1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2
3 /*
4 * Common eBPF ELF object loading operations.
5 *
6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8 * Copyright (C) 2015 Huawei Inc.
9 * Copyright (C) 2017 Nicira, Inc.
10 * Copyright (C) 2019 Isovalent, Inc.
11 */
12
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/list.h>
35 #include <linux/limits.h>
36 #include <linux/perf_event.h>
37 #include <linux/ring_buffer.h>
38 #include <linux/version.h>
39 #include <sys/epoll.h>
40 #include <sys/ioctl.h>
41 #include <sys/mman.h>
42 #include <sys/stat.h>
43 #include <sys/types.h>
44 #include <sys/vfs.h>
45 #include <sys/utsname.h>
46 #include <sys/resource.h>
47 #include <libelf.h>
48 #include <gelf.h>
49 #include <zlib.h>
50
51 #include "libbpf.h"
52 #include "bpf.h"
53 #include "btf.h"
54 #include "str_error.h"
55 #include "libbpf_internal.h"
56 #include "hashmap.h"
57
58 #ifndef EM_BPF
59 #define EM_BPF 247
60 #endif
61
62 #ifndef BPF_FS_MAGIC
63 #define BPF_FS_MAGIC 0xcafe4a11
64 #endif
65
66 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
67
68 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
69 * compilation if user enables corresponding warning. Disable it explicitly.
70 */
71 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
72
73 #define __printf(a, b) __attribute__((format(printf, a, b)))
74
75 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
76 static const struct btf_type *
77 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id);
78
__base_pr(enum libbpf_print_level level,const char * format,va_list args)79 static int __base_pr(enum libbpf_print_level level, const char *format,
80 va_list args)
81 {
82 if (level == LIBBPF_DEBUG)
83 return 0;
84
85 return vfprintf(stderr, format, args);
86 }
87
88 static libbpf_print_fn_t __libbpf_pr = __base_pr;
89
libbpf_set_print(libbpf_print_fn_t fn)90 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
91 {
92 libbpf_print_fn_t old_print_fn = __libbpf_pr;
93
94 __libbpf_pr = fn;
95 return old_print_fn;
96 }
97
98 __printf(2, 3)
libbpf_print(enum libbpf_print_level level,const char * format,...)99 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
100 {
101 va_list args;
102
103 if (!__libbpf_pr)
104 return;
105
106 va_start(args, format);
107 __libbpf_pr(level, format, args);
108 va_end(args);
109 }
110
pr_perm_msg(int err)111 static void pr_perm_msg(int err)
112 {
113 struct rlimit limit;
114 char buf[100];
115
116 if (err != -EPERM || geteuid() != 0)
117 return;
118
119 err = getrlimit(RLIMIT_MEMLOCK, &limit);
120 if (err)
121 return;
122
123 if (limit.rlim_cur == RLIM_INFINITY)
124 return;
125
126 if (limit.rlim_cur < 1024)
127 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
128 else if (limit.rlim_cur < 1024*1024)
129 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
130 else
131 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
132
133 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
134 buf);
135 }
136
137 #define STRERR_BUFSIZE 128
138
139 /* Copied from tools/perf/util/util.h */
140 #ifndef zfree
141 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
142 #endif
143
144 #ifndef zclose
145 # define zclose(fd) ({ \
146 int ___err = 0; \
147 if ((fd) >= 0) \
148 ___err = close((fd)); \
149 fd = -1; \
150 ___err; })
151 #endif
152
ptr_to_u64(const void * ptr)153 static inline __u64 ptr_to_u64(const void *ptr)
154 {
155 return (__u64) (unsigned long) ptr;
156 }
157
158 enum kern_feature_id {
159 /* v4.14: kernel support for program & map names. */
160 FEAT_PROG_NAME,
161 /* v5.2: kernel support for global data sections. */
162 FEAT_GLOBAL_DATA,
163 /* BTF support */
164 FEAT_BTF,
165 /* BTF_KIND_FUNC and BTF_KIND_FUNC_PROTO support */
166 FEAT_BTF_FUNC,
167 /* BTF_KIND_VAR and BTF_KIND_DATASEC support */
168 FEAT_BTF_DATASEC,
169 /* BTF_FUNC_GLOBAL is supported */
170 FEAT_BTF_GLOBAL_FUNC,
171 /* BPF_F_MMAPABLE is supported for arrays */
172 FEAT_ARRAY_MMAP,
173 /* kernel support for expected_attach_type in BPF_PROG_LOAD */
174 FEAT_EXP_ATTACH_TYPE,
175 /* bpf_probe_read_{kernel,user}[_str] helpers */
176 FEAT_PROBE_READ_KERN,
177 /* BPF_PROG_BIND_MAP is supported */
178 FEAT_PROG_BIND_MAP,
179 __FEAT_CNT,
180 };
181
182 static bool kernel_supports(enum kern_feature_id feat_id);
183
184 enum reloc_type {
185 RELO_LD64,
186 RELO_CALL,
187 RELO_DATA,
188 RELO_EXTERN,
189 };
190
191 struct reloc_desc {
192 enum reloc_type type;
193 int insn_idx;
194 int map_idx;
195 int sym_off;
196 bool processed;
197 };
198
199 struct bpf_sec_def;
200
201 typedef struct bpf_link *(*attach_fn_t)(const struct bpf_sec_def *sec,
202 struct bpf_program *prog);
203
204 struct bpf_sec_def {
205 const char *sec;
206 size_t len;
207 enum bpf_prog_type prog_type;
208 enum bpf_attach_type expected_attach_type;
209 bool is_exp_attach_type_optional;
210 bool is_attachable;
211 bool is_attach_btf;
212 bool is_sleepable;
213 attach_fn_t attach_fn;
214 };
215
216 /*
217 * bpf_prog should be a better name but it has been used in
218 * linux/filter.h.
219 */
220 struct bpf_program {
221 const struct bpf_sec_def *sec_def;
222 char *sec_name;
223 size_t sec_idx;
224 /* this program's instruction offset (in number of instructions)
225 * within its containing ELF section
226 */
227 size_t sec_insn_off;
228 /* number of original instructions in ELF section belonging to this
229 * program, not taking into account subprogram instructions possible
230 * appended later during relocation
231 */
232 size_t sec_insn_cnt;
233 /* Offset (in number of instructions) of the start of instruction
234 * belonging to this BPF program within its containing main BPF
235 * program. For the entry-point (main) BPF program, this is always
236 * zero. For a sub-program, this gets reset before each of main BPF
237 * programs are processed and relocated and is used to determined
238 * whether sub-program was already appended to the main program, and
239 * if yes, at which instruction offset.
240 */
241 size_t sub_insn_off;
242
243 char *name;
244 /* sec_name with / replaced by _; makes recursive pinning
245 * in bpf_object__pin_programs easier
246 */
247 char *pin_name;
248
249 /* instructions that belong to BPF program; insns[0] is located at
250 * sec_insn_off instruction within its ELF section in ELF file, so
251 * when mapping ELF file instruction index to the local instruction,
252 * one needs to subtract sec_insn_off; and vice versa.
253 */
254 struct bpf_insn *insns;
255 /* actual number of instruction in this BPF program's image; for
256 * entry-point BPF programs this includes the size of main program
257 * itself plus all the used sub-programs, appended at the end
258 */
259 size_t insns_cnt;
260
261 struct reloc_desc *reloc_desc;
262 int nr_reloc;
263 int log_level;
264
265 struct {
266 int nr;
267 int *fds;
268 } instances;
269 bpf_program_prep_t preprocessor;
270
271 struct bpf_object *obj;
272 void *priv;
273 bpf_program_clear_priv_t clear_priv;
274
275 bool load;
276 enum bpf_prog_type type;
277 enum bpf_attach_type expected_attach_type;
278 int prog_ifindex;
279 __u32 attach_btf_id;
280 __u32 attach_prog_fd;
281 void *func_info;
282 __u32 func_info_rec_size;
283 __u32 func_info_cnt;
284
285 void *line_info;
286 __u32 line_info_rec_size;
287 __u32 line_info_cnt;
288 __u32 prog_flags;
289 };
290
291 struct bpf_struct_ops {
292 const char *tname;
293 const struct btf_type *type;
294 struct bpf_program **progs;
295 __u32 *kern_func_off;
296 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
297 void *data;
298 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in
299 * btf_vmlinux's format.
300 * struct bpf_struct_ops_tcp_congestion_ops {
301 * [... some other kernel fields ...]
302 * struct tcp_congestion_ops data;
303 * }
304 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
305 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
306 * from "data".
307 */
308 void *kern_vdata;
309 __u32 type_id;
310 };
311
312 #define DATA_SEC ".data"
313 #define BSS_SEC ".bss"
314 #define RODATA_SEC ".rodata"
315 #define KCONFIG_SEC ".kconfig"
316 #define KSYMS_SEC ".ksyms"
317 #define STRUCT_OPS_SEC ".struct_ops"
318
319 enum libbpf_map_type {
320 LIBBPF_MAP_UNSPEC,
321 LIBBPF_MAP_DATA,
322 LIBBPF_MAP_BSS,
323 LIBBPF_MAP_RODATA,
324 LIBBPF_MAP_KCONFIG,
325 };
326
327 static const char * const libbpf_type_to_btf_name[] = {
328 [LIBBPF_MAP_DATA] = DATA_SEC,
329 [LIBBPF_MAP_BSS] = BSS_SEC,
330 [LIBBPF_MAP_RODATA] = RODATA_SEC,
331 [LIBBPF_MAP_KCONFIG] = KCONFIG_SEC,
332 };
333
334 struct bpf_map {
335 char *name;
336 int fd;
337 int sec_idx;
338 size_t sec_offset;
339 int map_ifindex;
340 int inner_map_fd;
341 struct bpf_map_def def;
342 __u32 numa_node;
343 __u32 btf_var_idx;
344 __u32 btf_key_type_id;
345 __u32 btf_value_type_id;
346 __u32 btf_vmlinux_value_type_id;
347 void *priv;
348 bpf_map_clear_priv_t clear_priv;
349 enum libbpf_map_type libbpf_type;
350 void *mmaped;
351 struct bpf_struct_ops *st_ops;
352 struct bpf_map *inner_map;
353 void **init_slots;
354 int init_slots_sz;
355 char *pin_path;
356 bool pinned;
357 bool reused;
358 };
359
360 enum extern_type {
361 EXT_UNKNOWN,
362 EXT_KCFG,
363 EXT_KSYM,
364 };
365
366 enum kcfg_type {
367 KCFG_UNKNOWN,
368 KCFG_CHAR,
369 KCFG_BOOL,
370 KCFG_INT,
371 KCFG_TRISTATE,
372 KCFG_CHAR_ARR,
373 };
374
375 struct extern_desc {
376 enum extern_type type;
377 int sym_idx;
378 int btf_id;
379 int sec_btf_id;
380 const char *name;
381 bool is_set;
382 bool is_weak;
383 union {
384 struct {
385 enum kcfg_type type;
386 int sz;
387 int align;
388 int data_off;
389 bool is_signed;
390 } kcfg;
391 struct {
392 unsigned long long addr;
393
394 /* target btf_id of the corresponding kernel var. */
395 int vmlinux_btf_id;
396
397 /* local btf_id of the ksym extern's type. */
398 __u32 type_id;
399 } ksym;
400 };
401 };
402
403 static LIST_HEAD(bpf_objects_list);
404
405 struct bpf_object {
406 char name[BPF_OBJ_NAME_LEN];
407 char license[64];
408 __u32 kern_version;
409
410 struct bpf_program *programs;
411 size_t nr_programs;
412 struct bpf_map *maps;
413 size_t nr_maps;
414 size_t maps_cap;
415
416 char *kconfig;
417 struct extern_desc *externs;
418 int nr_extern;
419 int kconfig_map_idx;
420 int rodata_map_idx;
421
422 bool loaded;
423 bool has_subcalls;
424
425 /*
426 * Information when doing elf related work. Only valid if fd
427 * is valid.
428 */
429 struct {
430 int fd;
431 const void *obj_buf;
432 size_t obj_buf_sz;
433 Elf *elf;
434 GElf_Ehdr ehdr;
435 Elf_Data *symbols;
436 Elf_Data *data;
437 Elf_Data *rodata;
438 Elf_Data *bss;
439 Elf_Data *st_ops_data;
440 size_t shstrndx; /* section index for section name strings */
441 size_t strtabidx;
442 struct {
443 GElf_Shdr shdr;
444 Elf_Data *data;
445 } *reloc_sects;
446 int nr_reloc_sects;
447 int maps_shndx;
448 int btf_maps_shndx;
449 __u32 btf_maps_sec_btf_id;
450 int text_shndx;
451 int symbols_shndx;
452 int data_shndx;
453 int rodata_shndx;
454 int bss_shndx;
455 int st_ops_shndx;
456 } efile;
457 /*
458 * All loaded bpf_object is linked in a list, which is
459 * hidden to caller. bpf_objects__<func> handlers deal with
460 * all objects.
461 */
462 struct list_head list;
463
464 struct btf *btf;
465 /* Parse and load BTF vmlinux if any of the programs in the object need
466 * it at load time.
467 */
468 struct btf *btf_vmlinux;
469 struct btf_ext *btf_ext;
470
471 void *priv;
472 bpf_object_clear_priv_t clear_priv;
473
474 char path[];
475 };
476 #define obj_elf_valid(o) ((o)->efile.elf)
477
478 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
479 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
480 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
481 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
482 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr);
483 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
484 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
485 static int elf_sym_by_sec_off(const struct bpf_object *obj, size_t sec_idx,
486 size_t off, __u32 sym_type, GElf_Sym *sym);
487
bpf_program__unload(struct bpf_program * prog)488 void bpf_program__unload(struct bpf_program *prog)
489 {
490 int i;
491
492 if (!prog)
493 return;
494
495 /*
496 * If the object is opened but the program was never loaded,
497 * it is possible that prog->instances.nr == -1.
498 */
499 if (prog->instances.nr > 0) {
500 for (i = 0; i < prog->instances.nr; i++)
501 zclose(prog->instances.fds[i]);
502 } else if (prog->instances.nr != -1) {
503 pr_warn("Internal error: instances.nr is %d\n",
504 prog->instances.nr);
505 }
506
507 prog->instances.nr = -1;
508 zfree(&prog->instances.fds);
509
510 zfree(&prog->func_info);
511 zfree(&prog->line_info);
512 }
513
bpf_program__exit(struct bpf_program * prog)514 static void bpf_program__exit(struct bpf_program *prog)
515 {
516 if (!prog)
517 return;
518
519 if (prog->clear_priv)
520 prog->clear_priv(prog, prog->priv);
521
522 prog->priv = NULL;
523 prog->clear_priv = NULL;
524
525 bpf_program__unload(prog);
526 zfree(&prog->name);
527 zfree(&prog->sec_name);
528 zfree(&prog->pin_name);
529 zfree(&prog->insns);
530 zfree(&prog->reloc_desc);
531
532 prog->nr_reloc = 0;
533 prog->insns_cnt = 0;
534 prog->sec_idx = -1;
535 }
536
__bpf_program__pin_name(struct bpf_program * prog)537 static char *__bpf_program__pin_name(struct bpf_program *prog)
538 {
539 char *name, *p;
540
541 name = p = strdup(prog->sec_name);
542 while ((p = strchr(p, '/')))
543 *p = '_';
544
545 return name;
546 }
547
insn_is_subprog_call(const struct bpf_insn * insn)548 static bool insn_is_subprog_call(const struct bpf_insn *insn)
549 {
550 return BPF_CLASS(insn->code) == BPF_JMP &&
551 BPF_OP(insn->code) == BPF_CALL &&
552 BPF_SRC(insn->code) == BPF_K &&
553 insn->src_reg == BPF_PSEUDO_CALL &&
554 insn->dst_reg == 0 &&
555 insn->off == 0;
556 }
557
558 static int
bpf_object__init_prog(struct bpf_object * obj,struct bpf_program * prog,const char * name,size_t sec_idx,const char * sec_name,size_t sec_off,void * insn_data,size_t insn_data_sz)559 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
560 const char *name, size_t sec_idx, const char *sec_name,
561 size_t sec_off, void *insn_data, size_t insn_data_sz)
562 {
563 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
564 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
565 sec_name, name, sec_off, insn_data_sz);
566 return -EINVAL;
567 }
568
569 memset(prog, 0, sizeof(*prog));
570 prog->obj = obj;
571
572 prog->sec_idx = sec_idx;
573 prog->sec_insn_off = sec_off / BPF_INSN_SZ;
574 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
575 /* insns_cnt can later be increased by appending used subprograms */
576 prog->insns_cnt = prog->sec_insn_cnt;
577
578 prog->type = BPF_PROG_TYPE_UNSPEC;
579 prog->load = true;
580
581 prog->instances.fds = NULL;
582 prog->instances.nr = -1;
583
584 prog->sec_name = strdup(sec_name);
585 if (!prog->sec_name)
586 goto errout;
587
588 prog->name = strdup(name);
589 if (!prog->name)
590 goto errout;
591
592 prog->pin_name = __bpf_program__pin_name(prog);
593 if (!prog->pin_name)
594 goto errout;
595
596 prog->insns = malloc(insn_data_sz);
597 if (!prog->insns)
598 goto errout;
599 memcpy(prog->insns, insn_data, insn_data_sz);
600
601 return 0;
602 errout:
603 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
604 bpf_program__exit(prog);
605 return -ENOMEM;
606 }
607
608 static int
bpf_object__add_programs(struct bpf_object * obj,Elf_Data * sec_data,const char * sec_name,int sec_idx)609 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
610 const char *sec_name, int sec_idx)
611 {
612 struct bpf_program *prog, *progs;
613 void *data = sec_data->d_buf;
614 size_t sec_sz = sec_data->d_size, sec_off, prog_sz;
615 int nr_progs, err;
616 const char *name;
617 GElf_Sym sym;
618
619 progs = obj->programs;
620 nr_progs = obj->nr_programs;
621 sec_off = 0;
622
623 while (sec_off < sec_sz) {
624 if (elf_sym_by_sec_off(obj, sec_idx, sec_off, STT_FUNC, &sym)) {
625 pr_warn("sec '%s': failed to find program symbol at offset %zu\n",
626 sec_name, sec_off);
627 return -LIBBPF_ERRNO__FORMAT;
628 }
629
630 prog_sz = sym.st_size;
631
632 name = elf_sym_str(obj, sym.st_name);
633 if (!name) {
634 pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
635 sec_name, sec_off);
636 return -LIBBPF_ERRNO__FORMAT;
637 }
638
639 if (sec_off + prog_sz > sec_sz) {
640 pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
641 sec_name, sec_off);
642 return -LIBBPF_ERRNO__FORMAT;
643 }
644
645 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
646 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
647
648 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
649 if (!progs) {
650 /*
651 * In this case the original obj->programs
652 * is still valid, so don't need special treat for
653 * bpf_close_object().
654 */
655 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
656 sec_name, name);
657 return -ENOMEM;
658 }
659 obj->programs = progs;
660
661 prog = &progs[nr_progs];
662
663 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
664 sec_off, data + sec_off, prog_sz);
665 if (err)
666 return err;
667
668 nr_progs++;
669 obj->nr_programs = nr_progs;
670
671 sec_off += prog_sz;
672 }
673
674 return 0;
675 }
676
get_kernel_version(void)677 static __u32 get_kernel_version(void)
678 {
679 __u32 major, minor, patch;
680 struct utsname info;
681
682 uname(&info);
683 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3)
684 return 0;
685 return KERNEL_VERSION(major, minor, patch);
686 }
687
688 static const struct btf_member *
find_member_by_offset(const struct btf_type * t,__u32 bit_offset)689 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
690 {
691 struct btf_member *m;
692 int i;
693
694 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
695 if (btf_member_bit_offset(t, i) == bit_offset)
696 return m;
697 }
698
699 return NULL;
700 }
701
702 static const struct btf_member *
find_member_by_name(const struct btf * btf,const struct btf_type * t,const char * name)703 find_member_by_name(const struct btf *btf, const struct btf_type *t,
704 const char *name)
705 {
706 struct btf_member *m;
707 int i;
708
709 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
710 if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
711 return m;
712 }
713
714 return NULL;
715 }
716
717 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
718 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
719 const char *name, __u32 kind);
720
721 static int
find_struct_ops_kern_types(const struct btf * btf,const char * tname,const struct btf_type ** type,__u32 * type_id,const struct btf_type ** vtype,__u32 * vtype_id,const struct btf_member ** data_member)722 find_struct_ops_kern_types(const struct btf *btf, const char *tname,
723 const struct btf_type **type, __u32 *type_id,
724 const struct btf_type **vtype, __u32 *vtype_id,
725 const struct btf_member **data_member)
726 {
727 const struct btf_type *kern_type, *kern_vtype;
728 const struct btf_member *kern_data_member;
729 __s32 kern_vtype_id, kern_type_id;
730 __u32 i;
731
732 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
733 if (kern_type_id < 0) {
734 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
735 tname);
736 return kern_type_id;
737 }
738 kern_type = btf__type_by_id(btf, kern_type_id);
739
740 /* Find the corresponding "map_value" type that will be used
741 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example,
742 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
743 * btf_vmlinux.
744 */
745 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
746 tname, BTF_KIND_STRUCT);
747 if (kern_vtype_id < 0) {
748 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
749 STRUCT_OPS_VALUE_PREFIX, tname);
750 return kern_vtype_id;
751 }
752 kern_vtype = btf__type_by_id(btf, kern_vtype_id);
753
754 /* Find "struct tcp_congestion_ops" from
755 * struct bpf_struct_ops_tcp_congestion_ops {
756 * [ ... ]
757 * struct tcp_congestion_ops data;
758 * }
759 */
760 kern_data_member = btf_members(kern_vtype);
761 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
762 if (kern_data_member->type == kern_type_id)
763 break;
764 }
765 if (i == btf_vlen(kern_vtype)) {
766 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
767 tname, STRUCT_OPS_VALUE_PREFIX, tname);
768 return -EINVAL;
769 }
770
771 *type = kern_type;
772 *type_id = kern_type_id;
773 *vtype = kern_vtype;
774 *vtype_id = kern_vtype_id;
775 *data_member = kern_data_member;
776
777 return 0;
778 }
779
bpf_map__is_struct_ops(const struct bpf_map * map)780 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
781 {
782 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
783 }
784
785 /* Init the map's fields that depend on kern_btf */
bpf_map__init_kern_struct_ops(struct bpf_map * map,const struct btf * btf,const struct btf * kern_btf)786 static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
787 const struct btf *btf,
788 const struct btf *kern_btf)
789 {
790 const struct btf_member *member, *kern_member, *kern_data_member;
791 const struct btf_type *type, *kern_type, *kern_vtype;
792 __u32 i, kern_type_id, kern_vtype_id, kern_data_off;
793 struct bpf_struct_ops *st_ops;
794 void *data, *kern_data;
795 const char *tname;
796 int err;
797
798 st_ops = map->st_ops;
799 type = st_ops->type;
800 tname = st_ops->tname;
801 err = find_struct_ops_kern_types(kern_btf, tname,
802 &kern_type, &kern_type_id,
803 &kern_vtype, &kern_vtype_id,
804 &kern_data_member);
805 if (err)
806 return err;
807
808 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
809 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
810
811 map->def.value_size = kern_vtype->size;
812 map->btf_vmlinux_value_type_id = kern_vtype_id;
813
814 st_ops->kern_vdata = calloc(1, kern_vtype->size);
815 if (!st_ops->kern_vdata)
816 return -ENOMEM;
817
818 data = st_ops->data;
819 kern_data_off = kern_data_member->offset / 8;
820 kern_data = st_ops->kern_vdata + kern_data_off;
821
822 member = btf_members(type);
823 for (i = 0; i < btf_vlen(type); i++, member++) {
824 const struct btf_type *mtype, *kern_mtype;
825 __u32 mtype_id, kern_mtype_id;
826 void *mdata, *kern_mdata;
827 __s64 msize, kern_msize;
828 __u32 moff, kern_moff;
829 __u32 kern_member_idx;
830 const char *mname;
831
832 mname = btf__name_by_offset(btf, member->name_off);
833 kern_member = find_member_by_name(kern_btf, kern_type, mname);
834 if (!kern_member) {
835 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
836 map->name, mname);
837 return -ENOTSUP;
838 }
839
840 kern_member_idx = kern_member - btf_members(kern_type);
841 if (btf_member_bitfield_size(type, i) ||
842 btf_member_bitfield_size(kern_type, kern_member_idx)) {
843 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
844 map->name, mname);
845 return -ENOTSUP;
846 }
847
848 moff = member->offset / 8;
849 kern_moff = kern_member->offset / 8;
850
851 mdata = data + moff;
852 kern_mdata = kern_data + kern_moff;
853
854 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
855 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
856 &kern_mtype_id);
857 if (BTF_INFO_KIND(mtype->info) !=
858 BTF_INFO_KIND(kern_mtype->info)) {
859 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
860 map->name, mname, BTF_INFO_KIND(mtype->info),
861 BTF_INFO_KIND(kern_mtype->info));
862 return -ENOTSUP;
863 }
864
865 if (btf_is_ptr(mtype)) {
866 struct bpf_program *prog;
867
868 prog = st_ops->progs[i];
869 if (!prog)
870 continue;
871
872 kern_mtype = skip_mods_and_typedefs(kern_btf,
873 kern_mtype->type,
874 &kern_mtype_id);
875
876 /* mtype->type must be a func_proto which was
877 * guaranteed in bpf_object__collect_st_ops_relos(),
878 * so only check kern_mtype for func_proto here.
879 */
880 if (!btf_is_func_proto(kern_mtype)) {
881 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
882 map->name, mname);
883 return -ENOTSUP;
884 }
885
886 prog->attach_btf_id = kern_type_id;
887 prog->expected_attach_type = kern_member_idx;
888
889 st_ops->kern_func_off[i] = kern_data_off + kern_moff;
890
891 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
892 map->name, mname, prog->name, moff,
893 kern_moff);
894
895 continue;
896 }
897
898 msize = btf__resolve_size(btf, mtype_id);
899 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
900 if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
901 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
902 map->name, mname, (ssize_t)msize,
903 (ssize_t)kern_msize);
904 return -ENOTSUP;
905 }
906
907 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
908 map->name, mname, (unsigned int)msize,
909 moff, kern_moff);
910 memcpy(kern_mdata, mdata, msize);
911 }
912
913 return 0;
914 }
915
bpf_object__init_kern_struct_ops_maps(struct bpf_object * obj)916 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
917 {
918 struct bpf_map *map;
919 size_t i;
920 int err;
921
922 for (i = 0; i < obj->nr_maps; i++) {
923 map = &obj->maps[i];
924
925 if (!bpf_map__is_struct_ops(map))
926 continue;
927
928 err = bpf_map__init_kern_struct_ops(map, obj->btf,
929 obj->btf_vmlinux);
930 if (err)
931 return err;
932 }
933
934 return 0;
935 }
936
bpf_object__init_struct_ops_maps(struct bpf_object * obj)937 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj)
938 {
939 const struct btf_type *type, *datasec;
940 const struct btf_var_secinfo *vsi;
941 struct bpf_struct_ops *st_ops;
942 const char *tname, *var_name;
943 __s32 type_id, datasec_id;
944 const struct btf *btf;
945 struct bpf_map *map;
946 __u32 i;
947
948 if (obj->efile.st_ops_shndx == -1)
949 return 0;
950
951 btf = obj->btf;
952 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC,
953 BTF_KIND_DATASEC);
954 if (datasec_id < 0) {
955 pr_warn("struct_ops init: DATASEC %s not found\n",
956 STRUCT_OPS_SEC);
957 return -EINVAL;
958 }
959
960 datasec = btf__type_by_id(btf, datasec_id);
961 vsi = btf_var_secinfos(datasec);
962 for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
963 type = btf__type_by_id(obj->btf, vsi->type);
964 var_name = btf__name_by_offset(obj->btf, type->name_off);
965
966 type_id = btf__resolve_type(obj->btf, vsi->type);
967 if (type_id < 0) {
968 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
969 vsi->type, STRUCT_OPS_SEC);
970 return -EINVAL;
971 }
972
973 type = btf__type_by_id(obj->btf, type_id);
974 tname = btf__name_by_offset(obj->btf, type->name_off);
975 if (!tname[0]) {
976 pr_warn("struct_ops init: anonymous type is not supported\n");
977 return -ENOTSUP;
978 }
979 if (!btf_is_struct(type)) {
980 pr_warn("struct_ops init: %s is not a struct\n", tname);
981 return -EINVAL;
982 }
983
984 map = bpf_object__add_map(obj);
985 if (IS_ERR(map))
986 return PTR_ERR(map);
987
988 map->sec_idx = obj->efile.st_ops_shndx;
989 map->sec_offset = vsi->offset;
990 map->name = strdup(var_name);
991 if (!map->name)
992 return -ENOMEM;
993
994 map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
995 map->def.key_size = sizeof(int);
996 map->def.value_size = type->size;
997 map->def.max_entries = 1;
998
999 map->st_ops = calloc(1, sizeof(*map->st_ops));
1000 if (!map->st_ops)
1001 return -ENOMEM;
1002 st_ops = map->st_ops;
1003 st_ops->data = malloc(type->size);
1004 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1005 st_ops->kern_func_off = malloc(btf_vlen(type) *
1006 sizeof(*st_ops->kern_func_off));
1007 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1008 return -ENOMEM;
1009
1010 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) {
1011 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1012 var_name, STRUCT_OPS_SEC);
1013 return -EINVAL;
1014 }
1015
1016 memcpy(st_ops->data,
1017 obj->efile.st_ops_data->d_buf + vsi->offset,
1018 type->size);
1019 st_ops->tname = tname;
1020 st_ops->type = type;
1021 st_ops->type_id = type_id;
1022
1023 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1024 tname, type_id, var_name, vsi->offset);
1025 }
1026
1027 return 0;
1028 }
1029
bpf_object__new(const char * path,const void * obj_buf,size_t obj_buf_sz,const char * obj_name)1030 static struct bpf_object *bpf_object__new(const char *path,
1031 const void *obj_buf,
1032 size_t obj_buf_sz,
1033 const char *obj_name)
1034 {
1035 struct bpf_object *obj;
1036 char *end;
1037
1038 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1039 if (!obj) {
1040 pr_warn("alloc memory failed for %s\n", path);
1041 return ERR_PTR(-ENOMEM);
1042 }
1043
1044 strcpy(obj->path, path);
1045 if (obj_name) {
1046 strncpy(obj->name, obj_name, sizeof(obj->name) - 1);
1047 obj->name[sizeof(obj->name) - 1] = 0;
1048 } else {
1049 /* Using basename() GNU version which doesn't modify arg. */
1050 strncpy(obj->name, basename((void *)path),
1051 sizeof(obj->name) - 1);
1052 end = strchr(obj->name, '.');
1053 if (end)
1054 *end = 0;
1055 }
1056
1057 obj->efile.fd = -1;
1058 /*
1059 * Caller of this function should also call
1060 * bpf_object__elf_finish() after data collection to return
1061 * obj_buf to user. If not, we should duplicate the buffer to
1062 * avoid user freeing them before elf finish.
1063 */
1064 obj->efile.obj_buf = obj_buf;
1065 obj->efile.obj_buf_sz = obj_buf_sz;
1066 obj->efile.maps_shndx = -1;
1067 obj->efile.btf_maps_shndx = -1;
1068 obj->efile.data_shndx = -1;
1069 obj->efile.rodata_shndx = -1;
1070 obj->efile.bss_shndx = -1;
1071 obj->efile.st_ops_shndx = -1;
1072 obj->kconfig_map_idx = -1;
1073 obj->rodata_map_idx = -1;
1074
1075 obj->kern_version = get_kernel_version();
1076 obj->loaded = false;
1077
1078 INIT_LIST_HEAD(&obj->list);
1079 list_add(&obj->list, &bpf_objects_list);
1080 return obj;
1081 }
1082
bpf_object__elf_finish(struct bpf_object * obj)1083 static void bpf_object__elf_finish(struct bpf_object *obj)
1084 {
1085 if (!obj_elf_valid(obj))
1086 return;
1087
1088 if (obj->efile.elf) {
1089 elf_end(obj->efile.elf);
1090 obj->efile.elf = NULL;
1091 }
1092 obj->efile.symbols = NULL;
1093 obj->efile.data = NULL;
1094 obj->efile.rodata = NULL;
1095 obj->efile.bss = NULL;
1096 obj->efile.st_ops_data = NULL;
1097
1098 zfree(&obj->efile.reloc_sects);
1099 obj->efile.nr_reloc_sects = 0;
1100 zclose(obj->efile.fd);
1101 obj->efile.obj_buf = NULL;
1102 obj->efile.obj_buf_sz = 0;
1103 }
1104
1105 /* if libelf is old and doesn't support mmap(), fall back to read() */
1106 #ifndef ELF_C_READ_MMAP
1107 #define ELF_C_READ_MMAP ELF_C_READ
1108 #endif
1109
bpf_object__elf_init(struct bpf_object * obj)1110 static int bpf_object__elf_init(struct bpf_object *obj)
1111 {
1112 int err = 0;
1113 GElf_Ehdr *ep;
1114
1115 if (obj_elf_valid(obj)) {
1116 pr_warn("elf: init internal error\n");
1117 return -LIBBPF_ERRNO__LIBELF;
1118 }
1119
1120 if (obj->efile.obj_buf_sz > 0) {
1121 /*
1122 * obj_buf should have been validated by
1123 * bpf_object__open_buffer().
1124 */
1125 obj->efile.elf = elf_memory((char *)obj->efile.obj_buf,
1126 obj->efile.obj_buf_sz);
1127 } else {
1128 obj->efile.fd = open(obj->path, O_RDONLY);
1129 if (obj->efile.fd < 0) {
1130 char errmsg[STRERR_BUFSIZE], *cp;
1131
1132 err = -errno;
1133 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1134 pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1135 return err;
1136 }
1137
1138 obj->efile.elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1139 }
1140
1141 if (!obj->efile.elf) {
1142 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1143 err = -LIBBPF_ERRNO__LIBELF;
1144 goto errout;
1145 }
1146
1147 if (!gelf_getehdr(obj->efile.elf, &obj->efile.ehdr)) {
1148 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1149 err = -LIBBPF_ERRNO__FORMAT;
1150 goto errout;
1151 }
1152 ep = &obj->efile.ehdr;
1153
1154 if (elf_getshdrstrndx(obj->efile.elf, &obj->efile.shstrndx)) {
1155 pr_warn("elf: failed to get section names section index for %s: %s\n",
1156 obj->path, elf_errmsg(-1));
1157 err = -LIBBPF_ERRNO__FORMAT;
1158 goto errout;
1159 }
1160
1161 /* Elf is corrupted/truncated, avoid calling elf_strptr. */
1162 if (!elf_rawdata(elf_getscn(obj->efile.elf, obj->efile.shstrndx), NULL)) {
1163 pr_warn("elf: failed to get section names strings from %s: %s\n",
1164 obj->path, elf_errmsg(-1));
1165 err = -LIBBPF_ERRNO__FORMAT;
1166 goto errout;
1167 }
1168
1169 /* Old LLVM set e_machine to EM_NONE */
1170 if (ep->e_type != ET_REL ||
1171 (ep->e_machine && ep->e_machine != EM_BPF)) {
1172 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1173 err = -LIBBPF_ERRNO__FORMAT;
1174 goto errout;
1175 }
1176
1177 return 0;
1178 errout:
1179 bpf_object__elf_finish(obj);
1180 return err;
1181 }
1182
bpf_object__check_endianness(struct bpf_object * obj)1183 static int bpf_object__check_endianness(struct bpf_object *obj)
1184 {
1185 #if __BYTE_ORDER == __LITTLE_ENDIAN
1186 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2LSB)
1187 return 0;
1188 #elif __BYTE_ORDER == __BIG_ENDIAN
1189 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2MSB)
1190 return 0;
1191 #else
1192 # error "Unrecognized __BYTE_ORDER__"
1193 #endif
1194 pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1195 return -LIBBPF_ERRNO__ENDIAN;
1196 }
1197
1198 static int
bpf_object__init_license(struct bpf_object * obj,void * data,size_t size)1199 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1200 {
1201 memcpy(obj->license, data, min(size, sizeof(obj->license) - 1));
1202 pr_debug("license of %s is %s\n", obj->path, obj->license);
1203 return 0;
1204 }
1205
1206 static int
bpf_object__init_kversion(struct bpf_object * obj,void * data,size_t size)1207 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1208 {
1209 __u32 kver;
1210
1211 if (size != sizeof(kver)) {
1212 pr_warn("invalid kver section in %s\n", obj->path);
1213 return -LIBBPF_ERRNO__FORMAT;
1214 }
1215 memcpy(&kver, data, sizeof(kver));
1216 obj->kern_version = kver;
1217 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1218 return 0;
1219 }
1220
bpf_map_type__is_map_in_map(enum bpf_map_type type)1221 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1222 {
1223 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1224 type == BPF_MAP_TYPE_HASH_OF_MAPS)
1225 return true;
1226 return false;
1227 }
1228
bpf_object__section_size(const struct bpf_object * obj,const char * name,__u32 * size)1229 int bpf_object__section_size(const struct bpf_object *obj, const char *name,
1230 __u32 *size)
1231 {
1232 int ret = -ENOENT;
1233
1234 *size = 0;
1235 if (!name) {
1236 return -EINVAL;
1237 } else if (!strcmp(name, DATA_SEC)) {
1238 if (obj->efile.data)
1239 *size = obj->efile.data->d_size;
1240 } else if (!strcmp(name, BSS_SEC)) {
1241 if (obj->efile.bss)
1242 *size = obj->efile.bss->d_size;
1243 } else if (!strcmp(name, RODATA_SEC)) {
1244 if (obj->efile.rodata)
1245 *size = obj->efile.rodata->d_size;
1246 } else if (!strcmp(name, STRUCT_OPS_SEC)) {
1247 if (obj->efile.st_ops_data)
1248 *size = obj->efile.st_ops_data->d_size;
1249 } else {
1250 Elf_Scn *scn = elf_sec_by_name(obj, name);
1251 Elf_Data *data = elf_sec_data(obj, scn);
1252
1253 if (data) {
1254 ret = 0; /* found it */
1255 *size = data->d_size;
1256 }
1257 }
1258
1259 return *size ? 0 : ret;
1260 }
1261
bpf_object__variable_offset(const struct bpf_object * obj,const char * name,__u32 * off)1262 int bpf_object__variable_offset(const struct bpf_object *obj, const char *name,
1263 __u32 *off)
1264 {
1265 Elf_Data *symbols = obj->efile.symbols;
1266 const char *sname;
1267 size_t si;
1268
1269 if (!name || !off)
1270 return -EINVAL;
1271
1272 for (si = 0; si < symbols->d_size / sizeof(GElf_Sym); si++) {
1273 GElf_Sym sym;
1274
1275 if (!gelf_getsym(symbols, si, &sym))
1276 continue;
1277 if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL ||
1278 GELF_ST_TYPE(sym.st_info) != STT_OBJECT)
1279 continue;
1280
1281 sname = elf_sym_str(obj, sym.st_name);
1282 if (!sname) {
1283 pr_warn("failed to get sym name string for var %s\n",
1284 name);
1285 return -EIO;
1286 }
1287 if (strcmp(name, sname) == 0) {
1288 *off = sym.st_value;
1289 return 0;
1290 }
1291 }
1292
1293 return -ENOENT;
1294 }
1295
bpf_object__add_map(struct bpf_object * obj)1296 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1297 {
1298 struct bpf_map *new_maps;
1299 size_t new_cap;
1300 int i;
1301
1302 if (obj->nr_maps < obj->maps_cap)
1303 return &obj->maps[obj->nr_maps++];
1304
1305 new_cap = max((size_t)4, obj->maps_cap * 3 / 2);
1306 new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps));
1307 if (!new_maps) {
1308 pr_warn("alloc maps for object failed\n");
1309 return ERR_PTR(-ENOMEM);
1310 }
1311
1312 obj->maps_cap = new_cap;
1313 obj->maps = new_maps;
1314
1315 /* zero out new maps */
1316 memset(obj->maps + obj->nr_maps, 0,
1317 (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps));
1318 /*
1319 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin)
1320 * when failure (zclose won't close negative fd)).
1321 */
1322 for (i = obj->nr_maps; i < obj->maps_cap; i++) {
1323 obj->maps[i].fd = -1;
1324 obj->maps[i].inner_map_fd = -1;
1325 }
1326
1327 return &obj->maps[obj->nr_maps++];
1328 }
1329
bpf_map_mmap_sz(const struct bpf_map * map)1330 static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1331 {
1332 long page_sz = sysconf(_SC_PAGE_SIZE);
1333 size_t map_sz;
1334
1335 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries;
1336 map_sz = roundup(map_sz, page_sz);
1337 return map_sz;
1338 }
1339
internal_map_name(struct bpf_object * obj,enum libbpf_map_type type)1340 static char *internal_map_name(struct bpf_object *obj,
1341 enum libbpf_map_type type)
1342 {
1343 char map_name[BPF_OBJ_NAME_LEN], *p;
1344 const char *sfx = libbpf_type_to_btf_name[type];
1345 int sfx_len = max((size_t)7, strlen(sfx));
1346 int pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1,
1347 strlen(obj->name));
1348
1349 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1350 sfx_len, libbpf_type_to_btf_name[type]);
1351
1352 /* sanitise map name to characters allowed by kernel */
1353 for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1354 if (!isalnum(*p) && *p != '_' && *p != '.')
1355 *p = '_';
1356
1357 return strdup(map_name);
1358 }
1359
1360 static int
bpf_object__init_internal_map(struct bpf_object * obj,enum libbpf_map_type type,int sec_idx,void * data,size_t data_sz)1361 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1362 int sec_idx, void *data, size_t data_sz)
1363 {
1364 struct bpf_map_def *def;
1365 struct bpf_map *map;
1366 int err;
1367
1368 map = bpf_object__add_map(obj);
1369 if (IS_ERR(map))
1370 return PTR_ERR(map);
1371
1372 map->libbpf_type = type;
1373 map->sec_idx = sec_idx;
1374 map->sec_offset = 0;
1375 map->name = internal_map_name(obj, type);
1376 if (!map->name) {
1377 pr_warn("failed to alloc map name\n");
1378 return -ENOMEM;
1379 }
1380
1381 def = &map->def;
1382 def->type = BPF_MAP_TYPE_ARRAY;
1383 def->key_size = sizeof(int);
1384 def->value_size = data_sz;
1385 def->max_entries = 1;
1386 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1387 ? BPF_F_RDONLY_PROG : 0;
1388 def->map_flags |= BPF_F_MMAPABLE;
1389
1390 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1391 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1392
1393 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
1394 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1395 if (map->mmaped == MAP_FAILED) {
1396 err = -errno;
1397 map->mmaped = NULL;
1398 pr_warn("failed to alloc map '%s' content buffer: %d\n",
1399 map->name, err);
1400 zfree(&map->name);
1401 return err;
1402 }
1403
1404 if (data)
1405 memcpy(map->mmaped, data, data_sz);
1406
1407 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1408 return 0;
1409 }
1410
bpf_object__init_global_data_maps(struct bpf_object * obj)1411 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1412 {
1413 int err;
1414
1415 /*
1416 * Populate obj->maps with libbpf internal maps.
1417 */
1418 if (obj->efile.data_shndx >= 0) {
1419 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1420 obj->efile.data_shndx,
1421 obj->efile.data->d_buf,
1422 obj->efile.data->d_size);
1423 if (err)
1424 return err;
1425 }
1426 if (obj->efile.rodata_shndx >= 0) {
1427 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1428 obj->efile.rodata_shndx,
1429 obj->efile.rodata->d_buf,
1430 obj->efile.rodata->d_size);
1431 if (err)
1432 return err;
1433
1434 obj->rodata_map_idx = obj->nr_maps - 1;
1435 }
1436 if (obj->efile.bss_shndx >= 0) {
1437 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1438 obj->efile.bss_shndx,
1439 NULL,
1440 obj->efile.bss->d_size);
1441 if (err)
1442 return err;
1443 }
1444 return 0;
1445 }
1446
1447
find_extern_by_name(const struct bpf_object * obj,const void * name)1448 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1449 const void *name)
1450 {
1451 int i;
1452
1453 for (i = 0; i < obj->nr_extern; i++) {
1454 if (strcmp(obj->externs[i].name, name) == 0)
1455 return &obj->externs[i];
1456 }
1457 return NULL;
1458 }
1459
set_kcfg_value_tri(struct extern_desc * ext,void * ext_val,char value)1460 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1461 char value)
1462 {
1463 switch (ext->kcfg.type) {
1464 case KCFG_BOOL:
1465 if (value == 'm') {
1466 pr_warn("extern (kcfg) %s=%c should be tristate or char\n",
1467 ext->name, value);
1468 return -EINVAL;
1469 }
1470 *(bool *)ext_val = value == 'y' ? true : false;
1471 break;
1472 case KCFG_TRISTATE:
1473 if (value == 'y')
1474 *(enum libbpf_tristate *)ext_val = TRI_YES;
1475 else if (value == 'm')
1476 *(enum libbpf_tristate *)ext_val = TRI_MODULE;
1477 else /* value == 'n' */
1478 *(enum libbpf_tristate *)ext_val = TRI_NO;
1479 break;
1480 case KCFG_CHAR:
1481 *(char *)ext_val = value;
1482 break;
1483 case KCFG_UNKNOWN:
1484 case KCFG_INT:
1485 case KCFG_CHAR_ARR:
1486 default:
1487 pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n",
1488 ext->name, value);
1489 return -EINVAL;
1490 }
1491 ext->is_set = true;
1492 return 0;
1493 }
1494
set_kcfg_value_str(struct extern_desc * ext,char * ext_val,const char * value)1495 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1496 const char *value)
1497 {
1498 size_t len;
1499
1500 if (ext->kcfg.type != KCFG_CHAR_ARR) {
1501 pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value);
1502 return -EINVAL;
1503 }
1504
1505 len = strlen(value);
1506 if (value[len - 1] != '"') {
1507 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1508 ext->name, value);
1509 return -EINVAL;
1510 }
1511
1512 /* strip quotes */
1513 len -= 2;
1514 if (len >= ext->kcfg.sz) {
1515 pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n",
1516 ext->name, value, len, ext->kcfg.sz - 1);
1517 len = ext->kcfg.sz - 1;
1518 }
1519 memcpy(ext_val, value + 1, len);
1520 ext_val[len] = '\0';
1521 ext->is_set = true;
1522 return 0;
1523 }
1524
parse_u64(const char * value,__u64 * res)1525 static int parse_u64(const char *value, __u64 *res)
1526 {
1527 char *value_end;
1528 int err;
1529
1530 errno = 0;
1531 *res = strtoull(value, &value_end, 0);
1532 if (errno) {
1533 err = -errno;
1534 pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1535 return err;
1536 }
1537 if (*value_end) {
1538 pr_warn("failed to parse '%s' as integer completely\n", value);
1539 return -EINVAL;
1540 }
1541 return 0;
1542 }
1543
is_kcfg_value_in_range(const struct extern_desc * ext,__u64 v)1544 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1545 {
1546 int bit_sz = ext->kcfg.sz * 8;
1547
1548 if (ext->kcfg.sz == 8)
1549 return true;
1550
1551 /* Validate that value stored in u64 fits in integer of `ext->sz`
1552 * bytes size without any loss of information. If the target integer
1553 * is signed, we rely on the following limits of integer type of
1554 * Y bits and subsequent transformation:
1555 *
1556 * -2^(Y-1) <= X <= 2^(Y-1) - 1
1557 * 0 <= X + 2^(Y-1) <= 2^Y - 1
1558 * 0 <= X + 2^(Y-1) < 2^Y
1559 *
1560 * For unsigned target integer, check that all the (64 - Y) bits are
1561 * zero.
