1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * blk-mq scheduling framework
4 *
5 * Copyright (C) 2016 Jens Axboe
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/blk-mq.h>
10 #include <linux/list_sort.h>
11
12 #include <trace/events/block.h>
13
14 #include "blk.h"
15 #include "blk-mq.h"
16 #include "blk-mq-debugfs.h"
17 #include "blk-mq-sched.h"
18 #include "blk-mq-tag.h"
19 #include "blk-wbt.h"
20
blk_mq_sched_assign_ioc(struct request * rq)21 void blk_mq_sched_assign_ioc(struct request *rq)
22 {
23 struct request_queue *q = rq->q;
24 struct io_context *ioc;
25 struct io_cq *icq;
26
27 /*
28 * May not have an IO context if it's a passthrough request
29 */
30 ioc = current->io_context;
31 if (!ioc)
32 return;
33
34 spin_lock_irq(&q->queue_lock);
35 icq = ioc_lookup_icq(ioc, q);
36 spin_unlock_irq(&q->queue_lock);
37
38 if (!icq) {
39 icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
40 if (!icq)
41 return;
42 }
43 get_io_context(icq->ioc);
44 rq->elv.icq = icq;
45 }
46
47 /*
48 * Mark a hardware queue as needing a restart. For shared queues, maintain
49 * a count of how many hardware queues are marked for restart.
50 */
blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx * hctx)51 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
52 {
53 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
54 return;
55
56 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
57 }
58 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
59
blk_mq_sched_restart(struct blk_mq_hw_ctx * hctx)60 void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
61 {
62 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
63 return;
64 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
65
66 /*
67 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch)
68 * in blk_mq_run_hw_queue(). Its pair is the barrier in
69 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART,
70 * meantime new request added to hctx->dispatch is missed to check in
71 * blk_mq_run_hw_queue().
72 */
73 smp_mb();
74
75 blk_mq_run_hw_queue(hctx, true);
76 }
77
sched_rq_cmp(void * priv,const struct list_head * a,const struct list_head * b)78 static int sched_rq_cmp(void *priv, const struct list_head *a,
79 const struct list_head *b)
80 {
81 struct request *rqa = container_of(a, struct request, queuelist);
82 struct request *rqb = container_of(b, struct request, queuelist);
83
84 return rqa->mq_hctx > rqb->mq_hctx;
85 }
86
blk_mq_dispatch_hctx_list(struct list_head * rq_list)87 static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list)
88 {
89 struct blk_mq_hw_ctx *hctx =
90 list_first_entry(rq_list, struct request, queuelist)->mq_hctx;
91 struct request *rq;
92 LIST_HEAD(hctx_list);
93 unsigned int count = 0;
94
95 list_for_each_entry(rq, rq_list, queuelist) {
96 if (rq->mq_hctx != hctx) {
97 list_cut_before(&hctx_list, rq_list, &rq->queuelist);
98 goto dispatch;
99 }
100 count++;
101 }
102 list_splice_tail_init(rq_list, &hctx_list);
103
104 dispatch:
105 return blk_mq_dispatch_rq_list(hctx, &hctx_list, count);
106 }
107
108 #define BLK_MQ_BUDGET_DELAY 3 /* ms units */
109
110 /*
111 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
112 * its queue by itself in its completion handler, so we don't need to
113 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
114 *
115 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
116 * be run again. This is necessary to avoid starving flushes.
117 */
__blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx * hctx)118 static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
119 {
120 struct request_queue *q = hctx->queue;
121 struct elevator_queue *e = q->elevator;
122 bool multi_hctxs = false, run_queue = false;
123 bool dispatched = false, busy = false;
124 unsigned int max_dispatch;
125 LIST_HEAD(rq_list);
126 int count = 0;
127
128 if (hctx->dispatch_busy)
129 max_dispatch = 1;
130 else
131 max_dispatch = hctx->queue->nr_requests;
132
133 do {
134 struct request *rq;
135
136 if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
137 break;
138
139 if (!list_empty_careful(&hctx->dispatch)) {
140 busy = true;
141 break;
142 }
143
144 if (!blk_mq_get_dispatch_budget(q))
145 break;
146
147 rq = e->type->ops.dispatch_request(hctx);
148 if (!rq) {
149 blk_mq_put_dispatch_budget(q);
150 /*
151 * We're releasing without dispatching. Holding the
152 * budget could have blocked any "hctx"s with the
153 * same queue and if we didn't dispatch then there's
154 * no guarantee anyone will kick the queue. Kick it
155 * ourselves.
