1 #include <linux/bpf.h>
2 #include <linux/btf.h>
3 #include <linux/err.h>
4 #include <linux/irq_work.h>
5 #include <linux/slab.h>
6 #include <linux/filter.h>
7 #include <linux/mm.h>
8 #include <linux/vmalloc.h>
9 #include <linux/wait.h>
10 #include <linux/poll.h>
11 #include <linux/kmemleak.h>
12 #include <uapi/linux/btf.h>
13
14 #define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE)
15
16 /* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */
17 #define RINGBUF_PGOFF \
18 (offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT)
19 /* consumer page and producer page */
20 #define RINGBUF_POS_PAGES 2
21
22 #define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4)
23
24 /* Maximum size of ring buffer area is limited by 32-bit page offset within
25 * record header, counted in pages. Reserve 8 bits for extensibility, and take
26 * into account few extra pages for consumer/producer pages and
27 * non-mmap()'able parts. This gives 64GB limit, which seems plenty for single
28 * ring buffer.
29 */
30 #define RINGBUF_MAX_DATA_SZ \
31 (((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE)
32
33 struct bpf_ringbuf {
34 wait_queue_head_t waitq;
35 struct irq_work work;
36 u64 mask;
37 struct page **pages;
38 int nr_pages;
39 spinlock_t spinlock ____cacheline_aligned_in_smp;
40 /* Consumer and producer counters are put into separate pages to allow
41 * mapping consumer page as r/w, but restrict producer page to r/o.
42 * This protects producer position from being modified by user-space
43 * application and ruining in-kernel position tracking.
44 */
45 unsigned long consumer_pos __aligned(PAGE_SIZE);
46 unsigned long producer_pos __aligned(PAGE_SIZE);
47 char data[] __aligned(PAGE_SIZE);
48 };
49
50 struct bpf_ringbuf_map {
51 struct bpf_map map;
52 struct bpf_map_memory memory;
53 struct bpf_ringbuf *rb;
54 };
55
56 /* 8-byte ring buffer record header structure */
57 struct bpf_ringbuf_hdr {
58 u32 len;
59 u32 pg_off;
60 };
61
bpf_ringbuf_area_alloc(size_t data_sz,int numa_node)62 static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node)
63 {
64 const gfp_t flags = GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN |
65 __GFP_ZERO;
66 int nr_meta_pages = RINGBUF_PGOFF + RINGBUF_POS_PAGES;
67 int nr_data_pages = data_sz >> PAGE_SHIFT;
68 int nr_pages = nr_meta_pages + nr_data_pages;
69 struct page **pages, *page;
70 struct bpf_ringbuf *rb;
71 size_t array_size;
72 int i;
73
74 /* Each data page is mapped twice to allow "virtual"
75 * continuous read of samples wrapping around the end of ring
76 * buffer area:
77 * ------------------------------------------------------
78 * | meta pages | real data pages | same data pages |
79 * ------------------------------------------------------
80 * | | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 |
81 * ------------------------------------------------------
82 * | | TA DA | TA DA |
83 * ------------------------------------------------------
84 * ^^^^^^^
85 * |
86 * Here, no need to worry about special handling of wrapped-around
87 * data due to double-mapped data pages. This works both in kernel and
88 * when mmap()'ed in user-space, simplifying both kernel and
89 * user-space implementations significantly.
