1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/block_dev.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
7 */
8
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/fcntl.h>
12 #include <linux/slab.h>
13 #include <linux/kmod.h>
14 #include <linux/major.h>
15 #include <linux/device_cgroup.h>
16 #include <linux/highmem.h>
17 #include <linux/blkdev.h>
18 #include <linux/backing-dev.h>
19 #include <linux/module.h>
20 #include <linux/blkpg.h>
21 #include <linux/magic.h>
22 #include <linux/buffer_head.h>
23 #include <linux/swap.h>
24 #include <linux/pagevec.h>
25 #include <linux/writeback.h>
26 #include <linux/mpage.h>
27 #include <linux/mount.h>
28 #include <linux/pseudo_fs.h>
29 #include <linux/uio.h>
30 #include <linux/namei.h>
31 #include <linux/log2.h>
32 #include <linux/cleancache.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/falloc.h>
35 #include <linux/uaccess.h>
36 #include <linux/suspend.h>
37 #include "internal.h"
38
39 struct bdev_inode {
40 struct block_device bdev;
41 struct inode vfs_inode;
42 };
43
44 static const struct address_space_operations def_blk_aops;
45
BDEV_I(struct inode * inode)46 static inline struct bdev_inode *BDEV_I(struct inode *inode)
47 {
48 return container_of(inode, struct bdev_inode, vfs_inode);
49 }
50
I_BDEV(struct inode * inode)51 struct block_device *I_BDEV(struct inode *inode)
52 {
53 return &BDEV_I(inode)->bdev;
54 }
55 EXPORT_SYMBOL(I_BDEV);
56
bdev_write_inode(struct block_device * bdev)57 static void bdev_write_inode(struct block_device *bdev)
58 {
59 struct inode *inode = bdev->bd_inode;
60 int ret;
61
62 spin_lock(&inode->i_lock);
63 while (inode->i_state & I_DIRTY) {
64 spin_unlock(&inode->i_lock);
65 ret = write_inode_now(inode, true);
66 if (ret) {
67 char name[BDEVNAME_SIZE];
68 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
69 "for block device %s (err=%d).\n",
70 bdevname(bdev, name), ret);
71 }
72 spin_lock(&inode->i_lock);
73 }
74 spin_unlock(&inode->i_lock);
75 }
76
77 /* Kill _all_ buffers and pagecache , dirty or not.. */
kill_bdev(struct block_device * bdev)78 static void kill_bdev(struct block_device *bdev)
79 {
80 struct address_space *mapping = bdev->bd_inode->i_mapping;
81
82 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
83 return;
84
85 invalidate_bh_lrus();
86 truncate_inode_pages(mapping, 0);
87 }
88
89 /* Invalidate clean unused buffers and pagecache. */
invalidate_bdev(struct block_device * bdev)90 void invalidate_bdev(struct block_device *bdev)
91 {
92 struct address_space *mapping = bdev->bd_inode->i_mapping;
93
94 if (mapping->nrpages) {
95 invalidate_bh_lrus();
96 lru_add_drain_all(); /* make sure all lru add caches are flushed */
97 invalidate_mapping_pages(mapping, 0, -1);
98 }
99 /* 99% of the time, we don't need to flush the cleancache on the bdev.
100 * But, for the strange corners, lets be cautious
101 */
102 cleancache_invalidate_inode(mapping);
103 }
104 EXPORT_SYMBOL(invalidate_bdev);
105
106 /*
107 * Drop all buffers & page cache for given bdev range. This function bails
108 * with error if bdev has other exclusive owner (such as filesystem).
109 */
truncate_bdev_range(struct block_device * bdev,fmode_t mode,loff_t lstart,loff_t lend)110 int truncate_bdev_range(struct block_device *bdev, fmode_t mode,
111 loff_t lstart, loff_t lend)
112 {
113 struct block_device *claimed_bdev = NULL;
114 int err;
115
116 /*
117 * If we don't hold exclusive handle for the device, upgrade to it
118 * while we discard the buffer cache to avoid discarding buffers
119 * under live filesystem.
120 */
121 if (!(mode & FMODE_EXCL)) {
122 claimed_bdev = bdev->bd_contains;
123 err = bd_prepare_to_claim(bdev, claimed_bdev,
124 truncate_bdev_range);
125 if (err)
126 goto invalidate;
127 }
128 truncate_inode_pages_range(bdev->bd_inode->i_mapping, lstart, lend);
129 if (claimed_bdev)
130 bd_abort_claiming(bdev, claimed_bdev, truncate_bdev_range);
131 return 0;
132
133 invalidate:
134 /*
135 * Someone else has handle exclusively open. Try invalidating instead.
136 * The 'end' argument is inclusive so the rounding is safe.
137 */
138 return invalidate_inode_pages2_range(bdev->bd_inode->i_mapping,
139 lstart >> PAGE_SHIFT,
140 lend >> PAGE_SHIFT);
141 }
142 EXPORT_SYMBOL(truncate_bdev_range);
143
set_init_blocksize(struct block_device * bdev)144 static void set_init_blocksize(struct block_device *bdev)
145 {
146 unsigned int bsize = bdev_logical_block_size(bdev);
147 loff_t size = i_size_read(bdev->bd_inode);
148
149 while (bsize < PAGE_SIZE) {
150 if (size & bsize)
151 break;
152 bsize <<= 1;
153 }
154 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
155 }
156
set_blocksize(struct block_device * bdev,int size)157 int set_blocksize(struct block_device *bdev, int size)
158 {
159 /* Size must be a power of two, and between 512 and PAGE_SIZE */
160 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
161 return -EINVAL;
162
163 /* Size cannot be smaller than the size supported by the device */
164 if (size < bdev_logical_block_size(bdev))
165 return -EINVAL;
166
167 /* Don't change the size if it is same as current */
168 if (bdev->bd_inode->i_blkbits != blksize_bits(size)) {
169 sync_blockdev(bdev);
170 bdev->bd_inode->i_blkbits = blksize_bits(size);
171 kill_bdev(bdev);
172 }
173 return 0;
174 }
175
176 EXPORT_SYMBOL(set_blocksize);
177
sb_set_blocksize(struct super_block * sb,int size)178 int sb_set_blocksize(struct super_block *sb, int size)
179 {
180 if (set_blocksize(sb->s_bdev, size))
181 return 0;
182 /* If we get here, we know size is power of two
183 * and it's value is between 512 and PAGE_SIZE */
184 sb->s_blocksize = size;
185 sb->s_blocksize_bits = blksize_bits(size);
186 return sb->s_blocksize;
187 }
188
189 EXPORT_SYMBOL(sb_set_blocksize);
190
sb_min_blocksize(struct super_block * sb,int size)191 int sb_min_blocksize(struct super_block *sb, int size)
192 {
193 int minsize = bdev_logical_block_size(sb->s_bdev);
194 if (size < minsize)
195 size = minsize;
196 return sb_set_blocksize(sb, size);
197 }
198
199 EXPORT_SYMBOL(sb_min_blocksize);
200
201 static int
blkdev_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)202 blkdev_get_block(struct inode *inode, sector_t iblock,
203 struct buffer_head *bh, int create)
204 {
205 bh->b_bdev = I_BDEV(inode);
206 bh->b_blocknr = iblock;
207 set_buffer_mapped(bh);
208 return 0;
209 }
210
bdev_file_inode(struct file * file)211 static struct inode *bdev_file_inode(struct file *file)
212 {
213 return file->f_mapping->host;
214 }
215
dio_bio_write_op(struct kiocb * iocb)216 static unsigned int dio_bio_write_op(struct kiocb *iocb)
217 {
218 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
219
220 /* avoid the need for a I/O completion work item */
221 if (iocb->ki_flags & IOCB_DSYNC)
222 op |= REQ_FUA;
223 return op;
224 }
225
226 #define DIO_INLINE_BIO_VECS 4
227
blkdev_bio_end_io_simple(struct bio * bio)228 static void blkdev_bio_end_io_simple(struct bio *bio)
229 {
230 struct task_struct *waiter = bio->bi_private;
231
232 WRITE_ONCE(bio->bi_private, NULL);
233 blk_wake_io_task(waiter);
234 }
235
236 static ssize_t
__blkdev_direct_IO_simple(struct kiocb * iocb,struct iov_iter * iter,int nr_pages)237 __blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
238 int nr_pages)
239 {
240 struct file *file = iocb->ki_filp;
241 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
242 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs;
243 loff_t pos = iocb->ki_pos;
244 bool should_dirty = false;
245 struct bio bio;
246 ssize_t ret;
247 blk_qc_t qc;
248
249 if ((pos | iov_iter_alignment(iter)) &
250 (bdev_logical_block_size(bdev) - 1))
251 return -EINVAL;
252
