)
3497 		set->nr_maps = 1;
3498 	else if (set->nr_maps > HCTX_MAX_TYPES)
3499 		return -EINVAL;
3500 
3501 	/*
3502 	 * If a crashdump is active, then we are potentially in a very
3503 	 * memory constrained environment. Limit us to 1 queue and
3504 	 * 64 tags to prevent using too much memory.
3505 	 */
3506 	if (is_kdump_kernel()) {
3507 		set->nr_hw_queues = 1;
3508 		set->nr_maps = 1;
3509 		set->queue_depth = min(64U, set->queue_depth);
3510 	}
3511 	/*
3512 	 * There is no use for more h/w queues than cpus if we just have
3513 	 * a single map
3514 	 */
3515 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3516 		set->nr_hw_queues = nr_cpu_ids;
3517 
3518 	if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
3519 		return -ENOMEM;
3520 
3521 	ret = -ENOMEM;
3522 	for (i = 0; i < set->nr_maps; i++) {
3523 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3524 						  sizeof(set->map[i].mq_map[0]),
3525 						  GFP_KERNEL, set->numa_node);
3526 		if (!set->map[i].mq_map)
3527 			goto out_free_mq_map;
3528 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3529 	}
3530 
3531 	ret = blk_mq_update_queue_map(set);
3532 	if (ret)
3533 		goto out_free_mq_map;
3534 
3535 	ret = blk_mq_alloc_map_and_requests(set);
3536 	if (ret)
3537 		goto out_free_mq_map;
3538 
3539 	if (blk_mq_is_sbitmap_shared(set->flags)) {
3540 		atomic_set(&set->active_queues_shared_sbitmap, 0);
3541 
3542 		if (blk_mq_init_shared_sbitmap(set, set->flags)) {
3543 			ret = -ENOMEM;
3544 			goto out_free_mq_rq_maps;
3545 		}
3546 	}
3547 
3548 	mutex_init(&set->tag_list_lock);
3549 	INIT_LIST_HEAD(&set->tag_list);
3550 
3551 	return 0;
3552 
3553 out_free_mq_rq_maps:
3554 	for (i = 0; i < set->nr_hw_queues; i++)
3555 		blk_mq_free_map_and_requests(set, i);
3556 out_free_mq_map:
3557 	for (i = 0; i < set->nr_maps; i++) {
3558 		kfree(set->map[i].mq_map);
3559 		set->map[i].mq_map = NULL;
3560 	}
3561 	kfree(set->tags);
3562 	set->tags = NULL;
3563 	return ret;
3564 }
3565 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3566 
blk_mq_free_tag_set(struct blk_mq_tag_set * set)3567 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3568 {
3569 	int i, j;
3570 
3571 	for (i = 0; i < set->nr_hw_queues; i++)
3572 		blk_mq_free_map_and_requests(set, i);
3573 
3574 	if (blk_mq_is_sbitmap_shared(set->flags))
3575 		blk_mq_exit_shared_sbitmap(set);
3576 
3577 	for (j = 0; j < set->nr_maps; j++) {
3578 		kfree(set->map[j].mq_map);
3579 		set->map[j].mq_map = NULL;
3580 	}
3581 
3582 	kfree(set->tags);
3583 	set->tags = NULL;
3584 }
3585 EXPORT_SYMBOL(blk_mq_free_tag_set);
3586 
blk_mq_update_nr_requests(struct request_queue * q,unsigned int nr)3587 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3588 {
3589 	struct blk_mq_tag_set *set = q->tag_set;
3590 	struct blk_mq_hw_ctx *hctx;
3591 	int i, ret;
3592 
3593 	if (!set)
3594 		return -EINVAL;
3595 
3596 	if (q->nr_requests == nr)
3597 		return 0;
3598 
3599 	blk_mq_freeze_queue(q);
3600 	blk_mq_quiesce_queue(q);
3601 
3602 	ret = 0;
3603 	queue_for_each_hw_ctx(q, hctx, i) {
3604 		if (!hctx->tags)
3605 			continue;
3606 		/*
3607 		 * If we're using an MQ scheduler, just update the scheduler
3608 		 * queue depth. This is similar to what the old code would do.
3609 		 */
3610 		if (!hctx->sched_tags) {
3611 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3612 							false);
3613 			if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3614 				blk_mq_tag_resize_shared_sbitmap(set, nr);
3615 		} else {
3616 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3617 							nr, true);
3618 		}
3619 		if (ret)
3620 			break;
3621 		if (q->elevator && q->elevator->type->ops.depth_updated)
3622 			q->elevator->type->ops.depth_updated(hctx);
3623 	}
3624 
3625 	if (!ret)
3626 		q->nr_requests = nr;
3627 
3628 	blk_mq_unquiesce_queue(q);
3629 	blk_mq_unfreeze_queue(q);
3630 
3631 	return ret;
3632 }
3633 
3634 /*
3635  * request_queue and elevator_type pair.
