1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5 */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/btf_ids.h>
25
26 #include "disasm.h"
27
28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
30 [_id] = & _name ## _verifier_ops,
31 #define BPF_MAP_TYPE(_id, _ops)
32 #define BPF_LINK_TYPE(_id, _name)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 #undef BPF_LINK_TYPE
37 };
38
39 /* bpf_check() is a static code analyzer that walks eBPF program
40 * instruction by instruction and updates register/stack state.
41 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42 *
43 * The first pass is depth-first-search to check that the program is a DAG.
44 * It rejects the following programs:
45 * - larger than BPF_MAXINSNS insns
46 * - if loop is present (detected via back-edge)
47 * - unreachable insns exist (shouldn't be a forest. program = one function)
48 * - out of bounds or malformed jumps
49 * The second pass is all possible path descent from the 1st insn.
50 * Since it's analyzing all pathes through the program, the length of the
51 * analysis is limited to 64k insn, which may be hit even if total number of
52 * insn is less then 4K, but there are too many branches that change stack/regs.
53 * Number of 'branches to be analyzed' is limited to 1k
54 *
55 * On entry to each instruction, each register has a type, and the instruction
56 * changes the types of the registers depending on instruction semantics.
57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58 * copied to R1.
59 *
60 * All registers are 64-bit.
61 * R0 - return register
62 * R1-R5 argument passing registers
63 * R6-R9 callee saved registers
64 * R10 - frame pointer read-only
65 *
66 * At the start of BPF program the register R1 contains a pointer to bpf_context
67 * and has type PTR_TO_CTX.
68 *
69 * Verifier tracks arithmetic operations on pointers in case:
70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72 * 1st insn copies R10 (which has FRAME_PTR) type into R1
73 * and 2nd arithmetic instruction is pattern matched to recognize
74 * that it wants to construct a pointer to some element within stack.
75 * So after 2nd insn, the register R1 has type PTR_TO_STACK
76 * (and -20 constant is saved for further stack bounds checking).
77 * Meaning that this reg is a pointer to stack plus known immediate constant.
78 *
79 * Most of the time the registers have SCALAR_VALUE type, which
80 * means the register has some value, but it's not a valid pointer.
81 * (like pointer plus pointer becomes SCALAR_VALUE type)
82 *
83 * When verifier sees load or store instructions the type of base register
84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85 * four pointer types recognized by check_mem_access() function.
86 *
87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88 * and the range of [ptr, ptr + map's value_size) is accessible.
89 *
90 * registers used to pass values to function calls are checked against
91 * function argument constraints.
92 *
93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94 * It means that the register type passed to this function must be
95 * PTR_TO_STACK and it will be used inside the function as
96 * 'pointer to map element key'
97 *
98 * For example the argument constraints for bpf_map_lookup_elem():
99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100 * .arg1_type = ARG_CONST_MAP_PTR,
101 * .arg2_type = ARG_PTR_TO_MAP_KEY,
102 *
103 * ret_type says that this function returns 'pointer to map elem value or null'
104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105 * 2nd argument should be a pointer to stack, which will be used inside
106 * the helper function as a pointer to map element key.
107 *
108 * On the kernel side the helper function looks like:
109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110 * {
111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112 * void *key = (void *) (unsigned long) r2;
113 * void *value;
114 *
115 * here kernel can access 'key' and 'map' pointers safely, knowing that
116 * [key, key + map->key_size) bytes are valid and were initialized on
117 * the stack of eBPF program.
118 * }
119 *
120 * Corresponding eBPF program may look like:
121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125 * here verifier looks at prototype of map_lookup_elem() and sees:
126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128 *
129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131 * and were initialized prior to this call.
132 * If it's ok, then verifier allows this BPF_CALL insn and looks at
133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135 * returns ether pointer to map value or NULL.
136 *
137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138 * insn, the register holding that pointer in the true branch changes state to
139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140 * branch. See check_cond_jmp_op().
141 *
142 * After the call R0 is set to return type of the function and registers R1-R5
143 * are set to NOT_INIT to indicate that they are no longer readable.
144 *
145 * The following reference types represent a potential reference to a kernel
146 * resource which, after first being allocated, must be checked and freed by
147 * the BPF program:
148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149 *
150 * When the verifier sees a helper call return a reference type, it allocates a
151 * pointer id for the reference and stores it in the current function state.
152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154 * passes through a NULL-check conditional. For the branch wherein the state is
155 * changed to CONST_IMM, the verifier releases the reference.
156 *
157 * For each helper function that allocates a reference, such as
158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159 * bpf_sk_release(). When a reference type passes into the release function,
160 * the verifier also releases the reference. If any unchecked or unreleased
161 * reference remains at the end of the program, the verifier rejects it.
162 */
163
164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
165 struct bpf_verifier_stack_elem {
166 /* verifer state is 'st'
167 * before processing instruction 'insn_idx'
168 * and after processing instruction 'prev_insn_idx'
169 */
170 struct bpf_verifier_state st;
171 int insn_idx;
172 int prev_insn_idx;
173 struct bpf_verifier_stack_elem *next;
174 /* length of verifier log at the time this state was pushed on stack */
175 u32 log_pos;
176 };
177
178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
179 #define BPF_COMPLEXITY_LIMIT_STATES 64
180
181 #define BPF_MAP_KEY_POISON (1ULL << 63)
182 #define BPF_MAP_KEY_SEEN (1ULL << 62)
183
184 #define BPF_MAP_PTR_UNPRIV 1UL
185 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
186 POISON_POINTER_DELTA))
187 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188
bpf_map_ptr_poisoned(const struct bpf_insn_aux_data * aux)189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190 {
191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
192 }
193
bpf_map_ptr_unpriv(const struct bpf_insn_aux_data * aux)194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195 {
196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
197 }
198
bpf_map_ptr_store(struct bpf_insn_aux_data * aux,const struct bpf_map * map,bool unpriv)199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 const struct bpf_map *map, bool unpriv)
201 {
202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 unpriv |= bpf_map_ptr_unpriv(aux);
204 aux->map_ptr_state = (unsigned long)map |
205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206 }
207
bpf_map_key_poisoned(const struct bpf_insn_aux_data * aux)208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209 {
210 return aux->map_key_state & BPF_MAP_KEY_POISON;
211 }
212
bpf_map_key_unseen(const struct bpf_insn_aux_data * aux)213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214 {
215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216 }
217
bpf_map_key_immediate(const struct bpf_insn_aux_data * aux)218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219 {
220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221 }
222
bpf_map_key_store(struct bpf_insn_aux_data * aux,u64 state)223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224 {
225 bool poisoned = bpf_map_key_poisoned(aux);
226
227 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
229 }
230
231 struct bpf_call_arg_meta {
232 struct bpf_map *map_ptr;
233 bool raw_mode;
234 bool pkt_access;
235 int regno;
236 int access_size;
237 int mem_size;
238 u64 msize_max_value;
239 int ref_obj_id;
240 int func_id;
241 u32 btf_id;
242 u32 ret_btf_id;
243 };
244
245 struct btf *btf_vmlinux;
246
247 static DEFINE_MUTEX(bpf_verifier_lock);
248
249 static const struct bpf_line_info *
find_linfo(const struct bpf_verifier_env * env,u32 insn_off)250 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
251 {
252 const struct bpf_line_info *linfo;
253 const struct bpf_prog *prog;
254 u32 i, nr_linfo;
255
256 prog = env->prog;
257 nr_linfo = prog->aux->nr_linfo;
258
259 if (!nr_linfo || insn_off >= prog->len)
260 return NULL;
261
262 linfo = prog->aux->linfo;
263 for (i = 1; i < nr_linfo; i++)
264 if (insn_off < linfo[i].insn_off)
265 break;
266
267 return &linfo[i - 1];
268 }
269
bpf_verifier_vlog(struct bpf_verifier_log * log,const char * fmt,va_list args)270 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
271 va_list args)
272 {
273 unsigned int n;
274
275 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
276
277 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
278 "verifier log line truncated - local buffer too short\n");
279
280 n = min(log->len_total - log->len_used - 1, n);
281 log->kbuf[n] = '\0';
282
283 if (log->level == BPF_LOG_KERNEL) {
284 pr_err("BPF:%s\n", log->kbuf);
285 return;
286 }
287 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
288 log->len_used += n;
289 else
290 log->ubuf = NULL;
291 }
292
bpf_vlog_reset(struct bpf_verifier_log * log,u32 new_pos)293 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
294 {
295 char zero = 0;
296
297 if (!bpf_verifier_log_needed(log))
298 return;
299
300 log->len_used = new_pos;
301 if (put_user(zero, log->ubuf + new_pos))
302 log->ubuf = NULL;
303 }
304
305 /* log_level controls verbosity level of eBPF verifier.
