1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30
31 #include <trace/events/block.h>
32
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43
44 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
45
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48
blk_mq_poll_stats_bkt(const struct request * rq)49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51 int ddir, sectors, bucket;
52
53 ddir = rq_data_dir(rq);
54 sectors = blk_rq_stats_sectors(rq);
55
56 bucket = ddir + 2 * ilog2(sectors);
57
58 if (bucket < 0)
59 return -1;
60 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62
63 return bucket;
64 }
65
66 /*
67 * Check if any of the ctx, dispatch list or elevator
68 * have pending work in this hardware queue.
69 */
blk_mq_hctx_has_pending(struct blk_mq_hw_ctx * hctx)70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72 return !list_empty_careful(&hctx->dispatch) ||
73 sbitmap_any_bit_set(&hctx->ctx_map) ||
74 blk_mq_sched_has_work(hctx);
75 }
76
77 /*
78 * Mark this ctx as having pending work in this hardware queue
79 */
blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81 struct blk_mq_ctx *ctx)
82 {
83 const int bit = ctx->index_hw[hctx->type];
84
85 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86 sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88
blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90 struct blk_mq_ctx *ctx)
91 {
92 const int bit = ctx->index_hw[hctx->type];
93
94 sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96
97 struct mq_inflight {
98 struct hd_struct *part;
99 unsigned int inflight[2];
100 };
101
blk_mq_check_inflight(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103 struct request *rq, void *priv,
104 bool reserved)
105 {
106 struct mq_inflight *mi = priv;
107
108 if ((!mi->part->partno || rq->part == mi->part) &&
109 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
110 mi->inflight[rq_data_dir(rq)]++;
111
112 return true;
113 }
114
blk_mq_in_flight(struct request_queue * q,struct hd_struct * part)115 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
116 {
117 struct mq_inflight mi = { .part = part };
118
119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120
121 return mi.inflight[0] + mi.inflight[1];
122 }
123
blk_mq_in_flight_rw(struct request_queue * q,struct hd_struct * part,unsigned int inflight[2])124 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
125 unsigned int inflight[2])
126 {
127 struct mq_inflight mi = { .part = part };
128
129 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
130 inflight[0] = mi.inflight[0];
131 inflight[1] = mi.inflight[1];
132 }
133
blk_freeze_queue_start(struct request_queue * q)134 void blk_freeze_queue_start(struct request_queue *q)
135 {
136 mutex_lock(&q->mq_freeze_lock);
137 if (++q->mq_freeze_depth == 1) {
138 percpu_ref_kill(&q->q_usage_counter);
139 mutex_unlock(&q->mq_freeze_lock);
140 if (queue_is_mq(q))
141 blk_mq_run_hw_queues(q, false);
142 } else {
143 mutex_unlock(&q->mq_freeze_lock);
144 }
145 }
146 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
147
blk_mq_freeze_queue_wait(struct request_queue * q)148 void blk_mq_freeze_queue_wait(struct request_queue *q)
149 {
150 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
151 }
152 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
153
blk_mq_freeze_queue_wait_timeout(struct request_queue * q,unsigned long timeout)154 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
155 unsigned long timeout)
156 {
157 return wait_event_timeout(q->mq_freeze_wq,
158 percpu_ref_is_zero(&q->q_usage_counter),
159 timeout);
160 }
161 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
162
163 /*
164 * Guarantee no request is in use, so we can change any data structure of
165 * the queue afterward.
166 */
blk_freeze_queue(struct request_queue * q)167 void blk_freeze_queue(struct request_queue *q)
168 {
169 /*
170 * In the !blk_mq case we are only calling this to kill the
171 * q_usage_counter, otherwise this increases the freeze depth
172 * and waits for it to return to zero. For this reason there is
173 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
174 * exported to drivers as the only user for unfreeze is blk_mq.
175 */
176 blk_freeze_queue_start(q);
177 blk_mq_freeze_queue_wait(q);
178 }
179
blk_mq_freeze_queue(struct request_queue * q)180 void blk_mq_freeze_queue(struct request_queue *q)
181 {
182 /*
183 * ...just an alias to keep freeze and unfreeze actions balanced
184 * in the blk_mq_* namespace
185 */
186 blk_freeze_queue(q);
187 }
188 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
189
blk_mq_unfreeze_queue(struct request_queue * q)190 void blk_mq_unfreeze_queue(struct request_queue *q)
191 {
192 mutex_lock(&q->mq_freeze_lock);
193 q->mq_freeze_depth--;
194 WARN_ON_ONCE(q->mq_freeze_depth < 0);
195 if (!q->mq_freeze_depth) {
196 percpu_ref_resurrect(&q->q_usage_counter);
197 wake_up_all(&q->mq_freeze_wq);
198 }
199 mutex_unlock(&q->mq_freeze_lock);
200 }
201 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
202
203 /*
204 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
205 * mpt3sas driver such that this function can be removed.
206 */
blk_mq_quiesce_queue_nowait(struct request_queue * q)207 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
208 {
209 unsigned long flags;
210
211 spin_lock_irqsave(&q->queue_lock, flags);
212 if (!q->quiesce_depth++)
213 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
214 spin_unlock_irqrestore(&q->queue_lock, flags);
215 }
216 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
217
218 /**
219 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
220 * @q: request queue.
221 *
222 * Note: this function does not prevent that the struct request end_io()
223 * callback function is invoked. Once this function is returned, we make
224 * sure no dispatch can happen until the queue is unquiesced via
225 * blk_mq_unquiesce_queue().
226 */
blk_mq_quiesce_queue(struct request_queue * q)227 void blk_mq_quiesce_queue(struct request_queue *q)
228 {
229 struct blk_mq_hw_ctx *hctx;
230 unsigned int i;
231 bool rcu = false;
232
233 blk_mq_quiesce_queue_nowait(q);
234
235 queue_for_each_hw_ctx(q, hctx, i) {
236 if (hctx->flags & BLK_MQ_F_BLOCKING)
237 synchronize_srcu(hctx->srcu);
238 else
239 rcu = true;
240 }
241 if (rcu)
242 synchronize_rcu();
243 }
244 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
245
246 /*
247 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
248 * @q: request queue.
249 *
250 * This function recovers queue into the state before quiescing
251 * which is done by blk_mq_quiesce_queue.
252 */
blk_mq_unquiesce_queue(struct request_queue * q)253 void blk_mq_unquiesce_queue(struct request_queue *q)
254 {
255 unsigned long flags;
256 bool run_queue = false;
257
258 spin_lock_irqsave(&q->queue_lock, flags);
259 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
260 ;
261 } else if (!--q->quiesce_depth) {
262 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
263 run_queue = true;
264 }
265 spin_unlock_irqrestore(&q->queue_lock, flags);
266
267 /* dispatch requests which are inserted during quiescing */
268 if (run_queue)
269 blk_mq_run_hw_queues(q, true);
270 }
271 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
272
blk_mq_wake_waiters(struct request_queue * q)273 void blk_mq_wake_waiters(struct request_queue *q)
274 {
275 struct blk_mq_hw_ctx *hctx;
276 unsigned int i;
277
278 queue_for_each_hw_ctx(q, hctx, i)
279 if (blk_mq_hw_queue_mapped(hctx))
280 blk_mq_tag_wakeup_all(hctx->tags, true);
281 }
282
283 /*
284 * Only need start/end time stamping if we have iostat or
285 * blk stats enabled, or using an IO scheduler.
286 */
blk_mq_need_time_stamp(struct request * rq)287 static inline bool blk_mq_need_time_stamp(struct request *rq)
288 {
289 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
290 }
291
blk_mq_rq_ctx_init(struct blk_mq_alloc_data * data,unsigned int tag,u64 alloc_time_ns)292 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
293 unsigned int tag, u64 alloc_time_ns)
294 {
295 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
296 struct request *rq = tags->static_rqs[tag];
297
298 if (data->q->elevator) {
299 rq->tag = BLK_MQ_NO_TAG;
300 rq->internal_tag = tag;
301 } else {
302 rq->tag = tag;
303 rq->internal_tag = BLK_MQ_NO_TAG;
304 }
305
306 /* csd/requeue_work/fifo_time is initialized before use */
307 rq->q = data->q;
308 rq->mq_ctx = data->ctx;
309 rq->mq_hctx = data->hctx;
310 rq->rq_flags = 0;
311 rq->cmd_flags = data->cmd_flags;
312 if (data->flags & BLK_MQ_REQ_PM)
313 rq->rq_flags |= RQF_PM;
314 if (blk_queue_io_stat(data->q))
315 rq->rq_flags |= RQF_IO_STAT;
316 INIT_LIST_HEAD(&rq->queuelist);
317 INIT_HLIST_NODE(&rq->hash);
318 RB_CLEAR_NODE(&rq->rb_node);
319 rq->rq_disk = NULL;
320 rq->part = NULL;
321 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
322 rq->alloc_time_ns = alloc_time_ns;
323 #endif
324 if (blk_mq_need_time_stamp(rq))
325 rq->start_time_ns = ktime_get_ns();
326 else
327 rq->start_time_ns = 0;
328 rq->io_start_time_ns = 0;
329 rq->stats_sectors = 0;
330 rq->nr_phys_segments = 0;
331 #if defined(CONFIG_BLK_DEV_INTEGRITY)
332 rq->nr_integrity_segments = 0;
333 #endif
334 blk_crypto_rq_set_defaults(rq);
335 /* tag was already set */
336 WRITE_ONCE(rq->deadline, 0);
337
338 rq->timeout = 0;
339
340 rq->end_io = NULL;
341 rq->end_io_data = NULL;
342
343 data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
344 refcount_set(&rq->ref, 1);
345
346 if (!op_is_flush(data->cmd_flags)) {
347 struct elevator_queue *e = data->q->elevator;
348
349 rq->elv.icq = NULL;
350 if (e && e->type->ops.prepare_request) {
351 if (e->type->icq_cache)
352 blk_mq_sched_assign_ioc(rq);
353
354 e->type->ops.prepare_request(rq);
355 rq->rq_flags |= RQF_ELVPRIV;
356 }
357 }
358
359 data->hctx->queued++;
360 return rq;
361 }
362
__blk_mq_alloc_request(struct blk_mq_alloc_data * data)363 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
364 {
365 struct request_queue *q = data->q;
366 struct elevator_queue *e = q->elevator;
367 u64 alloc_time_ns = 0;
368 unsigned int tag;
369
370 /* alloc_time includes depth and tag waits */
371 if (blk_queue_rq_alloc_time(q))
372 alloc_time_ns = ktime_get_ns();
373
374 if (data->cmd_flags & REQ_NOWAIT)
375 data->flags |= BLK_MQ_REQ_NOWAIT;
376
377 if (e) {
378 /*
379 * Flush requests are special and go directly to the
380 * dispatch list. Don't include reserved tags in the
381 * limiting, as it isn't useful.
382 */
383 if (!op_is_flush(data->cmd_flags) &&
384 e->type->ops.limit_depth &&
385 !(data->flags & BLK_MQ_REQ_RESERVED))
386 e->type->ops.limit_depth(data->cmd_flags, data);
387 }
388
389 retry:
390 data->ctx = blk_mq_get_ctx(q);
391 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
392 if (!e)
393 blk_mq_tag_busy(data->hctx);
394
395 /*
396 * Waiting allocations only fail because of an inactive hctx. In that
397 * case just retry the hctx assignment and tag allocation as CPU hotplug
398 * should have migrated us to an online CPU by now.
399 */
400 tag = blk_mq_get_tag(data);
401 if (tag == BLK_MQ_NO_TAG) {
402 if (data->flags & BLK_MQ_REQ_NOWAIT)
403 return NULL;
404
405 /*
406 * Give up the CPU and sleep for a random short time to ensure
407 * that thread using a realtime scheduling class are migrated
408 * off the CPU, and thus off the hctx that is going away.
409 */
410 msleep(3);
411 goto retry;
412 }
413 return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
414 }
415
blk_mq_alloc_request(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags)416 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
417 blk_mq_req_flags_t flags)
418 {
419 struct blk_mq_alloc_data data = {
420 .q = q,
421 .flags = flags,
422 .cmd_flags = op,
423 };
424 struct request *rq;
425 int ret;
426
427 ret = blk_queue_enter(q, flags);
428 if (ret)
429 return ERR_PTR(ret);
430
431 rq = __blk_mq_alloc_request(&data);
432 if (!rq)
433 goto out_queue_exit;
434 rq->__data_len = 0;
435 rq->__sector = (sector_t) -1;
436 rq->bio = rq->biotail = NULL;
437 return rq;
438 out_queue_exit:
439 blk_queue_exit(q);
440 return ERR_PTR(-EWOULDBLOCK);
441 }
442 EXPORT_SYMBOL(blk_mq_alloc_request);
443
blk_mq_alloc_request_hctx(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags,unsigned int hctx_idx)444 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
445 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
446 {
447 struct blk_mq_alloc_data data = {
448 .q = q,
449 .flags = flags,
450 .cmd_flags = op,
451 };
452 u64 alloc_time_ns = 0;
453 unsigned int cpu;
454 unsigned int tag;
455 int ret;
456
457 /* alloc_time includes depth and tag waits */
458 if (blk_queue_rq_alloc_time(q))
459 alloc_time_ns = ktime_get_ns();
460
461 /*
462 * If the tag allocator sleeps we could get an allocation for a
463 * different hardware context. No need to complicate the low level
464 * allocator for this for the rare use case of a command tied to
465 * a specific queue.
466 */
467 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
468 return ERR_PTR(-EINVAL);
469
470 if (hctx_idx >= q->nr_hw_queues)
471 return ERR_PTR(-EIO);
472
473 ret = blk_queue_enter(q, flags);
474 if (ret)
475 return ERR_PTR(ret);
476
477 /*
478 * Check if the hardware context is actually mapped to anything.
479 * If not tell the caller that it should skip this queue.
480 */
481 ret = -EXDEV;
482 data.hctx = q->queue_hw_ctx[hctx_idx];
483 if (!blk_mq_hw_queue_mapped(data.hctx))
484 goto out_queue_exit;
485 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
486 data.ctx = __blk_mq_get_ctx(q, cpu);
487
488 if (!q->elevator)
489 blk_mq_tag_busy(data.hctx);
490
491 ret = -EWOULDBLOCK;
492 tag = blk_mq_get_tag(&data);
493 if (tag == BLK_MQ_NO_TAG)
494 goto out_queue_exit;
495 return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
496
497 out_queue_exit:
498 blk_queue_exit(q);
499 return ERR_PTR(ret);
500 }
501 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
502
__blk_mq_free_request(struct request * rq)503 static void __blk_mq_free_request(struct request *rq)
504 {
505 struct request_queue *q = rq->q;
506 struct blk_mq_ctx *ctx = rq->mq_ctx;
507 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
508 const int sched_tag = rq->internal_tag;
509
510 blk_crypto_free_request(rq);
511 blk_pm_mark_last_busy(rq);
512 rq->mq_hctx = NULL;
513 if (rq->tag != BLK_MQ_NO_TAG)
514 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
515 if (sched_tag != BLK_MQ_NO_TAG)
516 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
517 blk_mq_sched_restart(hctx);
518 blk_queue_exit(q);
519 }
520
blk_mq_free_request(struct request * rq)521 void blk_mq_free_request(struct request *rq)
522 {
523 struct request_queue *q = rq->q;
524 struct elevator_queue *e = q->elevator;
525 struct blk_mq_ctx *ctx = rq->mq_ctx;
526 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
527
528 if (rq->rq_flags & RQF_ELVPRIV) {
529 if (e && e->type->ops.finish_request)
530 e->type->ops.finish_request(rq);
531 if (rq->elv.icq) {
532 put_io_context(rq->elv.icq->ioc);
533 rq->elv.icq = NULL;
534 }
535 }
536
537 ctx->rq_completed[rq_is_sync(rq)]++;
538 if (rq->rq_flags & RQF_MQ_INFLIGHT)
539 __blk_mq_dec_active_requests(hctx);
540
541 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
542 laptop_io_completion(q->backing_dev_info);
543
544 rq_qos_done(q, rq);
545
546 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
547 if (refcount_dec_and_test(&rq->ref))
548 __blk_mq_free_request(rq);
549 }
550 EXPORT_SYMBOL_GPL(blk_mq_free_request);
551
__blk_mq_end_request(struct request * rq,blk_status_t error)552 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
553 {
554 u64 now = 0;
555
556 if (blk_mq_need_time_stamp(rq))
557 now = ktime_get_ns();
558
559 if (rq->rq_flags & RQF_STATS) {
560 blk_mq_poll_stats_start(rq->q);
561 blk_stat_add(rq, now);
562 }
563
564 blk_mq_sched_completed_request(rq, now);
565
566 blk_account_io_done(rq, now);
567
568 if (rq->end_io) {
569 rq_qos_done(rq->q, rq);
570 rq->end_io(rq, error);
571 } else {
572 blk_mq_free_request(rq);
573 }
574 }
575 EXPORT_SYMBOL(__blk_mq_end_request);
576
blk_mq_end_request(struct request * rq,blk_status_t error)577 void blk_mq_end_request(struct request *rq, blk_status_t error)
578 {
579 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
580 BUG();
581 __blk_mq_end_request(rq, error);
582 }
583 EXPORT_SYMBOL(blk_mq_end_request);
584
585 /*
586 * Softirq action handler - move entries to local list and loop over them
587 * while passing them to the queue registered handler.