3636  * It is just used by __blk_mq_update_nr_hw_queues to cache
3637  * the elevator_type associated with a request_queue.
3638  */
3639 struct blk_mq_qe_pair {
3640 	struct list_head node;
3641 	struct request_queue *q;
3642 	struct elevator_type *type;
3643 };
3644 
3645 /*
3646  * Cache the elevator_type in qe pair list and switch the
3647  * io scheduler to 'none'
3648  */
blk_mq_elv_switch_none(struct list_head * head,struct request_queue * q)3649 static bool blk_mq_elv_switch_none(struct list_head *head,
3650 		struct request_queue *q)
3651 {
3652 	struct blk_mq_qe_pair *qe;
3653 
3654 	if (!q->elevator)
3655 		return true;
3656 
3657 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3658 	if (!qe)
3659 		return false;
3660 
3661 	INIT_LIST_HEAD(&qe->node);
3662 	qe->q = q;
3663 	qe->type = q->elevator->type;
3664 	list_add(&qe->node, head);
3665 
3666 	mutex_lock(&q->sysfs_lock);
3667 	/*
3668 	 * After elevator_switch_mq, the previous elevator_queue will be
3669 	 * released by elevator_release. The reference of the io scheduler
3670 	 * module get by elevator_get will also be put. So we need to get
3671 	 * a reference of the io scheduler module here to prevent it to be
3672 	 * removed.
3673 	 */
3674 	__module_get(qe->type->elevator_owner);
3675 	elevator_switch_mq(q, NULL);
3676 	mutex_unlock(&q->sysfs_lock);
3677 
3678 	return true;
3679 }
3680 
blk_mq_elv_switch_back(struct list_head * head,struct request_queue * q)3681 static void blk_mq_elv_switch_back(struct list_head *head,
3682 		struct request_queue *q)
3683 {
3684 	struct blk_mq_qe_pair *qe;
3685 	struct elevator_type *t = NULL;
3686 
3687 	list_for_each_entry(qe, head, node)
3688 		if (qe->q == q) {
3689 			t = qe->type;
3690 			break;
3691 		}
3692 
3693 	if (!t)
3694 		return;
3695 
3696 	list_del(&qe->node);
3697 	kfree(qe);
3698 
3699 	mutex_lock(&q->sysfs_lock);
3700 	elevator_switch_mq(q, t);
3701 	mutex_unlock(&q->sysfs_lock);
3702 }
3703 
__blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)3704 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3705 							int nr_hw_queues)
3706 {
3707 	struct request_queue *q;
3708 	LIST_HEAD(head);
3709 	int prev_nr_hw_queues;
3710 
3711 	lockdep_assert_held(&set->tag_list_lock);
3712 
3713 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3714 		nr_hw_queues = nr_cpu_ids;
3715 	if (nr_hw_queues < 1)
3716 		return;
3717 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3718 		return;
3719 
3720 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3721 		blk_mq_freeze_queue(q);
3722 	/*
3723 	 * Switch IO scheduler to 'none', cleaning up the data associated
3724 	 * with the previous scheduler. We will switch back once we are done
3725 	 * updating the new sw to hw queue mappings.