1562 */
1563 if (ext->kcfg.is_signed)
1564 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1565 else
1566 return (v >> bit_sz) == 0;
1567 }
1568
set_kcfg_value_num(struct extern_desc * ext,void * ext_val,__u64 value)1569 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1570 __u64 value)
1571 {
1572 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1573 pr_warn("extern (kcfg) %s=%llu should be integer\n",
1574 ext->name, (unsigned long long)value);
1575 return -EINVAL;
1576 }
1577 if (!is_kcfg_value_in_range(ext, value)) {
1578 pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n",
1579 ext->name, (unsigned long long)value, ext->kcfg.sz);
1580 return -ERANGE;
1581 }
1582 switch (ext->kcfg.sz) {
1583 case 1: *(__u8 *)ext_val = value; break;
1584 case 2: *(__u16 *)ext_val = value; break;
1585 case 4: *(__u32 *)ext_val = value; break;
1586 case 8: *(__u64 *)ext_val = value; break;
1587 default:
1588 return -EINVAL;
1589 }
1590 ext->is_set = true;
1591 return 0;
1592 }
1593
bpf_object__process_kconfig_line(struct bpf_object * obj,char * buf,void * data)1594 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1595 char *buf, void *data)
1596 {
1597 struct extern_desc *ext;
1598 char *sep, *value;
1599 int len, err = 0;
1600 void *ext_val;
1601 __u64 num;
1602
1603 if (strncmp(buf, "CONFIG_", 7))
1604 return 0;
1605
1606 sep = strchr(buf, '=');
1607 if (!sep) {
1608 pr_warn("failed to parse '%s': no separator\n", buf);
1609 return -EINVAL;
1610 }
1611
1612 /* Trim ending '\n' */
1613 len = strlen(buf);
1614 if (buf[len - 1] == '\n')
1615 buf[len - 1] = '\0';
1616 /* Split on '=' and ensure that a value is present. */
1617 *sep = '\0';
1618 if (!sep[1]) {
1619 *sep = '=';
1620 pr_warn("failed to parse '%s': no value\n", buf);
1621 return -EINVAL;
1622 }
1623
1624 ext = find_extern_by_name(obj, buf);
1625 if (!ext || ext->is_set)
1626 return 0;
1627
1628 ext_val = data + ext->kcfg.data_off;
1629 value = sep + 1;
1630
1631 switch (*value) {
1632 case 'y': case 'n': case 'm':
1633 err = set_kcfg_value_tri(ext, ext_val, *value);
1634 break;
1635 case '"':
1636 err = set_kcfg_value_str(ext, ext_val, value);
1637 break;
1638 default:
1639 /* assume integer */
1640 err = parse_u64(value, &num);
1641 if (err) {
1642 pr_warn("extern (kcfg) %s=%s should be integer\n",
1643 ext->name, value);
1644 return err;
1645 }
1646 err = set_kcfg_value_num(ext, ext_val, num);
1647 break;
1648 }
1649 if (err)
1650 return err;
1651 pr_debug("extern (kcfg) %s=%s\n", ext->name, value);
1652 return 0;
1653 }
1654
bpf_object__read_kconfig_file(struct bpf_object * obj,void * data)1655 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
1656 {
1657 char buf[PATH_MAX];
1658 struct utsname uts;
1659 int len, err = 0;
1660 gzFile file;
1661
1662 uname(&uts);
1663 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
1664 if (len < 0)
1665 return -EINVAL;
1666 else if (len >= PATH_MAX)
1667 return -ENAMETOOLONG;
1668
1669 /* gzopen also accepts uncompressed files. */
1670 file = gzopen(buf, "r");
1671 if (!file)
1672 file = gzopen("/proc/config.gz", "r");
1673
1674 if (!file) {
1675 pr_warn("failed to open system Kconfig\n");
1676 return -ENOENT;
1677 }
1678
1679 while (gzgets(file, buf, sizeof(buf))) {
1680 err = bpf_object__process_kconfig_line(obj, buf, data);
1681 if (err) {
1682 pr_warn("error parsing system Kconfig line '%s': %d\n",
1683 buf, err);
1684 goto out;
1685 }
1686 }
1687
1688 out:
1689 gzclose(file);
1690 return err;
1691 }
1692
bpf_object__read_kconfig_mem(struct bpf_object * obj,const char * config,void * data)1693 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
1694 const char *config, void *data)
1695 {
1696 char buf[PATH_MAX];
1697 int err = 0;
1698 FILE *file;
1699
1700 file = fmemopen((void *)config, strlen(config), "r");
1701 if (!file) {
1702 err = -errno;
1703 pr_warn("failed to open in-memory Kconfig: %d\n", err);
1704 return err;
1705 }
1706
1707 while (fgets(buf, sizeof(buf), file)) {
1708 err = bpf_object__process_kconfig_line(obj, buf, data);
1709 if (err) {
1710 pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
1711 buf, err);
1712 break;
1713 }
1714 }
1715
1716 fclose(file);
1717 return err;
1718 }
1719
bpf_object__init_kconfig_map(struct bpf_object * obj)1720 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
1721 {
1722 struct extern_desc *last_ext = NULL, *ext;
1723 size_t map_sz;
1724 int i, err;
1725
1726 for (i = 0; i < obj->nr_extern; i++) {
1727 ext = &obj->externs[i];
1728 if (ext->type == EXT_KCFG)
1729 last_ext = ext;
1730 }
1731
1732 if (!last_ext)
1733 return 0;
1734
1735 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
1736 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
1737 obj->efile.symbols_shndx,
1738 NULL, map_sz);
1739 if (err)
1740 return err;
1741
1742 obj->kconfig_map_idx = obj->nr_maps - 1;
1743
1744 return 0;
1745 }
1746
bpf_object__init_user_maps(struct bpf_object * obj,bool strict)1747 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict)
1748 {
1749 Elf_Data *symbols = obj->efile.symbols;
1750 int i, map_def_sz = 0, nr_maps = 0, nr_syms;
1751 Elf_Data *data = NULL;
1752 Elf_Scn *scn;
1753
1754 if (obj->efile.maps_shndx < 0)
1755 return 0;
1756
1757 if (!symbols)
1758 return -EINVAL;
1759
1760
1761 scn = elf_sec_by_idx(obj, obj->efile.maps_shndx);
1762 data = elf_sec_data(obj, scn);
1763 if (!scn || !data) {
1764 pr_warn("elf: failed to get legacy map definitions for %s\n",
1765 obj->path);
1766 return -EINVAL;
1767 }
1768
1769 /*
1770 * Count number of maps. Each map has a name.
1771 * Array of maps is not supported: only the first element is
1772 * considered.
1773 *
1774 * TODO: Detect array of map and report error.
1775 */
1776 nr_syms = symbols->d_size / sizeof(GElf_Sym);
1777 for (i = 0; i < nr_syms; i++) {
1778 GElf_Sym sym;
1779
1780 if (!gelf_getsym(symbols, i, &sym))
1781 continue;
1782 if (sym.st_shndx != obj->efile.maps_shndx)
1783 continue;
1784 nr_maps++;
1785 }
1786 /* Assume equally sized map definitions */
1787 pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n",
1788 nr_maps, data->d_size, obj->path);
1789
1790 if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) {
1791 pr_warn("elf: unable to determine legacy map definition size in %s\n",
1792 obj->path);
1793 return -EINVAL;
1794 }
1795 map_def_sz = data->d_size / nr_maps;
1796
1797 /* Fill obj->maps using data in "maps" section. */
1798 for (i = 0; i < nr_syms; i++) {
1799 GElf_Sym sym;
1800 const char *map_name;
1801 struct bpf_map_def *def;
1802 struct bpf_map *map;
1803
1804 if (!gelf_getsym(symbols, i, &sym))
1805 continue;
1806 if (sym.st_shndx != obj->efile.maps_shndx)
1807 continue;
1808
1809 map = bpf_object__add_map(obj);
1810 if (IS_ERR(map))
1811 return PTR_ERR(map);
1812
1813 map_name = elf_sym_str(obj, sym.st_name);
1814 if (!map_name) {
1815 pr_warn("failed to get map #%d name sym string for obj %s\n",
1816 i, obj->path);
1817 return -LIBBPF_ERRNO__FORMAT;
1818 }
1819
1820 map->libbpf_type = LIBBPF_MAP_UNSPEC;
1821 map->sec_idx = sym.st_shndx;
1822 map->sec_offset = sym.st_value;
1823 pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n",
1824 map_name, map->sec_idx, map->sec_offset);
1825 if (sym.st_value + map_def_sz > data->d_size) {
1826 pr_warn("corrupted maps section in %s: last map \"%s\" too small\n",
1827 obj->path, map_name);
1828 return -EINVAL;
1829 }
1830
1831 map->name = strdup(map_name);
1832 if (!map->name) {
1833 pr_warn("failed to alloc map name\n");
1834 return -ENOMEM;
1835 }
1836 pr_debug("map %d is \"%s\"\n", i, map->name);
1837 def = (struct bpf_map_def *)(data->d_buf + sym.st_value);
1838 /*
1839 * If the definition of the map in the object file fits in
1840 * bpf_map_def, copy it. Any extra fields in our version
1841 * of bpf_map_def will default to zero as a result of the
1842 * calloc above.
1843 */
1844 if (map_def_sz <= sizeof(struct bpf_map_def)) {
1845 memcpy(&map->def, def, map_def_sz);
1846 } else {
1847 /*
1848 * Here the map structure being read is bigger than what
1849 * we expect, truncate if the excess bits are all zero.
1850 * If they are not zero, reject this map as
1851 * incompatible.
1852 */
1853 char *b;
1854
1855 for (b = ((char *)def) + sizeof(struct bpf_map_def);
1856 b < ((char *)def) + map_def_sz; b++) {
1857 if (*b != 0) {
1858 pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n",
1859 obj->path, map_name);
1860 if (strict)
1861 return -EINVAL;
1862 }
1863 }
1864 memcpy(&map->def, def, sizeof(struct bpf_map_def));
1865 }
1866 }
1867 return 0;
1868 }
1869
1870 static const struct btf_type *
skip_mods_and_typedefs(const struct btf * btf,__u32 id,__u32 * res_id)1871 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
1872 {
1873 const struct btf_type *t = btf__type_by_id(btf, id);
1874
1875 if (res_id)
1876 *res_id = id;
1877
1878 while (btf_is_mod(t) || btf_is_typedef(t)) {
1879 if (res_id)
1880 *res_id = t->type;
1881 t = btf__type_by_id(btf, t->type);
1882 }
1883
1884 return t;
1885 }
1886
1887 static const struct btf_type *
resolve_func_ptr(const struct btf * btf,__u32 id,__u32 * res_id)1888 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
1889 {
1890 const struct btf_type *t;
1891
1892 t = skip_mods_and_typedefs(btf, id, NULL);
1893 if (!btf_is_ptr(t))
1894 return NULL;
1895
1896 t = skip_mods_and_typedefs(btf, t->type, res_id);
1897
1898 return btf_is_func_proto(t) ? t : NULL;
1899 }
1900
btf_kind_str(const struct btf_type * t)1901 static const char *btf_kind_str(const struct btf_type *t)
1902 {
1903 switch (btf_kind(t)) {
1904 case BTF_KIND_UNKN: return "void";
1905 case BTF_KIND_INT: return "int";
1906 case BTF_KIND_PTR: return "ptr";
1907 case BTF_KIND_ARRAY: return "array";
1908 case BTF_KIND_STRUCT: return "struct";
1909 case BTF_KIND_UNION: return "union";
1910 case BTF_KIND_ENUM: return "enum";
1911 case BTF_KIND_FWD: return "fwd";
1912 case BTF_KIND_TYPEDEF: return "typedef";
1913 case BTF_KIND_VOLATILE: return "volatile";
1914 case BTF_KIND_CONST: return "const";
1915 case BTF_KIND_RESTRICT: return "restrict";
1916 case BTF_KIND_FUNC: return "func";
1917 case BTF_KIND_FUNC_PROTO: return "func_proto";
1918 case BTF_KIND_VAR: return "var";
1919 case BTF_KIND_DATASEC: return "datasec";
1920 default: return "unknown";
1921 }
1922 }
1923
1924 /*
1925 * Fetch integer attribute of BTF map definition. Such attributes are
1926 * represented using a pointer to an array, in which dimensionality of array
1927 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
1928 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
1929 * type definition, while using only sizeof(void *) space in ELF data section.
1930 */
get_map_field_int(const char * map_name,const struct btf * btf,const struct btf_member * m,__u32 * res)1931 static bool get_map_field_int(const char *map_name, const struct btf *btf,
1932 const struct btf_member *m, __u32 *res)
1933 {
1934 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
1935 const char *name = btf__name_by_offset(btf, m->name_off);
1936 const struct btf_array *arr_info;
1937 const struct btf_type *arr_t;
1938
1939 if (!btf_is_ptr(t)) {
1940 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
1941 map_name, name, btf_kind_str(t));
1942 return false;
1943 }
1944
1945 arr_t = btf__type_by_id(btf, t->type);
1946 if (!arr_t) {
1947 pr_warn("map '%s': attr '%s': type [%u] not found.\n",
1948 map_name, name, t->type);
1949 return false;
1950 }
1951 if (!btf_is_array(arr_t)) {
1952 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
1953 map_name, name, btf_kind_str(arr_t));
1954 return false;
1955 }
1956 arr_info = btf_array(arr_t);
1957 *res = arr_info->nelems;
1958 return true;
1959 }
1960
build_map_pin_path(struct bpf_map * map,const char * path)1961 static int build_map_pin_path(struct bpf_map *map, const char *path)
1962 {
1963 char buf[PATH_MAX];
1964 int len;
1965
1966 if (!path)
1967 path = "/sys/fs/bpf";
1968
1969 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map));
1970 if (len < 0)
1971 return -EINVAL;
1972 else if (len >= PATH_MAX)
1973 return -ENAMETOOLONG;
1974
1975 return bpf_map__set_pin_path(map, buf);
1976 }
1977
1978
parse_btf_map_def(struct bpf_object * obj,struct bpf_map * map,const struct btf_type * def,bool strict,bool is_inner,const char * pin_root_path)1979 static int parse_btf_map_def(struct bpf_object *obj,
1980 struct bpf_map *map,
1981 const struct btf_type *def,
1982 bool strict, bool is_inner,
1983 const char *pin_root_path)
1984 {
1985 const struct btf_type *t;
1986 const struct btf_member *m;
1987 int vlen, i;
1988
1989 vlen = btf_vlen(def);
1990 m = btf_members(def);
1991 for (i = 0; i < vlen; i++, m++) {
1992 const char *name = btf__name_by_offset(obj->btf, m->name_off);
1993
1994 if (!name) {
1995 pr_warn("map '%s': invalid field #%d.\n", map->name, i);
1996 return -EINVAL;
1997 }
1998 if (strcmp(name, "type") == 0) {
1999 if (!get_map_field_int(map->name, obj->btf, m,
2000 &map->def.type))
2001 return -EINVAL;
2002 pr_debug("map '%s': found type = %u.\n",
2003 map->name, map->def.type);
2004 } else if (strcmp(name, "max_entries") == 0) {
2005 if (!get_map_field_int(map->name, obj->btf, m,
2006 &map->def.max_entries))
2007 return -EINVAL;
2008 pr_debug("map '%s': found max_entries = %u.\n",
2009 map->name, map->def.max_entries);
2010 } else if (strcmp(name, "map_flags") == 0) {
2011 if (!get_map_field_int(map->name, obj->btf, m,
2012 &map->def.map_flags))
2013 return -EINVAL;
2014 pr_debug("map '%s': found map_flags = %u.\n",
2015 map->name, map->def.map_flags);
2016 } else if (strcmp(name, "numa_node") == 0) {
2017 if (!get_map_field_int(map->name, obj->btf, m, &map->numa_node))
2018 return -EINVAL;
2019 pr_debug("map '%s': found numa_node = %u.\n", map->name, map->numa_node);
2020 } else if (strcmp(name, "key_size") == 0) {
2021 __u32 sz;
2022
2023 if (!get_map_field_int(map->name, obj->btf, m, &sz))
2024 return -EINVAL;
2025 pr_debug("map '%s': found key_size = %u.\n",
2026 map->name, sz);
2027 if (map->def.key_size && map->def.key_size != sz) {
2028 pr_warn("map '%s': conflicting key size %u != %u.\n",
2029 map->name, map->def.key_size, sz);
2030 return -EINVAL;
2031 }
2032 map->def.key_size = sz;
2033 } else if (strcmp(name, "key") == 0) {
2034 __s64 sz;
2035
2036 t = btf__type_by_id(obj->btf, m->type);
2037 if (!t) {
2038 pr_warn("map '%s': key type [%d] not found.\n",
2039 map->name, m->type);
2040 return -EINVAL;
2041 }
2042 if (!btf_is_ptr(t)) {
2043 pr_warn("map '%s': key spec is not PTR: %s.\n",
2044 map->name, btf_kind_str(t));
2045 return -EINVAL;
2046 }
2047 sz = btf__resolve_size(obj->btf, t->type);
2048 if (sz < 0) {
2049 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2050 map->name, t->type, (ssize_t)sz);
2051 return sz;
2052 }
2053 pr_debug("map '%s': found key [%u], sz = %zd.\n",
2054 map->name, t->type, (ssize_t)sz);
2055 if (map->def.key_size && map->def.key_size != sz) {
2056 pr_warn("map '%s': conflicting key size %u != %zd.\n",
2057 map->name, map->def.key_size, (ssize_t)sz);
2058 return -EINVAL;
2059 }
2060 map->def.key_size = sz;
2061 map->btf_key_type_id = t->type;
2062 } else if (strcmp(name, "value_size") == 0) {
2063 __u32 sz;
2064
2065 if (!get_map_field_int(map->name, obj->btf, m, &sz))
2066 return -EINVAL;
2067 pr_debug("map '%s': found value_size = %u.\n",
2068 map->name, sz);
2069 if (map->def.value_size && map->def.value_size != sz) {
2070 pr_warn("map '%s': conflicting value size %u != %u.\n",
2071 map->name, map->def.value_size, sz);
2072 return -EINVAL;
2073 }
2074 map->def.value_size = sz;
2075 } else if (strcmp(name, "value") == 0) {
2076 __s64 sz;
2077
2078 t = btf__type_by_id(obj->btf, m->type);
2079 if (!t) {
2080 pr_warn("map '%s': value type [%d] not found.\n",
2081 map->name, m->type);
2082 return -EINVAL;
2083 }
2084 if (!btf_is_ptr(t)) {
2085 pr_warn("map '%s': value spec is not PTR: %s.\n",
2086 map->name, btf_kind_str(t));
2087 return -EINVAL;
2088 }
2089 sz = btf__resolve_size(obj->btf, t->type);
2090 if (sz < 0) {
2091 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2092 map->name, t->type, (ssize_t)sz);
2093 return sz;
2094 }
2095 pr_debug("map '%s': found value [%u], sz = %zd.\n",
2096 map->name, t->type, (ssize_t)sz);
2097 if (map->def.value_size && map->def.value_size != sz) {
2098 pr_warn("map '%s': conflicting value size %u != %zd.\n",
2099 map->name, map->def.value_size, (ssize_t)sz);
2100 return -EINVAL;
2101 }
2102 map->def.value_size = sz;
2103 map->btf_value_type_id = t->type;
2104 }
2105 else if (strcmp(name, "values") == 0) {
2106 int err;
2107
2108 if (is_inner) {
2109 pr_warn("map '%s': multi-level inner maps not supported.\n",
2110 map->name);
2111 return -ENOTSUP;
2112 }
2113 if (i != vlen - 1) {
2114 pr_warn("map '%s': '%s' member should be last.\n",
2115 map->name, name);
2116 return -EINVAL;
2117 }
2118 if (!bpf_map_type__is_map_in_map(map->def.type)) {
2119 pr_warn("map '%s': should be map-in-map.\n",
2120 map->name);
2121 return -ENOTSUP;
2122 }
2123 if (map->def.value_size && map->def.value_size != 4) {
2124 pr_warn("map '%s': conflicting value size %u != 4.\n",
2125 map->name, map->def.value_size);
2126 return -EINVAL;
2127 }
2128 map->def.value_size = 4;
2129 t = btf__type_by_id(obj->btf, m->type);
2130 if (!t) {
2131 pr_warn("map '%s': map-in-map inner type [%d] not found.\n",
2132 map->name, m->type);
2133 return -EINVAL;
2134 }
2135 if (!btf_is_array(t) || btf_array(t)->nelems) {
2136 pr_warn("map '%s': map-in-map inner spec is not a zero-sized array.\n",
2137 map->name);
2138 return -EINVAL;
2139 }
2140 t = skip_mods_and_typedefs(obj->btf, btf_array(t)->type,
2141 NULL);
2142 if (!btf_is_ptr(t)) {
2143 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2144 map->name, btf_kind_str(t));
2145 return -EINVAL;
2146 }
2147 t = skip_mods_and_typedefs(obj->btf, t->type, NULL);
2148 if (!btf_is_struct(t)) {
2149 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2150 map->name, btf_kind_str(t));
2151 return -EINVAL;
2152 }
2153
2154 map->inner_map = calloc(1, sizeof(*map->inner_map));
2155 if (!map->inner_map)
2156 return -ENOMEM;
2157 map->inner_map->sec_idx = obj->efile.btf_maps_shndx;
2158 map->inner_map->name = malloc(strlen(map->name) +
2159 sizeof(".inner") + 1);
2160 if (!map->inner_map->name)
2161 return -ENOMEM;
2162 sprintf(map->inner_map->name, "%s.inner", map->name);
2163
2164 err = parse_btf_map_def(obj, map->inner_map, t, strict,
2165 true /* is_inner */, NULL);
2166 if (err)
2167 return err;
2168 } else if (strcmp(name, "pinning") == 0) {
2169 __u32 val;
2170 int err;
2171
2172 if (is_inner) {
2173 pr_debug("map '%s': inner def can't be pinned.\n",
2174 map->name);
2175 return -EINVAL;
2176 }
2177 if (!get_map_field_int(map->name, obj->btf, m, &val))
2178 return -EINVAL;
2179 pr_debug("map '%s': found pinning = %u.\n",
2180 map->name, val);
2181
2182 if (val != LIBBPF_PIN_NONE &&
2183 val != LIBBPF_PIN_BY_NAME) {
2184 pr_warn("map '%s': invalid pinning value %u.\n",
2185 map->name, val);
2186 return -EINVAL;
2187 }
2188 if (val == LIBBPF_PIN_BY_NAME) {
2189 err = build_map_pin_path(map, pin_root_path);
2190 if (err) {
2191 pr_warn("map '%s': couldn't build pin path.\n",
2192 map->name);
2193 return err;
2194 }
2195 }
2196 } else {
2197 if (strict) {
2198 pr_warn("map '%s': unknown field '%s'.\n",
2199 map->name, name);
2200 return -ENOTSUP;
2201 }
2202 pr_debug("map '%s': ignoring unknown field '%s'.\n",
2203 map->name, name);
2204 }
2205 }
2206
2207 if (map->def.type == BPF_MAP_TYPE_UNSPEC) {
2208 pr_warn("map '%s': map type isn't specified.\n", map->name);
2209 return -EINVAL;
2210 }
2211
2212 return 0;
2213 }
2214
bpf_object__init_user_btf_map(struct bpf_object * obj,const struct btf_type * sec,int var_idx,int sec_idx,const Elf_Data * data,bool strict,const char * pin_root_path)2215 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2216 const struct btf_type *sec,
2217 int var_idx, int sec_idx,
2218 const Elf_Data *data, bool strict,
2219 const char *pin_root_path)
2220 {
2221 const struct btf_type *var, *def;
2222 const struct btf_var_secinfo *vi;
2223 const struct btf_var *var_extra;
2224 const char *map_name;
2225 struct bpf_map *map;
2226
2227 vi = btf_var_secinfos(sec) + var_idx;
2228 var = btf__type_by_id(obj->btf, vi->type);
2229 var_extra = btf_var(var);
2230 map_name = btf__name_by_offset(obj->btf, var->name_off);
2231
2232 if (map_name == NULL || map_name[0] == '\0') {
2233 pr_warn("map #%d: empty name.\n", var_idx);
2234 return -EINVAL;
2235 }
2236 if ((__u64)vi->offset + vi->size > data->d_size) {
2237 pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2238 return -EINVAL;
2239 }
2240 if (!btf_is_var(var)) {
2241 pr_warn("map '%s': unexpected var kind %s.\n",
2242 map_name, btf_kind_str(var));
2243 return -EINVAL;
2244 }
2245 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2246 var_extra->linkage != BTF_VAR_STATIC) {
2247 pr_warn("map '%s': unsupported var linkage %u.\n",
2248 map_name, var_extra->linkage);
2249 return -EOPNOTSUPP;
2250 }
2251
2252 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2253 if (!btf_is_struct(def)) {
2254 pr_warn("map '%s': unexpected def kind %s.\n",
2255 map_name, btf_kind_str(var));
2256 return -EINVAL;
2257 }
2258 if (def->size > vi->size) {
2259 pr_warn("map '%s': invalid def size.\n", map_name);
2260 return -EINVAL;
2261 }
2262
2263 map = bpf_object__add_map(obj);
2264 if (IS_ERR(map))
2265 return PTR_ERR(map);
2266 map->name = strdup(map_name);
2267 if (!map->name) {
2268 pr_warn("map '%s': failed to alloc map name.\n", map_name);
2269 return -ENOMEM;
2270 }
2271 map->libbpf_type = LIBBPF_MAP_UNSPEC;
2272 map->def.type = BPF_MAP_TYPE_UNSPEC;
2273 map->sec_idx = sec_idx;
2274 map->sec_offset = vi->offset;
2275 map->btf_var_idx = var_idx;
2276 pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2277 map_name, map->sec_idx, map->sec_offset);
2278
2279 return parse_btf_map_def(obj, map, def, strict, false, pin_root_path);
2280 }
2281
bpf_object__init_user_btf_maps(struct bpf_object * obj,bool strict,const char * pin_root_path)2282 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2283 const char *pin_root_path)
2284 {
2285 const struct btf_type *sec = NULL;
2286 int nr_types, i, vlen, err;
2287 const struct btf_type *t;
2288 const char *name;
2289 Elf_Data *data;
2290 Elf_Scn *scn;
2291
2292 if (obj->efile.btf_maps_shndx < 0)
2293 return 0;
2294
2295 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2296 data = elf_sec_data(obj, scn);
2297 if (!scn || !data) {
2298 pr_warn("elf: failed to get %s map definitions for %s\n",
2299 MAPS_ELF_SEC, obj->path);
2300 return -EINVAL;
2301 }
2302
2303 nr_types = btf__get_nr_types(obj->btf);
2304 for (i = 1; i <= nr_types; i++) {
2305 t = btf__type_by_id(obj->btf, i);
2306 if (!btf_is_datasec(t))
2307 continue;
2308 name = btf__name_by_offset(obj->btf, t->name_off);
2309 if (strcmp(name, MAPS_ELF_SEC) == 0) {
2310 sec = t;
2311 obj->efile.btf_maps_sec_btf_id = i;
2312 break;
2313 }
2314 }
2315
2316 if (!sec) {
2317 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2318 return -ENOENT;
2319 }
2320
2321 vlen = btf_vlen(sec);
2322 for (i = 0; i < vlen; i++) {
2323 err = bpf_object__init_user_btf_map(obj, sec, i,
2324 obj->efile.btf_maps_shndx,
2325 data, strict,
2326 pin_root_path);
2327 if (err)
2328 return err;
2329 }
2330
2331 return 0;
2332 }
2333
bpf_object__init_maps(struct bpf_object * obj,const struct bpf_object_open_opts * opts)2334 static int bpf_object__init_maps(struct bpf_object *obj,
2335 const struct bpf_object_open_opts *opts)
2336 {
2337 const char *pin_root_path;
2338 bool strict;
2339 int err;
2340
2341 strict = !OPTS_GET(opts, relaxed_maps, false);
2342 pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2343
2344 err = bpf_object__init_user_maps(obj, strict);
2345 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2346 err = err ?: bpf_object__init_global_data_maps(obj);
2347 err = err ?: bpf_object__init_kconfig_map(obj);
2348 err = err ?: bpf_object__init_struct_ops_maps(obj);
2349 if (err)
2350 return err;
2351
2352 return 0;
2353 }
2354
section_have_execinstr(struct bpf_object * obj,int idx)2355 static bool section_have_execinstr(struct bpf_object *obj, int idx)
2356 {
2357 GElf_Shdr sh;
2358
2359 if (elf_sec_hdr(obj, elf_sec_by_idx(obj, idx), &sh))
2360 return false;
2361
2362 return sh.sh_flags & SHF_EXECINSTR;
2363 }
2364
btf_needs_sanitization(struct bpf_object * obj)2365 static bool btf_needs_sanitization(struct bpf_object *obj)
2366 {
2367 bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC);
2368 bool has_datasec = kernel_supports(FEAT_BTF_DATASEC);
2369 bool has_func = kernel_supports(FEAT_BTF_FUNC);
2370
2371 return !has_func || !has_datasec || !has_func_global;
2372 }
2373
bpf_object__sanitize_btf(struct bpf_object * obj,struct btf * btf)2374 static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2375 {
2376 bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC);
2377 bool has_datasec = kernel_supports(FEAT_BTF_DATASEC);
2378 bool has_func = kernel_supports(FEAT_BTF_FUNC);
2379 struct btf_type *t;
2380 int i, j, vlen;
2381
2382 for (i = 1; i <= btf__get_nr_types(btf); i++) {
2383 t = (struct btf_type *)btf__type_by_id(btf, i);
2384
2385 if (!has_datasec && btf_is_var(t)) {
2386 /* replace VAR with INT */
2387 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2388 /*
2389 * using size = 1 is the safest choice, 4 will be too
2390 * big and cause kernel BTF validation failure if
2391 * original variable took less than 4 bytes
2392 */
2393 t->size = 1;
2394 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2395 } else if (!has_datasec && btf_is_datasec(t)) {
2396 /* replace DATASEC with STRUCT */
2397 const struct btf_var_secinfo *v = btf_var_secinfos(t);
2398 struct btf_member *m = btf_members(t);
2399 struct btf_type *vt;
2400 char *name;
2401
2402 name = (char *)btf__name_by_offset(btf, t->name_off);
2403 while (*name) {
2404 if (*name == '.')
2405 *name = '_';
2406 name++;
2407 }
2408
2409 vlen = btf_vlen(t);
2410 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2411 for (j = 0; j < vlen; j++, v++, m++) {
2412 /* order of field assignments is important */
2413 m->offset = v->offset * 8;
2414 m->type = v->type;
2415 /* preserve variable name as member name */
2416 vt = (void *)btf__type_by_id(btf, v->type);
2417 m->name_off = vt->name_off;
2418 }
2419 } else if (!has_func && btf_is_func_proto(t)) {
2420 /* replace FUNC_PROTO with ENUM */
2421 vlen = btf_vlen(t);
2422 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2423 t->size = sizeof(__u32); /* kernel enforced */
2424 } else if (!has_func && btf_is_func(t)) {
2425 /* replace FUNC with TYPEDEF */
2426 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2427 } else if (!has_func_global && btf_is_func(t)) {
2428 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2429 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2430 }
2431 }
2432 }
2433
libbpf_needs_btf(const struct bpf_object * obj)2434 static bool libbpf_needs_btf(const struct bpf_object *obj)
2435 {
2436 return obj->efile.btf_maps_shndx >= 0 ||
2437 obj->efile.st_ops_shndx >= 0 ||
2438 obj->nr_extern > 0;
2439 }
2440
kernel_needs_btf(const struct bpf_object * obj)2441 static bool kernel_needs_btf(const struct bpf_object *obj)
2442 {
2443 return obj->efile.st_ops_shndx >= 0;
2444 }
2445
bpf_object__init_btf(struct bpf_object * obj,Elf_Data * btf_data,Elf_Data * btf_ext_data)2446 static int bpf_object__init_btf(struct bpf_object *obj,
2447 Elf_Data *btf_data,
2448 Elf_Data *btf_ext_data)
2449 {
2450 int err = -ENOENT;
2451
2452 if (btf_data) {
2453 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2454 if (IS_ERR(obj->btf)) {
2455 err = PTR_ERR(obj->btf);
2456 obj->btf = NULL;
2457 pr_warn("Error loading ELF section %s: %d.\n",
2458 BTF_ELF_SEC, err);
2459 goto out;
2460 }
2461 /* enforce 8-byte pointers for BPF-targeted BTFs */
2462 btf__set_pointer_size(obj->btf, 8);
2463 err = 0;
2464 }
2465 if (btf_ext_data) {
2466 if (!obj->btf) {
2467 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2468 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2469 goto out;
2470 }
2471 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf,
2472 btf_ext_data->d_size);
2473 if (IS_ERR(obj->btf_ext)) {
2474 pr_warn("Error loading ELF section %s: %ld. Ignored and continue.\n",
2475 BTF_EXT_ELF_SEC, PTR_ERR(obj->btf_ext));
2476 obj->btf_ext = NULL;
2477 goto out;
2478 }
2479 }
2480 out:
2481 if (err && libbpf_needs_btf(obj)) {
2482 pr_warn("BTF is required, but is missing or corrupted.\n");
2483 return err;
2484 }
2485 return 0;
2486 }
2487
bpf_object__finalize_btf(struct bpf_object * obj)2488 static int bpf_object__finalize_btf(struct bpf_object *obj)
2489 {
2490 int err;
2491
2492 if (!obj->btf)
2493 return 0;
2494
2495 err = btf__finalize_data(obj, obj->btf);
2496 if (err) {
2497 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err);
2498 return err;
2499 }
2500
2501 return 0;
2502 }
2503
libbpf_prog_needs_vmlinux_btf(struct bpf_program * prog)2504 static inline bool libbpf_prog_needs_vmlinux_btf(struct bpf_program *prog)
2505 {
2506 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
2507 prog->type == BPF_PROG_TYPE_LSM)
2508 return true;
2509
2510 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
2511 * also need vmlinux BTF
2512 */
2513 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
2514 return true;
2515
2516 return false;
2517 }
2518
bpf_object__load_vmlinux_btf(struct bpf_object * obj)2519 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj)
2520 {
2521 bool need_vmlinux_btf = false;
2522 struct bpf_program *prog;
2523 int i, err;
2524
2525 /* CO-RE relocations need kernel BTF */
2526 if (obj->btf_ext && obj->btf_ext->core_relo_info.len)
2527 need_vmlinux_btf = true;
2528
2529 /* Support for typed ksyms needs kernel BTF */
2530 for (i = 0; i < obj->nr_extern; i++) {
2531 const struct extern_desc *ext;
2532
2533 ext = &obj->externs[i];
2534 if (ext->type == EXT_KSYM && ext->ksym.type_id) {
2535 need_vmlinux_btf = true;
2536 break;
2537 }
2538 }
2539
2540 bpf_object__for_each_program(prog, obj) {
2541 if (!prog->load)
2542 continue;
2543 if (libbpf_prog_needs_vmlinux_btf(prog)) {
2544 need_vmlinux_btf = true;
2545 break;
2546 }
2547 }
2548
2549 if (!need_vmlinux_btf)
2550 return 0;
2551
2552 obj->btf_vmlinux = libbpf_find_kernel_btf();
2553 if (IS_ERR(obj->btf_vmlinux)) {
2554 err = PTR_ERR(obj->btf_vmlinux);
2555 pr_warn("Error loading vmlinux BTF: %d\n", err);
2556 obj->btf_vmlinux = NULL;
2557 return err;
2558 }
2559 return 0;
2560 }
2561
bpf_object__sanitize_and_load_btf(struct bpf_object * obj)2562 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
2563 {
2564 struct btf *kern_btf = obj->btf;
2565 bool btf_mandatory, sanitize;
2566 int err = 0;
2567
2568 if (!obj->btf)
2569 return 0;
2570
2571 if (!kernel_supports(FEAT_BTF)) {
2572 if (kernel_needs_btf(obj)) {
2573 err = -EOPNOTSUPP;
2574 goto report;
2575 }
2576 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
2577 return 0;
2578 }
2579
2580 sanitize = btf_needs_sanitization(obj);
2581 if (sanitize) {
2582 const void *raw_data;
2583 __u32 sz;
2584
2585 /* clone BTF to sanitize a copy and leave the original intact */
2586 raw_data = btf__get_raw_data(obj->btf, &sz);
2587 kern_btf = btf__new(raw_data, sz);
2588 if (IS_ERR(kern_btf))
2589 return PTR_ERR(kern_btf);
2590
2591 /* enforce 8-byte pointers for BPF-targeted BTFs */
2592 btf__set_pointer_size(obj->btf, 8);
2593 bpf_object__sanitize_btf(obj, kern_btf);
2594 }
2595
2596 err = btf__load(kern_btf);
2597 if (sanitize) {
2598 if (!err) {
2599 /* move fd to libbpf's BTF */
2600 btf__set_fd(obj->btf, btf__fd(kern_btf));
2601 btf__set_fd(kern_btf, -1);
2602 }
2603 btf__free(kern_btf);
2604 }
2605 report:
2606 if (err) {
2607 btf_mandatory = kernel_needs_btf(obj);
2608 pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
2609 btf_mandatory ? "BTF is mandatory, can't proceed."
