• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * blk-mq scheduling framework
4  *
5  * Copyright (C) 2016 Jens Axboe
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/blk-mq.h>
10 #include <linux/list_sort.h>
11 
12 #include <trace/events/block.h>
13 
14 #include "blk.h"
15 #include "blk-mq.h"
16 #include "blk-mq-debugfs.h"
17 #include "blk-mq-sched.h"
18 #include "blk-mq-tag.h"
19 #include "blk-wbt.h"
20 
blk_mq_sched_assign_ioc(struct request * rq)21 void blk_mq_sched_assign_ioc(struct request *rq)
22 {
23 	struct request_queue *q = rq->q;
24 	struct io_context *ioc;
25 	struct io_cq *icq;
26 
27 	/*
28 	 * May not have an IO context if it's a passthrough request
29 	 */
30 	ioc = current->io_context;
31 	if (!ioc)
32 		return;
33 
34 	spin_lock_irq(&q->queue_lock);
35 	icq = ioc_lookup_icq(ioc, q);
36 	spin_unlock_irq(&q->queue_lock);
37 
38 	if (!icq) {
39 		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
40 		if (!icq)
41 			return;
42 	}
43 	get_io_context(icq->ioc);
44 	rq->elv.icq = icq;
45 }
46 
47 /*
48  * Mark a hardware queue as needing a restart. For shared queues, maintain
49  * a count of how many hardware queues are marked for restart.
50  */
blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx * hctx)51 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
52 {
53 	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
54 		return;
55 
56 	set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
57 }
58 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
59 
blk_mq_sched_restart(struct blk_mq_hw_ctx * hctx)60 void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
61 {
62 	if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
63 		return;
64 	clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
65 
66 	/*
67 	 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch)
68 	 * in blk_mq_run_hw_queue(). Its pair is the barrier in
69 	 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART,
70 	 * meantime new request added to hctx->dispatch is missed to check in
71 	 * blk_mq_run_hw_queue().
72 	 */
73 	smp_mb();
74 
75 	blk_mq_run_hw_queue(hctx, true);
76 }
77 
sched_rq_cmp(void * priv,const struct list_head * a,const struct list_head * b)78 static int sched_rq_cmp(void *priv, const struct list_head *a,
79 			const struct list_head *b)
80 {
81 	struct request *rqa = container_of(a, struct request, queuelist);
82 	struct request *rqb = container_of(b, struct request, queuelist);
83 
84 	return rqa->mq_hctx > rqb->mq_hctx;
85 }
86 
blk_mq_dispatch_hctx_list(struct list_head * rq_list)87 static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list)
88 {
89 	struct blk_mq_hw_ctx *hctx =
90 		list_first_entry(rq_list, struct request, queuelist)->mq_hctx;
91 	struct request *rq;
92 	LIST_HEAD(hctx_list);
93 	unsigned int count = 0;
94 
95 	list_for_each_entry(rq, rq_list, queuelist) {
96 		if (rq->mq_hctx != hctx) {
97 			list_cut_before(&hctx_list, rq_list, &rq->queuelist);
98 			goto dispatch;
99 		}
100 		count++;
101 	}
102 	list_splice_tail_init(rq_list, &hctx_list);
103 
104 dispatch:
105 	return blk_mq_dispatch_rq_list(hctx, &hctx_list, count);
106 }
107 
108 #define BLK_MQ_BUDGET_DELAY	3		/* ms units */
109 
110 /*
111  * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
112  * its queue by itself in its completion handler, so we don't need to
113  * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
114  *
115  * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
116  * be run again.  This is necessary to avoid starving flushes.
117  */
__blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx * hctx)118 static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
119 {
120 	struct request_queue *q = hctx->queue;
121 	struct elevator_queue *e = q->elevator;
122 	bool multi_hctxs = false, run_queue = false;
123 	bool dispatched = false, busy = false;
124 	unsigned int max_dispatch;
125 	LIST_HEAD(rq_list);
126 	int count = 0;
127 
128 	if (hctx->dispatch_busy)
129 		max_dispatch = 1;
130 	else
131 		max_dispatch = hctx->queue->nr_requests;
132 
133 	do {
134 		struct request *rq;
135 
136 		if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
137 			break;
138 
139 		if (!list_empty_careful(&hctx->dispatch)) {
140 			busy = true;
141 			break;
142 		}
143 
144 		if (!blk_mq_get_dispatch_budget(q))
145 			break;
146 
147 		rq = e->type->ops.dispatch_request(hctx);
148 		if (!rq) {
149 			blk_mq_put_dispatch_budget(q);
150 			/*
151 			 * We're releasing without dispatching. Holding the
152 			 * budget could have blocked any "hctx"s with the
153 			 * same queue and if we didn't dispatch then there's
154 			 * no guarantee anyone will kick the queue.  Kick it
155 			 * ourselves.