306 * bpf_verifier_log_write() is used to dump the verification trace to the log,
307 * so the user can figure out what's wrong with the program
308 */
bpf_verifier_log_write(struct bpf_verifier_env * env,const char * fmt,...)309 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
310 const char *fmt, ...)
311 {
312 va_list args;
313
314 if (!bpf_verifier_log_needed(&env->log))
315 return;
316
317 va_start(args, fmt);
318 bpf_verifier_vlog(&env->log, fmt, args);
319 va_end(args);
320 }
321 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
322
verbose(void * private_data,const char * fmt,...)323 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
324 {
325 struct bpf_verifier_env *env = private_data;
326 va_list args;
327
328 if (!bpf_verifier_log_needed(&env->log))
329 return;
330
331 va_start(args, fmt);
332 bpf_verifier_vlog(&env->log, fmt, args);
333 va_end(args);
334 }
335
bpf_log(struct bpf_verifier_log * log,const char * fmt,...)336 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
337 const char *fmt, ...)
338 {
339 va_list args;
340
341 if (!bpf_verifier_log_needed(log))
342 return;
343
344 va_start(args, fmt);
345 bpf_verifier_vlog(log, fmt, args);
346 va_end(args);
347 }
348
ltrim(const char * s)349 static const char *ltrim(const char *s)
350 {
351 while (isspace(*s))
352 s++;
353
354 return s;
355 }
356
verbose_linfo(struct bpf_verifier_env * env,u32 insn_off,const char * prefix_fmt,...)357 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
358 u32 insn_off,
359 const char *prefix_fmt, ...)
360 {
361 const struct bpf_line_info *linfo;
362
363 if (!bpf_verifier_log_needed(&env->log))
364 return;
365
366 linfo = find_linfo(env, insn_off);
367 if (!linfo || linfo == env->prev_linfo)
368 return;
369
370 if (prefix_fmt) {
371 va_list args;
372
373 va_start(args, prefix_fmt);
374 bpf_verifier_vlog(&env->log, prefix_fmt, args);
375 va_end(args);
376 }
377
378 verbose(env, "%s\n",
379 ltrim(btf_name_by_offset(env->prog->aux->btf,
380 linfo->line_off)));
381
382 env->prev_linfo = linfo;
383 }
384
type_is_pkt_pointer(enum bpf_reg_type type)385 static bool type_is_pkt_pointer(enum bpf_reg_type type)
386 {
387 return type == PTR_TO_PACKET ||
388 type == PTR_TO_PACKET_META;
389 }
390
type_is_sk_pointer(enum bpf_reg_type type)391 static bool type_is_sk_pointer(enum bpf_reg_type type)
392 {
393 return type == PTR_TO_SOCKET ||
394 type == PTR_TO_SOCK_COMMON ||
395 type == PTR_TO_TCP_SOCK ||
396 type == PTR_TO_XDP_SOCK;
397 }
398
reg_type_not_null(enum bpf_reg_type type)399 static bool reg_type_not_null(enum bpf_reg_type type)
400 {
401 return type == PTR_TO_SOCKET ||
402 type == PTR_TO_TCP_SOCK ||
403 type == PTR_TO_MAP_VALUE ||
404 type == PTR_TO_SOCK_COMMON;
405 }
406
reg_may_point_to_spin_lock(const struct bpf_reg_state * reg)407 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
408 {
409 return reg->type == PTR_TO_MAP_VALUE &&
410 map_value_has_spin_lock(reg->map_ptr);
411 }
412
reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)413 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
414 {
415 return base_type(type) == PTR_TO_SOCKET ||
416 base_type(type) == PTR_TO_TCP_SOCK ||
417 base_type(type) == PTR_TO_MEM;
418 }
419
type_is_rdonly_mem(u32 type)420 static bool type_is_rdonly_mem(u32 type)
421 {
422 return type & MEM_RDONLY;
423 }
424
arg_type_may_be_refcounted(enum bpf_arg_type type)425 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
426 {
427 return type == ARG_PTR_TO_SOCK_COMMON;
428 }
429
type_may_be_null(u32 type)430 static bool type_may_be_null(u32 type)
431 {
432 return type & PTR_MAYBE_NULL;
433 }
434
435 /* Determine whether the function releases some resources allocated by another
436 * function call. The first reference type argument will be assumed to be
437 * released by release_reference().
438 */
is_release_function(enum bpf_func_id func_id)439 static bool is_release_function(enum bpf_func_id func_id)
440 {
441 return func_id == BPF_FUNC_sk_release ||
442 func_id == BPF_FUNC_ringbuf_submit ||
443 func_id == BPF_FUNC_ringbuf_discard;
444 }
445
may_be_acquire_function(enum bpf_func_id func_id)446 static bool may_be_acquire_function(enum bpf_func_id func_id)
447 {
448 return func_id == BPF_FUNC_sk_lookup_tcp ||
449 func_id == BPF_FUNC_sk_lookup_udp ||
450 func_id == BPF_FUNC_skc_lookup_tcp ||
451 func_id == BPF_FUNC_map_lookup_elem ||
452 func_id == BPF_FUNC_ringbuf_reserve;
453 }
454
is_acquire_function(enum bpf_func_id func_id,const struct bpf_map * map)455 static bool is_acquire_function(enum bpf_func_id func_id,
456 const struct bpf_map *map)
457 {
458 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
459
460 if (func_id == BPF_FUNC_sk_lookup_tcp ||
461 func_id == BPF_FUNC_sk_lookup_udp ||
462 func_id == BPF_FUNC_skc_lookup_tcp ||
463 func_id == BPF_FUNC_ringbuf_reserve)
464 return true;
465
466 if (func_id == BPF_FUNC_map_lookup_elem &&
467 (map_type == BPF_MAP_TYPE_SOCKMAP ||
468 map_type == BPF_MAP_TYPE_SOCKHASH))
469 return true;
470
471 return false;
472 }
473
is_ptr_cast_function(enum bpf_func_id func_id)474 static bool is_ptr_cast_function(enum bpf_func_id func_id)
475 {
476 return func_id == BPF_FUNC_tcp_sock ||
477 func_id == BPF_FUNC_sk_fullsock ||
478 func_id == BPF_FUNC_skc_to_tcp_sock ||
479 func_id == BPF_FUNC_skc_to_tcp6_sock ||
480 func_id == BPF_FUNC_skc_to_udp6_sock ||
481 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
482 func_id == BPF_FUNC_skc_to_tcp_request_sock;
483 }
484
485 /* string representation of 'enum bpf_reg_type'
486 *
487 * Note that reg_type_str() can not appear more than once in a single verbose()
488 * statement.