2610 : "BTF is optional, ignoring.");
2611 if (!btf_mandatory)
2612 err = 0;
2613 }
2614 return err;
2615 }
2616
elf_sym_str(const struct bpf_object * obj,size_t off)2617 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
2618 {
2619 const char *name;
2620
2621 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
2622 if (!name) {
2623 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
2624 off, obj->path, elf_errmsg(-1));
2625 return NULL;
2626 }
2627
2628 return name;
2629 }
2630
elf_sec_str(const struct bpf_object * obj,size_t off)2631 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
2632 {
2633 const char *name;
2634
2635 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
2636 if (!name) {
2637 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
2638 off, obj->path, elf_errmsg(-1));
2639 return NULL;
2640 }
2641
2642 return name;
2643 }
2644
elf_sec_by_idx(const struct bpf_object * obj,size_t idx)2645 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
2646 {
2647 Elf_Scn *scn;
2648
2649 scn = elf_getscn(obj->efile.elf, idx);
2650 if (!scn) {
2651 pr_warn("elf: failed to get section(%zu) from %s: %s\n",
2652 idx, obj->path, elf_errmsg(-1));
2653 return NULL;
2654 }
2655 return scn;
2656 }
2657
elf_sec_by_name(const struct bpf_object * obj,const char * name)2658 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
2659 {
2660 Elf_Scn *scn = NULL;
2661 Elf *elf = obj->efile.elf;
2662 const char *sec_name;
2663
2664 while ((scn = elf_nextscn(elf, scn)) != NULL) {
2665 sec_name = elf_sec_name(obj, scn);
2666 if (!sec_name)
2667 return NULL;
2668
2669 if (strcmp(sec_name, name) != 0)
2670 continue;
2671
2672 return scn;
2673 }
2674 return NULL;
2675 }
2676
elf_sec_hdr(const struct bpf_object * obj,Elf_Scn * scn,GElf_Shdr * hdr)2677 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr)
2678 {
2679 if (!scn)
2680 return -EINVAL;
2681
2682 if (gelf_getshdr(scn, hdr) != hdr) {
2683 pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
2684 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
2685 return -EINVAL;
2686 }
2687
2688 return 0;
2689 }
2690
elf_sec_name(const struct bpf_object * obj,Elf_Scn * scn)2691 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
2692 {
2693 const char *name;
2694 GElf_Shdr sh;
2695
2696 if (!scn)
2697 return NULL;
2698
2699 if (elf_sec_hdr(obj, scn, &sh))
2700 return NULL;
2701
2702 name = elf_sec_str(obj, sh.sh_name);
2703 if (!name) {
2704 pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
2705 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
2706 return NULL;
2707 }
2708
2709 return name;
2710 }
2711
elf_sec_data(const struct bpf_object * obj,Elf_Scn * scn)2712 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
2713 {
2714 Elf_Data *data;
2715
2716 if (!scn)
2717 return NULL;
2718
2719 data = elf_getdata(scn, 0);
2720 if (!data) {
2721 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
2722 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
2723 obj->path, elf_errmsg(-1));
2724 return NULL;
2725 }
2726
2727 return data;
2728 }
2729
elf_sym_by_sec_off(const struct bpf_object * obj,size_t sec_idx,size_t off,__u32 sym_type,GElf_Sym * sym)2730 static int elf_sym_by_sec_off(const struct bpf_object *obj, size_t sec_idx,
2731 size_t off, __u32 sym_type, GElf_Sym *sym)
2732 {
2733 Elf_Data *symbols = obj->efile.symbols;
2734 size_t n = symbols->d_size / sizeof(GElf_Sym);
2735 int i;
2736
2737 for (i = 0; i < n; i++) {
2738 if (!gelf_getsym(symbols, i, sym))
2739 continue;
2740 if (sym->st_shndx != sec_idx || sym->st_value != off)
2741 continue;
2742 if (GELF_ST_TYPE(sym->st_info) != sym_type)
2743 continue;
2744 return 0;
2745 }
2746
2747 return -ENOENT;
2748 }
2749
is_sec_name_dwarf(const char * name)2750 static bool is_sec_name_dwarf(const char *name)
2751 {
2752 /* approximation, but the actual list is too long */
2753 return strncmp(name, ".debug_", sizeof(".debug_") - 1) == 0;
2754 }
2755
ignore_elf_section(GElf_Shdr * hdr,const char * name)2756 static bool ignore_elf_section(GElf_Shdr *hdr, const char *name)
2757 {
2758 /* no special handling of .strtab */
2759 if (hdr->sh_type == SHT_STRTAB)
2760 return true;
2761
2762 /* ignore .llvm_addrsig section as well */
2763 if (hdr->sh_type == 0x6FFF4C03 /* SHT_LLVM_ADDRSIG */)
2764 return true;
2765
2766 /* no subprograms will lead to an empty .text section, ignore it */
2767 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
2768 strcmp(name, ".text") == 0)
2769 return true;
2770
2771 /* DWARF sections */
2772 if (is_sec_name_dwarf(name))
2773 return true;
2774
2775 if (strncmp(name, ".rel", sizeof(".rel") - 1) == 0) {
2776 name += sizeof(".rel") - 1;
2777 /* DWARF section relocations */
2778 if (is_sec_name_dwarf(name))
2779 return true;
2780
2781 /* .BTF and .BTF.ext don't need relocations */
2782 if (strcmp(name, BTF_ELF_SEC) == 0 ||
2783 strcmp(name, BTF_EXT_ELF_SEC) == 0)
2784 return true;
2785 }
2786
2787 return false;
2788 }
2789
cmp_progs(const void * _a,const void * _b)2790 static int cmp_progs(const void *_a, const void *_b)
2791 {
2792 const struct bpf_program *a = _a;
2793 const struct bpf_program *b = _b;
2794
2795 if (a->sec_idx != b->sec_idx)
2796 return a->sec_idx < b->sec_idx ? -1 : 1;
2797
2798 /* sec_insn_off can't be the same within the section */
2799 return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
2800 }
2801
bpf_object__elf_collect(struct bpf_object * obj)2802 static int bpf_object__elf_collect(struct bpf_object *obj)
2803 {
2804 Elf *elf = obj->efile.elf;
2805 Elf_Data *btf_ext_data = NULL;
2806 Elf_Data *btf_data = NULL;
2807 int idx = 0, err = 0;
2808 const char *name;
2809 Elf_Data *data;
2810 Elf_Scn *scn;
2811 GElf_Shdr sh;
2812
2813 /* a bunch of ELF parsing functionality depends on processing symbols,
2814 * so do the first pass and find the symbol table
2815 */
2816 scn = NULL;
2817 while ((scn = elf_nextscn(elf, scn)) != NULL) {
2818 if (elf_sec_hdr(obj, scn, &sh))
2819 return -LIBBPF_ERRNO__FORMAT;
2820
2821 if (sh.sh_type == SHT_SYMTAB) {
2822 if (obj->efile.symbols) {
2823 pr_warn("elf: multiple symbol tables in %s\n", obj->path);
2824 return -LIBBPF_ERRNO__FORMAT;
2825 }
2826
2827 data = elf_sec_data(obj, scn);
2828 if (!data)
2829 return -LIBBPF_ERRNO__FORMAT;
2830
2831 obj->efile.symbols = data;
2832 obj->efile.symbols_shndx = elf_ndxscn(scn);
2833 obj->efile.strtabidx = sh.sh_link;
2834 }
2835 }
2836
2837 scn = NULL;
2838 while ((scn = elf_nextscn(elf, scn)) != NULL) {
2839 idx++;
2840
2841 if (elf_sec_hdr(obj, scn, &sh))
2842 return -LIBBPF_ERRNO__FORMAT;
2843
2844 name = elf_sec_str(obj, sh.sh_name);
2845 if (!name)
2846 return -LIBBPF_ERRNO__FORMAT;
2847
2848 if (ignore_elf_section(&sh, name))
2849 continue;
2850
2851 data = elf_sec_data(obj, scn);
2852 if (!data)
2853 return -LIBBPF_ERRNO__FORMAT;
2854
2855 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
2856 idx, name, (unsigned long)data->d_size,
2857 (int)sh.sh_link, (unsigned long)sh.sh_flags,
2858 (int)sh.sh_type);
2859
2860 if (strcmp(name, "license") == 0) {
2861 err = bpf_object__init_license(obj, data->d_buf, data->d_size);
2862 if (err)
2863 return err;
2864 } else if (strcmp(name, "version") == 0) {
2865 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
2866 if (err)
2867 return err;
2868 } else if (strcmp(name, "maps") == 0) {
2869 obj->efile.maps_shndx = idx;
2870 } else if (strcmp(name, MAPS_ELF_SEC) == 0) {
2871 obj->efile.btf_maps_shndx = idx;
2872 } else if (strcmp(name, BTF_ELF_SEC) == 0) {
2873 btf_data = data;
2874 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
2875 btf_ext_data = data;
2876 } else if (sh.sh_type == SHT_SYMTAB) {
2877 /* already processed during the first pass above */
2878 } else if (sh.sh_type == SHT_PROGBITS && data->d_size > 0) {
2879 if (sh.sh_flags & SHF_EXECINSTR) {
2880 if (strcmp(name, ".text") == 0)
2881 obj->efile.text_shndx = idx;
2882 err = bpf_object__add_programs(obj, data, name, idx);
2883 if (err)
2884 return err;
2885 } else if (strcmp(name, DATA_SEC) == 0) {
2886 obj->efile.data = data;
2887 obj->efile.data_shndx = idx;
2888 } else if (strcmp(name, RODATA_SEC) == 0) {
2889 obj->efile.rodata = data;
2890 obj->efile.rodata_shndx = idx;
2891 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
2892 obj->efile.st_ops_data = data;
2893 obj->efile.st_ops_shndx = idx;
2894 } else {
2895 pr_info("elf: skipping unrecognized data section(%d) %s\n",
2896 idx, name);
2897 }
2898 } else if (sh.sh_type == SHT_REL) {
2899 int nr_sects = obj->efile.nr_reloc_sects;
2900 void *sects = obj->efile.reloc_sects;
2901 int sec = sh.sh_info; /* points to other section */
2902
2903 /* Only do relo for section with exec instructions */
2904 if (!section_have_execinstr(obj, sec) &&
2905 strcmp(name, ".rel" STRUCT_OPS_SEC) &&
2906 strcmp(name, ".rel" MAPS_ELF_SEC)) {
2907 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
2908 idx, name, sec,
2909 elf_sec_name(obj, elf_sec_by_idx(obj, sec)) ?: "<?>");
2910 continue;
2911 }
2912
2913 sects = libbpf_reallocarray(sects, nr_sects + 1,
2914 sizeof(*obj->efile.reloc_sects));
2915 if (!sects)
2916 return -ENOMEM;
2917
2918 obj->efile.reloc_sects = sects;
2919 obj->efile.nr_reloc_sects++;
2920
2921 obj->efile.reloc_sects[nr_sects].shdr = sh;
2922 obj->efile.reloc_sects[nr_sects].data = data;
2923 } else if (sh.sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) {
2924 obj->efile.bss = data;
2925 obj->efile.bss_shndx = idx;
2926 } else {
2927 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
2928 (size_t)sh.sh_size);
2929 }
2930 }
2931
2932 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
2933 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
2934 return -LIBBPF_ERRNO__FORMAT;
2935 }
2936
2937 /* sort BPF programs by section name and in-section instruction offset
2938 * for faster search */
2939 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
2940
2941 return bpf_object__init_btf(obj, btf_data, btf_ext_data);
2942 }
2943
sym_is_extern(const GElf_Sym * sym)2944 static bool sym_is_extern(const GElf_Sym *sym)
2945 {
2946 int bind = GELF_ST_BIND(sym->st_info);
2947 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
2948 return sym->st_shndx == SHN_UNDEF &&
2949 (bind == STB_GLOBAL || bind == STB_WEAK) &&
2950 GELF_ST_TYPE(sym->st_info) == STT_NOTYPE;
2951 }
2952
find_extern_btf_id(const struct btf * btf,const char * ext_name)2953 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
2954 {
2955 const struct btf_type *t;
2956 const char *var_name;
2957 int i, n;
2958
2959 if (!btf)
2960 return -ESRCH;
2961
2962 n = btf__get_nr_types(btf);
2963 for (i = 1; i <= n; i++) {
2964 t = btf__type_by_id(btf, i);
2965
2966 if (!btf_is_var(t))
2967 continue;
2968
2969 var_name = btf__name_by_offset(btf, t->name_off);
2970 if (strcmp(var_name, ext_name))
2971 continue;
2972
2973 if (btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
2974 return -EINVAL;
2975
2976 return i;
2977 }
2978
2979 return -ENOENT;
2980 }
2981
find_extern_sec_btf_id(struct btf * btf,int ext_btf_id)2982 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
2983 const struct btf_var_secinfo *vs;
2984 const struct btf_type *t;
2985 int i, j, n;
2986
2987 if (!btf)
2988 return -ESRCH;
2989
2990 n = btf__get_nr_types(btf);
2991 for (i = 1; i <= n; i++) {
2992 t = btf__type_by_id(btf, i);
2993
2994 if (!btf_is_datasec(t))
2995 continue;
2996
2997 vs = btf_var_secinfos(t);
2998 for (j = 0; j < btf_vlen(t); j++, vs++) {
2999 if (vs->type == ext_btf_id)
3000 return i;
3001 }
3002 }
3003
3004 return -ENOENT;
3005 }
3006
find_kcfg_type(const struct btf * btf,int id,bool * is_signed)3007 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3008 bool *is_signed)
3009 {
3010 const struct btf_type *t;
3011 const char *name;
3012
3013 t = skip_mods_and_typedefs(btf, id, NULL);
3014 name = btf__name_by_offset(btf, t->name_off);
3015
3016 if (is_signed)
3017 *is_signed = false;
3018 switch (btf_kind(t)) {
3019 case BTF_KIND_INT: {
3020 int enc = btf_int_encoding(t);
3021
3022 if (enc & BTF_INT_BOOL)
3023 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3024 if (is_signed)
3025 *is_signed = enc & BTF_INT_SIGNED;
3026 if (t->size == 1)
3027 return KCFG_CHAR;
3028 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3029 return KCFG_UNKNOWN;
3030 return KCFG_INT;
3031 }
3032 case BTF_KIND_ENUM:
3033 if (t->size != 4)
3034 return KCFG_UNKNOWN;
3035 if (strcmp(name, "libbpf_tristate"))
3036 return KCFG_UNKNOWN;
3037 return KCFG_TRISTATE;
3038 case BTF_KIND_ARRAY:
3039 if (btf_array(t)->nelems == 0)
3040 return KCFG_UNKNOWN;
3041 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3042 return KCFG_UNKNOWN;
3043 return KCFG_CHAR_ARR;
3044 default:
3045 return KCFG_UNKNOWN;
3046 }
3047 }
3048
cmp_externs(const void * _a,const void * _b)3049 static int cmp_externs(const void *_a, const void *_b)
3050 {
3051 const struct extern_desc *a = _a;
3052 const struct extern_desc *b = _b;
3053
3054 if (a->type != b->type)
3055 return a->type < b->type ? -1 : 1;
3056
3057 if (a->type == EXT_KCFG) {
3058 /* descending order by alignment requirements */
3059 if (a->kcfg.align != b->kcfg.align)
3060 return a->kcfg.align > b->kcfg.align ? -1 : 1;
3061 /* ascending order by size, within same alignment class */
3062 if (a->kcfg.sz != b->kcfg.sz)
3063 return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3064 }
3065
3066 /* resolve ties by name */
3067 return strcmp(a->name, b->name);
3068 }
3069
find_int_btf_id(const struct btf * btf)3070 static int find_int_btf_id(const struct btf *btf)
3071 {
3072 const struct btf_type *t;
3073 int i, n;
3074
3075 n = btf__get_nr_types(btf);
3076 for (i = 1; i <= n; i++) {
3077 t = btf__type_by_id(btf, i);
3078
3079 if (btf_is_int(t) && btf_int_bits(t) == 32)
3080 return i;
3081 }
3082
3083 return 0;
3084 }
3085
bpf_object__collect_externs(struct bpf_object * obj)3086 static int bpf_object__collect_externs(struct bpf_object *obj)
3087 {
3088 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3089 const struct btf_type *t;
3090 struct extern_desc *ext;
3091 int i, n, off;
3092 const char *ext_name, *sec_name;
3093 Elf_Scn *scn;
3094 GElf_Shdr sh;
3095
3096 if (!obj->efile.symbols)
3097 return 0;
3098
3099 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3100 if (elf_sec_hdr(obj, scn, &sh))
3101 return -LIBBPF_ERRNO__FORMAT;
3102
3103 n = sh.sh_size / sh.sh_entsize;
3104 pr_debug("looking for externs among %d symbols...\n", n);
3105
3106 for (i = 0; i < n; i++) {
3107 GElf_Sym sym;
3108
3109 if (!gelf_getsym(obj->efile.symbols, i, &sym))
3110 return -LIBBPF_ERRNO__FORMAT;
3111 if (!sym_is_extern(&sym))
3112 continue;
3113 ext_name = elf_sym_str(obj, sym.st_name);
3114 if (!ext_name || !ext_name[0])
3115 continue;
3116
3117 ext = obj->externs;
3118 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3119 if (!ext)
3120 return -ENOMEM;
3121 obj->externs = ext;
3122 ext = &ext[obj->nr_extern];
3123 memset(ext, 0, sizeof(*ext));
3124 obj->nr_extern++;
3125
3126 ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3127 if (ext->btf_id <= 0) {
3128 pr_warn("failed to find BTF for extern '%s': %d\n",
3129 ext_name, ext->btf_id);
3130 return ext->btf_id;
3131 }
3132 t = btf__type_by_id(obj->btf, ext->btf_id);
3133 ext->name = btf__name_by_offset(obj->btf, t->name_off);
3134 ext->sym_idx = i;
3135 ext->is_weak = GELF_ST_BIND(sym.st_info) == STB_WEAK;
3136
3137 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3138 if (ext->sec_btf_id <= 0) {
3139 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3140 ext_name, ext->btf_id, ext->sec_btf_id);
3141 return ext->sec_btf_id;
3142 }
3143 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3144 sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3145
3146 if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3147 kcfg_sec = sec;
3148 ext->type = EXT_KCFG;
3149 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3150 if (ext->kcfg.sz <= 0) {
3151 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3152 ext_name, ext->kcfg.sz);
3153 return ext->kcfg.sz;
3154 }
3155 ext->kcfg.align = btf__align_of(obj->btf, t->type);
3156 if (ext->kcfg.align <= 0) {
3157 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3158 ext_name, ext->kcfg.align);
3159 return -EINVAL;
3160 }
3161 ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3162 &ext->kcfg.is_signed);
3163 if (ext->kcfg.type == KCFG_UNKNOWN) {
3164 pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name);
3165 return -ENOTSUP;
3166 }
3167 } else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3168 ksym_sec = sec;
3169 ext->type = EXT_KSYM;
3170 skip_mods_and_typedefs(obj->btf, t->type,
3171 &ext->ksym.type_id);
3172 } else {
3173 pr_warn("unrecognized extern section '%s'\n", sec_name);
3174 return -ENOTSUP;
3175 }
3176 }
3177 pr_debug("collected %d externs total\n", obj->nr_extern);
3178
3179 if (!obj->nr_extern)
3180 return 0;
3181
3182 /* sort externs by type, for kcfg ones also by (align, size, name) */
3183 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3184
3185 /* for .ksyms section, we need to turn all externs into allocated
3186 * variables in BTF to pass kernel verification; we do this by
3187 * pretending that each extern is a 8-byte variable
3188 */
3189 if (ksym_sec) {
3190 /* find existing 4-byte integer type in BTF to use for fake
3191 * extern variables in DATASEC
3192 */
3193 int int_btf_id = find_int_btf_id(obj->btf);
3194
3195 for (i = 0; i < obj->nr_extern; i++) {
3196 ext = &obj->externs[i];
3197 if (ext->type != EXT_KSYM)
3198 continue;
3199 pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
3200 i, ext->sym_idx, ext->name);
3201 }
3202
3203 sec = ksym_sec;
3204 n = btf_vlen(sec);
3205 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
3206 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3207 struct btf_type *vt;
3208
3209 vt = (void *)btf__type_by_id(obj->btf, vs->type);
3210 ext_name = btf__name_by_offset(obj->btf, vt->name_off);
3211 ext = find_extern_by_name(obj, ext_name);
3212 if (!ext) {
3213 pr_warn("failed to find extern definition for BTF var '%s'\n",
3214 ext_name);
3215 return -ESRCH;
3216 }
3217 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3218 vt->type = int_btf_id;
3219 vs->offset = off;
3220 vs->size = sizeof(int);
3221 }
3222 sec->size = off;
3223 }
3224
3225 if (kcfg_sec) {
3226 sec = kcfg_sec;
3227 /* for kcfg externs calculate their offsets within a .kconfig map */
3228 off = 0;
3229 for (i = 0; i < obj->nr_extern; i++) {
3230 ext = &obj->externs[i];
3231 if (ext->type != EXT_KCFG)
3232 continue;
3233
3234 ext->kcfg.data_off = roundup(off, ext->kcfg.align);
3235 off = ext->kcfg.data_off + ext->kcfg.sz;
3236 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
3237 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
3238 }
3239 sec->size = off;
3240 n = btf_vlen(sec);
3241 for (i = 0; i < n; i++) {
3242 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3243
3244 t = btf__type_by_id(obj->btf, vs->type);
3245 ext_name = btf__name_by_offset(obj->btf, t->name_off);
3246 ext = find_extern_by_name(obj, ext_name);
3247 if (!ext) {
3248 pr_warn("failed to find extern definition for BTF var '%s'\n",
3249 ext_name);
3250 return -ESRCH;
3251 }
3252 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3253 vs->offset = ext->kcfg.data_off;
3254 }
3255 }
3256 return 0;
3257 }
3258
3259 struct bpf_program *
bpf_object__find_program_by_title(const struct bpf_object * obj,const char * title)3260 bpf_object__find_program_by_title(const struct bpf_object *obj,
3261 const char *title)
3262 {
3263 struct bpf_program *pos;
3264
3265 bpf_object__for_each_program(pos, obj) {
3266 if (pos->sec_name && !strcmp(pos->sec_name, title))
3267 return pos;
3268 }
3269 return NULL;
3270 }
3271
prog_is_subprog(const struct bpf_object * obj,const struct bpf_program * prog)3272 static bool prog_is_subprog(const struct bpf_object *obj,
3273 const struct bpf_program *prog)
3274 {
3275 /* For legacy reasons, libbpf supports an entry-point BPF programs
3276 * without SEC() attribute, i.e., those in the .text section. But if
3277 * there are 2 or more such programs in the .text section, they all
3278 * must be subprograms called from entry-point BPF programs in
3279 * designated SEC()'tions, otherwise there is no way to distinguish
3280 * which of those programs should be loaded vs which are a subprogram.
3281 * Similarly, if there is a function/program in .text and at least one
3282 * other BPF program with custom SEC() attribute, then we just assume
3283 * .text programs are subprograms (even if they are not called from
3284 * other programs), because libbpf never explicitly supported mixing
3285 * SEC()-designated BPF programs and .text entry-point BPF programs.
3286 */
3287 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
3288 }
3289
3290 struct bpf_program *
bpf_object__find_program_by_name(const struct bpf_object * obj,const char * name)3291 bpf_object__find_program_by_name(const struct bpf_object *obj,
3292 const char *name)
3293 {
3294 struct bpf_program *prog;
3295
3296 bpf_object__for_each_program(prog, obj) {
3297 if (prog_is_subprog(obj, prog))
3298 continue;
3299 if (!strcmp(prog->name, name))
3300 return prog;
3301 }
3302 return NULL;
3303 }
3304
bpf_object__shndx_is_data(const struct bpf_object * obj,int shndx)3305 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
3306 int shndx)
3307 {
3308 return shndx == obj->efile.data_shndx ||
3309 shndx == obj->efile.bss_shndx ||
3310 shndx == obj->efile.rodata_shndx;
3311 }
3312
bpf_object__shndx_is_maps(const struct bpf_object * obj,int shndx)3313 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
3314 int shndx)
3315 {
3316 return shndx == obj->efile.maps_shndx ||
3317 shndx == obj->efile.btf_maps_shndx;
3318 }
3319
3320 static enum libbpf_map_type
bpf_object__section_to_libbpf_map_type(const struct bpf_object * obj,int shndx)3321 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
3322 {
3323 if (shndx == obj->efile.data_shndx)
3324 return LIBBPF_MAP_DATA;
3325 else if (shndx == obj->efile.bss_shndx)
3326 return LIBBPF_MAP_BSS;
3327 else if (shndx == obj->efile.rodata_shndx)
3328 return LIBBPF_MAP_RODATA;
3329 else if (shndx == obj->efile.symbols_shndx)
3330 return LIBBPF_MAP_KCONFIG;
3331 else
3332 return LIBBPF_MAP_UNSPEC;
3333 }
3334
bpf_program__record_reloc(struct bpf_program * prog,struct reloc_desc * reloc_desc,__u32 insn_idx,const char * sym_name,const GElf_Sym * sym,const GElf_Rel * rel)3335 static int bpf_program__record_reloc(struct bpf_program *prog,
3336 struct reloc_desc *reloc_desc,
3337 __u32 insn_idx, const char *sym_name,
3338 const GElf_Sym *sym, const GElf_Rel *rel)
3339 {
3340 struct bpf_insn *insn = &prog->insns[insn_idx];
3341 size_t map_idx, nr_maps = prog->obj->nr_maps;
3342 struct bpf_object *obj = prog->obj;
3343 __u32 shdr_idx = sym->st_shndx;
3344 enum libbpf_map_type type;
3345 const char *sym_sec_name;
3346 struct bpf_map *map;
3347
3348 reloc_desc->processed = false;
3349
3350 /* sub-program call relocation */
3351 if (insn->code == (BPF_JMP | BPF_CALL)) {
3352 if (insn->src_reg != BPF_PSEUDO_CALL) {
3353 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
3354 return -LIBBPF_ERRNO__RELOC;
3355 }
3356 /* text_shndx can be 0, if no default "main" program exists */
3357 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
3358 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
3359 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
3360 prog->name, sym_name, sym_sec_name);
3361 return -LIBBPF_ERRNO__RELOC;
3362 }
3363 if (sym->st_value % BPF_INSN_SZ) {
3364 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
3365 prog->name, sym_name, (size_t)sym->st_value);
3366 return -LIBBPF_ERRNO__RELOC;
3367 }
3368 reloc_desc->type = RELO_CALL;
3369 reloc_desc->insn_idx = insn_idx;
3370 reloc_desc->sym_off = sym->st_value;
3371 return 0;
3372 }
3373
3374 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) {
3375 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
3376 prog->name, sym_name, insn_idx, insn->code);
3377 return -LIBBPF_ERRNO__RELOC;
3378 }
3379
3380 if (sym_is_extern(sym)) {
3381 int sym_idx = GELF_R_SYM(rel->r_info);
3382 int i, n = obj->nr_extern;
3383 struct extern_desc *ext;
3384
3385 for (i = 0; i < n; i++) {
3386 ext = &obj->externs[i];
3387 if (ext->sym_idx == sym_idx)
3388 break;
3389 }
3390 if (i >= n) {
3391 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
3392 prog->name, sym_name, sym_idx);
3393 return -LIBBPF_ERRNO__RELOC;
3394 }
3395 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
3396 prog->name, i, ext->name, ext->sym_idx, insn_idx);
3397 reloc_desc->type = RELO_EXTERN;
3398 reloc_desc->insn_idx = insn_idx;
3399 reloc_desc->sym_off = i; /* sym_off stores extern index */
3400 return 0;
3401 }
3402
3403 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
3404 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
3405 prog->name, sym_name, shdr_idx);
3406 return -LIBBPF_ERRNO__RELOC;
3407 }
3408
3409 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
3410 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
3411
3412 /* generic map reference relocation */
3413 if (type == LIBBPF_MAP_UNSPEC) {
3414 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
3415 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
3416 prog->name, sym_name, sym_sec_name);
3417 return -LIBBPF_ERRNO__RELOC;
3418 }
3419 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
3420 map = &obj->maps[map_idx];
3421 if (map->libbpf_type != type ||
3422 map->sec_idx != sym->st_shndx ||
3423 map->sec_offset != sym->st_value)
3424 continue;
3425 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
3426 prog->name, map_idx, map->name, map->sec_idx,
3427 map->sec_offset, insn_idx);
3428 break;
3429 }
3430 if (map_idx >= nr_maps) {
3431 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
3432 prog->name, sym_sec_name, (size_t)sym->st_value);
3433 return -LIBBPF_ERRNO__RELOC;
3434 }
3435 reloc_desc->type = RELO_LD64;
3436 reloc_desc->insn_idx = insn_idx;
3437 reloc_desc->map_idx = map_idx;
3438 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
3439 return 0;
3440 }
3441
3442 /* global data map relocation */
3443 if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
3444 pr_warn("prog '%s': bad data relo against section '%s'\n",
3445 prog->name, sym_sec_name);
3446 return -LIBBPF_ERRNO__RELOC;
3447 }
3448 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
3449 map = &obj->maps[map_idx];
3450 if (map->libbpf_type != type)
3451 continue;
3452 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
3453 prog->name, map_idx, map->name, map->sec_idx,
3454 map->sec_offset, insn_idx);
3455 break;
3456 }
3457 if (map_idx >= nr_maps) {
3458 pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
3459 prog->name, sym_sec_name);
3460 return -LIBBPF_ERRNO__RELOC;
3461 }
3462
3463 reloc_desc->type = RELO_DATA;
3464 reloc_desc->insn_idx = insn_idx;
3465 reloc_desc->map_idx = map_idx;
3466 reloc_desc->sym_off = sym->st_value;
3467 return 0;
3468 }
3469
prog_contains_insn(const struct bpf_program * prog,size_t insn_idx)3470 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
3471 {
3472 return insn_idx >= prog->sec_insn_off &&
3473 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
3474 }
3475
find_prog_by_sec_insn(const struct bpf_object * obj,size_t sec_idx,size_t insn_idx)3476 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
3477 size_t sec_idx, size_t insn_idx)
3478 {
3479 int l = 0, r = obj->nr_programs - 1, m;
3480 struct bpf_program *prog;
3481
3482 if (!obj->nr_programs)
3483 return NULL;
3484
3485 while (l < r) {
3486 m = l + (r - l + 1) / 2;
3487 prog = &obj->programs[m];
3488
3489 if (prog->sec_idx < sec_idx ||
3490 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
3491 l = m;
3492 else
3493 r = m - 1;
3494 }
3495 /* matching program could be at index l, but it still might be the
3496 * wrong one, so we need to double check conditions for the last time
3497 */
3498 prog = &obj->programs[l];
3499 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
3500 return prog;
3501 return NULL;
3502 }
3503
3504 static int
bpf_object__collect_prog_relos(struct bpf_object * obj,GElf_Shdr * shdr,Elf_Data * data)3505 bpf_object__collect_prog_relos(struct bpf_object *obj, GElf_Shdr *shdr, Elf_Data *data)
3506 {
3507 Elf_Data *symbols = obj->efile.symbols;
3508 const char *relo_sec_name, *sec_name;
3509 size_t sec_idx = shdr->sh_info;
3510 struct bpf_program *prog;
3511 struct reloc_desc *relos;
3512 int err, i, nrels;
3513 const char *sym_name;
3514 __u32 insn_idx;
3515 GElf_Sym sym;
3516 GElf_Rel rel;
3517
3518 relo_sec_name = elf_sec_str(obj, shdr->sh_name);
3519 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
3520 if (!relo_sec_name || !sec_name)
3521 return -EINVAL;
3522
3523 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
3524 relo_sec_name, sec_idx, sec_name);
3525 nrels = shdr->sh_size / shdr->sh_entsize;
3526
3527 for (i = 0; i < nrels; i++) {
3528 if (!gelf_getrel(data, i, &rel)) {
3529 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
3530 return -LIBBPF_ERRNO__FORMAT;
3531 }
3532 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) {
3533 pr_warn("sec '%s': symbol 0x%zx not found for relo #%d\n",
3534 relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i);
3535 return -LIBBPF_ERRNO__FORMAT;
3536 }
3537 if (rel.r_offset % BPF_INSN_SZ) {
3538 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
3539 relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i);
3540 return -LIBBPF_ERRNO__FORMAT;
3541 }
3542
3543 insn_idx = rel.r_offset / BPF_INSN_SZ;
3544 /* relocations against static functions are recorded as
3545 * relocations against the section that contains a function;
3546 * in such case, symbol will be STT_SECTION and sym.st_name
3547 * will point to empty string (0), so fetch section name
3548 * instead
3549 */
3550 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION && sym.st_name == 0)
3551 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym.st_shndx));
3552 else
3553 sym_name = elf_sym_str(obj, sym.st_name);
3554 sym_name = sym_name ?: "<?";
3555
3556 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
3557 relo_sec_name, i, insn_idx, sym_name);
3558
3559 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
3560 if (!prog) {
3561 pr_warn("sec '%s': relo #%d: program not found in section '%s' for insn #%u\n",
3562 relo_sec_name, i, sec_name, insn_idx);
3563 return -LIBBPF_ERRNO__RELOC;
3564 }
3565
3566 relos = libbpf_reallocarray(prog->reloc_desc,
3567 prog->nr_reloc + 1, sizeof(*relos));
3568 if (!relos)
3569 return -ENOMEM;
3570 prog->reloc_desc = relos;
3571
3572 /* adjust insn_idx to local BPF program frame of reference */
3573 insn_idx -= prog->sec_insn_off;
3574 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
3575 insn_idx, sym_name, &sym, &rel);
3576 if (err)
3577 return err;
3578
3579 prog->nr_reloc++;
3580 }
3581 return 0;
3582 }
3583
bpf_map_find_btf_info(struct bpf_object * obj,struct bpf_map * map)3584 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map)
3585 {
3586 struct bpf_map_def *def = &map->def;
3587 __u32 key_type_id = 0, value_type_id = 0;
3588 int ret;
3589
3590 /* if it's BTF-defined map, we don't need to search for type IDs.
3591 * For struct_ops map, it does not need btf_key_type_id and
3592 * btf_value_type_id.
3593 */
3594 if (map->sec_idx == obj->efile.btf_maps_shndx ||
3595 bpf_map__is_struct_ops(map))
3596 return 0;
3597
3598 if (!bpf_map__is_internal(map)) {
3599 ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size,
3600 def->value_size, &key_type_id,
3601 &value_type_id);
3602 } else {
3603 /*
3604 * LLVM annotates global data differently in BTF, that is,
3605 * only as '.data', '.bss' or '.rodata'.
3606 */
3607 ret = btf__find_by_name(obj->btf,
3608 libbpf_type_to_btf_name[map->libbpf_type]);
3609 }
3610 if (ret < 0)
3611 return ret;
3612
3613 map->btf_key_type_id = key_type_id;
3614 map->btf_value_type_id = bpf_map__is_internal(map) ?
3615 ret : value_type_id;
3616 return 0;
3617 }
3618
bpf_get_map_info_from_fdinfo(int fd,struct bpf_map_info * info)3619 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
3620 {
3621 char file[PATH_MAX], buff[4096];
3622 FILE *fp;
3623 __u32 val;
3624 int err;
3625
3626 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
3627 memset(info, 0, sizeof(*info));
3628
3629 fp = fopen(file, "r");
3630 if (!fp) {
3631 err = -errno;
3632 pr_warn("failed to open %s: %d. No procfs support?\n", file,
3633 err);
3634 return err;
3635 }
3636
3637 while (fgets(buff, sizeof(buff), fp)) {
3638 if (sscanf(buff, "map_type:\t%u", &val) == 1)
3639 info->type = val;
3640 else if (sscanf(buff, "key_size:\t%u", &val) == 1)
3641 info->key_size = val;
3642 else if (sscanf(buff, "value_size:\t%u", &val) == 1)
3643 info->value_size = val;
3644 else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
3645 info->max_entries = val;
3646 else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
3647 info->map_flags = val;
3648 }
3649
3650 fclose(fp);
3651
3652 return 0;
3653 }
3654
bpf_map__reuse_fd(struct bpf_map * map,int fd)3655 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
3656 {
3657 struct bpf_map_info info = {};
3658 __u32 len = sizeof(info);
3659 int new_fd, err;
3660 char *new_name;
3661
3662 err = bpf_obj_get_info_by_fd(fd, &info, &len);
3663 if (err && errno == EINVAL)
3664 err = bpf_get_map_info_from_fdinfo(fd, &info);
3665 if (err)
3666 return err;
3667
3668 new_name = strdup(info.name);
3669 if (!new_name)
3670 return -errno;
3671
3672 new_fd = open("/", O_RDONLY | O_CLOEXEC);
3673 if (new_fd < 0) {
3674 err = -errno;
3675 goto err_free_new_name;
3676 }
3677
3678 new_fd = dup3(fd, new_fd, O_CLOEXEC);
3679 if (new_fd < 0) {
3680 err = -errno;
3681 goto err_close_new_fd;
3682 }
3683
3684 err = zclose(map->fd);
3685 if (err) {
3686 err = -errno;
3687 goto err_close_new_fd;
3688 }
3689 free(map->name);
3690
3691 map->fd = new_fd;
3692 map->name = new_name;
3693 map->def.type = info.type;
3694 map->def.key_size = info.key_size;
3695 map->def.value_size = info.value_size;
3696 map->def.max_entries = info.max_entries;
3697 map->def.map_flags = info.map_flags;
3698 map->btf_key_type_id = info.btf_key_type_id;
3699 map->btf_value_type_id = info.btf_value_type_id;
3700 map->reused = true;
3701
3702 return 0;
3703
3704 err_close_new_fd:
3705 close(new_fd);
3706 err_free_new_name:
3707 free(new_name);
3708 return err;
3709 }
3710
bpf_map__max_entries(const struct bpf_map * map)3711 __u32 bpf_map__max_entries(const struct bpf_map *map)
3712 {
3713 return map->def.max_entries;
3714 }
3715
bpf_map__set_max_entries(struct bpf_map * map,__u32 max_entries)3716 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
3717 {
3718 if (map->fd >= 0)
3719 return -EBUSY;
3720 map->def.max_entries = max_entries;
3721 return 0;
3722 }
3723
bpf_map__resize(struct bpf_map * map,__u32 max_entries)3724 int bpf_map__resize(struct bpf_map *map, __u32 max_entries)
3725 {
3726 if (!map || !max_entries)
3727 return -EINVAL;
3728
3729 return bpf_map__set_max_entries(map, max_entries);
3730 }
3731
3732 static int
bpf_object__probe_loading(struct bpf_object * obj)3733 bpf_object__probe_loading(struct bpf_object *obj)
3734 {
3735 struct bpf_load_program_attr attr;
3736 char *cp, errmsg[STRERR_BUFSIZE];
3737 struct bpf_insn insns[] = {
3738 BPF_MOV64_IMM(BPF_REG_0, 0),
3739 BPF_EXIT_INSN(),
3740 };
3741 int ret;
3742
3743 /* make sure basic loading works */
3744
3745 memset(&attr, 0, sizeof(attr));
3746 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3747 attr.insns = insns;
3748 attr.insns_cnt = ARRAY_SIZE(insns);
3749 attr.license = "GPL";
3750
3751 ret = bpf_load_program_xattr(&attr, NULL, 0);
3752 if (ret < 0) {
3753 ret = errno;
3754 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
3755 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
3756 "program. Make sure your kernel supports BPF "
3757 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
3758 "set to big enough value.\n", __func__, cp, ret);
3759 return -ret;
3760 }
3761 close(ret);
3762
3763 return 0;
3764 }
3765
probe_fd(int fd)3766 static int probe_fd(int fd)
3767 {
3768 if (fd >= 0)
3769 close(fd);
3770 return fd >= 0;
3771 }
3772
probe_kern_prog_name(void)3773 static int probe_kern_prog_name(void)
3774 {
3775 struct bpf_load_program_attr attr;
3776 struct bpf_insn insns[] = {
3777 BPF_MOV64_IMM(BPF_REG_0, 0),
3778 BPF_EXIT_INSN(),
3779 };
3780 int ret;
3781
3782 /* make sure loading with name works */
3783
3784 memset(&attr, 0, sizeof(attr));
3785 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3786 attr.insns = insns;
3787 attr.insns_cnt = ARRAY_SIZE(insns);
3788 attr.license = "GPL";
3789 attr.name = "test";
3790 ret = bpf_load_program_xattr(&attr, NULL, 0);
3791 return probe_fd(ret);
3792 }
3793
probe_kern_global_data(void)3794 static int probe_kern_global_data(void)
3795 {
3796 struct bpf_load_program_attr prg_attr;
3797 struct bpf_create_map_attr map_attr;
3798 char *cp, errmsg[STRERR_BUFSIZE];
3799 struct bpf_insn insns[] = {
3800 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
3801 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
3802 BPF_MOV64_IMM(BPF_REG_0, 0),
3803 BPF_EXIT_INSN(),
3804 };
3805 int ret, map;
3806
3807 memset(&map_attr, 0, sizeof(map_attr));
3808 map_attr.map_type = BPF_MAP_TYPE_ARRAY;
3809 map_attr.key_size = sizeof(int);
3810 map_attr.value_size = 32;
3811 map_attr.max_entries = 1;
3812
3813 map = bpf_create_map_xattr(&map_attr);
3814 if (map < 0) {
3815 ret = -errno;
3816 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
3817 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
3818 __func__, cp, -ret);
3819 return ret;
3820 }
3821
3822 insns[0].imm = map;
3823
3824 memset(&prg_attr, 0, sizeof(prg_attr));
3825 prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3826 prg_attr.insns = insns;
3827 prg_attr.insns_cnt = ARRAY_SIZE(insns);
3828 prg_attr.license = "GPL";
3829
3830 ret = bpf_load_program_xattr(&prg_attr, NULL, 0);
3831 close(map);
3832 return probe_fd(ret);
3833 }
3834
probe_kern_btf(void)3835 static int probe_kern_btf(void)
3836 {
3837 static const char strs[] = "\0int";
3838 __u32 types[] = {
3839 /* int */
3840 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
3841 };
3842
3843 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
3844 strs, sizeof(strs)));
3845 }
3846
probe_kern_btf_func(void)3847 static int probe_kern_btf_func(void)
3848 {
3849 static const char strs[] = "\0int\0x\0a";
3850 /* void x(int a) {} */
3851 __u32 types[] = {
3852 /* int */
3853 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
3854 /* FUNC_PROTO */ /* [2] */
3855 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
3856 BTF_PARAM_ENC(7, 1),
3857 /* FUNC x */ /* [3] */
3858 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
3859 };
3860
3861 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
3862 strs, sizeof(strs)));
3863 }
3864
probe_kern_btf_func_global(void)3865 static int probe_kern_btf_func_global(void)
3866 {
3867 static const char strs[] = "\0int\0x\0a";
3868 /* static void x(int a) {} */
3869 __u32 types[] = {
3870 /* int */
3871 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
3872 /* FUNC_PROTO */ /* [2] */
3873 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
3874 BTF_PARAM_ENC(7, 1),
3875 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */
3876 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
3877 };
3878
3879 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
3880 strs, sizeof(strs)));
3881 }
3882
probe_kern_btf_datasec(void)3883 static int probe_kern_btf_datasec(void)
3884 {
3885 static const char strs[] = "\0x\0.data";
3886 /* static int a; */
3887 __u32 types[] = {
3888 /* int */
3889 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
3890 /* VAR x */ /* [2] */
3891 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
3892 BTF_VAR_STATIC,
3893 /* DATASEC val */ /* [3] */
3894 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
3895 BTF_VAR_SECINFO_ENC(2, 0, 4),
3896 };
3897
3898 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
3899 strs, sizeof(strs)));
3900 }
3901
probe_kern_array_mmap(void)3902 static int probe_kern_array_mmap(void)
3903 {
3904 struct bpf_create_map_attr attr = {
3905 .map_type = BPF_MAP_TYPE_ARRAY,
3906 .map_flags = BPF_F_MMAPABLE,
3907 .key_size = sizeof(int),
3908 .value_size = sizeof(int),
3909 .max_entries = 1,
3910 };
3911
3912 return probe_fd(bpf_create_map_xattr(&attr));
3913 }
3914
probe_kern_exp_attach_type(void)3915 static int probe_kern_exp_attach_type(void)
3916 {
3917 struct bpf_load_program_attr attr;
3918 struct bpf_insn insns[] = {
3919 BPF_MOV64_IMM(BPF_REG_0, 0),
3920 BPF_EXIT_INSN(),
3921 };
3922
3923 memset(&attr, 0, sizeof(attr));
3924 /* use any valid combination of program type and (optional)
3925 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
3926 * to see if kernel supports expected_attach_type field for
3927 * BPF_PROG_LOAD command
3928 */
3929 attr.prog_type = BPF_PROG_TYPE_CGROUP_SOCK;
3930 attr.expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE;
3931 attr.insns = insns;
3932 attr.insns_cnt = ARRAY_SIZE(insns);
3933 attr.license = "GPL";
3934
3935 return probe_fd(bpf_load_program_xattr(&attr, NULL, 0));
3936 }
3937
probe_kern_probe_read_kernel(void)3938 static int probe_kern_probe_read_kernel(void)
3939 {
3940 struct bpf_load_program_attr attr;
3941 struct bpf_insn insns[] = {
3942 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */
3943 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */
3944 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */
3945 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */
3946 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
3947 BPF_EXIT_INSN(),
3948 };
3949
3950 memset(&attr, 0, sizeof(attr));
3951 attr.prog_type = BPF_PROG_TYPE_KPROBE;
3952 attr.insns = insns;
3953 attr.insns_cnt = ARRAY_SIZE(insns);
3954 attr.license = "GPL";
3955
3956 return probe_fd(bpf_load_program_xattr(&attr, NULL, 0));
3957 }
3958
probe_prog_bind_map(void)3959 static int probe_prog_bind_map(void)
3960 {
3961 struct bpf_load_program_attr prg_attr;
3962 struct bpf_create_map_attr map_attr;
3963 char *cp, errmsg[STRERR_BUFSIZE];
3964 struct bpf_insn insns[] = {
3965 BPF_MOV64_IMM(BPF_REG_0, 0),
3966 BPF_EXIT_INSN(),
3967 };
3968 int ret, map, prog;
3969
3970 memset(&map_attr, 0, sizeof(map_attr));
3971 map_attr.map_type = BPF_MAP_TYPE_ARRAY;
3972 map_attr.key_size = sizeof(int);
3973 map_attr.value_size = 32;
3974 map_attr.max_entries = 1;
3975
3976 map = bpf_create_map_xattr(&map_attr);
3977 if (map < 0) {
3978 ret = -errno;
3979 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
3980 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
3981 __func__, cp, -ret);
3982 return ret;
3983 }
3984
3985 memset(&prg_attr, 0, sizeof(prg_attr));
3986 prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3987 prg_attr.insns = insns;
3988 prg_attr.insns_cnt = ARRAY_SIZE(insns);
3989 prg_attr.license = "GPL";
3990
3991 prog = bpf_load_program_xattr(&prg_attr, NULL, 0);
3992 if (prog < 0) {
3993 close(map);
3994 return 0;
3995 }
3996
3997 ret = bpf_prog_bind_map(prog, map, NULL);
3998
3999 close(map);
4000 close(prog);
4001
4002 return ret >= 0;
4003 }
4004
4005 enum kern_feature_result {
4006 FEAT_UNKNOWN = 0,
4007 FEAT_SUPPORTED = 1,
4008 FEAT_MISSING = 2,
4009 };
4010
4011 typedef int (*feature_probe_fn)(void);
4012
4013 static struct kern_feature_desc {
4014 const char *desc;
4015 feature_probe_fn probe;
4016 enum kern_feature_result res;
4017 } feature_probes[__FEAT_CNT] = {
4018 [FEAT_PROG_NAME] = {
4019 "BPF program name", probe_kern_prog_name,
4020 },
4021 [FEAT_GLOBAL_DATA] = {
4022 "global variables", probe_kern_global_data,
4023 },
4024 [FEAT_BTF] = {
4025 "minimal BTF", probe_kern_btf,
4026 },
4027 [FEAT_BTF_FUNC] = {
4028 "BTF functions", probe_kern_btf_func,
4029 },
4030 [FEAT_BTF_GLOBAL_FUNC] = {
4031 "BTF global function", probe_kern_btf_func_global,
4032 },
4033 [FEAT_BTF_DATASEC] = {
4034 "BTF data section and variable", probe_kern_btf_datasec,
4035 },
4036 [FEAT_ARRAY_MMAP] = {
4037 "ARRAY map mmap()", probe_kern_array_mmap,
4038 },
4039 [FEAT_EXP_ATTACH_TYPE] = {
4040 "BPF_PROG_LOAD expected_attach_type attribute",
4041 probe_kern_exp_attach_type,
4042 },
4043 [FEAT_PROBE_READ_KERN] = {
4044 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
4045 },
4046 [FEAT_PROG_BIND_MAP] = {
4047 "BPF_PROG_BIND_MAP support", probe_prog_bind_map,
4048 }
4049 };
4050
kernel_supports(enum kern_feature_id feat_id)4051 static bool kernel_supports(enum kern_feature_id feat_id)
4052 {
4053 struct kern_feature_desc *feat = &feature_probes[feat_id];
4054 int ret;
4055
4056 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
4057 ret = feat->probe();
4058 if (ret > 0) {
4059 WRITE_ONCE(feat->res, FEAT_SUPPORTED);
4060 } else if (ret == 0) {
4061 WRITE_ONCE(feat->res, FEAT_MISSING);
4062 } else {
4063 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
4064 WRITE_ONCE(feat->res, FEAT_MISSING);
4065 }
4066 }
4067
4068 return READ_ONCE(feat->res) == FEAT_SUPPORTED;
4069 }
4070
map_is_reuse_compat(const struct bpf_map * map,int map_fd)4071 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4072 {
4073 struct bpf_map_info map_info = {};
4074 char msg[STRERR_BUFSIZE];
4075 __u32 map_info_len;
4076 int err;
4077
4078 map_info_len = sizeof(map_info);
4079
4080 err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len);
4081 if (err && errno == EINVAL)
4082 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
4083 if (err) {
4084 pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
4085 libbpf_strerror_r(errno, msg, sizeof(msg)));
4086 return false;
4087 }
4088
4089 return (map_info.type == map->def.type &&
4090 map_info.key_size == map->def.key_size &&
4091 map_info.value_size == map->def.value_size &&
4092 map_info.max_entries == map->def.max_entries &&
4093 map_info.map_flags == map->def.map_flags);
4094 }
4095
4096 static int
bpf_object__reuse_map(struct bpf_map * map)4097 bpf_object__reuse_map(struct bpf_map *map)
4098 {
4099 char *cp, errmsg[STRERR_BUFSIZE];
4100 int err, pin_fd;
4101
4102 pin_fd = bpf_obj_get(map->pin_path);
4103 if (pin_fd < 0) {
4104 err = -errno;
4105 if (err == -ENOENT) {
4106 pr_debug("found no pinned map to reuse at '%s'\n",
4107 map->pin_path);
4108 return 0;
4109 }
4110
4111 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
4112 pr_warn("couldn't retrieve pinned map '%s': %s\n",
4113 map->pin_path, cp);
4114 return err;
4115 }
4116
4117 if (!map_is_reuse_compat(map, pin_fd)) {
4118 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
4119 map->pin_path);
4120 close(pin_fd);
4121 return -EINVAL;
4122 }
4123
4124 err = bpf_map__reuse_fd(map, pin_fd);
4125 if (err) {
4126 close(pin_fd);
4127 return err;
4128 }
4129 map->pinned = true;
4130 pr_debug("reused pinned map at '%s'\n", map->pin_path);
4131
4132 return 0;
4133 }
4134
4135 static int
bpf_object__populate_internal_map(struct bpf_object * obj,struct bpf_map * map)4136 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
4137 {
4138 enum libbpf_map_type map_type = map->libbpf_type;
4139 char *cp, errmsg[STRERR_BUFSIZE];
4140 int err, zero = 0;
4141
4142 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
4143 if (err) {
4144 err = -errno;
4145 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4146 pr_warn("Error setting initial map(%s) contents: %s\n",
4147 map->name, cp);
4148 return err;
4149 }
4150
4151 /* Freeze .rodata and .kconfig map as read-only from syscall side. */
4152 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
4153 err = bpf_map_freeze(map->fd);
4154 if (err) {
4155 err = -errno;
4156 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4157 pr_warn("Error freezing map(%s) as read-only: %s\n",
4158 map->name, cp);
4159 return err;
4160 }
4161 }
4162 return 0;
4163 }
4164
4165 static void bpf_map__destroy(struct bpf_map *map);
4166
bpf_object__create_map(struct bpf_object * obj,struct bpf_map * map)4167 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map)
4168 {
4169 struct bpf_create_map_attr create_attr;
4170 struct bpf_map_def *def = &map->def;
4171 int err = 0;
4172
4173 memset(&create_attr, 0, sizeof(create_attr));
4174
4175 if (kernel_supports(FEAT_PROG_NAME))
4176 create_attr.name = map->name;
4177 create_attr.map_ifindex = map->map_ifindex;
4178 create_attr.map_type = def->type;
4179 create_attr.map_flags = def->map_flags;
4180 create_attr.key_size = def->key_size;
4181 create_attr.value_size = def->value_size;
4182 create_attr.numa_node = map->numa_node;
4183
4184 if (def->type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !def->max_entries) {
4185 int nr_cpus;
4186
4187 nr_cpus = libbpf_num_possible_cpus();
4188 if (nr_cpus < 0) {
4189 pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
4190 map->name, nr_cpus);
4191 return nr_cpus;
4192 }
4193 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
4194 create_attr.max_entries = nr_cpus;
4195 } else {
4196 create_attr.max_entries = def->max_entries;
4197 }
4198
4199 if (bpf_map__is_struct_ops(map))
4200 create_attr.btf_vmlinux_value_type_id =
4201 map->btf_vmlinux_value_type_id;
4202
4203 create_attr.btf_fd = 0;
4204 create_attr.btf_key_type_id = 0;
4205 create_attr.btf_value_type_id = 0;
4206 if (obj->btf && btf__fd(obj->btf) >= 0 && !bpf_map_find_btf_info(obj, map)) {
4207 create_attr.btf_fd = btf__fd(obj->btf);
4208 create_attr.btf_key_type_id = map->btf_key_type_id;
4209 create_attr.btf_value_type_id = map->btf_value_type_id;
4210 }
4211
4212 if (bpf_map_type__is_map_in_map(def->type)) {
4213 if (map->inner_map) {
4214 err = bpf_object__create_map(obj, map->inner_map);
4215 if (err) {
4216 pr_warn("map '%s': failed to create inner map: %d\n",
4217 map->name, err);
4218 return err;
4219 }
4220 map->inner_map_fd = bpf_map__fd(map->inner_map);
4221 }
4222 if (map->inner_map_fd >= 0)
4223 create_attr.inner_map_fd = map->inner_map_fd;
4224 }
4225
4226 map->fd = bpf_create_map_xattr(&create_attr);
4227 if (map->fd < 0 && (create_attr.btf_key_type_id ||
4228 create_attr.btf_value_type_id)) {
4229 char *cp, errmsg[STRERR_BUFSIZE];
4230
4231 err = -errno;
4232 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4233 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
4234 map->name, cp, err);
4235 create_attr.btf_fd = 0;
4236 create_attr.btf_key_type_id = 0;
4237 create_attr.btf_value_type_id = 0;
4238 map->btf_key_type_id = 0;
4239 map->btf_value_type_id = 0;
4240 map->fd = bpf_create_map_xattr(&create_attr);
4241 }
4242
4243 err = map->fd < 0 ? -errno : 0;
4244
4245 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
4246 bpf_map__destroy(map->inner_map);
4247 zfree(&map->inner_map);
4248 }
4249
4250 return err;
4251 }
4252
init_map_slots(struct bpf_map * map)4253 static int init_map_slots(struct bpf_map *map)
4254 {
4255 const struct bpf_map *targ_map;
4256 unsigned int i;
4257 int fd, err;
4258
4259 for (i = 0; i < map->init_slots_sz; i++) {
4260 if (!map->init_slots[i])
4261 continue;
4262
4263 targ_map = map->init_slots[i];
4264 fd = bpf_map__fd(targ_map);
4265 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
4266 if (err) {
4267 err = -errno;
4268 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
4269 map->name, i, targ_map->name,
4270 fd, err);
4271 return err;
4272 }
4273 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
4274 map->name, i, targ_map->name, fd);
4275 }
4276
4277 zfree(&map->init_slots);
4278 map->init_slots_sz = 0;
4279
4280 return 0;
4281 }
4282
4283 static int
bpf_object__create_maps(struct bpf_object * obj)4284 bpf_object__create_maps(struct bpf_object *obj)
4285 {
4286 struct bpf_map *map;
4287 char *cp, errmsg[STRERR_BUFSIZE];
4288 unsigned int i, j;
4289 int err;
4290 bool retried;
4291
4292 for (i = 0; i < obj->nr_maps; i++) {
4293 map = &obj->maps[i];
4294
4295 retried = false;
4296 retry:
4297 if (map->pin_path) {
4298 err = bpf_object__reuse_map(map);
4299 if (err) {
4300 pr_warn("map '%s': error reusing pinned map\n",
4301 map->name);
4302 goto err_out;
4303 }
4304 if (retried && map->fd < 0) {
4305 pr_warn("map '%s': cannot find pinned map\n",
4306 map->name);
4307 err = -ENOENT;
4308 goto err_out;
4309 }
4310 }
4311
4312 if (map->fd >= 0) {
4313 pr_debug("map '%s': skipping creation (preset fd=%d)\n",
4314 map->name, map->fd);
4315 } else {
4316 err = bpf_object__create_map(obj, map);
4317 if (err)
4318 goto err_out;
4319
4320 pr_debug("map '%s': created successfully, fd=%d\n",
4321 map->name, map->fd);
4322
4323 if (bpf_map__is_internal(map)) {
4324 err = bpf_object__populate_internal_map(obj, map);
4325 if (err < 0) {
4326 zclose(map->fd);
4327 goto err_out;
4328 }
4329 }
4330
4331 if (map->init_slots_sz) {
4332 err = init_map_slots(map);
4333 if (err < 0) {
4334 zclose(map->fd);
4335 goto err_out;
4336 }
4337 }
4338 }
4339
4340 if (map->pin_path && !map->pinned) {
4341 err = bpf_map__pin(map, NULL);
4342 if (err) {
4343 zclose(map->fd);
4344 if (!retried && err == -EEXIST) {
4345 retried = true;
4346 goto retry;
4347 }
4348 pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
4349 map->name, map->pin_path, err);
4350 goto err_out;
4351 }
4352 }
4353 }
4354
4355 return 0;
4356
4357 err_out:
4358 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4359 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
4360 pr_perm_msg(err);
4361 for (j = 0; j < i; j++)
4362 zclose(obj->maps[j].fd);
4363 return err;
4364 }
4365
4366 #define BPF_CORE_SPEC_MAX_LEN 64
4367
4368 /* represents BPF CO-RE field or array element accessor */
4369 struct bpf_core_accessor {
4370 __u32 type_id; /* struct/union type or array element type */
4371 __u32 idx; /* field index or array index */
4372 const char *name; /* field name or NULL for array accessor */
4373 };
4374
4375 struct bpf_core_spec {
4376 const struct btf *btf;
4377 /* high-level spec: named fields and array indices only */
4378 struct bpf_core_accessor spec[BPF_CORE_SPEC_MAX_LEN];
4379 /* original unresolved (no skip_mods_or_typedefs) root type ID */
4380 __u32 root_type_id;
4381 /* CO-RE relocation kind */
4382 enum bpf_core_relo_kind relo_kind;
4383 /* high-level spec length */
4384 int len;
4385 /* raw, low-level spec: 1-to-1 with accessor spec string */
4386 int raw_spec[BPF_CORE_SPEC_MAX_LEN];
4387 /* raw spec length */
4388 int raw_len;
4389 /* field bit offset represented by spec */
4390 __u32 bit_offset;
4391 };
4392
str_is_empty(const char * s)4393 static bool str_is_empty(const char *s)
4394 {
4395 return !s || !s[0];
4396 }
4397
is_flex_arr(const struct btf * btf,const struct bpf_core_accessor * acc,const struct btf_array * arr)4398 static bool is_flex_arr(const struct btf *btf,
4399 const struct bpf_core_accessor *acc,
4400 const struct btf_array *arr)
4401 {
4402 const struct btf_type *t;
4403
4404 /* not a flexible array, if not inside a struct or has non-zero size */
4405 if (!acc->name || arr->nelems > 0)
4406 return false;
4407
4408 /* has to be the last member of enclosing struct */
4409 t = btf__type_by_id(btf, acc->type_id);
4410 return acc->idx == btf_vlen(t) - 1;
4411 }
4412
core_relo_kind_str(enum bpf_core_relo_kind kind)4413 static const char *core_relo_kind_str(enum bpf_core_relo_kind kind)
4414 {
4415 switch (kind) {
4416 case BPF_FIELD_BYTE_OFFSET: return "byte_off";
4417 case BPF_FIELD_BYTE_SIZE: return "byte_sz";
4418 case BPF_FIELD_EXISTS: return "field_exists";
4419 case BPF_FIELD_SIGNED: return "signed";
4420 case BPF_FIELD_LSHIFT_U64: return "lshift_u64";
4421 case BPF_FIELD_RSHIFT_U64: return "rshift_u64";
4422 case BPF_TYPE_ID_LOCAL: return "local_type_id";
4423 case BPF_TYPE_ID_TARGET: return "target_type_id";
4424 case BPF_TYPE_EXISTS: return "type_exists";
4425 case BPF_TYPE_SIZE: return "type_size";
4426 case BPF_ENUMVAL_EXISTS: return "enumval_exists";
4427 case BPF_ENUMVAL_VALUE: return "enumval_value";
4428 default: return "unknown";
4429 }
4430 }
4431
core_relo_is_field_based(enum bpf_core_relo_kind kind)4432 static bool core_relo_is_field_based(enum bpf_core_relo_kind kind)
4433 {
4434 switch (kind) {
4435 case BPF_FIELD_BYTE_OFFSET:
4436 case BPF_FIELD_BYTE_SIZE:
4437 case BPF_FIELD_EXISTS:
4438 case BPF_FIELD_SIGNED:
4439 case BPF_FIELD_LSHIFT_U64:
4440 case BPF_FIELD_RSHIFT_U64:
4441 return true;
4442 default:
4443 return false;
4444 }
4445 }
4446
core_relo_is_type_based(enum bpf_core_relo_kind kind)4447 static bool core_relo_is_type_based(enum bpf_core_relo_kind kind)
4448 {
4449 switch (kind) {
4450 case BPF_TYPE_ID_LOCAL:
4451 case BPF_TYPE_ID_TARGET:
4452 case BPF_TYPE_EXISTS:
4453 case BPF_TYPE_SIZE:
4454 return true;
4455 default:
4456 return false;
4457 }
4458 }
4459
core_relo_is_enumval_based(enum bpf_core_relo_kind kind)4460 static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind)
4461 {
4462 switch (kind) {
4463 case BPF_ENUMVAL_EXISTS:
4464 case BPF_ENUMVAL_VALUE:
4465 return true;
4466 default:
4467 return false;
4468 }
4469 }
4470
4471 /*
4472 * Turn bpf_core_relo into a low- and high-level spec representation,
4473 * validating correctness along the way, as well as calculating resulting
4474 * field bit offset, specified by accessor string. Low-level spec captures
4475 * every single level of nestedness, including traversing anonymous
4476 * struct/union members. High-level one only captures semantically meaningful
4477 * "turning points": named fields and array indicies.