253 if (nr_pages <= DIO_INLINE_BIO_VECS)
254 vecs = inline_vecs;
255 else {
256 vecs = kmalloc_array(nr_pages, sizeof(struct bio_vec),
257 GFP_KERNEL);
258 if (!vecs)
259 return -ENOMEM;
260 }
261
262 bio_init(&bio, vecs, nr_pages);
263 bio_set_dev(&bio, bdev);
264 bio.bi_iter.bi_sector = pos >> 9;
265 bio.bi_write_hint = iocb->ki_hint;
266 bio.bi_private = current;
267 bio.bi_end_io = blkdev_bio_end_io_simple;
268 bio.bi_ioprio = iocb->ki_ioprio;
269
270 ret = bio_iov_iter_get_pages(&bio, iter);
271 if (unlikely(ret))
272 goto out;
273 ret = bio.bi_iter.bi_size;
274
275 if (iov_iter_rw(iter) == READ) {
276 bio.bi_opf = REQ_OP_READ;
277 if (iter_is_iovec(iter))
278 should_dirty = true;
279 } else {
280 bio.bi_opf = dio_bio_write_op(iocb);
281 task_io_account_write(ret);
282 }
283 if (iocb->ki_flags & IOCB_NOWAIT)
284 bio.bi_opf |= REQ_NOWAIT;
285 if (iocb->ki_flags & IOCB_HIPRI)
286 bio_set_polled(&bio, iocb);
287
288 qc = submit_bio(&bio);
289 for (;;) {
290 set_current_state(TASK_UNINTERRUPTIBLE);
291 if (!READ_ONCE(bio.bi_private))
292 break;
293 if (!(iocb->ki_flags & IOCB_HIPRI) ||
294 !blk_poll(bdev_get_queue(bdev), qc, true))
295 blk_io_schedule();
296 }
297 __set_current_state(TASK_RUNNING);
298
299 bio_release_pages(&bio, should_dirty);
300 if (unlikely(bio.bi_status))
301 ret = blk_status_to_errno(bio.bi_status);
302
303 out:
304 if (vecs != inline_vecs)
305 kfree(vecs);
306
307 bio_uninit(&bio);
308
309 return ret;
310 }
311
312 struct blkdev_dio {
313 union {
314 struct kiocb *iocb;
315 struct task_struct *waiter;
316 };
317 size_t size;
318 atomic_t ref;
319 bool multi_bio : 1;
320 bool should_dirty : 1;
321 bool is_sync : 1;
322 struct bio bio;
323 };
324
325 static struct bio_set blkdev_dio_pool;
326
blkdev_iopoll(struct kiocb * kiocb,bool wait)327 static int blkdev_iopoll(struct kiocb *kiocb, bool wait)
328 {
329 struct block_device *bdev = I_BDEV(kiocb->ki_filp->f_mapping->host);
330 struct request_queue *q = bdev_get_queue(bdev);
331
332 return blk_poll(q, READ_ONCE(kiocb->ki_cookie), wait);
333 }
334
blkdev_bio_end_io(struct bio * bio)335 static void blkdev_bio_end_io(struct bio *bio)
336 {
337 struct blkdev_dio *dio = bio->bi_private;
338 bool should_dirty = dio->should_dirty;
339
340 if (bio->bi_status && !dio->bio.bi_status)
341 dio->bio.bi_status = bio->bi_status;
342
343 if (!dio->multi_bio || atomic_dec_and_test(&dio->ref)) {
344 if (!dio->is_sync) {
345 struct kiocb *iocb = dio->iocb;
346 ssize_t ret;
347
348 if (likely(!dio->bio.bi_status)) {
349 ret = dio->size;
350 iocb->ki_pos += ret;
351 } else {
352 ret = blk_status_to_errno(dio->bio.bi_status);
353 }
354
355 dio->iocb->ki_complete(iocb, ret, 0);
356 if (dio->multi_bio)
357 bio_put(&dio->bio);
358 } else {
359 struct task_struct *waiter = dio->waiter;
360
361 WRITE_ONCE(dio->waiter, NULL);
362 blk_wake_io_task(waiter);
363 }
364 }
365
366 if (should_dirty) {
367 bio_check_pages_dirty(bio);
368 } else {
369 bio_release_pages(bio, false);
370 bio_put(bio);
371 }
372 }
373
374 static ssize_t
__blkdev_direct_IO(struct kiocb * iocb,struct iov_iter * iter,int nr_pages)375 __blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages)
376 {
377 struct file *file = iocb->ki_filp;
378 struct inode *inode = bdev_file_inode(file);
379 struct block_device *bdev = I_BDEV(inode);
380 struct blk_plug plug;
381 struct blkdev_dio *dio;
382 struct bio *bio;
383 bool is_poll = (iocb->ki_flags & IOCB_HIPRI) != 0;
384 bool is_read = (iov_iter_rw(iter) == READ), is_sync;
385 loff_t pos = iocb->ki_pos;
386 blk_qc_t qc = BLK_QC_T_NONE;
387 int ret = 0;
388
389 if ((pos | iov_iter_alignment(iter)) &
390 (bdev_logical_block_size(bdev) - 1))
391 return -EINVAL;
392
393 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, &blkdev_dio_pool);
394
395 dio = container_of(bio, struct blkdev_dio, bio);
396 dio->is_sync = is_sync = is_sync_kiocb(iocb);
397 if (dio->is_sync) {
398 dio->waiter = current;
399 bio_get(bio);
400 } else {
401 dio->iocb = iocb;
402 }
403
404 dio->size = 0;
405 dio->multi_bio = false;
406 dio->should_dirty = is_read && iter_is_iovec(iter);
407
408 /*
409 * Don't plug for HIPRI/polled IO, as those should go straight
410 * to issue
411 */
412 if (!is_poll)
413 blk_start_plug(&plug);
414
415 for (;;) {
416 bio_set_dev(bio, bdev);
417 bio->bi_iter.bi_sector = pos >> 9;
418 bio->bi_write_hint = iocb->ki_hint;
419 bio->bi_private = dio;
420 bio->bi_end_io = blkdev_bio_end_io;
421 bio->bi_ioprio = iocb->ki_ioprio;
422
423 ret = bio_iov_iter_get_pages(bio, iter);
424 if (unlikely(ret)) {
425 bio->bi_status = BLK_STS_IOERR;
426 bio_endio(bio);
427 break;
428 }
429
430 if (is_read) {
431 bio->bi_opf = REQ_OP_READ;
432 if (dio->should_dirty)
433 bio_set_pages_dirty(bio);
434 } else {
435 bio->bi_opf = dio_bio_write_op(iocb);
436 task_io_account_write(bio->bi_iter.bi_size);
437 }
438 if (iocb->ki_flags & IOCB_NOWAIT)
439 bio->bi_opf |= REQ_NOWAIT;
440
441 dio->size += bio->bi_iter.bi_size;
442 pos += bio->bi_iter.bi_size;
443
444 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES);
445 if (!nr_pages) {
446 bool polled = false;
447
448 if (iocb->ki_flags & IOCB_HIPRI) {
449 bio_set_polled(bio, iocb);
450 polled = true;
451 }
452
453 qc = submit_bio(bio);
454
455 if (polled)
456 WRITE_ONCE(iocb->ki_cookie, qc);
457 break;
458 }
459
460 if (!dio->multi_bio) {
461 /*
462 * AIO needs an extra reference to ensure the dio
463 * structure which is embedded into the first bio
464 * stays around.
465 */
466 if (!is_sync)
467 bio_get(bio);
468 dio->multi_bio = true;
469 atomic_set(&dio->ref, 2);
470 } else {
471 atomic_inc(&dio->ref);
472 }
473
474 submit_bio(bio);
475 bio = bio_alloc(GFP_KERNEL, nr_pages);
476 }
477
478 if (!is_poll)
479 blk_finish_plug(&plug);
480
481 if (!is_sync)
482 return -EIOCBQUEUED;
483
484 for (;;) {
485 set_current_state(TASK_UNINTERRUPTIBLE);
486 if (!READ_ONCE(dio->waiter))
487 break;
488
489 if (!(iocb->ki_flags & IOCB_HIPRI) ||
490 !blk_poll(bdev_get_queue(bdev), qc, true))
491 blk_io_schedule();
492 }
493 __set_current_state(TASK_RUNNING);
494
495 if (!ret)
496 ret = blk_status_to_errno(dio->bio.bi_status);
497 if (likely(!ret))
498 ret = dio->size;
499
500 bio_put(&dio->bio);
501 return ret;
502 }
503
504 static ssize_t
blkdev_direct_IO(struct kiocb * iocb,struct iov_iter * iter)505 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
506 {
507 int nr_pages;
508
509 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
510 if (!nr_pages)
511 return 0;
512 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
513 return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
514
515 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES));
516 }
517
blkdev_init(void)518 static __init int blkdev_init(void)
519 {
520 return bioset_init(&blkdev_dio_pool, 4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS);
521 }
522 module_init(blkdev_init);
523
__sync_blockdev(struct block_device * bdev,int wait)524 int __sync_blockdev(struct block_device *bdev, int wait)
525 {
526 if (!bdev)
527 return 0;
528 if (!wait)
529 return filemap_flush(bdev->bd_inode->i_mapping);
530 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
531 }
532
533 /*
534 * Write out and wait upon all the dirty data associated with a block
535 * device via its mapping. Does not take the superblock lock.
536 */
sync_blockdev(struct block_device * bdev)537 int sync_blockdev(struct block_device *bdev)
538 {
539 return __sync_blockdev(bdev, 1);
540 }
541 EXPORT_SYMBOL(sync_blockdev);
542
543 /*
544 * Write out and wait upon all dirty data associated with this
545 * device. Filesystem data as well as the underlying block
546 * device. Takes the superblock lock.