489 */
reg_type_str(struct bpf_verifier_env * env,enum bpf_reg_type type)490 static const char *reg_type_str(struct bpf_verifier_env *env,
491 enum bpf_reg_type type)
492 {
493 char postfix[16] = {0}, prefix[16] = {0};
494 static const char * const str[] = {
495 [NOT_INIT] = "?",
496 [SCALAR_VALUE] = "inv",
497 [PTR_TO_CTX] = "ctx",
498 [CONST_PTR_TO_MAP] = "map_ptr",
499 [PTR_TO_MAP_VALUE] = "map_value",
500 [PTR_TO_STACK] = "fp",
501 [PTR_TO_PACKET] = "pkt",
502 [PTR_TO_PACKET_META] = "pkt_meta",
503 [PTR_TO_PACKET_END] = "pkt_end",
504 [PTR_TO_FLOW_KEYS] = "flow_keys",
505 [PTR_TO_SOCKET] = "sock",
506 [PTR_TO_SOCK_COMMON] = "sock_common",
507 [PTR_TO_TCP_SOCK] = "tcp_sock",
508 [PTR_TO_TP_BUFFER] = "tp_buffer",
509 [PTR_TO_XDP_SOCK] = "xdp_sock",
510 [PTR_TO_BTF_ID] = "ptr_",
511 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_",
512 [PTR_TO_MEM] = "mem",
513 [PTR_TO_BUF] = "buf",
514 };
515
516 if (type & PTR_MAYBE_NULL) {
517 if (base_type(type) == PTR_TO_BTF_ID ||
518 base_type(type) == PTR_TO_PERCPU_BTF_ID)
519 strncpy(postfix, "or_null_", 16);
520 else
521 strncpy(postfix, "_or_null", 16);
522 }
523
524 if (type & MEM_RDONLY)
525 strncpy(prefix, "rdonly_", 16);
526 if (type & MEM_ALLOC)
527 strncpy(prefix, "alloc_", 16);
528
529 snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s",
530 prefix, str[base_type(type)], postfix);
531 return env->type_str_buf;
532 }
533
534 static char slot_type_char[] = {
535 [STACK_INVALID] = '?',
536 [STACK_SPILL] = 'r',
537 [STACK_MISC] = 'm',
538 [STACK_ZERO] = '0',
539 };
540
print_liveness(struct bpf_verifier_env * env,enum bpf_reg_liveness live)541 static void print_liveness(struct bpf_verifier_env *env,
542 enum bpf_reg_liveness live)
543 {
544 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
545 verbose(env, "_");
546 if (live & REG_LIVE_READ)
547 verbose(env, "r");
548 if (live & REG_LIVE_WRITTEN)
549 verbose(env, "w");
550 if (live & REG_LIVE_DONE)
551 verbose(env, "D");
552 }
553
func(struct bpf_verifier_env * env,const struct bpf_reg_state * reg)554 static struct bpf_func_state *func(struct bpf_verifier_env *env,
555 const struct bpf_reg_state *reg)
556 {
557 struct bpf_verifier_state *cur = env->cur_state;
558
559 return cur->frame[reg->frameno];
560 }
561
kernel_type_name(u32 id)562 const char *kernel_type_name(u32 id)
563 {
564 return btf_name_by_offset(btf_vmlinux,
565 btf_type_by_id(btf_vmlinux, id)->name_off);
566 }
567
print_verifier_state(struct bpf_verifier_env * env,const struct bpf_func_state * state)568 static void print_verifier_state(struct bpf_verifier_env *env,
569 const struct bpf_func_state *state)
570 {
571 const struct bpf_reg_state *reg;
572 enum bpf_reg_type t;
573 int i;
574
575 if (state->frameno)
576 verbose(env, " frame%d:", state->frameno);
577 for (i = 0; i < MAX_BPF_REG; i++) {
578 reg = &state->regs[i];
579 t = reg->type;
580 if (t == NOT_INIT)
581 continue;
582 verbose(env, " R%d", i);
583 print_liveness(env, reg->live);
584 verbose(env, "=%s", reg_type_str(env, t));
585 if (t == SCALAR_VALUE && reg->precise)
586 verbose(env, "P");
587 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
588 tnum_is_const(reg->var_off)) {
589 /* reg->off should be 0 for SCALAR_VALUE */
590 verbose(env, "%lld", reg->var_off.value + reg->off);
591 } else {
592 if (base_type(t) == PTR_TO_BTF_ID ||
593 base_type(t) == PTR_TO_PERCPU_BTF_ID)
594 verbose(env, "%s", kernel_type_name(reg->btf_id));
595 verbose(env, "(id=%d", reg->id);
596 if (reg_type_may_be_refcounted_or_null(t))
597 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
598 if (t != SCALAR_VALUE)
599 verbose(env, ",off=%d", reg->off);
600 if (type_is_pkt_pointer(t))
601 verbose(env, ",r=%d", reg->range);
602 else if (base_type(t) == CONST_PTR_TO_MAP ||
603 base_type(t) == PTR_TO_MAP_VALUE)
604 verbose(env, ",ks=%d,vs=%d",
605 reg->map_ptr->key_size,
606 reg->map_ptr->value_size);
607 if (tnum_is_const(reg->var_off)) {
608 /* Typically an immediate SCALAR_VALUE, but
609 * could be a pointer whose offset is too big
610 * for reg->off
611 */
612 verbose(env, ",imm=%llx", reg->var_off.value);
613 } else {
614 if (reg->smin_value != reg->umin_value &&
615 reg->smin_value != S64_MIN)
616 verbose(env, ",smin_value=%lld",
617 (long long)reg->smin_value);
618 if (reg->smax_value != reg->umax_value &&
619 reg->smax_value != S64_MAX)
620 verbose(env, ",smax_value=%lld",
621 (long long)reg->smax_value);
622 if (reg->umin_value != 0)
623 verbose(env, ",umin_value=%llu",
624 (unsigned long long)reg->umin_value);
625 if (reg->umax_value != U64_MAX)
626 verbose(env, ",umax_value=%llu",
627 (unsigned long long)reg->umax_value);
628 if (!tnum_is_unknown(reg->var_off)) {
629 char tn_buf[48];
630
631 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
632 verbose(env, ",var_off=%s", tn_buf);
633 }
634 if (reg->s32_min_value != reg->smin_value &&
635 reg->s32_min_value != S32_MIN)
636 verbose(env, ",s32_min_value=%d",
637 (int)(reg->s32_min_value));
638 if (reg->s32_max_value != reg->smax_value &&
639 reg->s32_max_value != S32_MAX)
640 verbose(env, ",s32_max_value=%d",
641 (int)(reg->s32_max_value));
642 if (reg->u32_min_value != reg->umin_value &&
643 reg->u32_min_value != U32_MIN)
644 verbose(env, ",u32_min_value=%d",
645 (int)(reg->u32_min_value));
646 if (reg->u32_max_value != reg->umax_value &&
647 reg->u32_max_value != U32_MAX)
648 verbose(env, ",u32_max_value=%d",
649 (int)(reg->u32_max_value));
650 }
651 verbose(env, ")");
652 }
653 }
654 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
655 char types_buf[BPF_REG_SIZE + 1];
656 bool valid = false;
657 int j;
658
659 for (j = 0; j < BPF_REG_SIZE; j++) {
660 if (state->stack[i].slot_type[j] != STACK_INVALID)
661 valid = true;
662 types_buf[j] = slot_type_char[
663 state->stack[i].slot_type[j]];
664 }
665 types_buf[BPF_REG_SIZE] = 0;
666 if (!valid)
667 continue;
668 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
669 print_liveness(env, state->stack[i].spilled_ptr.live);
670 if (state->stack[i].slot_type[0] == STACK_SPILL) {
671 reg = &state->stack[i].spilled_ptr;
672 t = reg->type;
673 verbose(env, "=%s", reg_type_str(env, t));
674 if (t == SCALAR_VALUE && reg->precise)
675 verbose(env, "P");
676 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
677 verbose(env, "%lld", reg->var_off.value + reg->off);
678 } else {
679 verbose(env, "=%s", types_buf);
680 }
681 }
682 if (state->acquired_refs && state->refs[0].id) {
683 verbose(env, " refs=%d", state->refs[0].id);
684 for (i = 1; i < state->acquired_refs; i++)
685 if (state->refs[i].id)
686 verbose(env, ",%d", state->refs[i].id);
687 }
688 verbose(env, "\n");
689 }
690
691 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
692 static int copy_##NAME##_state(struct bpf_func_state *dst, \
693 const struct bpf_func_state *src) \
694 { \
695 if (!src->FIELD) \
696 return 0; \
697 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
698 /* internal bug, make state invalid to reject the program */ \
699 memset(dst, 0, sizeof(*dst)); \
700 return -EFAULT; \
701 } \
702 memcpy(dst->FIELD, src->FIELD, \
703 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
704 return 0; \
705 }
706 /* copy_reference_state() */
707 COPY_STATE_FN(reference, acquired_refs, refs, 1)
708 /* copy_stack_state() */
COPY_STATE_FN(stack,allocated_stack,stack,BPF_REG_SIZE)709 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
710 #undef COPY_STATE_FN
711
712 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
713 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
714 bool copy_old) \
715 { \
716 u32 old_size = state->COUNT; \
717 struct bpf_##NAME##_state *new_##FIELD; \
718 int slot = size / SIZE; \
719 \
720 if (size <= old_size || !size) { \
721 if (copy_old) \
722 return 0; \
723 state->COUNT = slot * SIZE; \
724 if (!size && old_size) { \
725 kfree(state->FIELD); \
726 state->FIELD = NULL; \
727 } \
728 return 0; \
729 } \
730 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
731 GFP_KERNEL); \
732 if (!new_##FIELD) \
733 return -ENOMEM; \
734 if (copy_old) { \
735 if (state->FIELD) \
736 memcpy(new_##FIELD, state->FIELD, \
737 sizeof(*new_##FIELD) * (old_size / SIZE)); \
738 memset(new_##FIELD + old_size / SIZE, 0, \
739 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
740 } \
741 state->COUNT = slot * SIZE; \
742 kfree(state->FIELD); \
743 state->FIELD = new_##FIELD; \
744 return 0; \
745 }
746 /* realloc_reference_state() */
747 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
748 /* realloc_stack_state() */
749 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
750 #undef REALLOC_STATE_FN
751
752 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
753 * make it consume minimal amount of memory. check_stack_write() access from
754 * the program calls into realloc_func_state() to grow the stack size.