4478 * E.g., for this case:
4479 *
4480 * struct sample {
4481 * int __unimportant;
4482 * struct {
4483 * int __1;
4484 * int __2;
4485 * int a[7];
4486 * };
4487 * };
4488 *
4489 * struct sample *s = ...;
4490 *
4491 * int x = &s->a[3]; // access string = '0:1:2:3'
4492 *
4493 * Low-level spec has 1:1 mapping with each element of access string (it's
4494 * just a parsed access string representation): [0, 1, 2, 3].
4495 *
4496 * High-level spec will capture only 3 points:
4497 * - intial zero-index access by pointer (&s->... is the same as &s[0]...);
4498 * - field 'a' access (corresponds to '2' in low-level spec);
4499 * - array element #3 access (corresponds to '3' in low-level spec).
4500 *
4501 * Type-based relocations (TYPE_EXISTS/TYPE_SIZE,
4502 * TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their
4503 * spec and raw_spec are kept empty.
4504 *
4505 * Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access
4506 * string to specify enumerator's value index that need to be relocated.
4507 */
bpf_core_parse_spec(const struct btf * btf,__u32 type_id,const char * spec_str,enum bpf_core_relo_kind relo_kind,struct bpf_core_spec * spec)4508 static int bpf_core_parse_spec(const struct btf *btf,
4509 __u32 type_id,
4510 const char *spec_str,
4511 enum bpf_core_relo_kind relo_kind,
4512 struct bpf_core_spec *spec)
4513 {
4514 int access_idx, parsed_len, i;
4515 struct bpf_core_accessor *acc;
4516 const struct btf_type *t;
4517 const char *name;
4518 __u32 id;
4519 __s64 sz;
4520
4521 if (str_is_empty(spec_str) || *spec_str == ':')
4522 return -EINVAL;
4523
4524 memset(spec, 0, sizeof(*spec));
4525 spec->btf = btf;
4526 spec->root_type_id = type_id;
4527 spec->relo_kind = relo_kind;
4528
4529 /* type-based relocations don't have a field access string */
4530 if (core_relo_is_type_based(relo_kind)) {
4531 if (strcmp(spec_str, "0"))
4532 return -EINVAL;
4533 return 0;
4534 }
4535
4536 /* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */
4537 while (*spec_str) {
4538 if (*spec_str == ':')
4539 ++spec_str;
4540 if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1)
4541 return -EINVAL;
4542 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
4543 return -E2BIG;
4544 spec_str += parsed_len;
4545 spec->raw_spec[spec->raw_len++] = access_idx;
4546 }
4547
4548 if (spec->raw_len == 0)
4549 return -EINVAL;
4550
4551 t = skip_mods_and_typedefs(btf, type_id, &id);
4552 if (!t)
4553 return -EINVAL;
4554
4555 access_idx = spec->raw_spec[0];
4556 acc = &spec->spec[0];
4557 acc->type_id = id;
4558 acc->idx = access_idx;
4559 spec->len++;
4560
4561 if (core_relo_is_enumval_based(relo_kind)) {
4562 if (!btf_is_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t))
4563 return -EINVAL;
4564
4565 /* record enumerator name in a first accessor */
4566 acc->name = btf__name_by_offset(btf, btf_enum(t)[access_idx].name_off);
4567 return 0;
4568 }
4569
4570 if (!core_relo_is_field_based(relo_kind))
4571 return -EINVAL;
4572
4573 sz = btf__resolve_size(btf, id);
4574 if (sz < 0)
4575 return sz;
4576 spec->bit_offset = access_idx * sz * 8;
4577
4578 for (i = 1; i < spec->raw_len; i++) {
4579 t = skip_mods_and_typedefs(btf, id, &id);
4580 if (!t)
4581 return -EINVAL;
4582
4583 access_idx = spec->raw_spec[i];
4584 acc = &spec->spec[spec->len];
4585
4586 if (btf_is_composite(t)) {
4587 const struct btf_member *m;
4588 __u32 bit_offset;
4589
4590 if (access_idx >= btf_vlen(t))
4591 return -EINVAL;
4592
4593 bit_offset = btf_member_bit_offset(t, access_idx);
4594 spec->bit_offset += bit_offset;
4595
4596 m = btf_members(t) + access_idx;
4597 if (m->name_off) {
4598 name = btf__name_by_offset(btf, m->name_off);
4599 if (str_is_empty(name))
4600 return -EINVAL;
4601
4602 acc->type_id = id;
4603 acc->idx = access_idx;
4604 acc->name = name;
4605 spec->len++;
4606 }
4607
4608 id = m->type;
4609 } else if (btf_is_array(t)) {
4610 const struct btf_array *a = btf_array(t);
4611 bool flex;
4612
4613 t = skip_mods_and_typedefs(btf, a->type, &id);
4614 if (!t)
4615 return -EINVAL;
4616
4617 flex = is_flex_arr(btf, acc - 1, a);
4618 if (!flex && access_idx >= a->nelems)
4619 return -EINVAL;
4620
4621 spec->spec[spec->len].type_id = id;
4622 spec->spec[spec->len].idx = access_idx;
4623 spec->len++;
4624
4625 sz = btf__resolve_size(btf, id);
4626 if (sz < 0)
4627 return sz;
4628 spec->bit_offset += access_idx * sz * 8;
4629 } else {
4630 pr_warn("relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n",
4631 type_id, spec_str, i, id, btf_kind_str(t));
4632 return -EINVAL;
4633 }
4634 }
4635
4636 return 0;
4637 }
4638
bpf_core_is_flavor_sep(const char * s)4639 static bool bpf_core_is_flavor_sep(const char *s)
4640 {
4641 /* check X___Y name pattern, where X and Y are not underscores */
4642 return s[0] != '_' && /* X */
4643 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */
4644 s[4] != '_'; /* Y */
4645 }
4646
4647 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
4648 * before last triple underscore. Struct name part after last triple
4649 * underscore is ignored by BPF CO-RE relocation during relocation matching.
4650 */
bpf_core_essential_name_len(const char * name)4651 static size_t bpf_core_essential_name_len(const char *name)
4652 {
4653 size_t n = strlen(name);
4654 int i;
4655
4656 for (i = n - 5; i >= 0; i--) {
4657 if (bpf_core_is_flavor_sep(name + i))
4658 return i + 1;
4659 }
4660 return n;
4661 }
4662
4663 /* dynamically sized list of type IDs */
4664 struct ids_vec {
4665 __u32 *data;
4666 int len;
4667 };
4668
bpf_core_free_cands(struct ids_vec * cand_ids)4669 static void bpf_core_free_cands(struct ids_vec *cand_ids)
4670 {
4671 free(cand_ids->data);
4672 free(cand_ids);
4673 }
4674
bpf_core_find_cands(const struct btf * local_btf,__u32 local_type_id,const struct btf * targ_btf)4675 static struct ids_vec *bpf_core_find_cands(const struct btf *local_btf,
4676 __u32 local_type_id,
4677 const struct btf *targ_btf)
4678 {
4679 size_t local_essent_len, targ_essent_len;
4680 const char *local_name, *targ_name;
4681 const struct btf_type *t, *local_t;
4682 struct ids_vec *cand_ids;
4683 __u32 *new_ids;
4684 int i, err, n;
4685
4686 local_t = btf__type_by_id(local_btf, local_type_id);
4687 if (!local_t)
4688 return ERR_PTR(-EINVAL);
4689
4690 local_name = btf__name_by_offset(local_btf, local_t->name_off);
4691 if (str_is_empty(local_name))
4692 return ERR_PTR(-EINVAL);
4693 local_essent_len = bpf_core_essential_name_len(local_name);
4694
4695 cand_ids = calloc(1, sizeof(*cand_ids));
4696 if (!cand_ids)
4697 return ERR_PTR(-ENOMEM);
4698
4699 n = btf__get_nr_types(targ_btf);
4700 for (i = 1; i <= n; i++) {
4701 t = btf__type_by_id(targ_btf, i);
4702 if (btf_kind(t) != btf_kind(local_t))
4703 continue;
4704
4705 targ_name = btf__name_by_offset(targ_btf, t->name_off);
4706 if (str_is_empty(targ_name))
4707 continue;
4708
4709 targ_essent_len = bpf_core_essential_name_len(targ_name);
4710 if (targ_essent_len != local_essent_len)
4711 continue;
4712
4713 if (strncmp(local_name, targ_name, local_essent_len) == 0) {
4714 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s\n",
4715 local_type_id, btf_kind_str(local_t),
4716 local_name, i, btf_kind_str(t), targ_name);
4717 new_ids = libbpf_reallocarray(cand_ids->data,
4718 cand_ids->len + 1,
4719 sizeof(*cand_ids->data));
4720 if (!new_ids) {
4721 err = -ENOMEM;
4722 goto err_out;
4723 }
4724 cand_ids->data = new_ids;
4725 cand_ids->data[cand_ids->len++] = i;
4726 }
4727 }
4728 return cand_ids;
4729 err_out:
4730 bpf_core_free_cands(cand_ids);
4731 return ERR_PTR(err);
4732 }
4733
4734 /* Check two types for compatibility for the purpose of field access
4735 * relocation. const/volatile/restrict and typedefs are skipped to ensure we
4736 * are relocating semantically compatible entities:
4737 * - any two STRUCTs/UNIONs are compatible and can be mixed;
4738 * - any two FWDs are compatible, if their names match (modulo flavor suffix);
4739 * - any two PTRs are always compatible;
4740 * - for ENUMs, names should be the same (ignoring flavor suffix) or at
4741 * least one of enums should be anonymous;
4742 * - for ENUMs, check sizes, names are ignored;
4743 * - for INT, size and signedness are ignored;
4744 * - for ARRAY, dimensionality is ignored, element types are checked for
4745 * compatibility recursively;
4746 * - everything else shouldn't be ever a target of relocation.
4747 * These rules are not set in stone and probably will be adjusted as we get
4748 * more experience with using BPF CO-RE relocations.
4749 */
bpf_core_fields_are_compat(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)4750 static int bpf_core_fields_are_compat(const struct btf *local_btf,
4751 __u32 local_id,
4752 const struct btf *targ_btf,
4753 __u32 targ_id)
4754 {
4755 const struct btf_type *local_type, *targ_type;
4756
4757 recur:
4758 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
4759 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
4760 if (!local_type || !targ_type)
4761 return -EINVAL;
4762
4763 if (btf_is_composite(local_type) && btf_is_composite(targ_type))
4764 return 1;
4765 if (btf_kind(local_type) != btf_kind(targ_type))
4766 return 0;
4767
4768 switch (btf_kind(local_type)) {
4769 case BTF_KIND_PTR:
4770 return 1;
4771 case BTF_KIND_FWD:
4772 case BTF_KIND_ENUM: {
4773 const char *local_name, *targ_name;
4774 size_t local_len, targ_len;
4775
4776 local_name = btf__name_by_offset(local_btf,
4777 local_type->name_off);
4778 targ_name = btf__name_by_offset(targ_btf, targ_type->name_off);
4779 local_len = bpf_core_essential_name_len(local_name);
4780 targ_len = bpf_core_essential_name_len(targ_name);
4781 /* one of them is anonymous or both w/ same flavor-less names */
4782 return local_len == 0 || targ_len == 0 ||
4783 (local_len == targ_len &&
4784 strncmp(local_name, targ_name, local_len) == 0);
4785 }
4786 case BTF_KIND_INT:
4787 /* just reject deprecated bitfield-like integers; all other
4788 * integers are by default compatible between each other
4789 */
4790 return btf_int_offset(local_type) == 0 &&
4791 btf_int_offset(targ_type) == 0;
4792 case BTF_KIND_ARRAY:
4793 local_id = btf_array(local_type)->type;
4794 targ_id = btf_array(targ_type)->type;
4795 goto recur;
4796 default:
4797 pr_warn("unexpected kind %d relocated, local [%d], target [%d]\n",
4798 btf_kind(local_type), local_id, targ_id);
4799 return 0;
4800 }
4801 }
4802
4803 /*
4804 * Given single high-level named field accessor in local type, find
4805 * corresponding high-level accessor for a target type. Along the way,
4806 * maintain low-level spec for target as well. Also keep updating target
4807 * bit offset.
4808 *
4809 * Searching is performed through recursive exhaustive enumeration of all
4810 * fields of a struct/union. If there are any anonymous (embedded)
4811 * structs/unions, they are recursively searched as well. If field with
4812 * desired name is found, check compatibility between local and target types,
4813 * before returning result.
4814 *
4815 * 1 is returned, if field is found.
4816 * 0 is returned if no compatible field is found.
4817 * <0 is returned on error.
4818 */
bpf_core_match_member(const struct btf * local_btf,const struct bpf_core_accessor * local_acc,const struct btf * targ_btf,__u32 targ_id,struct bpf_core_spec * spec,__u32 * next_targ_id)4819 static int bpf_core_match_member(const struct btf *local_btf,
4820 const struct bpf_core_accessor *local_acc,
4821 const struct btf *targ_btf,
4822 __u32 targ_id,
4823 struct bpf_core_spec *spec,
4824 __u32 *next_targ_id)
4825 {
4826 const struct btf_type *local_type, *targ_type;
4827 const struct btf_member *local_member, *m;
4828 const char *local_name, *targ_name;
4829 __u32 local_id;
4830 int i, n, found;
4831
4832 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
4833 if (!targ_type)
4834 return -EINVAL;
4835 if (!btf_is_composite(targ_type))
4836 return 0;
4837
4838 local_id = local_acc->type_id;
4839 local_type = btf__type_by_id(local_btf, local_id);
4840 local_member = btf_members(local_type) + local_acc->idx;
4841 local_name = btf__name_by_offset(local_btf, local_member->name_off);
4842
4843 n = btf_vlen(targ_type);
4844 m = btf_members(targ_type);
4845 for (i = 0; i < n; i++, m++) {
4846 __u32 bit_offset;
4847
4848 bit_offset = btf_member_bit_offset(targ_type, i);
4849
4850 /* too deep struct/union/array nesting */
4851 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
4852 return -E2BIG;
4853
4854 /* speculate this member will be the good one */
4855 spec->bit_offset += bit_offset;
4856 spec->raw_spec[spec->raw_len++] = i;
4857
4858 targ_name = btf__name_by_offset(targ_btf, m->name_off);
4859 if (str_is_empty(targ_name)) {
4860 /* embedded struct/union, we need to go deeper */
4861 found = bpf_core_match_member(local_btf, local_acc,
4862 targ_btf, m->type,
4863 spec, next_targ_id);
4864 if (found) /* either found or error */
4865 return found;
4866 } else if (strcmp(local_name, targ_name) == 0) {
4867 /* matching named field */
4868 struct bpf_core_accessor *targ_acc;
4869
4870 targ_acc = &spec->spec[spec->len++];
4871 targ_acc->type_id = targ_id;
4872 targ_acc->idx = i;
4873 targ_acc->name = targ_name;
4874
4875 *next_targ_id = m->type;
4876 found = bpf_core_fields_are_compat(local_btf,
4877 local_member->type,
4878 targ_btf, m->type);
4879 if (!found)
4880 spec->len--; /* pop accessor */
4881 return found;
4882 }
4883 /* member turned out not to be what we looked for */
4884 spec->bit_offset -= bit_offset;
4885 spec->raw_len--;
4886 }
4887
4888 return 0;
4889 }
4890
4891 /* Check local and target types for compatibility. This check is used for
4892 * type-based CO-RE relocations and follow slightly different rules than
4893 * field-based relocations. This function assumes that root types were already
4894 * checked for name match. Beyond that initial root-level name check, names
4895 * are completely ignored. Compatibility rules are as follows:
4896 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
4897 * kind should match for local and target types (i.e., STRUCT is not
4898 * compatible with UNION);
4899 * - for ENUMs, the size is ignored;
4900 * - for INT, size and signedness are ignored;
4901 * - for ARRAY, dimensionality is ignored, element types are checked for
4902 * compatibility recursively;
4903 * - CONST/VOLATILE/RESTRICT modifiers are ignored;
4904 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
4905 * - FUNC_PROTOs are compatible if they have compatible signature: same
4906 * number of input args and compatible return and argument types.
4907 * These rules are not set in stone and probably will be adjusted as we get
4908 * more experience with using BPF CO-RE relocations.
4909 */
bpf_core_types_are_compat(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)4910 static int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
4911 const struct btf *targ_btf, __u32 targ_id)
4912 {
4913 const struct btf_type *local_type, *targ_type;
4914 int depth = 32; /* max recursion depth */
4915
4916 /* caller made sure that names match (ignoring flavor suffix) */
4917 local_type = btf__type_by_id(local_btf, local_id);
4918 targ_type = btf__type_by_id(targ_btf, targ_id);
4919 if (btf_kind(local_type) != btf_kind(targ_type))
4920 return 0;
4921
4922 recur:
4923 depth--;
4924 if (depth < 0)
4925 return -EINVAL;
4926
4927 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
4928 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
4929 if (!local_type || !targ_type)
4930 return -EINVAL;
4931
4932 if (btf_kind(local_type) != btf_kind(targ_type))
4933 return 0;
4934
4935 switch (btf_kind(local_type)) {
4936 case BTF_KIND_UNKN:
4937 case BTF_KIND_STRUCT:
4938 case BTF_KIND_UNION:
4939 case BTF_KIND_ENUM:
4940 case BTF_KIND_FWD:
4941 return 1;
4942 case BTF_KIND_INT:
4943 /* just reject deprecated bitfield-like integers; all other
4944 * integers are by default compatible between each other
4945 */
4946 return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0;
4947 case BTF_KIND_PTR:
4948 local_id = local_type->type;
4949 targ_id = targ_type->type;
4950 goto recur;
4951 case BTF_KIND_ARRAY:
4952 local_id = btf_array(local_type)->type;
4953 targ_id = btf_array(targ_type)->type;
4954 goto recur;
4955 case BTF_KIND_FUNC_PROTO: {
4956 struct btf_param *local_p = btf_params(local_type);
4957 struct btf_param *targ_p = btf_params(targ_type);
4958 __u16 local_vlen = btf_vlen(local_type);
4959 __u16 targ_vlen = btf_vlen(targ_type);
4960 int i, err;
4961
4962 if (local_vlen != targ_vlen)
4963 return 0;
4964
4965 for (i = 0; i < local_vlen; i++, local_p++, targ_p++) {
4966 skip_mods_and_typedefs(local_btf, local_p->type, &local_id);
4967 skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id);
4968 err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id);
4969 if (err <= 0)
4970 return err;
4971 }
4972
4973 /* tail recurse for return type check */
4974 skip_mods_and_typedefs(local_btf, local_type->type, &local_id);
4975 skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id);
4976 goto recur;
4977 }
4978 default:
4979 pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n",
4980 btf_kind_str(local_type), local_id, targ_id);
4981 return 0;
4982 }
4983 }
4984
4985 /*
4986 * Try to match local spec to a target type and, if successful, produce full
4987 * target spec (high-level, low-level + bit offset).
4988 */
bpf_core_spec_match(struct bpf_core_spec * local_spec,const struct btf * targ_btf,__u32 targ_id,struct bpf_core_spec * targ_spec)4989 static int bpf_core_spec_match(struct bpf_core_spec *local_spec,
4990 const struct btf *targ_btf, __u32 targ_id,
4991 struct bpf_core_spec *targ_spec)
4992 {
4993 const struct btf_type *targ_type;
4994 const struct bpf_core_accessor *local_acc;
4995 struct bpf_core_accessor *targ_acc;
4996 int i, sz, matched;
4997
4998 memset(targ_spec, 0, sizeof(*targ_spec));
4999 targ_spec->btf = targ_btf;
5000 targ_spec->root_type_id = targ_id;
5001 targ_spec->relo_kind = local_spec->relo_kind;
5002
5003 if (core_relo_is_type_based(local_spec->relo_kind)) {
5004 return bpf_core_types_are_compat(local_spec->btf,
5005 local_spec->root_type_id,
5006 targ_btf, targ_id);
5007 }
5008
5009 local_acc = &local_spec->spec[0];
5010 targ_acc = &targ_spec->spec[0];
5011
5012 if (core_relo_is_enumval_based(local_spec->relo_kind)) {
5013 size_t local_essent_len, targ_essent_len;
5014 const struct btf_enum *e;
5015 const char *targ_name;
5016
5017 /* has to resolve to an enum */
5018 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id);
5019 if (!btf_is_enum(targ_type))
5020 return 0;
5021
5022 local_essent_len = bpf_core_essential_name_len(local_acc->name);
5023
5024 for (i = 0, e = btf_enum(targ_type); i < btf_vlen(targ_type); i++, e++) {
5025 targ_name = btf__name_by_offset(targ_spec->btf, e->name_off);
5026 targ_essent_len = bpf_core_essential_name_len(targ_name);
5027 if (targ_essent_len != local_essent_len)
5028 continue;
5029 if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) {
5030 targ_acc->type_id = targ_id;
5031 targ_acc->idx = i;
5032 targ_acc->name = targ_name;
5033 targ_spec->len++;
5034 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
5035 targ_spec->raw_len++;
5036 return 1;
5037 }
5038 }
5039 return 0;
5040 }
5041
5042 if (!core_relo_is_field_based(local_spec->relo_kind))
5043 return -EINVAL;
5044
5045 for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) {
5046 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id,
5047 &targ_id);
5048 if (!targ_type)
5049 return -EINVAL;
5050
5051 if (local_acc->name) {
5052 matched = bpf_core_match_member(local_spec->btf,
5053 local_acc,
5054 targ_btf, targ_id,
5055 targ_spec, &targ_id);
5056 if (matched <= 0)
5057 return matched;
5058 } else {
5059 /* for i=0, targ_id is already treated as array element
5060 * type (because it's the original struct), for others
5061 * we should find array element type first
5062 */
5063 if (i > 0) {
5064 const struct btf_array *a;
5065 bool flex;
5066
5067 if (!btf_is_array(targ_type))
5068 return 0;
5069
5070 a = btf_array(targ_type);
5071 flex = is_flex_arr(targ_btf, targ_acc - 1, a);
5072 if (!flex && local_acc->idx >= a->nelems)
5073 return 0;
5074 if (!skip_mods_and_typedefs(targ_btf, a->type,
5075 &targ_id))
5076 return -EINVAL;
5077 }
5078
5079 /* too deep struct/union/array nesting */
5080 if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
5081 return -E2BIG;
5082
5083 targ_acc->type_id = targ_id;
5084 targ_acc->idx = local_acc->idx;
5085 targ_acc->name = NULL;
5086 targ_spec->len++;
5087 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
5088 targ_spec->raw_len++;
5089
5090 sz = btf__resolve_size(targ_btf, targ_id);
5091 if (sz < 0)
5092 return sz;
5093 targ_spec->bit_offset += local_acc->idx * sz * 8;
5094 }
5095 }
5096
5097 return 1;
5098 }
5099
bpf_core_calc_field_relo(const struct bpf_program * prog,const struct bpf_core_relo * relo,const struct bpf_core_spec * spec,__u32 * val,__u32 * field_sz,__u32 * type_id,bool * validate)5100 static int bpf_core_calc_field_relo(const struct bpf_program *prog,
5101 const struct bpf_core_relo *relo,
5102 const struct bpf_core_spec *spec,
5103 __u32 *val, __u32 *field_sz, __u32 *type_id,
5104 bool *validate)
5105 {
5106 const struct bpf_core_accessor *acc;
5107 const struct btf_type *t;
5108 __u32 byte_off, byte_sz, bit_off, bit_sz, field_type_id;
5109 const struct btf_member *m;
5110 const struct btf_type *mt;
5111 bool bitfield;
5112 __s64 sz;
5113
5114 *field_sz = 0;
5115
5116 if (relo->kind == BPF_FIELD_EXISTS) {
5117 *val = spec ? 1 : 0;
5118 return 0;
5119 }
5120
5121 if (!spec)
5122 return -EUCLEAN; /* request instruction poisoning */
5123
5124 acc = &spec->spec[spec->len - 1];
5125 t = btf__type_by_id(spec->btf, acc->type_id);
5126
5127 /* a[n] accessor needs special handling */
5128 if (!acc->name) {
5129 if (relo->kind == BPF_FIELD_BYTE_OFFSET) {
5130 *val = spec->bit_offset / 8;
5131 /* remember field size for load/store mem size */
5132 sz = btf__resolve_size(spec->btf, acc->type_id);
5133 if (sz < 0)
5134 return -EINVAL;
5135 *field_sz = sz;
5136 *type_id = acc->type_id;
5137 } else if (relo->kind == BPF_FIELD_BYTE_SIZE) {
5138 sz = btf__resolve_size(spec->btf, acc->type_id);
5139 if (sz < 0)
5140 return -EINVAL;
5141 *val = sz;
5142 } else {
5143 pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n",
5144 prog->name, relo->kind, relo->insn_off / 8);
5145 return -EINVAL;
5146 }
5147 if (validate)
5148 *validate = true;
5149 return 0;
5150 }
5151
5152 m = btf_members(t) + acc->idx;
5153 mt = skip_mods_and_typedefs(spec->btf, m->type, &field_type_id);
5154 bit_off = spec->bit_offset;
5155 bit_sz = btf_member_bitfield_size(t, acc->idx);
5156
5157 bitfield = bit_sz > 0;
5158 if (bitfield) {
5159 byte_sz = mt->size;
5160 byte_off = bit_off / 8 / byte_sz * byte_sz;
5161 /* figure out smallest int size necessary for bitfield load */
5162 while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) {
5163 if (byte_sz >= 8) {
5164 /* bitfield can't be read with 64-bit read */
5165 pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n",
5166 prog->name, relo->kind, relo->insn_off / 8);
5167 return -E2BIG;
5168 }
5169 byte_sz *= 2;
5170 byte_off = bit_off / 8 / byte_sz * byte_sz;
5171 }
5172 } else {
5173 sz = btf__resolve_size(spec->btf, field_type_id);
5174 if (sz < 0)
5175 return -EINVAL;
5176 byte_sz = sz;
5177 byte_off = spec->bit_offset / 8;
5178 bit_sz = byte_sz * 8;
5179 }
5180
5181 /* for bitfields, all the relocatable aspects are ambiguous and we
5182 * might disagree with compiler, so turn off validation of expected
5183 * value, except for signedness
5184 */
5185 if (validate)
5186 *validate = !bitfield;
5187
5188 switch (relo->kind) {
5189 case BPF_FIELD_BYTE_OFFSET:
5190 *val = byte_off;
5191 if (!bitfield) {
5192 *field_sz = byte_sz;
5193 *type_id = field_type_id;
5194 }
5195 break;
5196 case BPF_FIELD_BYTE_SIZE:
5197 *val = byte_sz;
5198 break;
5199 case BPF_FIELD_SIGNED:
5200 /* enums will be assumed unsigned */
5201 *val = btf_is_enum(mt) ||
5202 (btf_int_encoding(mt) & BTF_INT_SIGNED);
5203 if (validate)
5204 *validate = true; /* signedness is never ambiguous */
5205 break;
5206 case BPF_FIELD_LSHIFT_U64:
5207 #if __BYTE_ORDER == __LITTLE_ENDIAN
5208 *val = 64 - (bit_off + bit_sz - byte_off * 8);
5209 #else
5210 *val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8);
5211 #endif
5212 break;
5213 case BPF_FIELD_RSHIFT_U64:
5214 *val = 64 - bit_sz;
5215 if (validate)
5216 *validate = true; /* right shift is never ambiguous */
5217 break;
5218 case BPF_FIELD_EXISTS:
5219 default:
5220 return -EOPNOTSUPP;
5221 }
5222
5223 return 0;
5224 }
5225
bpf_core_calc_type_relo(const struct bpf_core_relo * relo,const struct bpf_core_spec * spec,__u32 * val)5226 static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo,
5227 const struct bpf_core_spec *spec,
5228 __u32 *val)
5229 {
5230 __s64 sz;
5231
5232 /* type-based relos return zero when target type is not found */
5233 if (!spec) {
5234 *val = 0;
5235 return 0;
5236 }
5237
5238 switch (relo->kind) {
5239 case BPF_TYPE_ID_TARGET:
5240 *val = spec->root_type_id;
5241 break;
5242 case BPF_TYPE_EXISTS:
5243 *val = 1;
5244 break;
5245 case BPF_TYPE_SIZE:
5246 sz = btf__resolve_size(spec->btf, spec->root_type_id);
5247 if (sz < 0)
5248 return -EINVAL;
5249 *val = sz;
5250 break;
5251 case BPF_TYPE_ID_LOCAL:
5252 /* BPF_TYPE_ID_LOCAL is handled specially and shouldn't get here */
5253 default:
5254 return -EOPNOTSUPP;
5255 }
5256
5257 return 0;
5258 }
5259
bpf_core_calc_enumval_relo(const struct bpf_core_relo * relo,const struct bpf_core_spec * spec,__u32 * val)5260 static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo,
5261 const struct bpf_core_spec *spec,
5262 __u32 *val)
5263 {
5264 const struct btf_type *t;
5265 const struct btf_enum *e;
5266
5267 switch (relo->kind) {
5268 case BPF_ENUMVAL_EXISTS:
5269 *val = spec ? 1 : 0;
5270 break;
5271 case BPF_ENUMVAL_VALUE:
5272 if (!spec)
5273 return -EUCLEAN; /* request instruction poisoning */
5274 t = btf__type_by_id(spec->btf, spec->spec[0].type_id);
5275 e = btf_enum(t) + spec->spec[0].idx;
5276 *val = e->val;
5277 break;
5278 default:
5279 return -EOPNOTSUPP;
5280 }
5281
5282 return 0;
5283 }
5284
5285 struct bpf_core_relo_res
5286 {
5287 /* expected value in the instruction, unless validate == false */
5288 __u32 orig_val;
5289 /* new value that needs to be patched up to */
5290 __u32 new_val;
5291 /* relocation unsuccessful, poison instruction, but don't fail load */
5292 bool poison;
5293 /* some relocations can't be validated against orig_val */
5294 bool validate;
5295 /* for field byte offset relocations or the forms:
5296 * *(T *)(rX + <off>) = rY
5297 * rX = *(T *)(rY + <off>),
5298 * we remember original and resolved field size to adjust direct
5299 * memory loads of pointers and integers; this is necessary for 32-bit
5300 * host kernel architectures, but also allows to automatically
5301 * relocate fields that were resized from, e.g., u32 to u64, etc.
5302 */
5303 bool fail_memsz_adjust;
5304 __u32 orig_sz;
5305 __u32 orig_type_id;
5306 __u32 new_sz;
5307 __u32 new_type_id;
5308 };
5309
5310 /* Calculate original and target relocation values, given local and target
5311 * specs and relocation kind. These values are calculated for each candidate.
5312 * If there are multiple candidates, resulting values should all be consistent
5313 * with each other. Otherwise, libbpf will refuse to proceed due to ambiguity.
5314 * If instruction has to be poisoned, *poison will be set to true.
5315 */
bpf_core_calc_relo(const struct bpf_program * prog,const struct bpf_core_relo * relo,int relo_idx,const struct bpf_core_spec * local_spec,const struct bpf_core_spec * targ_spec,struct bpf_core_relo_res * res)5316 static int bpf_core_calc_relo(const struct bpf_program *prog,
5317 const struct bpf_core_relo *relo,
5318 int relo_idx,
5319 const struct bpf_core_spec *local_spec,
5320 const struct bpf_core_spec *targ_spec,
5321 struct bpf_core_relo_res *res)
5322 {
5323 int err = -EOPNOTSUPP;
5324
5325 res->orig_val = 0;
5326 res->new_val = 0;
5327 res->poison = false;
5328 res->validate = true;
5329 res->fail_memsz_adjust = false;
5330 res->orig_sz = res->new_sz = 0;
5331 res->orig_type_id = res->new_type_id = 0;
5332
5333 if (core_relo_is_field_based(relo->kind)) {
5334 err = bpf_core_calc_field_relo(prog, relo, local_spec,
5335 &res->orig_val, &res->orig_sz,
5336 &res->orig_type_id, &res->validate);
5337 err = err ?: bpf_core_calc_field_relo(prog, relo, targ_spec,
5338 &res->new_val, &res->new_sz,
5339 &res->new_type_id, NULL);
5340 if (err)
5341 goto done;
5342 /* Validate if it's safe to adjust load/store memory size.
5343 * Adjustments are performed only if original and new memory
5344 * sizes differ.
5345 */
5346 res->fail_memsz_adjust = false;
5347 if (res->orig_sz != res->new_sz) {
5348 const struct btf_type *orig_t, *new_t;
5349
5350 orig_t = btf__type_by_id(local_spec->btf, res->orig_type_id);
5351 new_t = btf__type_by_id(targ_spec->btf, res->new_type_id);
5352
5353 /* There are two use cases in which it's safe to
5354 * adjust load/store's mem size:
5355 * - reading a 32-bit kernel pointer, while on BPF
5356 * size pointers are always 64-bit; in this case
5357 * it's safe to "downsize" instruction size due to
5358 * pointer being treated as unsigned integer with
5359 * zero-extended upper 32-bits;
5360 * - reading unsigned integers, again due to
5361 * zero-extension is preserving the value correctly.
5362 *
5363 * In all other cases it's incorrect to attempt to
5364 * load/store field because read value will be
5365 * incorrect, so we poison relocated instruction.
5366 */
5367 if (btf_is_ptr(orig_t) && btf_is_ptr(new_t))
5368 goto done;
5369 if (btf_is_int(orig_t) && btf_is_int(new_t) &&
5370 btf_int_encoding(orig_t) != BTF_INT_SIGNED &&
5371 btf_int_encoding(new_t) != BTF_INT_SIGNED)
5372 goto done;
5373
5374 /* mark as invalid mem size adjustment, but this will
5375 * only be checked for LDX/STX/ST insns
5376 */
5377 res->fail_memsz_adjust = true;
5378 }
5379 } else if (core_relo_is_type_based(relo->kind)) {
5380 err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val);
5381 err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val);
5382 } else if (core_relo_is_enumval_based(relo->kind)) {
5383 err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val);
5384 err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val);
5385 }
5386
5387 done:
5388 if (err == -EUCLEAN) {
5389 /* EUCLEAN is used to signal instruction poisoning request */
5390 res->poison = true;
5391 err = 0;
5392 } else if (err == -EOPNOTSUPP) {
5393 /* EOPNOTSUPP means unknown/unsupported relocation */
5394 pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n",
5395 prog->name, relo_idx, core_relo_kind_str(relo->kind),
5396 relo->kind, relo->insn_off / 8);
5397 }
5398
5399 return err;
5400 }
5401
5402 /*
5403 * Turn instruction for which CO_RE relocation failed into invalid one with
5404 * distinct signature.
5405 */
bpf_core_poison_insn(struct bpf_program * prog,int relo_idx,int insn_idx,struct bpf_insn * insn)5406 static void bpf_core_poison_insn(struct bpf_program *prog, int relo_idx,
5407 int insn_idx, struct bpf_insn *insn)
5408 {
5409 pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n",
5410 prog->name, relo_idx, insn_idx);
5411 insn->code = BPF_JMP | BPF_CALL;
5412 insn->dst_reg = 0;
5413 insn->src_reg = 0;
5414 insn->off = 0;
5415 /* if this instruction is reachable (not a dead code),
5416 * verifier will complain with the following message:
5417 * invalid func unknown#195896080
5418 */
5419 insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */
5420 }
5421
is_ldimm64(struct bpf_insn * insn)5422 static bool is_ldimm64(struct bpf_insn *insn)
5423 {
5424 return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
5425 }
5426
insn_bpf_size_to_bytes(struct bpf_insn * insn)5427 static int insn_bpf_size_to_bytes(struct bpf_insn *insn)
5428 {
5429 switch (BPF_SIZE(insn->code)) {
5430 case BPF_DW: return 8;
5431 case BPF_W: return 4;
5432 case BPF_H: return 2;
5433 case BPF_B: return 1;
5434 default: return -1;
5435 }
5436 }
5437
insn_bytes_to_bpf_size(__u32 sz)5438 static int insn_bytes_to_bpf_size(__u32 sz)
5439 {
5440 switch (sz) {
5441 case 8: return BPF_DW;
5442 case 4: return BPF_W;
5443 case 2: return BPF_H;
5444 case 1: return BPF_B;
5445 default: return -1;
5446 }
5447 }
5448
5449 /*
5450 * Patch relocatable BPF instruction.
5451 *
5452 * Patched value is determined by relocation kind and target specification.
5453 * For existence relocations target spec will be NULL if field/type is not found.
5454 * Expected insn->imm value is determined using relocation kind and local
5455 * spec, and is checked before patching instruction. If actual insn->imm value
5456 * is wrong, bail out with error.
5457 *
5458 * Currently supported classes of BPF instruction are:
5459 * 1. rX = <imm> (assignment with immediate operand);
5460 * 2. rX += <imm> (arithmetic operations with immediate operand);
5461 * 3. rX = <imm64> (load with 64-bit immediate value);
5462 * 4. rX = *(T *)(rY + <off>), where T is one of {u8, u16, u32, u64};
5463 * 5. *(T *)(rX + <off>) = rY, where T is one of {u8, u16, u32, u64};
5464 * 6. *(T *)(rX + <off>) = <imm>, where T is one of {u8, u16, u32, u64}.
5465 */
bpf_core_patch_insn(struct bpf_program * prog,const struct bpf_core_relo * relo,int relo_idx,const struct bpf_core_relo_res * res)5466 static int bpf_core_patch_insn(struct bpf_program *prog,
5467 const struct bpf_core_relo *relo,
5468 int relo_idx,
5469 const struct bpf_core_relo_res *res)
5470 {
5471 __u32 orig_val, new_val;
5472 struct bpf_insn *insn;
5473 int insn_idx;
5474 __u8 class;
5475
5476 if (relo->insn_off % BPF_INSN_SZ)
5477 return -EINVAL;
5478 insn_idx = relo->insn_off / BPF_INSN_SZ;
5479 /* adjust insn_idx from section frame of reference to the local
5480 * program's frame of reference; (sub-)program code is not yet
5481 * relocated, so it's enough to just subtract in-section offset
5482 */
5483 insn_idx = insn_idx - prog->sec_insn_off;
5484 insn = &prog->insns[insn_idx];
5485 class = BPF_CLASS(insn->code);
5486
5487 if (res->poison) {
5488 poison:
5489 /* poison second part of ldimm64 to avoid confusing error from
5490 * verifier about "unknown opcode 00"
5491 */
5492 if (is_ldimm64(insn))
5493 bpf_core_poison_insn(prog, relo_idx, insn_idx + 1, insn + 1);
5494 bpf_core_poison_insn(prog, relo_idx, insn_idx, insn);
5495 return 0;
5496 }
5497
5498 orig_val = res->orig_val;
5499 new_val = res->new_val;
5500
5501 switch (class) {
5502 case BPF_ALU:
5503 case BPF_ALU64:
5504 if (BPF_SRC(insn->code) != BPF_K)
5505 return -EINVAL;
5506 if (res->validate && insn->imm != orig_val) {
5507 pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %u -> %u\n",
5508 prog->name, relo_idx,
5509 insn_idx, insn->imm, orig_val, new_val);
5510 return -EINVAL;
5511 }
5512 orig_val = insn->imm;
5513 insn->imm = new_val;
5514 pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %u -> %u\n",
5515 prog->name, relo_idx, insn_idx,
5516 orig_val, new_val);
5517 break;
5518 case BPF_LDX:
5519 case BPF_ST:
5520 case BPF_STX:
5521 if (res->validate && insn->off != orig_val) {
5522 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %u -> %u\n",
5523 prog->name, relo_idx, insn_idx, insn->off, orig_val, new_val);
5524 return -EINVAL;
5525 }
5526 if (new_val > SHRT_MAX) {
5527 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %u\n",
5528 prog->name, relo_idx, insn_idx, new_val);
5529 return -ERANGE;
5530 }
5531 if (res->fail_memsz_adjust) {
5532 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) accesses field incorrectly. "
5533 "Make sure you are accessing pointers, unsigned integers, or fields of matching type and size.\n",
5534 prog->name, relo_idx, insn_idx);
5535 goto poison;
5536 }
5537
5538 orig_val = insn->off;
5539 insn->off = new_val;
5540 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %u -> %u\n",
5541 prog->name, relo_idx, insn_idx, orig_val, new_val);
5542
5543 if (res->new_sz != res->orig_sz) {
5544 int insn_bytes_sz, insn_bpf_sz;
5545
5546 insn_bytes_sz = insn_bpf_size_to_bytes(insn);
5547 if (insn_bytes_sz != res->orig_sz) {
5548 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) unexpected mem size: got %d, exp %u\n",
5549 prog->name, relo_idx, insn_idx, insn_bytes_sz, res->orig_sz);
5550 return -EINVAL;
5551 }
5552
5553 insn_bpf_sz = insn_bytes_to_bpf_size(res->new_sz);
5554 if (insn_bpf_sz < 0) {
5555 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) invalid new mem size: %u\n",
5556 prog->name, relo_idx, insn_idx, res->new_sz);
5557 return -EINVAL;
5558 }
5559
5560 insn->code = BPF_MODE(insn->code) | insn_bpf_sz | BPF_CLASS(insn->code);
5561 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) mem_sz %u -> %u\n",
5562 prog->name, relo_idx, insn_idx, res->orig_sz, res->new_sz);
5563 }
5564 break;
5565 case BPF_LD: {
5566 __u64 imm;
5567
5568 if (!is_ldimm64(insn) ||
5569 insn[0].src_reg != 0 || insn[0].off != 0 ||
5570 insn_idx + 1 >= prog->insns_cnt ||
5571 insn[1].code != 0 || insn[1].dst_reg != 0 ||
5572 insn[1].src_reg != 0 || insn[1].off != 0) {
5573 pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n",
5574 prog->name, relo_idx, insn_idx);
5575 return -EINVAL;
5576 }
5577
5578 imm = insn[0].imm + ((__u64)insn[1].imm << 32);
5579 if (res->validate && imm != orig_val) {
5580 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %u -> %u\n",
5581 prog->name, relo_idx,
5582 insn_idx, (unsigned long long)imm,
5583 orig_val, new_val);
5584 return -EINVAL;
5585 }
5586
5587 insn[0].imm = new_val;
5588 insn[1].imm = 0; /* currently only 32-bit values are supported */
5589 pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %u\n",
5590 prog->name, relo_idx, insn_idx,
5591 (unsigned long long)imm, new_val);
5592 break;
5593 }
5594 default:
5595 pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n",
5596 prog->name, relo_idx, insn_idx, insn->code,
5597 insn->src_reg, insn->dst_reg, insn->off, insn->imm);
5598 return -EINVAL;
5599 }
5600
5601 return 0;
5602 }
5603
5604 /* Output spec definition in the format:
5605 * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>,
5606 * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b
5607 */
bpf_core_dump_spec(int level,const struct bpf_core_spec * spec)5608 static void bpf_core_dump_spec(int level, const struct bpf_core_spec *spec)
5609 {
5610 const struct btf_type *t;
5611 const struct btf_enum *e;
5612 const char *s;
5613 __u32 type_id;
5614 int i;
5615
5616 type_id = spec->root_type_id;
5617 t = btf__type_by_id(spec->btf, type_id);
5618 s = btf__name_by_offset(spec->btf, t->name_off);
5619
5620 libbpf_print(level, "[%u] %s %s", type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s);
5621
5622 if (core_relo_is_type_based(spec->relo_kind))
5623 return;
5624
5625 if (core_relo_is_enumval_based(spec->relo_kind)) {
5626 t = skip_mods_and_typedefs(spec->btf, type_id, NULL);
5627 e = btf_enum(t) + spec->raw_spec[0];
5628 s = btf__name_by_offset(spec->btf, e->name_off);
5629
5630 libbpf_print(level, "::%s = %u", s, e->val);
5631 return;
5632 }
5633
5634 if (core_relo_is_field_based(spec->relo_kind)) {
5635 for (i = 0; i < spec->len; i++) {
5636 if (spec->spec[i].name)
5637 libbpf_print(level, ".%s", spec->spec[i].name);
5638 else if (i > 0 || spec->spec[i].idx > 0)
5639 libbpf_print(level, "[%u]", spec->spec[i].idx);
5640 }
5641
5642 libbpf_print(level, " (");
5643 for (i = 0; i < spec->raw_len; i++)
5644 libbpf_print(level, "%s%d", i == 0 ? "" : ":", spec->raw_spec[i]);
5645
5646 if (spec->bit_offset % 8)
5647 libbpf_print(level, " @ offset %u.%u)",
5648 spec->bit_offset / 8, spec->bit_offset % 8);
5649 else
5650 libbpf_print(level, " @ offset %u)", spec->bit_offset / 8);
5651 return;
5652 }
5653 }
5654
bpf_core_hash_fn(const void * key,void * ctx)5655 static size_t bpf_core_hash_fn(const void *key, void *ctx)
5656 {
5657 return (size_t)key;
5658 }
5659
bpf_core_equal_fn(const void * k1,const void * k2,void * ctx)5660 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx)
5661 {
5662 return k1 == k2;
5663 }
5664
u32_as_hash_key(__u32 x)5665 static void *u32_as_hash_key(__u32 x)
5666 {
5667 return (void *)(uintptr_t)x;
5668 }
5669
5670 /*
5671 * CO-RE relocate single instruction.