3726 	 */
3727 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3728 		if (!blk_mq_elv_switch_none(&head, q))
3729 			goto switch_back;
3730 
3731 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3732 		blk_mq_debugfs_unregister_hctxs(q);
3733 		blk_mq_sysfs_unregister(q);
3734 	}
3735 
3736 	prev_nr_hw_queues = set->nr_hw_queues;
3737 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3738 	    0)
3739 		goto reregister;
3740 
3741 	set->nr_hw_queues = nr_hw_queues;
3742 fallback:
3743 	blk_mq_update_queue_map(set);
3744 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3745 		blk_mq_realloc_hw_ctxs(set, q);
3746 		if (q->nr_hw_queues != set->nr_hw_queues) {
3747 			int i = prev_nr_hw_queues;
3748 
3749 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3750 					nr_hw_queues, prev_nr_hw_queues);
3751 			for (; i < set->nr_hw_queues; i++)
3752 				blk_mq_free_map_and_requests(set, i);
3753 
3754 			set->nr_hw_queues = prev_nr_hw_queues;
3755 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3756 			goto fallback;
3757 		}
3758 		blk_mq_map_swqueue(q);
3759 	}
3760 
3761 reregister:
3762 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3763 		blk_mq_sysfs_register(q);
3764 		blk_mq_debugfs_register_hctxs(q);
3765 	}
3766 
3767 switch_back:
3768 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3769 		blk_mq_elv_switch_back(&head, q);
3770 
3771 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3772 		blk_mq_unfreeze_queue(q);
3773 }
3774 
blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)3775 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3776 {
3777 	mutex_lock(&set->tag_list_lock);
3778 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3779 	mutex_unlock(&set->tag_list_lock);
3780 }
3781 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3782 
3783 /* Enable polling stats and return whether they were already enabled. */
blk_poll_stats_enable(struct request_queue * q)3784 static bool blk_poll_stats_enable(struct request_queue *q)
3785 {
3786 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3787 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3788 		return true;
3789 	blk_stat_add_callback(q, q->poll_cb);
3790 	return false;
3791 }
3792 
blk_mq_poll_stats_start(struct request_queue * q)3793 static void blk_mq_poll_stats_start(struct request_queue *q)
3794 {
3795 	/*
3796 	 * We don't arm the callback if polling stats are not enabled or the
3797 	 * callback is already active.
3798 	 */
3799 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3800 	    blk_stat_is_active(q->poll_cb))
3801 		return;
3802 
3803 	blk_stat_activate_msecs(q->poll_cb, 100);
3804 }
3805 
blk_mq_poll_stats_fn(struct blk_stat_callback * cb)3806 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3807 {
3808 	struct request_queue *q = cb->data;
3809 	int bucket;
3810 
3811 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3812 		if (cb->stat[bucket].nr_samples)
3813 			q->poll_stat[bucket] = cb->stat[bucket];
3814 	}
3815 }
3816 
blk_mq_poll_nsecs(struct request_queue * q,struct request * rq)3817 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3818 				       struct request *rq)
3819 {
3820 	unsigned long ret = 0;
3821 	int bucket;
3822 
3823 	/*
3824 	 * If stats collection isn't on, don't sleep but turn it on for
3825 	 * future users
3826 	 */
3827 	if (!blk_poll_stats_enable(q))
3828 		return 0;
3829 
3830 	/*
3831 	 * As an optimistic guess, use half of the mean service time
3832 	 * for this type of request. We can (and should) make this smarter.
3833 	 * For instance, if the completion latencies are tight, we can
3834 	 * get closer than just half the mean. This is especially
3835 	 * important on devices where the completion latencies are longer
3836 	 * than ~10 usec. We do use the stats for the relevant IO size
3837 	 * if available which does lead to better estimates.
3838 	 */
3839 	bucket = blk_mq_poll_stats_bkt(rq);
3840 	if (bucket < 0)
3841 		return ret;
3842 
3843 	if (q->poll_stat[bucket].nr_samples)
3844 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3845 
3846 	return ret;
3847 }
3848 
blk_mq_poll_hybrid_sleep(struct request_queue * q,struct request * rq)3849 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3850 				     struct request *rq)
3851 {
3852 	struct hrtimer_sleeper hs;
3853 	enum hrtimer_mode mode;
3854 	unsigned int nsecs;
3855 	ktime_t kt;
3856 
3857 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3858 		return false;
3859 
3860 	/*
3861 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3862 	 *
3863 	 *  0:	use half of prev avg
3864 	 * >0:	use this specific value
3865 	 */
3866 	if (q->poll_nsec > 0)
3867 		nsecs = q->poll_nsec;
3868 	else
3869 		nsecs = blk_mq_poll_nsecs(q, rq);
3870 
3871 	if (!nsecs)
3872 		return false;
3873 
3874 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3875 
3876 	/*
3877 	 * This will be replaced with the stats tracking code, using
3878 	 * 'avg_completion_time / 2' as the pre-sleep target.