547 */
fsync_bdev(struct block_device * bdev)548 int fsync_bdev(struct block_device *bdev)
549 {
550 struct super_block *sb = get_super(bdev);
551 if (sb) {
552 int res = sync_filesystem(sb);
553 drop_super(sb);
554 return res;
555 }
556 return sync_blockdev(bdev);
557 }
558 EXPORT_SYMBOL(fsync_bdev);
559
560 /**
561 * freeze_bdev -- lock a filesystem and force it into a consistent state
562 * @bdev: blockdevice to lock
563 *
564 * If a superblock is found on this device, we take the s_umount semaphore
565 * on it to make sure nobody unmounts until the snapshot creation is done.
566 * The reference counter (bd_fsfreeze_count) guarantees that only the last
567 * unfreeze process can unfreeze the frozen filesystem actually when multiple
568 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
569 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
570 * actually.
571 */
freeze_bdev(struct block_device * bdev)572 struct super_block *freeze_bdev(struct block_device *bdev)
573 {
574 struct super_block *sb;
575 int error = 0;
576
577 mutex_lock(&bdev->bd_fsfreeze_mutex);
578 if (++bdev->bd_fsfreeze_count > 1) {
579 /*
580 * We don't even need to grab a reference - the first call
581 * to freeze_bdev grab an active reference and only the last
582 * thaw_bdev drops it.
583 */
584 sb = get_super(bdev);
585 if (sb)
586 drop_super(sb);
587 mutex_unlock(&bdev->bd_fsfreeze_mutex);
588 return sb;
589 }
590
591 sb = get_active_super(bdev);
592 if (!sb)
593 goto out;
594 if (sb->s_op->freeze_super)
595 error = sb->s_op->freeze_super(sb);
596 else
597 error = freeze_super(sb);
598 if (error) {
599 deactivate_super(sb);
600 bdev->bd_fsfreeze_count--;
601 mutex_unlock(&bdev->bd_fsfreeze_mutex);
602 return ERR_PTR(error);
603 }
604 deactivate_super(sb);
605 out:
606 sync_blockdev(bdev);
607 mutex_unlock(&bdev->bd_fsfreeze_mutex);
608 return sb; /* thaw_bdev releases s->s_umount */
609 }
610 EXPORT_SYMBOL(freeze_bdev);
611
612 /**
613 * thaw_bdev -- unlock filesystem
614 * @bdev: blockdevice to unlock
615 * @sb: associated superblock
616 *
617 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
618 */
thaw_bdev(struct block_device * bdev,struct super_block * sb)619 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
620 {
621 int error = -EINVAL;
622
623 mutex_lock(&bdev->bd_fsfreeze_mutex);
624 if (!bdev->bd_fsfreeze_count)
625 goto out;
626
627 error = 0;
628 if (--bdev->bd_fsfreeze_count > 0)
629 goto out;
630
631 if (!sb)
632 goto out;
633
634 if (sb->s_op->thaw_super)
635 error = sb->s_op->thaw_super(sb);
636 else
637 error = thaw_super(sb);
638 if (error)
639 bdev->bd_fsfreeze_count++;
640 out:
641 mutex_unlock(&bdev->bd_fsfreeze_mutex);
642 return error;
643 }
644 EXPORT_SYMBOL(thaw_bdev);
645
blkdev_writepage(struct page * page,struct writeback_control * wbc)646 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
647 {
648 return block_write_full_page(page, blkdev_get_block, wbc);
649 }
650
blkdev_readpage(struct file * file,struct page * page)651 static int blkdev_readpage(struct file * file, struct page * page)
652 {
653 return block_read_full_page(page, blkdev_get_block);
654 }
655
blkdev_readahead(struct readahead_control * rac)656 static void blkdev_readahead(struct readahead_control *rac)
657 {
658 mpage_readahead(rac, blkdev_get_block);
659 }
660
blkdev_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)661 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
662 loff_t pos, unsigned len, unsigned flags,
663 struct page **pagep, void **fsdata)
664 {
665 return block_write_begin(mapping, pos, len, flags, pagep,
666 blkdev_get_block);
667 }
668
blkdev_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)669 static int blkdev_write_end(struct file *file, struct address_space *mapping,
670 loff_t pos, unsigned len, unsigned copied,
671 struct page *page, void *fsdata)
672 {
673 int ret;
674 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
675
676 unlock_page(page);
677 put_page(page);
678
679 return ret;
680 }
681
682 /*
683 * private llseek:
684 * for a block special file file_inode(file)->i_size is zero
685 * so we compute the size by hand (just as in block_read/write above)
686 */
block_llseek(struct file * file,loff_t offset,int whence)687 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
688 {
689 struct inode *bd_inode = bdev_file_inode(file);
690 loff_t retval;
691
692 inode_lock(bd_inode);
693 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
694 inode_unlock(bd_inode);
695 return retval;
696 }
697
blkdev_fsync(struct file * filp,loff_t start,loff_t end,int datasync)698 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
699 {
700 struct inode *bd_inode = bdev_file_inode(filp);
701 struct block_device *bdev = I_BDEV(bd_inode);
702 int error;
703
704 error = file_write_and_wait_range(filp, start, end);
705 if (error)
706 return error;
707
708 /*
709 * There is no need to serialise calls to blkdev_issue_flush with
710 * i_mutex and doing so causes performance issues with concurrent
711 * O_SYNC writers to a block device.
712 */
713 error = blkdev_issue_flush(bdev, GFP_KERNEL);
714 if (error == -EOPNOTSUPP)
715 error = 0;
716
717 return error;
718 }
719 EXPORT_SYMBOL(blkdev_fsync);
720
721 /**
722 * bdev_read_page() - Start reading a page from a block device
723 * @bdev: The device to read the page from
724 * @sector: The offset on the device to read the page to (need not be aligned)
725 * @page: The page to read
726 *
727 * On entry, the page should be locked. It will be unlocked when the page
728 * has been read. If the block driver implements rw_page synchronously,
729 * that will be true on exit from this function, but it need not be.
730 *
731 * Errors returned by this function are usually "soft", eg out of memory, or
732 * queue full; callers should try a different route to read this page rather
733 * than propagate an error back up the stack.
734 *
735 * Return: negative errno if an error occurs, 0 if submission was successful.
736 */
bdev_read_page(struct block_device * bdev,sector_t sector,struct page * page)737 int bdev_read_page(struct block_device *bdev, sector_t sector,
738 struct page *page)
739 {
740 const struct block_device_operations *ops = bdev->bd_disk->fops;
741 int result = -EOPNOTSUPP;
742
743 if (!ops->rw_page || bdev_get_integrity(bdev))
744 return result;
745
746 result = blk_queue_enter(bdev->bd_disk->queue, 0);
747 if (result)
748 return result;
749 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
750 REQ_OP_READ);
751 blk_queue_exit(bdev->bd_disk->queue);
752 return result;
753 }
754
755 /**
756 * bdev_write_page() - Start writing a page to a block device
757 * @bdev: The device to write the page to
758 * @sector: The offset on the device to write the page to (need not be aligned)
759 * @page: The page to write
760 * @wbc: The writeback_control for the write
761 *
762 * On entry, the page should be locked and not currently under writeback.
763 * On exit, if the write started successfully, the page will be unlocked and
764 * under writeback. If the write failed already (eg the driver failed to
765 * queue the page to the device), the page will still be locked. If the
766 * caller is a ->writepage implementation, it will need to unlock the page.
767 *
768 * Errors returned by this function are usually "soft", eg out of memory, or
769 * queue full; callers should try a different route to write this page rather
770 * than propagate an error back up the stack.
771 *
772 * Return: negative errno if an error occurs, 0 if submission was successful.