156 */
157 run_queue = true;
158 break;
159 }
160
161 /*
162 * Now this rq owns the budget which has to be released
163 * if this rq won't be queued to driver via .queue_rq()
164 * in blk_mq_dispatch_rq_list().
165 */
166 list_add_tail(&rq->queuelist, &rq_list);
167 if (rq->mq_hctx != hctx)
168 multi_hctxs = true;
169 } while (++count < max_dispatch);
170
171 if (!count) {
172 if (run_queue)
173 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
174 } else if (multi_hctxs) {
175 /*
176 * Requests from different hctx may be dequeued from some
177 * schedulers, such as bfq and deadline.
178 *
179 * Sort the requests in the list according to their hctx,
180 * dispatch batching requests from same hctx at a time.
181 */
182 list_sort(NULL, &rq_list, sched_rq_cmp);
183 do {
184 dispatched |= blk_mq_dispatch_hctx_list(&rq_list);
185 } while (!list_empty(&rq_list));
186 } else {
187 dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count);
188 }
189
190 if (busy)
191 return -EAGAIN;
192 return !!dispatched;
193 }
194
blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx * hctx)195 static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
196 {
197 int ret;
198
199 do {
200 ret = __blk_mq_do_dispatch_sched(hctx);
201 } while (ret == 1);
202
203 return ret;
204 }
205
blk_mq_next_ctx(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)206 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
207 struct blk_mq_ctx *ctx)
208 {
209 unsigned short idx = ctx->index_hw[hctx->type];
210
211 if (++idx == hctx->nr_ctx)
212 idx = 0;
213
214 return hctx->ctxs[idx];
215 }
216
217 /*
218 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
219 * its queue by itself in its completion handler, so we don't need to
220 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
221 *
222 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
223 * be run again. This is necessary to avoid starving flushes.
224 */
blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx * hctx)225 static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
226 {
227 struct request_queue *q = hctx->queue;
228 LIST_HEAD(rq_list);
229 struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
230 int ret = 0;
231 struct request *rq;
232
233 do {
234 if (!list_empty_careful(&hctx->dispatch)) {
235 ret = -EAGAIN;
236 break;
237 }
238
239 if (!sbitmap_any_bit_set(&hctx->ctx_map))
240 break;
241
242 if (!blk_mq_get_dispatch_budget(q))
243 break;
244
245 rq = blk_mq_dequeue_from_ctx(hctx, ctx);
246 if (!rq) {
247 blk_mq_put_dispatch_budget(q);
248 /*
249 * We're releasing without dispatching. Holding the
250 * budget could have blocked any "hctx"s with the
251 * same queue and if we didn't dispatch then there's
252 * no guarantee anyone will kick the queue. Kick it
253 * ourselves.
254 */
255 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
256 break;
257 }
258
259 /*
260 * Now this rq owns the budget which has to be released
261 * if this rq won't be queued to driver via .queue_rq()
262 * in blk_mq_dispatch_rq_list().
263 */
264 list_add(&rq->queuelist, &rq_list);
265
266 /* round robin for fair dispatch */
267 ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
268
269 } while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1));
270
271 WRITE_ONCE(hctx->dispatch_from, ctx);
272 return ret;
273 }
274
__blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx * hctx)275 static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
276 {
277 struct request_queue *q = hctx->queue;
278 struct elevator_queue *e = q->elevator;
279 const bool has_sched_dispatch = e && e->type->ops.dispatch_request;
280 int ret = 0;
281 LIST_HEAD(rq_list);
282
283 /*
284 * If we have previous entries on our dispatch list, grab them first for
285 * more fair dispatch.