156 			 */
157 			run_queue = true;
158 			break;
159 		}
160 
161 		/*
162 		 * Now this rq owns the budget which has to be released
163 		 * if this rq won't be queued to driver via .queue_rq()
164 		 * in blk_mq_dispatch_rq_list().
165 		 */
166 		list_add_tail(&rq->queuelist, &rq_list);
167 		if (rq->mq_hctx != hctx)
168 			multi_hctxs = true;
169 	} while (++count < max_dispatch);
170 
171 	if (!count) {
172 		if (run_queue)
173 			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
174 	} else if (multi_hctxs) {
175 		/*
176 		 * Requests from different hctx may be dequeued from some
177 		 * schedulers, such as bfq and deadline.
178 		 *
179 		 * Sort the requests in the list according to their hctx,
180 		 * dispatch batching requests from same hctx at a time.
181 		 */
182 		list_sort(NULL, &rq_list, sched_rq_cmp);
183 		do {
184 			dispatched |= blk_mq_dispatch_hctx_list(&rq_list);
185 		} while (!list_empty(&rq_list));
186 	} else {
187 		dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count);
188 	}
189 
190 	if (busy)
191 		return -EAGAIN;
192 	return !!dispatched;
193 }
194 
blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx * hctx)195 static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
196 {
197 	int ret;
198 
199 	do {
200 		ret = __blk_mq_do_dispatch_sched(hctx);
201 	} while (ret == 1);
202 
203 	return ret;
204 }
205 
blk_mq_next_ctx(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)206 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
207 					  struct blk_mq_ctx *ctx)
208 {
209 	unsigned short idx = ctx->index_hw[hctx->type];
210 
211 	if (++idx == hctx->nr_ctx)
212 		idx = 0;
213 
214 	return hctx->ctxs[idx];
215 }
216 
217 /*
218  * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
219  * its queue by itself in its completion handler, so we don't need to
220  * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
221  *
222  * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
223  * be run again.  This is necessary to avoid starving flushes.
224  */
blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx * hctx)225 static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
226 {
227 	struct request_queue *q = hctx->queue;
228 	LIST_HEAD(rq_list);
229 	struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
230 	int ret = 0;
231 	struct request *rq;
232 
233 	do {
234 		if (!list_empty_careful(&hctx->dispatch)) {
235 			ret = -EAGAIN;
236 			break;
237 		}
238 
239 		if (!sbitmap_any_bit_set(&hctx->ctx_map))
240 			break;
241 
242 		if (!blk_mq_get_dispatch_budget(q))
243 			break;
244 
245 		rq = blk_mq_dequeue_from_ctx(hctx, ctx);
246 		if (!rq) {
247 			blk_mq_put_dispatch_budget(q);
248 			/*
249 			 * We're releasing without dispatching. Holding the
250 			 * budget could have blocked any "hctx"s with the
251 			 * same queue and if we didn't dispatch then there's
252 			 * no guarantee anyone will kick the queue.  Kick it
253 			 * ourselves.
254 			 */
255 			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
256 			break;
257 		}
258 
259 		/*
260 		 * Now this rq owns the budget which has to be released
261 		 * if this rq won't be queued to driver via .queue_rq()
262 		 * in blk_mq_dispatch_rq_list().
263 		 */
264 		list_add(&rq->queuelist, &rq_list);
265 
266 		/* round robin for fair dispatch */
267 		ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
268 
269 	} while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1));
270 
271 	WRITE_ONCE(hctx->dispatch_from, ctx);
272 	return ret;
273 }
274 
__blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx * hctx)275 static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
276 {
277 	struct request_queue *q = hctx->queue;
278 	struct elevator_queue *e = q->elevator;
279 	const bool has_sched_dispatch = e && e->type->ops.dispatch_request;
280 	int ret = 0;
281 	LIST_HEAD(rq_list);
282 
283 	/*
284 	 * If we have previous entries on our dispatch list, grab them first for
285 	 * more fair dispatch.