773 */
bdev_write_page(struct block_device * bdev,sector_t sector,struct page * page,struct writeback_control * wbc)774 int bdev_write_page(struct block_device *bdev, sector_t sector,
775 struct page *page, struct writeback_control *wbc)
776 {
777 int result;
778 const struct block_device_operations *ops = bdev->bd_disk->fops;
779
780 if (!ops->rw_page || bdev_get_integrity(bdev))
781 return -EOPNOTSUPP;
782 result = blk_queue_enter(bdev->bd_disk->queue, 0);
783 if (result)
784 return result;
785
786 set_page_writeback(page);
787 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
788 REQ_OP_WRITE);
789 if (result) {
790 end_page_writeback(page);
791 } else {
792 clean_page_buffers(page);
793 unlock_page(page);
794 }
795 blk_queue_exit(bdev->bd_disk->queue);
796 return result;
797 }
798
799 /*
800 * pseudo-fs
801 */
802
803 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
804 static struct kmem_cache * bdev_cachep __read_mostly;
805
bdev_alloc_inode(struct super_block * sb)806 static struct inode *bdev_alloc_inode(struct super_block *sb)
807 {
808 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
809 if (!ei)
810 return NULL;
811 return &ei->vfs_inode;
812 }
813
bdev_free_inode(struct inode * inode)814 static void bdev_free_inode(struct inode *inode)
815 {
816 kmem_cache_free(bdev_cachep, BDEV_I(inode));
817 }
818
init_once(void * foo)819 static void init_once(void *foo)
820 {
821 struct bdev_inode *ei = (struct bdev_inode *) foo;
822 struct block_device *bdev = &ei->bdev;
823
824 memset(bdev, 0, sizeof(*bdev));
825 mutex_init(&bdev->bd_mutex);
826 #ifdef CONFIG_SYSFS
827 INIT_LIST_HEAD(&bdev->bd_holder_disks);
828 #endif
829 bdev->bd_bdi = &noop_backing_dev_info;
830 inode_init_once(&ei->vfs_inode);
831 /* Initialize mutex for freeze. */
832 mutex_init(&bdev->bd_fsfreeze_mutex);
833 }
834
bdev_evict_inode(struct inode * inode)835 static void bdev_evict_inode(struct inode *inode)
836 {
837 struct block_device *bdev = &BDEV_I(inode)->bdev;
838 truncate_inode_pages_final(&inode->i_data);
839 invalidate_inode_buffers(inode); /* is it needed here? */
840 clear_inode(inode);
841 /* Detach inode from wb early as bdi_put() may free bdi->wb */
842 inode_detach_wb(inode);
843 if (bdev->bd_bdi != &noop_backing_dev_info) {
844 bdi_put(bdev->bd_bdi);
845 bdev->bd_bdi = &noop_backing_dev_info;
846 }
847 }
848
849 static const struct super_operations bdev_sops = {
850 .statfs = simple_statfs,
851 .alloc_inode = bdev_alloc_inode,
852 .free_inode = bdev_free_inode,
853 .drop_inode = generic_delete_inode,
854 .evict_inode = bdev_evict_inode,
855 };
856
bd_init_fs_context(struct fs_context * fc)857 static int bd_init_fs_context(struct fs_context *fc)
858 {
859 struct pseudo_fs_context *ctx = init_pseudo(fc, BDEVFS_MAGIC);
860 if (!ctx)
861 return -ENOMEM;
862 fc->s_iflags |= SB_I_CGROUPWB;
863 ctx->ops = &bdev_sops;
864 return 0;
865 }
866
867 static struct file_system_type bd_type = {
868 .name = "bdev",
869 .init_fs_context = bd_init_fs_context,
870 .kill_sb = kill_anon_super,
871 };
872
873 struct super_block *blockdev_superblock __read_mostly;
874 EXPORT_SYMBOL_GPL(blockdev_superblock);
875
bdev_cache_init(void)876 void __init bdev_cache_init(void)
877 {
878 int err;
879 static struct vfsmount *bd_mnt;
880
881 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
882 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
883 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
884 init_once);
885 err = register_filesystem(&bd_type);
886 if (err)
887 panic("Cannot register bdev pseudo-fs");
888 bd_mnt = kern_mount(&bd_type);
889 if (IS_ERR(bd_mnt))
890 panic("Cannot create bdev pseudo-fs");
891 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
892 }
893
894 /*
895 * Most likely _very_ bad one - but then it's hardly critical for small
896 * /dev and can be fixed when somebody will need really large one.
897 * Keep in mind that it will be fed through icache hash function too.
898 */
hash(dev_t dev)899 static inline unsigned long hash(dev_t dev)
900 {
901 return MAJOR(dev)+MINOR(dev);
902 }
903
bdev_test(struct inode * inode,void * data)904 static int bdev_test(struct inode *inode, void *data)
905 {
906 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
907 }
908
bdev_set(struct inode * inode,void * data)909 static int bdev_set(struct inode *inode, void *data)
910 {
911 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
912 return 0;
913 }
914
bdget(dev_t dev)915 static struct block_device *bdget(dev_t dev)
916 {
917 struct block_device *bdev;
918 struct inode *inode;
919
920 inode = iget5_locked(blockdev_superblock, hash(dev),
921 bdev_test, bdev_set, &dev);
922
923 if (!inode)
924 return NULL;
925
926 bdev = &BDEV_I(inode)->bdev;
927
928 if (inode->i_state & I_NEW) {
929 spin_lock_init(&bdev->bd_size_lock);
930 bdev->bd_contains = NULL;
931 bdev->bd_super = NULL;
932 bdev->bd_inode = inode;
933 bdev->bd_part_count = 0;
934 inode->i_mode = S_IFBLK;
935 inode->i_rdev = dev;
936 inode->i_bdev = bdev;
937 inode->i_data.a_ops = &def_blk_aops;
938 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
939 unlock_new_inode(inode);
940 }
941 return bdev;
942 }
943
944 /**
945 * bdgrab -- Grab a reference to an already referenced block device
946 * @bdev: Block device to grab a reference to.
947 */
bdgrab(struct block_device * bdev)948 struct block_device *bdgrab(struct block_device *bdev)
949 {
950 ihold(bdev->bd_inode);
951 return bdev;
952 }
953 EXPORT_SYMBOL(bdgrab);
954
bdget_part(struct hd_struct * part)955 struct block_device *bdget_part(struct hd_struct *part)
956 {
957 return bdget(part_devt(part));
958 }
959
nr_blockdev_pages(void)960 long nr_blockdev_pages(void)
961 {
962 struct inode *inode;
963 long ret = 0;
964
965 spin_lock(&blockdev_superblock->s_inode_list_lock);
966 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list)
967 ret += inode->i_mapping->nrpages;
968 spin_unlock(&blockdev_superblock->s_inode_list_lock);
969
970 return ret;
971 }
972
bdput(struct block_device * bdev)973 void bdput(struct block_device *bdev)
974 {
975 iput(bdev->bd_inode);
976 }
977
978 EXPORT_SYMBOL(bdput);
979
bd_acquire(struct inode * inode)980 static struct block_device *bd_acquire(struct inode *inode)
981 {
982 struct block_device *bdev;
983
984 spin_lock(&bdev_lock);
985 bdev = inode->i_bdev;
986 if (bdev && !inode_unhashed(bdev->bd_inode)) {
987 bdgrab(bdev);
988 spin_unlock(&bdev_lock);
989 return bdev;
990 }
991 spin_unlock(&bdev_lock);
992
993 /*
994 * i_bdev references block device inode that was already shut down
995 * (corresponding device got removed). Remove the reference and look
996 * up block device inode again just in case new device got
997 * reestablished under the same device number.
998 */
999 if (bdev)
1000 bd_forget(inode);
1001
1002 bdev = bdget(inode->i_rdev);
1003 if (bdev) {
1004 spin_lock(&bdev_lock);
1005 if (!inode->i_bdev) {
1006 /*
1007 * We take an additional reference to bd_inode,
1008 * and it's released in clear_inode() of inode.
1009 * So, we can access it via ->i_mapping always
1010 * without igrab().
1011 */
1012 bdgrab(bdev);
1013 inode->i_bdev = bdev;
1014 inode->i_mapping = bdev->bd_inode->i_mapping;
1015 }
1016 spin_unlock(&bdev_lock);
1017 }
1018 return bdev;
1019 }
1020
1021 /* Call when you free inode */
1022
bd_forget(struct inode * inode)1023 void bd_forget(struct inode *inode)
1024 {
1025 struct block_device *bdev = NULL;
1026
1027 spin_lock(&bdev_lock);
1028 if (!sb_is_blkdev_sb(inode->i_sb))
1029 bdev = inode->i_bdev;
1030 inode->i_bdev = NULL;
1031 inode->i_mapping = &inode->i_data;
1032 spin_unlock(&bdev_lock);
1033
1034 if (bdev)
1035 bdput(bdev);
1036 }
1037
1038 /**
1039 * bd_may_claim - test whether a block device can be claimed
1040 * @bdev: block device of interest
1041 * @whole: whole block device containing @bdev, may equal @bdev
1042 * @holder: holder trying to claim @bdev
1043 *
1044 * Test whether @bdev can be claimed by @holder.
1045 *
1046 * CONTEXT:
1047 * spin_lock(&bdev_lock).
1048 *
1049 * RETURNS:
1050 * %true if @bdev can be claimed, %false otherwise.
1051 */
bd_may_claim(struct block_device * bdev,struct block_device * whole,void * holder)1052 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
1053 void *holder)
1054 {
1055 if (bdev->bd_holder == holder)
1056 return true; /* already a holder */
1057 else if (bdev->bd_holder != NULL)
1058 return false; /* held by someone else */
1059 else if (whole == bdev)
1060 return true; /* is a whole device which isn't held */
1061
1062 else if (whole->bd_holder == bd_may_claim)
1063 return true; /* is a partition of a device that is being partitioned */
1064 else if (whole->bd_holder != NULL)
1065 return false; /* is a partition of a held device */
1066 else
1067 return true; /* is a partition of an un-held device */
1068 }
1069
1070 /**
1071 * bd_prepare_to_claim - claim a block device
1072 * @bdev: block device of interest
1073 * @whole: the whole device containing @bdev, may equal @bdev
1074 * @holder: holder trying to claim @bdev
1075 *
1076 * Claim @bdev. This function fails if @bdev is already claimed by another
1077 * holder and waits if another claiming is in progress. return, the caller
1078 * has ownership of bd_claiming and bd_holder[s].
1079 *
1080 * RETURNS:
1081 * 0 if @bdev can be claimed, -EBUSY otherwise.