755 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
756 * which realloc_stack_state() copies over. It points to previous
757 * bpf_verifier_state which is never reallocated.
758 */
759 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
760 int refs_size, bool copy_old)
761 {
762 int err = realloc_reference_state(state, refs_size, copy_old);
763 if (err)
764 return err;
765 return realloc_stack_state(state, stack_size, copy_old);
766 }
767
768 /* Acquire a pointer id from the env and update the state->refs to include
769 * this new pointer reference.
770 * On success, returns a valid pointer id to associate with the register
771 * On failure, returns a negative errno.
772 */
acquire_reference_state(struct bpf_verifier_env * env,int insn_idx)773 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
774 {
775 struct bpf_func_state *state = cur_func(env);
776 int new_ofs = state->acquired_refs;
777 int id, err;
778
779 err = realloc_reference_state(state, state->acquired_refs + 1, true);
780 if (err)
781 return err;
782 id = ++env->id_gen;
783 state->refs[new_ofs].id = id;
784 state->refs[new_ofs].insn_idx = insn_idx;
785
786 return id;
787 }
788
789 /* release function corresponding to acquire_reference_state(). Idempotent. */
release_reference_state(struct bpf_func_state * state,int ptr_id)790 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
791 {
792 int i, last_idx;
793
794 last_idx = state->acquired_refs - 1;
795 for (i = 0; i < state->acquired_refs; i++) {
796 if (state->refs[i].id == ptr_id) {
797 if (last_idx && i != last_idx)
798 memcpy(&state->refs[i], &state->refs[last_idx],
799 sizeof(*state->refs));
800 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
801 state->acquired_refs--;
802 return 0;
803 }
804 }
805 return -EINVAL;
806 }
807
transfer_reference_state(struct bpf_func_state * dst,struct bpf_func_state * src)808 static int transfer_reference_state(struct bpf_func_state *dst,
809 struct bpf_func_state *src)
810 {
811 int err = realloc_reference_state(dst, src->acquired_refs, false);
812 if (err)
813 return err;
814 err = copy_reference_state(dst, src);
815 if (err)
816 return err;
817 return 0;
818 }
819
free_func_state(struct bpf_func_state * state)820 static void free_func_state(struct bpf_func_state *state)
821 {
822 if (!state)
823 return;
824 kfree(state->refs);
825 kfree(state->stack);
826 kfree(state);
827 }
828
clear_jmp_history(struct bpf_verifier_state * state)829 static void clear_jmp_history(struct bpf_verifier_state *state)
830 {
831 kfree(state->jmp_history);
832 state->jmp_history = NULL;
833 state->jmp_history_cnt = 0;
834 }
835
free_verifier_state(struct bpf_verifier_state * state,bool free_self)836 static void free_verifier_state(struct bpf_verifier_state *state,
837 bool free_self)
838 {
839 int i;
840
841 for (i = 0; i <= state->curframe; i++) {
842 free_func_state(state->frame[i]);
843 state->frame[i] = NULL;
844 }
845 clear_jmp_history(state);
846 if (free_self)
847 kfree(state);
848 }
849
850 /* copy verifier state from src to dst growing dst stack space
851 * when necessary to accommodate larger src stack
852 */
copy_func_state(struct bpf_func_state * dst,const struct bpf_func_state * src)853 static int copy_func_state(struct bpf_func_state *dst,
854 const struct bpf_func_state *src)
855 {
856 int err;
857
858 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
859 false);
860 if (err)
861 return err;
862 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
863 err = copy_reference_state(dst, src);
864 if (err)
865 return err;
866 return copy_stack_state(dst, src);
867 }
868
copy_verifier_state(struct bpf_verifier_state * dst_state,const struct bpf_verifier_state * src)869 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
870 const struct bpf_verifier_state *src)
871 {
872 struct bpf_func_state *dst;
873 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
874 int i, err;
875
876 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
877 kfree(dst_state->jmp_history);
878 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
879 if (!dst_state->jmp_history)
880 return -ENOMEM;
881 }
882 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
883 dst_state->jmp_history_cnt = src->jmp_history_cnt;
884
885 /* if dst has more stack frames then src frame, free them */
886 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
887 free_func_state(dst_state->frame[i]);
888 dst_state->frame[i] = NULL;
889 }
890 dst_state->speculative = src->speculative;
891 dst_state->curframe = src->curframe;
892 dst_state->active_spin_lock = src->active_spin_lock;
893 dst_state->branches = src->branches;
894 dst_state->parent = src->parent;
895 dst_state->first_insn_idx = src->first_insn_idx;
896 dst_state->last_insn_idx = src->last_insn_idx;
897 for (i = 0; i <= src->curframe; i++) {
898 dst = dst_state->frame[i];
899 if (!dst) {
900 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
901 if (!dst)
902 return -ENOMEM;
903 dst_state->frame[i] = dst;
904 }
905 err = copy_func_state(dst, src->frame[i]);
906 if (err)
907 return err;
908 }
909 return 0;
910 }
911
update_branch_counts(struct bpf_verifier_env * env,struct bpf_verifier_state * st)912 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
913 {
914 while (st) {
915 u32 br = --st->branches;
916
917 /* WARN_ON(br > 1) technically makes sense here,
918 * but see comment in push_stack(), hence:
919 */
920 WARN_ONCE((int)br < 0,
921 "BUG update_branch_counts:branches_to_explore=%d\n",
922 br);
923 if (br)
924 break;
925 st = st->parent;
926 }
927 }
928
pop_stack(struct bpf_verifier_env * env,int * prev_insn_idx,int * insn_idx,bool pop_log)929 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
930 int *insn_idx, bool pop_log)
931 {
932 struct bpf_verifier_state *cur = env->cur_state;
933 struct bpf_verifier_stack_elem *elem, *head = env->head;
934 int err;
935
936 if (env->head == NULL)
937 return -ENOENT;
938
939 if (cur) {
940 err = copy_verifier_state(cur, &head->st);
941 if (err)
942 return err;
943 }
944 if (pop_log)
945 bpf_vlog_reset(&env->log, head->log_pos);
946 if (insn_idx)
947 *insn_idx = head->insn_idx;
948 if (prev_insn_idx)
949 *prev_insn_idx = head->prev_insn_idx;
950 elem = head->next;
951 free_verifier_state(&head->st, false);
952 kfree(head);
953 env->head = elem;
954 env->stack_size--;
955 return 0;
956 }
957
push_stack(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx,bool speculative)958 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
959 int insn_idx, int prev_insn_idx,
960 bool speculative)
961 {
962 struct bpf_verifier_state *cur = env->cur_state;
963 struct bpf_verifier_stack_elem *elem;
964 int err;
965
966 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
967 if (!elem)
968 goto err;
969
970 elem->insn_idx = insn_idx;
971 elem->prev_insn_idx = prev_insn_idx;
972 elem->next = env->head;
973 elem->log_pos = env->log.len_used;
974 env->head = elem;
975 env->stack_size++;
976 err = copy_verifier_state(&elem->st, cur);
977 if (err)
978 goto err;
979 elem->st.speculative |= speculative;
980 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
981 verbose(env, "The sequence of %d jumps is too complex.\n",
982 env->stack_size);
983 goto err;
984 }
985 if (elem->st.parent) {
986 ++elem->st.parent->branches;
987 /* WARN_ON(branches > 2) technically makes sense here,
988 * but
989 * 1. speculative states will bump 'branches' for non-branch
990 * instructions
991 * 2. is_state_visited() heuristics may decide not to create
992 * a new state for a sequence of branches and all such current
993 * and cloned states will be pointing to a single parent state
994 * which might have large 'branches' count.