286 	 */
287 	if (!list_empty_careful(&hctx->dispatch)) {
288 		spin_lock(&hctx->lock);
289 		if (!list_empty(&hctx->dispatch))
290 			list_splice_init(&hctx->dispatch, &rq_list);
291 		spin_unlock(&hctx->lock);
292 	}
293 
294 	/*
295 	 * Only ask the scheduler for requests, if we didn't have residual
296 	 * requests from the dispatch list. This is to avoid the case where
297 	 * we only ever dispatch a fraction of the requests available because
298 	 * of low device queue depth. Once we pull requests out of the IO
299 	 * scheduler, we can no longer merge or sort them. So it's best to
300 	 * leave them there for as long as we can. Mark the hw queue as
301 	 * needing a restart in that case.
302 	 *
303 	 * We want to dispatch from the scheduler if there was nothing
304 	 * on the dispatch list or we were able to dispatch from the
305 	 * dispatch list.
306 	 */
307 	if (!list_empty(&rq_list)) {
308 		blk_mq_sched_mark_restart_hctx(hctx);
309 		if (blk_mq_dispatch_rq_list(hctx, &rq_list, 0)) {
310 			if (has_sched_dispatch)
311 				ret = blk_mq_do_dispatch_sched(hctx);
312 			else
313 				ret = blk_mq_do_dispatch_ctx(hctx);
314 		}
315 	} else if (has_sched_dispatch) {
316 		ret = blk_mq_do_dispatch_sched(hctx);
317 	} else if (hctx->dispatch_busy) {
318 		/* dequeue request one by one from sw queue if queue is busy */
319 		ret = blk_mq_do_dispatch_ctx(hctx);
320 	} else {
321 		blk_mq_flush_busy_ctxs(hctx, &rq_list);
322 		blk_mq_dispatch_rq_list(hctx, &rq_list, 0);
323 	}
324 
325 	return ret;
326 }
327 
blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx * hctx)328 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
329 {
330 	struct request_queue *q = hctx->queue;
331 
332 	/* RCU or SRCU read lock is needed before checking quiesced flag */
333 	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
334 		return;
335 
336 	hctx->run++;
337 
338 	/*
339 	 * A return of -EAGAIN is an indication that hctx->dispatch is not
340 	 * empty and we must run again in order to avoid starving flushes.
341 	 */
342 	if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) {
343 		if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN)
344 			blk_mq_run_hw_queue(hctx, true);
345 	}
346 }
347 
__blk_mq_sched_bio_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs)348 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio,
349 		unsigned int nr_segs)
350 {
351 	struct elevator_queue *e = q->elevator;
352 	struct blk_mq_ctx *ctx;
353 	struct blk_mq_hw_ctx *hctx;
354 	bool ret = false;
355 	enum hctx_type type;
356 
357 	if (e && e->type->ops.bio_merge)
358 		return e->type->ops.bio_merge(q, bio, nr_segs);
359 
360 	ctx = blk_mq_get_ctx(q);
361 	hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
362 	type = hctx->type;
363 	if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE) ||
364 	    list_empty_careful(&ctx->rq_lists[type]))
365 		return false;
366 
367 	/* default per sw-queue merge */
368 	spin_lock(&ctx->lock);
369 	/*
370 	 * Reverse check our software queue for entries that we could
371 	 * potentially merge with. Currently includes a hand-wavy stop
372 	 * count of 8, to not spend too much time checking for merges.
373 	 */
374 	if (blk_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) {
375 		ctx->rq_merged++;
376 		ret = true;
377 	}
378 
379 	spin_unlock(&ctx->lock);
380 
381 	return ret;
382 }
383 
blk_mq_sched_try_insert_merge(struct request_queue * q,struct request * rq,struct list_head * free)384 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq,
385 				   struct list_head *free)
386 {
387 	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq, free);
388 }
389 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
390 
blk_mq_sched_request_inserted(struct request * rq)391 void blk_mq_sched_request_inserted(struct request *rq)
392 {
393 	trace_block_rq_insert(rq->q, rq);
394 }
395 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
396 
blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx * hctx,bool has_sched,struct request * rq)397 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
398 				       bool has_sched,
399 				       struct request *rq)
400 {
401 	/*
402 	 * dispatch flush and passthrough rq directly
403 	 *
404 	 * passthrough request has to be added to hctx->dispatch directly.
405 	 * For some reason, device may be in one situation which can't
406 	 * handle FS request, so STS_RESOURCE is always returned and the
407 	 * FS request will be added to hctx->dispatch. However passthrough
408 	 * request may be required at that time for fixing the problem. If
409 	 * passthrough request is added to scheduler queue, there isn't any
410 	 * chance to dispatch it given we prioritize requests in hctx->dispatch.