1082 */
bd_prepare_to_claim(struct block_device * bdev,struct block_device * whole,void * holder)1083 int bd_prepare_to_claim(struct block_device *bdev, struct block_device *whole,
1084 void *holder)
1085 {
1086 retry:
1087 spin_lock(&bdev_lock);
1088 /* if someone else claimed, fail */
1089 if (!bd_may_claim(bdev, whole, holder)) {
1090 spin_unlock(&bdev_lock);
1091 return -EBUSY;
1092 }
1093
1094 /* if claiming is already in progress, wait for it to finish */
1095 if (whole->bd_claiming) {
1096 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
1097 DEFINE_WAIT(wait);
1098
1099 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
1100 spin_unlock(&bdev_lock);
1101 schedule();
1102 finish_wait(wq, &wait);
1103 goto retry;
1104 }
1105
1106 /* yay, all mine */
1107 whole->bd_claiming = holder;
1108 spin_unlock(&bdev_lock);
1109 return 0;
1110 }
1111 EXPORT_SYMBOL_GPL(bd_prepare_to_claim); /* only for the loop driver */
1112
bdev_get_gendisk(struct block_device * bdev,int * partno)1113 static struct gendisk *bdev_get_gendisk(struct block_device *bdev, int *partno)
1114 {
1115 struct gendisk *disk = get_gendisk(bdev->bd_dev, partno);
1116
1117 if (!disk)
1118 return NULL;
1119 /*
1120 * Now that we hold gendisk reference we make sure bdev we looked up is
1121 * not stale. If it is, it means device got removed and created before
1122 * we looked up gendisk and we fail open in such case. Associating
1123 * unhashed bdev with newly created gendisk could lead to two bdevs
1124 * (and thus two independent caches) being associated with one device
1125 * which is bad.
1126 */
1127 if (inode_unhashed(bdev->bd_inode)) {
1128 put_disk_and_module(disk);
1129 return NULL;
1130 }
1131 return disk;
1132 }
1133
bd_clear_claiming(struct block_device * whole,void * holder)1134 static void bd_clear_claiming(struct block_device *whole, void *holder)
1135 {
1136 lockdep_assert_held(&bdev_lock);
1137 /* tell others that we're done */
1138 BUG_ON(whole->bd_claiming != holder);
1139 whole->bd_claiming = NULL;
1140 wake_up_bit(&whole->bd_claiming, 0);
1141 }
1142
1143 /**
1144 * bd_finish_claiming - finish claiming of a block device
1145 * @bdev: block device of interest
1146 * @whole: whole block device
1147 * @holder: holder that has claimed @bdev
1148 *
1149 * Finish exclusive open of a block device. Mark the device as exlusively
1150 * open by the holder and wake up all waiters for exclusive open to finish.
1151 */
bd_finish_claiming(struct block_device * bdev,struct block_device * whole,void * holder)1152 static void bd_finish_claiming(struct block_device *bdev,
1153 struct block_device *whole, void *holder)
1154 {
1155 spin_lock(&bdev_lock);
1156 BUG_ON(!bd_may_claim(bdev, whole, holder));
1157 /*
1158 * Note that for a whole device bd_holders will be incremented twice,
1159 * and bd_holder will be set to bd_may_claim before being set to holder
1160 */
1161 whole->bd_holders++;
1162 whole->bd_holder = bd_may_claim;
1163 bdev->bd_holders++;
1164 bdev->bd_holder = holder;
1165 bd_clear_claiming(whole, holder);
1166 spin_unlock(&bdev_lock);
1167 }
1168
1169 /**
1170 * bd_abort_claiming - abort claiming of a block device
1171 * @bdev: block device of interest
1172 * @whole: whole block device
1173 * @holder: holder that has claimed @bdev
1174 *
1175 * Abort claiming of a block device when the exclusive open failed. This can be
1176 * also used when exclusive open is not actually desired and we just needed
1177 * to block other exclusive openers for a while.
1178 */
bd_abort_claiming(struct block_device * bdev,struct block_device * whole,void * holder)1179 void bd_abort_claiming(struct block_device *bdev, struct block_device *whole,
1180 void *holder)
1181 {
1182 spin_lock(&bdev_lock);
1183 bd_clear_claiming(whole, holder);
1184 spin_unlock(&bdev_lock);
1185 }
1186 EXPORT_SYMBOL(bd_abort_claiming);
1187
1188 #ifdef CONFIG_SYSFS
1189 struct bd_holder_disk {
1190 struct list_head list;
1191 struct gendisk *disk;
1192 int refcnt;
1193 };
1194
bd_find_holder_disk(struct block_device * bdev,struct gendisk * disk)1195 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1196 struct gendisk *disk)
1197 {
1198 struct bd_holder_disk *holder;
1199
1200 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1201 if (holder->disk == disk)
1202 return holder;
1203 return NULL;
1204 }
1205
add_symlink(struct kobject * from,struct kobject * to)1206 static int add_symlink(struct kobject *from, struct kobject *to)
1207 {
1208 return sysfs_create_link(from, to, kobject_name(to));
1209 }
1210
del_symlink(struct kobject * from,struct kobject * to)1211 static void del_symlink(struct kobject *from, struct kobject *to)
1212 {
1213 sysfs_remove_link(from, kobject_name(to));
1214 }
1215
1216 /**
1217 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1218 * @bdev: the claimed slave bdev
1219 * @disk: the holding disk
1220 *
1221 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1222 *
1223 * This functions creates the following sysfs symlinks.
1224 *
1225 * - from "slaves" directory of the holder @disk to the claimed @bdev
1226 * - from "holders" directory of the @bdev to the holder @disk
1227 *
1228 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1229 * passed to bd_link_disk_holder(), then:
1230 *
1231 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
1232 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1233 *
1234 * The caller must have claimed @bdev before calling this function and
1235 * ensure that both @bdev and @disk are valid during the creation and
1236 * lifetime of these symlinks.
1237 *
1238 * CONTEXT:
1239 * Might sleep.
1240 *
1241 * RETURNS:
1242 * 0 on success, -errno on failure.
1243 */
bd_link_disk_holder(struct block_device * bdev,struct gendisk * disk)1244 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1245 {
1246 struct bd_holder_disk *holder;
1247 int ret = 0;
1248
1249 mutex_lock(&bdev->bd_mutex);
1250
1251 WARN_ON_ONCE(!bdev->bd_holder);
1252
1253 /* FIXME: remove the following once add_disk() handles errors */
1254 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1255 goto out_unlock;
1256
1257 holder = bd_find_holder_disk(bdev, disk);
1258 if (holder) {
1259 holder->refcnt++;
1260 goto out_unlock;
1261 }
1262
1263 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1264 if (!holder) {
1265 ret = -ENOMEM;
1266 goto out_unlock;
1267 }
1268
1269 INIT_LIST_HEAD(&holder->list);
1270 holder->disk = disk;
1271 holder->refcnt = 1;
1272
1273 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1274 if (ret)
1275 goto out_free;
1276
1277 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1278 if (ret)
1279 goto out_del;
1280 /*
1281 * bdev could be deleted beneath us which would implicitly destroy
1282 * the holder directory. Hold on to it.
1283 */
1284 kobject_get(bdev->bd_part->holder_dir);
1285
1286 list_add(&holder->list, &bdev->bd_holder_disks);
1287 goto out_unlock;
1288
1289 out_del:
1290 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1291 out_free:
1292 kfree(holder);
1293 out_unlock:
1294 mutex_unlock(&bdev->bd_mutex);
1295 return ret;
1296 }
1297 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1298
1299 /**
1300 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1301 * @bdev: the calimed slave bdev
1302 * @disk: the holding disk
1303 *
1304 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1305 *
1306 * CONTEXT:
1307 * Might sleep.
1308 */
bd_unlink_disk_holder(struct block_device * bdev,struct gendisk * disk)1309 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1310 {
1311 struct bd_holder_disk *holder;
1312
1313 mutex_lock(&bdev->bd_mutex);
1314
1315 holder = bd_find_holder_disk(bdev, disk);
1316
1317 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1318 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1319 del_symlink(bdev->bd_part->holder_dir,
1320 &disk_to_dev(disk)->kobj);
1321 kobject_put(bdev->bd_part->holder_dir);
1322 list_del_init(&holder->list);
1323 kfree(holder);
1324 }
1325
1326 mutex_unlock(&bdev->bd_mutex);
1327 }
1328 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1329 #endif
1330
1331 /**
1332 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1333 * @disk: struct gendisk to check
1334 * @bdev: struct bdev to adjust.
1335 * @verbose: if %true log a message about a size change if there is any
1336 *
1337 * This routine checks to see if the bdev size does not match the disk size
1338 * and adjusts it if it differs. When shrinking the bdev size, its all caches
1339 * are freed.
1340 */
check_disk_size_change(struct gendisk * disk,struct block_device * bdev,bool verbose)1341 static void check_disk_size_change(struct gendisk *disk,
1342 struct block_device *bdev, bool verbose)
1343 {
1344 loff_t disk_size, bdev_size;
1345
1346 spin_lock(&bdev->bd_size_lock);
1347 disk_size = (loff_t)get_capacity(disk) << 9;
1348 bdev_size = i_size_read(bdev->bd_inode);
1349 if (disk_size != bdev_size) {
1350 if (verbose) {
1351 printk(KERN_INFO
1352 "%s: detected capacity change from %lld to %lld\n",
1353 disk->disk_name, bdev_size, disk_size);
1354 }
1355 i_size_write(bdev->bd_inode, disk_size);
1356 }
1357 spin_unlock(&bdev->bd_size_lock);
1358
1359 if (bdev_size > disk_size) {
1360 if (__invalidate_device(bdev, false))
1361 pr_warn("VFS: busy inodes on resized disk %s\n",
1362 disk->disk_name);
1363 }
1364 }
1365
1366 /**
1367 * revalidate_disk_size - checks for disk size change and adjusts bdev size.