995 */
996 }
997 return &elem->st;
998 err:
999 free_verifier_state(env->cur_state, true);
1000 env->cur_state = NULL;
1001 /* pop all elements and return */
1002 while (!pop_stack(env, NULL, NULL, false));
1003 return NULL;
1004 }
1005
1006 #define CALLER_SAVED_REGS 6
1007 static const int caller_saved[CALLER_SAVED_REGS] = {
1008 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1009 };
1010
1011 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1012 struct bpf_reg_state *reg);
1013
1014 /* This helper doesn't clear reg->id */
___mark_reg_known(struct bpf_reg_state * reg,u64 imm)1015 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1016 {
1017 reg->var_off = tnum_const(imm);
1018 reg->smin_value = (s64)imm;
1019 reg->smax_value = (s64)imm;
1020 reg->umin_value = imm;
1021 reg->umax_value = imm;
1022
1023 reg->s32_min_value = (s32)imm;
1024 reg->s32_max_value = (s32)imm;
1025 reg->u32_min_value = (u32)imm;
1026 reg->u32_max_value = (u32)imm;
1027 }
1028
1029 /* Mark the unknown part of a register (variable offset or scalar value) as
1030 * known to have the value @imm.
1031 */
__mark_reg_known(struct bpf_reg_state * reg,u64 imm)1032 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1033 {
1034 /* Clear id, off, and union(map_ptr, range) */
1035 memset(((u8 *)reg) + sizeof(reg->type), 0,
1036 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1037 ___mark_reg_known(reg, imm);
1038 }
1039
__mark_reg32_known(struct bpf_reg_state * reg,u64 imm)1040 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1041 {
1042 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1043 reg->s32_min_value = (s32)imm;
1044 reg->s32_max_value = (s32)imm;
1045 reg->u32_min_value = (u32)imm;
1046 reg->u32_max_value = (u32)imm;
1047 }
1048
1049 /* Mark the 'variable offset' part of a register as zero. This should be
1050 * used only on registers holding a pointer type.
1051 */
__mark_reg_known_zero(struct bpf_reg_state * reg)1052 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1053 {
1054 __mark_reg_known(reg, 0);
1055 }
1056
__mark_reg_const_zero(struct bpf_reg_state * reg)1057 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1058 {
1059 __mark_reg_known(reg, 0);
1060 reg->type = SCALAR_VALUE;
1061 }
1062
mark_reg_known_zero(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)1063 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1064 struct bpf_reg_state *regs, u32 regno)
1065 {
1066 if (WARN_ON(regno >= MAX_BPF_REG)) {
1067 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1068 /* Something bad happened, let's kill all regs */
1069 for (regno = 0; regno < MAX_BPF_REG; regno++)
1070 __mark_reg_not_init(env, regs + regno);
1071 return;
1072 }
1073 __mark_reg_known_zero(regs + regno);
1074 }
1075
reg_is_pkt_pointer(const struct bpf_reg_state * reg)1076 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1077 {
1078 return type_is_pkt_pointer(reg->type);
1079 }
1080
reg_is_pkt_pointer_any(const struct bpf_reg_state * reg)1081 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1082 {
1083 return reg_is_pkt_pointer(reg) ||
1084 reg->type == PTR_TO_PACKET_END;
1085 }
1086
1087 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
reg_is_init_pkt_pointer(const struct bpf_reg_state * reg,enum bpf_reg_type which)1088 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1089 enum bpf_reg_type which)
1090 {
1091 /* The register can already have a range from prior markings.
1092 * This is fine as long as it hasn't been advanced from its
1093 * origin.
1094 */
1095 return reg->type == which &&
1096 reg->id == 0 &&
1097 reg->off == 0 &&
1098 tnum_equals_const(reg->var_off, 0);
1099 }
1100
1101 /* Reset the min/max bounds of a register */
__mark_reg_unbounded(struct bpf_reg_state * reg)1102 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1103 {
1104 reg->smin_value = S64_MIN;
1105 reg->smax_value = S64_MAX;
1106 reg->umin_value = 0;
1107 reg->umax_value = U64_MAX;
1108
1109 reg->s32_min_value = S32_MIN;
1110 reg->s32_max_value = S32_MAX;
1111 reg->u32_min_value = 0;
1112 reg->u32_max_value = U32_MAX;
1113 }
1114
__mark_reg64_unbounded(struct bpf_reg_state * reg)1115 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1116 {
1117 reg->smin_value = S64_MIN;
1118 reg->smax_value = S64_MAX;
1119 reg->umin_value = 0;
1120 reg->umax_value = U64_MAX;
1121 }
1122
__mark_reg32_unbounded(struct bpf_reg_state * reg)1123 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1124 {
1125 reg->s32_min_value = S32_MIN;
1126 reg->s32_max_value = S32_MAX;
1127 reg->u32_min_value = 0;
1128 reg->u32_max_value = U32_MAX;
1129 }
1130
__update_reg32_bounds(struct bpf_reg_state * reg)1131 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1132 {
1133 struct tnum var32_off = tnum_subreg(reg->var_off);
1134
1135 /* min signed is max(sign bit) | min(other bits) */
1136 reg->s32_min_value = max_t(s32, reg->s32_min_value,
1137 var32_off.value | (var32_off.mask & S32_MIN));
1138 /* max signed is min(sign bit) | max(other bits) */
1139 reg->s32_max_value = min_t(s32, reg->s32_max_value,
1140 var32_off.value | (var32_off.mask & S32_MAX));
1141 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1142 reg->u32_max_value = min(reg->u32_max_value,
1143 (u32)(var32_off.value | var32_off.mask));
1144 }
1145
__update_reg64_bounds(struct bpf_reg_state * reg)1146 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1147 {
1148 /* min signed is max(sign bit) | min(other bits) */
1149 reg->smin_value = max_t(s64, reg->smin_value,
1150 reg->var_off.value | (reg->var_off.mask & S64_MIN));
1151 /* max signed is min(sign bit) | max(other bits) */
1152 reg->smax_value = min_t(s64, reg->smax_value,
1153 reg->var_off.value | (reg->var_off.mask & S64_MAX));
1154 reg->umin_value = max(reg->umin_value, reg->var_off.value);
1155 reg->umax_value = min(reg->umax_value,
1156 reg->var_off.value | reg->var_off.mask);
1157 }
1158
__update_reg_bounds(struct bpf_reg_state * reg)1159 static void __update_reg_bounds(struct bpf_reg_state *reg)
1160 {
1161 __update_reg32_bounds(reg);
1162 __update_reg64_bounds(reg);
1163 }
1164
1165 /* Uses signed min/max values to inform unsigned, and vice-versa */
__reg32_deduce_bounds(struct bpf_reg_state * reg)1166 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1167 {
1168 /* Learn sign from signed bounds.
1169 * If we cannot cross the sign boundary, then signed and unsigned bounds
1170 * are the same, so combine. This works even in the negative case, e.g.
1171 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1172 */
1173 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1174 reg->s32_min_value = reg->u32_min_value =
1175 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1176 reg->s32_max_value = reg->u32_max_value =
1177 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1178 return;
1179 }
1180 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1181 * boundary, so we must be careful.
1182 */
1183 if ((s32)reg->u32_max_value >= 0) {
1184 /* Positive. We can't learn anything from the smin, but smax
1185 * is positive, hence safe.
1186 */
1187 reg->s32_min_value = reg->u32_min_value;
1188 reg->s32_max_value = reg->u32_max_value =
1189 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1190 } else if ((s32)reg->u32_min_value < 0) {
1191 /* Negative. We can't learn anything from the smax, but smin
1192 * is negative, hence safe.
1193 */
1194 reg->s32_min_value = reg->u32_min_value =
1195 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1196 reg->s32_max_value = reg->u32_max_value;
1197 }
1198 }
1199
__reg64_deduce_bounds(struct bpf_reg_state * reg)1200 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1201 {
1202 /* Learn sign from signed bounds.
1203 * If we cannot cross the sign boundary, then signed and unsigned bounds
1204 * are the same, so combine. This works even in the negative case, e.g.
1205 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1206 */
1207 if (reg->smin_value >= 0 || reg->smax_value < 0) {
1208 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1209 reg->umin_value);
1210 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1211 reg->umax_value);
1212 return;
1213 }
1214 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1215 * boundary, so we must be careful.
1216 */
1217 if ((s64)reg->umax_value >= 0) {
1218 /* Positive. We can't learn anything from the smin, but smax
1219 * is positive, hence safe.
1220 */
1221 reg->smin_value = reg->umin_value;
1222 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1223 reg->umax_value);
1224 } else if ((s64)reg->umin_value < 0) {
1225 /* Negative. We can't learn anything from the smax, but smin
1226 * is negative, hence safe.