90 */
91 array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages);
92 if (array_size > PAGE_SIZE)
93 pages = vmalloc_node(array_size, numa_node);
94 else
95 pages = kmalloc_node(array_size, flags, numa_node);
96 if (!pages)
97 return NULL;
98
99 for (i = 0; i < nr_pages; i++) {
100 page = alloc_pages_node(numa_node, flags, 0);
101 if (!page) {
102 nr_pages = i;
103 goto err_free_pages;
104 }
105 pages[i] = page;
106 if (i >= nr_meta_pages)
107 pages[nr_data_pages + i] = page;
108 }
109
110 rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages,
111 VM_ALLOC | VM_USERMAP, PAGE_KERNEL);
112 if (rb) {
113 kmemleak_not_leak(pages);
114 rb->pages = pages;
115 rb->nr_pages = nr_pages;
116 return rb;
117 }
118
119 err_free_pages:
120 for (i = 0; i < nr_pages; i++)
121 __free_page(pages[i]);
122 kvfree(pages);
123 return NULL;
124 }
125
bpf_ringbuf_notify(struct irq_work * work)126 static void bpf_ringbuf_notify(struct irq_work *work)
127 {
128 struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work);
129
130 wake_up_all(&rb->waitq);
131 }
132
bpf_ringbuf_alloc(size_t data_sz,int numa_node)133 static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node)
134 {
135 struct bpf_ringbuf *rb;
136
137 rb = bpf_ringbuf_area_alloc(data_sz, numa_node);
138 if (!rb)
139 return ERR_PTR(-ENOMEM);
140
141 spin_lock_init(&rb->spinlock);
142 init_waitqueue_head(&rb->waitq);
143 init_irq_work(&rb->work, bpf_ringbuf_notify);
144
145 rb->mask = data_sz - 1;
146 rb->consumer_pos = 0;
147 rb->producer_pos = 0;
148
149 return rb;
150 }
151
ringbuf_map_alloc(union bpf_attr * attr)152 static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr)
153 {
154 struct bpf_ringbuf_map *rb_map;
155 u64 cost;
156 int err;
157
158 if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK)
159 return ERR_PTR(-EINVAL);
160
161 if (attr->key_size || attr->value_size ||
162 !is_power_of_2(attr->max_entries) ||
163 !PAGE_ALIGNED(attr->max_entries))
164 return ERR_PTR(-EINVAL);
165
166 #ifdef CONFIG_64BIT
167 /* on 32-bit arch, it's impossible to overflow record's hdr->pgoff */
168 if (attr->max_entries > RINGBUF_MAX_DATA_SZ)
169 return ERR_PTR(-E2BIG);
170 #endif
171
172 rb_map = kzalloc(sizeof(*rb_map), GFP_USER);
173 if (!rb_map)
174 return ERR_PTR(-ENOMEM);
175
176 bpf_map_init_from_attr(&rb_map->map, attr);
177
178 cost = sizeof(struct bpf_ringbuf_map) +
179 sizeof(struct bpf_ringbuf) +
180 attr->max_entries;
181 err = bpf_map_charge_init(&rb_map->map.memory, cost);
182 if (err)
183 goto err_free_map;
184
185 rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node);
186 if (IS_ERR(rb_map->rb)) {
187 err = PTR_ERR(rb_map->rb);
188 goto err_uncharge;
189 }
190
191 return &rb_map->map;
192
193 err_uncharge:
194 bpf_map_charge_finish(&rb_map->map.memory);
195 err_free_map:
196 kfree(rb_map);
197 return ERR_PTR(err);
198 }
199
bpf_ringbuf_free(struct bpf_ringbuf * rb)200 static void bpf_ringbuf_free(struct bpf_ringbuf *rb)
201 {
202 /* copy pages pointer and nr_pages to local variable, as we are going
203 * to unmap rb itself with vunmap() below
204 */
205 struct page **pages = rb->pages;
206 int i, nr_pages = rb->nr_pages;
207
208 vunmap(rb);
209 for (i = 0; i < nr_pages; i++)
210 __free_page(pages[i]);
211 kvfree(pages);
212 }
213
ringbuf_map_free(struct bpf_map * map)214 static void ringbuf_map_free(struct bpf_map *map)
215 {
216 struct bpf_ringbuf_map *rb_map;
217
218 rb_map = container_of(map, struct bpf_ringbuf_map, map);
219 bpf_ringbuf_free(rb_map->rb);
220 kfree(rb_map);
221 }
222
ringbuf_map_lookup_elem(struct bpf_map * map,void * key)223 static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key)
224 {
225 return ERR_PTR(-ENOTSUPP);
226 }
227
ringbuf_map_update_elem(struct bpf_map * map,void * key,void * value,u64 flags)228 static int ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value,
229 u64 flags)
230 {
231 return -ENOTSUPP;
232 }
233
ringbuf_map_delete_elem(struct bpf_map * map,void * key)234 static int ringbuf_map_delete_elem(struct bpf_map *map, void *key)
235 {
236 return -ENOTSUPP;
237 }
238
ringbuf_map_get_next_key(struct bpf_map * map,void * key,void * next_key)239 static int ringbuf_map_get_next_key(struct bpf_map *map, void *key,
240 void *next_key)