1368 * @disk: struct gendisk to check
1369 * @verbose: if %true log a message about a size change if there is any
1370 *
1371 * This routine checks to see if the bdev size does not match the disk size
1372 * and adjusts it if it differs. When shrinking the bdev size, its all caches
1373 * are freed.
1374 */
revalidate_disk_size(struct gendisk * disk,bool verbose)1375 void revalidate_disk_size(struct gendisk *disk, bool verbose)
1376 {
1377 struct block_device *bdev;
1378
1379 /*
1380 * Hidden disks don't have associated bdev so there's no point in
1381 * revalidating them.
1382 */
1383 if (disk->flags & GENHD_FL_HIDDEN)
1384 return;
1385
1386 bdev = bdget_disk(disk, 0);
1387 if (bdev) {
1388 check_disk_size_change(disk, bdev, verbose);
1389 bdput(bdev);
1390 }
1391 }
1392 EXPORT_SYMBOL(revalidate_disk_size);
1393
bd_set_nr_sectors(struct block_device * bdev,sector_t sectors)1394 void bd_set_nr_sectors(struct block_device *bdev, sector_t sectors)
1395 {
1396 spin_lock(&bdev->bd_size_lock);
1397 i_size_write(bdev->bd_inode, (loff_t)sectors << SECTOR_SHIFT);
1398 spin_unlock(&bdev->bd_size_lock);
1399 }
1400 EXPORT_SYMBOL(bd_set_nr_sectors);
1401
1402 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1403
bdev_disk_changed(struct block_device * bdev,bool invalidate)1404 int bdev_disk_changed(struct block_device *bdev, bool invalidate)
1405 {
1406 struct gendisk *disk = bdev->bd_disk;
1407 int ret;
1408
1409 lockdep_assert_held(&bdev->bd_mutex);
1410
1411 if (!(disk->flags & GENHD_FL_UP))
1412 return -ENXIO;
1413
1414 rescan:
1415 ret = blk_drop_partitions(bdev);
1416 if (ret)
1417 return ret;
1418
1419 clear_bit(GD_NEED_PART_SCAN, &disk->state);
1420
1421 /*
1422 * Historically we only set the capacity to zero for devices that
1423 * support partitions (independ of actually having partitions created).
1424 * Doing that is rather inconsistent, but changing it broke legacy
1425 * udisks polling for legacy ide-cdrom devices. Use the crude check
1426 * below to get the sane behavior for most device while not breaking
1427 * userspace for this particular setup.
1428 */
1429 if (invalidate) {
1430 if (disk_part_scan_enabled(disk) ||
1431 !(disk->flags & GENHD_FL_REMOVABLE))
1432 set_capacity(disk, 0);
1433 } else {
1434 if (disk->fops->revalidate_disk)
1435 disk->fops->revalidate_disk(disk);
1436 }
1437
1438 check_disk_size_change(disk, bdev, !invalidate);
1439
1440 if (get_capacity(disk)) {
1441 ret = blk_add_partitions(disk, bdev);
1442 if (ret == -EAGAIN)
1443 goto rescan;
1444 } else if (invalidate) {
1445 /*
1446 * Tell userspace that the media / partition table may have
1447 * changed.
1448 */
1449 kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE);
1450 }
1451
1452 return ret;
1453 }
1454 /*
1455 * Only exported for for loop and dasd for historic reasons. Don't use in new
1456 * code!
1457 */
1458 EXPORT_SYMBOL_GPL(bdev_disk_changed);
1459
1460 /*
1461 * bd_mutex locking:
1462 *
1463 * mutex_lock(part->bd_mutex)
1464 * mutex_lock_nested(whole->bd_mutex, 1)
1465 */
1466
__blkdev_get(struct block_device * bdev,fmode_t mode,void * holder,int for_part)1467 static int __blkdev_get(struct block_device *bdev, fmode_t mode, void *holder,
1468 int for_part)
1469 {
1470 struct block_device *whole = NULL, *claiming = NULL;
1471 struct gendisk *disk;
1472 int ret;
1473 int partno;
1474 bool first_open = false, unblock_events = true, need_restart;
1475
1476 restart:
1477 need_restart = false;
1478 ret = -ENXIO;
1479 disk = bdev_get_gendisk(bdev, &partno);
1480 if (!disk)
1481 goto out;
1482
1483 if (partno) {
1484 whole = bdget_disk(disk, 0);
1485 if (!whole) {
1486 ret = -ENOMEM;
1487 goto out_put_disk;
1488 }
1489 }
1490
1491 if (!for_part && (mode & FMODE_EXCL)) {
1492 WARN_ON_ONCE(!holder);
1493 if (whole)
1494 claiming = whole;
1495 else
1496 claiming = bdev;
1497 ret = bd_prepare_to_claim(bdev, claiming, holder);
1498 if (ret)
1499 goto out_put_whole;
1500 }
1501
1502 disk_block_events(disk);
1503 mutex_lock_nested(&bdev->bd_mutex, for_part);
1504 if (!bdev->bd_openers) {
1505 first_open = true;
1506 bdev->bd_disk = disk;
1507 bdev->bd_contains = bdev;
1508 bdev->bd_partno = partno;
1509
1510 if (!partno) {
1511 ret = -ENXIO;
1512 bdev->bd_part = disk_get_part(disk, partno);
1513 if (!bdev->bd_part)
1514 goto out_clear;
1515
1516 ret = 0;
1517 if (disk->fops->open) {
1518 ret = disk->fops->open(bdev, mode);
1519 /*
1520 * If we lost a race with 'disk' being deleted,
1521 * try again. See md.c
1522 */
1523 if (ret == -ERESTARTSYS)
1524 need_restart = true;
1525 }
1526
1527 if (!ret) {
1528 bd_set_nr_sectors(bdev, get_capacity(disk));
1529 set_init_blocksize(bdev);
1530 }
1531
1532 /*
1533 * If the device is invalidated, rescan partition
1534 * if open succeeded or failed with -ENOMEDIUM.
1535 * The latter is necessary to prevent ghost
1536 * partitions on a removed medium.
1537 */
1538 if (test_bit(GD_NEED_PART_SCAN, &disk->state) &&
1539 (!ret || ret == -ENOMEDIUM))
1540 bdev_disk_changed(bdev, ret == -ENOMEDIUM);
1541
1542 if (ret)
1543 goto out_clear;
1544 } else {
1545 BUG_ON(for_part);
1546 ret = __blkdev_get(whole, mode, NULL, 1);
1547 if (ret)
1548 goto out_clear;
1549 bdev->bd_contains = bdgrab(whole);
1550 bdev->bd_part = disk_get_part(disk, partno);
1551 if (!(disk->flags & GENHD_FL_UP) ||
1552 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1553 ret = -ENXIO;
1554 goto out_clear;
1555 }
1556 bd_set_nr_sectors(bdev, bdev->bd_part->nr_sects);
1557 set_init_blocksize(bdev);
1558 }
1559
1560 if (bdev->bd_bdi == &noop_backing_dev_info)
1561 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info);
1562 } else {
1563 if (bdev->bd_contains == bdev) {
1564 ret = 0;
1565 if (bdev->bd_disk->fops->open)
1566 ret = bdev->bd_disk->fops->open(bdev, mode);
1567 /* the same as first opener case, read comment there */
1568 if (test_bit(GD_NEED_PART_SCAN, &disk->state) &&
1569 (!ret || ret == -ENOMEDIUM))
1570 bdev_disk_changed(bdev, ret == -ENOMEDIUM);
1571 if (ret)
1572 goto out_unlock_bdev;
1573 }
1574 }
1575 bdev->bd_openers++;
1576 if (for_part)
1577 bdev->bd_part_count++;
1578 if (claiming)
1579 bd_finish_claiming(bdev, claiming, holder);
1580
1581 /*
1582 * Block event polling for write claims if requested. Any write holder
1583 * makes the write_holder state stick until all are released. This is
1584 * good enough and tracking individual writeable reference is too
1585 * fragile given the way @mode is used in blkdev_get/put().
1586 */
1587 if (claiming && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1588 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1589 bdev->bd_write_holder = true;
1590 unblock_events = false;
1591 }
1592 mutex_unlock(&bdev->bd_mutex);
1593
1594 if (unblock_events)
1595 disk_unblock_events(disk);
1596
1597 /* only one opener holds refs to the module and disk */
1598 if (!first_open)
1599 put_disk_and_module(disk);
1600 if (whole)
1601 bdput(whole);
1602 return 0;
1603
1604 out_clear:
1605 disk_put_part(bdev->bd_part);
1606 bdev->bd_disk = NULL;
1607 bdev->bd_part = NULL;
1608 if (bdev != bdev->bd_contains)
1609 __blkdev_put(bdev->bd_contains, mode, 1);
1610 bdev->bd_contains = NULL;
1611 out_unlock_bdev:
1612 if (claiming)
1613 bd_abort_claiming(bdev, claiming, holder);
1614 mutex_unlock(&bdev->bd_mutex);
1615 disk_unblock_events(disk);
1616 out_put_whole:
1617 if (whole)
1618 bdput(whole);
1619 out_put_disk:
1620 put_disk_and_module(disk);
1621 if (need_restart)
1622 goto restart;
1623 out:
1624 return ret;
1625 }
1626
1627 /**
1628 * blkdev_get - open a block device
1629 * @bdev: block_device to open
1630 * @mode: FMODE_* mask
1631 * @holder: exclusive holder identifier
1632 *
1633 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1634 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1635 * @holder is invalid. Exclusive opens may nest for the same @holder.