5672 *
5673 * The outline and important points of the algorithm:
5674 * 1. For given local type, find corresponding candidate target types.
5675 * Candidate type is a type with the same "essential" name, ignoring
5676 * everything after last triple underscore (___). E.g., `sample`,
5677 * `sample___flavor_one`, `sample___flavor_another_one`, are all candidates
5678 * for each other. Names with triple underscore are referred to as
5679 * "flavors" and are useful, among other things, to allow to
5680 * specify/support incompatible variations of the same kernel struct, which
5681 * might differ between different kernel versions and/or build
5682 * configurations.
5683 *
5684 * N.B. Struct "flavors" could be generated by bpftool's BTF-to-C
5685 * converter, when deduplicated BTF of a kernel still contains more than
5686 * one different types with the same name. In that case, ___2, ___3, etc
5687 * are appended starting from second name conflict. But start flavors are
5688 * also useful to be defined "locally", in BPF program, to extract same
5689 * data from incompatible changes between different kernel
5690 * versions/configurations. For instance, to handle field renames between
5691 * kernel versions, one can use two flavors of the struct name with the
5692 * same common name and use conditional relocations to extract that field,
5693 * depending on target kernel version.
5694 * 2. For each candidate type, try to match local specification to this
5695 * candidate target type. Matching involves finding corresponding
5696 * high-level spec accessors, meaning that all named fields should match,
5697 * as well as all array accesses should be within the actual bounds. Also,
5698 * types should be compatible (see bpf_core_fields_are_compat for details).
5699 * 3. It is supported and expected that there might be multiple flavors
5700 * matching the spec. As long as all the specs resolve to the same set of
5701 * offsets across all candidates, there is no error. If there is any
5702 * ambiguity, CO-RE relocation will fail. This is necessary to accomodate
5703 * imprefection of BTF deduplication, which can cause slight duplication of
5704 * the same BTF type, if some directly or indirectly referenced (by
5705 * pointer) type gets resolved to different actual types in different
5706 * object files. If such situation occurs, deduplicated BTF will end up
5707 * with two (or more) structurally identical types, which differ only in
5708 * types they refer to through pointer. This should be OK in most cases and
5709 * is not an error.
5710 * 4. Candidate types search is performed by linearly scanning through all
5711 * types in target BTF. It is anticipated that this is overall more
5712 * efficient memory-wise and not significantly worse (if not better)
5713 * CPU-wise compared to prebuilding a map from all local type names to
5714 * a list of candidate type names. It's also sped up by caching resolved
5715 * list of matching candidates per each local "root" type ID, that has at
5716 * least one bpf_core_relo associated with it. This list is shared
5717 * between multiple relocations for the same type ID and is updated as some
5718 * of the candidates are pruned due to structural incompatibility.
5719 */
bpf_core_apply_relo(struct bpf_program * prog,const struct bpf_core_relo * relo,int relo_idx,const struct btf * local_btf,const struct btf * targ_btf,struct hashmap * cand_cache)5720 static int bpf_core_apply_relo(struct bpf_program *prog,
5721 const struct bpf_core_relo *relo,
5722 int relo_idx,
5723 const struct btf *local_btf,
5724 const struct btf *targ_btf,
5725 struct hashmap *cand_cache)
5726 {
5727 struct bpf_core_spec local_spec, cand_spec, targ_spec = {};
5728 const void *type_key = u32_as_hash_key(relo->type_id);
5729 struct bpf_core_relo_res cand_res, targ_res;
5730 const struct btf_type *local_type;
5731 const char *local_name;
5732 struct ids_vec *cand_ids;
5733 __u32 local_id, cand_id;
5734 const char *spec_str;
5735 int i, j, err;
5736
5737 local_id = relo->type_id;
5738 local_type = btf__type_by_id(local_btf, local_id);
5739 if (!local_type)
5740 return -EINVAL;
5741
5742 local_name = btf__name_by_offset(local_btf, local_type->name_off);
5743 if (!local_name)
5744 return -EINVAL;
5745
5746 spec_str = btf__name_by_offset(local_btf, relo->access_str_off);
5747 if (str_is_empty(spec_str))
5748 return -EINVAL;
5749
5750 err = bpf_core_parse_spec(local_btf, local_id, spec_str, relo->kind, &local_spec);
5751 if (err) {
5752 pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n",
5753 prog->name, relo_idx, local_id, btf_kind_str(local_type),
5754 str_is_empty(local_name) ? "<anon>" : local_name,
5755 spec_str, err);
5756 return -EINVAL;
5757 }
5758
5759 pr_debug("prog '%s': relo #%d: kind <%s> (%d), spec is ", prog->name,
5760 relo_idx, core_relo_kind_str(relo->kind), relo->kind);
5761 bpf_core_dump_spec(LIBBPF_DEBUG, &local_spec);
5762 libbpf_print(LIBBPF_DEBUG, "\n");
5763
5764 /* TYPE_ID_LOCAL relo is special and doesn't need candidate search */
5765 if (relo->kind == BPF_TYPE_ID_LOCAL) {
5766 targ_res.validate = true;
5767 targ_res.poison = false;
5768 targ_res.orig_val = local_spec.root_type_id;
5769 targ_res.new_val = local_spec.root_type_id;
5770 goto patch_insn;
5771 }
5772
5773 /* libbpf doesn't support candidate search for anonymous types */
5774 if (str_is_empty(spec_str)) {
5775 pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n",
5776 prog->name, relo_idx, core_relo_kind_str(relo->kind), relo->kind);
5777 return -EOPNOTSUPP;
5778 }
5779
5780 if (!hashmap__find(cand_cache, type_key, (void **)&cand_ids)) {
5781 cand_ids = bpf_core_find_cands(local_btf, local_id, targ_btf);
5782 if (IS_ERR(cand_ids)) {
5783 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld",
5784 prog->name, relo_idx, local_id, btf_kind_str(local_type),
5785 local_name, PTR_ERR(cand_ids));
5786 return PTR_ERR(cand_ids);
5787 }
5788 err = hashmap__set(cand_cache, type_key, cand_ids, NULL, NULL);
5789 if (err) {
5790 bpf_core_free_cands(cand_ids);
5791 return err;
5792 }
5793 }
5794
5795 for (i = 0, j = 0; i < cand_ids->len; i++) {
5796 cand_id = cand_ids->data[i];
5797 err = bpf_core_spec_match(&local_spec, targ_btf, cand_id, &cand_spec);
5798 if (err < 0) {
5799 pr_warn("prog '%s': relo #%d: error matching candidate #%d ",
5800 prog->name, relo_idx, i);
5801 bpf_core_dump_spec(LIBBPF_WARN, &cand_spec);
5802 libbpf_print(LIBBPF_WARN, ": %d\n", err);
5803 return err;
5804 }
5805
5806 pr_debug("prog '%s': relo #%d: %s candidate #%d ", prog->name,
5807 relo_idx, err == 0 ? "non-matching" : "matching", i);
5808 bpf_core_dump_spec(LIBBPF_DEBUG, &cand_spec);
5809 libbpf_print(LIBBPF_DEBUG, "\n");
5810
5811 if (err == 0)
5812 continue;
5813
5814 err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, &cand_spec, &cand_res);
5815 if (err)
5816 return err;
5817
5818 if (j == 0) {
5819 targ_res = cand_res;
5820 targ_spec = cand_spec;
5821 } else if (cand_spec.bit_offset != targ_spec.bit_offset) {
5822 /* if there are many field relo candidates, they
5823 * should all resolve to the same bit offset
5824 */
5825 pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n",
5826 prog->name, relo_idx, cand_spec.bit_offset,
5827 targ_spec.bit_offset);
5828 return -EINVAL;
5829 } else if (cand_res.poison != targ_res.poison || cand_res.new_val != targ_res.new_val) {
5830 /* all candidates should result in the same relocation
5831 * decision and value, otherwise it's dangerous to
5832 * proceed due to ambiguity
5833 */
5834 pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %u != %s %u\n",
5835 prog->name, relo_idx,
5836 cand_res.poison ? "failure" : "success", cand_res.new_val,
5837 targ_res.poison ? "failure" : "success", targ_res.new_val);
5838 return -EINVAL;
5839 }
5840
5841 cand_ids->data[j++] = cand_spec.root_type_id;
5842 }
5843
5844 /*
5845 * For BPF_FIELD_EXISTS relo or when used BPF program has field
5846 * existence checks or kernel version/config checks, it's expected
5847 * that we might not find any candidates. In this case, if field
5848 * wasn't found in any candidate, the list of candidates shouldn't
5849 * change at all, we'll just handle relocating appropriately,
5850 * depending on relo's kind.
5851 */
5852 if (j > 0)
5853 cand_ids->len = j;
5854
5855 /*
5856 * If no candidates were found, it might be both a programmer error,
5857 * as well as expected case, depending whether instruction w/
5858 * relocation is guarded in some way that makes it unreachable (dead
5859 * code) if relocation can't be resolved. This is handled in
5860 * bpf_core_patch_insn() uniformly by replacing that instruction with
5861 * BPF helper call insn (using invalid helper ID). If that instruction
5862 * is indeed unreachable, then it will be ignored and eliminated by
5863 * verifier. If it was an error, then verifier will complain and point
5864 * to a specific instruction number in its log.
5865 */
5866 if (j == 0) {
5867 pr_debug("prog '%s': relo #%d: no matching targets found\n",
5868 prog->name, relo_idx);
5869
5870 /* calculate single target relo result explicitly */
5871 err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, NULL, &targ_res);
5872 if (err)
5873 return err;
5874 }
5875
5876 patch_insn:
5877 /* bpf_core_patch_insn() should know how to handle missing targ_spec */
5878 err = bpf_core_patch_insn(prog, relo, relo_idx, &targ_res);
5879 if (err) {
5880 pr_warn("prog '%s': relo #%d: failed to patch insn at offset %d: %d\n",
5881 prog->name, relo_idx, relo->insn_off, err);
5882 return -EINVAL;
5883 }
5884
5885 return 0;
5886 }
5887
5888 static int
bpf_object__relocate_core(struct bpf_object * obj,const char * targ_btf_path)5889 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5890 {
5891 const struct btf_ext_info_sec *sec;
5892 const struct bpf_core_relo *rec;
5893 const struct btf_ext_info *seg;
5894 struct hashmap_entry *entry;
5895 struct hashmap *cand_cache = NULL;
5896 struct bpf_program *prog;
5897 struct btf *targ_btf;
5898 const char *sec_name;
5899 int i, err = 0, insn_idx, sec_idx;
5900
5901 if (obj->btf_ext->core_relo_info.len == 0)
5902 return 0;
5903
5904 if (targ_btf_path)
5905 targ_btf = btf__parse(targ_btf_path, NULL);
5906 else
5907 targ_btf = obj->btf_vmlinux;
5908 if (IS_ERR_OR_NULL(targ_btf)) {
5909 pr_warn("failed to get target BTF: %ld\n", PTR_ERR(targ_btf));
5910 return PTR_ERR(targ_btf);
5911 }
5912
5913 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5914 if (IS_ERR(cand_cache)) {
5915 err = PTR_ERR(cand_cache);
5916 goto out;
5917 }
5918
5919 seg = &obj->btf_ext->core_relo_info;
5920 for_each_btf_ext_sec(seg, sec) {
5921 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5922 if (str_is_empty(sec_name)) {
5923 err = -EINVAL;
5924 goto out;
5925 }
5926 /* bpf_object's ELF is gone by now so it's not easy to find
5927 * section index by section name, but we can find *any*
5928 * bpf_program within desired section name and use it's
5929 * prog->sec_idx to do a proper search by section index and
5930 * instruction offset
5931 */
5932 prog = NULL;
5933 for (i = 0; i < obj->nr_programs; i++) {
5934 prog = &obj->programs[i];
5935 if (strcmp(prog->sec_name, sec_name) == 0)
5936 break;
5937 }
5938 if (!prog) {
5939 pr_warn("sec '%s': failed to find a BPF program\n", sec_name);
5940 return -ENOENT;
5941 }
5942 sec_idx = prog->sec_idx;
5943
5944 pr_debug("sec '%s': found %d CO-RE relocations\n",
5945 sec_name, sec->num_info);
5946
5947 for_each_btf_ext_rec(seg, sec, i, rec) {
5948 insn_idx = rec->insn_off / BPF_INSN_SZ;
5949 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5950 if (!prog) {
5951 pr_warn("sec '%s': failed to find program at insn #%d for CO-RE offset relocation #%d\n",
5952 sec_name, insn_idx, i);
5953 err = -EINVAL;
5954 goto out;
5955 }
5956 /* no need to apply CO-RE relocation if the program is
5957 * not going to be loaded
5958 */
5959 if (!prog->load)
5960 continue;
5961
5962 err = bpf_core_apply_relo(prog, rec, i, obj->btf,
5963 targ_btf, cand_cache);
5964 if (err) {
5965 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5966 prog->name, i, err);
5967 goto out;
5968 }
5969 }
5970 }
5971
5972 out:
5973 /* obj->btf_vmlinux is freed at the end of object load phase */
5974 if (targ_btf != obj->btf_vmlinux)
5975 btf__free(targ_btf);
5976 if (!IS_ERR_OR_NULL(cand_cache)) {
5977 hashmap__for_each_entry(cand_cache, entry, i) {
5978 bpf_core_free_cands(entry->value);
5979 }
5980 hashmap__free(cand_cache);
5981 }
5982 return err;
5983 }
5984
5985 /* Relocate data references within program code:
5986 * - map references;
5987 * - global variable references;
5988 * - extern references.
5989 */
5990 static int
bpf_object__relocate_data(struct bpf_object * obj,struct bpf_program * prog)5991 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
5992 {
5993 int i;
5994
5995 for (i = 0; i < prog->nr_reloc; i++) {
5996 struct reloc_desc *relo = &prog->reloc_desc[i];
5997 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
5998 struct extern_desc *ext;
5999
6000 switch (relo->type) {
6001 case RELO_LD64:
6002 insn[0].src_reg = BPF_PSEUDO_MAP_FD;
6003 insn[0].imm = obj->maps[relo->map_idx].fd;
6004 relo->processed = true;
6005 break;
6006 case RELO_DATA:
6007 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6008 insn[1].imm = insn[0].imm + relo->sym_off;
6009 insn[0].imm = obj->maps[relo->map_idx].fd;
6010 relo->processed = true;
6011 break;
6012 case RELO_EXTERN:
6013 ext = &obj->externs[relo->sym_off];
6014 if (ext->type == EXT_KCFG) {
6015 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6016 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
6017 insn[1].imm = ext->kcfg.data_off;
6018 } else /* EXT_KSYM */ {
6019 if (ext->ksym.type_id) { /* typed ksyms */
6020 insn[0].src_reg = BPF_PSEUDO_BTF_ID;
6021 insn[0].imm = ext->ksym.vmlinux_btf_id;
6022 } else { /* typeless ksyms */
6023 insn[0].imm = (__u32)ext->ksym.addr;
6024 insn[1].imm = ext->ksym.addr >> 32;
6025 }
6026 }
6027 relo->processed = true;
6028 break;
6029 case RELO_CALL:
6030 /* will be handled as a follow up pass */
6031 break;
6032 default:
6033 pr_warn("prog '%s': relo #%d: bad relo type %d\n",
6034 prog->name, i, relo->type);
6035 return -EINVAL;
6036 }
6037 }
6038
6039 return 0;
6040 }
6041
adjust_prog_btf_ext_info(const struct bpf_object * obj,const struct bpf_program * prog,const struct btf_ext_info * ext_info,void ** prog_info,__u32 * prog_rec_cnt,__u32 * prog_rec_sz)6042 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
6043 const struct bpf_program *prog,
6044 const struct btf_ext_info *ext_info,
6045 void **prog_info, __u32 *prog_rec_cnt,
6046 __u32 *prog_rec_sz)
6047 {
6048 void *copy_start = NULL, *copy_end = NULL;
6049 void *rec, *rec_end, *new_prog_info;
6050 const struct btf_ext_info_sec *sec;
6051 size_t old_sz, new_sz;
6052 const char *sec_name;
6053 int i, off_adj;
6054
6055 for_each_btf_ext_sec(ext_info, sec) {
6056 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
6057 if (!sec_name)
6058 return -EINVAL;
6059 if (strcmp(sec_name, prog->sec_name) != 0)
6060 continue;
6061
6062 for_each_btf_ext_rec(ext_info, sec, i, rec) {
6063 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6064
6065 if (insn_off < prog->sec_insn_off)
6066 continue;
6067 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6068 break;
6069
6070 if (!copy_start)
6071 copy_start = rec;
6072 copy_end = rec + ext_info->rec_size;
6073 }
6074
6075 if (!copy_start)
6076 return -ENOENT;
6077
6078 /* append func/line info of a given (sub-)program to the main
6079 * program func/line info
6080 */
6081 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6082 new_sz = old_sz + (copy_end - copy_start);
6083 new_prog_info = realloc(*prog_info, new_sz);
6084 if (!new_prog_info)
6085 return -ENOMEM;
6086 *prog_info = new_prog_info;
6087 *prog_rec_cnt = new_sz / ext_info->rec_size;
6088 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6089
6090 /* Kernel instruction offsets are in units of 8-byte
6091 * instructions, while .BTF.ext instruction offsets generated
6092 * by Clang are in units of bytes. So convert Clang offsets
6093 * into kernel offsets and adjust offset according to program
6094 * relocated position.
6095 */
6096 off_adj = prog->sub_insn_off - prog->sec_insn_off;
6097 rec = new_prog_info + old_sz;
6098 rec_end = new_prog_info + new_sz;
6099 for (; rec < rec_end; rec += ext_info->rec_size) {
6100 __u32 *insn_off = rec;
6101
6102 *insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6103 }
6104 *prog_rec_sz = ext_info->rec_size;
6105 return 0;
6106 }
6107
6108 return -ENOENT;
6109 }
6110
6111 static int
reloc_prog_func_and_line_info(const struct bpf_object * obj,struct bpf_program * main_prog,const struct bpf_program * prog)6112 reloc_prog_func_and_line_info(const struct bpf_object *obj,
6113 struct bpf_program *main_prog,
6114 const struct bpf_program *prog)
6115 {
6116 int err;
6117
6118 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6119 * supprot func/line info
6120 */
6121 if (!obj->btf_ext || !kernel_supports(FEAT_BTF_FUNC))
6122 return 0;
6123
6124 /* only attempt func info relocation if main program's func_info
6125 * relocation was successful
6126 */
6127 if (main_prog != prog && !main_prog->func_info)
6128 goto line_info;
6129
6130 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6131 &main_prog->func_info,
6132 &main_prog->func_info_cnt,
6133 &main_prog->func_info_rec_size);
6134 if (err) {
6135 if (err != -ENOENT) {
6136 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
6137 prog->name, err);
6138 return err;
6139 }
6140 if (main_prog->func_info) {
6141 /*
6142 * Some info has already been found but has problem
6143 * in the last btf_ext reloc. Must have to error out.
6144 */
6145 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6146 return err;
6147 }
6148 /* Have problem loading the very first info. Ignore the rest. */
6149 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6150 prog->name);
6151 }
6152
6153 line_info:
6154 /* don't relocate line info if main program's relocation failed */
6155 if (main_prog != prog && !main_prog->line_info)
6156 return 0;
6157
6158 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6159 &main_prog->line_info,
6160 &main_prog->line_info_cnt,
6161 &main_prog->line_info_rec_size);
6162 if (err) {
6163 if (err != -ENOENT) {
6164 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6165 prog->name, err);
6166 return err;
6167 }
6168 if (main_prog->line_info) {
6169 /*
6170 * Some info has already been found but has problem
6171 * in the last btf_ext reloc. Must have to error out.
6172 */
6173 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6174 return err;
6175 }
6176 /* Have problem loading the very first info. Ignore the rest. */
6177 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6178 prog->name);
6179 }
6180 return 0;
6181 }
6182
cmp_relo_by_insn_idx(const void * key,const void * elem)6183 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6184 {
6185 size_t insn_idx = *(const size_t *)key;
6186 const struct reloc_desc *relo = elem;
6187
6188 if (insn_idx == relo->insn_idx)
6189 return 0;
6190 return insn_idx < relo->insn_idx ? -1 : 1;
6191 }
6192
find_prog_insn_relo(const struct bpf_program * prog,size_t insn_idx)6193 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6194 {
6195 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6196 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6197 }
6198
6199 static int
bpf_object__reloc_code(struct bpf_object * obj,struct bpf_program * main_prog,struct bpf_program * prog)6200 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6201 struct bpf_program *prog)
6202 {
6203 size_t sub_insn_idx, insn_idx, new_cnt;
6204 struct bpf_program *subprog;
6205 struct bpf_insn *insns, *insn;
6206 struct reloc_desc *relo;
6207 int err;
6208
6209 err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6210 if (err)
6211 return err;
6212
6213 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6214 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6215 if (!insn_is_subprog_call(insn))
6216 continue;
6217
6218 relo = find_prog_insn_relo(prog, insn_idx);
6219 if (relo && relo->type != RELO_CALL) {
6220 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6221 prog->name, insn_idx, relo->type);
6222 return -LIBBPF_ERRNO__RELOC;
6223 }
6224 if (relo) {
6225 /* sub-program instruction index is a combination of
6226 * an offset of a symbol pointed to by relocation and
6227 * call instruction's imm field; for global functions,
6228 * call always has imm = -1, but for static functions
6229 * relocation is against STT_SECTION and insn->imm
6230 * points to a start of a static function
6231 */
6232 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6233 } else {
6234 /* if subprogram call is to a static function within
6235 * the same ELF section, there won't be any relocation
6236 * emitted, but it also means there is no additional
6237 * offset necessary, insns->imm is relative to
6238 * instruction's original position within the section
6239 */
6240 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6241 }
6242
6243 /* we enforce that sub-programs should be in .text section */
6244 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6245 if (!subprog) {
6246 pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6247 prog->name);
6248 return -LIBBPF_ERRNO__RELOC;
6249 }
6250
6251 /* if it's the first call instruction calling into this
6252 * subprogram (meaning this subprog hasn't been processed
6253 * yet) within the context of current main program:
6254 * - append it at the end of main program's instructions blog;
6255 * - process is recursively, while current program is put on hold;
6256 * - if that subprogram calls some other not yet processes
6257 * subprogram, same thing will happen recursively until
6258 * there are no more unprocesses subprograms left to append
6259 * and relocate.
6260 */
6261 if (subprog->sub_insn_off == 0) {
6262 subprog->sub_insn_off = main_prog->insns_cnt;
6263
6264 new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6265 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6266 if (!insns) {
6267 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6268 return -ENOMEM;
6269 }
6270 main_prog->insns = insns;
6271 main_prog->insns_cnt = new_cnt;
6272
6273 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6274 subprog->insns_cnt * sizeof(*insns));
6275
6276 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6277 main_prog->name, subprog->insns_cnt, subprog->name);
6278
6279 err = bpf_object__reloc_code(obj, main_prog, subprog);
6280 if (err)
6281 return err;
6282 }
6283
6284 /* main_prog->insns memory could have been re-allocated, so
6285 * calculate pointer again
6286 */
6287 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6288 /* calculate correct instruction position within current main
6289 * prog; each main prog can have a different set of
6290 * subprograms appended (potentially in different order as
6291 * well), so position of any subprog can be different for
6292 * different main programs */
6293 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6294
6295 if (relo)
6296 relo->processed = true;
6297
6298 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6299 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6300 }
6301
6302 return 0;
6303 }
6304
6305 /*
6306 * Relocate sub-program calls.
6307 *
6308 * Algorithm operates as follows. Each entry-point BPF program (referred to as
6309 * main prog) is processed separately. For each subprog (non-entry functions,
6310 * that can be called from either entry progs or other subprogs) gets their
6311 * sub_insn_off reset to zero. This serves as indicator that this subprogram
6312 * hasn't been yet appended and relocated within current main prog. Once its
6313 * relocated, sub_insn_off will point at the position within current main prog
6314 * where given subprog was appended. This will further be used to relocate all
6315 * the call instructions jumping into this subprog.
6316 *
6317 * We start with main program and process all call instructions. If the call
6318 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6319 * is zero), subprog instructions are appended at the end of main program's
6320 * instruction array. Then main program is "put on hold" while we recursively
6321 * process newly appended subprogram. If that subprogram calls into another
6322 * subprogram that hasn't been appended, new subprogram is appended again to
6323 * the *main* prog's instructions (subprog's instructions are always left
6324 * untouched, as they need to be in unmodified state for subsequent main progs
6325 * and subprog instructions are always sent only as part of a main prog) and
6326 * the process continues recursively. Once all the subprogs called from a main
6327 * prog or any of its subprogs are appended (and relocated), all their
6328 * positions within finalized instructions array are known, so it's easy to
6329 * rewrite call instructions with correct relative offsets, corresponding to
6330 * desired target subprog.
6331 *
6332 * Its important to realize that some subprogs might not be called from some
6333 * main prog and any of its called/used subprogs. Those will keep their
6334 * subprog->sub_insn_off as zero at all times and won't be appended to current
6335 * main prog and won't be relocated within the context of current main prog.
6336 * They might still be used from other main progs later.
6337 *
6338 * Visually this process can be shown as below. Suppose we have two main
6339 * programs mainA and mainB and BPF object contains three subprogs: subA,
6340 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6341 * subC both call subB:
6342 *
6343 * +--------+ +-------+
6344 * | v v |
6345 * +--+---+ +--+-+-+ +---+--+
6346 * | subA | | subB | | subC |
6347 * +--+---+ +------+ +---+--+
6348 * ^ ^
6349 * | |
6350 * +---+-------+ +------+----+
6351 * | mainA | | mainB |
6352 * +-----------+ +-----------+
6353 *
6354 * We'll start relocating mainA, will find subA, append it and start
6355 * processing sub A recursively:
6356 *
6357 * +-----------+------+
6358 * | mainA | subA |
6359 * +-----------+------+
6360 *
6361 * At this point we notice that subB is used from subA, so we append it and
6362 * relocate (there are no further subcalls from subB):
6363 *
6364 * +-----------+------+------+
6365 * | mainA | subA | subB |
6366 * +-----------+------+------+
6367 *
6368 * At this point, we relocate subA calls, then go one level up and finish with
6369 * relocatin mainA calls. mainA is done.
6370 *
6371 * For mainB process is similar but results in different order. We start with
6372 * mainB and skip subA and subB, as mainB never calls them (at least
6373 * directly), but we see subC is needed, so we append and start processing it:
6374 *
6375 * +-----------+------+
6376 * | mainB | subC |
6377 * +-----------+------+
6378 * Now we see subC needs subB, so we go back to it, append and relocate it:
6379 *
6380 * +-----------+------+------+
6381 * | mainB | subC | subB |
6382 * +-----------+------+------+
6383 *
6384 * At this point we unwind recursion, relocate calls in subC, then in mainB.
6385 */
6386 static int
bpf_object__relocate_calls(struct bpf_object * obj,struct bpf_program * prog)6387 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6388 {
6389 struct bpf_program *subprog;
6390 int i, j, err;
6391
6392 /* mark all subprogs as not relocated (yet) within the context of
6393 * current main program
6394 */
6395 for (i = 0; i < obj->nr_programs; i++) {
6396 subprog = &obj->programs[i];
6397 if (!prog_is_subprog(obj, subprog))
6398 continue;
6399
6400 subprog->sub_insn_off = 0;
6401 for (j = 0; j < subprog->nr_reloc; j++)
6402 if (subprog->reloc_desc[j].type == RELO_CALL)
6403 subprog->reloc_desc[j].processed = false;
6404 }
6405
6406 err = bpf_object__reloc_code(obj, prog, prog);
6407 if (err)
6408 return err;
6409
6410
6411 return 0;
6412 }
6413
6414 static int
bpf_object__relocate(struct bpf_object * obj,const char * targ_btf_path)6415 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6416 {
6417 struct bpf_program *prog;
6418 size_t i;
6419 int err;
6420
6421 if (obj->btf_ext) {
6422 err = bpf_object__relocate_core(obj, targ_btf_path);
6423 if (err) {
6424 pr_warn("failed to perform CO-RE relocations: %d\n",
6425 err);
6426 return err;
6427 }
6428 }
6429 /* relocate data references first for all programs and sub-programs,
6430 * as they don't change relative to code locations, so subsequent
6431 * subprogram processing won't need to re-calculate any of them
6432 */
6433 for (i = 0; i < obj->nr_programs; i++) {
6434 prog = &obj->programs[i];
6435 err = bpf_object__relocate_data(obj, prog);
6436 if (err) {
6437 pr_warn("prog '%s': failed to relocate data references: %d\n",
6438 prog->name, err);
6439 return err;
6440 }
6441 }
6442 /* now relocate subprogram calls and append used subprograms to main
6443 * programs; each copy of subprogram code needs to be relocated
6444 * differently for each main program, because its code location might
6445 * have changed
6446 */
6447 for (i = 0; i < obj->nr_programs; i++) {
6448 prog = &obj->programs[i];
6449 /* sub-program's sub-calls are relocated within the context of
6450 * its main program only
6451 */
6452 if (prog_is_subprog(obj, prog))
6453 continue;
6454
6455 err = bpf_object__relocate_calls(obj, prog);
6456 if (err) {
6457 pr_warn("prog '%s': failed to relocate calls: %d\n",
6458 prog->name, err);
6459 return err;
6460 }
6461 }
6462 /* free up relocation descriptors */
6463 for (i = 0; i < obj->nr_programs; i++) {
6464 prog = &obj->programs[i];
6465 zfree(&prog->reloc_desc);
6466 prog->nr_reloc = 0;
6467 }
6468 return 0;
6469 }
6470
6471 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
6472 GElf_Shdr *shdr, Elf_Data *data);
6473
bpf_object__collect_map_relos(struct bpf_object * obj,GElf_Shdr * shdr,Elf_Data * data)6474 static int bpf_object__collect_map_relos(struct bpf_object *obj,
6475 GElf_Shdr *shdr, Elf_Data *data)
6476 {
6477 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
6478 int i, j, nrels, new_sz;
6479 const struct btf_var_secinfo *vi = NULL;
6480 const struct btf_type *sec, *var, *def;
6481 struct bpf_map *map = NULL, *targ_map;
6482 const struct btf_member *member;
6483 const char *name, *mname;
6484 Elf_Data *symbols;
6485 unsigned int moff;
6486 GElf_Sym sym;
6487 GElf_Rel rel;
6488 void *tmp;
6489
6490 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
6491 return -EINVAL;
6492 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
6493 if (!sec)
6494 return -EINVAL;
6495
6496 symbols = obj->efile.symbols;
6497 nrels = shdr->sh_size / shdr->sh_entsize;
6498 for (i = 0; i < nrels; i++) {
6499 if (!gelf_getrel(data, i, &rel)) {
6500 pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
6501 return -LIBBPF_ERRNO__FORMAT;
6502 }
6503 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) {
6504 pr_warn(".maps relo #%d: symbol %zx not found\n",
6505 i, (size_t)GELF_R_SYM(rel.r_info));
6506 return -LIBBPF_ERRNO__FORMAT;
6507 }
6508 name = elf_sym_str(obj, sym.st_name) ?: "<?>";
6509 if (sym.st_shndx != obj->efile.btf_maps_shndx) {
6510 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
6511 i, name);
6512 return -LIBBPF_ERRNO__RELOC;
6513 }
6514
6515 pr_debug(".maps relo #%d: for %zd value %zd rel.r_offset %zu name %d ('%s')\n",
6516 i, (ssize_t)(rel.r_info >> 32), (size_t)sym.st_value,
6517 (size_t)rel.r_offset, sym.st_name, name);
6518
6519 for (j = 0; j < obj->nr_maps; j++) {
6520 map = &obj->maps[j];
6521 if (map->sec_idx != obj->efile.btf_maps_shndx)
6522 continue;
6523
6524 vi = btf_var_secinfos(sec) + map->btf_var_idx;
6525 if (vi->offset <= rel.r_offset &&
6526 rel.r_offset + bpf_ptr_sz <= vi->offset + vi->size)
6527 break;
6528 }
6529 if (j == obj->nr_maps) {
6530 pr_warn(".maps relo #%d: cannot find map '%s' at rel.r_offset %zu\n",
6531 i, name, (size_t)rel.r_offset);
6532 return -EINVAL;
6533 }
6534
6535 if (!bpf_map_type__is_map_in_map(map->def.type))
6536 return -EINVAL;
6537 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
6538 map->def.key_size != sizeof(int)) {
6539 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
6540 i, map->name, sizeof(int));
6541 return -EINVAL;
6542 }
6543
6544 targ_map = bpf_object__find_map_by_name(obj, name);
6545 if (!targ_map)
6546 return -ESRCH;
6547
6548 var = btf__type_by_id(obj->btf, vi->type);
6549 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
6550 if (btf_vlen(def) == 0)
6551 return -EINVAL;
6552 member = btf_members(def) + btf_vlen(def) - 1;
6553 mname = btf__name_by_offset(obj->btf, member->name_off);
6554 if (strcmp(mname, "values"))
6555 return -EINVAL;
6556
6557 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
6558 if (rel.r_offset - vi->offset < moff)
6559 return -EINVAL;
6560
6561 moff = rel.r_offset - vi->offset - moff;
6562 /* here we use BPF pointer size, which is always 64 bit, as we
6563 * are parsing ELF that was built for BPF target
6564 */
6565 if (moff % bpf_ptr_sz)
6566 return -EINVAL;
6567 moff /= bpf_ptr_sz;
6568 if (moff >= map->init_slots_sz) {
6569 new_sz = moff + 1;
6570 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
6571 if (!tmp)
6572 return -ENOMEM;
6573 map->init_slots = tmp;
6574 memset(map->init_slots + map->init_slots_sz, 0,
6575 (new_sz - map->init_slots_sz) * host_ptr_sz);
6576 map->init_slots_sz = new_sz;
6577 }
6578 map->init_slots[moff] = targ_map;
6579
6580 pr_debug(".maps relo #%d: map '%s' slot [%d] points to map '%s'\n",
6581 i, map->name, moff, name);
6582 }
6583
6584 return 0;
6585 }
6586
cmp_relocs(const void * _a,const void * _b)6587 static int cmp_relocs(const void *_a, const void *_b)
6588 {
6589 const struct reloc_desc *a = _a;
6590 const struct reloc_desc *b = _b;
6591
6592 if (a->insn_idx != b->insn_idx)
6593 return a->insn_idx < b->insn_idx ? -1 : 1;
6594
6595 /* no two relocations should have the same insn_idx, but ... */
6596 if (a->type != b->type)
6597 return a->type < b->type ? -1 : 1;
6598
6599 return 0;
6600 }
6601
bpf_object__collect_relos(struct bpf_object * obj)6602 static int bpf_object__collect_relos(struct bpf_object *obj)
6603 {
6604 int i, err;
6605
6606 for (i = 0; i < obj->efile.nr_reloc_sects; i++) {
6607 GElf_Shdr *shdr = &obj->efile.reloc_sects[i].shdr;
6608 Elf_Data *data = obj->efile.reloc_sects[i].data;
6609 int idx = shdr->sh_info;
6610
6611 if (shdr->sh_type != SHT_REL) {
6612 pr_warn("internal error at %d\n", __LINE__);
6613 return -LIBBPF_ERRNO__INTERNAL;
6614 }
6615
6616 if (idx == obj->efile.st_ops_shndx)
6617 err = bpf_object__collect_st_ops_relos(obj, shdr, data);
6618 else if (idx == obj->efile.btf_maps_shndx)
6619 err = bpf_object__collect_map_relos(obj, shdr, data);
6620 else
6621 err = bpf_object__collect_prog_relos(obj, shdr, data);
6622 if (err)
6623 return err;
6624 }
6625
6626 for (i = 0; i < obj->nr_programs; i++) {
6627 struct bpf_program *p = &obj->programs[i];
6628
6629 if (!p->nr_reloc)
6630 continue;
6631
6632 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6633 }
6634 return 0;
6635 }
6636
insn_is_helper_call(struct bpf_insn * insn,enum bpf_func_id * func_id)6637 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
6638 {
6639 if (BPF_CLASS(insn->code) == BPF_JMP &&
6640 BPF_OP(insn->code) == BPF_CALL &&
6641 BPF_SRC(insn->code) == BPF_K &&
6642 insn->src_reg == 0 &&
6643 insn->dst_reg == 0) {
6644 *func_id = insn->imm;
6645 return true;
6646 }
6647 return false;
6648 }
6649
bpf_object__sanitize_prog(struct bpf_object * obj,struct bpf_program * prog)6650 static int bpf_object__sanitize_prog(struct bpf_object* obj, struct bpf_program *prog)
6651 {
6652 struct bpf_insn *insn = prog->insns;
6653 enum bpf_func_id func_id;
6654 int i;
6655
6656 for (i = 0; i < prog->insns_cnt; i++, insn++) {
6657 if (!insn_is_helper_call(insn, &func_id))
6658 continue;
6659
6660 /* on kernels that don't yet support
6661 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
6662 * to bpf_probe_read() which works well for old kernels
6663 */
6664 switch (func_id) {
6665 case BPF_FUNC_probe_read_kernel:
6666 case BPF_FUNC_probe_read_user:
6667 if (!kernel_supports(FEAT_PROBE_READ_KERN))
6668 insn->imm = BPF_FUNC_probe_read;
6669 break;
6670 case BPF_FUNC_probe_read_kernel_str:
6671 case BPF_FUNC_probe_read_user_str:
6672 if (!kernel_supports(FEAT_PROBE_READ_KERN))
6673 insn->imm = BPF_FUNC_probe_read_str;
6674 break;
6675 default:
6676 break;
6677 }
6678 }
6679 return 0;
6680 }
6681
6682 static int
load_program(struct bpf_program * prog,struct bpf_insn * insns,int insns_cnt,char * license,__u32 kern_version,int * pfd)6683 load_program(struct bpf_program *prog, struct bpf_insn *insns, int insns_cnt,
6684 char *license, __u32 kern_version, int *pfd)
6685 {
6686 struct bpf_load_program_attr load_attr;
6687 char *cp, errmsg[STRERR_BUFSIZE];
6688 size_t log_buf_size = 0;
6689 char *log_buf = NULL;
6690 int btf_fd, ret;
6691
6692 if (!insns || !insns_cnt)
6693 return -EINVAL;
6694
6695 memset(&load_attr, 0, sizeof(struct bpf_load_program_attr));
6696 load_attr.prog_type = prog->type;
6697 /* old kernels might not support specifying expected_attach_type */
6698 if (!kernel_supports(FEAT_EXP_ATTACH_TYPE) && prog->sec_def &&
6699 prog->sec_def->is_exp_attach_type_optional)
6700 load_attr.expected_attach_type = 0;
6701 else
6702 load_attr.expected_attach_type = prog->expected_attach_type;
6703 if (kernel_supports(FEAT_PROG_NAME))
6704 load_attr.name = prog->name;
6705 load_attr.insns = insns;
6706 load_attr.insns_cnt = insns_cnt;
6707 load_attr.license = license;
6708 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
6709 prog->type == BPF_PROG_TYPE_LSM) {
6710 load_attr.attach_btf_id = prog->attach_btf_id;
6711 } else if (prog->type == BPF_PROG_TYPE_TRACING ||
6712 prog->type == BPF_PROG_TYPE_EXT) {
6713 load_attr.attach_prog_fd = prog->attach_prog_fd;
6714 load_attr.attach_btf_id = prog->attach_btf_id;
6715 } else {
6716 load_attr.kern_version = kern_version;
6717 load_attr.prog_ifindex = prog->prog_ifindex;
6718 }
6719 /* specify func_info/line_info only if kernel supports them */
6720 btf_fd = bpf_object__btf_fd(prog->obj);
6721 if (btf_fd >= 0 && kernel_supports(FEAT_BTF_FUNC)) {
6722 load_attr.prog_btf_fd = btf_fd;
6723 load_attr.func_info = prog->func_info;
6724 load_attr.func_info_rec_size = prog->func_info_rec_size;
6725 load_attr.func_info_cnt = prog->func_info_cnt;
6726 load_attr.line_info = prog->line_info;
6727 load_attr.line_info_rec_size = prog->line_info_rec_size;
6728 load_attr.line_info_cnt = prog->line_info_cnt;
6729 }
6730 load_attr.log_level = prog->log_level;
6731 load_attr.prog_flags = prog->prog_flags;
6732
6733 retry_load:
6734 if (log_buf_size) {
6735 log_buf = malloc(log_buf_size);
6736 if (!log_buf)
6737 return -ENOMEM;
6738
6739 *log_buf = 0;
6740 }
6741
6742 ret = bpf_load_program_xattr(&load_attr, log_buf, log_buf_size);
6743
6744 if (ret >= 0) {
6745 if (log_buf && load_attr.log_level)
6746 pr_debug("verifier log:\n%s", log_buf);
6747
6748 if (prog->obj->rodata_map_idx >= 0 &&
6749 kernel_supports(FEAT_PROG_BIND_MAP)) {
6750 struct bpf_map *rodata_map =
6751 &prog->obj->maps[prog->obj->rodata_map_idx];
6752
6753 if (bpf_prog_bind_map(ret, bpf_map__fd(rodata_map), NULL)) {
6754 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6755 pr_warn("prog '%s': failed to bind .rodata map: %s\n",
6756 prog->name, cp);
6757 /* Don't fail hard if can't bind rodata. */
6758 }
6759 }
6760
6761 *pfd = ret;
6762 ret = 0;
6763 goto out;
6764 }
6765
6766 if (!log_buf || errno == ENOSPC) {
6767 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE,
6768 log_buf_size << 1);
6769
6770 free(log_buf);
6771 goto retry_load;
6772 }
6773 ret = errno ? -errno : -LIBBPF_ERRNO__LOAD;
6774 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6775 pr_warn("load bpf program failed: %s\n", cp);
6776 pr_perm_msg(ret);
6777
6778 if (log_buf && log_buf[0] != '\0') {
6779 ret = -LIBBPF_ERRNO__VERIFY;
6780 pr_warn("-- BEGIN DUMP LOG ---\n");
6781 pr_warn("\n%s\n", log_buf);
6782 pr_warn("-- END LOG --\n");
6783 } else if (load_attr.insns_cnt >= BPF_MAXINSNS) {
6784 pr_warn("Program too large (%zu insns), at most %d insns\n",
6785 load_attr.insns_cnt, BPF_MAXINSNS);
6786 ret = -LIBBPF_ERRNO__PROG2BIG;
6787 } else if (load_attr.prog_type != BPF_PROG_TYPE_KPROBE) {
6788 /* Wrong program type? */
6789 int fd;
6790
6791 load_attr.prog_type = BPF_PROG_TYPE_KPROBE;
6792 load_attr.expected_attach_type = 0;
6793 fd = bpf_load_program_xattr(&load_attr, NULL, 0);
6794 if (fd >= 0) {
6795 close(fd);
6796 ret = -LIBBPF_ERRNO__PROGTYPE;
6797 goto out;
6798 }
6799 }
6800
6801 out:
6802 free(log_buf);
6803 return ret;
6804 }
6805
6806 static int libbpf_find_attach_btf_id(struct bpf_program *prog);
6807