588 */
blk_done_softirq(struct softirq_action * h)589 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
590 {
591 struct list_head *cpu_list, local_list;
592
593 local_irq_disable();
594 cpu_list = this_cpu_ptr(&blk_cpu_done);
595 list_replace_init(cpu_list, &local_list);
596 local_irq_enable();
597
598 while (!list_empty(&local_list)) {
599 struct request *rq;
600
601 rq = list_entry(local_list.next, struct request, ipi_list);
602 list_del_init(&rq->ipi_list);
603 rq->q->mq_ops->complete(rq);
604 }
605 }
606
blk_mq_trigger_softirq(struct request * rq)607 static void blk_mq_trigger_softirq(struct request *rq)
608 {
609 struct list_head *list;
610 unsigned long flags;
611
612 local_irq_save(flags);
613 list = this_cpu_ptr(&blk_cpu_done);
614 list_add_tail(&rq->ipi_list, list);
615
616 /*
617 * If the list only contains our just added request, signal a raise of
618 * the softirq. If there are already entries there, someone already
619 * raised the irq but it hasn't run yet.
620 */
621 if (list->next == &rq->ipi_list)
622 raise_softirq_irqoff(BLOCK_SOFTIRQ);
623 local_irq_restore(flags);
624 }
625
blk_softirq_cpu_dead(unsigned int cpu)626 static int blk_softirq_cpu_dead(unsigned int cpu)
627 {
628 /*
629 * If a CPU goes away, splice its entries to the current CPU
630 * and trigger a run of the softirq
631 */
632 local_irq_disable();
633 list_splice_init(&per_cpu(blk_cpu_done, cpu),
634 this_cpu_ptr(&blk_cpu_done));
635 raise_softirq_irqoff(BLOCK_SOFTIRQ);
636 local_irq_enable();
637
638 return 0;
639 }
640
641
__blk_mq_complete_request_remote(void * data)642 static void __blk_mq_complete_request_remote(void *data)
643 {
644 struct request *rq = data;
645
646 /*
647 * For most of single queue controllers, there is only one irq vector
648 * for handling I/O completion, and the only irq's affinity is set
649 * to all possible CPUs. On most of ARCHs, this affinity means the irq
650 * is handled on one specific CPU.
651 *
652 * So complete I/O requests in softirq context in case of single queue
653 * devices to avoid degrading I/O performance due to irqsoff latency.
654 */
655 if (rq->q->nr_hw_queues == 1)
656 blk_mq_trigger_softirq(rq);
657 else
658 rq->q->mq_ops->complete(rq);
659 }
660
blk_mq_complete_need_ipi(struct request * rq)661 static inline bool blk_mq_complete_need_ipi(struct request *rq)
662 {
663 int cpu = raw_smp_processor_id();
664
665 if (!IS_ENABLED(CONFIG_SMP) ||
666 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
667 return false;
668
669 /* same CPU or cache domain? Complete locally */
670 if (cpu == rq->mq_ctx->cpu ||
671 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
672 cpus_share_cache(cpu, rq->mq_ctx->cpu)))
673 return false;
674
675 /* don't try to IPI to an offline CPU */
676 return cpu_online(rq->mq_ctx->cpu);
677 }
678
blk_mq_complete_request_remote(struct request * rq)679 bool blk_mq_complete_request_remote(struct request *rq)
680 {
681 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
682
683 /*
684 * For a polled request, always complete locallly, it's pointless
685 * to redirect the completion.
686 */
687 if (rq->cmd_flags & REQ_HIPRI)
688 return false;
689
690 if (blk_mq_complete_need_ipi(rq)) {
691 rq->csd.func = __blk_mq_complete_request_remote;
692 rq->csd.info = rq;
693 rq->csd.flags = 0;
694 smp_call_function_single_async(rq->mq_ctx->cpu, &rq->csd);
695 } else {
696 if (rq->q->nr_hw_queues > 1)
697 return false;
698 blk_mq_trigger_softirq(rq);
699 }
700
701 return true;
702 }
703 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
704
705 /**
706 * blk_mq_complete_request - end I/O on a request
707 * @rq: the request being processed
708 *
709 * Description:
710 * Complete a request by scheduling the ->complete_rq operation.
711 **/
blk_mq_complete_request(struct request * rq)712 void blk_mq_complete_request(struct request *rq)
713 {
714 if (!blk_mq_complete_request_remote(rq))
715 rq->q->mq_ops->complete(rq);
716 }
717 EXPORT_SYMBOL(blk_mq_complete_request);
718
hctx_unlock(struct blk_mq_hw_ctx * hctx,int srcu_idx)719 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
720 __releases(hctx->srcu)
721 {
722 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
723 rcu_read_unlock();
724 else
725 srcu_read_unlock(hctx->srcu, srcu_idx);
726 }
727
hctx_lock(struct blk_mq_hw_ctx * hctx,int * srcu_idx)728 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
729 __acquires(hctx->srcu)
730 {
731 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
732 /* shut up gcc false positive */
733 *srcu_idx = 0;
734 rcu_read_lock();
735 } else
736 *srcu_idx = srcu_read_lock(hctx->srcu);
737 }
738
739 /**
740 * blk_mq_start_request - Start processing a request
741 * @rq: Pointer to request to be started
742 *
743 * Function used by device drivers to notify the block layer that a request
744 * is going to be processed now, so blk layer can do proper initializations
745 * such as starting the timeout timer.
746 */
blk_mq_start_request(struct request * rq)747 void blk_mq_start_request(struct request *rq)
748 {
749 struct request_queue *q = rq->q;
750
751 trace_block_rq_issue(q, rq);
752
753 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
754 rq->io_start_time_ns = ktime_get_ns();
755 rq->stats_sectors = blk_rq_sectors(rq);
756 rq->rq_flags |= RQF_STATS;
757 rq_qos_issue(q, rq);
758 }
759
760 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
761
762 blk_add_timer(rq);
763 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
764
765 #ifdef CONFIG_BLK_DEV_INTEGRITY
766 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
767 q->integrity.profile->prepare_fn(rq);
768 #endif
769 }
770 EXPORT_SYMBOL(blk_mq_start_request);
771
__blk_mq_requeue_request(struct request * rq)772 static void __blk_mq_requeue_request(struct request *rq)
773 {
774 struct request_queue *q = rq->q;
775
776 blk_mq_put_driver_tag(rq);
777
778 trace_block_rq_requeue(q, rq);
779 rq_qos_requeue(q, rq);
780
781 if (blk_mq_request_started(rq)) {
782 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
783 rq->rq_flags &= ~RQF_TIMED_OUT;
784 }
785 }
786
blk_mq_requeue_request(struct request * rq,bool kick_requeue_list)787 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
788 {
789 __blk_mq_requeue_request(rq);
790
791 /* this request will be re-inserted to io scheduler queue */
792 blk_mq_sched_requeue_request(rq);
793
794 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
795 }
796 EXPORT_SYMBOL(blk_mq_requeue_request);
797
blk_mq_requeue_work(struct work_struct * work)798 static void blk_mq_requeue_work(struct work_struct *work)
799 {
800 struct request_queue *q =
801 container_of(work, struct request_queue, requeue_work.work);
802 LIST_HEAD(rq_list);
803 struct request *rq, *next;
804
805 spin_lock_irq(&q->requeue_lock);
806 list_splice_init(&q->requeue_list, &rq_list);
807 spin_unlock_irq(&q->requeue_lock);
808
809 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
810 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
811 continue;
812
813 rq->rq_flags &= ~RQF_SOFTBARRIER;
814 list_del_init(&rq->queuelist);
815 /*
816 * If RQF_DONTPREP, rq has contained some driver specific
817 * data, so insert it to hctx dispatch list to avoid any
818 * merge.
819 */
820 if (rq->rq_flags & RQF_DONTPREP)
821 blk_mq_request_bypass_insert(rq, false, false);
822 else
823 blk_mq_sched_insert_request(rq, true, false, false);
824 }
825
826 while (!list_empty(&rq_list)) {
827 rq = list_entry(rq_list.next, struct request, queuelist);
828 list_del_init(&rq->queuelist);
829 blk_mq_sched_insert_request(rq, false, false, false);
830 }
831
832 blk_mq_run_hw_queues(q, false);
833 }
834
blk_mq_add_to_requeue_list(struct request * rq,bool at_head,bool kick_requeue_list)835 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
836 bool kick_requeue_list)
837 {
838 struct request_queue *q = rq->q;
839 unsigned long flags;
840
841 /*
842 * We abuse this flag that is otherwise used by the I/O scheduler to
843 * request head insertion from the workqueue.
844 */
845 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
846
847 spin_lock_irqsave(&q->requeue_lock, flags);
848 if (at_head) {
849 rq->rq_flags |= RQF_SOFTBARRIER;
850 list_add(&rq->queuelist, &q->requeue_list);
851 } else {
852 list_add_tail(&rq->queuelist, &q->requeue_list);
853 }
854 spin_unlock_irqrestore(&q->requeue_lock, flags);
855
856 if (kick_requeue_list)
857 blk_mq_kick_requeue_list(q);
858 }
859
blk_mq_kick_requeue_list(struct request_queue * q)860 void blk_mq_kick_requeue_list(struct request_queue *q)
861 {
862 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
863 }
864 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
865
blk_mq_delay_kick_requeue_list(struct request_queue * q,unsigned long msecs)866 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
867 unsigned long msecs)
868 {
869 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
870 msecs_to_jiffies(msecs));
871 }
872 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
873
blk_mq_tag_to_rq(struct blk_mq_tags * tags,unsigned int tag)874 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
875 {
876 if (tag < tags->nr_tags) {
877 prefetch(tags->rqs[tag]);
878 return tags->rqs[tag];
879 }
880
881 return NULL;
882 }
883 EXPORT_SYMBOL(blk_mq_tag_to_rq);
884
blk_mq_rq_inflight(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)885 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
886 void *priv, bool reserved)
887 {
888 /*
889 * If we find a request that isn't idle and the queue matches,
890 * we know the queue is busy. Return false to stop the iteration.
891 */
892 if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
893 bool *busy = priv;
894
895 *busy = true;
896 return false;
897 }
898
899 return true;
900 }
901
blk_mq_queue_inflight(struct request_queue * q)902 bool blk_mq_queue_inflight(struct request_queue *q)
903 {
904 bool busy = false;
905
906 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
907 return busy;
908 }
909 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
910
blk_mq_rq_timed_out(struct request * req,bool reserved)911 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
912 {
913 req->rq_flags |= RQF_TIMED_OUT;
914 if (req->q->mq_ops->timeout) {
915 enum blk_eh_timer_return ret;
916
917 ret = req->q->mq_ops->timeout(req, reserved);
918 if (ret == BLK_EH_DONE)
919 return;
920 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
921 }
922
923 blk_add_timer(req);
924 }
925
blk_mq_req_expired(struct request * rq,unsigned long * next)926 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
927 {
928 unsigned long deadline;
929
930 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
931 return false;
932 if (rq->rq_flags & RQF_TIMED_OUT)
933 return false;
934
935 deadline = READ_ONCE(rq->deadline);
936 if (time_after_eq(jiffies, deadline))
937 return true;
938
939 if (*next == 0)
940 *next = deadline;
941 else if (time_after(*next, deadline))
942 *next = deadline;
943 return false;
944 }
945
blk_mq_put_rq_ref(struct request * rq)946 void blk_mq_put_rq_ref(struct request *rq)
947 {
948 if (is_flush_rq(rq))
949 rq->end_io(rq, 0);
950 else if (refcount_dec_and_test(&rq->ref))
951 __blk_mq_free_request(rq);
952 }
953
blk_mq_check_expired(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)954 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
955 struct request *rq, void *priv, bool reserved)
956 {
957 unsigned long *next = priv;
958
959 /*
960 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
961 * be reallocated underneath the timeout handler's processing, then
962 * the expire check is reliable. If the request is not expired, then
963 * it was completed and reallocated as a new request after returning
964 * from blk_mq_check_expired().
965 */
966 if (blk_mq_req_expired(rq, next))
967 blk_mq_rq_timed_out(rq, reserved);
968 return true;
969 }
970
blk_mq_timeout_work(struct work_struct * work)971 static void blk_mq_timeout_work(struct work_struct *work)
972 {
973 struct request_queue *q =
974 container_of(work, struct request_queue, timeout_work);
975 unsigned long next = 0;
976 struct blk_mq_hw_ctx *hctx;
977 int i;
978
979 /* A deadlock might occur if a request is stuck requiring a
980 * timeout at the same time a queue freeze is waiting
981 * completion, since the timeout code would not be able to
982 * acquire the queue reference here.
983 *
984 * That's why we don't use blk_queue_enter here; instead, we use
985 * percpu_ref_tryget directly, because we need to be able to
986 * obtain a reference even in the short window between the queue
987 * starting to freeze, by dropping the first reference in
988 * blk_freeze_queue_start, and the moment the last request is
989 * consumed, marked by the instant q_usage_counter reaches
990 * zero.
991 */
992 if (!percpu_ref_tryget(&q->q_usage_counter))
993 return;
994
995 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
996
997 if (next != 0) {
998 mod_timer(&q->timeout, next);
999 } else {
1000 /*
1001 * Request timeouts are handled as a forward rolling timer. If
1002 * we end up here it means that no requests are pending and
1003 * also that no request has been pending for a while. Mark
1004 * each hctx as idle.