286 */
287 if (!list_empty_careful(&hctx->dispatch)) {
288 spin_lock(&hctx->lock);
289 if (!list_empty(&hctx->dispatch))
290 list_splice_init(&hctx->dispatch, &rq_list);
291 spin_unlock(&hctx->lock);
292 }
293
294 /*
295 * Only ask the scheduler for requests, if we didn't have residual
296 * requests from the dispatch list. This is to avoid the case where
297 * we only ever dispatch a fraction of the requests available because
298 * of low device queue depth. Once we pull requests out of the IO
299 * scheduler, we can no longer merge or sort them. So it's best to
300 * leave them there for as long as we can. Mark the hw queue as
301 * needing a restart in that case.
302 *
303 * We want to dispatch from the scheduler if there was nothing
304 * on the dispatch list or we were able to dispatch from the
305 * dispatch list.
306 */
307 if (!list_empty(&rq_list)) {
308 blk_mq_sched_mark_restart_hctx(hctx);
309 if (blk_mq_dispatch_rq_list(hctx, &rq_list, 0)) {
310 if (has_sched_dispatch)
311 ret = blk_mq_do_dispatch_sched(hctx);
312 else
313 ret = blk_mq_do_dispatch_ctx(hctx);
314 }
315 } else if (has_sched_dispatch) {
316 ret = blk_mq_do_dispatch_sched(hctx);
317 } else if (hctx->dispatch_busy) {
318 /* dequeue request one by one from sw queue if queue is busy */
319 ret = blk_mq_do_dispatch_ctx(hctx);
320 } else {
321 blk_mq_flush_busy_ctxs(hctx, &rq_list);
322 blk_mq_dispatch_rq_list(hctx, &rq_list, 0);
323 }
324
325 return ret;
326 }
327
blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx * hctx)328 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
329 {
330 struct request_queue *q = hctx->queue;
331
332 /* RCU or SRCU read lock is needed before checking quiesced flag */
333 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
334 return;
335
336 hctx->run++;
337
338 /*
339 * A return of -EAGAIN is an indication that hctx->dispatch is not
340 * empty and we must run again in order to avoid starving flushes.
341 */
342 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) {
343 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN)
344 blk_mq_run_hw_queue(hctx, true);
345 }
346 }
347
__blk_mq_sched_bio_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs)348 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio,
349 unsigned int nr_segs)
350 {
351 struct elevator_queue *e = q->elevator;
352 struct blk_mq_ctx *ctx;
353 struct blk_mq_hw_ctx *hctx;
354 bool ret = false;
355 enum hctx_type type;
356
357 if (e && e->type->ops.bio_merge)
358 return e->type->ops.bio_merge(q, bio, nr_segs);
359
360 ctx = blk_mq_get_ctx(q);
361 hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
362 type = hctx->type;
363 if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE) ||
364 list_empty_careful(&ctx->rq_lists[type]))
365 return false;
366
367 /* default per sw-queue merge */
368 spin_lock(&ctx->lock);
369 /*
370 * Reverse check our software queue for entries that we could
371 * potentially merge with. Currently includes a hand-wavy stop
372 * count of 8, to not spend too much time checking for merges.
373 */
374 if (blk_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) {
375 ctx->rq_merged++;
376 ret = true;
377 }
378
379 spin_unlock(&ctx->lock);
380
381 return ret;
382 }
383
blk_mq_sched_try_insert_merge(struct request_queue * q,struct request * rq,struct list_head * free)384 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq,
385 struct list_head *free)
386 {
387 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq, free);
388 }
389 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
390
blk_mq_sched_request_inserted(struct request * rq)391 void blk_mq_sched_request_inserted(struct request *rq)
392 {
393 trace_block_rq_insert(rq->q, rq);
394 }
395 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
396
blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx * hctx,bool has_sched,struct request * rq)397 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
398 bool has_sched,
399 struct request *rq)
400 {
401 /*
402 * dispatch flush and passthrough rq directly
403 *
404 * passthrough request has to be added to hctx->dispatch directly.
405 * For some reason, device may be in one situation which can't
406 * handle FS request, so STS_RESOURCE is always returned and the
407 * FS request will be added to hctx->dispatch. However passthrough
408 * request may be required at that time for fixing the problem. If
409 * passthrough request is added to scheduler queue, there isn't any
410 * chance to dispatch it given we prioritize requests in hctx->dispatch.