bpf_program__load(struct bpf_program * prog,char * license,__u32 kern_ver)6808 int bpf_program__load(struct bpf_program *prog, char *license, __u32 kern_ver)
6809 {
6810 int err = 0, fd, i, btf_id;
6811
6812 if (prog->obj->loaded) {
6813 pr_warn("prog '%s': can't load after object was loaded\n", prog->name);
6814 return -EINVAL;
6815 }
6816
6817 if ((prog->type == BPF_PROG_TYPE_TRACING ||
6818 prog->type == BPF_PROG_TYPE_LSM ||
6819 prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) {
6820 btf_id = libbpf_find_attach_btf_id(prog);
6821 if (btf_id <= 0)
6822 return btf_id;
6823 prog->attach_btf_id = btf_id;
6824 }
6825
6826 if (prog->instances.nr < 0 || !prog->instances.fds) {
6827 if (prog->preprocessor) {
6828 pr_warn("Internal error: can't load program '%s'\n",
6829 prog->name);
6830 return -LIBBPF_ERRNO__INTERNAL;
6831 }
6832
6833 prog->instances.fds = malloc(sizeof(int));
6834 if (!prog->instances.fds) {
6835 pr_warn("Not enough memory for BPF fds\n");
6836 return -ENOMEM;
6837 }
6838 prog->instances.nr = 1;
6839 prog->instances.fds[0] = -1;
6840 }
6841
6842 if (!prog->preprocessor) {
6843 if (prog->instances.nr != 1) {
6844 pr_warn("prog '%s': inconsistent nr(%d) != 1\n",
6845 prog->name, prog->instances.nr);
6846 }
6847 err = load_program(prog, prog->insns, prog->insns_cnt,
6848 license, kern_ver, &fd);
6849 if (!err)
6850 prog->instances.fds[0] = fd;
6851 goto out;
6852 }
6853
6854 for (i = 0; i < prog->instances.nr; i++) {
6855 struct bpf_prog_prep_result result;
6856 bpf_program_prep_t preprocessor = prog->preprocessor;
6857
6858 memset(&result, 0, sizeof(result));
6859 err = preprocessor(prog, i, prog->insns,
6860 prog->insns_cnt, &result);
6861 if (err) {
6862 pr_warn("Preprocessing the %dth instance of program '%s' failed\n",
6863 i, prog->name);
6864 goto out;
6865 }
6866
6867 if (!result.new_insn_ptr || !result.new_insn_cnt) {
6868 pr_debug("Skip loading the %dth instance of program '%s'\n",
6869 i, prog->name);
6870 prog->instances.fds[i] = -1;
6871 if (result.pfd)
6872 *result.pfd = -1;
6873 continue;
6874 }
6875
6876 err = load_program(prog, result.new_insn_ptr,
6877 result.new_insn_cnt, license, kern_ver, &fd);
6878 if (err) {
6879 pr_warn("Loading the %dth instance of program '%s' failed\n",
6880 i, prog->name);
6881 goto out;
6882 }
6883
6884 if (result.pfd)
6885 *result.pfd = fd;
6886 prog->instances.fds[i] = fd;
6887 }
6888 out:
6889 if (err)
6890 pr_warn("failed to load program '%s'\n", prog->name);
6891 zfree(&prog->insns);
6892 prog->insns_cnt = 0;
6893 return err;
6894 }
6895
6896 static int
bpf_object__load_progs(struct bpf_object * obj,int log_level)6897 bpf_object__load_progs(struct bpf_object *obj, int log_level)
6898 {
6899 struct bpf_program *prog;
6900 size_t i;
6901 int err;
6902
6903 for (i = 0; i < obj->nr_programs; i++) {
6904 prog = &obj->programs[i];
6905 err = bpf_object__sanitize_prog(obj, prog);
6906 if (err)
6907 return err;
6908 }
6909
6910 for (i = 0; i < obj->nr_programs; i++) {
6911 prog = &obj->programs[i];
6912 if (prog_is_subprog(obj, prog))
6913 continue;
6914 if (!prog->load) {
6915 pr_debug("prog '%s': skipped loading\n", prog->name);
6916 continue;
6917 }
6918 prog->log_level |= log_level;
6919 err = bpf_program__load(prog, obj->license, obj->kern_version);
6920 if (err)
6921 return err;
6922 }
6923 return 0;
6924 }
6925
6926 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
6927
6928 static struct bpf_object *
__bpf_object__open(const char * path,const void * obj_buf,size_t obj_buf_sz,const struct bpf_object_open_opts * opts)6929 __bpf_object__open(const char *path, const void *obj_buf, size_t obj_buf_sz,
6930 const struct bpf_object_open_opts *opts)
6931 {
6932 const char *obj_name, *kconfig;
6933 struct bpf_program *prog;
6934 struct bpf_object *obj;
6935 char tmp_name[64];
6936 int err;
6937
6938 if (elf_version(EV_CURRENT) == EV_NONE) {
6939 pr_warn("failed to init libelf for %s\n",
6940 path ? : "(mem buf)");
6941 return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
6942 }
6943
6944 if (!OPTS_VALID(opts, bpf_object_open_opts))
6945 return ERR_PTR(-EINVAL);
6946
6947 obj_name = OPTS_GET(opts, object_name, NULL);
6948 if (obj_buf) {
6949 if (!obj_name) {
6950 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
6951 (unsigned long)obj_buf,
6952 (unsigned long)obj_buf_sz);
6953 obj_name = tmp_name;
6954 }
6955 path = obj_name;
6956 pr_debug("loading object '%s' from buffer\n", obj_name);
6957 }
6958
6959 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
6960 if (IS_ERR(obj))
6961 return obj;
6962
6963 kconfig = OPTS_GET(opts, kconfig, NULL);
6964 if (kconfig) {
6965 obj->kconfig = strdup(kconfig);
6966 if (!obj->kconfig) {
6967 err = -ENOMEM;
6968 goto out;
6969 }
6970 }
6971
6972 err = bpf_object__elf_init(obj);
6973 err = err ? : bpf_object__check_endianness(obj);
6974 err = err ? : bpf_object__elf_collect(obj);
6975 err = err ? : bpf_object__collect_externs(obj);
6976 err = err ? : bpf_object__finalize_btf(obj);
6977 err = err ? : bpf_object__init_maps(obj, opts);
6978 err = err ? : bpf_object__collect_relos(obj);
6979 if (err)
6980 goto out;
6981 bpf_object__elf_finish(obj);
6982
6983 bpf_object__for_each_program(prog, obj) {
6984 prog->sec_def = find_sec_def(prog->sec_name);
6985 if (!prog->sec_def)
6986 /* couldn't guess, but user might manually specify */
6987 continue;
6988
6989 if (prog->sec_def->is_sleepable)
6990 prog->prog_flags |= BPF_F_SLEEPABLE;
6991 bpf_program__set_type(prog, prog->sec_def->prog_type);
6992 bpf_program__set_expected_attach_type(prog,
6993 prog->sec_def->expected_attach_type);
6994
6995 if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING ||
6996 prog->sec_def->prog_type == BPF_PROG_TYPE_EXT)
6997 prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0);
6998 }
6999
7000 return obj;
7001 out:
7002 bpf_object__close(obj);
7003 return ERR_PTR(err);
7004 }
7005
7006 static struct bpf_object *
__bpf_object__open_xattr(struct bpf_object_open_attr * attr,int flags)7007 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags)
7008 {
7009 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts,
7010 .relaxed_maps = flags & MAPS_RELAX_COMPAT,
7011 );
7012
7013 /* param validation */
7014 if (!attr->file)
7015 return NULL;
7016
7017 pr_debug("loading %s\n", attr->file);
7018 return __bpf_object__open(attr->file, NULL, 0, &opts);
7019 }
7020
bpf_object__open_xattr(struct bpf_object_open_attr * attr)7021 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr)
7022 {
7023 return __bpf_object__open_xattr(attr, 0);
7024 }
7025
bpf_object__open(const char * path)7026 struct bpf_object *bpf_object__open(const char *path)
7027 {
7028 struct bpf_object_open_attr attr = {
7029 .file = path,
7030 .prog_type = BPF_PROG_TYPE_UNSPEC,
7031 };
7032
7033 return bpf_object__open_xattr(&attr);
7034 }
7035
7036 struct bpf_object *
bpf_object__open_file(const char * path,const struct bpf_object_open_opts * opts)7037 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7038 {
7039 if (!path)
7040 return ERR_PTR(-EINVAL);
7041
7042 pr_debug("loading %s\n", path);
7043
7044 return __bpf_object__open(path, NULL, 0, opts);
7045 }
7046
7047 struct bpf_object *
bpf_object__open_mem(const void * obj_buf,size_t obj_buf_sz,const struct bpf_object_open_opts * opts)7048 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7049 const struct bpf_object_open_opts *opts)
7050 {
7051 if (!obj_buf || obj_buf_sz == 0)
7052 return ERR_PTR(-EINVAL);
7053
7054 return __bpf_object__open(NULL, obj_buf, obj_buf_sz, opts);
7055 }
7056
7057 struct bpf_object *
bpf_object__open_buffer(const void * obj_buf,size_t obj_buf_sz,const char * name)7058 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz,
7059 const char *name)
7060 {
7061 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts,
7062 .object_name = name,
7063 /* wrong default, but backwards-compatible */
7064 .relaxed_maps = true,
7065 );
7066
7067 /* returning NULL is wrong, but backwards-compatible */
7068 if (!obj_buf || obj_buf_sz == 0)
7069 return NULL;
7070
7071 return bpf_object__open_mem(obj_buf, obj_buf_sz, &opts);
7072 }
7073
bpf_object__unload(struct bpf_object * obj)7074 int bpf_object__unload(struct bpf_object *obj)
7075 {
7076 size_t i;
7077
7078 if (!obj)
7079 return -EINVAL;
7080
7081 for (i = 0; i < obj->nr_maps; i++) {
7082 zclose(obj->maps[i].fd);
7083 if (obj->maps[i].st_ops)
7084 zfree(&obj->maps[i].st_ops->kern_vdata);
7085 }
7086
7087 for (i = 0; i < obj->nr_programs; i++)
7088 bpf_program__unload(&obj->programs[i]);
7089
7090 return 0;
7091 }
7092
bpf_object__sanitize_maps(struct bpf_object * obj)7093 static int bpf_object__sanitize_maps(struct bpf_object *obj)
7094 {
7095 struct bpf_map *m;
7096
7097 bpf_object__for_each_map(m, obj) {
7098 if (!bpf_map__is_internal(m))
7099 continue;
7100 if (!kernel_supports(FEAT_GLOBAL_DATA)) {
7101 pr_warn("kernel doesn't support global data\n");
7102 return -ENOTSUP;
7103 }
7104 if (!kernel_supports(FEAT_ARRAY_MMAP))
7105 m->def.map_flags ^= BPF_F_MMAPABLE;
7106 }
7107
7108 return 0;
7109 }
7110
bpf_object__read_kallsyms_file(struct bpf_object * obj)7111 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
7112 {
7113 char sym_type, sym_name[500];
7114 unsigned long long sym_addr;
7115 struct extern_desc *ext;
7116 int ret, err = 0;
7117 FILE *f;
7118
7119 f = fopen("/proc/kallsyms", "r");
7120 if (!f) {
7121 err = -errno;
7122 pr_warn("failed to open /proc/kallsyms: %d\n", err);
7123 return err;
7124 }
7125
7126 while (true) {
7127 ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7128 &sym_addr, &sym_type, sym_name);
7129 if (ret == EOF && feof(f))
7130 break;
7131 if (ret != 3) {
7132 pr_warn("failed to read kallsyms entry: %d\n", ret);
7133 err = -EINVAL;
7134 goto out;
7135 }
7136
7137 ext = find_extern_by_name(obj, sym_name);
7138 if (!ext || ext->type != EXT_KSYM)
7139 continue;
7140
7141 if (ext->is_set && ext->ksym.addr != sym_addr) {
7142 pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n",
7143 sym_name, ext->ksym.addr, sym_addr);
7144 err = -EINVAL;
7145 goto out;
7146 }
7147 if (!ext->is_set) {
7148 ext->is_set = true;
7149 ext->ksym.addr = sym_addr;
7150 pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr);
7151 }
7152 }
7153
7154 out:
7155 fclose(f);
7156 return err;
7157 }
7158
bpf_object__resolve_ksyms_btf_id(struct bpf_object * obj)7159 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
7160 {
7161 struct extern_desc *ext;
7162 int i, id;
7163
7164 for (i = 0; i < obj->nr_extern; i++) {
7165 const struct btf_type *targ_var, *targ_type;
7166 __u32 targ_type_id, local_type_id;
7167 const char *targ_var_name;
7168 int ret;
7169
7170 ext = &obj->externs[i];
7171 if (ext->type != EXT_KSYM || !ext->ksym.type_id)
7172 continue;
7173
7174 id = btf__find_by_name_kind(obj->btf_vmlinux, ext->name,
7175 BTF_KIND_VAR);
7176 if (id <= 0) {
7177 pr_warn("extern (ksym) '%s': failed to find BTF ID in vmlinux BTF.\n",
7178 ext->name);
7179 return -ESRCH;
7180 }
7181
7182 /* find local type_id */
7183 local_type_id = ext->ksym.type_id;
7184
7185 /* find target type_id */
7186 targ_var = btf__type_by_id(obj->btf_vmlinux, id);
7187 targ_var_name = btf__name_by_offset(obj->btf_vmlinux,
7188 targ_var->name_off);
7189 targ_type = skip_mods_and_typedefs(obj->btf_vmlinux,
7190 targ_var->type,
7191 &targ_type_id);
7192
7193 ret = bpf_core_types_are_compat(obj->btf, local_type_id,
7194 obj->btf_vmlinux, targ_type_id);
7195 if (ret <= 0) {
7196 const struct btf_type *local_type;
7197 const char *targ_name, *local_name;
7198
7199 local_type = btf__type_by_id(obj->btf, local_type_id);
7200 local_name = btf__name_by_offset(obj->btf,
7201 local_type->name_off);
7202 targ_name = btf__name_by_offset(obj->btf_vmlinux,
7203 targ_type->name_off);
7204
7205 pr_warn("extern (ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
7206 ext->name, local_type_id,
7207 btf_kind_str(local_type), local_name, targ_type_id,
7208 btf_kind_str(targ_type), targ_name);
7209 return -EINVAL;
7210 }
7211
7212 ext->is_set = true;
7213 ext->ksym.vmlinux_btf_id = id;
7214 pr_debug("extern (ksym) '%s': resolved to [%d] %s %s\n",
7215 ext->name, id, btf_kind_str(targ_var), targ_var_name);
7216 }
7217 return 0;
7218 }
7219
bpf_object__resolve_externs(struct bpf_object * obj,const char * extra_kconfig)7220 static int bpf_object__resolve_externs(struct bpf_object *obj,
7221 const char *extra_kconfig)
7222 {
7223 bool need_config = false, need_kallsyms = false;
7224 bool need_vmlinux_btf = false;
7225 struct extern_desc *ext;
7226 void *kcfg_data = NULL;
7227 int err, i;
7228
7229 if (obj->nr_extern == 0)
7230 return 0;
7231
7232 if (obj->kconfig_map_idx >= 0)
7233 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
7234
7235 for (i = 0; i < obj->nr_extern; i++) {
7236 ext = &obj->externs[i];
7237
7238 if (ext->type == EXT_KCFG &&
7239 strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
7240 void *ext_val = kcfg_data + ext->kcfg.data_off;
7241 __u32 kver = get_kernel_version();
7242
7243 if (!kver) {
7244 pr_warn("failed to get kernel version\n");
7245 return -EINVAL;
7246 }
7247 err = set_kcfg_value_num(ext, ext_val, kver);
7248 if (err)
7249 return err;
7250 pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver);
7251 } else if (ext->type == EXT_KCFG &&
7252 strncmp(ext->name, "CONFIG_", 7) == 0) {
7253 need_config = true;
7254 } else if (ext->type == EXT_KSYM) {
7255 if (ext->ksym.type_id)
7256 need_vmlinux_btf = true;
7257 else
7258 need_kallsyms = true;
7259 } else {
7260 pr_warn("unrecognized extern '%s'\n", ext->name);
7261 return -EINVAL;
7262 }
7263 }
7264 if (need_config && extra_kconfig) {
7265 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
7266 if (err)
7267 return -EINVAL;
7268 need_config = false;
7269 for (i = 0; i < obj->nr_extern; i++) {
7270 ext = &obj->externs[i];
7271 if (ext->type == EXT_KCFG && !ext->is_set) {
7272 need_config = true;
7273 break;
7274 }
7275 }
7276 }
7277 if (need_config) {
7278 err = bpf_object__read_kconfig_file(obj, kcfg_data);
7279 if (err)
7280 return -EINVAL;
7281 }
7282 if (need_kallsyms) {
7283 err = bpf_object__read_kallsyms_file(obj);
7284 if (err)
7285 return -EINVAL;
7286 }
7287 if (need_vmlinux_btf) {
7288 err = bpf_object__resolve_ksyms_btf_id(obj);
7289 if (err)
7290 return -EINVAL;
7291 }
7292 for (i = 0; i < obj->nr_extern; i++) {
7293 ext = &obj->externs[i];
7294
7295 if (!ext->is_set && !ext->is_weak) {
7296 pr_warn("extern %s (strong) not resolved\n", ext->name);
7297 return -ESRCH;
7298 } else if (!ext->is_set) {
7299 pr_debug("extern %s (weak) not resolved, defaulting to zero\n",
7300 ext->name);
7301 }
7302 }
7303
7304 return 0;
7305 }
7306
bpf_object__load_xattr(struct bpf_object_load_attr * attr)7307 int bpf_object__load_xattr(struct bpf_object_load_attr *attr)
7308 {
7309 struct bpf_object *obj;
7310 int err, i;
7311
7312 if (!attr)
7313 return -EINVAL;
7314 obj = attr->obj;
7315 if (!obj)
7316 return -EINVAL;
7317
7318 if (obj->loaded) {
7319 pr_warn("object '%s': load can't be attempted twice\n", obj->name);
7320 return -EINVAL;
7321 }
7322
7323 err = bpf_object__probe_loading(obj);
7324 err = err ? : bpf_object__load_vmlinux_btf(obj);
7325 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
7326 err = err ? : bpf_object__sanitize_and_load_btf(obj);
7327 err = err ? : bpf_object__sanitize_maps(obj);
7328 err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
7329 err = err ? : bpf_object__create_maps(obj);
7330 err = err ? : bpf_object__relocate(obj, attr->target_btf_path);
7331 err = err ? : bpf_object__load_progs(obj, attr->log_level);
7332
7333 btf__free(obj->btf_vmlinux);
7334 obj->btf_vmlinux = NULL;
7335
7336 obj->loaded = true; /* doesn't matter if successfully or not */
7337
7338 if (err)
7339 goto out;
7340
7341 return 0;
7342 out:
7343 /* unpin any maps that were auto-pinned during load */
7344 for (i = 0; i < obj->nr_maps; i++)
7345 if (obj->maps[i].pinned && !obj->maps[i].reused)
7346 bpf_map__unpin(&obj->maps[i], NULL);
7347
7348 bpf_object__unload(obj);
7349 pr_warn("failed to load object '%s'\n", obj->path);
7350 return err;
7351 }
7352
bpf_object__load(struct bpf_object * obj)7353 int bpf_object__load(struct bpf_object *obj)
7354 {
7355 struct bpf_object_load_attr attr = {
7356 .obj = obj,
7357 };
7358
7359 return bpf_object__load_xattr(&attr);
7360 }
7361
make_parent_dir(const char * path)7362 static int make_parent_dir(const char *path)
7363 {
7364 char *cp, errmsg[STRERR_BUFSIZE];
7365 char *dname, *dir;
7366 int err = 0;
7367
7368 dname = strdup(path);
7369 if (dname == NULL)
7370 return -ENOMEM;
7371
7372 dir = dirname(dname);
7373 if (mkdir(dir, 0700) && errno != EEXIST)
7374 err = -errno;
7375
7376 free(dname);
7377 if (err) {
7378 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7379 pr_warn("failed to mkdir %s: %s\n", path, cp);
7380 }
7381 return err;
7382 }
7383
check_path(const char * path)7384 static int check_path(const char *path)
7385 {
7386 char *cp, errmsg[STRERR_BUFSIZE];
7387 struct statfs st_fs;
7388 char *dname, *dir;
7389 int err = 0;
7390
7391 if (path == NULL)
7392 return -EINVAL;
7393
7394 dname = strdup(path);
7395 if (dname == NULL)
7396 return -ENOMEM;
7397
7398 dir = dirname(dname);
7399 if (statfs(dir, &st_fs)) {
7400 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7401 pr_warn("failed to statfs %s: %s\n", dir, cp);
7402 err = -errno;
7403 }
7404 free(dname);
7405
7406 if (!err && st_fs.f_type != BPF_FS_MAGIC) {
7407 pr_warn("specified path %s is not on BPF FS\n", path);
7408 err = -EINVAL;
7409 }
7410
7411 return err;
7412 }
7413
bpf_program__pin_instance(struct bpf_program * prog,const char * path,int instance)7414 int bpf_program__pin_instance(struct bpf_program *prog, const char *path,
7415 int instance)
7416 {
7417 char *cp, errmsg[STRERR_BUFSIZE];
7418 int err;
7419
7420 err = make_parent_dir(path);
7421 if (err)
7422 return err;
7423
7424 err = check_path(path);
7425 if (err)
7426 return err;
7427
7428 if (prog == NULL) {
7429 pr_warn("invalid program pointer\n");
7430 return -EINVAL;
7431 }
7432
7433 if (instance < 0 || instance >= prog->instances.nr) {
7434 pr_warn("invalid prog instance %d of prog %s (max %d)\n",
7435 instance, prog->name, prog->instances.nr);
7436 return -EINVAL;
7437 }
7438
7439 if (bpf_obj_pin(prog->instances.fds[instance], path)) {
7440 err = -errno;
7441 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
7442 pr_warn("failed to pin program: %s\n", cp);
7443 return err;
7444 }
7445 pr_debug("pinned program '%s'\n", path);
7446
7447 return 0;
7448 }
7449
bpf_program__unpin_instance(struct bpf_program * prog,const char * path,int instance)7450 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path,
7451 int instance)
7452 {
7453 int err;
7454
7455 err = check_path(path);
7456 if (err)
7457 return err;
7458
7459 if (prog == NULL) {
7460 pr_warn("invalid program pointer\n");
7461 return -EINVAL;
7462 }
7463
7464 if (instance < 0 || instance >= prog->instances.nr) {
7465 pr_warn("invalid prog instance %d of prog %s (max %d)\n",
7466 instance, prog->name, prog->instances.nr);
7467 return -EINVAL;
7468 }
7469
7470 err = unlink(path);
7471 if (err != 0)
7472 return -errno;
7473 pr_debug("unpinned program '%s'\n", path);
7474
7475 return 0;
7476 }
7477
bpf_program__pin(struct bpf_program * prog,const char * path)7478 int bpf_program__pin(struct bpf_program *prog, const char *path)
7479 {
7480 int i, err;
7481
7482 err = make_parent_dir(path);
7483 if (err)
7484 return err;
7485
7486 err = check_path(path);
7487 if (err)
7488 return err;
7489
7490 if (prog == NULL) {
7491 pr_warn("invalid program pointer\n");
7492 return -EINVAL;
7493 }
7494
7495 if (prog->instances.nr <= 0) {
7496 pr_warn("no instances of prog %s to pin\n", prog->name);
7497 return -EINVAL;
7498 }
7499
7500 if (prog->instances.nr == 1) {
7501 /* don't create subdirs when pinning single instance */
7502 return bpf_program__pin_instance(prog, path, 0);
7503 }
7504
7505 for (i = 0; i < prog->instances.nr; i++) {
7506 char buf[PATH_MAX];
7507 int len;
7508
7509 len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
7510 if (len < 0) {
7511 err = -EINVAL;
7512 goto err_unpin;
7513 } else if (len >= PATH_MAX) {
7514 err = -ENAMETOOLONG;
7515 goto err_unpin;
7516 }
7517
7518 err = bpf_program__pin_instance(prog, buf, i);
7519 if (err)
7520 goto err_unpin;
7521 }
7522
7523 return 0;
7524
7525 err_unpin:
7526 for (i = i - 1; i >= 0; i--) {
7527 char buf[PATH_MAX];
7528 int len;
7529
7530 len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
7531 if (len < 0)
7532 continue;
7533 else if (len >= PATH_MAX)
7534 continue;
7535
7536 bpf_program__unpin_instance(prog, buf, i);
7537 }
7538
7539 rmdir(path);
7540
7541 return err;
7542 }
7543
bpf_program__unpin(struct bpf_program * prog,const char * path)7544 int bpf_program__unpin(struct bpf_program *prog, const char *path)
7545 {
7546 int i, err;
7547
7548 err = check_path(path);
7549 if (err)
7550 return err;
7551
7552 if (prog == NULL) {
7553 pr_warn("invalid program pointer\n");
7554 return -EINVAL;
7555 }
7556
7557 if (prog->instances.nr <= 0) {
7558 pr_warn("no instances of prog %s to pin\n", prog->name);
7559 return -EINVAL;
7560 }
7561
7562 if (prog->instances.nr == 1) {
7563 /* don't create subdirs when pinning single instance */
7564 return bpf_program__unpin_instance(prog, path, 0);
7565 }
7566
7567 for (i = 0; i < prog->instances.nr; i++) {
7568 char buf[PATH_MAX];
7569 int len;
7570
7571 len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
7572 if (len < 0)
7573 return -EINVAL;
7574 else if (len >= PATH_MAX)
7575 return -ENAMETOOLONG;
7576
7577 err = bpf_program__unpin_instance(prog, buf, i);
7578 if (err)
7579 return err;
7580 }
7581
7582 err = rmdir(path);
7583 if (err)
7584 return -errno;
7585
7586 return 0;
7587 }
7588
bpf_map__pin(struct bpf_map * map,const char * path)7589 int bpf_map__pin(struct bpf_map *map, const char *path)
7590 {
7591 char *cp, errmsg[STRERR_BUFSIZE];
7592 int err;
7593
7594 if (map == NULL) {
7595 pr_warn("invalid map pointer\n");
7596 return -EINVAL;
7597 }
7598
7599 if (map->pin_path) {
7600 if (path && strcmp(path, map->pin_path)) {
7601 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7602 bpf_map__name(map), map->pin_path, path);
7603 return -EINVAL;
7604 } else if (map->pinned) {
7605 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
7606 bpf_map__name(map), map->pin_path);
7607 return 0;
7608 }
7609 } else {
7610 if (!path) {
7611 pr_warn("missing a path to pin map '%s' at\n",
7612 bpf_map__name(map));
7613 return -EINVAL;
7614 } else if (map->pinned) {
7615 pr_warn("map '%s' already pinned\n", bpf_map__name(map));
7616 return -EEXIST;
7617 }
7618
7619 map->pin_path = strdup(path);
7620 if (!map->pin_path) {
7621 err = -errno;
7622 goto out_err;
7623 }
7624 }
7625
7626 err = make_parent_dir(map->pin_path);
7627 if (err)
7628 return err;
7629
7630 err = check_path(map->pin_path);
7631 if (err)
7632 return err;
7633
7634 if (bpf_obj_pin(map->fd, map->pin_path)) {
7635 err = -errno;
7636 goto out_err;
7637 }
7638
7639 map->pinned = true;
7640 pr_debug("pinned map '%s'\n", map->pin_path);
7641
7642 return 0;
7643
7644 out_err:
7645 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7646 pr_warn("failed to pin map: %s\n", cp);
7647 return err;
7648 }
7649
bpf_map__unpin(struct bpf_map * map,const char * path)7650 int bpf_map__unpin(struct bpf_map *map, const char *path)
7651 {
7652 int err;
7653
7654 if (map == NULL) {
7655 pr_warn("invalid map pointer\n");
7656 return -EINVAL;
7657 }
7658
7659 if (map->pin_path) {
7660 if (path && strcmp(path, map->pin_path)) {
7661 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7662 bpf_map__name(map), map->pin_path, path);
7663 return -EINVAL;
7664 }
7665 path = map->pin_path;
7666 } else if (!path) {
7667 pr_warn("no path to unpin map '%s' from\n",
7668 bpf_map__name(map));
7669 return -EINVAL;
7670 }
7671
7672 err = check_path(path);
7673 if (err)
7674 return err;
7675
7676 err = unlink(path);
7677 if (err != 0)
7678 return -errno;
7679
7680 map->pinned = false;
7681 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
7682
7683 return 0;
7684 }
7685
bpf_map__set_pin_path(struct bpf_map * map,const char * path)7686 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
7687 {
7688 char *new = NULL;
7689
7690 if (path) {
7691 new = strdup(path);
7692 if (!new)
7693 return -errno;
7694 }
7695
7696 free(map->pin_path);
7697 map->pin_path = new;
7698 return 0;
7699 }
7700
bpf_map__get_pin_path(const struct bpf_map * map)7701 const char *bpf_map__get_pin_path(const struct bpf_map *map)
7702 {
7703 return map->pin_path;
7704 }
7705
bpf_map__is_pinned(const struct bpf_map * map)7706 bool bpf_map__is_pinned(const struct bpf_map *map)
7707 {
7708 return map->pinned;
7709 }
7710
sanitize_pin_path(char * s)7711 static void sanitize_pin_path(char *s)
7712 {
7713 /* bpffs disallows periods in path names */
7714 while (*s) {
7715 if (*s == '.')
7716 *s = '_';
7717 s++;
7718 }
7719 }
7720
bpf_object__pin_maps(struct bpf_object * obj,const char * path)7721 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
7722 {
7723 struct bpf_map *map;
7724 int err;
7725
7726 if (!obj)
7727 return -ENOENT;
7728
7729 if (!obj->loaded) {
7730 pr_warn("object not yet loaded; load it first\n");
7731 return -ENOENT;
7732 }
7733
7734 bpf_object__for_each_map(map, obj) {
7735 char *pin_path = NULL;
7736 char buf[PATH_MAX];
7737
7738 if (path) {
7739 int len;
7740
7741 len = snprintf(buf, PATH_MAX, "%s/%s", path,
7742 bpf_map__name(map));
7743 if (len < 0) {
7744 err = -EINVAL;
7745 goto err_unpin_maps;
7746 } else if (len >= PATH_MAX) {
7747 err = -ENAMETOOLONG;
7748 goto err_unpin_maps;
7749 }
7750 sanitize_pin_path(buf);
7751 pin_path = buf;
7752 } else if (!map->pin_path) {
7753 continue;
7754 }
7755
7756 err = bpf_map__pin(map, pin_path);
7757 if (err)
7758 goto err_unpin_maps;
7759 }
7760
7761 return 0;
7762
7763 err_unpin_maps:
7764 while ((map = bpf_map__prev(map, obj))) {
7765 if (!map->pin_path)
7766 continue;
7767
7768 bpf_map__unpin(map, NULL);
7769 }
7770
7771 return err;
7772 }
7773
bpf_object__unpin_maps(struct bpf_object * obj,const char * path)7774 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
7775 {
7776 struct bpf_map *map;
7777 int err;
7778
7779 if (!obj)
7780 return -ENOENT;
7781
7782 bpf_object__for_each_map(map, obj) {
7783 char *pin_path = NULL;
7784 char buf[PATH_MAX];
7785
7786 if (path) {
7787 int len;
7788
7789 len = snprintf(buf, PATH_MAX, "%s/%s", path,
7790 bpf_map__name(map));
7791 if (len < 0)
7792 return -EINVAL;
7793 else if (len >= PATH_MAX)
7794 return -ENAMETOOLONG;
7795 sanitize_pin_path(buf);
7796 pin_path = buf;
7797 } else if (!map->pin_path) {
7798 continue;
7799 }
7800
7801 err = bpf_map__unpin(map, pin_path);
7802 if (err)
7803 return err;
7804 }
7805
7806 return 0;
7807 }
7808
bpf_object__pin_programs(struct bpf_object * obj,const char * path)7809 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
7810 {
7811 struct bpf_program *prog;
7812 int err;
7813
7814 if (!obj)
7815 return -ENOENT;
7816
7817 if (!obj->loaded) {
7818 pr_warn("object not yet loaded; load it first\n");
7819 return -ENOENT;
7820 }
7821
7822 bpf_object__for_each_program(prog, obj) {
7823 char buf[PATH_MAX];
7824 int len;
7825
7826 len = snprintf(buf, PATH_MAX, "%s/%s", path,
7827 prog->pin_name);
7828 if (len < 0) {
7829 err = -EINVAL;
7830 goto err_unpin_programs;
7831 } else if (len >= PATH_MAX) {
7832 err = -ENAMETOOLONG;
7833 goto err_unpin_programs;
7834 }
7835
7836 err = bpf_program__pin(prog, buf);
7837 if (err)
7838 goto err_unpin_programs;
7839 }
7840
7841 return 0;
7842
7843 err_unpin_programs:
7844 while ((prog = bpf_program__prev(prog, obj))) {
7845 char buf[PATH_MAX];
7846 int len;
7847
7848 len = snprintf(buf, PATH_MAX, "%s/%s", path,
7849 prog->pin_name);
7850 if (len < 0)
7851 continue;
7852 else if (len >= PATH_MAX)
7853 continue;
7854
7855 bpf_program__unpin(prog, buf);
7856 }
7857
7858 return err;
7859 }
7860
bpf_object__unpin_programs(struct bpf_object * obj,const char * path)7861 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
7862 {
7863 struct bpf_program *prog;
7864 int err;
7865
7866 if (!obj)
7867 return -ENOENT;
7868
7869 bpf_object__for_each_program(prog, obj) {
7870 char buf[PATH_MAX];
7871 int len;
7872
7873 len = snprintf(buf, PATH_MAX, "%s/%s", path,
7874 prog->pin_name);
7875 if (len < 0)
7876 return -EINVAL;
7877 else if (len >= PATH_MAX)
7878 return -ENAMETOOLONG;
7879
7880 err = bpf_program__unpin(prog, buf);
7881 if (err)
7882 return err;
7883 }
7884
7885 return 0;
7886 }
7887
bpf_object__pin(struct bpf_object * obj,const char * path)7888 int bpf_object__pin(struct bpf_object *obj, const char *path)
7889 {
7890 int err;
7891
7892 err = bpf_object__pin_maps(obj, path);
7893 if (err)
7894 return err;
7895
7896 err = bpf_object__pin_programs(obj, path);
7897 if (err) {
7898 bpf_object__unpin_maps(obj, path);
7899 return err;
7900 }
7901
7902 return 0;
7903 }
7904
bpf_map__destroy(struct bpf_map * map)7905 static void bpf_map__destroy(struct bpf_map *map)
7906 {
7907 if (map->clear_priv)
7908 map->clear_priv(map, map->priv);
7909 map->priv = NULL;
7910 map->clear_priv = NULL;
7911
7912 if (map->inner_map) {
7913 bpf_map__destroy(map->inner_map);
7914 zfree(&map->inner_map);
7915 }
7916
7917 zfree(&map->init_slots);
7918 map->init_slots_sz = 0;
7919
7920 if (map->mmaped) {
7921 munmap(map->mmaped, bpf_map_mmap_sz(map));
7922 map->mmaped = NULL;
7923 }
7924
7925 if (map->st_ops) {
7926 zfree(&map->st_ops->data);
7927 zfree(&map->st_ops->progs);
7928 zfree(&map->st_ops->kern_func_off);
7929 zfree(&map->st_ops);
7930 }
7931
7932 zfree(&map->name);
7933 zfree(&map->pin_path);
7934
7935 if (map->fd >= 0)
7936 zclose(map->fd);
7937 }
7938
bpf_object__close(struct bpf_object * obj)7939 void bpf_object__close(struct bpf_object *obj)
7940 {
7941 size_t i;
7942
7943 if (IS_ERR_OR_NULL(obj))
7944 return;
7945
7946 if (obj->clear_priv)
7947 obj->clear_priv(obj, obj->priv);
7948
7949 bpf_object__elf_finish(obj);
7950 bpf_object__unload(obj);
7951 btf__free(obj->btf);
7952 btf_ext__free(obj->btf_ext);
7953
7954 for (i = 0; i < obj->nr_maps; i++)
7955 bpf_map__destroy(&obj->maps[i]);
7956
7957 zfree(&obj->kconfig);
7958 zfree(&obj->externs);
7959 obj->nr_extern = 0;
7960
7961 zfree(&obj->maps);
7962 obj->nr_maps = 0;
7963
7964 if (obj->programs && obj->nr_programs) {
7965 for (i = 0; i < obj->nr_programs; i++)
7966 bpf_program__exit(&obj->programs[i]);
7967 }
7968 zfree(&obj->programs);
7969
7970 list_del(&obj->list);
7971 free(obj);
7972 }
7973
7974 struct bpf_object *
bpf_object__next(struct bpf_object * prev)7975 bpf_object__next(struct bpf_object *prev)
7976 {
7977 struct bpf_object *next;
7978
7979 if (!prev)
7980 next = list_first_entry(&bpf_objects_list,
7981 struct bpf_object,
7982 list);
7983 else
7984 next = list_next_entry(prev, list);
7985
7986 /* Empty list is noticed here so don't need checking on entry. */
7987 if (&next->list == &bpf_objects_list)
7988 return NULL;
7989
7990 return next;
7991 }
7992
bpf_object__name(const struct bpf_object * obj)7993 const char *bpf_object__name(const struct bpf_object *obj)
7994 {
7995 return obj ? obj->name : ERR_PTR(-EINVAL);
7996 }
7997
bpf_object__kversion(const struct bpf_object * obj)7998 unsigned int bpf_object__kversion(const struct bpf_object *obj)
7999 {
8000 return obj ? obj->kern_version : 0;
8001 }
8002
bpf_object__btf(const struct bpf_object * obj)8003 struct btf *bpf_object__btf(const struct bpf_object *obj)
8004 {
8005 return obj ? obj->btf : NULL;
8006 }
8007
bpf_object__btf_fd(const struct bpf_object * obj)8008 int bpf_object__btf_fd(const struct bpf_object *obj)
8009 {
8010 return obj->btf ? btf__fd(obj->btf) : -1;
8011 }
8012
bpf_object__set_priv(struct bpf_object * obj,void * priv,bpf_object_clear_priv_t clear_priv)8013 int bpf_object__set_priv(struct bpf_object *obj, void *priv,
8014 bpf_object_clear_priv_t clear_priv)
8015 {
8016 if (obj->priv && obj->clear_priv)
8017 obj->clear_priv(obj, obj->priv);
8018
8019 obj->priv = priv;
8020 obj->clear_priv = clear_priv;
8021 return 0;
8022 }
8023
bpf_object__priv(const struct bpf_object * obj)8024 void *bpf_object__priv(const struct bpf_object *obj)
8025 {
8026 return obj ? obj->priv : ERR_PTR(-EINVAL);
8027 }
8028
8029 static struct bpf_program *
__bpf_program__iter(const struct bpf_program * p,const struct bpf_object * obj,bool forward)8030 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8031 bool forward)
8032 {
8033 size_t nr_programs = obj->nr_programs;
8034 ssize_t idx;
8035
8036 if (!nr_programs)
8037 return NULL;
8038
8039 if (!p)
8040 /* Iter from the beginning */
8041 return forward ? &obj->programs[0] :
8042 &obj->programs[nr_programs - 1];
8043
8044 if (p->obj != obj) {
8045 pr_warn("error: program handler doesn't match object\n");
8046 return NULL;
8047 }
8048
8049 idx = (p - obj->programs) + (forward ? 1 : -1);
8050 if (idx >= obj->nr_programs || idx < 0)
8051 return NULL;
8052 return &obj->programs[idx];
8053 }
8054
8055 struct bpf_program *
bpf_program__next(struct bpf_program * prev,const struct bpf_object * obj)8056 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj)
8057 {
8058 struct bpf_program *prog = prev;
8059
8060 do {
8061 prog = __bpf_program__iter(prog, obj, true);
8062 } while (prog && prog_is_subprog(obj, prog));
8063
8064 return prog;
8065 }
8066
8067 struct bpf_program *
bpf_program__prev(struct bpf_program * next,const struct bpf_object * obj)8068 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj)
8069 {
8070 struct bpf_program *prog = next;
8071
8072 do {
8073 prog = __bpf_program__iter(prog, obj, false);
8074 } while (prog && prog_is_subprog(obj, prog));
8075
8076 return prog;
8077 }
8078
bpf_program__set_priv(struct bpf_program * prog,void * priv,bpf_program_clear_priv_t clear_priv)8079 int bpf_program__set_priv(struct bpf_program *prog, void *priv,
8080 bpf_program_clear_priv_t clear_priv)
8081 {
8082 if (prog->priv && prog->clear_priv)
8083 prog->clear_priv(prog, prog->priv);
8084
8085 prog->priv = priv;
8086 prog->clear_priv = clear_priv;
8087 return 0;
8088 }
8089
bpf_program__priv(const struct bpf_program * prog)8090 void *bpf_program__priv(const struct bpf_program *prog)
8091 {
8092 return prog ? prog->priv : ERR_PTR(-EINVAL);
8093 }
8094
bpf_program__set_ifindex(struct bpf_program * prog,__u32 ifindex)8095 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
8096 {
8097 prog->prog_ifindex = ifindex;
8098 }
8099
bpf_program__name(const struct bpf_program * prog)8100 const char *bpf_program__name(const struct bpf_program *prog)
8101 {
8102 return prog->name;
8103 }
8104
bpf_program__section_name(const struct bpf_program * prog)8105 const char *bpf_program__section_name(const struct bpf_program *prog)
8106 {
8107 return prog->sec_name;
8108 }
8109
bpf_program__title(const struct bpf_program * prog,bool needs_copy)8110 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy)
8111 {
8112 const char *title;
8113
8114 title = prog->sec_name;
8115 if (needs_copy) {
8116 title = strdup(title);
8117 if (!title) {
8118 pr_warn("failed to strdup program title\n");
8119 return ERR_PTR(-ENOMEM);
8120 }
8121 }
8122
8123 return title;
8124 }
8125
bpf_program__autoload(const struct bpf_program * prog)8126 bool bpf_program__autoload(const struct bpf_program *prog)
8127 {
8128 return prog->load;
8129 }
8130
bpf_program__set_autoload(struct bpf_program * prog,bool autoload)8131 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
8132 {
8133 if (prog->obj->loaded)
8134 return -EINVAL;
8135
8136 prog->load = autoload;
8137 return 0;
8138 }
8139
bpf_program__fd(const struct bpf_program * prog)8140 int bpf_program__fd(const struct bpf_program *prog)
8141 {
8142 return bpf_program__nth_fd(prog, 0);
8143 }
8144
bpf_program__size(const struct bpf_program * prog)8145 size_t bpf_program__size(const struct bpf_program *prog)
8146 {
8147 return prog->insns_cnt * BPF_INSN_SZ;
8148 }
8149
bpf_program__set_prep(struct bpf_program * prog,int nr_instances,bpf_program_prep_t prep)8150 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances,
8151 bpf_program_prep_t prep)
8152 {
8153 int *instances_fds;
8154
8155 if (nr_instances <= 0 || !prep)
8156 return -EINVAL;
8157
8158 if (prog->instances.nr > 0 || prog->instances.fds) {
8159 pr_warn("Can't set pre-processor after loading\n");
8160 return -EINVAL;
8161 }
8162
8163 instances_fds = malloc(sizeof(int) * nr_instances);
8164 if (!instances_fds) {
8165 pr_warn("alloc memory failed for fds\n");
8166 return -ENOMEM;
8167 }
8168
8169 /* fill all fd with -1 */
8170 memset(instances_fds, -1, sizeof(int) * nr_instances);
8171
8172 prog->instances.nr = nr_instances;
8173 prog->instances.fds = instances_fds;
8174 prog->preprocessor = prep;
8175 return 0;
8176 }
8177
bpf_program__nth_fd(const struct bpf_program * prog,int n)8178 int bpf_program__nth_fd(const struct bpf_program *prog, int n)
8179 {
8180 int fd;
8181
8182 if (!prog)
8183 return -EINVAL;
8184
8185 if (n >= prog->instances.nr || n < 0) {
8186 pr_warn("Can't get the %dth fd from program %s: only %d instances\n",
8187 n, prog->name, prog->instances.nr);
8188 return -EINVAL;
8189 }
8190
8191 fd = prog->instances.fds[n];
8192 if (fd < 0) {
8193 pr_warn("%dth instance of program '%s' is invalid\n",
8194 n, prog->name);
8195 return -ENOENT;
8196 }
8197
8198 return fd;
8199 }
8200
bpf_program__get_type(struct bpf_program * prog)8201 enum bpf_prog_type bpf_program__get_type(struct bpf_program *prog)
8202 {
8203 return prog->type;
8204 }
8205
bpf_program__set_type(struct bpf_program * prog,enum bpf_prog_type type)8206 void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
8207 {
8208 prog->type = type;
8209 }
8210
bpf_program__is_type(const struct bpf_program * prog,enum bpf_prog_type type)8211 static bool bpf_program__is_type(const struct bpf_program *prog,
8212 enum bpf_prog_type type)
8213 {
8214 return prog ? (prog->type == type) : false;
8215 }
8216
8217 #define BPF_PROG_TYPE_FNS(NAME, TYPE) \
8218 int bpf_program__set_##NAME(struct bpf_program *prog) \
8219 { \
8220 if (!prog) \
8221 return -EINVAL; \
8222 bpf_program__set_type(prog, TYPE); \
8223 return 0; \
8224 } \
8225 \
8226 bool bpf_program__is_##NAME(const struct bpf_program *prog) \
8227 { \
8228 return bpf_program__is_type(prog, TYPE); \
8229 } \
8230
8231 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER);
8232 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM);
8233 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE);
8234 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS);
8235 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT);
8236 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT);
8237 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT);
8238 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP);
8239 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT);
8240 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING);
8241 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS);
8242 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT);
8243 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP);
8244
8245 enum bpf_attach_type
bpf_program__get_expected_attach_type(struct bpf_program * prog)8246 bpf_program__get_expected_attach_type(struct bpf_program *prog)
8247 {
8248 return prog->expected_attach_type;
8249 }
8250
bpf_program__set_expected_attach_type(struct bpf_program * prog,enum bpf_attach_type type)8251 void bpf_program__set_expected_attach_type(struct bpf_program *prog,
8252 enum bpf_attach_type type)
8253 {
8254 prog->expected_attach_type = type;
8255 }
8256
8257 #define BPF_PROG_SEC_IMPL(string, ptype, eatype, eatype_optional, \
8258 attachable, attach_btf) \
8259 { \
8260 .sec = string, \
8261 .len = sizeof(string) - 1, \
8262 .prog_type = ptype, \
8263 .expected_attach_type = eatype, \
8264 .is_exp_attach_type_optional = eatype_optional, \
8265 .is_attachable = attachable, \
8266 .is_attach_btf = attach_btf, \
8267 }
8268
8269 /* Programs that can NOT be attached. */
8270 #define BPF_PROG_SEC(string, ptype) BPF_PROG_SEC_IMPL(string, ptype, 0, 0, 0, 0)
8271
8272 /* Programs that can be attached. */
8273 #define BPF_APROG_SEC(string, ptype, atype) \
8274 BPF_PROG_SEC_IMPL(string, ptype, atype, true, 1, 0)
8275
8276 /* Programs that must specify expected attach type at load time. */
8277 #define BPF_EAPROG_SEC(string, ptype, eatype) \
8278 BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 1, 0)
8279
8280 /* Programs that use BTF to identify attach point */
8281 #define BPF_PROG_BTF(string, ptype, eatype) \
8282 BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 0, 1)
8283
8284 /* Programs that can be attached but attach type can't be identified by section
8285 * name. Kept for backward compatibility.