1005 */
1006 queue_for_each_hw_ctx(q, hctx, i) {
1007 /* the hctx may be unmapped, so check it here */
1008 if (blk_mq_hw_queue_mapped(hctx))
1009 blk_mq_tag_idle(hctx);
1010 }
1011 }
1012 blk_queue_exit(q);
1013 }
1014
1015 struct flush_busy_ctx_data {
1016 struct blk_mq_hw_ctx *hctx;
1017 struct list_head *list;
1018 };
1019
flush_busy_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1020 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1021 {
1022 struct flush_busy_ctx_data *flush_data = data;
1023 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1024 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1025 enum hctx_type type = hctx->type;
1026
1027 spin_lock(&ctx->lock);
1028 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1029 sbitmap_clear_bit(sb, bitnr);
1030 spin_unlock(&ctx->lock);
1031 return true;
1032 }
1033
1034 /*
1035 * Process software queues that have been marked busy, splicing them
1036 * to the for-dispatch
1037 */
blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx * hctx,struct list_head * list)1038 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1039 {
1040 struct flush_busy_ctx_data data = {
1041 .hctx = hctx,
1042 .list = list,
1043 };
1044
1045 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1046 }
1047 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1048
1049 struct dispatch_rq_data {
1050 struct blk_mq_hw_ctx *hctx;
1051 struct request *rq;
1052 };
1053
dispatch_rq_from_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1054 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1055 void *data)
1056 {
1057 struct dispatch_rq_data *dispatch_data = data;
1058 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1059 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1060 enum hctx_type type = hctx->type;
1061
1062 spin_lock(&ctx->lock);
1063 if (!list_empty(&ctx->rq_lists[type])) {
1064 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1065 list_del_init(&dispatch_data->rq->queuelist);
1066 if (list_empty(&ctx->rq_lists[type]))
1067 sbitmap_clear_bit(sb, bitnr);
1068 }
1069 spin_unlock(&ctx->lock);
1070
1071 return !dispatch_data->rq;
1072 }
1073
blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * start)1074 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1075 struct blk_mq_ctx *start)
1076 {
1077 unsigned off = start ? start->index_hw[hctx->type] : 0;
1078 struct dispatch_rq_data data = {
1079 .hctx = hctx,
1080 .rq = NULL,
1081 };
1082
1083 __sbitmap_for_each_set(&hctx->ctx_map, off,
1084 dispatch_rq_from_ctx, &data);
1085
1086 return data.rq;
1087 }
1088
queued_to_index(unsigned int queued)1089 static inline unsigned int queued_to_index(unsigned int queued)
1090 {
1091 if (!queued)
1092 return 0;
1093
1094 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1095 }
1096
__blk_mq_get_driver_tag(struct request * rq)1097 static bool __blk_mq_get_driver_tag(struct request *rq)
1098 {
1099 struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1100 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1101 int tag;
1102
1103 blk_mq_tag_busy(rq->mq_hctx);
1104
1105 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1106 bt = rq->mq_hctx->tags->breserved_tags;
1107 tag_offset = 0;
1108 } else {
1109 if (!hctx_may_queue(rq->mq_hctx, bt))
1110 return false;
1111 }
1112
1113 tag = __sbitmap_queue_get(bt);
1114 if (tag == BLK_MQ_NO_TAG)
1115 return false;
1116
1117 rq->tag = tag + tag_offset;
1118 return true;
1119 }
1120
blk_mq_get_driver_tag(struct request * rq)1121 static bool blk_mq_get_driver_tag(struct request *rq)
1122 {
1123 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1124
1125 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1126 return false;
1127
1128 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1129 !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1130 rq->rq_flags |= RQF_MQ_INFLIGHT;
1131 __blk_mq_inc_active_requests(hctx);
1132 }
1133 hctx->tags->rqs[rq->tag] = rq;
1134 return true;
1135 }
1136
blk_mq_dispatch_wake(wait_queue_entry_t * wait,unsigned mode,int flags,void * key)1137 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1138 int flags, void *key)
1139 {
1140 struct blk_mq_hw_ctx *hctx;
1141
1142 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1143
1144 spin_lock(&hctx->dispatch_wait_lock);
1145 if (!list_empty(&wait->entry)) {
1146 struct sbitmap_queue *sbq;
1147
1148 list_del_init(&wait->entry);
1149 sbq = hctx->tags->bitmap_tags;
1150 atomic_dec(&sbq->ws_active);
1151 }
1152 spin_unlock(&hctx->dispatch_wait_lock);
1153
1154 blk_mq_run_hw_queue(hctx, true);
1155 return 1;
1156 }
1157
1158 /*
1159 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1160 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1161 * restart. For both cases, take care to check the condition again after
1162 * marking us as waiting.
1163 */
blk_mq_mark_tag_wait(struct blk_mq_hw_ctx * hctx,struct request * rq)1164 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1165 struct request *rq)
1166 {
1167 struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1168 struct wait_queue_head *wq;
1169 wait_queue_entry_t *wait;
1170 bool ret;
1171
1172 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1173 blk_mq_sched_mark_restart_hctx(hctx);
1174
1175 /*
1176 * It's possible that a tag was freed in the window between the
1177 * allocation failure and adding the hardware queue to the wait
1178 * queue.
1179 *
1180 * Don't clear RESTART here, someone else could have set it.
1181 * At most this will cost an extra queue run.
1182 */
1183 return blk_mq_get_driver_tag(rq);
1184 }
1185
1186 wait = &hctx->dispatch_wait;
1187 if (!list_empty_careful(&wait->entry))
1188 return false;
1189
1190 wq = &bt_wait_ptr(sbq, hctx)->wait;
1191
1192 spin_lock_irq(&wq->lock);
1193 spin_lock(&hctx->dispatch_wait_lock);
1194 if (!list_empty(&wait->entry)) {
1195 spin_unlock(&hctx->dispatch_wait_lock);
1196 spin_unlock_irq(&wq->lock);
1197 return false;
1198 }
1199
1200 atomic_inc(&sbq->ws_active);
1201 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1202 __add_wait_queue(wq, wait);
1203
1204 /*
1205 * It's possible that a tag was freed in the window between the
1206 * allocation failure and adding the hardware queue to the wait
1207 * queue.
1208 */
1209 ret = blk_mq_get_driver_tag(rq);
1210 if (!ret) {
1211 spin_unlock(&hctx->dispatch_wait_lock);
1212 spin_unlock_irq(&wq->lock);
1213 return false;
1214 }
1215
1216 /*
1217 * We got a tag, remove ourselves from the wait queue to ensure
1218 * someone else gets the wakeup.
1219 */
1220 list_del_init(&wait->entry);
1221 atomic_dec(&sbq->ws_active);
1222 spin_unlock(&hctx->dispatch_wait_lock);
1223 spin_unlock_irq(&wq->lock);
1224
1225 return true;
1226 }
1227
1228 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1229 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1230 /*
1231 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1232 * - EWMA is one simple way to compute running average value
1233 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1234 * - take 4 as factor for avoiding to get too small(0) result, and this
1235 * factor doesn't matter because EWMA decreases exponentially
1236 */
blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx * hctx,bool busy)1237 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1238 {
1239 unsigned int ewma;
1240
1241 ewma = hctx->dispatch_busy;
1242
1243 if (!ewma && !busy)
1244 return;
1245
1246 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1247 if (busy)
1248 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1249 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1250
1251 hctx->dispatch_busy = ewma;
1252 }
1253
1254 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1255
blk_mq_handle_dev_resource(struct request * rq,struct list_head * list)1256 static void blk_mq_handle_dev_resource(struct request *rq,
1257 struct list_head *list)
1258 {
1259 struct request *next =
1260 list_first_entry_or_null(list, struct request, queuelist);
1261
1262 /*
1263 * If an I/O scheduler has been configured and we got a driver tag for
1264 * the next request already, free it.
1265 */
1266 if (next)
1267 blk_mq_put_driver_tag(next);
1268
1269 list_add(&rq->queuelist, list);
1270 __blk_mq_requeue_request(rq);
1271 }
1272
blk_mq_handle_zone_resource(struct request * rq,struct list_head * zone_list)1273 static void blk_mq_handle_zone_resource(struct request *rq,
1274 struct list_head *zone_list)
1275 {
1276 /*
1277 * If we end up here it is because we cannot dispatch a request to a
1278 * specific zone due to LLD level zone-write locking or other zone
1279 * related resource not being available. In this case, set the request
1280 * aside in zone_list for retrying it later.
1281 */
1282 list_add(&rq->queuelist, zone_list);
1283 __blk_mq_requeue_request(rq);
1284 }
1285
1286 enum prep_dispatch {
1287 PREP_DISPATCH_OK,
1288 PREP_DISPATCH_NO_TAG,
1289 PREP_DISPATCH_NO_BUDGET,
1290 };
1291
blk_mq_prep_dispatch_rq(struct request * rq,bool need_budget)1292 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1293 bool need_budget)
1294 {
1295 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1296
1297 if (need_budget && !blk_mq_get_dispatch_budget(rq->q)) {
1298 blk_mq_put_driver_tag(rq);
1299 return PREP_DISPATCH_NO_BUDGET;
1300 }
1301
1302 if (!blk_mq_get_driver_tag(rq)) {
1303 /*
1304 * The initial allocation attempt failed, so we need to
1305 * rerun the hardware queue when a tag is freed. The
1306 * waitqueue takes care of that. If the queue is run
1307 * before we add this entry back on the dispatch list,
1308 * we'll re-run it below.
1309 */
1310 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1311 /*
1312 * All budgets not got from this function will be put
1313 * together during handling partial dispatch
1314 */
1315 if (need_budget)
1316 blk_mq_put_dispatch_budget(rq->q);
1317 return PREP_DISPATCH_NO_TAG;
1318 }
1319 }
1320
1321 return PREP_DISPATCH_OK;
1322 }
1323
1324 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
blk_mq_release_budgets(struct request_queue * q,unsigned int nr_budgets)1325 static void blk_mq_release_budgets(struct request_queue *q,
1326 unsigned int nr_budgets)
1327 {
1328 int i;
1329
1330 for (i = 0; i < nr_budgets; i++)
1331 blk_mq_put_dispatch_budget(q);
1332 }
1333
1334 /*
1335 * Returns true if we did some work AND can potentially do more.
1336 */
blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx * hctx,struct list_head * list,unsigned int nr_budgets)1337 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1338 unsigned int nr_budgets)
1339 {
1340 enum prep_dispatch prep;
1341 struct request_queue *q = hctx->queue;
1342 struct request *rq, *nxt;
1343 int errors, queued;
1344 blk_status_t ret = BLK_STS_OK;
1345 LIST_HEAD(zone_list);
1346 bool needs_resource = false;
1347
1348 if (list_empty(list))
1349 return false;
1350
1351 /*
1352 * Now process all the entries, sending them to the driver.
1353 */
1354 errors = queued = 0;
1355 do {
1356 struct blk_mq_queue_data bd;
1357
1358 rq = list_first_entry(list, struct request, queuelist);
1359
1360 WARN_ON_ONCE(hctx != rq->mq_hctx);
1361 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1362 if (prep != PREP_DISPATCH_OK)
1363 break;
1364
1365 list_del_init(&rq->queuelist);
1366
1367 bd.rq = rq;
1368
1369 /*
1370 * Flag last if we have no more requests, or if we have more
1371 * but can't assign a driver tag to it.
1372 */
1373 if (list_empty(list))
1374 bd.last = true;
1375 else {
1376 nxt = list_first_entry(list, struct request, queuelist);
1377 bd.last = !blk_mq_get_driver_tag(nxt);
1378 }
1379
1380 /*
1381 * once the request is queued to lld, no need to cover the
1382 * budget any more
1383 */
1384 if (nr_budgets)
1385 nr_budgets--;
1386 ret = q->mq_ops->queue_rq(hctx, &bd);
1387 switch (ret) {
1388 case BLK_STS_OK:
1389 queued++;
1390 break;
1391 case BLK_STS_RESOURCE:
1392 needs_resource = true;
1393 fallthrough;
1394 case BLK_STS_DEV_RESOURCE:
1395 blk_mq_handle_dev_resource(rq, list);
1396 goto out;
1397 case BLK_STS_ZONE_RESOURCE:
1398 /*
1399 * Move the request to zone_list and keep going through
1400 * the dispatch list to find more requests the drive can
1401 * accept.
1402 */
1403 blk_mq_handle_zone_resource(rq, &zone_list);
1404 needs_resource = true;
1405 break;
1406 default:
1407 errors++;
1408 blk_mq_end_request(rq, BLK_STS_IOERR);
1409 }
1410 } while (!list_empty(list));
1411 out:
1412 if (!list_empty(&zone_list))
1413 list_splice_tail_init(&zone_list, list);
1414
1415 hctx->dispatched[queued_to_index(queued)]++;
1416
1417 /* If we didn't flush the entire list, we could have told the driver
1418 * there was more coming, but that turned out to be a lie.
1419 */
1420 if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1421 q->mq_ops->commit_rqs(hctx);
1422 /*
1423 * Any items that need requeuing? Stuff them into hctx->dispatch,
1424 * that is where we will continue on next queue run.
1425 */
1426 if (!list_empty(list)) {
1427 bool needs_restart;
1428 /* For non-shared tags, the RESTART check will suffice */
1429 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1430 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1431
1432 blk_mq_release_budgets(q, nr_budgets);
1433
1434 spin_lock(&hctx->lock);
1435 list_splice_tail_init(list, &hctx->dispatch);
1436 spin_unlock(&hctx->lock);
1437
1438 /*
1439 * Order adding requests to hctx->dispatch and checking
1440 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1441 * in blk_mq_sched_restart(). Avoid restart code path to
1442 * miss the new added requests to hctx->dispatch, meantime
1443 * SCHED_RESTART is observed here.
1444 */
1445 smp_mb();
1446
1447 /*
1448 * If SCHED_RESTART was set by the caller of this function and
1449 * it is no longer set that means that it was cleared by another
1450 * thread and hence that a queue rerun is needed.
1451 *
1452 * If 'no_tag' is set, that means that we failed getting
1453 * a driver tag with an I/O scheduler attached. If our dispatch
1454 * waitqueue is no longer active, ensure that we run the queue
1455 * AFTER adding our entries back to the list.
1456 *
1457 * If no I/O scheduler has been configured it is possible that
1458 * the hardware queue got stopped and restarted before requests
1459 * were pushed back onto the dispatch list. Rerun the queue to
1460 * avoid starvation. Notes:
1461 * - blk_mq_run_hw_queue() checks whether or not a queue has
1462 * been stopped before rerunning a queue.
1463 * - Some but not all block drivers stop a queue before
1464 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1465 * and dm-rq.
1466 *
1467 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1468 * bit is set, run queue after a delay to avoid IO stalls
1469 * that could otherwise occur if the queue is idle. We'll do
1470 * similar if we couldn't get budget or couldn't lock a zone
1471 * and SCHED_RESTART is set.
1472 */
1473 needs_restart = blk_mq_sched_needs_restart(hctx);
1474 if (prep == PREP_DISPATCH_NO_BUDGET)
1475 needs_resource = true;
1476 if (!needs_restart ||
1477 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1478 blk_mq_run_hw_queue(hctx, true);
1479 else if (needs_restart && needs_resource)
1480 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1481
1482 blk_mq_update_dispatch_busy(hctx, true);
1483 return false;
1484 } else
1485 blk_mq_update_dispatch_busy(hctx, false);
1486
1487 return (queued + errors) != 0;
1488 }
1489
1490 /**
1491 * __blk_mq_run_hw_queue - Run a hardware queue.
1492 * @hctx: Pointer to the hardware queue to run.
1493 *
1494 * Send pending requests to the hardware.
1495 */
__blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx)1496 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1497 {
1498 int srcu_idx;
1499
1500 /*
1501 * We should be running this queue from one of the CPUs that
1502 * are mapped to it.
1503 *
1504 * There are at least two related races now between setting
1505 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1506 * __blk_mq_run_hw_queue():
1507 *
1508 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1509 * but later it becomes online, then this warning is harmless
1510 * at all
1511 *
1512 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1513 * but later it becomes offline, then the warning can't be
1514 * triggered, and we depend on blk-mq timeout handler to
1515 * handle dispatched requests to this hctx
1516 */
1517 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1518 cpu_online(hctx->next_cpu)) {
1519 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1520 raw_smp_processor_id(),
1521 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1522 dump_stack();
1523 }
1524
1525 /*
1526 * We can't run the queue inline with ints disabled. Ensure that
1527 * we catch bad users of this early.