1636 *
1637 * On success, the reference count of @bdev is unchanged. On failure,
1638 * @bdev is put.
1639 *
1640 * CONTEXT:
1641 * Might sleep.
1642 *
1643 * RETURNS:
1644 * 0 on success, -errno on failure.
1645 */
blkdev_get(struct block_device * bdev,fmode_t mode,void * holder)1646 static int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1647 {
1648 int ret, perm = 0;
1649
1650 if (mode & FMODE_READ)
1651 perm |= MAY_READ;
1652 if (mode & FMODE_WRITE)
1653 perm |= MAY_WRITE;
1654 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1655 if (ret)
1656 goto bdput;
1657
1658 ret =__blkdev_get(bdev, mode, holder, 0);
1659 if (ret)
1660 goto bdput;
1661 return 0;
1662
1663 bdput:
1664 bdput(bdev);
1665 return ret;
1666 }
1667
1668 /**
1669 * blkdev_get_by_path - open a block device by name
1670 * @path: path to the block device to open
1671 * @mode: FMODE_* mask
1672 * @holder: exclusive holder identifier
1673 *
1674 * Open the blockdevice described by the device file at @path. @mode
1675 * and @holder are identical to blkdev_get().
1676 *
1677 * On success, the returned block_device has reference count of one.
1678 *
1679 * CONTEXT:
1680 * Might sleep.
1681 *
1682 * RETURNS:
1683 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1684 */
blkdev_get_by_path(const char * path,fmode_t mode,void * holder)1685 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1686 void *holder)
1687 {
1688 struct block_device *bdev;
1689 int err;
1690
1691 bdev = lookup_bdev(path);
1692 if (IS_ERR(bdev))
1693 return bdev;
1694
1695 err = blkdev_get(bdev, mode, holder);
1696 if (err)
1697 return ERR_PTR(err);
1698
1699 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1700 blkdev_put(bdev, mode);
1701 return ERR_PTR(-EACCES);
1702 }
1703
1704 return bdev;
1705 }
1706 EXPORT_SYMBOL(blkdev_get_by_path);
1707
1708 /**
1709 * blkdev_get_by_dev - open a block device by device number
1710 * @dev: device number of block device to open
1711 * @mode: FMODE_* mask
1712 * @holder: exclusive holder identifier
1713 *
1714 * Open the blockdevice described by device number @dev. @mode and
1715 * @holder are identical to blkdev_get().
1716 *
1717 * Use it ONLY if you really do not have anything better - i.e. when
1718 * you are behind a truly sucky interface and all you are given is a
1719 * device number. _Never_ to be used for internal purposes. If you
1720 * ever need it - reconsider your API.
1721 *
1722 * On success, the returned block_device has reference count of one.
1723 *
1724 * CONTEXT:
1725 * Might sleep.
1726 *
1727 * RETURNS:
1728 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1729 */
blkdev_get_by_dev(dev_t dev,fmode_t mode,void * holder)1730 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1731 {
1732 struct block_device *bdev;
1733 int err;
1734
1735 bdev = bdget(dev);
1736 if (!bdev)
1737 return ERR_PTR(-ENOMEM);
1738
1739 err = blkdev_get(bdev, mode, holder);
1740 if (err)
1741 return ERR_PTR(err);
1742
1743 return bdev;
1744 }
1745 EXPORT_SYMBOL(blkdev_get_by_dev);
1746
blkdev_open(struct inode * inode,struct file * filp)1747 static int blkdev_open(struct inode * inode, struct file * filp)
1748 {
1749 struct block_device *bdev;
1750
1751 /*
1752 * Preserve backwards compatibility and allow large file access
1753 * even if userspace doesn't ask for it explicitly. Some mkfs
1754 * binary needs it. We might want to drop this workaround
1755 * during an unstable branch.
1756 */
1757 filp->f_flags |= O_LARGEFILE;
1758
1759 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
1760
1761 if (filp->f_flags & O_NDELAY)
1762 filp->f_mode |= FMODE_NDELAY;
1763 if (filp->f_flags & O_EXCL)
1764 filp->f_mode |= FMODE_EXCL;
1765 if ((filp->f_flags & O_ACCMODE) == 3)
1766 filp->f_mode |= FMODE_WRITE_IOCTL;
1767
1768 bdev = bd_acquire(inode);
1769 if (bdev == NULL)
1770 return -ENOMEM;
1771
1772 filp->f_mapping = bdev->bd_inode->i_mapping;
1773 filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping);
1774
1775 return blkdev_get(bdev, filp->f_mode, filp);
1776 }
1777
__blkdev_put(struct block_device * bdev,fmode_t mode,int for_part)1778 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1779 {
1780 struct gendisk *disk = bdev->bd_disk;
1781 struct block_device *victim = NULL;
1782
1783 /*
1784 * Sync early if it looks like we're the last one. If someone else
1785 * opens the block device between now and the decrement of bd_openers
1786 * then we did a sync that we didn't need to, but that's not the end
1787 * of the world and we want to avoid long (could be several minute)
1788 * syncs while holding the mutex.
1789 */
1790 if (bdev->bd_openers == 1)
1791 sync_blockdev(bdev);
1792
1793 mutex_lock_nested(&bdev->bd_mutex, for_part);
1794 if (for_part)
1795 bdev->bd_part_count--;
1796
1797 if (!--bdev->bd_openers) {
1798 WARN_ON_ONCE(bdev->bd_holders);
1799 sync_blockdev(bdev);
1800 kill_bdev(bdev);
1801
1802 bdev_write_inode(bdev);
1803 }
1804 if (bdev->bd_contains == bdev) {
1805 if (disk->fops->release)
1806 disk->fops->release(disk, mode);
1807 }
1808 if (!bdev->bd_openers) {
1809 disk_put_part(bdev->bd_part);
1810 bdev->bd_part = NULL;
1811 bdev->bd_disk = NULL;
1812 if (bdev != bdev->bd_contains)
1813 victim = bdev->bd_contains;
1814 bdev->bd_contains = NULL;
1815
1816 put_disk_and_module(disk);
1817 }
1818 mutex_unlock(&bdev->bd_mutex);
1819 bdput(bdev);
1820 if (victim)
1821 __blkdev_put(victim, mode, 1);
1822 }
1823
blkdev_put(struct block_device * bdev,fmode_t mode)1824 void blkdev_put(struct block_device *bdev, fmode_t mode)
1825 {
1826 mutex_lock(&bdev->bd_mutex);
1827
1828 if (mode & FMODE_EXCL) {
1829 bool bdev_free;
1830
1831 /*
1832 * Release a claim on the device. The holder fields
1833 * are protected with bdev_lock. bd_mutex is to
1834 * synchronize disk_holder unlinking.
1835 */
1836 spin_lock(&bdev_lock);
1837
1838 WARN_ON_ONCE(--bdev->bd_holders < 0);
1839 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1840
1841 /* bd_contains might point to self, check in a separate step */
1842 if ((bdev_free = !bdev->bd_holders))
1843 bdev->bd_holder = NULL;
1844 if (!bdev->bd_contains->bd_holders)
1845 bdev->bd_contains->bd_holder = NULL;
1846
1847 spin_unlock(&bdev_lock);
1848
1849 /*
1850 * If this was the last claim, remove holder link and
1851 * unblock evpoll if it was a write holder.
1852 */
1853 if (bdev_free && bdev->bd_write_holder) {
1854 disk_unblock_events(bdev->bd_disk);
1855 bdev->bd_write_holder = false;
1856 }
1857 }
1858
1859 /*
1860 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1861 * event. This is to ensure detection of media removal commanded
1862 * from userland - e.g. eject(1).
1863 */
1864 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1865
1866 mutex_unlock(&bdev->bd_mutex);
1867
1868 __blkdev_put(bdev, mode, 0);
1869 }
1870 EXPORT_SYMBOL(blkdev_put);
1871
blkdev_close(struct inode * inode,struct file * filp)1872 static int blkdev_close(struct inode * inode, struct file * filp)
1873 {
1874 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1875 blkdev_put(bdev, filp->f_mode);
1876 return 0;
1877 }
1878
block_ioctl(struct file * file,unsigned cmd,unsigned long arg)1879 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1880 {
1881 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1882 fmode_t mode = file->f_mode;
1883
1884 /*
1885 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1886 * to updated it before every ioctl.
1887 */
1888 if (file->f_flags & O_NDELAY)
1889 mode |= FMODE_NDELAY;
1890 else
1891 mode &= ~FMODE_NDELAY;
1892
1893 return blkdev_ioctl(bdev, mode, cmd, arg);
1894 }
1895
1896 /*
1897 * Write data to the block device. Only intended for the block device itself
1898 * and the raw driver which basically is a fake block device.