8286 */
8287 #define BPF_APROG_COMPAT(string, ptype) BPF_PROG_SEC(string, ptype)
8288
8289 #define SEC_DEF(sec_pfx, ptype, ...) { \
8290 .sec = sec_pfx, \
8291 .len = sizeof(sec_pfx) - 1, \
8292 .prog_type = BPF_PROG_TYPE_##ptype, \
8293 __VA_ARGS__ \
8294 }
8295
8296 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec,
8297 struct bpf_program *prog);
8298 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec,
8299 struct bpf_program *prog);
8300 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec,
8301 struct bpf_program *prog);
8302 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec,
8303 struct bpf_program *prog);
8304 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec,
8305 struct bpf_program *prog);
8306 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec,
8307 struct bpf_program *prog);
8308
8309 static const struct bpf_sec_def section_defs[] = {
8310 BPF_PROG_SEC("socket", BPF_PROG_TYPE_SOCKET_FILTER),
8311 BPF_PROG_SEC("sk_reuseport", BPF_PROG_TYPE_SK_REUSEPORT),
8312 SEC_DEF("kprobe/", KPROBE,
8313 .attach_fn = attach_kprobe),
8314 BPF_PROG_SEC("uprobe/", BPF_PROG_TYPE_KPROBE),
8315 SEC_DEF("kretprobe/", KPROBE,
8316 .attach_fn = attach_kprobe),
8317 BPF_PROG_SEC("uretprobe/", BPF_PROG_TYPE_KPROBE),
8318 BPF_PROG_SEC("classifier", BPF_PROG_TYPE_SCHED_CLS),
8319 BPF_PROG_SEC("action", BPF_PROG_TYPE_SCHED_ACT),
8320 SEC_DEF("tracepoint/", TRACEPOINT,
8321 .attach_fn = attach_tp),
8322 SEC_DEF("tp/", TRACEPOINT,
8323 .attach_fn = attach_tp),
8324 SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT,
8325 .attach_fn = attach_raw_tp),
8326 SEC_DEF("raw_tp/", RAW_TRACEPOINT,
8327 .attach_fn = attach_raw_tp),
8328 SEC_DEF("tp_btf/", TRACING,
8329 .expected_attach_type = BPF_TRACE_RAW_TP,
8330 .is_attach_btf = true,
8331 .attach_fn = attach_trace),
8332 SEC_DEF("fentry/", TRACING,
8333 .expected_attach_type = BPF_TRACE_FENTRY,
8334 .is_attach_btf = true,
8335 .attach_fn = attach_trace),
8336 SEC_DEF("fmod_ret/", TRACING,
8337 .expected_attach_type = BPF_MODIFY_RETURN,
8338 .is_attach_btf = true,
8339 .attach_fn = attach_trace),
8340 SEC_DEF("fexit/", TRACING,
8341 .expected_attach_type = BPF_TRACE_FEXIT,
8342 .is_attach_btf = true,
8343 .attach_fn = attach_trace),
8344 SEC_DEF("fentry.s/", TRACING,
8345 .expected_attach_type = BPF_TRACE_FENTRY,
8346 .is_attach_btf = true,
8347 .is_sleepable = true,
8348 .attach_fn = attach_trace),
8349 SEC_DEF("fmod_ret.s/", TRACING,
8350 .expected_attach_type = BPF_MODIFY_RETURN,
8351 .is_attach_btf = true,
8352 .is_sleepable = true,
8353 .attach_fn = attach_trace),
8354 SEC_DEF("fexit.s/", TRACING,
8355 .expected_attach_type = BPF_TRACE_FEXIT,
8356 .is_attach_btf = true,
8357 .is_sleepable = true,
8358 .attach_fn = attach_trace),
8359 SEC_DEF("freplace/", EXT,
8360 .is_attach_btf = true,
8361 .attach_fn = attach_trace),
8362 SEC_DEF("lsm/", LSM,
8363 .is_attach_btf = true,
8364 .expected_attach_type = BPF_LSM_MAC,
8365 .attach_fn = attach_lsm),
8366 SEC_DEF("lsm.s/", LSM,
8367 .is_attach_btf = true,
8368 .is_sleepable = true,
8369 .expected_attach_type = BPF_LSM_MAC,
8370 .attach_fn = attach_lsm),
8371 SEC_DEF("iter/", TRACING,
8372 .expected_attach_type = BPF_TRACE_ITER,
8373 .is_attach_btf = true,
8374 .attach_fn = attach_iter),
8375 BPF_EAPROG_SEC("xdp_devmap/", BPF_PROG_TYPE_XDP,
8376 BPF_XDP_DEVMAP),
8377 BPF_EAPROG_SEC("xdp_cpumap/", BPF_PROG_TYPE_XDP,
8378 BPF_XDP_CPUMAP),
8379 BPF_APROG_SEC("xdp", BPF_PROG_TYPE_XDP,
8380 BPF_XDP),
8381 BPF_PROG_SEC("perf_event", BPF_PROG_TYPE_PERF_EVENT),
8382 BPF_PROG_SEC("lwt_in", BPF_PROG_TYPE_LWT_IN),
8383 BPF_PROG_SEC("lwt_out", BPF_PROG_TYPE_LWT_OUT),
8384 BPF_PROG_SEC("lwt_xmit", BPF_PROG_TYPE_LWT_XMIT),
8385 BPF_PROG_SEC("lwt_seg6local", BPF_PROG_TYPE_LWT_SEG6LOCAL),
8386 BPF_APROG_SEC("cgroup_skb/ingress", BPF_PROG_TYPE_CGROUP_SKB,
8387 BPF_CGROUP_INET_INGRESS),
8388 BPF_APROG_SEC("cgroup_skb/egress", BPF_PROG_TYPE_CGROUP_SKB,
8389 BPF_CGROUP_INET_EGRESS),
8390 BPF_APROG_COMPAT("cgroup/skb", BPF_PROG_TYPE_CGROUP_SKB),
8391 BPF_EAPROG_SEC("cgroup/sock_create", BPF_PROG_TYPE_CGROUP_SOCK,
8392 BPF_CGROUP_INET_SOCK_CREATE),
8393 BPF_EAPROG_SEC("cgroup/sock_release", BPF_PROG_TYPE_CGROUP_SOCK,
8394 BPF_CGROUP_INET_SOCK_RELEASE),
8395 BPF_APROG_SEC("cgroup/sock", BPF_PROG_TYPE_CGROUP_SOCK,
8396 BPF_CGROUP_INET_SOCK_CREATE),
8397 BPF_EAPROG_SEC("cgroup/post_bind4", BPF_PROG_TYPE_CGROUP_SOCK,
8398 BPF_CGROUP_INET4_POST_BIND),
8399 BPF_EAPROG_SEC("cgroup/post_bind6", BPF_PROG_TYPE_CGROUP_SOCK,
8400 BPF_CGROUP_INET6_POST_BIND),
8401 BPF_APROG_SEC("cgroup/dev", BPF_PROG_TYPE_CGROUP_DEVICE,
8402 BPF_CGROUP_DEVICE),
8403 BPF_APROG_SEC("sockops", BPF_PROG_TYPE_SOCK_OPS,
8404 BPF_CGROUP_SOCK_OPS),
8405 BPF_APROG_SEC("sk_skb/stream_parser", BPF_PROG_TYPE_SK_SKB,
8406 BPF_SK_SKB_STREAM_PARSER),
8407 BPF_APROG_SEC("sk_skb/stream_verdict", BPF_PROG_TYPE_SK_SKB,
8408 BPF_SK_SKB_STREAM_VERDICT),
8409 BPF_APROG_COMPAT("sk_skb", BPF_PROG_TYPE_SK_SKB),
8410 BPF_APROG_SEC("sk_msg", BPF_PROG_TYPE_SK_MSG,
8411 BPF_SK_MSG_VERDICT),
8412 BPF_APROG_SEC("lirc_mode2", BPF_PROG_TYPE_LIRC_MODE2,
8413 BPF_LIRC_MODE2),
8414 BPF_APROG_SEC("flow_dissector", BPF_PROG_TYPE_FLOW_DISSECTOR,
8415 BPF_FLOW_DISSECTOR),
8416 BPF_EAPROG_SEC("cgroup/bind4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8417 BPF_CGROUP_INET4_BIND),
8418 BPF_EAPROG_SEC("cgroup/bind6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8419 BPF_CGROUP_INET6_BIND),
8420 BPF_EAPROG_SEC("cgroup/connect4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8421 BPF_CGROUP_INET4_CONNECT),
8422 BPF_EAPROG_SEC("cgroup/connect6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8423 BPF_CGROUP_INET6_CONNECT),
8424 BPF_EAPROG_SEC("cgroup/sendmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8425 BPF_CGROUP_UDP4_SENDMSG),
8426 BPF_EAPROG_SEC("cgroup/sendmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8427 BPF_CGROUP_UDP6_SENDMSG),
8428 BPF_EAPROG_SEC("cgroup/recvmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8429 BPF_CGROUP_UDP4_RECVMSG),
8430 BPF_EAPROG_SEC("cgroup/recvmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8431 BPF_CGROUP_UDP6_RECVMSG),
8432 BPF_EAPROG_SEC("cgroup/getpeername4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8433 BPF_CGROUP_INET4_GETPEERNAME),
8434 BPF_EAPROG_SEC("cgroup/getpeername6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8435 BPF_CGROUP_INET6_GETPEERNAME),
8436 BPF_EAPROG_SEC("cgroup/getsockname4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8437 BPF_CGROUP_INET4_GETSOCKNAME),
8438 BPF_EAPROG_SEC("cgroup/getsockname6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8439 BPF_CGROUP_INET6_GETSOCKNAME),
8440 BPF_EAPROG_SEC("cgroup/sysctl", BPF_PROG_TYPE_CGROUP_SYSCTL,
8441 BPF_CGROUP_SYSCTL),
8442 BPF_EAPROG_SEC("cgroup/getsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT,
8443 BPF_CGROUP_GETSOCKOPT),
8444 BPF_EAPROG_SEC("cgroup/setsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT,
8445 BPF_CGROUP_SETSOCKOPT),
8446 BPF_PROG_SEC("struct_ops", BPF_PROG_TYPE_STRUCT_OPS),
8447 BPF_EAPROG_SEC("sk_lookup/", BPF_PROG_TYPE_SK_LOOKUP,
8448 BPF_SK_LOOKUP),
8449 };
8450
8451 #undef BPF_PROG_SEC_IMPL
8452 #undef BPF_PROG_SEC
8453 #undef BPF_APROG_SEC
8454 #undef BPF_EAPROG_SEC
8455 #undef BPF_APROG_COMPAT
8456 #undef SEC_DEF
8457
8458 #define MAX_TYPE_NAME_SIZE 32
8459
find_sec_def(const char * sec_name)8460 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
8461 {
8462 int i, n = ARRAY_SIZE(section_defs);
8463
8464 for (i = 0; i < n; i++) {
8465 if (strncmp(sec_name,
8466 section_defs[i].sec, section_defs[i].len))
8467 continue;
8468 return §ion_defs[i];
8469 }
8470 return NULL;
8471 }
8472
libbpf_get_type_names(bool attach_type)8473 static char *libbpf_get_type_names(bool attach_type)
8474 {
8475 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
8476 char *buf;
8477
8478 buf = malloc(len);
8479 if (!buf)
8480 return NULL;
8481
8482 buf[0] = '\0';
8483 /* Forge string buf with all available names */
8484 for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8485 if (attach_type && !section_defs[i].is_attachable)
8486 continue;
8487
8488 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
8489 free(buf);
8490 return NULL;
8491 }
8492 strcat(buf, " ");
8493 strcat(buf, section_defs[i].sec);
8494 }
8495
8496 return buf;
8497 }
8498
libbpf_prog_type_by_name(const char * name,enum bpf_prog_type * prog_type,enum bpf_attach_type * expected_attach_type)8499 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
8500 enum bpf_attach_type *expected_attach_type)
8501 {
8502 const struct bpf_sec_def *sec_def;
8503 char *type_names;
8504
8505 if (!name)
8506 return -EINVAL;
8507
8508 sec_def = find_sec_def(name);
8509 if (sec_def) {
8510 *prog_type = sec_def->prog_type;
8511 *expected_attach_type = sec_def->expected_attach_type;
8512 return 0;
8513 }
8514
8515 pr_debug("failed to guess program type from ELF section '%s'\n", name);
8516 type_names = libbpf_get_type_names(false);
8517 if (type_names != NULL) {
8518 pr_debug("supported section(type) names are:%s\n", type_names);
8519 free(type_names);
8520 }
8521
8522 return -ESRCH;
8523 }
8524
find_struct_ops_map_by_offset(struct bpf_object * obj,size_t offset)8525 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
8526 size_t offset)
8527 {
8528 struct bpf_map *map;
8529 size_t i;
8530
8531 for (i = 0; i < obj->nr_maps; i++) {
8532 map = &obj->maps[i];
8533 if (!bpf_map__is_struct_ops(map))
8534 continue;
8535 if (map->sec_offset <= offset &&
8536 offset - map->sec_offset < map->def.value_size)
8537 return map;
8538 }
8539
8540 return NULL;
8541 }
8542
8543 /* Collect the reloc from ELF and populate the st_ops->progs[] */
bpf_object__collect_st_ops_relos(struct bpf_object * obj,GElf_Shdr * shdr,Elf_Data * data)8544 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
8545 GElf_Shdr *shdr, Elf_Data *data)
8546 {
8547 const struct btf_member *member;
8548 struct bpf_struct_ops *st_ops;
8549 struct bpf_program *prog;
8550 unsigned int shdr_idx;
8551 const struct btf *btf;
8552 struct bpf_map *map;
8553 Elf_Data *symbols;
8554 unsigned int moff, insn_idx;
8555 const char *name;
8556 __u32 member_idx;
8557 GElf_Sym sym;
8558 GElf_Rel rel;
8559 int i, nrels;
8560
8561 symbols = obj->efile.symbols;
8562 btf = obj->btf;
8563 nrels = shdr->sh_size / shdr->sh_entsize;
8564 for (i = 0; i < nrels; i++) {
8565 if (!gelf_getrel(data, i, &rel)) {
8566 pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
8567 return -LIBBPF_ERRNO__FORMAT;
8568 }
8569
8570 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) {
8571 pr_warn("struct_ops reloc: symbol %zx not found\n",
8572 (size_t)GELF_R_SYM(rel.r_info));
8573 return -LIBBPF_ERRNO__FORMAT;
8574 }
8575
8576 name = elf_sym_str(obj, sym.st_name) ?: "<?>";
8577 map = find_struct_ops_map_by_offset(obj, rel.r_offset);
8578 if (!map) {
8579 pr_warn("struct_ops reloc: cannot find map at rel.r_offset %zu\n",
8580 (size_t)rel.r_offset);
8581 return -EINVAL;
8582 }
8583
8584 moff = rel.r_offset - map->sec_offset;
8585 shdr_idx = sym.st_shndx;
8586 st_ops = map->st_ops;
8587 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel.r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
8588 map->name,
8589 (long long)(rel.r_info >> 32),
8590 (long long)sym.st_value,
8591 shdr_idx, (size_t)rel.r_offset,
8592 map->sec_offset, sym.st_name, name);
8593
8594 if (shdr_idx >= SHN_LORESERVE) {
8595 pr_warn("struct_ops reloc %s: rel.r_offset %zu shdr_idx %u unsupported non-static function\n",
8596 map->name, (size_t)rel.r_offset, shdr_idx);
8597 return -LIBBPF_ERRNO__RELOC;
8598 }
8599 if (sym.st_value % BPF_INSN_SZ) {
8600 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
8601 map->name, (unsigned long long)sym.st_value);
8602 return -LIBBPF_ERRNO__FORMAT;
8603 }
8604 insn_idx = sym.st_value / BPF_INSN_SZ;
8605
8606 member = find_member_by_offset(st_ops->type, moff * 8);
8607 if (!member) {
8608 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
8609 map->name, moff);
8610 return -EINVAL;
8611 }
8612 member_idx = member - btf_members(st_ops->type);
8613 name = btf__name_by_offset(btf, member->name_off);
8614
8615 if (!resolve_func_ptr(btf, member->type, NULL)) {
8616 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
8617 map->name, name);
8618 return -EINVAL;
8619 }
8620
8621 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
8622 if (!prog) {
8623 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
8624 map->name, shdr_idx, name);
8625 return -EINVAL;
8626 }
8627
8628 if (prog->type == BPF_PROG_TYPE_UNSPEC) {
8629 const struct bpf_sec_def *sec_def;
8630
8631 sec_def = find_sec_def(prog->sec_name);
8632 if (sec_def &&
8633 sec_def->prog_type != BPF_PROG_TYPE_STRUCT_OPS) {
8634 /* for pr_warn */
8635 prog->type = sec_def->prog_type;
8636 goto invalid_prog;
8637 }
8638
8639 prog->type = BPF_PROG_TYPE_STRUCT_OPS;
8640 prog->attach_btf_id = st_ops->type_id;
8641 prog->expected_attach_type = member_idx;
8642 } else if (prog->type != BPF_PROG_TYPE_STRUCT_OPS ||
8643 prog->attach_btf_id != st_ops->type_id ||
8644 prog->expected_attach_type != member_idx) {
8645 goto invalid_prog;
8646 }
8647 st_ops->progs[member_idx] = prog;
8648 }
8649
8650 return 0;
8651
8652 invalid_prog:
8653 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
8654 map->name, prog->name, prog->sec_name, prog->type,
8655 prog->attach_btf_id, prog->expected_attach_type, name);
8656 return -EINVAL;
8657 }
8658
8659 #define BTF_TRACE_PREFIX "btf_trace_"
8660 #define BTF_LSM_PREFIX "bpf_lsm_"
8661 #define BTF_ITER_PREFIX "bpf_iter_"
8662 #define BTF_MAX_NAME_SIZE 128
8663
find_btf_by_prefix_kind(const struct btf * btf,const char * prefix,const char * name,__u32 kind)8664 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
8665 const char *name, __u32 kind)
8666 {
8667 char btf_type_name[BTF_MAX_NAME_SIZE];
8668 int ret;
8669
8670 ret = snprintf(btf_type_name, sizeof(btf_type_name),
8671 "%s%s", prefix, name);
8672 /* snprintf returns the number of characters written excluding the
8673 * the terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
8674 * indicates truncation.
8675 */
8676 if (ret < 0 || ret >= sizeof(btf_type_name))
8677 return -ENAMETOOLONG;
8678 return btf__find_by_name_kind(btf, btf_type_name, kind);
8679 }
8680
__find_vmlinux_btf_id(struct btf * btf,const char * name,enum bpf_attach_type attach_type)8681 static inline int __find_vmlinux_btf_id(struct btf *btf, const char *name,
8682 enum bpf_attach_type attach_type)
8683 {
8684 int err;
8685
8686 if (attach_type == BPF_TRACE_RAW_TP)
8687 err = find_btf_by_prefix_kind(btf, BTF_TRACE_PREFIX, name,
8688 BTF_KIND_TYPEDEF);
8689 else if (attach_type == BPF_LSM_MAC)
8690 err = find_btf_by_prefix_kind(btf, BTF_LSM_PREFIX, name,
8691 BTF_KIND_FUNC);
8692 else if (attach_type == BPF_TRACE_ITER)
8693 err = find_btf_by_prefix_kind(btf, BTF_ITER_PREFIX, name,
8694 BTF_KIND_FUNC);
8695 else
8696 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
8697
8698 if (err <= 0)
8699 pr_warn("%s is not found in vmlinux BTF\n", name);
8700
8701 return err;
8702 }
8703
libbpf_find_vmlinux_btf_id(const char * name,enum bpf_attach_type attach_type)8704 int libbpf_find_vmlinux_btf_id(const char *name,
8705 enum bpf_attach_type attach_type)
8706 {
8707 struct btf *btf;
8708 int err;
8709
8710 btf = libbpf_find_kernel_btf();
8711 if (IS_ERR(btf)) {
8712 pr_warn("vmlinux BTF is not found\n");
8713 return -EINVAL;
8714 }
8715
8716 err = __find_vmlinux_btf_id(btf, name, attach_type);
8717 btf__free(btf);
8718 return err;
8719 }
8720
libbpf_find_prog_btf_id(const char * name,__u32 attach_prog_fd)8721 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
8722 {
8723 struct bpf_prog_info_linear *info_linear;
8724 struct bpf_prog_info *info;
8725 struct btf *btf = NULL;
8726 int err = -EINVAL;
8727
8728 info_linear = bpf_program__get_prog_info_linear(attach_prog_fd, 0);
8729 if (IS_ERR_OR_NULL(info_linear)) {
8730 pr_warn("failed get_prog_info_linear for FD %d\n",
8731 attach_prog_fd);
8732 return -EINVAL;
8733 }
8734 info = &info_linear->info;
8735 if (!info->btf_id) {
8736 pr_warn("The target program doesn't have BTF\n");
8737 goto out;
8738 }
8739 if (btf__get_from_id(info->btf_id, &btf)) {
8740 pr_warn("Failed to get BTF of the program\n");
8741 goto out;
8742 }
8743 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
8744 btf__free(btf);
8745 if (err <= 0) {
8746 pr_warn("%s is not found in prog's BTF\n", name);
8747 goto out;
8748 }
8749 out:
8750 free(info_linear);
8751 return err;
8752 }
8753
libbpf_find_attach_btf_id(struct bpf_program * prog)8754 static int libbpf_find_attach_btf_id(struct bpf_program *prog)
8755 {
8756 enum bpf_attach_type attach_type = prog->expected_attach_type;
8757 __u32 attach_prog_fd = prog->attach_prog_fd;
8758 const char *name = prog->sec_name;
8759 int i, err;
8760
8761 if (!name)
8762 return -EINVAL;
8763
8764 for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8765 if (!section_defs[i].is_attach_btf)
8766 continue;
8767 if (strncmp(name, section_defs[i].sec, section_defs[i].len))
8768 continue;
8769 if (attach_prog_fd)
8770 err = libbpf_find_prog_btf_id(name + section_defs[i].len,
8771 attach_prog_fd);
8772 else
8773 err = __find_vmlinux_btf_id(prog->obj->btf_vmlinux,
8774 name + section_defs[i].len,
8775 attach_type);
8776 return err;
8777 }
8778 pr_warn("failed to identify btf_id based on ELF section name '%s'\n", name);
8779 return -ESRCH;
8780 }
8781
libbpf_attach_type_by_name(const char * name,enum bpf_attach_type * attach_type)8782 int libbpf_attach_type_by_name(const char *name,
8783 enum bpf_attach_type *attach_type)
8784 {
8785 char *type_names;
8786 int i;
8787
8788 if (!name)
8789 return -EINVAL;
8790
8791 for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8792 if (strncmp(name, section_defs[i].sec, section_defs[i].len))
8793 continue;
8794 if (!section_defs[i].is_attachable)
8795 return -EINVAL;
8796 *attach_type = section_defs[i].expected_attach_type;
8797 return 0;
8798 }
8799 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
8800 type_names = libbpf_get_type_names(true);
8801 if (type_names != NULL) {
8802 pr_debug("attachable section(type) names are:%s\n", type_names);
8803 free(type_names);
8804 }
8805
8806 return -EINVAL;
8807 }
8808
bpf_map__fd(const struct bpf_map * map)8809 int bpf_map__fd(const struct bpf_map *map)
8810 {
8811 return map ? map->fd : -EINVAL;
8812 }
8813
bpf_map__def(const struct bpf_map * map)8814 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map)
8815 {
8816 return map ? &map->def : ERR_PTR(-EINVAL);
8817 }
8818
bpf_map__name(const struct bpf_map * map)8819 const char *bpf_map__name(const struct bpf_map *map)
8820 {
8821 return map ? map->name : NULL;
8822 }
8823
bpf_map__type(const struct bpf_map * map)8824 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
8825 {
8826 return map->def.type;
8827 }
8828
bpf_map__set_type(struct bpf_map * map,enum bpf_map_type type)8829 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
8830 {
8831 if (map->fd >= 0)
8832 return -EBUSY;
8833 map->def.type = type;
8834 return 0;
8835 }
8836
bpf_map__map_flags(const struct bpf_map * map)8837 __u32 bpf_map__map_flags(const struct bpf_map *map)
8838 {
8839 return map->def.map_flags;
8840 }
8841
bpf_map__set_map_flags(struct bpf_map * map,__u32 flags)8842 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
8843 {
8844 if (map->fd >= 0)
8845 return -EBUSY;
8846 map->def.map_flags = flags;
8847 return 0;
8848 }
8849
bpf_map__numa_node(const struct bpf_map * map)8850 __u32 bpf_map__numa_node(const struct bpf_map *map)
8851 {
8852 return map->numa_node;
8853 }
8854
bpf_map__set_numa_node(struct bpf_map * map,__u32 numa_node)8855 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
8856 {
8857 if (map->fd >= 0)
8858 return -EBUSY;
8859 map->numa_node = numa_node;
8860 return 0;
8861 }
8862
bpf_map__key_size(const struct bpf_map * map)8863 __u32 bpf_map__key_size(const struct bpf_map *map)
8864 {
8865 return map->def.key_size;
8866 }
8867
bpf_map__set_key_size(struct bpf_map * map,__u32 size)8868 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
8869 {
8870 if (map->fd >= 0)
8871 return -EBUSY;
8872 map->def.key_size = size;
8873 return 0;
8874 }
8875
bpf_map__value_size(const struct bpf_map * map)8876 __u32 bpf_map__value_size(const struct bpf_map *map)
8877 {
8878 return map->def.value_size;
8879 }
8880
bpf_map__set_value_size(struct bpf_map * map,__u32 size)8881 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
8882 {
8883 if (map->fd >= 0)
8884 return -EBUSY;
8885 map->def.value_size = size;
8886 return 0;
8887 }
8888
bpf_map__btf_key_type_id(const struct bpf_map * map)8889 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
8890 {
8891 return map ? map->btf_key_type_id : 0;
8892 }
8893
bpf_map__btf_value_type_id(const struct bpf_map * map)8894 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
8895 {
8896 return map ? map->btf_value_type_id : 0;
8897 }
8898
bpf_map__set_priv(struct bpf_map * map,void * priv,bpf_map_clear_priv_t clear_priv)8899 int bpf_map__set_priv(struct bpf_map *map, void *priv,
8900 bpf_map_clear_priv_t clear_priv)
8901 {
8902 if (!map)
8903 return -EINVAL;
8904
8905 if (map->priv) {
8906 if (map->clear_priv)
8907 map->clear_priv(map, map->priv);
8908 }
8909
8910 map->priv = priv;
8911 map->clear_priv = clear_priv;
8912 return 0;
8913 }
8914
bpf_map__priv(const struct bpf_map * map)8915 void *bpf_map__priv(const struct bpf_map *map)
8916 {
8917 return map ? map->priv : ERR_PTR(-EINVAL);
8918 }
8919
bpf_map__set_initial_value(struct bpf_map * map,const void * data,size_t size)8920 int bpf_map__set_initial_value(struct bpf_map *map,
8921 const void *data, size_t size)
8922 {
8923 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
8924 size != map->def.value_size || map->fd >= 0)
8925 return -EINVAL;
8926
8927 memcpy(map->mmaped, data, size);
8928 return 0;
8929 }
8930
bpf_map__is_offload_neutral(const struct bpf_map * map)8931 bool bpf_map__is_offload_neutral(const struct bpf_map *map)
8932 {
8933 return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
8934 }
8935
bpf_map__is_internal(const struct bpf_map * map)8936 bool bpf_map__is_internal(const struct bpf_map *map)
8937 {
8938 return map->libbpf_type != LIBBPF_MAP_UNSPEC;
8939 }
8940
bpf_map__ifindex(const struct bpf_map * map)8941 __u32 bpf_map__ifindex(const struct bpf_map *map)
8942 {
8943 return map->map_ifindex;
8944 }
8945
bpf_map__set_ifindex(struct bpf_map * map,__u32 ifindex)8946 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
8947 {
8948 if (map->fd >= 0)
8949 return -EBUSY;
8950 map->map_ifindex = ifindex;
8951 return 0;
8952 }
8953
bpf_map__set_inner_map_fd(struct bpf_map * map,int fd)8954 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
8955 {
8956 if (!bpf_map_type__is_map_in_map(map->def.type)) {
8957 pr_warn("error: unsupported map type\n");
8958 return -EINVAL;
8959 }
8960 if (map->inner_map_fd != -1) {
8961 pr_warn("error: inner_map_fd already specified\n");
8962 return -EINVAL;
8963 }
8964 map->inner_map_fd = fd;
8965 return 0;
8966 }
8967
8968 static struct bpf_map *
__bpf_map__iter(const struct bpf_map * m,const struct bpf_object * obj,int i)8969 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
8970 {
8971 ssize_t idx;
8972 struct bpf_map *s, *e;
8973
8974 if (!obj || !obj->maps)
8975 return NULL;
8976
8977 s = obj->maps;
8978 e = obj->maps + obj->nr_maps;
8979
8980 if ((m < s) || (m >= e)) {
8981 pr_warn("error in %s: map handler doesn't belong to object\n",
8982 __func__);
8983 return NULL;
8984 }
8985
8986 idx = (m - obj->maps) + i;
8987 if (idx >= obj->nr_maps || idx < 0)
8988 return NULL;
8989 return &obj->maps[idx];
8990 }
8991
8992 struct bpf_map *
bpf_map__next(const struct bpf_map * prev,const struct bpf_object * obj)8993 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj)
8994 {
8995 if (prev == NULL)
8996 return obj->maps;
8997
8998 return __bpf_map__iter(prev, obj, 1);
8999 }
9000
9001 struct bpf_map *
bpf_map__prev(const struct bpf_map * next,const struct bpf_object * obj)9002 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj)
9003 {
9004 if (next == NULL) {
9005 if (!obj->nr_maps)
9006 return NULL;
9007 return obj->maps + obj->nr_maps - 1;
9008 }
9009
9010 return __bpf_map__iter(next, obj, -1);
9011 }
9012
9013 struct bpf_map *
bpf_object__find_map_by_name(const struct bpf_object * obj,const char * name)9014 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
9015 {
9016 struct bpf_map *pos;
9017
9018 bpf_object__for_each_map(pos, obj) {
9019 if (pos->name && !strcmp(pos->name, name))
9020 return pos;
9021 }
9022 return NULL;
9023 }
9024
9025 int
bpf_object__find_map_fd_by_name(const struct bpf_object * obj,const char * name)9026 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
9027 {
9028 return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
9029 }
9030
9031 struct bpf_map *
bpf_object__find_map_by_offset(struct bpf_object * obj,size_t offset)9032 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset)
9033 {
9034 return ERR_PTR(-ENOTSUP);
9035 }
9036
libbpf_get_error(const void * ptr)9037 long libbpf_get_error(const void *ptr)
9038 {
9039 return PTR_ERR_OR_ZERO(ptr);
9040 }
9041
bpf_prog_load(const char * file,enum bpf_prog_type type,struct bpf_object ** pobj,int * prog_fd)9042 int bpf_prog_load(const char *file, enum bpf_prog_type type,
9043 struct bpf_object **pobj, int *prog_fd)
9044 {
9045 struct bpf_prog_load_attr attr;
9046
9047 memset(&attr, 0, sizeof(struct bpf_prog_load_attr));
9048 attr.file = file;
9049 attr.prog_type = type;
9050 attr.expected_attach_type = 0;
9051
9052 return bpf_prog_load_xattr(&attr, pobj, prog_fd);
9053 }
9054
bpf_prog_load_xattr(const struct bpf_prog_load_attr * attr,struct bpf_object ** pobj,int * prog_fd)9055 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr,
9056 struct bpf_object **pobj, int *prog_fd)
9057 {
9058 struct bpf_object_open_attr open_attr = {};
9059 struct bpf_program *prog, *first_prog = NULL;
9060 struct bpf_object *obj;
9061 struct bpf_map *map;
9062 int err;
9063
9064 if (!attr)
9065 return -EINVAL;
9066 if (!attr->file)
9067 return -EINVAL;
9068
9069 open_attr.file = attr->file;
9070 open_attr.prog_type = attr->prog_type;
9071
9072 obj = bpf_object__open_xattr(&open_attr);
9073 if (IS_ERR_OR_NULL(obj))
9074 return -ENOENT;
9075
9076 bpf_object__for_each_program(prog, obj) {
9077 enum bpf_attach_type attach_type = attr->expected_attach_type;
9078 /*
9079 * to preserve backwards compatibility, bpf_prog_load treats
9080 * attr->prog_type, if specified, as an override to whatever
9081 * bpf_object__open guessed
9082 */
9083 if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) {
9084 bpf_program__set_type(prog, attr->prog_type);
9085 bpf_program__set_expected_attach_type(prog,
9086 attach_type);
9087 }
9088 if (bpf_program__get_type(prog) == BPF_PROG_TYPE_UNSPEC) {
9089 /*
9090 * we haven't guessed from section name and user
9091 * didn't provide a fallback type, too bad...
9092 */
9093 bpf_object__close(obj);
9094 return -EINVAL;
9095 }
9096
9097 prog->prog_ifindex = attr->ifindex;
9098 prog->log_level = attr->log_level;
9099 prog->prog_flags |= attr->prog_flags;
9100 if (!first_prog)
9101 first_prog = prog;
9102 }
9103
9104 bpf_object__for_each_map(map, obj) {
9105 if (!bpf_map__is_offload_neutral(map))
9106 map->map_ifindex = attr->ifindex;
9107 }
9108
9109 if (!first_prog) {
9110 pr_warn("object file doesn't contain bpf program\n");
9111 bpf_object__close(obj);
9112 return -ENOENT;
9113 }
9114
9115 err = bpf_object__load(obj);
9116 if (err) {
9117 bpf_object__close(obj);
9118 return err;
9119 }
9120
9121 *pobj = obj;
9122 *prog_fd = bpf_program__fd(first_prog);
9123 return 0;
9124 }
9125
9126 struct bpf_link {
9127 int (*detach)(struct bpf_link *link);
9128 int (*destroy)(struct bpf_link *link);
9129 char *pin_path; /* NULL, if not pinned */
9130 int fd; /* hook FD, -1 if not applicable */
9131 bool disconnected;
9132 };
9133
9134 /* Replace link's underlying BPF program with the new one */
bpf_link__update_program(struct bpf_link * link,struct bpf_program * prog)9135 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
9136 {
9137 return bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
9138 }
9139
9140 /* Release "ownership" of underlying BPF resource (typically, BPF program
9141 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
9142 * link, when destructed through bpf_link__destroy() call won't attempt to
9143 * detach/unregisted that BPF resource. This is useful in situations where,
9144 * say, attached BPF program has to outlive userspace program that attached it
9145 * in the system. Depending on type of BPF program, though, there might be
9146 * additional steps (like pinning BPF program in BPF FS) necessary to ensure
9147 * exit of userspace program doesn't trigger automatic detachment and clean up
9148 * inside the kernel.