1528 */
1529 WARN_ON_ONCE(in_interrupt());
1530
1531 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1532
1533 hctx_lock(hctx, &srcu_idx);
1534 blk_mq_sched_dispatch_requests(hctx);
1535 hctx_unlock(hctx, srcu_idx);
1536 }
1537
blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx * hctx)1538 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1539 {
1540 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1541
1542 if (cpu >= nr_cpu_ids)
1543 cpu = cpumask_first(hctx->cpumask);
1544 return cpu;
1545 }
1546
1547 /*
1548 * It'd be great if the workqueue API had a way to pass
1549 * in a mask and had some smarts for more clever placement.
1550 * For now we just round-robin here, switching for every
1551 * BLK_MQ_CPU_WORK_BATCH queued items.
1552 */
blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx * hctx)1553 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1554 {
1555 bool tried = false;
1556 int next_cpu = hctx->next_cpu;
1557
1558 if (hctx->queue->nr_hw_queues == 1)
1559 return WORK_CPU_UNBOUND;
1560
1561 if (--hctx->next_cpu_batch <= 0) {
1562 select_cpu:
1563 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1564 cpu_online_mask);
1565 if (next_cpu >= nr_cpu_ids)
1566 next_cpu = blk_mq_first_mapped_cpu(hctx);
1567 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1568 }
1569
1570 /*
1571 * Do unbound schedule if we can't find a online CPU for this hctx,
1572 * and it should only happen in the path of handling CPU DEAD.
1573 */
1574 if (!cpu_online(next_cpu)) {
1575 if (!tried) {
1576 tried = true;
1577 goto select_cpu;
1578 }
1579
1580 /*
1581 * Make sure to re-select CPU next time once after CPUs
1582 * in hctx->cpumask become online again.
1583 */
1584 hctx->next_cpu = next_cpu;
1585 hctx->next_cpu_batch = 1;
1586 return WORK_CPU_UNBOUND;
1587 }
1588
1589 hctx->next_cpu = next_cpu;
1590 return next_cpu;
1591 }
1592
1593 /**
1594 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1595 * @hctx: Pointer to the hardware queue to run.
1596 * @async: If we want to run the queue asynchronously.
1597 * @msecs: Microseconds of delay to wait before running the queue.
1598 *
1599 * If !@async, try to run the queue now. Else, run the queue asynchronously and
1600 * with a delay of @msecs.
1601 */
__blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async,unsigned long msecs)1602 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1603 unsigned long msecs)
1604 {
1605 if (unlikely(blk_mq_hctx_stopped(hctx)))
1606 return;
1607
1608 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1609 int cpu = get_cpu();
1610 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1611 __blk_mq_run_hw_queue(hctx);
1612 put_cpu();
1613 return;
1614 }
1615
1616 put_cpu();
1617 }
1618
1619 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1620 msecs_to_jiffies(msecs));
1621 }
1622
1623 /**
1624 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1625 * @hctx: Pointer to the hardware queue to run.
1626 * @msecs: Microseconds of delay to wait before running the queue.
1627 *
1628 * Run a hardware queue asynchronously with a delay of @msecs.
1629 */
blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,unsigned long msecs)1630 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1631 {
1632 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1633 }
1634 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1635
1636 /**
1637 * blk_mq_run_hw_queue - Start to run a hardware queue.
1638 * @hctx: Pointer to the hardware queue to run.
1639 * @async: If we want to run the queue asynchronously.
1640 *
1641 * Check if the request queue is not in a quiesced state and if there are
1642 * pending requests to be sent. If this is true, run the queue to send requests
1643 * to hardware.
1644 */
blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)1645 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1646 {
1647 int srcu_idx;
1648 bool need_run;
1649
1650 /*
1651 * When queue is quiesced, we may be switching io scheduler, or
1652 * updating nr_hw_queues, or other things, and we can't run queue
1653 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1654 *
1655 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1656 * quiesced.
1657 */
1658 hctx_lock(hctx, &srcu_idx);
1659 need_run = !blk_queue_quiesced(hctx->queue) &&
1660 blk_mq_hctx_has_pending(hctx);
1661 hctx_unlock(hctx, srcu_idx);
1662
1663 if (need_run)
1664 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1665 }
1666 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1667
1668 /**
1669 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1670 * @q: Pointer to the request queue to run.
1671 * @async: If we want to run the queue asynchronously.
1672 */
blk_mq_run_hw_queues(struct request_queue * q,bool async)1673 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1674 {
1675 struct blk_mq_hw_ctx *hctx;
1676 int i;
1677
1678 queue_for_each_hw_ctx(q, hctx, i) {
1679 if (blk_mq_hctx_stopped(hctx))
1680 continue;
1681
1682 blk_mq_run_hw_queue(hctx, async);
1683 }
1684 }
1685 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1686
1687 /**
1688 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1689 * @q: Pointer to the request queue to run.
1690 * @msecs: Microseconds of delay to wait before running the queues.
1691 */
blk_mq_delay_run_hw_queues(struct request_queue * q,unsigned long msecs)1692 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1693 {
1694 struct blk_mq_hw_ctx *hctx;
1695 int i;
1696
1697 queue_for_each_hw_ctx(q, hctx, i) {
1698 if (blk_mq_hctx_stopped(hctx))
1699 continue;
1700
1701 blk_mq_delay_run_hw_queue(hctx, msecs);
1702 }
1703 }
1704 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1705
1706 /**
1707 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1708 * @q: request queue.
1709 *
1710 * The caller is responsible for serializing this function against
1711 * blk_mq_{start,stop}_hw_queue().
1712 */
blk_mq_queue_stopped(struct request_queue * q)1713 bool blk_mq_queue_stopped(struct request_queue *q)
1714 {
1715 struct blk_mq_hw_ctx *hctx;
1716 int i;
1717
1718 queue_for_each_hw_ctx(q, hctx, i)
1719 if (blk_mq_hctx_stopped(hctx))
1720 return true;
1721
1722 return false;
1723 }
1724 EXPORT_SYMBOL(blk_mq_queue_stopped);
1725
1726 /*
1727 * This function is often used for pausing .queue_rq() by driver when
1728 * there isn't enough resource or some conditions aren't satisfied, and
1729 * BLK_STS_RESOURCE is usually returned.
1730 *
1731 * We do not guarantee that dispatch can be drained or blocked
1732 * after blk_mq_stop_hw_queue() returns. Please use
1733 * blk_mq_quiesce_queue() for that requirement.
1734 */
blk_mq_stop_hw_queue(struct blk_mq_hw_ctx * hctx)1735 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1736 {
1737 cancel_delayed_work(&hctx->run_work);
1738
1739 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1740 }
1741 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1742
1743 /*
1744 * This function is often used for pausing .queue_rq() by driver when
1745 * there isn't enough resource or some conditions aren't satisfied, and
1746 * BLK_STS_RESOURCE is usually returned.
1747 *
1748 * We do not guarantee that dispatch can be drained or blocked
1749 * after blk_mq_stop_hw_queues() returns. Please use
1750 * blk_mq_quiesce_queue() for that requirement.
1751 */
blk_mq_stop_hw_queues(struct request_queue * q)1752 void blk_mq_stop_hw_queues(struct request_queue *q)
1753 {
1754 struct blk_mq_hw_ctx *hctx;
1755 int i;
1756
1757 queue_for_each_hw_ctx(q, hctx, i)
1758 blk_mq_stop_hw_queue(hctx);
1759 }
1760 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1761
blk_mq_start_hw_queue(struct blk_mq_hw_ctx * hctx)1762 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1763 {
1764 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1765
1766 blk_mq_run_hw_queue(hctx, false);
1767 }
1768 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1769
blk_mq_start_hw_queues(struct request_queue * q)1770 void blk_mq_start_hw_queues(struct request_queue *q)
1771 {
1772 struct blk_mq_hw_ctx *hctx;
1773 int i;
1774
1775 queue_for_each_hw_ctx(q, hctx, i)
1776 blk_mq_start_hw_queue(hctx);
1777 }
1778 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1779
blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)1780 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1781 {
1782 if (!blk_mq_hctx_stopped(hctx))
1783 return;
1784
1785 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1786 blk_mq_run_hw_queue(hctx, async);
1787 }
1788 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1789
blk_mq_start_stopped_hw_queues(struct request_queue * q,bool async)1790 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1791 {
1792 struct blk_mq_hw_ctx *hctx;
1793 int i;
1794
1795 queue_for_each_hw_ctx(q, hctx, i)
1796 blk_mq_start_stopped_hw_queue(hctx, async);
1797 }
1798 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1799
blk_mq_run_work_fn(struct work_struct * work)1800 static void blk_mq_run_work_fn(struct work_struct *work)
1801 {
1802 struct blk_mq_hw_ctx *hctx;
1803
1804 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1805
1806 /*
1807 * If we are stopped, don't run the queue.
1808 */
1809 if (blk_mq_hctx_stopped(hctx))
1810 return;
1811
1812 __blk_mq_run_hw_queue(hctx);
1813 }
1814
__blk_mq_insert_req_list(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)1815 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1816 struct request *rq,
1817 bool at_head)
1818 {
1819 struct blk_mq_ctx *ctx = rq->mq_ctx;
1820 enum hctx_type type = hctx->type;
1821
1822 lockdep_assert_held(&ctx->lock);
1823
1824 trace_block_rq_insert(hctx->queue, rq);
1825
1826 if (at_head)
1827 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1828 else
1829 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1830 }
1831
__blk_mq_insert_request(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)1832 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1833 bool at_head)
1834 {
1835 struct blk_mq_ctx *ctx = rq->mq_ctx;
1836
1837 lockdep_assert_held(&ctx->lock);
1838
1839 __blk_mq_insert_req_list(hctx, rq, at_head);
1840 blk_mq_hctx_mark_pending(hctx, ctx);
1841 }
1842
1843 /**
1844 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1845 * @rq: Pointer to request to be inserted.
1846 * @at_head: true if the request should be inserted at the head of the list.
1847 * @run_queue: If we should run the hardware queue after inserting the request.
1848 *
1849 * Should only be used carefully, when the caller knows we want to
1850 * bypass a potential IO scheduler on the target device.
1851 */
blk_mq_request_bypass_insert(struct request * rq,bool at_head,bool run_queue)1852 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1853 bool run_queue)
1854 {
1855 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1856
1857 spin_lock(&hctx->lock);
1858 if (at_head)
1859 list_add(&rq->queuelist, &hctx->dispatch);
1860 else
1861 list_add_tail(&rq->queuelist, &hctx->dispatch);
1862 spin_unlock(&hctx->lock);
1863
1864 if (run_queue)
1865 blk_mq_run_hw_queue(hctx, false);
1866 }
1867
blk_mq_insert_requests(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx,struct list_head * list)1868 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1869 struct list_head *list)
1870
1871 {
1872 struct request *rq;
1873 enum hctx_type type = hctx->type;
1874
1875 /*
1876 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1877 * offline now
1878 */
1879 list_for_each_entry(rq, list, queuelist) {
1880 BUG_ON(rq->mq_ctx != ctx);
1881 trace_block_rq_insert(hctx->queue, rq);
1882 }
1883
1884 spin_lock(&ctx->lock);
1885 list_splice_tail_init(list, &ctx->rq_lists[type]);
1886 blk_mq_hctx_mark_pending(hctx, ctx);
1887 spin_unlock(&ctx->lock);
1888 }
1889
plug_rq_cmp(void * priv,const struct list_head * a,const struct list_head * b)1890 static int plug_rq_cmp(void *priv, const struct list_head *a,
1891 const struct list_head *b)
1892 {
1893 struct request *rqa = container_of(a, struct request, queuelist);
1894 struct request *rqb = container_of(b, struct request, queuelist);
1895
1896 if (rqa->mq_ctx != rqb->mq_ctx)
1897 return rqa->mq_ctx > rqb->mq_ctx;
1898 if (rqa->mq_hctx != rqb->mq_hctx)
1899 return rqa->mq_hctx > rqb->mq_hctx;
1900
1901 return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1902 }
1903
blk_mq_flush_plug_list(struct blk_plug * plug,bool from_schedule)1904 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1905 {
1906 LIST_HEAD(list);
1907
1908 if (list_empty(&plug->mq_list))
1909 return;
1910 list_splice_init(&plug->mq_list, &list);
1911
1912 if (plug->rq_count > 2 && plug->multiple_queues)
1913 list_sort(NULL, &list, plug_rq_cmp);
1914
1915 plug->rq_count = 0;
1916
1917 do {
1918 struct list_head rq_list;
1919 struct request *rq, *head_rq = list_entry_rq(list.next);
1920 struct list_head *pos = &head_rq->queuelist; /* skip first */
1921 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1922 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1923 unsigned int depth = 1;
1924
1925 list_for_each_continue(pos, &list) {
1926 rq = list_entry_rq(pos);
1927 BUG_ON(!rq->q);
1928 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1929 break;
1930 depth++;
1931 }
1932
1933 list_cut_before(&rq_list, &list, pos);
1934 trace_block_unplug(head_rq->q, depth, !from_schedule);
1935 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1936 from_schedule);
1937 } while(!list_empty(&list));
1938 }
1939
blk_mq_bio_to_request(struct request * rq,struct bio * bio,unsigned int nr_segs)1940 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1941 unsigned int nr_segs)
1942 {
1943 int err;
1944
1945 if (bio->bi_opf & REQ_RAHEAD)
1946 rq->cmd_flags |= REQ_FAILFAST_MASK;
1947
1948 rq->__sector = bio->bi_iter.bi_sector;
1949 rq->write_hint = bio->bi_write_hint;
1950 blk_rq_bio_prep(rq, bio, nr_segs);
1951
1952 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1953 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1954 WARN_ON_ONCE(err);
1955
1956 blk_account_io_start(rq);
1957 }
1958
__blk_mq_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie,bool last)1959 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1960 struct request *rq,
1961 blk_qc_t *cookie, bool last)
1962 {
1963 struct request_queue *q = rq->q;
1964 struct blk_mq_queue_data bd = {
1965 .rq = rq,
1966 .last = last,
1967 };
1968 blk_qc_t new_cookie;
1969 blk_status_t ret;
1970
1971 new_cookie = request_to_qc_t(hctx, rq);
1972
1973 /*
1974 * For OK queue, we are done. For error, caller may kill it.
1975 * Any other error (busy), just add it to our list as we
1976 * previously would have done.
1977 */
1978 ret = q->mq_ops->queue_rq(hctx, &bd);
1979 switch (ret) {
1980 case BLK_STS_OK:
1981 blk_mq_update_dispatch_busy(hctx, false);
1982 *cookie = new_cookie;
1983 break;
1984 case BLK_STS_RESOURCE:
1985 case BLK_STS_DEV_RESOURCE:
1986 blk_mq_update_dispatch_busy(hctx, true);
1987 __blk_mq_requeue_request(rq);
1988 break;
1989 default:
1990 blk_mq_update_dispatch_busy(hctx, false);
1991 *cookie = BLK_QC_T_NONE;
1992 break;
1993 }
1994
1995 return ret;
1996 }
1997
__blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie,bool bypass_insert,bool last)1998 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1999 struct request *rq,
2000 blk_qc_t *cookie,
2001 bool bypass_insert, bool last)
2002 {
2003 struct request_queue *q = rq->q;
2004 bool run_queue = true;
2005
2006 /*
2007 * RCU or SRCU read lock is needed before checking quiesced flag.
2008 *
2009 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2010 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2011 * and avoid driver to try to dispatch again.
2012 */
2013 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2014 run_queue = false;
2015 bypass_insert = false;
2016 goto insert;
2017 }
2018
2019 if (q->elevator && !bypass_insert)
2020 goto insert;
2021
2022 if (!blk_mq_get_dispatch_budget(q))
2023 goto insert;
2024
2025 if (!blk_mq_get_driver_tag(rq)) {
2026 blk_mq_put_dispatch_budget(q);
2027 goto insert;
2028 }
2029
2030 return __blk_mq_issue_directly(hctx, rq, cookie, last);
2031 insert:
2032 if (bypass_insert)
2033 return BLK_STS_RESOURCE;
2034
2035 blk_mq_sched_insert_request(rq, false, run_queue, false);
2036
2037 return BLK_STS_OK;
2038 }
2039
2040 /**
2041 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2042 * @hctx: Pointer of the associated hardware queue.