3879 	 */
3880 	kt = nsecs;
3881 
3882 	mode = HRTIMER_MODE_REL;
3883 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3884 	hrtimer_set_expires(&hs.timer, kt);
3885 
3886 	do {
3887 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3888 			break;
3889 		set_current_state(TASK_UNINTERRUPTIBLE);
3890 		hrtimer_sleeper_start_expires(&hs, mode);
3891 		if (hs.task)
3892 			io_schedule();
3893 		hrtimer_cancel(&hs.timer);
3894 		mode = HRTIMER_MODE_ABS;
3895 	} while (hs.task && !signal_pending(current));
3896 
3897 	__set_current_state(TASK_RUNNING);
3898 	destroy_hrtimer_on_stack(&hs.timer);
3899 	return true;
3900 }
3901 
blk_mq_poll_hybrid(struct request_queue * q,struct blk_mq_hw_ctx * hctx,blk_qc_t cookie)3902 static bool blk_mq_poll_hybrid(struct request_queue *q,
3903 			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3904 {
3905 	struct request *rq;
3906 
3907 	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3908 		return false;
3909 
3910 	if (!blk_qc_t_is_internal(cookie))
3911 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3912 	else {
3913 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3914 		/*
3915 		 * With scheduling, if the request has completed, we'll
3916 		 * get a NULL return here, as we clear the sched tag when
3917 		 * that happens. The request still remains valid, like always,
3918 		 * so we should be safe with just the NULL check.
3919 		 */
3920 		if (!rq)
3921 			return false;
3922 	}
3923 
3924 	return blk_mq_poll_hybrid_sleep(q, rq);
3925 }
3926 
3927 /**
3928  * blk_poll - poll for IO completions
3929  * @q:  the queue
3930  * @cookie: cookie passed back at IO submission time
3931  * @spin: whether to spin for completions
3932  *
3933  * Description:
3934  *    Poll for completions on the passed in queue. Returns number of
3935  *    completed entries found. If @spin is true, then blk_poll will continue
3936  *    looping until at least one completion is found, unless the task is
3937  *    otherwise marked running (or we need to reschedule).
3938  */
blk_poll(struct request_queue * q,blk_qc_t cookie,bool spin)3939 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3940 {
3941 	struct blk_mq_hw_ctx *hctx;
3942 	long state;
3943 
3944 	if (!blk_qc_t_valid(cookie) ||
3945 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3946 		return 0;
3947 
3948 	if (current->plug)
3949 		blk_flush_plug_list(current->plug, false);
3950 
3951 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3952 
3953 	/*
3954 	 * If we sleep, have the caller restart the poll loop to reset
3955 	 * the state. Like for the other success return cases, the
3956 	 * caller is responsible for checking if the IO completed. If
3957 	 * the IO isn't complete, we'll get called again and will go
3958 	 * straight to the busy poll loop.
3959 	 */
3960 	if (blk_mq_poll_hybrid(q, hctx, cookie))
3961 		return 1;
3962 
3963 	hctx->poll_considered++;
3964 
3965 	state = current->state;
3966 	do {
3967 		int ret;
3968 
3969 		hctx->poll_invoked++;
3970 
3971 		ret = q->mq_ops->poll(hctx);
3972 		if (ret > 0) {
3973 			hctx->poll_success++;
3974 			__set_current_state(TASK_RUNNING);
3975 			return ret;
3976 		}
3977 
3978 		if (signal_pending_state(state, current))
3979 			__set_current_state(TASK_RUNNING);
3980 
3981 		if (current->state == TASK_RUNNING)
3982 			return 1;
3983 		if (ret < 0 || !spin)
3984 			break;
3985 		cpu_relax();
3986 	} while (!need_resched());
3987 
3988 	__set_current_state(TASK_RUNNING);
3989 	return 0;
3990 }
3991 EXPORT_SYMBOL_GPL(blk_poll);
3992 
blk_mq_rq_cpu(struct request * rq)3993 unsigned int blk_mq_rq_cpu(struct request *rq)
3994 {
3995 	return rq->mq_ctx->cpu;
3996 }
3997 EXPORT_SYMBOL(blk_mq_rq_cpu);
3998 
blk_mq_cancel_work_sync(struct request_queue * q)3999 void blk_mq_cancel_work_sync(struct request_queue *q)
4000 {
4001 	if (queue_is_mq(q)) {
4002 		struct blk_mq_hw_ctx *hctx;
4003 		int i;
4004 
4005 		cancel_delayed_work_sync(&q->requeue_work);
4006 
4007 		queue_for_each_hw_ctx(q, hctx, i)
4008 			cancel_delayed_work_sync(&hctx->run_work);
4009 	}
4010 }
4011 
blk_mq_init(void)4012 static int __init blk_mq_init(void)
4013 {
4014 	int i;
4015 
4016 	for_each_possible_cpu(i)
4017 		INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
4018 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4019 
4020 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4021 				  "block/softirq:dead", NULL,
4022 				  blk_softirq_cpu_dead);
4023 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4024 				blk_mq_hctx_notify_dead);
4025 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4026 				blk_mq_hctx_notify_online,
4027 				blk_mq_hctx_notify_offline);
4028 	return 0;
4029 }
4030 subsys_initcall(blk_mq_init);
4031