1227 */
1228 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1229 reg->umin_value);
1230 reg->smax_value = reg->umax_value;
1231 }
1232 }
1233
__reg_deduce_bounds(struct bpf_reg_state * reg)1234 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1235 {
1236 __reg32_deduce_bounds(reg);
1237 __reg64_deduce_bounds(reg);
1238 }
1239
1240 /* Attempts to improve var_off based on unsigned min/max information */
__reg_bound_offset(struct bpf_reg_state * reg)1241 static void __reg_bound_offset(struct bpf_reg_state *reg)
1242 {
1243 struct tnum var64_off = tnum_intersect(reg->var_off,
1244 tnum_range(reg->umin_value,
1245 reg->umax_value));
1246 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1247 tnum_range(reg->u32_min_value,
1248 reg->u32_max_value));
1249
1250 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1251 }
1252
__reg32_bound_s64(s32 a)1253 static bool __reg32_bound_s64(s32 a)
1254 {
1255 return a >= 0 && a <= S32_MAX;
1256 }
1257
__reg_assign_32_into_64(struct bpf_reg_state * reg)1258 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1259 {
1260 reg->umin_value = reg->u32_min_value;
1261 reg->umax_value = reg->u32_max_value;
1262
1263 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
1264 * be positive otherwise set to worse case bounds and refine later
1265 * from tnum.
1266 */
1267 if (__reg32_bound_s64(reg->s32_min_value) &&
1268 __reg32_bound_s64(reg->s32_max_value)) {
1269 reg->smin_value = reg->s32_min_value;
1270 reg->smax_value = reg->s32_max_value;
1271 } else {
1272 reg->smin_value = 0;
1273 reg->smax_value = U32_MAX;
1274 }
1275 }
1276
__reg_combine_32_into_64(struct bpf_reg_state * reg)1277 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1278 {
1279 /* special case when 64-bit register has upper 32-bit register
1280 * zeroed. Typically happens after zext or <<32, >>32 sequence
1281 * allowing us to use 32-bit bounds directly,
1282 */
1283 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1284 __reg_assign_32_into_64(reg);
1285 } else {
1286 /* Otherwise the best we can do is push lower 32bit known and
1287 * unknown bits into register (var_off set from jmp logic)
1288 * then learn as much as possible from the 64-bit tnum
1289 * known and unknown bits. The previous smin/smax bounds are
1290 * invalid here because of jmp32 compare so mark them unknown
1291 * so they do not impact tnum bounds calculation.
1292 */
1293 __mark_reg64_unbounded(reg);
1294 __update_reg_bounds(reg);
1295 }
1296
1297 /* Intersecting with the old var_off might have improved our bounds
1298 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1299 * then new var_off is (0; 0x7f...fc) which improves our umax.
1300 */
1301 __reg_deduce_bounds(reg);
1302 __reg_bound_offset(reg);
1303 __update_reg_bounds(reg);
1304 }
1305
__reg64_bound_s32(s64 a)1306 static bool __reg64_bound_s32(s64 a)
1307 {
1308 return a >= S32_MIN && a <= S32_MAX;
1309 }
1310
__reg64_bound_u32(u64 a)1311 static bool __reg64_bound_u32(u64 a)
1312 {
1313 return a >= U32_MIN && a <= U32_MAX;
1314 }
1315
__reg_combine_64_into_32(struct bpf_reg_state * reg)1316 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1317 {
1318 __mark_reg32_unbounded(reg);
1319
1320 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1321 reg->s32_min_value = (s32)reg->smin_value;
1322 reg->s32_max_value = (s32)reg->smax_value;
1323 }
1324 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
1325 reg->u32_min_value = (u32)reg->umin_value;
1326 reg->u32_max_value = (u32)reg->umax_value;
1327 }
1328
1329 /* Intersecting with the old var_off might have improved our bounds
1330 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1331 * then new var_off is (0; 0x7f...fc) which improves our umax.
1332 */
1333 __reg_deduce_bounds(reg);
1334 __reg_bound_offset(reg);
1335 __update_reg_bounds(reg);
1336 }
1337
1338 /* Mark a register as having a completely unknown (scalar) value. */
__mark_reg_unknown(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)1339 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1340 struct bpf_reg_state *reg)
1341 {
1342 /*
1343 * Clear type, id, off, and union(map_ptr, range) and
1344 * padding between 'type' and union
1345 */
1346 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1347 reg->type = SCALAR_VALUE;
1348 reg->var_off = tnum_unknown;
1349 reg->frameno = 0;
1350 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1351 __mark_reg_unbounded(reg);
1352 }
1353
mark_reg_unknown(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)1354 static void mark_reg_unknown(struct bpf_verifier_env *env,
1355 struct bpf_reg_state *regs, u32 regno)
1356 {
1357 if (WARN_ON(regno >= MAX_BPF_REG)) {
1358 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1359 /* Something bad happened, let's kill all regs except FP */
1360 for (regno = 0; regno < BPF_REG_FP; regno++)
1361 __mark_reg_not_init(env, regs + regno);
1362 return;
1363 }
1364 __mark_reg_unknown(env, regs + regno);
1365 }
1366
__mark_reg_not_init(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)1367 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1368 struct bpf_reg_state *reg)
1369 {
1370 __mark_reg_unknown(env, reg);
1371 reg->type = NOT_INIT;
1372 }
1373
mark_reg_not_init(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)1374 static void mark_reg_not_init(struct bpf_verifier_env *env,
1375 struct bpf_reg_state *regs, u32 regno)
1376 {
1377 if (WARN_ON(regno >= MAX_BPF_REG)) {
1378 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1379 /* Something bad happened, let's kill all regs except FP */
1380 for (regno = 0; regno < BPF_REG_FP; regno++)
1381 __mark_reg_not_init(env, regs + regno);
1382 return;
1383 }
1384 __mark_reg_not_init(env, regs + regno);
1385 }
1386
mark_btf_ld_reg(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,enum bpf_reg_type reg_type,u32 btf_id)1387 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1388 struct bpf_reg_state *regs, u32 regno,
1389 enum bpf_reg_type reg_type, u32 btf_id)
1390 {
1391 if (reg_type == SCALAR_VALUE) {
1392 mark_reg_unknown(env, regs, regno);
1393 return;
1394 }
1395 mark_reg_known_zero(env, regs, regno);
1396 regs[regno].type = PTR_TO_BTF_ID;
1397 regs[regno].btf_id = btf_id;
1398 }
1399
1400 #define DEF_NOT_SUBREG (0)
init_reg_state(struct bpf_verifier_env * env,struct bpf_func_state * state)1401 static void init_reg_state(struct bpf_verifier_env *env,
1402 struct bpf_func_state *state)
1403 {
1404 struct bpf_reg_state *regs = state->regs;
1405 int i;
1406
1407 for (i = 0; i < MAX_BPF_REG; i++) {
1408 mark_reg_not_init(env, regs, i);
1409 regs[i].live = REG_LIVE_NONE;
1410 regs[i].parent = NULL;
1411 regs[i].subreg_def = DEF_NOT_SUBREG;
1412 }
1413
1414 /* frame pointer */
1415 regs[BPF_REG_FP].type = PTR_TO_STACK;
1416 mark_reg_known_zero(env, regs, BPF_REG_FP);
1417 regs[BPF_REG_FP].frameno = state->frameno;
1418 }
1419
1420 #define BPF_MAIN_FUNC (-1)
init_func_state(struct bpf_verifier_env * env,struct bpf_func_state * state,int callsite,int frameno,int subprogno)1421 static void init_func_state(struct bpf_verifier_env *env,
1422 struct bpf_func_state *state,
1423 int callsite, int frameno, int subprogno)
1424 {
1425 state->callsite = callsite;
1426 state->frameno = frameno;
1427 state->subprogno = subprogno;
1428 init_reg_state(env, state);
1429 }
1430
1431 enum reg_arg_type {
1432 SRC_OP, /* register is used as source operand */
1433 DST_OP, /* register is used as destination operand */
1434 DST_OP_NO_MARK /* same as above, check only, don't mark */
1435 };
1436
cmp_subprogs(const void * a,const void * b)1437 static int cmp_subprogs(const void *a, const void *b)
1438 {
1439 return ((struct bpf_subprog_info *)a)->start -
1440 ((struct bpf_subprog_info *)b)->start;
1441 }
1442
find_subprog(struct bpf_verifier_env * env,int off)1443 static int find_subprog(struct bpf_verifier_env *env, int off)
1444 {
1445 struct bpf_subprog_info *p;
1446
1447 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1448 sizeof(env->subprog_info[0]), cmp_subprogs);
1449 if (!p)
1450 return -ENOENT;
1451 return p - env->subprog_info;
1452
1453 }
1454
add_subprog(struct bpf_verifier_env * env,int off)1455 static int add_subprog(struct bpf_verifier_env *env, int off)
1456 {
1457 int insn_cnt = env->prog->len;
1458 int ret;
1459
1460 if (off >= insn_cnt || off < 0) {
1461 verbose(env, "call to invalid destination\n");
1462 return -EINVAL;
1463 }
1464 ret = find_subprog(env, off);
1465 if (ret >= 0)
1466 return 0;
1467 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1468 verbose(env, "too many subprograms\n");
1469 return -E2BIG;
1470 }
1471 env->subprog_info[env->subprog_cnt++].start = off;
1472 sort(env->subprog_info, env->subprog_cnt,
1473 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1474 return 0;
1475 }
1476
check_subprogs(struct bpf_verifier_env * env)1477 static int check_subprogs(struct bpf_verifier_env *env)
1478 {
1479 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1480 struct bpf_subprog_info *subprog = env->subprog_info;
1481 struct bpf_insn *insn = env->prog->insnsi;
1482 int insn_cnt = env->prog->len;
1483
1484 /* Add entry function. */
1485 ret = add_subprog(env, 0);
1486 if (ret < 0)
1487 return ret;
1488
1489 /* determine subprog starts. The end is one before the next starts */
1490 for (i = 0; i < insn_cnt; i++) {
1491 if (insn[i].code != (BPF_JMP | BPF_CALL))
1492 continue;
1493 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1494 continue;
1495 if (!env->bpf_capable) {
1496 verbose(env,
1497 "function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1498 return -EPERM;
1499 }
1500 ret = add_subprog(env, i + insn[i].imm + 1);
1501 if (ret < 0)
1502 return ret;
1503 }
1504
1505 /* Add a fake 'exit' subprog which could simplify subprog iteration
1506 * logic. 'subprog_cnt' should not be increased.