411 	 */
412 	if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq))
413 		return true;
414 
415 	if (has_sched)
416 		rq->rq_flags |= RQF_SORTED;
417 
418 	return false;
419 }
420 
blk_mq_sched_insert_request(struct request * rq,bool at_head,bool run_queue,bool async)421 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
422 				 bool run_queue, bool async)
423 {
424 	struct request_queue *q = rq->q;
425 	struct elevator_queue *e = q->elevator;
426 	struct blk_mq_ctx *ctx = rq->mq_ctx;
427 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
428 
429 	WARN_ON(e && (rq->tag != BLK_MQ_NO_TAG));
430 
431 	if (blk_mq_sched_bypass_insert(hctx, !!e, rq)) {
432 		/*
433 		 * Firstly normal IO request is inserted to scheduler queue or
434 		 * sw queue, meantime we add flush request to dispatch queue(
435 		 * hctx->dispatch) directly and there is at most one in-flight
436 		 * flush request for each hw queue, so it doesn't matter to add
437 		 * flush request to tail or front of the dispatch queue.
438 		 *
439 		 * Secondly in case of NCQ, flush request belongs to non-NCQ
440 		 * command, and queueing it will fail when there is any
441 		 * in-flight normal IO request(NCQ command). When adding flush
442 		 * rq to the front of hctx->dispatch, it is easier to introduce
443 		 * extra time to flush rq's latency because of S_SCHED_RESTART
444 		 * compared with adding to the tail of dispatch queue, then
445 		 * chance of flush merge is increased, and less flush requests
446 		 * will be issued to controller. It is observed that ~10% time
447 		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
448 		 * drive when adding flush rq to the front of hctx->dispatch.
449 		 *
450 		 * Simply queue flush rq to the front of hctx->dispatch so that
451 		 * intensive flush workloads can benefit in case of NCQ HW.
452 		 */
453 		at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head;
454 		blk_mq_request_bypass_insert(rq, at_head, false);
455 		goto run;
456 	}
457 
458 	if (e && e->type->ops.insert_requests) {
459 		LIST_HEAD(list);
460 
461 		list_add(&rq->queuelist, &list);
462 		e->type->ops.insert_requests(hctx, &list, at_head);
463 	} else {
464 		spin_lock(&ctx->lock);
465 		__blk_mq_insert_request(hctx, rq, at_head);
466 		spin_unlock(&ctx->lock);
467 	}
468 
469 run:
470 	if (run_queue)
471 		blk_mq_run_hw_queue(hctx, async);
472 }
473 
blk_mq_sched_insert_requests(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx,struct list_head * list,bool run_queue_async)474 void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx,
475 				  struct blk_mq_ctx *ctx,
476 				  struct list_head *list, bool run_queue_async)
477 {
478 	struct elevator_queue *e;
479 	struct request_queue *q = hctx->queue;
480 
481 	/*
482 	 * blk_mq_sched_insert_requests() is called from flush plug
483 	 * context only, and hold one usage counter to prevent queue
484 	 * from being released.
485 	 */
486 	percpu_ref_get(&q->q_usage_counter);
487 
488 	e = hctx->queue->elevator;
489 	if (e && e->type->ops.insert_requests)
490 		e->type->ops.insert_requests(hctx, list, false);
491 	else {
492 		/*
493 		 * try to issue requests directly if the hw queue isn't
494 		 * busy in case of 'none' scheduler, and this way may save
495 		 * us one extra enqueue & dequeue to sw queue.