2043 * @rq: Pointer to request to be sent.
2044 * @cookie: Request queue cookie.
2045 *
2046 * If the device has enough resources to accept a new request now, send the
2047 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2048 * we can try send it another time in the future. Requests inserted at this
2049 * queue have higher priority.
2050 */
blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie)2051 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2052 struct request *rq, blk_qc_t *cookie)
2053 {
2054 blk_status_t ret;
2055 int srcu_idx;
2056
2057 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2058
2059 hctx_lock(hctx, &srcu_idx);
2060
2061 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2062 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2063 blk_mq_request_bypass_insert(rq, false, true);
2064 else if (ret != BLK_STS_OK)
2065 blk_mq_end_request(rq, ret);
2066
2067 hctx_unlock(hctx, srcu_idx);
2068 }
2069
blk_mq_request_issue_directly(struct request * rq,bool last)2070 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2071 {
2072 blk_status_t ret;
2073 int srcu_idx;
2074 blk_qc_t unused_cookie;
2075 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2076
2077 hctx_lock(hctx, &srcu_idx);
2078 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2079 hctx_unlock(hctx, srcu_idx);
2080
2081 return ret;
2082 }
2083
blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx * hctx,struct list_head * list)2084 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2085 struct list_head *list)
2086 {
2087 int queued = 0;
2088 int errors = 0;
2089
2090 while (!list_empty(list)) {
2091 blk_status_t ret;
2092 struct request *rq = list_first_entry(list, struct request,
2093 queuelist);
2094
2095 list_del_init(&rq->queuelist);
2096 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2097 if (ret != BLK_STS_OK) {
2098 if (ret == BLK_STS_RESOURCE ||
2099 ret == BLK_STS_DEV_RESOURCE) {
2100 blk_mq_request_bypass_insert(rq, false,
2101 list_empty(list));
2102 break;
2103 }
2104 blk_mq_end_request(rq, ret);
2105 errors++;
2106 } else
2107 queued++;
2108 }
2109
2110 /*
2111 * If we didn't flush the entire list, we could have told
2112 * the driver there was more coming, but that turned out to
2113 * be a lie.
2114 */
2115 if ((!list_empty(list) || errors) &&
2116 hctx->queue->mq_ops->commit_rqs && queued)
2117 hctx->queue->mq_ops->commit_rqs(hctx);
2118 }
2119
blk_add_rq_to_plug(struct blk_plug * plug,struct request * rq)2120 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2121 {
2122 list_add_tail(&rq->queuelist, &plug->mq_list);
2123 plug->rq_count++;
2124 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2125 struct request *tmp;
2126
2127 tmp = list_first_entry(&plug->mq_list, struct request,
2128 queuelist);
2129 if (tmp->q != rq->q)
2130 plug->multiple_queues = true;
2131 }
2132 }
2133
2134 /*
2135 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2136 * queues. This is important for md arrays to benefit from merging
2137 * requests.
2138 */
blk_plug_max_rq_count(struct blk_plug * plug)2139 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2140 {
2141 if (plug->multiple_queues)
2142 return BLK_MAX_REQUEST_COUNT * 2;
2143 return BLK_MAX_REQUEST_COUNT;
2144 }
2145
2146 /**
2147 * blk_mq_submit_bio - Create and send a request to block device.
2148 * @bio: Bio pointer.
2149 *
2150 * Builds up a request structure from @q and @bio and send to the device. The
2151 * request may not be queued directly to hardware if:
2152 * * This request can be merged with another one
2153 * * We want to place request at plug queue for possible future merging
2154 * * There is an IO scheduler active at this queue
2155 *
2156 * It will not queue the request if there is an error with the bio, or at the
2157 * request creation.
2158 *
2159 * Returns: Request queue cookie.
2160 */
blk_mq_submit_bio(struct bio * bio)2161 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2162 {
2163 struct request_queue *q = bio->bi_disk->queue;
2164 const int is_sync = op_is_sync(bio->bi_opf);
2165 const int is_flush_fua = op_is_flush(bio->bi_opf);
2166 struct blk_mq_alloc_data data = {
2167 .q = q,
2168 };
2169 struct request *rq;
2170 struct blk_plug *plug;
2171 struct request *same_queue_rq = NULL;
2172 unsigned int nr_segs;
2173 blk_qc_t cookie;
2174 blk_status_t ret;
2175
2176 blk_queue_bounce(q, &bio);
2177 __blk_queue_split(&bio, &nr_segs);
2178
2179 if (!bio_integrity_prep(bio))
2180 goto queue_exit;
2181
2182 if (!is_flush_fua && !blk_queue_nomerges(q) &&
2183 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2184 goto queue_exit;
2185
2186 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2187 goto queue_exit;
2188
2189 rq_qos_throttle(q, bio);
2190
2191 data.cmd_flags = bio->bi_opf;
2192 rq = __blk_mq_alloc_request(&data);
2193 if (unlikely(!rq)) {
2194 rq_qos_cleanup(q, bio);
2195 if (bio->bi_opf & REQ_NOWAIT)
2196 bio_wouldblock_error(bio);
2197 goto queue_exit;
2198 }
2199
2200 trace_block_getrq(q, bio, bio->bi_opf);
2201
2202 rq_qos_track(q, rq, bio);
2203
2204 cookie = request_to_qc_t(data.hctx, rq);
2205
2206 blk_mq_bio_to_request(rq, bio, nr_segs);
2207
2208 ret = blk_crypto_init_request(rq);
2209 if (ret != BLK_STS_OK) {
2210 bio->bi_status = ret;
2211 bio_endio(bio);
2212 blk_mq_free_request(rq);
2213 return BLK_QC_T_NONE;
2214 }
2215
2216 plug = blk_mq_plug(q, bio);
2217 if (unlikely(is_flush_fua)) {
2218 /* Bypass scheduler for flush requests */
2219 blk_insert_flush(rq);
2220 blk_mq_run_hw_queue(data.hctx, true);
2221 } else if (plug && (q->nr_hw_queues == 1 ||
2222 blk_mq_is_sbitmap_shared(rq->mq_hctx->flags) ||
2223 q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2224 /*
2225 * Use plugging if we have a ->commit_rqs() hook as well, as
2226 * we know the driver uses bd->last in a smart fashion.
2227 *
2228 * Use normal plugging if this disk is slow HDD, as sequential
2229 * IO may benefit a lot from plug merging.
2230 */
2231 unsigned int request_count = plug->rq_count;
2232 struct request *last = NULL;
2233
2234 if (!request_count)
2235 trace_block_plug(q);
2236 else
2237 last = list_entry_rq(plug->mq_list.prev);
2238
2239 if (request_count >= blk_plug_max_rq_count(plug) || (last &&
2240 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2241 blk_flush_plug_list(plug, false);
2242 trace_block_plug(q);
2243 }
2244
2245 blk_add_rq_to_plug(plug, rq);
2246 } else if (q->elevator) {
2247 /* Insert the request at the IO scheduler queue */
2248 blk_mq_sched_insert_request(rq, false, true, true);
2249 } else if (plug && !blk_queue_nomerges(q)) {
2250 /*
2251 * We do limited plugging. If the bio can be merged, do that.
2252 * Otherwise the existing request in the plug list will be
2253 * issued. So the plug list will have one request at most
2254 * The plug list might get flushed before this. If that happens,
2255 * the plug list is empty, and same_queue_rq is invalid.
2256 */
2257 if (list_empty(&plug->mq_list))
2258 same_queue_rq = NULL;
2259 if (same_queue_rq) {
2260 list_del_init(&same_queue_rq->queuelist);
2261 plug->rq_count--;
2262 }
2263 blk_add_rq_to_plug(plug, rq);
2264 trace_block_plug(q);
2265
2266 if (same_queue_rq) {
2267 data.hctx = same_queue_rq->mq_hctx;
2268 trace_block_unplug(q, 1, true);
2269 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2270 &cookie);
2271 }
2272 } else if ((q->nr_hw_queues > 1 && is_sync) ||
2273 !data.hctx->dispatch_busy) {
2274 /*
2275 * There is no scheduler and we can try to send directly
2276 * to the hardware.
2277 */
2278 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2279 } else {
2280 /* Default case. */
2281 blk_mq_sched_insert_request(rq, false, true, true);
2282 }
2283
2284 return cookie;
2285 queue_exit:
2286 blk_queue_exit(q);
2287 return BLK_QC_T_NONE;
2288 }
2289
order_to_size(unsigned int order)2290 static size_t order_to_size(unsigned int order)
2291 {
2292 return (size_t)PAGE_SIZE << order;
2293 }
2294
2295 /* called before freeing request pool in @tags */
blk_mq_clear_rq_mapping(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)2296 static void blk_mq_clear_rq_mapping(struct blk_mq_tag_set *set,
2297 struct blk_mq_tags *tags, unsigned int hctx_idx)
2298 {
2299 struct blk_mq_tags *drv_tags = set->tags[hctx_idx];
2300 struct page *page;
2301 unsigned long flags;
2302
2303 list_for_each_entry(page, &tags->page_list, lru) {
2304 unsigned long start = (unsigned long)page_address(page);
2305 unsigned long end = start + order_to_size(page->private);
2306 int i;
2307
2308 for (i = 0; i < set->queue_depth; i++) {
2309 struct request *rq = drv_tags->rqs[i];
2310 unsigned long rq_addr = (unsigned long)rq;
2311
2312 if (rq_addr >= start && rq_addr < end) {
2313 WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
2314 cmpxchg(&drv_tags->rqs[i], rq, NULL);
2315 }
2316 }
2317 }
2318
2319 /*
2320 * Wait until all pending iteration is done.
2321 *
2322 * Request reference is cleared and it is guaranteed to be observed
2323 * after the ->lock is released.
2324 */
2325 spin_lock_irqsave(&drv_tags->lock, flags);
2326 spin_unlock_irqrestore(&drv_tags->lock, flags);
2327 }
2328
blk_mq_free_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)2329 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2330 unsigned int hctx_idx)
2331 {
2332 struct page *page;
2333
2334 if (tags->rqs && set->ops->exit_request) {
2335 int i;
2336
2337 for (i = 0; i < tags->nr_tags; i++) {
2338 struct request *rq = tags->static_rqs[i];
2339
2340 if (!rq)
2341 continue;
2342 set->ops->exit_request(set, rq, hctx_idx);
2343 tags->static_rqs[i] = NULL;
2344 }
2345 }
2346
2347 blk_mq_clear_rq_mapping(set, tags, hctx_idx);
2348
2349 while (!list_empty(&tags->page_list)) {
2350 page = list_first_entry(&tags->page_list, struct page, lru);
2351 list_del_init(&page->lru);
2352 /*
2353 * Remove kmemleak object previously allocated in
2354 * blk_mq_alloc_rqs().
2355 */
2356 kmemleak_free(page_address(page));
2357 __free_pages(page, page->private);
2358 }
2359 }
2360
blk_mq_free_rq_map(struct blk_mq_tags * tags,unsigned int flags)2361 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2362 {
2363 kfree(tags->rqs);
2364 tags->rqs = NULL;
2365 kfree(tags->static_rqs);
2366 tags->static_rqs = NULL;
2367
2368 blk_mq_free_tags(tags, flags);
2369 }
2370
blk_mq_alloc_rq_map(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int nr_tags,unsigned int reserved_tags,unsigned int flags)2371 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2372 unsigned int hctx_idx,
2373 unsigned int nr_tags,
2374 unsigned int reserved_tags,
2375 unsigned int flags)
2376 {
2377 struct blk_mq_tags *tags;
2378 int node;
2379
2380 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2381 if (node == NUMA_NO_NODE)
2382 node = set->numa_node;
2383
2384 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2385 if (!tags)
2386 return NULL;
2387
2388 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2389 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2390 node);
2391 if (!tags->rqs) {
2392 blk_mq_free_tags(tags, flags);
2393 return NULL;
2394 }
2395
2396 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2397 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2398 node);
2399 if (!tags->static_rqs) {
2400 kfree(tags->rqs);
2401 blk_mq_free_tags(tags, flags);
2402 return NULL;
2403 }
2404
2405 return tags;
2406 }
2407
blk_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,int node)2408 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2409 unsigned int hctx_idx, int node)
2410 {
2411 int ret;
2412
2413 if (set->ops->init_request) {
2414 ret = set->ops->init_request(set, rq, hctx_idx, node);
2415 if (ret)
2416 return ret;
2417 }
2418
2419 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2420 return 0;
2421 }
2422
blk_mq_alloc_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx,unsigned int depth)2423 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2424 unsigned int hctx_idx, unsigned int depth)
2425 {
2426 unsigned int i, j, entries_per_page, max_order = 4;
2427 size_t rq_size, left;
2428 int node;
2429
2430 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2431 if (node == NUMA_NO_NODE)
2432 node = set->numa_node;
2433
2434 INIT_LIST_HEAD(&tags->page_list);
2435
2436 /*
2437 * rq_size is the size of the request plus driver payload, rounded
2438 * to the cacheline size
2439 */
2440 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2441 cache_line_size());
2442 left = rq_size * depth;
2443
2444 for (i = 0; i < depth; ) {
2445 int this_order = max_order;
2446 struct page *page;
2447 int to_do;
2448 void *p;
2449
2450 while (this_order && left < order_to_size(this_order - 1))
2451 this_order--;
2452
2453 do {
2454 page = alloc_pages_node(node,
2455 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2456 this_order);
2457 if (page)
2458 break;
2459 if (!this_order--)
2460 break;
2461 if (order_to_size(this_order) < rq_size)
2462 break;
2463 } while (1);
2464
2465 if (!page)
2466 goto fail;
2467
2468 page->private = this_order;
2469 list_add_tail(&page->lru, &tags->page_list);
2470
2471 p = page_address(page);
2472 /*
2473 * Allow kmemleak to scan these pages as they contain pointers
2474 * to additional allocations like via ops->init_request().
2475 */
2476 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2477 entries_per_page = order_to_size(this_order) / rq_size;
2478 to_do = min(entries_per_page, depth - i);
2479 left -= to_do * rq_size;
2480 for (j = 0; j < to_do; j++) {
2481 struct request *rq = p;
2482
2483 tags->static_rqs[i] = rq;
2484 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2485 tags->static_rqs[i] = NULL;
2486 goto fail;
2487 }
2488
2489 p += rq_size;
2490 i++;
2491 }
2492 }
2493 return 0;
2494
2495 fail:
2496 blk_mq_free_rqs(set, tags, hctx_idx);
2497 return -ENOMEM;
2498 }
2499
2500 struct rq_iter_data {
2501 struct blk_mq_hw_ctx *hctx;
2502 bool has_rq;
2503 };
2504
blk_mq_has_request(struct request * rq,void * data,bool reserved)2505 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2506 {
2507 struct rq_iter_data *iter_data = data;
2508
2509 if (rq->mq_hctx != iter_data->hctx)
2510 return true;
2511 iter_data->has_rq = true;
2512 return false;
2513 }
2514
blk_mq_hctx_has_requests(struct blk_mq_hw_ctx * hctx)2515 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2516 {
2517 struct blk_mq_tags *tags = hctx->sched_tags ?
2518 hctx->sched_tags : hctx->tags;
2519 struct rq_iter_data data = {
2520 .hctx = hctx,
2521 };
2522
2523 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2524 return data.has_rq;
2525 }
2526
blk_mq_last_cpu_in_hctx(unsigned int cpu,struct blk_mq_hw_ctx * hctx)2527 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2528 struct blk_mq_hw_ctx *hctx)
2529 {
2530 if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2531 return false;
2532 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2533 return false;
2534 return true;
2535 }
2536
blk_mq_hctx_notify_offline(unsigned int cpu,struct hlist_node * node)2537 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2538 {
2539 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2540 struct blk_mq_hw_ctx, cpuhp_online);
2541
2542 if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2543 !blk_mq_last_cpu_in_hctx(cpu, hctx))
2544 return 0;
2545
2546 /*
2547 * Prevent new request from being allocated on the current hctx.