411 */
412 if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq))
413 return true;
414
415 if (has_sched)
416 rq->rq_flags |= RQF_SORTED;
417
418 return false;
419 }
420
blk_mq_sched_insert_request(struct request * rq,bool at_head,bool run_queue,bool async)421 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
422 bool run_queue, bool async)
423 {
424 struct request_queue *q = rq->q;
425 struct elevator_queue *e = q->elevator;
426 struct blk_mq_ctx *ctx = rq->mq_ctx;
427 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
428
429 WARN_ON(e && (rq->tag != BLK_MQ_NO_TAG));
430
431 if (blk_mq_sched_bypass_insert(hctx, !!e, rq)) {
432 /*
433 * Firstly normal IO request is inserted to scheduler queue or
434 * sw queue, meantime we add flush request to dispatch queue(
435 * hctx->dispatch) directly and there is at most one in-flight
436 * flush request for each hw queue, so it doesn't matter to add
437 * flush request to tail or front of the dispatch queue.
438 *
439 * Secondly in case of NCQ, flush request belongs to non-NCQ
440 * command, and queueing it will fail when there is any
441 * in-flight normal IO request(NCQ command). When adding flush
442 * rq to the front of hctx->dispatch, it is easier to introduce
443 * extra time to flush rq's latency because of S_SCHED_RESTART
444 * compared with adding to the tail of dispatch queue, then
445 * chance of flush merge is increased, and less flush requests
446 * will be issued to controller. It is observed that ~10% time
447 * is saved in blktests block/004 on disk attached to AHCI/NCQ
448 * drive when adding flush rq to the front of hctx->dispatch.
449 *
450 * Simply queue flush rq to the front of hctx->dispatch so that
451 * intensive flush workloads can benefit in case of NCQ HW.
452 */
453 at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head;
454 blk_mq_request_bypass_insert(rq, at_head, false);
455 goto run;
456 }
457
458 if (e && e->type->ops.insert_requests) {
459 LIST_HEAD(list);
460
461 list_add(&rq->queuelist, &list);
462 e->type->ops.insert_requests(hctx, &list, at_head);
463 } else {
464 spin_lock(&ctx->lock);
465 __blk_mq_insert_request(hctx, rq, at_head);
466 spin_unlock(&ctx->lock);
467 }
468
469 run:
470 if (run_queue)
471 blk_mq_run_hw_queue(hctx, async);
472 }
473
blk_mq_sched_insert_requests(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx,struct list_head * list,bool run_queue_async)474 void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx,
475 struct blk_mq_ctx *ctx,
476 struct list_head *list, bool run_queue_async)
477 {
478 struct elevator_queue *e;
479 struct request_queue *q = hctx->queue;
480
481 /*
482 * blk_mq_sched_insert_requests() is called from flush plug
483 * context only, and hold one usage counter to prevent queue
484 * from being released.
485 */
486 percpu_ref_get(&q->q_usage_counter);
487
488 e = hctx->queue->elevator;
489 if (e && e->type->ops.insert_requests)
490 e->type->ops.insert_requests(hctx, list, false);
491 else {
492 /*
493 * try to issue requests directly if the hw queue isn't
494 * busy in case of 'none' scheduler, and this way may save
495 * us one extra enqueue & dequeue to sw queue.