496 		 */
497 		if (!hctx->dispatch_busy && !e && !run_queue_async) {
498 			blk_mq_try_issue_list_directly(hctx, list);
499 			if (list_empty(list))
500 				goto out;
501 		}
502 		blk_mq_insert_requests(hctx, ctx, list);
503 	}
504 
505 	blk_mq_run_hw_queue(hctx, run_queue_async);
506  out:
507 	percpu_ref_put(&q->q_usage_counter);
508 }
509 
blk_mq_sched_alloc_tags(struct request_queue * q,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)510 static int blk_mq_sched_alloc_tags(struct request_queue *q,
511 				   struct blk_mq_hw_ctx *hctx,
512 				   unsigned int hctx_idx)
513 {
514 	struct blk_mq_tag_set *set = q->tag_set;
515 	/* Clear HCTX_SHARED so tags are init'ed */
516 	unsigned int flags = set->flags & ~BLK_MQ_F_TAG_HCTX_SHARED;
517 	int ret;
518 
519 	hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
520 					       set->reserved_tags, flags);
521 	if (!hctx->sched_tags)
522 		return -ENOMEM;
523 
524 	ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
525 	if (ret) {
526 		blk_mq_free_rq_map(hctx->sched_tags, flags);
527 		hctx->sched_tags = NULL;
528 	}
529 
530 	return ret;
531 }
532 
533 /* called in queue's release handler, tagset has gone away */
blk_mq_sched_tags_teardown(struct request_queue * q)534 static void blk_mq_sched_tags_teardown(struct request_queue *q)
535 {
536 	struct blk_mq_hw_ctx *hctx;
537 	int i;
538 
539 	queue_for_each_hw_ctx(q, hctx, i) {
540 		/* Clear HCTX_SHARED so tags are freed */
541 		unsigned int flags = hctx->flags & ~BLK_MQ_F_TAG_HCTX_SHARED;
542 
543 		if (hctx->sched_tags) {
544 			blk_mq_free_rq_map(hctx->sched_tags, flags);
545 			hctx->sched_tags = NULL;
546 		}
547 	}
548 }
549 
blk_mq_init_sched(struct request_queue * q,struct elevator_type * e)550 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
551 {
552 	struct blk_mq_hw_ctx *hctx;
553 	struct elevator_queue *eq;
554 	unsigned int i;
555 	int ret;
556 
557 	if (!e) {
558 		q->elevator = NULL;
559 		q->nr_requests = q->tag_set->queue_depth;
560 		return 0;
561 	}
562 
563 	/*
564 	 * Default to double of smaller one between hw queue_depth and 128,
565 	 * since we don't split into sync/async like the old code did.
566 	 * Additionally, this is a per-hw queue depth.
567 	 */
568 	q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
569 				   BLKDEV_MAX_RQ);
570 
571 	queue_for_each_hw_ctx(q, hctx, i) {
572 		ret = blk_mq_sched_alloc_tags(q, hctx, i);
573 		if (ret)
574 			goto err;
575 	}
576 
577 	ret = e->ops.init_sched(q, e);
578 	if (ret)
579 		goto err;
580 
581 	blk_mq_debugfs_register_sched(q);
582 
583 	queue_for_each_hw_ctx(q, hctx, i) {
584 		if (e->ops.init_hctx) {
585 			ret = e->ops.init_hctx(hctx, i);
586 			if (ret) {
587 				eq = q->elevator;
588 				blk_mq_sched_free_requests(q);
589 				blk_mq_exit_sched(q, eq);
590 				kobject_put(&eq->kobj);
591 				return ret;
592 			}
593 		}
594 		blk_mq_debugfs_register_sched_hctx(q, hctx);
595 	}
596 
597 	return 0;
598 
599 err:
600 	blk_mq_sched_free_requests(q);
601 	blk_mq_sched_tags_teardown(q);
602 	q->elevator = NULL;
603 	return ret;
604 }
605 
606 /*
607  * called in either blk_queue_cleanup or elevator_switch, tagset
608  * is required for freeing requests
609  */
blk_mq_sched_free_requests(struct request_queue * q)610 void blk_mq_sched_free_requests(struct request_queue *q)
611 {
612 	struct blk_mq_hw_ctx *hctx;
613 	int i;
614 
615 	queue_for_each_hw_ctx(q, hctx, i) {
616 		if (hctx->sched_tags)
617 			blk_mq_free_rqs(q->tag_set, hctx->sched_tags, i);
618 	}
619 }
620 
blk_mq_exit_sched(struct request_queue * q,struct elevator_queue * e)621 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
622 {
623 	struct blk_mq_hw_ctx *hctx;
624 	unsigned int i;
625 
626 	queue_for_each_hw_ctx(q, hctx, i) {
627 		blk_mq_debugfs_unregister_sched_hctx(hctx);
628 		if (e->type->ops.exit_hctx && hctx->sched_data) {
629 			e->type->ops.exit_hctx(hctx, i);
630 			hctx->sched_data = NULL;
631 		}
632 	}
633 	blk_mq_debugfs_unregister_sched(q);
634 	if (e->type->ops.exit_sched)
635 		e->type->ops.exit_sched(e);
636 	blk_mq_sched_tags_teardown(q);
637 	q->elevator = NULL;
638 }
639