9149 */
bpf_link__disconnect(struct bpf_link * link)9150 void bpf_link__disconnect(struct bpf_link *link)
9151 {
9152 link->disconnected = true;
9153 }
9154
bpf_link__destroy(struct bpf_link * link)9155 int bpf_link__destroy(struct bpf_link *link)
9156 {
9157 int err = 0;
9158
9159 if (IS_ERR_OR_NULL(link))
9160 return 0;
9161
9162 if (!link->disconnected && link->detach)
9163 err = link->detach(link);
9164 if (link->destroy)
9165 link->destroy(link);
9166 if (link->pin_path)
9167 free(link->pin_path);
9168 free(link);
9169
9170 return err;
9171 }
9172
bpf_link__fd(const struct bpf_link * link)9173 int bpf_link__fd(const struct bpf_link *link)
9174 {
9175 return link->fd;
9176 }
9177
bpf_link__pin_path(const struct bpf_link * link)9178 const char *bpf_link__pin_path(const struct bpf_link *link)
9179 {
9180 return link->pin_path;
9181 }
9182
bpf_link__detach_fd(struct bpf_link * link)9183 static int bpf_link__detach_fd(struct bpf_link *link)
9184 {
9185 return close(link->fd);
9186 }
9187
bpf_link__open(const char * path)9188 struct bpf_link *bpf_link__open(const char *path)
9189 {
9190 struct bpf_link *link;
9191 int fd;
9192
9193 fd = bpf_obj_get(path);
9194 if (fd < 0) {
9195 fd = -errno;
9196 pr_warn("failed to open link at %s: %d\n", path, fd);
9197 return ERR_PTR(fd);
9198 }
9199
9200 link = calloc(1, sizeof(*link));
9201 if (!link) {
9202 close(fd);
9203 return ERR_PTR(-ENOMEM);
9204 }
9205 link->detach = &bpf_link__detach_fd;
9206 link->fd = fd;
9207
9208 link->pin_path = strdup(path);
9209 if (!link->pin_path) {
9210 bpf_link__destroy(link);
9211 return ERR_PTR(-ENOMEM);
9212 }
9213
9214 return link;
9215 }
9216
bpf_link__detach(struct bpf_link * link)9217 int bpf_link__detach(struct bpf_link *link)
9218 {
9219 return bpf_link_detach(link->fd) ? -errno : 0;
9220 }
9221
bpf_link__pin(struct bpf_link * link,const char * path)9222 int bpf_link__pin(struct bpf_link *link, const char *path)
9223 {
9224 int err;
9225
9226 if (link->pin_path)
9227 return -EBUSY;
9228 err = make_parent_dir(path);
9229 if (err)
9230 return err;
9231 err = check_path(path);
9232 if (err)
9233 return err;
9234
9235 link->pin_path = strdup(path);
9236 if (!link->pin_path)
9237 return -ENOMEM;
9238
9239 if (bpf_obj_pin(link->fd, link->pin_path)) {
9240 err = -errno;
9241 zfree(&link->pin_path);
9242 return err;
9243 }
9244
9245 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
9246 return 0;
9247 }
9248
bpf_link__unpin(struct bpf_link * link)9249 int bpf_link__unpin(struct bpf_link *link)
9250 {
9251 int err;
9252
9253 if (!link->pin_path)
9254 return -EINVAL;
9255
9256 err = unlink(link->pin_path);
9257 if (err != 0)
9258 return -errno;
9259
9260 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
9261 zfree(&link->pin_path);
9262 return 0;
9263 }
9264
bpf_link__detach_perf_event(struct bpf_link * link)9265 static int bpf_link__detach_perf_event(struct bpf_link *link)
9266 {
9267 int err;
9268
9269 err = ioctl(link->fd, PERF_EVENT_IOC_DISABLE, 0);
9270 if (err)
9271 err = -errno;
9272
9273 close(link->fd);
9274 return err;
9275 }
9276
bpf_program__attach_perf_event(struct bpf_program * prog,int pfd)9277 struct bpf_link *bpf_program__attach_perf_event(struct bpf_program *prog,
9278 int pfd)
9279 {
9280 char errmsg[STRERR_BUFSIZE];
9281 struct bpf_link *link;
9282 int prog_fd, err;
9283
9284 if (pfd < 0) {
9285 pr_warn("prog '%s': invalid perf event FD %d\n",
9286 prog->name, pfd);
9287 return ERR_PTR(-EINVAL);
9288 }
9289 prog_fd = bpf_program__fd(prog);
9290 if (prog_fd < 0) {
9291 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
9292 prog->name);
9293 return ERR_PTR(-EINVAL);
9294 }
9295
9296 link = calloc(1, sizeof(*link));
9297 if (!link)
9298 return ERR_PTR(-ENOMEM);
9299 link->detach = &bpf_link__detach_perf_event;
9300 link->fd = pfd;
9301
9302 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
9303 err = -errno;
9304 free(link);
9305 pr_warn("prog '%s': failed to attach to pfd %d: %s\n",
9306 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9307 if (err == -EPROTO)
9308 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
9309 prog->name, pfd);
9310 return ERR_PTR(err);
9311 }
9312 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
9313 err = -errno;
9314 free(link);
9315 pr_warn("prog '%s': failed to enable pfd %d: %s\n",
9316 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9317 return ERR_PTR(err);
9318 }
9319 return link;
9320 }
9321
9322 /*
9323 * this function is expected to parse integer in the range of [0, 2^31-1] from
9324 * given file using scanf format string fmt. If actual parsed value is
9325 * negative, the result might be indistinguishable from error
9326 */
parse_uint_from_file(const char * file,const char * fmt)9327 static int parse_uint_from_file(const char *file, const char *fmt)
9328 {
9329 char buf[STRERR_BUFSIZE];
9330 int err, ret;
9331 FILE *f;
9332
9333 f = fopen(file, "r");
9334 if (!f) {
9335 err = -errno;
9336 pr_debug("failed to open '%s': %s\n", file,
9337 libbpf_strerror_r(err, buf, sizeof(buf)));
9338 return err;
9339 }
9340 err = fscanf(f, fmt, &ret);
9341 if (err != 1) {
9342 err = err == EOF ? -EIO : -errno;
9343 pr_debug("failed to parse '%s': %s\n", file,
9344 libbpf_strerror_r(err, buf, sizeof(buf)));
9345 fclose(f);
9346 return err;
9347 }
9348 fclose(f);
9349 return ret;
9350 }
9351
determine_kprobe_perf_type(void)9352 static int determine_kprobe_perf_type(void)
9353 {
9354 const char *file = "/sys/bus/event_source/devices/kprobe/type";
9355
9356 return parse_uint_from_file(file, "%d\n");
9357 }
9358
determine_uprobe_perf_type(void)9359 static int determine_uprobe_perf_type(void)
9360 {
9361 const char *file = "/sys/bus/event_source/devices/uprobe/type";
9362
9363 return parse_uint_from_file(file, "%d\n");
9364 }
9365
determine_kprobe_retprobe_bit(void)9366 static int determine_kprobe_retprobe_bit(void)
9367 {
9368 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
9369
9370 return parse_uint_from_file(file, "config:%d\n");
9371 }
9372
determine_uprobe_retprobe_bit(void)9373 static int determine_uprobe_retprobe_bit(void)
9374 {
9375 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
9376
9377 return parse_uint_from_file(file, "config:%d\n");
9378 }
9379
perf_event_open_probe(bool uprobe,bool retprobe,const char * name,uint64_t offset,int pid)9380 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
9381 uint64_t offset, int pid)
9382 {
9383 struct perf_event_attr attr = {};
9384 char errmsg[STRERR_BUFSIZE];
9385 int type, pfd, err;
9386
9387 type = uprobe ? determine_uprobe_perf_type()
9388 : determine_kprobe_perf_type();
9389 if (type < 0) {
9390 pr_warn("failed to determine %s perf type: %s\n",
9391 uprobe ? "uprobe" : "kprobe",
9392 libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
9393 return type;
9394 }
9395 if (retprobe) {
9396 int bit = uprobe ? determine_uprobe_retprobe_bit()
9397 : determine_kprobe_retprobe_bit();
9398
9399 if (bit < 0) {
9400 pr_warn("failed to determine %s retprobe bit: %s\n",
9401 uprobe ? "uprobe" : "kprobe",
9402 libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
9403 return bit;
9404 }
9405 attr.config |= 1 << bit;
9406 }
9407 attr.size = sizeof(attr);
9408 attr.type = type;
9409 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
9410 attr.config2 = offset; /* kprobe_addr or probe_offset */
9411
9412 /* pid filter is meaningful only for uprobes */
9413 pfd = syscall(__NR_perf_event_open, &attr,
9414 pid < 0 ? -1 : pid /* pid */,
9415 pid == -1 ? 0 : -1 /* cpu */,
9416 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
9417 if (pfd < 0) {
9418 err = -errno;
9419 pr_warn("%s perf_event_open() failed: %s\n",
9420 uprobe ? "uprobe" : "kprobe",
9421 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9422 return err;
9423 }
9424 return pfd;
9425 }
9426
bpf_program__attach_kprobe(struct bpf_program * prog,bool retprobe,const char * func_name)9427 struct bpf_link *bpf_program__attach_kprobe(struct bpf_program *prog,
9428 bool retprobe,
9429 const char *func_name)
9430 {
9431 char errmsg[STRERR_BUFSIZE];
9432 struct bpf_link *link;
9433 int pfd, err;
9434
9435 pfd = perf_event_open_probe(false /* uprobe */, retprobe, func_name,
9436 0 /* offset */, -1 /* pid */);
9437 if (pfd < 0) {
9438 pr_warn("prog '%s': failed to create %s '%s' perf event: %s\n",
9439 prog->name, retprobe ? "kretprobe" : "kprobe", func_name,
9440 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9441 return ERR_PTR(pfd);
9442 }
9443 link = bpf_program__attach_perf_event(prog, pfd);
9444 if (IS_ERR(link)) {
9445 close(pfd);
9446 err = PTR_ERR(link);
9447 pr_warn("prog '%s': failed to attach to %s '%s': %s\n",
9448 prog->name, retprobe ? "kretprobe" : "kprobe", func_name,
9449 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9450 return link;
9451 }
9452 return link;
9453 }
9454
attach_kprobe(const struct bpf_sec_def * sec,struct bpf_program * prog)9455 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec,
9456 struct bpf_program *prog)
9457 {
9458 const char *func_name;
9459 bool retprobe;
9460
9461 func_name = prog->sec_name + sec->len;
9462 retprobe = strcmp(sec->sec, "kretprobe/") == 0;
9463
9464 return bpf_program__attach_kprobe(prog, retprobe, func_name);
9465 }
9466
bpf_program__attach_uprobe(struct bpf_program * prog,bool retprobe,pid_t pid,const char * binary_path,size_t func_offset)9467 struct bpf_link *bpf_program__attach_uprobe(struct bpf_program *prog,
9468 bool retprobe, pid_t pid,
9469 const char *binary_path,
9470 size_t func_offset)
9471 {
9472 char errmsg[STRERR_BUFSIZE];
9473 struct bpf_link *link;
9474 int pfd, err;
9475
9476 pfd = perf_event_open_probe(true /* uprobe */, retprobe,
9477 binary_path, func_offset, pid);
9478 if (pfd < 0) {
9479 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
9480 prog->name, retprobe ? "uretprobe" : "uprobe",
9481 binary_path, func_offset,
9482 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9483 return ERR_PTR(pfd);
9484 }
9485 link = bpf_program__attach_perf_event(prog, pfd);
9486 if (IS_ERR(link)) {
9487 close(pfd);
9488 err = PTR_ERR(link);
9489 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
9490 prog->name, retprobe ? "uretprobe" : "uprobe",
9491 binary_path, func_offset,
9492 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9493 return link;
9494 }
9495 return link;
9496 }
9497
determine_tracepoint_id(const char * tp_category,const char * tp_name)9498 static int determine_tracepoint_id(const char *tp_category,
9499 const char *tp_name)
9500 {
9501 char file[PATH_MAX];
9502 int ret;
9503
9504 ret = snprintf(file, sizeof(file),
9505 "/sys/kernel/debug/tracing/events/%s/%s/id",
9506 tp_category, tp_name);
9507 if (ret < 0)
9508 return -errno;
9509 if (ret >= sizeof(file)) {
9510 pr_debug("tracepoint %s/%s path is too long\n",
9511 tp_category, tp_name);
9512 return -E2BIG;
9513 }
9514 return parse_uint_from_file(file, "%d\n");
9515 }
9516
perf_event_open_tracepoint(const char * tp_category,const char * tp_name)9517 static int perf_event_open_tracepoint(const char *tp_category,
9518 const char *tp_name)
9519 {
9520 struct perf_event_attr attr = {};
9521 char errmsg[STRERR_BUFSIZE];
9522 int tp_id, pfd, err;
9523
9524 tp_id = determine_tracepoint_id(tp_category, tp_name);
9525 if (tp_id < 0) {
9526 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
9527 tp_category, tp_name,
9528 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
9529 return tp_id;
9530 }
9531
9532 attr.type = PERF_TYPE_TRACEPOINT;
9533 attr.size = sizeof(attr);
9534 attr.config = tp_id;
9535
9536 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
9537 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
9538 if (pfd < 0) {
9539 err = -errno;
9540 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
9541 tp_category, tp_name,
9542 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9543 return err;
9544 }
9545 return pfd;
9546 }
9547
bpf_program__attach_tracepoint(struct bpf_program * prog,const char * tp_category,const char * tp_name)9548 struct bpf_link *bpf_program__attach_tracepoint(struct bpf_program *prog,
9549 const char *tp_category,
9550 const char *tp_name)
9551 {
9552 char errmsg[STRERR_BUFSIZE];
9553 struct bpf_link *link;
9554 int pfd, err;
9555
9556 pfd = perf_event_open_tracepoint(tp_category, tp_name);
9557 if (pfd < 0) {
9558 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
9559 prog->name, tp_category, tp_name,
9560 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9561 return ERR_PTR(pfd);
9562 }
9563 link = bpf_program__attach_perf_event(prog, pfd);
9564 if (IS_ERR(link)) {
9565 close(pfd);
9566 err = PTR_ERR(link);
9567 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
9568 prog->name, tp_category, tp_name,
9569 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9570 return link;
9571 }
9572 return link;
9573 }
9574
attach_tp(const struct bpf_sec_def * sec,struct bpf_program * prog)9575 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec,
9576 struct bpf_program *prog)
9577 {
9578 char *sec_name, *tp_cat, *tp_name;
9579 struct bpf_link *link;
9580
9581 sec_name = strdup(prog->sec_name);
9582 if (!sec_name)
9583 return ERR_PTR(-ENOMEM);
9584
9585 /* extract "tp/<category>/<name>" */
9586 tp_cat = sec_name + sec->len;
9587 tp_name = strchr(tp_cat, '/');
9588 if (!tp_name) {
9589 link = ERR_PTR(-EINVAL);
9590 goto out;
9591 }
9592 *tp_name = '\0';
9593 tp_name++;
9594
9595 link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
9596 out:
9597 free(sec_name);
9598 return link;
9599 }
9600
bpf_program__attach_raw_tracepoint(struct bpf_program * prog,const char * tp_name)9601 struct bpf_link *bpf_program__attach_raw_tracepoint(struct bpf_program *prog,
9602 const char *tp_name)
9603 {
9604 char errmsg[STRERR_BUFSIZE];
9605 struct bpf_link *link;
9606 int prog_fd, pfd;
9607
9608 prog_fd = bpf_program__fd(prog);
9609 if (prog_fd < 0) {
9610 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
9611 return ERR_PTR(-EINVAL);
9612 }
9613
9614 link = calloc(1, sizeof(*link));
9615 if (!link)
9616 return ERR_PTR(-ENOMEM);
9617 link->detach = &bpf_link__detach_fd;
9618
9619 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
9620 if (pfd < 0) {
9621 pfd = -errno;
9622 free(link);
9623 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
9624 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9625 return ERR_PTR(pfd);
9626 }
9627 link->fd = pfd;
9628 return link;
9629 }
9630
attach_raw_tp(const struct bpf_sec_def * sec,struct bpf_program * prog)9631 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec,
9632 struct bpf_program *prog)
9633 {
9634 const char *tp_name = prog->sec_name + sec->len;
9635
9636 return bpf_program__attach_raw_tracepoint(prog, tp_name);
9637 }
9638
9639 /* Common logic for all BPF program types that attach to a btf_id */
bpf_program__attach_btf_id(struct bpf_program * prog)9640 static struct bpf_link *bpf_program__attach_btf_id(struct bpf_program *prog)
9641 {
9642 char errmsg[STRERR_BUFSIZE];
9643 struct bpf_link *link;
9644 int prog_fd, pfd;
9645
9646 prog_fd = bpf_program__fd(prog);
9647 if (prog_fd < 0) {
9648 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
9649 return ERR_PTR(-EINVAL);
9650 }
9651
9652 link = calloc(1, sizeof(*link));
9653 if (!link)
9654 return ERR_PTR(-ENOMEM);
9655 link->detach = &bpf_link__detach_fd;
9656
9657 pfd = bpf_raw_tracepoint_open(NULL, prog_fd);
9658 if (pfd < 0) {
9659 pfd = -errno;
9660 free(link);
9661 pr_warn("prog '%s': failed to attach: %s\n",
9662 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9663 return ERR_PTR(pfd);
9664 }
9665 link->fd = pfd;
9666 return (struct bpf_link *)link;
9667 }
9668
bpf_program__attach_trace(struct bpf_program * prog)9669 struct bpf_link *bpf_program__attach_trace(struct bpf_program *prog)
9670 {
9671 return bpf_program__attach_btf_id(prog);
9672 }
9673
bpf_program__attach_lsm(struct bpf_program * prog)9674 struct bpf_link *bpf_program__attach_lsm(struct bpf_program *prog)
9675 {
9676 return bpf_program__attach_btf_id(prog);
9677 }
9678
attach_trace(const struct bpf_sec_def * sec,struct bpf_program * prog)9679 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec,
9680 struct bpf_program *prog)
9681 {
9682 return bpf_program__attach_trace(prog);
9683 }
9684
attach_lsm(const struct bpf_sec_def * sec,struct bpf_program * prog)9685 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec,
9686 struct bpf_program *prog)
9687 {
9688 return bpf_program__attach_lsm(prog);
9689 }
9690
attach_iter(const struct bpf_sec_def * sec,struct bpf_program * prog)9691 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec,
9692 struct bpf_program *prog)
9693 {
9694 return bpf_program__attach_iter(prog, NULL);
9695 }
9696
9697 static struct bpf_link *
bpf_program__attach_fd(struct bpf_program * prog,int target_fd,int btf_id,const char * target_name)9698 bpf_program__attach_fd(struct bpf_program *prog, int target_fd, int btf_id,
9699 const char *target_name)
9700 {
9701 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts,
9702 .target_btf_id = btf_id);
9703 enum bpf_attach_type attach_type;
9704 char errmsg[STRERR_BUFSIZE];
9705 struct bpf_link *link;
9706 int prog_fd, link_fd;
9707
9708 prog_fd = bpf_program__fd(prog);
9709 if (prog_fd < 0) {
9710 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
9711 return ERR_PTR(-EINVAL);
9712 }
9713
9714 link = calloc(1, sizeof(*link));
9715 if (!link)
9716 return ERR_PTR(-ENOMEM);
9717 link->detach = &bpf_link__detach_fd;
9718
9719 attach_type = bpf_program__get_expected_attach_type(prog);
9720 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts);
9721 if (link_fd < 0) {
9722 link_fd = -errno;
9723 free(link);
9724 pr_warn("prog '%s': failed to attach to %s: %s\n",
9725 prog->name, target_name,
9726 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
9727 return ERR_PTR(link_fd);
9728 }
9729 link->fd = link_fd;
9730 return link;
9731 }
9732
9733 struct bpf_link *
bpf_program__attach_cgroup(struct bpf_program * prog,int cgroup_fd)9734 bpf_program__attach_cgroup(struct bpf_program *prog, int cgroup_fd)
9735 {
9736 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup");
9737 }
9738
9739 struct bpf_link *
bpf_program__attach_netns(struct bpf_program * prog,int netns_fd)9740 bpf_program__attach_netns(struct bpf_program *prog, int netns_fd)
9741 {
9742 return bpf_program__attach_fd(prog, netns_fd, 0, "netns");
9743 }
9744
bpf_program__attach_xdp(struct bpf_program * prog,int ifindex)9745 struct bpf_link *bpf_program__attach_xdp(struct bpf_program *prog, int ifindex)
9746 {
9747 /* target_fd/target_ifindex use the same field in LINK_CREATE */
9748 return bpf_program__attach_fd(prog, ifindex, 0, "xdp");
9749 }
9750
bpf_program__attach_freplace(struct bpf_program * prog,int target_fd,const char * attach_func_name)9751 struct bpf_link *bpf_program__attach_freplace(struct bpf_program *prog,
9752 int target_fd,
9753 const char *attach_func_name)
9754 {
9755 int btf_id;
9756
9757 if (!!target_fd != !!attach_func_name) {
9758 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
9759 prog->name);
9760 return ERR_PTR(-EINVAL);
9761 }
9762
9763 if (prog->type != BPF_PROG_TYPE_EXT) {
9764 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
9765 prog->name);
9766 return ERR_PTR(-EINVAL);
9767 }
9768
9769 if (target_fd) {
9770 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
9771 if (btf_id < 0)
9772 return ERR_PTR(btf_id);
9773
9774 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace");
9775 } else {
9776 /* no target, so use raw_tracepoint_open for compatibility
9777 * with old kernels
9778 */
9779 return bpf_program__attach_trace(prog);
9780 }
9781 }
9782
9783 struct bpf_link *
bpf_program__attach_iter(struct bpf_program * prog,const struct bpf_iter_attach_opts * opts)9784 bpf_program__attach_iter(struct bpf_program *prog,
9785 const struct bpf_iter_attach_opts *opts)
9786 {
9787 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
9788 char errmsg[STRERR_BUFSIZE];
9789 struct bpf_link *link;
9790 int prog_fd, link_fd;
9791 __u32 target_fd = 0;
9792
9793 if (!OPTS_VALID(opts, bpf_iter_attach_opts))
9794 return ERR_PTR(-EINVAL);
9795
9796 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
9797 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
9798
9799 prog_fd = bpf_program__fd(prog);
9800 if (prog_fd < 0) {
9801 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
9802 return ERR_PTR(-EINVAL);
9803 }
9804
9805 link = calloc(1, sizeof(*link));
9806 if (!link)
9807 return ERR_PTR(-ENOMEM);
9808 link->detach = &bpf_link__detach_fd;
9809
9810 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
9811 &link_create_opts);
9812 if (link_fd < 0) {
9813 link_fd = -errno;
9814 free(link);
9815 pr_warn("prog '%s': failed to attach to iterator: %s\n",
9816 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
9817 return ERR_PTR(link_fd);
9818 }
9819 link->fd = link_fd;
9820 return link;
9821 }
9822
bpf_program__attach(struct bpf_program * prog)9823 struct bpf_link *bpf_program__attach(struct bpf_program *prog)
9824 {
9825 const struct bpf_sec_def *sec_def;
9826
9827 sec_def = find_sec_def(prog->sec_name);
9828 if (!sec_def || !sec_def->attach_fn)
9829 return ERR_PTR(-ESRCH);
9830
9831 return sec_def->attach_fn(sec_def, prog);
9832 }
9833
bpf_link__detach_struct_ops(struct bpf_link * link)9834 static int bpf_link__detach_struct_ops(struct bpf_link *link)
9835 {
9836 __u32 zero = 0;
9837
9838 if (bpf_map_delete_elem(link->fd, &zero))
9839 return -errno;
9840
9841 return 0;
9842 }
9843
bpf_map__attach_struct_ops(struct bpf_map * map)9844 struct bpf_link *bpf_map__attach_struct_ops(struct bpf_map *map)
9845 {
9846 struct bpf_struct_ops *st_ops;
9847 struct bpf_link *link;
9848 __u32 i, zero = 0;
9849 int err;
9850
9851 if (!bpf_map__is_struct_ops(map) || map->fd == -1)
9852 return ERR_PTR(-EINVAL);
9853
9854 link = calloc(1, sizeof(*link));
9855 if (!link)
9856 return ERR_PTR(-EINVAL);
9857
9858 st_ops = map->st_ops;
9859 for (i = 0; i < btf_vlen(st_ops->type); i++) {
9860 struct bpf_program *prog = st_ops->progs[i];
9861 void *kern_data;
9862 int prog_fd;
9863
9864 if (!prog)
9865 continue;
9866
9867 prog_fd = bpf_program__fd(prog);
9868 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
9869 *(unsigned long *)kern_data = prog_fd;
9870 }
9871
9872 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0);
9873 if (err) {
9874 err = -errno;
9875 free(link);
9876 return ERR_PTR(err);
9877 }
9878
9879 link->detach = bpf_link__detach_struct_ops;
9880 link->fd = map->fd;
9881
9882 return link;
9883 }
9884
9885 enum bpf_perf_event_ret
bpf_perf_event_read_simple(void * mmap_mem,size_t mmap_size,size_t page_size,void ** copy_mem,size_t * copy_size,bpf_perf_event_print_t fn,void * private_data)9886 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
9887 void **copy_mem, size_t *copy_size,
9888 bpf_perf_event_print_t fn, void *private_data)
9889 {
9890 struct perf_event_mmap_page *header = mmap_mem;
9891 __u64 data_head = ring_buffer_read_head(header);
9892 __u64 data_tail = header->data_tail;
9893 void *base = ((__u8 *)header) + page_size;
9894 int ret = LIBBPF_PERF_EVENT_CONT;
9895 struct perf_event_header *ehdr;
9896 size_t ehdr_size;
9897
9898 while (data_head != data_tail) {
9899 ehdr = base + (data_tail & (mmap_size - 1));
9900 ehdr_size = ehdr->size;
9901
9902 if (((void *)ehdr) + ehdr_size > base + mmap_size) {
9903 void *copy_start = ehdr;
9904 size_t len_first = base + mmap_size - copy_start;
9905 size_t len_secnd = ehdr_size - len_first;
9906
9907 if (*copy_size < ehdr_size) {
9908 free(*copy_mem);
9909 *copy_mem = malloc(ehdr_size);
9910 if (!*copy_mem) {
9911 *copy_size = 0;
9912 ret = LIBBPF_PERF_EVENT_ERROR;
9913 break;
9914 }
9915 *copy_size = ehdr_size;
9916 }
9917
9918 memcpy(*copy_mem, copy_start, len_first);
9919 memcpy(*copy_mem + len_first, base, len_secnd);
9920 ehdr = *copy_mem;
9921 }
9922
9923 ret = fn(ehdr, private_data);
9924 data_tail += ehdr_size;
9925 if (ret != LIBBPF_PERF_EVENT_CONT)
9926 break;
9927 }
9928
9929 ring_buffer_write_tail(header, data_tail);
9930 return ret;
9931 }
9932
9933 struct perf_buffer;
9934
9935 struct perf_buffer_params {
9936 struct perf_event_attr *attr;
9937 /* if event_cb is specified, it takes precendence */
9938 perf_buffer_event_fn event_cb;
9939 /* sample_cb and lost_cb are higher-level common-case callbacks */
9940 perf_buffer_sample_fn sample_cb;
9941 perf_buffer_lost_fn lost_cb;
9942 void *ctx;
9943 int cpu_cnt;
9944 int *cpus;
9945 int *map_keys;
9946 };
9947
9948 struct perf_cpu_buf {
9949 struct perf_buffer *pb;
9950 void *base; /* mmap()'ed memory */
9951 void *buf; /* for reconstructing segmented data */
9952 size_t buf_size;
9953 int fd;
9954 int cpu;
9955 int map_key;
9956 };
9957
9958 struct perf_buffer {
9959 perf_buffer_event_fn event_cb;
9960 perf_buffer_sample_fn sample_cb;
9961 perf_buffer_lost_fn lost_cb;
9962 void *ctx; /* passed into callbacks */
9963
9964 size_t page_size;
9965 size_t mmap_size;
9966 struct perf_cpu_buf **cpu_bufs;
9967 struct epoll_event *events;
9968 int cpu_cnt; /* number of allocated CPU buffers */
9969 int epoll_fd; /* perf event FD */
9970 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
9971 };
9972
perf_buffer__free_cpu_buf(struct perf_buffer * pb,struct perf_cpu_buf * cpu_buf)9973 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
9974 struct perf_cpu_buf *cpu_buf)
9975 {
9976 if (!cpu_buf)
9977 return;
9978 if (cpu_buf->base &&
9979 munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
9980 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
9981 if (cpu_buf->fd >= 0) {
9982 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
9983 close(cpu_buf->fd);
9984 }
9985 free(cpu_buf->buf);
9986 free(cpu_buf);
9987 }
9988
perf_buffer__free(struct perf_buffer * pb)9989 void perf_buffer__free(struct perf_buffer *pb)
9990 {
9991 int i;
9992
9993 if (IS_ERR_OR_NULL(pb))
9994 return;
9995 if (pb->cpu_bufs) {
9996 for (i = 0; i < pb->cpu_cnt; i++) {
9997 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
9998
9999 if (!cpu_buf)
10000 continue;
10001
10002 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
10003 perf_buffer__free_cpu_buf(pb, cpu_buf);
10004 }
10005 free(pb->cpu_bufs);
10006 }
10007 if (pb->epoll_fd >= 0)
10008 close(pb->epoll_fd);
10009 free(pb->events);
10010 free(pb);
10011 }
10012
10013 static struct perf_cpu_buf *
perf_buffer__open_cpu_buf(struct perf_buffer * pb,struct perf_event_attr * attr,int cpu,int map_key)10014 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
10015 int cpu, int map_key)
10016 {
10017 struct perf_cpu_buf *cpu_buf;
10018 char msg[STRERR_BUFSIZE];
10019 int err;
10020
10021 cpu_buf = calloc(1, sizeof(*cpu_buf));
10022 if (!cpu_buf)
10023 return ERR_PTR(-ENOMEM);
10024
10025 cpu_buf->pb = pb;
10026 cpu_buf->cpu = cpu;
10027 cpu_buf->map_key = map_key;
10028
10029 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
10030 -1, PERF_FLAG_FD_CLOEXEC);
10031 if (cpu_buf->fd < 0) {
10032 err = -errno;
10033 pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
10034 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
10035 goto error;
10036 }
10037
10038 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
10039 PROT_READ | PROT_WRITE, MAP_SHARED,
10040 cpu_buf->fd, 0);
10041 if (cpu_buf->base == MAP_FAILED) {
10042 cpu_buf->base = NULL;
10043 err = -errno;
10044 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
10045 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
10046 goto error;
10047 }
10048
10049 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10050 err = -errno;
10051 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
10052 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
10053 goto error;
10054 }
10055
10056 return cpu_buf;
10057
10058 error:
10059 perf_buffer__free_cpu_buf(pb, cpu_buf);
10060 return (struct perf_cpu_buf *)ERR_PTR(err);
10061 }
10062
10063 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
10064 struct perf_buffer_params *p);
10065
perf_buffer__new(int map_fd,size_t page_cnt,const struct perf_buffer_opts * opts)10066 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
10067 const struct perf_buffer_opts *opts)
10068 {
10069 struct perf_buffer_params p = {};
10070 struct perf_event_attr attr = { 0, };
10071
10072 attr.config = PERF_COUNT_SW_BPF_OUTPUT;
10073 attr.type = PERF_TYPE_SOFTWARE;
10074 attr.sample_type = PERF_SAMPLE_RAW;
10075 attr.sample_period = 1;
10076 attr.wakeup_events = 1;
10077
10078 p.attr = &attr;
10079 p.sample_cb = opts ? opts->sample_cb : NULL;
10080 p.lost_cb = opts ? opts->lost_cb : NULL;
10081 p.ctx = opts ? opts->ctx : NULL;
10082
10083 return __perf_buffer__new(map_fd, page_cnt, &p);
10084 }
10085
10086 struct perf_buffer *
perf_buffer__new_raw(int map_fd,size_t page_cnt,const struct perf_buffer_raw_opts * opts)10087 perf_buffer__new_raw(int map_fd, size_t page_cnt,
10088 const struct perf_buffer_raw_opts *opts)
10089 {
10090 struct perf_buffer_params p = {};
10091
10092 p.attr = opts->attr;
10093 p.event_cb = opts->event_cb;
10094 p.ctx = opts->ctx;
10095 p.cpu_cnt = opts->cpu_cnt;
10096 p.cpus = opts->cpus;
10097 p.map_keys = opts->map_keys;
10098
10099 return __perf_buffer__new(map_fd, page_cnt, &p);
10100 }
10101
__perf_buffer__new(int map_fd,size_t page_cnt,struct perf_buffer_params * p)10102 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
10103 struct perf_buffer_params *p)
10104 {
10105 const char *online_cpus_file = "/sys/devices/system/cpu/online";
10106 struct bpf_map_info map;
10107 char msg[STRERR_BUFSIZE];
10108 struct perf_buffer *pb;
10109 bool *online = NULL;
10110 __u32 map_info_len;
10111 int err, i, j, n;
10112
10113 if (page_cnt & (page_cnt - 1)) {
10114 pr_warn("page count should be power of two, but is %zu\n",
10115 page_cnt);
10116 return ERR_PTR(-EINVAL);
10117 }
10118
10119 /* best-effort sanity checks */
10120 memset(&map, 0, sizeof(map));
10121 map_info_len = sizeof(map);
10122 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len);
10123 if (err) {
10124 err = -errno;
10125 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
10126 * -EBADFD, -EFAULT, or -E2BIG on real error
10127 */
10128 if (err != -EINVAL) {
10129 pr_warn("failed to get map info for map FD %d: %s\n",
10130 map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
10131 return ERR_PTR(err);
10132 }
10133 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
10134 map_fd);
10135 } else {
10136 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
10137 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
10138 map.name);
10139 return ERR_PTR(-EINVAL);
10140 }
10141 }
10142
10143 pb = calloc(1, sizeof(*pb));
10144 if (!pb)
10145 return ERR_PTR(-ENOMEM);
10146
10147 pb->event_cb = p->event_cb;
10148 pb->sample_cb = p->sample_cb;
10149 pb->lost_cb = p->lost_cb;
10150 pb->ctx = p->ctx;
10151
10152 pb->page_size = getpagesize();
10153 pb->mmap_size = pb->page_size * page_cnt;
10154 pb->map_fd = map_fd;
10155
10156 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
10157 if (pb->epoll_fd < 0) {
10158 err = -errno;
10159 pr_warn("failed to create epoll instance: %s\n",
10160 libbpf_strerror_r(err, msg, sizeof(msg)));
10161 goto error;
10162 }
10163
10164 if (p->cpu_cnt > 0) {
10165 pb->cpu_cnt = p->cpu_cnt;
10166 } else {
10167 pb->cpu_cnt = libbpf_num_possible_cpus();
10168 if (pb->cpu_cnt < 0) {
10169 err = pb->cpu_cnt;
10170 goto error;
10171 }
10172 if (map.max_entries && map.max_entries < pb->cpu_cnt)
10173 pb->cpu_cnt = map.max_entries;
10174 }
10175
10176 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
10177 if (!pb->events) {
10178 err = -ENOMEM;
10179 pr_warn("failed to allocate events: out of memory\n");
10180 goto error;
10181 }
10182 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
10183 if (!pb->cpu_bufs) {
10184 err = -ENOMEM;
10185 pr_warn("failed to allocate buffers: out of memory\n");
10186 goto error;
10187 }
10188
10189 err = parse_cpu_mask_file(online_cpus_file, &online, &n);
10190 if (err) {
10191 pr_warn("failed to get online CPU mask: %d\n", err);
10192 goto error;
10193 }
10194
10195 for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
10196 struct perf_cpu_buf *cpu_buf;
10197 int cpu, map_key;
10198
10199 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
10200 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
10201
10202 /* in case user didn't explicitly requested particular CPUs to
10203 * be attached to, skip offline/not present CPUs
10204 */
10205 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
10206 continue;
10207
10208 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
10209 if (IS_ERR(cpu_buf)) {
10210 err = PTR_ERR(cpu_buf);
10211 goto error;
10212 }
10213
10214 pb->cpu_bufs[j] = cpu_buf;
10215
10216 err = bpf_map_update_elem(pb->map_fd, &map_key,
10217 &cpu_buf->fd, 0);
10218 if (err) {
10219 err = -errno;
10220 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
10221 cpu, map_key, cpu_buf->fd,
10222 libbpf_strerror_r(err, msg, sizeof(msg)));
10223 goto error;
10224 }
10225
10226 pb->events[j].events = EPOLLIN;
10227 pb->events[j].data.ptr = cpu_buf;
10228 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
10229 &pb->events[j]) < 0) {
10230 err = -errno;
10231 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
10232 cpu, cpu_buf->fd,
10233 libbpf_strerror_r(err, msg, sizeof(msg)));
10234 goto error;
10235 }
10236 j++;
10237 }
10238 pb->cpu_cnt = j;
10239 free(online);
10240
10241 return pb;
10242
10243 error:
10244 free(online);
10245 if (pb)
10246 perf_buffer__free(pb);
10247 return ERR_PTR(err);
10248 }
10249
10250 struct perf_sample_raw {
10251 struct perf_event_header header;
10252 uint32_t size;
10253 char data[];
10254 };
10255
10256 struct perf_sample_lost {
10257 struct perf_event_header header;
10258 uint64_t id;
10259 uint64_t lost;
10260 uint64_t sample_id;
10261 };
10262
10263 static enum bpf_perf_event_ret
perf_buffer__process_record(struct perf_event_header * e,void * ctx)10264 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
10265 {
10266 struct perf_cpu_buf *cpu_buf = ctx;
10267 struct perf_buffer *pb = cpu_buf->pb;
10268 void *data = e;
10269
10270 /* user wants full control over parsing perf event */
10271 if (pb->event_cb)
10272 return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
10273
10274 switch (e->type) {
10275 case PERF_RECORD_SAMPLE: {
10276 struct perf_sample_raw *s = data;
10277
10278 if (pb->sample_cb)
10279 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
10280 break;
10281 }
10282 case PERF_RECORD_LOST: {
10283 struct perf_sample_lost *s = data;
10284
10285 if (pb->lost_cb)
10286 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
10287 break;
10288 }
10289 default:
10290 pr_warn("unknown perf sample type %d\n", e->type);
10291 return LIBBPF_PERF_EVENT_ERROR;
10292 }
10293 return LIBBPF_PERF_EVENT_CONT;
10294 }
10295
perf_buffer__process_records(struct perf_buffer * pb,struct perf_cpu_buf * cpu_buf)10296 static int perf_buffer__process_records(struct perf_buffer *pb,
10297 struct perf_cpu_buf *cpu_buf)
10298 {
10299 enum bpf_perf_event_ret ret;
10300
10301 ret = bpf_perf_event_read_simple(cpu_buf->base, pb->mmap_size,
10302 pb->page_size, &cpu_buf->buf,
10303 &cpu_buf->buf_size,
10304 perf_buffer__process_record, cpu_buf);
10305 if (ret != LIBBPF_PERF_EVENT_CONT)
10306 return ret;
10307 return 0;
10308 }
10309
perf_buffer__epoll_fd(const struct perf_buffer * pb)10310 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
10311 {
10312 return pb->epoll_fd;
10313 }
10314
perf_buffer__poll(struct perf_buffer * pb,int timeout_ms)10315 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
10316 {
10317 int i, cnt, err;
10318
10319 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
10320 for (i = 0; i < cnt; i++) {
10321 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
10322
10323 err = perf_buffer__process_records(pb, cpu_buf);
10324 if (err) {
10325 pr_warn("error while processing records: %d\n", err);
10326 return err;
10327 }
10328 }
10329 return cnt < 0 ? -errno : cnt;
10330 }
10331
10332 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
10333 * manager.
10334 */
perf_buffer__buffer_cnt(const struct perf_buffer * pb)10335 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
10336 {
10337 return pb->cpu_cnt;
10338 }
10339
10340 /*
10341 * Return perf_event FD of a ring buffer in *buf_idx* slot of
10342 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
10343 * select()/poll()/epoll() Linux syscalls.
10344 */
perf_buffer__buffer_fd(const struct perf_buffer * pb,size_t buf_idx)10345 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
10346 {
10347 struct perf_cpu_buf *cpu_buf;
10348
10349 if (buf_idx >= pb->cpu_cnt)
10350 return -EINVAL;
10351
10352 cpu_buf = pb->cpu_bufs[buf_idx];
10353 if (!cpu_buf)
10354 return -ENOENT;
10355
10356 return cpu_buf->fd;
10357 }
10358
10359 /*
10360 * Consume data from perf ring buffer corresponding to slot *buf_idx* in
10361 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
10362 * consume, do nothing and return success.
10363 * Returns:
10364 * - 0 on success;
10365 * - <0 on failure.
10366 */
perf_buffer__consume_buffer(struct perf_buffer * pb,size_t buf_idx)10367 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
10368 {
10369 struct perf_cpu_buf *cpu_buf;
10370
10371 if (buf_idx >= pb->cpu_cnt)
10372 return -EINVAL;
10373
10374 cpu_buf = pb->cpu_bufs[buf_idx];
10375 if (!cpu_buf)
10376 return -ENOENT;
10377
10378 return perf_buffer__process_records(pb, cpu_buf);
10379 }
10380
perf_buffer__consume(struct perf_buffer * pb)10381 int perf_buffer__consume(struct perf_buffer *pb)
10382 {
10383 int i, err;
10384
10385 for (i = 0; i < pb->cpu_cnt; i++) {
10386 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
10387
10388 if (!cpu_buf)
10389 continue;
10390
10391 err = perf_buffer__process_records(pb, cpu_buf);
10392 if (err) {
10393 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
10394 return err;
10395 }
10396 }
10397 return 0;
10398 }
10399
10400 struct bpf_prog_info_array_desc {
10401 int array_offset; /* e.g. offset of jited_prog_insns */
10402 int count_offset; /* e.g. offset of jited_prog_len */
10403 int size_offset; /* > 0: offset of rec size,
10404 * < 0: fix size of -size_offset
10405 */
10406 };
10407
10408 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = {
10409 [BPF_PROG_INFO_JITED_INSNS] = {
10410 offsetof(struct bpf_prog_info, jited_prog_insns),
10411 offsetof(struct bpf_prog_info, jited_prog_len),
10412 -1,
10413 },
10414 [BPF_PROG_INFO_XLATED_INSNS] = {
10415 offsetof(struct bpf_prog_info, xlated_prog_insns),
10416 offsetof(struct bpf_prog_info, xlated_prog_len),
10417 -1,
10418 },
10419 [BPF_PROG_INFO_MAP_IDS] = {
10420 offsetof(struct bpf_prog_info, map_ids),
10421 offsetof(struct bpf_prog_info, nr_map_ids),
10422 -(int)sizeof(__u32),
10423 },
10424 [BPF_PROG_INFO_JITED_KSYMS] = {
10425 offsetof(struct bpf_prog_info, jited_ksyms),
10426 offsetof(struct bpf_prog_info, nr_jited_ksyms),
10427 -(int)sizeof(__u64),
10428 },
10429 [BPF_PROG_INFO_JITED_FUNC_LENS] = {
10430 offsetof(struct bpf_prog_info, jited_func_lens),
10431 offsetof(struct bpf_prog_info, nr_jited_func_lens),
10432 -(int)sizeof(__u32),
10433 },
10434 [BPF_PROG_INFO_FUNC_INFO] = {
10435 offsetof(struct bpf_prog_info, func_info),
10436 offsetof(struct bpf_prog_info, nr_func_info),
10437 offsetof(struct bpf_prog_info, func_info_rec_size),
10438 },
10439 [BPF_PROG_INFO_LINE_INFO] = {
10440 offsetof(struct bpf_prog_info, line_info),
10441 offsetof(struct bpf_prog_info, nr_line_info),
10442 offsetof(struct bpf_prog_info, line_info_rec_size),
10443 },
10444 [BPF_PROG_INFO_JITED_LINE_INFO] = {
10445 offsetof(struct bpf_prog_info, jited_line_info),
10446 offsetof(struct bpf_prog_info, nr_jited_line_info),
10447 offsetof(struct bpf_prog_info, jited_line_info_rec_size),
10448 },
10449 [BPF_PROG_INFO_PROG_TAGS] = {
10450 offsetof(struct bpf_prog_info, prog_tags),
10451 offsetof(struct bpf_prog_info, nr_prog_tags),
10452 -(int)sizeof(__u8) * BPF_TAG_SIZE,
10453 },
10454
10455 };
10456
bpf_prog_info_read_offset_u32(struct bpf_prog_info * info,int offset)10457 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info,
10458 int offset)
10459 {
10460 __u32 *array = (__u32 *)info;
10461
10462 if (offset >= 0)
10463 return array[offset / sizeof(__u32)];
10464 return -(int)offset;
10465 }
10466
bpf_prog_info_read_offset_u64(struct bpf_prog_info * info,int offset)10467 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info,
10468 int offset)
10469 {
10470 __u64 *array = (__u64 *)info;
10471
10472 if (offset >= 0)
10473 return array[offset / sizeof(__u64)];
10474 return -(int)offset;
10475 }
10476
bpf_prog_info_set_offset_u32(struct bpf_prog_info * info,int offset,__u32 val)10477 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset,
10478 __u32 val)
10479 {
10480 __u32 *array = (__u32 *)info;
10481
10482 if (offset >= 0)
10483 array[offset / sizeof(__u32)] = val;
10484 }
10485
bpf_prog_info_set_offset_u64(struct bpf_prog_info * info,int offset,__u64 val)10486 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset,
10487 __u64 val)
10488 {
10489 __u64 *array = (__u64 *)info;
10490
10491 if (offset >= 0)
10492 array[offset / sizeof(__u64)] = val;
10493 }
10494
10495 struct bpf_prog_info_linear *
bpf_program__get_prog_info_linear(int fd,__u64 arrays)10496 bpf_program__get_prog_info_linear(int fd, __u64 arrays)
10497 {
10498 struct bpf_prog_info_linear *info_linear;
10499 struct bpf_prog_info info = {};
10500 __u32 info_len = sizeof(info);
10501 __u32 data_len = 0;
10502 int i, err;
10503 void *ptr;
10504
10505 if (arrays >> BPF_PROG_INFO_LAST_ARRAY)
10506 return ERR_PTR(-EINVAL);
10507
10508 /* step 1: get array dimensions */
10509 err = bpf_obj_get_info_by_fd(fd, &info, &info_len);
10510 if (err) {
10511 pr_debug("can't get prog info: %s", strerror(errno));
10512 return ERR_PTR(-EFAULT);
10513 }
10514
10515 /* step 2: calculate total size of all arrays */
10516 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10517 bool include_array = (arrays & (1UL << i)) > 0;
10518 struct bpf_prog_info_array_desc *desc;
10519 __u32 count, size;
10520
10521 desc = bpf_prog_info_array_desc + i;
10522
10523 /* kernel is too old to support this field */
10524 if (info_len < desc->array_offset + sizeof(__u32) ||
10525 info_len < desc->count_offset + sizeof(__u32) ||
10526 (desc->size_offset > 0 && info_len < desc->size_offset))
10527 include_array = false;
10528
10529 if (!include_array) {
10530 arrays &= ~(1UL << i); /* clear the bit */
10531 continue;
10532 }
10533
10534 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
10535 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
10536
10537 data_len += count * size;
10538 }
10539
10540 /* step 3: allocate continuous memory */
10541 data_len = roundup(data_len, sizeof(__u64));
10542 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len);
10543 if (!info_linear)
10544 return ERR_PTR(-ENOMEM);
10545
10546 /* step 4: fill data to info_linear->info */
10547 info_linear->arrays = arrays;
10548 memset(&info_linear->info, 0, sizeof(info));
10549 ptr = info_linear->data;
10550
10551 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10552 struct bpf_prog_info_array_desc *desc;
10553 __u32 count, size;
10554
10555 if ((arrays & (1UL << i)) == 0)
10556 continue;
10557
10558 desc = bpf_prog_info_array_desc + i;
10559 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
10560 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
10561 bpf_prog_info_set_offset_u32(&info_linear->info,
10562 desc->count_offset, count);
10563 bpf_prog_info_set_offset_u32(&info_linear->info,
10564 desc->size_offset, size);
10565 bpf_prog_info_set_offset_u64(&info_linear->info,
10566 desc->array_offset,
10567 ptr_to_u64(ptr));
10568 ptr += count * size;
10569 }
10570
10571 /* step 5: call syscall again to get required arrays */
10572 err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len);
10573 if (err) {
10574 pr_debug("can't get prog info: %s", strerror(errno));
10575 free(info_linear);
10576 return ERR_PTR(-EFAULT);
10577 }
10578
10579 /* step 6: verify the data */
10580 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10581 struct bpf_prog_info_array_desc *desc;
10582 __u32 v1, v2;
10583
10584 if ((arrays & (1UL << i)) == 0)
10585 continue;
10586
10587 desc = bpf_prog_info_array_desc + i;
10588 v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
10589 v2 = bpf_prog_info_read_offset_u32(&info_linear->info,
10590 desc->count_offset);
10591 if (v1 != v2)
10592 pr_warn("%s: mismatch in element count\n", __func__);
10593
10594 v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
10595 v2 = bpf_prog_info_read_offset_u32(&info_linear->info,
10596 desc->size_offset);
10597 if (v1 != v2)
10598 pr_warn("%s: mismatch in rec size\n", __func__);
10599 }
10600
10601 /* step 7: update info_len and data_len */
10602 info_linear->info_len = sizeof(struct bpf_prog_info);
10603 info_linear->data_len = data_len;
10604
10605 return info_linear;
10606 }
10607
bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear * info_linear)10608 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear)
10609 {
10610 int i;
10611
10612 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10613 struct bpf_prog_info_array_desc *desc;
10614 __u64 addr, offs;
10615
10616 if ((info_linear->arrays & (1UL << i)) == 0)
10617 continue;
10618
10619 desc = bpf_prog_info_array_desc + i;
10620 addr = bpf_prog_info_read_offset_u64(&info_linear->info,
10621 desc->array_offset);
10622 offs = addr - ptr_to_u64(info_linear->data);
10623 bpf_prog_info_set_offset_u64(&info_linear->info,
10624 desc->array_offset, offs);
10625 }
10626 }
10627
bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear * info_linear)10628 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear)
10629 {
10630 int i;
10631
10632 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10633 struct bpf_prog_info_array_desc *desc;
10634 __u64 addr, offs;
10635
10636 if ((info_linear->arrays & (1UL << i)) == 0)
10637 continue;
10638
10639 desc = bpf_prog_info_array_desc + i;
10640 offs = bpf_prog_info_read_offset_u64(&info_linear->info,
10641 desc->array_offset);
10642 addr = offs + ptr_to_u64(info_linear->data);
10643 bpf_prog_info_set_offset_u64(&info_linear->info,
10644 desc->array_offset, addr);
10645 }
10646 }
10647
bpf_program__set_attach_target(struct bpf_program * prog,int attach_prog_fd,const char * attach_func_name)10648 int bpf_program__set_attach_target(struct bpf_program *prog,
10649 int attach_prog_fd,
10650 const char *attach_func_name)
10651 {
10652 int btf_id;
10653
10654 if (!prog || attach_prog_fd < 0 || !attach_func_name)
10655 return -EINVAL;
10656
10657 if (attach_prog_fd)
10658 btf_id = libbpf_find_prog_btf_id(attach_func_name,
10659 attach_prog_fd);
10660 else
10661 btf_id = libbpf_find_vmlinux_btf_id(attach_func_name,
10662 prog->expected_attach_type);
10663
10664 if (btf_id < 0)
10665 return btf_id;
10666
10667 prog->attach_btf_id = btf_id;
10668 prog->attach_prog_fd = attach_prog_fd;
10669 return 0;
10670 }
10671
parse_cpu_mask_str(const char * s,bool ** mask,int * mask_sz)10672 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
10673 {
10674 int err = 0, n, len, start, end = -1;
10675 bool *tmp;
10676
10677 *mask = NULL;
10678 *mask_sz = 0;
10679
10680 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */
10681 while (*s) {
10682 if (*s == ',' || *s == '\n') {
10683 s++;
10684 continue;
10685 }
10686 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
10687 if (n <= 0 || n > 2) {
10688 pr_warn("Failed to get CPU range %s: %d\n", s, n);
10689 err = -EINVAL;
10690 goto cleanup;
10691 } else if (n == 1) {
10692 end = start;
10693 }
10694 if (start < 0 || start > end) {
10695 pr_warn("Invalid CPU range [%d,%d] in %s\n",
10696 start, end, s);
10697 err = -EINVAL;
10698 goto cleanup;
10699 }
10700 tmp = realloc(*mask, end + 1);
10701 if (!tmp) {
10702 err = -ENOMEM;
10703 goto cleanup;
10704 }
10705 *mask = tmp;
10706 memset(tmp + *mask_sz, 0, start - *mask_sz);
10707 memset(tmp + start, 1, end - start + 1);
10708 *mask_sz = end + 1;
10709 s += len;
10710 }
10711 if (!*mask_sz) {
10712 pr_warn("Empty CPU range\n");
10713 return -EINVAL;
10714 }
10715 return 0;
10716 cleanup:
10717 free(*mask);
10718 *mask = NULL;
10719 return err;
10720 }
10721
parse_cpu_mask_file(const char * fcpu,bool ** mask,int * mask_sz)10722 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
10723 {
10724 int fd, err = 0, len;
10725 char buf[128];
10726
10727 fd = open(fcpu, O_RDONLY);
10728 if (fd < 0) {
10729 err = -errno;
10730 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
10731 return err;
10732 }
10733 len = read(fd, buf, sizeof(buf));
10734 close(fd);
10735 if (len <= 0) {
10736 err = len ? -errno : -EINVAL;
10737 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
10738 return err;
10739 }
10740 if (len >= sizeof(buf)) {
10741 pr_warn("CPU mask is too big in file %s\n", fcpu);
10742 return -E2BIG;
10743 }
10744 buf[len] = '\0';
10745
10746 return parse_cpu_mask_str(buf, mask, mask_sz);
10747 }
10748
libbpf_num_possible_cpus(void)10749 int libbpf_num_possible_cpus(void)
10750 {
10751 static const char *fcpu = "/sys/devices/system/cpu/possible";
10752 static int cpus;
10753 int err, n, i, tmp_cpus;
10754 bool *mask;
10755
10756 tmp_cpus = READ_ONCE(cpus);
10757 if (tmp_cpus > 0)
10758 return tmp_cpus;
10759
10760 err = parse_cpu_mask_file(fcpu, &mask, &n);
10761 if (err)
10762 return err;
10763
10764 tmp_cpus = 0;
10765 for (i = 0; i < n; i++) {
10766 if (mask[i])
10767 tmp_cpus++;
10768 }
10769 free(mask);
10770
10771 WRITE_ONCE(cpus, tmp_cpus);
10772 return tmp_cpus;
10773 }
10774
bpf_object__open_skeleton(struct bpf_object_skeleton * s,const struct bpf_object_open_opts * opts)10775 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
10776 const struct bpf_object_open_opts *opts)
10777 {
10778 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
10779 .object_name = s->name,
10780 );
10781 struct bpf_object *obj;
10782 int i;
10783
10784 /* Attempt to preserve opts->object_name, unless overriden by user
10785 * explicitly. Overwriting object name for skeletons is discouraged,
10786 * as it breaks global data maps, because they contain object name
10787 * prefix as their own map name prefix. When skeleton is generated,
10788 * bpftool is making an assumption that this name will stay the same.
10789 */
10790 if (opts) {
10791 memcpy(&skel_opts, opts, sizeof(*opts));
10792 if (!opts->object_name)
10793 skel_opts.object_name = s->name;
10794 }
10795
10796 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
10797 if (IS_ERR(obj)) {
10798 pr_warn("failed to initialize skeleton BPF object '%s': %ld\n",
10799 s->name, PTR_ERR(obj));
10800 return PTR_ERR(obj);
10801 }
10802
10803 *s->obj = obj;
10804
10805 for (i = 0; i < s->map_cnt; i++) {
10806 struct bpf_map **map = s->maps[i].map;
10807 const char *name = s->maps[i].name;
10808 void **mmaped = s->maps[i].mmaped;
10809
10810 *map = bpf_object__find_map_by_name(obj, name);
10811 if (!*map) {
10812 pr_warn("failed to find skeleton map '%s'\n", name);
10813 return -ESRCH;
10814 }
10815
10816 /* externs shouldn't be pre-setup from user code */
10817 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
10818 *mmaped = (*map)->mmaped;
10819 }
10820
10821 for (i = 0; i < s->prog_cnt; i++) {
10822 struct bpf_program **prog = s->progs[i].prog;
10823 const char *name = s->progs[i].name;
10824
10825 *prog = bpf_object__find_program_by_name(obj, name);
10826 if (!*prog) {
10827 pr_warn("failed to find skeleton program '%s'\n", name);
10828 return -ESRCH;
10829 }
10830 }
10831
10832 return 0;
10833 }
10834
bpf_object__load_skeleton(struct bpf_object_skeleton * s)10835 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
10836 {
10837 int i, err;
10838
10839 err = bpf_object__load(*s->obj);
10840 if (err) {
10841 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
10842 return err;
10843 }
10844
10845 for (i = 0; i < s->map_cnt; i++) {
10846 struct bpf_map *map = *s->maps[i].map;
10847 size_t mmap_sz = bpf_map_mmap_sz(map);
10848 int prot, map_fd = bpf_map__fd(map);
10849 void **mmaped = s->maps[i].mmaped;
10850
10851 if (!mmaped)
10852 continue;
10853
10854 if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
10855 *mmaped = NULL;
10856 continue;
10857 }
10858
10859 if (map->def.map_flags & BPF_F_RDONLY_PROG)
10860 prot = PROT_READ;
10861 else
10862 prot = PROT_READ | PROT_WRITE;
10863
10864 /* Remap anonymous mmap()-ed "map initialization image" as
10865 * a BPF map-backed mmap()-ed memory, but preserving the same
10866 * memory address. This will cause kernel to change process'
10867 * page table to point to a different piece of kernel memory,
10868 * but from userspace point of view memory address (and its
10869 * contents, being identical at this point) will stay the
10870 * same. This mapping will be released by bpf_object__close()
10871 * as per normal clean up procedure, so we don't need to worry
10872 * about it from skeleton's clean up perspective.
10873 */
10874 *mmaped = mmap(map->mmaped, mmap_sz, prot,
10875 MAP_SHARED | MAP_FIXED, map_fd, 0);
10876 if (*mmaped == MAP_FAILED) {
10877 err = -errno;
10878 *mmaped = NULL;
10879 pr_warn("failed to re-mmap() map '%s': %d\n",
10880 bpf_map__name(map), err);
10881 return err;
10882 }
10883 }
10884
10885 return 0;
10886 }
10887
bpf_object__attach_skeleton(struct bpf_object_skeleton * s)10888 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
10889 {
10890 int i;
10891
10892 for (i = 0; i < s->prog_cnt; i++) {
10893 struct bpf_program *prog = *s->progs[i].prog;
10894 struct bpf_link **link = s->progs[i].link;
10895 const struct bpf_sec_def *sec_def;
10896
10897 if (!prog->load)
10898 continue;
10899
10900 sec_def = find_sec_def(prog->sec_name);
10901 if (!sec_def || !sec_def->attach_fn)
10902 continue;
10903
10904 *link = sec_def->attach_fn(sec_def, prog);
10905 if (IS_ERR(*link)) {
10906 pr_warn("failed to auto-attach program '%s': %ld\n",
10907 bpf_program__name(prog), PTR_ERR(*link));
10908 return PTR_ERR(*link);
10909 }
10910 }
10911
10912 return 0;
10913 }
10914
bpf_object__detach_skeleton(struct bpf_object_skeleton * s)10915 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
10916 {
10917 int i;
10918
10919 for (i = 0; i < s->prog_cnt; i++) {
10920 struct bpf_link **link = s->progs[i].link;
10921
10922 bpf_link__destroy(*link);
10923 *link = NULL;
10924 }
10925 }
10926
bpf_object__destroy_skeleton(struct bpf_object_skeleton * s)10927 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
10928 {
10929 if (s->progs)
10930 bpf_object__detach_skeleton(s);
10931 if (s->obj)
10932 bpf_object__close(*s->obj);
10933 free(s->maps);
10934 free(s->progs);
10935 free(s);
10936 }
10937