241 {
242 return -ENOTSUPP;
243 }
244
ringbuf_map_mmap(struct bpf_map * map,struct vm_area_struct * vma)245 static int ringbuf_map_mmap(struct bpf_map *map, struct vm_area_struct *vma)
246 {
247 struct bpf_ringbuf_map *rb_map;
248
249 rb_map = container_of(map, struct bpf_ringbuf_map, map);
250
251 if (vma->vm_flags & VM_WRITE) {
252 /* allow writable mapping for the consumer_pos only */
253 if (vma->vm_pgoff != 0 || vma->vm_end - vma->vm_start != PAGE_SIZE)
254 return -EPERM;
255 } else {
256 vma->vm_flags &= ~VM_MAYWRITE;
257 }
258 /* remap_vmalloc_range() checks size and offset constraints */
259 return remap_vmalloc_range(vma, rb_map->rb,
260 vma->vm_pgoff + RINGBUF_PGOFF);
261 }
262
ringbuf_avail_data_sz(struct bpf_ringbuf * rb)263 static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb)
264 {
265 unsigned long cons_pos, prod_pos;
266
267 cons_pos = smp_load_acquire(&rb->consumer_pos);
268 prod_pos = smp_load_acquire(&rb->producer_pos);
269 return prod_pos - cons_pos;
270 }
271
ringbuf_map_poll(struct bpf_map * map,struct file * filp,struct poll_table_struct * pts)272 static __poll_t ringbuf_map_poll(struct bpf_map *map, struct file *filp,
273 struct poll_table_struct *pts)
274 {
275 struct bpf_ringbuf_map *rb_map;
276
277 rb_map = container_of(map, struct bpf_ringbuf_map, map);
278 poll_wait(filp, &rb_map->rb->waitq, pts);
279
280 if (ringbuf_avail_data_sz(rb_map->rb))
281 return EPOLLIN | EPOLLRDNORM;
282 return 0;
283 }
284
285 static int ringbuf_map_btf_id;
286 const struct bpf_map_ops ringbuf_map_ops = {
287 .map_meta_equal = bpf_map_meta_equal,
288 .map_alloc = ringbuf_map_alloc,
289 .map_free = ringbuf_map_free,
290 .map_mmap = ringbuf_map_mmap,
291 .map_poll = ringbuf_map_poll,
292 .map_lookup_elem = ringbuf_map_lookup_elem,
293 .map_update_elem = ringbuf_map_update_elem,
294 .map_delete_elem = ringbuf_map_delete_elem,
295 .map_get_next_key = ringbuf_map_get_next_key,
296 .map_btf_name = "bpf_ringbuf_map",
297 .map_btf_id = &ringbuf_map_btf_id,
298 };
299
300 /* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself,
301 * calculate offset from record metadata to ring buffer in pages, rounded
302 * down. This page offset is stored as part of record metadata and allows to
303 * restore struct bpf_ringbuf * from record pointer. This page offset is
304 * stored at offset 4 of record metadata header.
305 */
bpf_ringbuf_rec_pg_off(struct bpf_ringbuf * rb,struct bpf_ringbuf_hdr * hdr)306 static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb,
307 struct bpf_ringbuf_hdr *hdr)
308 {
309 return ((void *)hdr - (void *)rb) >> PAGE_SHIFT;
310 }
311
312 /* Given pointer to ring buffer record header, restore pointer to struct
313 * bpf_ringbuf itself by using page offset stored at offset 4
314 */
315 static struct bpf_ringbuf *
bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr * hdr)316 bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr)
317 {
318 unsigned long addr = (unsigned long)(void *)hdr;
319 unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT;
320
321 return (void*)((addr & PAGE_MASK) - off);
322 }
323
__bpf_ringbuf_reserve(struct bpf_ringbuf * rb,u64 size)324 static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size)
325 {
326 unsigned long cons_pos, prod_pos, new_prod_pos, flags;
327 u32 len, pg_off;
328 struct bpf_ringbuf_hdr *hdr;
329
330 if (unlikely(size > RINGBUF_MAX_RECORD_SZ))
331 return NULL;
332
333 len = round_up(size + BPF_RINGBUF_HDR_SZ, 8);
334 if (len > rb->mask + 1)
335 return NULL;
336
337 cons_pos = smp_load_acquire(&rb->consumer_pos);
338
339 if (in_nmi()) {
340 if (!spin_trylock_irqsave(&rb->spinlock, flags))
341 return NULL;
342 } else {
343 spin_lock_irqsave(&rb->spinlock, flags);
344 }
345
346 prod_pos = rb->producer_pos;
347 new_prod_pos = prod_pos + len;
348
349 /* check for out of ringbuf space by ensuring producer position
350 * doesn't advance more than (ringbuf_size - 1) ahead
351 */
352 if (new_prod_pos - cons_pos > rb->mask) {
353 spin_unlock_irqrestore(&rb->spinlock, flags);
354 return NULL;
355 }
356
357 hdr = (void *)rb->data + (prod_pos & rb->mask);
358 pg_off = bpf_ringbuf_rec_pg_off(rb, hdr);
359 hdr->len = size | BPF_RINGBUF_BUSY_BIT;
360 hdr->pg_off = pg_off;
361