2548 *
2549 * The smp_mb__after_atomic() Pairs with the implied barrier in
2550 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
2551 * seen once we return from the tag allocator.
2552 */
2553 set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2554 smp_mb__after_atomic();
2555
2556 /*
2557 * Try to grab a reference to the queue and wait for any outstanding
2558 * requests. If we could not grab a reference the queue has been
2559 * frozen and there are no requests.
2560 */
2561 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2562 while (blk_mq_hctx_has_requests(hctx))
2563 msleep(5);
2564 percpu_ref_put(&hctx->queue->q_usage_counter);
2565 }
2566
2567 return 0;
2568 }
2569
blk_mq_hctx_notify_online(unsigned int cpu,struct hlist_node * node)2570 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2571 {
2572 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2573 struct blk_mq_hw_ctx, cpuhp_online);
2574
2575 if (cpumask_test_cpu(cpu, hctx->cpumask))
2576 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2577 return 0;
2578 }
2579
2580 /*
2581 * 'cpu' is going away. splice any existing rq_list entries from this
2582 * software queue to the hw queue dispatch list, and ensure that it
2583 * gets run.
2584 */
blk_mq_hctx_notify_dead(unsigned int cpu,struct hlist_node * node)2585 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2586 {
2587 struct blk_mq_hw_ctx *hctx;
2588 struct blk_mq_ctx *ctx;
2589 LIST_HEAD(tmp);
2590 enum hctx_type type;
2591
2592 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2593 if (!cpumask_test_cpu(cpu, hctx->cpumask))
2594 return 0;
2595
2596 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2597 type = hctx->type;
2598
2599 spin_lock(&ctx->lock);
2600 if (!list_empty(&ctx->rq_lists[type])) {
2601 list_splice_init(&ctx->rq_lists[type], &tmp);
2602 blk_mq_hctx_clear_pending(hctx, ctx);
2603 }
2604 spin_unlock(&ctx->lock);
2605
2606 if (list_empty(&tmp))
2607 return 0;
2608
2609 spin_lock(&hctx->lock);
2610 list_splice_tail_init(&tmp, &hctx->dispatch);
2611 spin_unlock(&hctx->lock);
2612
2613 blk_mq_run_hw_queue(hctx, true);
2614 return 0;
2615 }
2616
blk_mq_remove_cpuhp(struct blk_mq_hw_ctx * hctx)2617 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2618 {
2619 if (!(hctx->flags & BLK_MQ_F_STACKING))
2620 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2621 &hctx->cpuhp_online);
2622 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2623 &hctx->cpuhp_dead);
2624 }
2625
2626 /*
2627 * Before freeing hw queue, clearing the flush request reference in
2628 * tags->rqs[] for avoiding potential UAF.
2629 */
blk_mq_clear_flush_rq_mapping(struct blk_mq_tags * tags,unsigned int queue_depth,struct request * flush_rq)2630 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
2631 unsigned int queue_depth, struct request *flush_rq)
2632 {
2633 int i;
2634 unsigned long flags;
2635
2636 /* The hw queue may not be mapped yet */
2637 if (!tags)
2638 return;
2639
2640 WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);
2641
2642 for (i = 0; i < queue_depth; i++)
2643 cmpxchg(&tags->rqs[i], flush_rq, NULL);
2644
2645 /*
2646 * Wait until all pending iteration is done.
2647 *
2648 * Request reference is cleared and it is guaranteed to be observed
2649 * after the ->lock is released.
2650 */
2651 spin_lock_irqsave(&tags->lock, flags);
2652 spin_unlock_irqrestore(&tags->lock, flags);
2653 }
2654
2655 /* hctx->ctxs will be freed in queue's release handler */
blk_mq_exit_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)2656 static void blk_mq_exit_hctx(struct request_queue *q,
2657 struct blk_mq_tag_set *set,
2658 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2659 {
2660 struct request *flush_rq = hctx->fq->flush_rq;
2661
2662 if (blk_mq_hw_queue_mapped(hctx))
2663 blk_mq_tag_idle(hctx);
2664
2665 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
2666 set->queue_depth, flush_rq);
2667 if (set->ops->exit_request)
2668 set->ops->exit_request(set, flush_rq, hctx_idx);
2669
2670 if (set->ops->exit_hctx)
2671 set->ops->exit_hctx(hctx, hctx_idx);
2672
2673 blk_mq_remove_cpuhp(hctx);
2674
2675 spin_lock(&q->unused_hctx_lock);
2676 list_add(&hctx->hctx_list, &q->unused_hctx_list);
2677 spin_unlock(&q->unused_hctx_lock);
2678 }
2679
blk_mq_exit_hw_queues(struct request_queue * q,struct blk_mq_tag_set * set,int nr_queue)2680 static void blk_mq_exit_hw_queues(struct request_queue *q,
2681 struct blk_mq_tag_set *set, int nr_queue)
2682 {
2683 struct blk_mq_hw_ctx *hctx;
2684 unsigned int i;
2685
2686 queue_for_each_hw_ctx(q, hctx, i) {
2687 if (i == nr_queue)
2688 break;
2689 blk_mq_debugfs_unregister_hctx(hctx);
2690 blk_mq_exit_hctx(q, set, hctx, i);
2691 }
2692 }
2693
blk_mq_hw_ctx_size(struct blk_mq_tag_set * tag_set)2694 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2695 {
2696 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2697
2698 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2699 __alignof__(struct blk_mq_hw_ctx)) !=
2700 sizeof(struct blk_mq_hw_ctx));
2701
2702 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2703 hw_ctx_size += sizeof(struct srcu_struct);
2704
2705 return hw_ctx_size;
2706 }
2707
blk_mq_init_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned hctx_idx)2708 static int blk_mq_init_hctx(struct request_queue *q,
2709 struct blk_mq_tag_set *set,
2710 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2711 {
2712 hctx->queue_num = hctx_idx;
2713
2714 if (!(hctx->flags & BLK_MQ_F_STACKING))
2715 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2716 &hctx->cpuhp_online);
2717 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2718
2719 hctx->tags = set->tags[hctx_idx];
2720
2721 if (set->ops->init_hctx &&
2722 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2723 goto unregister_cpu_notifier;
2724
2725 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2726 hctx->numa_node))
2727 goto exit_hctx;
2728 return 0;
2729
2730 exit_hctx:
2731 if (set->ops->exit_hctx)
2732 set->ops->exit_hctx(hctx, hctx_idx);
2733 unregister_cpu_notifier:
2734 blk_mq_remove_cpuhp(hctx);
2735 return -1;
2736 }
2737
2738 static struct blk_mq_hw_ctx *
blk_mq_alloc_hctx(struct request_queue * q,struct blk_mq_tag_set * set,int node)2739 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2740 int node)
2741 {
2742 struct blk_mq_hw_ctx *hctx;
2743 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2744
2745 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2746 if (!hctx)
2747 goto fail_alloc_hctx;
2748
2749 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2750 goto free_hctx;
2751
2752 atomic_set(&hctx->nr_active, 0);
2753 atomic_set(&hctx->elevator_queued, 0);
2754 if (node == NUMA_NO_NODE)
2755 node = set->numa_node;
2756 hctx->numa_node = node;
2757
2758 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2759 spin_lock_init(&hctx->lock);
2760 INIT_LIST_HEAD(&hctx->dispatch);
2761 hctx->queue = q;
2762 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2763
2764 INIT_LIST_HEAD(&hctx->hctx_list);
2765
2766 /*
2767 * Allocate space for all possible cpus to avoid allocation at
2768 * runtime
2769 */
2770 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2771 gfp, node);
2772 if (!hctx->ctxs)
2773 goto free_cpumask;
2774
2775 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2776 gfp, node))
2777 goto free_ctxs;
2778 hctx->nr_ctx = 0;
2779
2780 spin_lock_init(&hctx->dispatch_wait_lock);
2781 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2782 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2783
2784 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2785 if (!hctx->fq)
2786 goto free_bitmap;
2787
2788 if (hctx->flags & BLK_MQ_F_BLOCKING)
2789 init_srcu_struct(hctx->srcu);
2790 blk_mq_hctx_kobj_init(hctx);
2791
2792 return hctx;
2793
2794 free_bitmap:
2795 sbitmap_free(&hctx->ctx_map);
2796 free_ctxs:
2797 kfree(hctx->ctxs);
2798 free_cpumask:
2799 free_cpumask_var(hctx->cpumask);
2800 free_hctx:
2801 kfree(hctx);
2802 fail_alloc_hctx:
2803 return NULL;
2804 }
2805
blk_mq_init_cpu_queues(struct request_queue * q,unsigned int nr_hw_queues)2806 static void blk_mq_init_cpu_queues(struct request_queue *q,
2807 unsigned int nr_hw_queues)
2808 {
2809 struct blk_mq_tag_set *set = q->tag_set;
2810 unsigned int i, j;
2811
2812 for_each_possible_cpu(i) {
2813 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2814 struct blk_mq_hw_ctx *hctx;
2815 int k;
2816
2817 __ctx->cpu = i;
2818 spin_lock_init(&__ctx->lock);
2819 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2820 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2821
2822 __ctx->queue = q;
2823
2824 /*
2825 * Set local node, IFF we have more than one hw queue. If
2826 * not, we remain on the home node of the device
2827 */
2828 for (j = 0; j < set->nr_maps; j++) {
2829 hctx = blk_mq_map_queue_type(q, j, i);
2830 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2831 hctx->numa_node = cpu_to_node(i);
2832 }
2833 }
2834 }
2835
__blk_mq_alloc_map_and_request(struct blk_mq_tag_set * set,int hctx_idx)2836 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2837 int hctx_idx)
2838 {
2839 unsigned int flags = set->flags;
2840 int ret = 0;
2841
2842 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2843 set->queue_depth, set->reserved_tags, flags);
2844 if (!set->tags[hctx_idx])
2845 return false;
2846
2847 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2848 set->queue_depth);
2849 if (!ret)
2850 return true;
2851
2852 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2853 set->tags[hctx_idx] = NULL;
2854 return false;
2855 }
2856
blk_mq_free_map_and_requests(struct blk_mq_tag_set * set,unsigned int hctx_idx)2857 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2858 unsigned int hctx_idx)
2859 {
2860 unsigned int flags = set->flags;
2861
2862 if (set->tags && set->tags[hctx_idx]) {
2863 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2864 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2865 set->tags[hctx_idx] = NULL;
2866 }
2867 }
2868
blk_mq_map_swqueue(struct request_queue * q)2869 static void blk_mq_map_swqueue(struct request_queue *q)
2870 {
2871 unsigned int i, j, hctx_idx;
2872 struct blk_mq_hw_ctx *hctx;
2873 struct blk_mq_ctx *ctx;
2874 struct blk_mq_tag_set *set = q->tag_set;
2875
2876 queue_for_each_hw_ctx(q, hctx, i) {
2877 cpumask_clear(hctx->cpumask);
2878 hctx->nr_ctx = 0;
2879 hctx->dispatch_from = NULL;
2880 }
2881
2882 /*
2883 * Map software to hardware queues.
2884 *
2885 * If the cpu isn't present, the cpu is mapped to first hctx.
2886 */
2887 for_each_possible_cpu(i) {
2888
2889 ctx = per_cpu_ptr(q->queue_ctx, i);
2890 for (j = 0; j < set->nr_maps; j++) {
2891 if (!set->map[j].nr_queues) {
2892 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2893 HCTX_TYPE_DEFAULT, i);
2894 continue;
2895 }
2896 hctx_idx = set->map[j].mq_map[i];
2897 /* unmapped hw queue can be remapped after CPU topo changed */
2898 if (!set->tags[hctx_idx] &&
2899 !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2900 /*
2901 * If tags initialization fail for some hctx,
2902 * that hctx won't be brought online. In this
2903 * case, remap the current ctx to hctx[0] which
2904 * is guaranteed to always have tags allocated
2905 */
2906 set->map[j].mq_map[i] = 0;
2907 }
2908
2909 hctx = blk_mq_map_queue_type(q, j, i);
2910 ctx->hctxs[j] = hctx;
2911 /*
2912 * If the CPU is already set in the mask, then we've
2913 * mapped this one already. This can happen if
2914 * devices share queues across queue maps.
2915 */
2916 if (cpumask_test_cpu(i, hctx->cpumask))
2917 continue;
2918
2919 cpumask_set_cpu(i, hctx->cpumask);
2920 hctx->type = j;
2921 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2922 hctx->ctxs[hctx->nr_ctx++] = ctx;
2923
2924 /*
2925 * If the nr_ctx type overflows, we have exceeded the
2926 * amount of sw queues we can support.
2927 */
2928 BUG_ON(!hctx->nr_ctx);
2929 }
2930
2931 for (; j < HCTX_MAX_TYPES; j++)
2932 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2933 HCTX_TYPE_DEFAULT, i);
2934 }
2935
2936 queue_for_each_hw_ctx(q, hctx, i) {
2937 /*
2938 * If no software queues are mapped to this hardware queue,
2939 * disable it and free the request entries.
2940 */
2941 if (!hctx->nr_ctx) {
2942 /* Never unmap queue 0. We need it as a
2943 * fallback in case of a new remap fails
2944 * allocation
2945 */
2946 if (i && set->tags[i])
2947 blk_mq_free_map_and_requests(set, i);
2948
2949 hctx->tags = NULL;
2950 continue;
2951 }
2952
2953 hctx->tags = set->tags[i];
2954 WARN_ON(!hctx->tags);
2955
2956 /*
2957 * Set the map size to the number of mapped software queues.
2958 * This is more accurate and more efficient than looping
2959 * over all possibly mapped software queues.
2960 */
2961 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2962
2963 /*
2964 * Initialize batch roundrobin counts
2965 */
2966 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2967 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2968 }
2969 }
2970
2971 /*
2972 * Caller needs to ensure that we're either frozen/quiesced, or that
2973 * the queue isn't live yet.
2974 */
queue_set_hctx_shared(struct request_queue * q,bool shared)2975 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2976 {
2977 struct blk_mq_hw_ctx *hctx;
2978 int i;
2979
2980 queue_for_each_hw_ctx(q, hctx, i) {
2981 if (shared) {
2982 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2983 } else {
2984 blk_mq_tag_idle(hctx);
2985 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2986 }
2987 }
2988 }
2989
blk_mq_update_tag_set_shared(struct blk_mq_tag_set * set,bool shared)2990 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
2991 bool shared)
2992 {
2993 struct request_queue *q;
2994
2995 lockdep_assert_held(&set->tag_list_lock);
2996
2997 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2998 blk_mq_freeze_queue(q);
2999 queue_set_hctx_shared(q, shared);
3000 blk_mq_unfreeze_queue(q);
3001 }
3002 }
3003
blk_mq_del_queue_tag_set(struct request_queue * q)3004 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3005 {
3006 struct blk_mq_tag_set *set = q->tag_set;
3007
3008 mutex_lock(&set->tag_list_lock);
3009 list_del(&q->tag_set_list);
3010 if (list_is_singular(&set->tag_list)) {
3011 /* just transitioned to unshared */
3012 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3013 /* update existing queue */
3014 blk_mq_update_tag_set_shared(set, false);
3015 }
3016 mutex_unlock(&set->tag_list_lock);
3017 INIT_LIST_HEAD(&q->tag_set_list);
3018 }
3019
blk_mq_add_queue_tag_set(struct blk_mq_tag_set * set,struct request_queue * q)3020 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3021 struct request_queue *q)
3022 {
3023 mutex_lock(&set->tag_list_lock);
3024
3025 /*
3026 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3027 */
3028 if (!list_empty(&set->tag_list) &&
3029 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3030 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3031 /* update existing queue */
3032 blk_mq_update_tag_set_shared(set, true);
3033 }
3034 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3035 queue_set_hctx_shared(q, true);
3036 list_add_tail(&q->tag_set_list, &set->tag_list);
3037
3038 mutex_unlock(&set->tag_list_lock);
3039 }
3040
3041 /* All allocations will be freed in release handler of q->mq_kobj */
blk_mq_alloc_ctxs(struct request_queue * q)3042 static int blk_mq_alloc_ctxs(struct request_queue *q)
3043 {
3044 struct blk_mq_ctxs *ctxs;
3045 int cpu;
3046
3047 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3048 if (!ctxs)
3049 return -ENOMEM;
3050
3051 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3052 if (!ctxs->queue_ctx)
3053 goto fail;
3054
3055 for_each_possible_cpu(cpu) {
3056 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3057 ctx->ctxs = ctxs;
3058 }
3059
3060 q->mq_kobj = &ctxs->kobj;
3061 q->queue_ctx = ctxs->queue_ctx;
3062
3063 return 0;
3064 fail:
3065 kfree(ctxs);
3066 return -ENOMEM;
3067 }
3068
3069 /*
3070 * It is the actual release handler for mq, but we do it from
3071 * request queue's release handler for avoiding use-after-free
3072 * and headache because q->mq_kobj shouldn't have been introduced,
3073 * but we can't group ctx/kctx kobj without it.