1899 *
1900 * Does not take i_mutex for the write and thus is not for general purpose
1901 * use.
1902 */
blkdev_write_iter(struct kiocb * iocb,struct iov_iter * from)1903 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1904 {
1905 struct file *file = iocb->ki_filp;
1906 struct inode *bd_inode = bdev_file_inode(file);
1907 loff_t size = i_size_read(bd_inode);
1908 struct blk_plug plug;
1909 size_t shorted = 0;
1910 ssize_t ret;
1911
1912 if (bdev_read_only(I_BDEV(bd_inode)))
1913 return -EPERM;
1914
1915 if (IS_SWAPFILE(bd_inode) && !is_hibernate_resume_dev(bd_inode->i_rdev))
1916 return -ETXTBSY;
1917
1918 if (!iov_iter_count(from))
1919 return 0;
1920
1921 if (iocb->ki_pos >= size)
1922 return -ENOSPC;
1923
1924 if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT)
1925 return -EOPNOTSUPP;
1926
1927 size -= iocb->ki_pos;
1928 if (iov_iter_count(from) > size) {
1929 shorted = iov_iter_count(from) - size;
1930 iov_iter_truncate(from, size);
1931 }
1932
1933 blk_start_plug(&plug);
1934 ret = __generic_file_write_iter(iocb, from);
1935 if (ret > 0)
1936 ret = generic_write_sync(iocb, ret);
1937 iov_iter_reexpand(from, iov_iter_count(from) + shorted);
1938 blk_finish_plug(&plug);
1939 return ret;
1940 }
1941 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1942
blkdev_read_iter(struct kiocb * iocb,struct iov_iter * to)1943 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1944 {
1945 struct file *file = iocb->ki_filp;
1946 struct inode *bd_inode = bdev_file_inode(file);
1947 loff_t size = i_size_read(bd_inode);
1948 loff_t pos = iocb->ki_pos;
1949 size_t shorted = 0;
1950 ssize_t ret;
1951
1952 if (pos >= size)
1953 return 0;
1954
1955 size -= pos;
1956 if (iov_iter_count(to) > size) {
1957 shorted = iov_iter_count(to) - size;
1958 iov_iter_truncate(to, size);
1959 }
1960
1961 ret = generic_file_read_iter(iocb, to);
1962 iov_iter_reexpand(to, iov_iter_count(to) + shorted);
1963 return ret;
1964 }
1965 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1966
blkdev_writepages(struct address_space * mapping,struct writeback_control * wbc)1967 static int blkdev_writepages(struct address_space *mapping,
1968 struct writeback_control *wbc)
1969 {
1970 return generic_writepages(mapping, wbc);
1971 }
1972
1973 static const struct address_space_operations def_blk_aops = {
1974 .readpage = blkdev_readpage,
1975 .readahead = blkdev_readahead,
1976 .writepage = blkdev_writepage,
1977 .write_begin = blkdev_write_begin,
1978 .write_end = blkdev_write_end,
1979 .writepages = blkdev_writepages,
1980 .direct_IO = blkdev_direct_IO,
1981 .migratepage = buffer_migrate_page_norefs,
1982 .is_dirty_writeback = buffer_check_dirty_writeback,
1983 };
1984
1985 #define BLKDEV_FALLOC_FL_SUPPORTED \
1986 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
1987 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
1988
blkdev_fallocate(struct file * file,int mode,loff_t start,loff_t len)1989 static long blkdev_fallocate(struct file *file, int mode, loff_t start,
1990 loff_t len)
1991 {
1992 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1993 loff_t end = start + len - 1;
1994 loff_t isize;
1995 int error;
1996
1997 /* Fail if we don't recognize the flags. */
1998 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
1999 return -EOPNOTSUPP;
2000
2001 /* Don't go off the end of the device. */
2002 isize = i_size_read(bdev->bd_inode);
2003 if (start >= isize)
2004 return -EINVAL;
2005 if (end >= isize) {
2006 if (mode & FALLOC_FL_KEEP_SIZE) {
2007 len = isize - start;
2008 end = start + len - 1;
2009 } else
2010 return -EINVAL;
2011 }
2012
2013 /*
2014 * Don't allow IO that isn't aligned to logical block size.
2015 */
2016 if ((start | len) & (bdev_logical_block_size(bdev) - 1))
2017 return -EINVAL;
2018
2019 /* Invalidate the page cache, including dirty pages. */
2020 error = truncate_bdev_range(bdev, file->f_mode, start, end);
2021 if (error)
2022 return error;
2023
2024 switch (mode) {
2025 case FALLOC_FL_ZERO_RANGE:
2026 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
2027 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2028 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP);
2029 break;
2030 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
2031 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2032 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK);
2033 break;
2034 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
2035 error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2036 GFP_KERNEL, 0);
2037 break;
2038 default:
2039 return -EOPNOTSUPP;
2040 }
2041 if (error)
2042 return error;
2043
2044 /*
2045 * Invalidate the page cache again; if someone wandered in and dirtied
2046 * a page, we just discard it - userspace has no way of knowing whether
2047 * the write happened before or after discard completing...
2048 */
2049 return truncate_bdev_range(bdev, file->f_mode, start, end);
2050 }
2051
2052 const struct file_operations def_blk_fops = {
2053 .open = blkdev_open,
2054 .release = blkdev_close,
2055 .llseek = block_llseek,
2056 .read_iter = blkdev_read_iter,
2057 .write_iter = blkdev_write_iter,
2058 .iopoll = blkdev_iopoll,
2059 .mmap = generic_file_mmap,
2060 .fsync = blkdev_fsync,
2061 .unlocked_ioctl = block_ioctl,
2062 #ifdef CONFIG_COMPAT
2063 .compat_ioctl = compat_blkdev_ioctl,
2064 #endif
2065 .splice_read = generic_file_splice_read,
2066 .splice_write = iter_file_splice_write,
2067 .fallocate = blkdev_fallocate,
2068 };
2069
2070 /**
2071 * lookup_bdev - lookup a struct block_device by name
2072 * @pathname: special file representing the block device
2073 *
2074 * Get a reference to the blockdevice at @pathname in the current
2075 * namespace if possible and return it. Return ERR_PTR(error)
2076 * otherwise.
2077 */
lookup_bdev(const char * pathname)2078 struct block_device *lookup_bdev(const char *pathname)
2079 {
2080 struct block_device *bdev;
2081 struct inode *inode;
2082 struct path path;
2083 int error;
2084
2085 if (!pathname || !*pathname)
2086 return ERR_PTR(-EINVAL);
2087
2088 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
2089 if (error)
2090 return ERR_PTR(error);
2091
2092 inode = d_backing_inode(path.dentry);
2093 error = -ENOTBLK;
2094 if (!S_ISBLK(inode->i_mode))
2095 goto fail;
2096 error = -EACCES;
2097 if (!may_open_dev(&path))
2098 goto fail;
2099 error = -ENOMEM;
2100 bdev = bd_acquire(inode);
2101 if (!bdev)
2102 goto fail;
2103 out:
2104 path_put(&path);
2105 return bdev;
2106 fail:
2107 bdev = ERR_PTR(error);
2108 goto out;
2109 }
2110 EXPORT_SYMBOL(lookup_bdev);
2111
__invalidate_device(struct block_device * bdev,bool kill_dirty)2112 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
2113 {
2114 struct super_block *sb = get_super(bdev);
2115 int res = 0;
2116
2117 if (sb) {
2118 /*
2119 * no need to lock the super, get_super holds the
2120 * read mutex so the filesystem cannot go away
2121 * under us (->put_super runs with the write lock
2122 * hold).
2123 */
2124 shrink_dcache_sb(sb);
2125 res = invalidate_inodes(sb, kill_dirty);
2126 drop_super(sb);
2127 }
2128 invalidate_bdev(bdev);
2129 return res;
2130 }
2131 EXPORT_SYMBOL(__invalidate_device);
2132
iterate_bdevs(void (* func)(struct block_device *,void *),void * arg)2133 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
2134 {
2135 struct inode *inode, *old_inode = NULL;
2136
2137 spin_lock(&blockdev_superblock->s_inode_list_lock);
2138 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
2139 struct address_space *mapping = inode->i_mapping;
2140 struct block_device *bdev;
2141
2142 spin_lock(&inode->i_lock);
2143 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
2144 mapping->nrpages == 0) {
2145 spin_unlock(&inode->i_lock);
2146 continue;
2147 }
2148 __iget(inode);
2149 spin_unlock(&inode->i_lock);
2150 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2151 /*
2152 * We hold a reference to 'inode' so it couldn't have been
2153 * removed from s_inodes list while we dropped the
2154 * s_inode_list_lock We cannot iput the inode now as we can
2155 * be holding the last reference and we cannot iput it under
2156 * s_inode_list_lock. So we keep the reference and iput it
2157 * later.
2158 */
2159 iput(old_inode);
2160 old_inode = inode;
2161 bdev = I_BDEV(inode);
2162
2163 mutex_lock(&bdev->bd_mutex);
2164 if (bdev->bd_openers)
2165 func(bdev, arg);
2166 mutex_unlock(&bdev->bd_mutex);
2167
2168 spin_lock(&blockdev_superblock->s_inode_list_lock);
2169 }
2170 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2171 iput(old_inode);
2172 }
2173