362 /* pairs with consumer's smp_load_acquire() */
363 smp_store_release(&rb->producer_pos, new_prod_pos);
364
365 spin_unlock_irqrestore(&rb->spinlock, flags);
366
367 return (void *)hdr + BPF_RINGBUF_HDR_SZ;
368 }
369
BPF_CALL_3(bpf_ringbuf_reserve,struct bpf_map *,map,u64,size,u64,flags)370 BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags)
371 {
372 struct bpf_ringbuf_map *rb_map;
373
374 if (unlikely(flags))
375 return 0;
376
377 rb_map = container_of(map, struct bpf_ringbuf_map, map);
378 return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size);
379 }
380
381 const struct bpf_func_proto bpf_ringbuf_reserve_proto = {
382 .func = bpf_ringbuf_reserve,
383 .ret_type = RET_PTR_TO_ALLOC_MEM_OR_NULL,
384 .arg1_type = ARG_CONST_MAP_PTR,
385 .arg2_type = ARG_CONST_ALLOC_SIZE_OR_ZERO,
386 .arg3_type = ARG_ANYTHING,
387 };
388
bpf_ringbuf_commit(void * sample,u64 flags,bool discard)389 static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard)
390 {
391 unsigned long rec_pos, cons_pos;
392 struct bpf_ringbuf_hdr *hdr;
393 struct bpf_ringbuf *rb;
394 u32 new_len;
395
396 hdr = sample - BPF_RINGBUF_HDR_SZ;
397 rb = bpf_ringbuf_restore_from_rec(hdr);
398 new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT;
399 if (discard)
400 new_len |= BPF_RINGBUF_DISCARD_BIT;
401
402 /* update record header with correct final size prefix */
403 xchg(&hdr->len, new_len);
404
405 /* if consumer caught up and is waiting for our record, notify about
406 * new data availability
407 */
408 rec_pos = (void *)hdr - (void *)rb->data;
409 cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask;
410
411 if (flags & BPF_RB_FORCE_WAKEUP)
412 irq_work_queue(&rb->work);
413 else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP))
414 irq_work_queue(&rb->work);
415 }
416
BPF_CALL_2(bpf_ringbuf_submit,void *,sample,u64,flags)417 BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags)
418 {
419 bpf_ringbuf_commit(sample, flags, false /* discard */);
420 return 0;
421 }
422
423 const struct bpf_func_proto bpf_ringbuf_submit_proto = {
424 .func = bpf_ringbuf_submit,
425 .ret_type = RET_VOID,
426 .arg1_type = ARG_PTR_TO_ALLOC_MEM,
427 .arg2_type = ARG_ANYTHING,
428 };
429
BPF_CALL_2(bpf_ringbuf_discard,void *,sample,u64,flags)430 BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags)
431 {
432 bpf_ringbuf_commit(sample, flags, true /* discard */);
433 return 0;
434 }
435
436 const struct bpf_func_proto bpf_ringbuf_discard_proto = {
437 .func = bpf_ringbuf_discard,
438 .ret_type = RET_VOID,
439 .arg1_type = ARG_PTR_TO_ALLOC_MEM,
440 .arg2_type = ARG_ANYTHING,
441 };
442
BPF_CALL_4(bpf_ringbuf_output,struct bpf_map *,map,void *,data,u64,size,u64,flags)443 BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size,
444 u64, flags)
445 {
446 struct bpf_ringbuf_map *rb_map;
447 void *rec;
448
449 if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP)))
450 return -EINVAL;
451
452 rb_map = container_of(map, struct bpf_ringbuf_map, map);
453 rec = __bpf_ringbuf_reserve(rb_map->rb, size);
454 if (!rec)
455 return -EAGAIN;
456
457 memcpy(rec, data, size);
458 bpf_ringbuf_commit(rec, flags, false /* discard */);
459 return 0;
460 }
461
462 const struct bpf_func_proto bpf_ringbuf_output_proto = {
463 .func = bpf_ringbuf_output,
464 .ret_type = RET_INTEGER,
465 .arg1_type = ARG_CONST_MAP_PTR,
466 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
467 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
468 .arg4_type = ARG_ANYTHING,
469 };
470
BPF_CALL_2(bpf_ringbuf_query,struct bpf_map *,map,u64,flags)471 BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags)
472 {
473 struct bpf_ringbuf *rb;
474
475 rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
476
477 switch (flags) {
478 case BPF_RB_AVAIL_DATA:
479 return ringbuf_avail_data_sz(rb);
480 case BPF_RB_RING_SIZE:
481 return rb->mask + 1;
482 case BPF_RB_CONS_POS:
483 return smp_load_acquire(&rb->consumer_pos);
484 case BPF_RB_PROD_POS:
485 return smp_load_acquire(&rb->producer_pos);
486 default:
487 return 0;
488 }
489 }
490
491 const struct bpf_func_proto bpf_ringbuf_query_proto = {
492 .func = bpf_ringbuf_query,
493 .ret_type = RET_INTEGER,
494 .arg1_type = ARG_CONST_MAP_PTR,
495 .arg2_type = ARG_ANYTHING,
496 };
497