3074 */
blk_mq_release(struct request_queue * q)3075 void blk_mq_release(struct request_queue *q)
3076 {
3077 struct blk_mq_hw_ctx *hctx, *next;
3078 int i;
3079
3080 queue_for_each_hw_ctx(q, hctx, i)
3081 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3082
3083 /* all hctx are in .unused_hctx_list now */
3084 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3085 list_del_init(&hctx->hctx_list);
3086 kobject_put(&hctx->kobj);
3087 }
3088
3089 kfree(q->queue_hw_ctx);
3090
3091 /*
3092 * release .mq_kobj and sw queue's kobject now because
3093 * both share lifetime with request queue.
3094 */
3095 blk_mq_sysfs_deinit(q);
3096 }
3097
blk_mq_init_queue_data(struct blk_mq_tag_set * set,void * queuedata)3098 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3099 void *queuedata)
3100 {
3101 struct request_queue *uninit_q, *q;
3102
3103 uninit_q = blk_alloc_queue(set->numa_node);
3104 if (!uninit_q)
3105 return ERR_PTR(-ENOMEM);
3106 uninit_q->queuedata = queuedata;
3107
3108 /*
3109 * Initialize the queue without an elevator. device_add_disk() will do
3110 * the initialization.
3111 */
3112 q = blk_mq_init_allocated_queue(set, uninit_q, false);
3113 if (IS_ERR(q))
3114 blk_cleanup_queue(uninit_q);
3115
3116 return q;
3117 }
3118 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3119
blk_mq_init_queue(struct blk_mq_tag_set * set)3120 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3121 {
3122 return blk_mq_init_queue_data(set, NULL);
3123 }
3124 EXPORT_SYMBOL(blk_mq_init_queue);
3125
3126 /*
3127 * Helper for setting up a queue with mq ops, given queue depth, and
3128 * the passed in mq ops flags.
3129 */
blk_mq_init_sq_queue(struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int queue_depth,unsigned int set_flags)3130 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
3131 const struct blk_mq_ops *ops,
3132 unsigned int queue_depth,
3133 unsigned int set_flags)
3134 {
3135 struct request_queue *q;
3136 int ret;
3137
3138 memset(set, 0, sizeof(*set));
3139 set->ops = ops;
3140 set->nr_hw_queues = 1;
3141 set->nr_maps = 1;
3142 set->queue_depth = queue_depth;
3143 set->numa_node = NUMA_NO_NODE;
3144 set->flags = set_flags;
3145
3146 ret = blk_mq_alloc_tag_set(set);
3147 if (ret)
3148 return ERR_PTR(ret);
3149
3150 q = blk_mq_init_queue(set);
3151 if (IS_ERR(q)) {
3152 blk_mq_free_tag_set(set);
3153 return q;
3154 }
3155
3156 return q;
3157 }
3158 EXPORT_SYMBOL(blk_mq_init_sq_queue);
3159
blk_mq_alloc_and_init_hctx(struct blk_mq_tag_set * set,struct request_queue * q,int hctx_idx,int node)3160 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3161 struct blk_mq_tag_set *set, struct request_queue *q,
3162 int hctx_idx, int node)
3163 {
3164 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3165
3166 /* reuse dead hctx first */
3167 spin_lock(&q->unused_hctx_lock);
3168 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3169 if (tmp->numa_node == node) {
3170 hctx = tmp;
3171 break;
3172 }
3173 }
3174 if (hctx)
3175 list_del_init(&hctx->hctx_list);
3176 spin_unlock(&q->unused_hctx_lock);
3177
3178 if (!hctx)
3179 hctx = blk_mq_alloc_hctx(q, set, node);
3180 if (!hctx)
3181 goto fail;
3182
3183 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3184 goto free_hctx;
3185
3186 return hctx;
3187
3188 free_hctx:
3189 kobject_put(&hctx->kobj);
3190 fail:
3191 return NULL;
3192 }
3193
blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set * set,struct request_queue * q)3194 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3195 struct request_queue *q)
3196 {
3197 int i, j, end;
3198 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3199
3200 if (q->nr_hw_queues < set->nr_hw_queues) {
3201 struct blk_mq_hw_ctx **new_hctxs;
3202
3203 new_hctxs = kcalloc_node(set->nr_hw_queues,
3204 sizeof(*new_hctxs), GFP_KERNEL,
3205 set->numa_node);
3206 if (!new_hctxs)
3207 return;
3208 if (hctxs)
3209 memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3210 sizeof(*hctxs));
3211 q->queue_hw_ctx = new_hctxs;
3212 kfree(hctxs);
3213 hctxs = new_hctxs;
3214 }
3215
3216 /* protect against switching io scheduler */
3217 mutex_lock(&q->sysfs_lock);
3218 for (i = 0; i < set->nr_hw_queues; i++) {
3219 int node;
3220 struct blk_mq_hw_ctx *hctx;
3221
3222 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3223 /*
3224 * If the hw queue has been mapped to another numa node,
3225 * we need to realloc the hctx. If allocation fails, fallback
3226 * to use the previous one.
3227 */
3228 if (hctxs[i] && (hctxs[i]->numa_node == node))
3229 continue;
3230
3231 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3232 if (hctx) {
3233 if (hctxs[i])
3234 blk_mq_exit_hctx(q, set, hctxs[i], i);
3235 hctxs[i] = hctx;
3236 } else {
3237 if (hctxs[i])
3238 pr_warn("Allocate new hctx on node %d fails,\
3239 fallback to previous one on node %d\n",
3240 node, hctxs[i]->numa_node);
3241 else
3242 break;
3243 }
3244 }
3245 /*
3246 * Increasing nr_hw_queues fails. Free the newly allocated
3247 * hctxs and keep the previous q->nr_hw_queues.
3248 */
3249 if (i != set->nr_hw_queues) {
3250 j = q->nr_hw_queues;
3251 end = i;
3252 } else {
3253 j = i;
3254 end = q->nr_hw_queues;
3255 q->nr_hw_queues = set->nr_hw_queues;
3256 }
3257
3258 for (; j < end; j++) {
3259 struct blk_mq_hw_ctx *hctx = hctxs[j];
3260
3261 if (hctx) {
3262 blk_mq_exit_hctx(q, set, hctx, j);
3263 hctxs[j] = NULL;
3264 }
3265 }
3266 mutex_unlock(&q->sysfs_lock);
3267 }
3268
blk_mq_init_allocated_queue(struct blk_mq_tag_set * set,struct request_queue * q,bool elevator_init)3269 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3270 struct request_queue *q,
3271 bool elevator_init)
3272 {
3273 /* mark the queue as mq asap */
3274 q->mq_ops = set->ops;
3275
3276 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3277 blk_mq_poll_stats_bkt,
3278 BLK_MQ_POLL_STATS_BKTS, q);
3279 if (!q->poll_cb)
3280 goto err_exit;
3281
3282 if (blk_mq_alloc_ctxs(q))
3283 goto err_poll;
3284
3285 /* init q->mq_kobj and sw queues' kobjects */
3286 blk_mq_sysfs_init(q);
3287
3288 INIT_LIST_HEAD(&q->unused_hctx_list);
3289 spin_lock_init(&q->unused_hctx_lock);
3290
3291 blk_mq_realloc_hw_ctxs(set, q);
3292 if (!q->nr_hw_queues)
3293 goto err_hctxs;
3294
3295 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3296 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3297
3298 q->tag_set = set;
3299
3300 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3301 if (set->nr_maps > HCTX_TYPE_POLL &&
3302 set->map[HCTX_TYPE_POLL].nr_queues)
3303 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3304
3305 q->sg_reserved_size = INT_MAX;
3306
3307 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3308 INIT_LIST_HEAD(&q->requeue_list);
3309 spin_lock_init(&q->requeue_lock);
3310
3311 q->nr_requests = set->queue_depth;
3312
3313 /*
3314 * Default to classic polling
3315 */
3316 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3317
3318 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3319 blk_mq_add_queue_tag_set(set, q);
3320 blk_mq_map_swqueue(q);
3321
3322 if (elevator_init)
3323 elevator_init_mq(q);
3324
3325 return q;
3326
3327 err_hctxs:
3328 kfree(q->queue_hw_ctx);
3329 q->nr_hw_queues = 0;
3330 blk_mq_sysfs_deinit(q);
3331 err_poll:
3332 blk_stat_free_callback(q->poll_cb);
3333 q->poll_cb = NULL;
3334 err_exit:
3335 q->mq_ops = NULL;
3336 return ERR_PTR(-ENOMEM);
3337 }
3338 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3339
3340 /* tags can _not_ be used after returning from blk_mq_exit_queue */
blk_mq_exit_queue(struct request_queue * q)3341 void blk_mq_exit_queue(struct request_queue *q)
3342 {
3343 struct blk_mq_tag_set *set = q->tag_set;
3344
3345 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
3346 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3347 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
3348 blk_mq_del_queue_tag_set(q);
3349 }
3350
__blk_mq_alloc_rq_maps(struct blk_mq_tag_set * set)3351 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3352 {
3353 int i;
3354
3355 for (i = 0; i < set->nr_hw_queues; i++) {
3356 if (!__blk_mq_alloc_map_and_request(set, i))
3357 goto out_unwind;
3358 cond_resched();
3359 }
3360
3361 return 0;
3362
3363 out_unwind:
3364 while (--i >= 0)
3365 blk_mq_free_map_and_requests(set, i);
3366
3367 return -ENOMEM;
3368 }
3369
3370 /*
3371 * Allocate the request maps associated with this tag_set. Note that this
3372 * may reduce the depth asked for, if memory is tight. set->queue_depth
3373 * will be updated to reflect the allocated depth.
3374 */
blk_mq_alloc_map_and_requests(struct blk_mq_tag_set * set)3375 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3376 {
3377 unsigned int depth;
3378 int err;
3379
3380 depth = set->queue_depth;
3381 do {
3382 err = __blk_mq_alloc_rq_maps(set);
3383 if (!err)
3384 break;
3385
3386 set->queue_depth >>= 1;
3387 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3388 err = -ENOMEM;
3389 break;
3390 }
3391 } while (set->queue_depth);
3392
3393 if (!set->queue_depth || err) {
3394 pr_err("blk-mq: failed to allocate request map\n");
3395 return -ENOMEM;
3396 }
3397
3398 if (depth != set->queue_depth)
3399 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3400 depth, set->queue_depth);
3401
3402 return 0;
3403 }
3404
blk_mq_update_queue_map(struct blk_mq_tag_set * set)3405 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3406 {
3407 /*
3408 * blk_mq_map_queues() and multiple .map_queues() implementations
3409 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3410 * number of hardware queues.
3411 */
3412 if (set->nr_maps == 1)
3413 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3414
3415 if (set->ops->map_queues && !is_kdump_kernel()) {
3416 int i;
3417
3418 /*
3419 * transport .map_queues is usually done in the following
3420 * way:
3421 *
3422 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3423 * mask = get_cpu_mask(queue)
3424 * for_each_cpu(cpu, mask)
3425 * set->map[x].mq_map[cpu] = queue;
3426 * }
3427 *
3428 * When we need to remap, the table has to be cleared for
3429 * killing stale mapping since one CPU may not be mapped
3430 * to any hw queue.
3431 */
3432 for (i = 0; i < set->nr_maps; i++)
3433 blk_mq_clear_mq_map(&set->map[i]);
3434
3435 return set->ops->map_queues(set);
3436 } else {
3437 BUG_ON(set->nr_maps > 1);
3438 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3439 }
3440 }
3441
blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set * set,int cur_nr_hw_queues,int new_nr_hw_queues)3442 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3443 int cur_nr_hw_queues, int new_nr_hw_queues)
3444 {
3445 struct blk_mq_tags **new_tags;
3446
3447 if (cur_nr_hw_queues >= new_nr_hw_queues)
3448 return 0;
3449
3450 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3451 GFP_KERNEL, set->numa_node);
3452 if (!new_tags)
3453 return -ENOMEM;
3454
3455 if (set->tags)
3456 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3457 sizeof(*set->tags));
3458 kfree(set->tags);
3459 set->tags = new_tags;
3460 set->nr_hw_queues = new_nr_hw_queues;
3461
3462 return 0;
3463 }
3464
3465 /*
3466 * Alloc a tag set to be associated with one or more request queues.
3467 * May fail with EINVAL for various error conditions. May adjust the
3468 * requested depth down, if it's too large. In that case, the set
3469 * value will be stored in set->queue_depth.
3470 */
blk_mq_alloc_tag_set(struct blk_mq_tag_set * set)3471 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3472 {
3473 int i, ret;
3474
3475 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3476
3477 if (!set->nr_hw_queues)
3478 return -EINVAL;
3479 if (!set->queue_depth)
3480 return -EINVAL;
3481 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3482 return -EINVAL;
3483
3484 if (!set->ops->queue_rq)
3485 return -EINVAL;
3486
3487 if (!set->ops->get_budget ^ !set->ops->put_budget)
3488 return -EINVAL;
3489
3490 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3491 pr_info("blk-mq: reduced tag depth to %u\n",
3492 BLK_MQ_MAX_DEPTH);
3493 set->queue_depth = BLK_MQ_MAX_DEPTH;
3494 }
3495
3496 if (!set->nr_maps)
3497 set->nr_maps = 1;
3498 else if (set->nr_maps > HCTX_MAX_TYPES)
3499 return -EINVAL;
3500
3501 /*
3502 * If a crashdump is active, then we are potentially in a very
3503 * memory constrained environment. Limit us to 1 queue and
3504 * 64 tags to prevent using too much memory.