496 */
497 if (!hctx->dispatch_busy && !e && !run_queue_async) {
498 blk_mq_try_issue_list_directly(hctx, list);
499 if (list_empty(list))
500 goto out;
501 }
502 blk_mq_insert_requests(hctx, ctx, list);
503 }
504
505 blk_mq_run_hw_queue(hctx, run_queue_async);
506 out:
507 percpu_ref_put(&q->q_usage_counter);
508 }
509
blk_mq_sched_alloc_tags(struct request_queue * q,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)510 static int blk_mq_sched_alloc_tags(struct request_queue *q,
511 struct blk_mq_hw_ctx *hctx,
512 unsigned int hctx_idx)
513 {
514 struct blk_mq_tag_set *set = q->tag_set;
515 /* Clear HCTX_SHARED so tags are init'ed */
516 unsigned int flags = set->flags & ~BLK_MQ_F_TAG_HCTX_SHARED;
517 int ret;
518
519 hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
520 set->reserved_tags, flags);
521 if (!hctx->sched_tags)
522 return -ENOMEM;
523
524 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
525 if (ret) {
526 blk_mq_free_rq_map(hctx->sched_tags, flags);
527 hctx->sched_tags = NULL;
528 }
529
530 return ret;
531 }
532
533 /* called in queue's release handler, tagset has gone away */
blk_mq_sched_tags_teardown(struct request_queue * q)534 static void blk_mq_sched_tags_teardown(struct request_queue *q)
535 {
536 struct blk_mq_hw_ctx *hctx;
537 int i;
538
539 queue_for_each_hw_ctx(q, hctx, i) {
540 /* Clear HCTX_SHARED so tags are freed */
541 unsigned int flags = hctx->flags & ~BLK_MQ_F_TAG_HCTX_SHARED;
542
543 if (hctx->sched_tags) {
544 blk_mq_free_rq_map(hctx->sched_tags, flags);
545 hctx->sched_tags = NULL;
546 }
547 }
548 }
549
blk_mq_init_sched(struct request_queue * q,struct elevator_type * e)550 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
551 {
552 struct blk_mq_hw_ctx *hctx;
553 struct elevator_queue *eq;
554 unsigned int i;
555 int ret;
556
557 if (!e) {
558 q->elevator = NULL;
559 q->nr_requests = q->tag_set->queue_depth;
560 return 0;
561 }
562
563 /*
564 * Default to double of smaller one between hw queue_depth and 128,
565 * since we don't split into sync/async like the old code did.
566 * Additionally, this is a per-hw queue depth.
567 */
568 q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
569 BLKDEV_MAX_RQ);
570
571 queue_for_each_hw_ctx(q, hctx, i) {
572 ret = blk_mq_sched_alloc_tags(q, hctx, i);
573 if (ret)
574 goto err;
575 }
576
577 ret = e->ops.init_sched(q, e);
578 if (ret)
579 goto err;
580
581 blk_mq_debugfs_register_sched(q);
582
583 queue_for_each_hw_ctx(q, hctx, i) {
584 if (e->ops.init_hctx) {
585 ret = e->ops.init_hctx(hctx, i);
586 if (ret) {
587 eq = q->elevator;
588 blk_mq_sched_free_requests(q);
589 blk_mq_exit_sched(q, eq);
590 kobject_put(&eq->kobj);
591 return ret;
592 }
593 }
594 blk_mq_debugfs_register_sched_hctx(q, hctx);
595 }
596
597 return 0;
598
599 err:
600 blk_mq_sched_free_requests(q);
601 blk_mq_sched_tags_teardown(q);
602 q->elevator = NULL;
603 return ret;
604 }
605
606 /*
607 * called in either blk_queue_cleanup or elevator_switch, tagset
608 * is required for freeing requests
609 */
blk_mq_sched_free_requests(struct request_queue * q)610 void blk_mq_sched_free_requests(struct request_queue *q)
611 {
612 struct blk_mq_hw_ctx *hctx;
613 int i;
614
615 queue_for_each_hw_ctx(q, hctx, i) {
616 if (hctx->sched_tags)
617 blk_mq_free_rqs(q->tag_set, hctx->sched_tags, i);
618 }
619 }
620
blk_mq_exit_sched(struct request_queue * q,struct elevator_queue * e)621 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
622 {
623 struct blk_mq_hw_ctx *hctx;
624 unsigned int i;
625
626 queue_for_each_hw_ctx(q, hctx, i) {
627 blk_mq_debugfs_unregister_sched_hctx(hctx);
628 if (e->type->ops.exit_hctx && hctx->sched_data) {
629 e->type->ops.exit_hctx(hctx, i);
630 hctx->sched_data = NULL;
631 }
632 }
633 blk_mq_debugfs_unregister_sched(q);
634 if (e->type->ops.exit_sched)
635 e->type->ops.exit_sched(e);
636 blk_mq_sched_tags_teardown(q);
637 q->elevator = NULL;
638 }
639