1507 */
1508 subprog[env->subprog_cnt].start = insn_cnt;
1509
1510 if (env->log.level & BPF_LOG_LEVEL2)
1511 for (i = 0; i < env->subprog_cnt; i++)
1512 verbose(env, "func#%d @%d\n", i, subprog[i].start);
1513
1514 /* now check that all jumps are within the same subprog */
1515 subprog_start = subprog[cur_subprog].start;
1516 subprog_end = subprog[cur_subprog + 1].start;
1517 for (i = 0; i < insn_cnt; i++) {
1518 u8 code = insn[i].code;
1519
1520 if (code == (BPF_JMP | BPF_CALL) &&
1521 insn[i].imm == BPF_FUNC_tail_call &&
1522 insn[i].src_reg != BPF_PSEUDO_CALL)
1523 subprog[cur_subprog].has_tail_call = true;
1524 if (BPF_CLASS(code) == BPF_LD &&
1525 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1526 subprog[cur_subprog].has_ld_abs = true;
1527 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1528 goto next;
1529 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1530 goto next;
1531 off = i + insn[i].off + 1;
1532 if (off < subprog_start || off >= subprog_end) {
1533 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1534 return -EINVAL;
1535 }
1536 next:
1537 if (i == subprog_end - 1) {
1538 /* to avoid fall-through from one subprog into another
1539 * the last insn of the subprog should be either exit
1540 * or unconditional jump back
1541 */
1542 if (code != (BPF_JMP | BPF_EXIT) &&
1543 code != (BPF_JMP | BPF_JA)) {
1544 verbose(env, "last insn is not an exit or jmp\n");
1545 return -EINVAL;
1546 }
1547 subprog_start = subprog_end;
1548 cur_subprog++;
1549 if (cur_subprog < env->subprog_cnt)
1550 subprog_end = subprog[cur_subprog + 1].start;
1551 }
1552 }
1553 return 0;
1554 }
1555
1556 /* Parentage chain of this register (or stack slot) should take care of all
1557 * issues like callee-saved registers, stack slot allocation time, etc.
1558 */
mark_reg_read(struct bpf_verifier_env * env,const struct bpf_reg_state * state,struct bpf_reg_state * parent,u8 flag)1559 static int mark_reg_read(struct bpf_verifier_env *env,
1560 const struct bpf_reg_state *state,
1561 struct bpf_reg_state *parent, u8 flag)
1562 {
1563 bool writes = parent == state->parent; /* Observe write marks */
1564 int cnt = 0;
1565
1566 while (parent) {
1567 /* if read wasn't screened by an earlier write ... */
1568 if (writes && state->live & REG_LIVE_WRITTEN)
1569 break;
1570 if (parent->live & REG_LIVE_DONE) {
1571 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1572 reg_type_str(env, parent->type),
1573 parent->var_off.value, parent->off);
1574 return -EFAULT;
1575 }
1576 /* The first condition is more likely to be true than the
1577 * second, checked it first.
1578 */
1579 if ((parent->live & REG_LIVE_READ) == flag ||
1580 parent->live & REG_LIVE_READ64)
1581 /* The parentage chain never changes and
1582 * this parent was already marked as LIVE_READ.
1583 * There is no need to keep walking the chain again and
1584 * keep re-marking all parents as LIVE_READ.
1585 * This case happens when the same register is read
1586 * multiple times without writes into it in-between.
1587 * Also, if parent has the stronger REG_LIVE_READ64 set,
1588 * then no need to set the weak REG_LIVE_READ32.
1589 */
1590 break;
1591 /* ... then we depend on parent's value */
1592 parent->live |= flag;
1593 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1594 if (flag == REG_LIVE_READ64)
1595 parent->live &= ~REG_LIVE_READ32;
1596 state = parent;
1597 parent = state->parent;
1598 writes = true;
1599 cnt++;
1600 }
1601
1602 if (env->longest_mark_read_walk < cnt)
1603 env->longest_mark_read_walk = cnt;
1604 return 0;
1605 }
1606
1607 /* This function is supposed to be used by the following 32-bit optimization
1608 * code only. It returns TRUE if the source or destination register operates
1609 * on 64-bit, otherwise return FALSE.
1610 */
is_reg64(struct bpf_verifier_env * env,struct bpf_insn * insn,u32 regno,struct bpf_reg_state * reg,enum reg_arg_type t)1611 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1612 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1613 {
1614 u8 code, class, op;
1615
1616 code = insn->code;
1617 class = BPF_CLASS(code);
1618 op = BPF_OP(code);
1619 if (class == BPF_JMP) {
1620 /* BPF_EXIT for "main" will reach here. Return TRUE
1621 * conservatively.
1622 */
1623 if (op == BPF_EXIT)
1624 return true;
1625 if (op == BPF_CALL) {
1626 /* BPF to BPF call will reach here because of marking
1627 * caller saved clobber with DST_OP_NO_MARK for which we
1628 * don't care the register def because they are anyway
1629 * marked as NOT_INIT already.
1630 */
1631 if (insn->src_reg == BPF_PSEUDO_CALL)
1632 return false;
1633 /* Helper call will reach here because of arg type
1634 * check, conservatively return TRUE.