3505 */
3506 if (is_kdump_kernel()) {
3507 set->nr_hw_queues = 1;
3508 set->nr_maps = 1;
3509 set->queue_depth = min(64U, set->queue_depth);
3510 }
3511 /*
3512 * There is no use for more h/w queues than cpus if we just have
3513 * a single map
3514 */
3515 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3516 set->nr_hw_queues = nr_cpu_ids;
3517
3518 if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
3519 return -ENOMEM;
3520
3521 ret = -ENOMEM;
3522 for (i = 0; i < set->nr_maps; i++) {
3523 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3524 sizeof(set->map[i].mq_map[0]),
3525 GFP_KERNEL, set->numa_node);
3526 if (!set->map[i].mq_map)
3527 goto out_free_mq_map;
3528 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3529 }
3530
3531 ret = blk_mq_update_queue_map(set);
3532 if (ret)
3533 goto out_free_mq_map;
3534
3535 ret = blk_mq_alloc_map_and_requests(set);
3536 if (ret)
3537 goto out_free_mq_map;
3538
3539 if (blk_mq_is_sbitmap_shared(set->flags)) {
3540 atomic_set(&set->active_queues_shared_sbitmap, 0);
3541
3542 if (blk_mq_init_shared_sbitmap(set, set->flags)) {
3543 ret = -ENOMEM;
3544 goto out_free_mq_rq_maps;
3545 }
3546 }
3547
3548 mutex_init(&set->tag_list_lock);
3549 INIT_LIST_HEAD(&set->tag_list);
3550
3551 return 0;
3552
3553 out_free_mq_rq_maps:
3554 for (i = 0; i < set->nr_hw_queues; i++)
3555 blk_mq_free_map_and_requests(set, i);
3556 out_free_mq_map:
3557 for (i = 0; i < set->nr_maps; i++) {
3558 kfree(set->map[i].mq_map);
3559 set->map[i].mq_map = NULL;
3560 }
3561 kfree(set->tags);
3562 set->tags = NULL;
3563 return ret;
3564 }
3565 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3566
blk_mq_free_tag_set(struct blk_mq_tag_set * set)3567 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3568 {
3569 int i, j;
3570
3571 for (i = 0; i < set->nr_hw_queues; i++)
3572 blk_mq_free_map_and_requests(set, i);
3573
3574 if (blk_mq_is_sbitmap_shared(set->flags))
3575 blk_mq_exit_shared_sbitmap(set);
3576
3577 for (j = 0; j < set->nr_maps; j++) {
3578 kfree(set->map[j].mq_map);
3579 set->map[j].mq_map = NULL;
3580 }
3581
3582 kfree(set->tags);
3583 set->tags = NULL;
3584 }
3585 EXPORT_SYMBOL(blk_mq_free_tag_set);
3586
blk_mq_update_nr_requests(struct request_queue * q,unsigned int nr)3587 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3588 {
3589 struct blk_mq_tag_set *set = q->tag_set;
3590 struct blk_mq_hw_ctx *hctx;
3591 int i, ret;
3592
3593 if (!set)
3594 return -EINVAL;
3595
3596 if (q->nr_requests == nr)
3597 return 0;
3598
3599 blk_mq_freeze_queue(q);
3600 blk_mq_quiesce_queue(q);
3601
3602 ret = 0;
3603 queue_for_each_hw_ctx(q, hctx, i) {
3604 if (!hctx->tags)
3605 continue;
3606 /*
3607 * If we're using an MQ scheduler, just update the scheduler
3608 * queue depth. This is similar to what the old code would do.
3609 */
3610 if (!hctx->sched_tags) {
3611 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3612 false);
3613 if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3614 blk_mq_tag_resize_shared_sbitmap(set, nr);
3615 } else {
3616 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3617 nr, true);
3618 }
3619 if (ret)
3620 break;
3621 if (q->elevator && q->elevator->type->ops.depth_updated)
3622 q->elevator->type->ops.depth_updated(hctx);
3623 }
3624
3625 if (!ret)
3626 q->nr_requests = nr;
3627
3628 blk_mq_unquiesce_queue(q);
3629 blk_mq_unfreeze_queue(q);
3630
3631 return ret;
3632 }
3633
3634 /*
3635 * request_queue and elevator_type pair.
3636 * It is just used by __blk_mq_update_nr_hw_queues to cache
3637 * the elevator_type associated with a request_queue.
3638 */
3639 struct blk_mq_qe_pair {
3640 struct list_head node;
3641 struct request_queue *q;
3642 struct elevator_type *type;
3643 };
3644
3645 /*
3646 * Cache the elevator_type in qe pair list and switch the
3647 * io scheduler to 'none'
3648 */
blk_mq_elv_switch_none(struct list_head * head,struct request_queue * q)3649 static bool blk_mq_elv_switch_none(struct list_head *head,
3650 struct request_queue *q)
3651 {
3652 struct blk_mq_qe_pair *qe;
3653
3654 if (!q->elevator)
3655 return true;
3656
3657 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3658 if (!qe)
3659 return false;
3660
3661 INIT_LIST_HEAD(&qe->node);
3662 qe->q = q;
3663 qe->type = q->elevator->type;
3664 list_add(&qe->node, head);
3665
3666 mutex_lock(&q->sysfs_lock);
3667 /*
3668 * After elevator_switch_mq, the previous elevator_queue will be
3669 * released by elevator_release. The reference of the io scheduler
3670 * module get by elevator_get will also be put. So we need to get
3671 * a reference of the io scheduler module here to prevent it to be
3672 * removed.
3673 */
3674 __module_get(qe->type->elevator_owner);
3675 elevator_switch_mq(q, NULL);
3676 mutex_unlock(&q->sysfs_lock);
3677
3678 return true;
3679 }
3680
blk_mq_elv_switch_back(struct list_head * head,struct request_queue * q)3681 static void blk_mq_elv_switch_back(struct list_head *head,
3682 struct request_queue *q)
3683 {
3684 struct blk_mq_qe_pair *qe;
3685 struct elevator_type *t = NULL;
3686
3687 list_for_each_entry(qe, head, node)
3688 if (qe->q == q) {
3689 t = qe->type;
3690 break;
3691 }
3692
3693 if (!t)
3694 return;
3695
3696 list_del(&qe->node);
3697 kfree(qe);
3698
3699 mutex_lock(&q->sysfs_lock);
3700 elevator_switch_mq(q, t);
3701 mutex_unlock(&q->sysfs_lock);
3702 }
3703
__blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)3704 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3705 int nr_hw_queues)
3706 {
3707 struct request_queue *q;
3708 LIST_HEAD(head);
3709 int prev_nr_hw_queues;
3710
3711 lockdep_assert_held(&set->tag_list_lock);
3712
3713 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3714 nr_hw_queues = nr_cpu_ids;
3715 if (nr_hw_queues < 1)
3716 return;
3717 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3718 return;
3719
3720 list_for_each_entry(q, &set->tag_list, tag_set_list)
3721 blk_mq_freeze_queue(q);
3722 /*
3723 * Switch IO scheduler to 'none', cleaning up the data associated
3724 * with the previous scheduler. We will switch back once we are done
3725 * updating the new sw to hw queue mappings.
3726 */
3727 list_for_each_entry(q, &set->tag_list, tag_set_list)
3728 if (!blk_mq_elv_switch_none(&head, q))
3729 goto switch_back;
3730
3731 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3732 blk_mq_debugfs_unregister_hctxs(q);
3733 blk_mq_sysfs_unregister(q);
3734 }
3735
3736 prev_nr_hw_queues = set->nr_hw_queues;
3737 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3738 0)
3739 goto reregister;
3740
3741 set->nr_hw_queues = nr_hw_queues;
3742 fallback:
3743 blk_mq_update_queue_map(set);
3744 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3745 blk_mq_realloc_hw_ctxs(set, q);
3746 if (q->nr_hw_queues != set->nr_hw_queues) {
3747 int i = prev_nr_hw_queues;
3748
3749 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3750 nr_hw_queues, prev_nr_hw_queues);
3751 for (; i < set->nr_hw_queues; i++)
3752 blk_mq_free_map_and_requests(set, i);
3753
3754 set->nr_hw_queues = prev_nr_hw_queues;
3755 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3756 goto fallback;
3757 }
3758 blk_mq_map_swqueue(q);
3759 }
3760
3761 reregister:
3762 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3763 blk_mq_sysfs_register(q);
3764 blk_mq_debugfs_register_hctxs(q);
3765 }
3766
3767 switch_back:
3768 list_for_each_entry(q, &set->tag_list, tag_set_list)
3769 blk_mq_elv_switch_back(&head, q);
3770
3771 list_for_each_entry(q, &set->tag_list, tag_set_list)
3772 blk_mq_unfreeze_queue(q);
3773 }
3774
blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)3775 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3776 {
3777 mutex_lock(&set->tag_list_lock);
3778 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3779 mutex_unlock(&set->tag_list_lock);
3780 }
3781 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3782
3783 /* Enable polling stats and return whether they were already enabled. */
blk_poll_stats_enable(struct request_queue * q)3784 static bool blk_poll_stats_enable(struct request_queue *q)
3785 {
3786 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3787 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3788 return true;
3789 blk_stat_add_callback(q, q->poll_cb);
3790 return false;
3791 }
3792
blk_mq_poll_stats_start(struct request_queue * q)3793 static void blk_mq_poll_stats_start(struct request_queue *q)
3794 {
3795 /*
3796 * We don't arm the callback if polling stats are not enabled or the
3797 * callback is already active.
3798 */
3799 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3800 blk_stat_is_active(q->poll_cb))
3801 return;
3802
3803 blk_stat_activate_msecs(q->poll_cb, 100);
3804 }
3805
blk_mq_poll_stats_fn(struct blk_stat_callback * cb)3806 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3807 {
3808 struct request_queue *q = cb->data;
3809 int bucket;
3810
3811 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3812 if (cb->stat[bucket].nr_samples)
3813 q->poll_stat[bucket] = cb->stat[bucket];
3814 }
3815 }
3816
blk_mq_poll_nsecs(struct request_queue * q,struct request * rq)3817 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3818 struct request *rq)
3819 {
3820 unsigned long ret = 0;
3821 int bucket;
3822
3823 /*
3824 * If stats collection isn't on, don't sleep but turn it on for
3825 * future users
3826 */
3827 if (!blk_poll_stats_enable(q))
3828 return 0;
3829
3830 /*
3831 * As an optimistic guess, use half of the mean service time
3832 * for this type of request. We can (and should) make this smarter.
3833 * For instance, if the completion latencies are tight, we can
3834 * get closer than just half the mean. This is especially
3835 * important on devices where the completion latencies are longer
3836 * than ~10 usec. We do use the stats for the relevant IO size
3837 * if available which does lead to better estimates.
3838 */
3839 bucket = blk_mq_poll_stats_bkt(rq);
3840 if (bucket < 0)
3841 return ret;
3842
3843 if (q->poll_stat[bucket].nr_samples)
3844 ret = (q->poll_stat[bucket].mean + 1) / 2;
3845
3846 return ret;
3847 }
3848
blk_mq_poll_hybrid_sleep(struct request_queue * q,struct request * rq)3849 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3850 struct request *rq)
3851 {
3852 struct hrtimer_sleeper hs;
3853 enum hrtimer_mode mode;
3854 unsigned int nsecs;
3855 ktime_t kt;
3856
3857 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3858 return false;
3859
3860 /*
3861 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3862 *
3863 * 0: use half of prev avg
3864 * >0: use this specific value
3865 */
3866 if (q->poll_nsec > 0)
3867 nsecs = q->poll_nsec;
3868 else
3869 nsecs = blk_mq_poll_nsecs(q, rq);
3870
3871 if (!nsecs)
3872 return false;
3873
3874 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3875
3876 /*
3877 * This will be replaced with the stats tracking code, using
3878 * 'avg_completion_time / 2' as the pre-sleep target.
3879 */
3880 kt = nsecs;
3881
3882 mode = HRTIMER_MODE_REL;
3883 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3884 hrtimer_set_expires(&hs.timer, kt);
3885
3886 do {
3887 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3888 break;
3889 set_current_state(TASK_UNINTERRUPTIBLE);
3890 hrtimer_sleeper_start_expires(&hs, mode);
3891 if (hs.task)
3892 io_schedule();
3893 hrtimer_cancel(&hs.timer);
3894 mode = HRTIMER_MODE_ABS;
3895 } while (hs.task && !signal_pending(current));
3896
3897 __set_current_state(TASK_RUNNING);
3898 destroy_hrtimer_on_stack(&hs.timer);
3899 return true;
3900 }
3901
blk_mq_poll_hybrid(struct request_queue * q,struct blk_mq_hw_ctx * hctx,blk_qc_t cookie)3902 static bool blk_mq_poll_hybrid(struct request_queue *q,
3903 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3904 {
3905 struct request *rq;
3906
3907 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3908 return false;
3909
3910 if (!blk_qc_t_is_internal(cookie))
3911 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3912 else {
3913 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3914 /*
3915 * With scheduling, if the request has completed, we'll
3916 * get a NULL return here, as we clear the sched tag when
3917 * that happens. The request still remains valid, like always,
3918 * so we should be safe with just the NULL check.
3919 */
3920 if (!rq)
3921 return false;
3922 }
3923
3924 return blk_mq_poll_hybrid_sleep(q, rq);
3925 }
3926
3927 /**
3928 * blk_poll - poll for IO completions
3929 * @q: the queue
3930 * @cookie: cookie passed back at IO submission time
3931 * @spin: whether to spin for completions
3932 *
3933 * Description:
3934 * Poll for completions on the passed in queue. Returns number of
3935 * completed entries found. If @spin is true, then blk_poll will continue
3936 * looping until at least one completion is found, unless the task is
3937 * otherwise marked running (or we need to reschedule).
3938 */
blk_poll(struct request_queue * q,blk_qc_t cookie,bool spin)3939 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3940 {
3941 struct blk_mq_hw_ctx *hctx;
3942 long state;
3943
3944 if (!blk_qc_t_valid(cookie) ||
3945 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3946 return 0;
3947
3948 if (current->plug)
3949 blk_flush_plug_list(current->plug, false);
3950
3951 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3952
3953 /*
3954 * If we sleep, have the caller restart the poll loop to reset
3955 * the state. Like for the other success return cases, the
3956 * caller is responsible for checking if the IO completed. If
3957 * the IO isn't complete, we'll get called again and will go
3958 * straight to the busy poll loop.
3959 */
3960 if (blk_mq_poll_hybrid(q, hctx, cookie))
3961 return 1;
3962
3963 hctx->poll_considered++;
3964
3965 state = current->state;
3966 do {
3967 int ret;
3968
3969 hctx->poll_invoked++;
3970
3971 ret = q->mq_ops->poll(hctx);
3972 if (ret > 0) {
3973 hctx->poll_success++;
3974 __set_current_state(TASK_RUNNING);
3975 return ret;
3976 }
3977
3978 if (signal_pending_state(state, current))
3979 __set_current_state(TASK_RUNNING);
3980
3981 if (current->state == TASK_RUNNING)
3982 return 1;
3983 if (ret < 0 || !spin)
3984 break;
3985 cpu_relax();
3986 } while (!need_resched());
3987
3988 __set_current_state(TASK_RUNNING);
3989 return 0;
3990 }
3991 EXPORT_SYMBOL_GPL(blk_poll);
3992
blk_mq_rq_cpu(struct request * rq)3993 unsigned int blk_mq_rq_cpu(struct request *rq)
3994 {
3995 return rq->mq_ctx->cpu;
3996 }
3997 EXPORT_SYMBOL(blk_mq_rq_cpu);
3998
blk_mq_cancel_work_sync(struct request_queue * q)3999 void blk_mq_cancel_work_sync(struct request_queue *q)
4000 {
4001 if (queue_is_mq(q)) {
4002 struct blk_mq_hw_ctx *hctx;
4003 int i;
4004
4005 cancel_delayed_work_sync(&q->requeue_work);
4006
4007 queue_for_each_hw_ctx(q, hctx, i)
4008 cancel_delayed_work_sync(&hctx->run_work);
4009 }
4010 }
4011
blk_mq_init(void)4012 static int __init blk_mq_init(void)
4013 {
4014 int i;
4015
4016 for_each_possible_cpu(i)
4017 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
4018 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4019
4020 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4021 "block/softirq:dead", NULL,
4022 blk_softirq_cpu_dead);
4023 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4024 blk_mq_hctx_notify_dead);
4025 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4026 blk_mq_hctx_notify_online,
4027 blk_mq_hctx_notify_offline);
4028 return 0;
4029 }
4030 subsys_initcall(blk_mq_init);
4031