1635 */
1636 if (t == SRC_OP)
1637 return true;
1638
1639 return false;
1640 }
1641 }
1642
1643 if (class == BPF_ALU64 || class == BPF_JMP ||
1644 /* BPF_END always use BPF_ALU class. */
1645 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1646 return true;
1647
1648 if (class == BPF_ALU || class == BPF_JMP32)
1649 return false;
1650
1651 if (class == BPF_LDX) {
1652 if (t != SRC_OP)
1653 return BPF_SIZE(code) == BPF_DW;
1654 /* LDX source must be ptr. */
1655 return true;
1656 }
1657
1658 if (class == BPF_STX) {
1659 if (reg->type != SCALAR_VALUE)
1660 return true;
1661 return BPF_SIZE(code) == BPF_DW;
1662 }
1663
1664 if (class == BPF_LD) {
1665 u8 mode = BPF_MODE(code);
1666
1667 /* LD_IMM64 */
1668 if (mode == BPF_IMM)
1669 return true;
1670
1671 /* Both LD_IND and LD_ABS return 32-bit data. */
1672 if (t != SRC_OP)
1673 return false;
1674
1675 /* Implicit ctx ptr. */
1676 if (regno == BPF_REG_6)
1677 return true;
1678
1679 /* Explicit source could be any width. */
1680 return true;
1681 }
1682
1683 if (class == BPF_ST)
1684 /* The only source register for BPF_ST is a ptr. */
1685 return true;
1686
1687 /* Conservatively return true at default. */
1688 return true;
1689 }
1690
1691 /* Return TRUE if INSN doesn't have explicit value define. */
insn_no_def(struct bpf_insn * insn)1692 static bool insn_no_def(struct bpf_insn *insn)
1693 {
1694 u8 class = BPF_CLASS(insn->code);
1695
1696 return (class == BPF_JMP || class == BPF_JMP32 ||
1697 class == BPF_STX || class == BPF_ST);
1698 }
1699
1700 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
insn_has_def32(struct bpf_verifier_env * env,struct bpf_insn * insn)1701 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1702 {
1703 if (insn_no_def(insn))
1704 return false;
1705
1706 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1707 }
1708
mark_insn_zext(struct bpf_verifier_env * env,struct bpf_reg_state * reg)1709 static void mark_insn_zext(struct bpf_verifier_env *env,
1710 struct bpf_reg_state *reg)
1711 {
1712 s32 def_idx = reg->subreg_def;
1713
1714 if (def_idx == DEF_NOT_SUBREG)
1715 return;
1716
1717 env->insn_aux_data[def_idx - 1].zext_dst = true;
1718 /* The dst will be zero extended, so won't be sub-register anymore. */
1719 reg->subreg_def = DEF_NOT_SUBREG;
1720 }
1721
check_reg_arg(struct bpf_verifier_env * env,u32 regno,enum reg_arg_type t)1722 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1723 enum reg_arg_type t)
1724 {
1725 struct bpf_verifier_state *vstate = env->cur_state;
1726 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1727 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1728 struct bpf_reg_state *reg, *regs = state->regs;
1729 bool rw64;
1730
1731 if (regno >= MAX_BPF_REG) {
1732 verbose(env, "R%d is invalid\n", regno);
1733 return -EINVAL;
1734 }
1735
1736 reg = ®s[regno];
1737 rw64 = is_reg64(env, insn, regno, reg, t);
1738 if (t == SRC_OP) {
1739 /* check whether register used as source operand can be read */
1740 if (reg->type == NOT_INIT) {
1741 verbose(env, "R%d !read_ok\n", regno);
1742 return -EACCES;
1743 }
1744 /* We don't need to worry about FP liveness because it's read-only */
1745 if (regno == BPF_REG_FP)
1746 return 0;
1747
1748 if (rw64)
1749 mark_insn_zext(env, reg);
1750
1751 return mark_reg_read(env, reg, reg->parent,
1752 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
1753 } else {
1754 /* check whether register used as dest operand can be written to */
1755 if (regno == BPF_REG_FP) {
1756 verbose(env, "frame pointer is read only\n");
1757 return -EACCES;
1758 }
1759 reg->live |= REG_LIVE_WRITTEN;
1760 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
1761 if (t == DST_OP)
1762 mark_reg_unknown(env, regs, regno);
1763 }
1764 return 0;
1765 }
1766
1767 /* for any branch, call, exit record the history of jmps in the given state */
push_jmp_history(struct bpf_verifier_env * env,struct bpf_verifier_state * cur)1768 static int push_jmp_history(struct bpf_verifier_env *env,
1769 struct bpf_verifier_state *cur)
1770 {
1771 u32 cnt = cur->jmp_history_cnt;
1772 struct bpf_idx_pair *p;
1773
1774 cnt++;
1775 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1776 if (!p)
1777 return -ENOMEM;
1778 p[cnt - 1].idx = env->insn_idx;
1779 p[cnt - 1].prev_idx = env->prev_insn_idx;
1780 cur->jmp_history = p;
1781 cur->jmp_history_cnt = cnt;
1782 return 0;
1783 }
1784
1785 /* Backtrack one insn at a time. If idx is not at the top of recorded
1786 * history then previous instruction came from straight line execution.
1787 */
get_prev_insn_idx(struct bpf_verifier_state * st,int i,u32 * history)1788 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1789 u32 *history)
1790 {
1791 u32 cnt = *history;
1792
1793 if (cnt && st->jmp_history[cnt - 1].idx == i) {
1794 i = st->jmp_history[cnt - 1].prev_idx;
1795 (*history)--;
1796 } else {
1797 i--;
1798 }
1799 return i;
1800 }
1801
1802 /* For given verifier state backtrack_insn() is called from the last insn to
1803 * the first insn. Its purpose is to compute a bitmask of registers and
1804 * stack slots that needs precision in the parent verifier state.
1805 */
backtrack_insn(struct bpf_verifier_env * env,int idx,u32 * reg_mask,u64 * stack_mask)1806 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1807 u32 *reg_mask, u64 *stack_mask)
1808 {
1809 const struct bpf_insn_cbs cbs = {
1810 .cb_print = verbose,
1811 .private_data = env,
1812 };
1813 struct bpf_insn *insn = env->prog->insnsi + idx;
1814 u8 class = BPF_CLASS(insn->code);
1815 u8 opcode = BPF_OP(insn->code);
1816 u8 mode = BPF_MODE(insn->code);
1817 u32 dreg = 1u << insn->dst_reg;
1818 u32 sreg = 1u << insn->src_reg;
1819 u32 spi;
1820
1821 if (insn->code == 0)
1822 return 0;
1823 if (env->log.level & BPF_LOG_LEVEL) {
1824 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1825 verbose(env, "%d: ", idx);
1826 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1827 }
1828
1829 if (class == BPF_ALU || class == BPF_ALU64) {
1830 if (!(*reg_mask & dreg))
1831 return 0;
1832 if (opcode == BPF_MOV) {
1833 if (BPF_SRC(insn->code) == BPF_X) {
1834 /* dreg = sreg
1835 * dreg needs precision after this insn
1836 * sreg needs precision before this insn
1837 */
1838 *reg_mask &= ~dreg;
1839 *reg_mask |= sreg;
1840 } else {
1841 /* dreg = K
1842 * dreg needs precision after this insn.
1843 * Corresponding register is already marked
1844 * as precise=true in this verifier state.
1845 * No further markings in parent are necessary
1846 */
1847 *reg_mask &= ~dreg;
1848 }
1849 } else {
1850 if (BPF_SRC(insn->code) == BPF_X) {
1851 /* dreg += sreg
1852 * both dreg and sreg need precision
1853 * before this insn
1854 */
1855 *reg_mask |= sreg;
1856 } /* else dreg += K
1857 * dreg still needs precision before this insn
1858 */
1859 }
1860 } else if (class == BPF_LDX) {
1861 if (!(*reg_mask & dreg))
1862 return 0;
1863 *reg_mask &= ~dreg;
1864
1865 /* scalars can only be spilled into stack w/o losing precision.
1866 * Load from any other memory can be zero extended.
1867 * The desire to keep that precision is already indicated
1868 * by 'precise' mark in corresponding register of this state.
1869 * No further tracking necessary.
1870 */
1871 if (insn->src_reg != BPF_REG_FP)
1872 return 0;
1873 if (BPF_SIZE(insn->code) != BPF_DW)
1874 return 0;
1875
1876 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
1877 * that [fp - off] slot contains scalar that needs to be
1878 * tracked with precision
1879 */
1880 spi = (-insn->off - 1) / BPF_REG_SIZE;
1881 if (spi >= 64) {
1882 verbose(env, "BUG spi %d\n", spi);
1883 WARN_ONCE(1, "verifier backtracking bug");
1884 return -EFAULT;
1885 }
1886 *stack_mask |= 1ull << spi;
1887 } else if (class == BPF_STX || class == BPF_ST) {
1888 if (*reg_mask & dreg)
1889 /* stx & st shouldn't be using _scalar_ dst_reg
1890 * to access memory. It means backtracking
1891 * encountered a case of pointer subtraction.
1892 */
1893 return -ENOTSUPP;
1894 /* scalars can only be spilled into stack */
1895 if (insn->dst_reg != BPF_REG_FP)
1896 return 0;
1897 if (BPF_SIZE(insn->code) != BPF_DW)
1898 return 0;
1899 spi = (-insn->off - 1) / BPF_REG_SIZE;
1900 if (spi >= 64) {
1901 verbose(env, "BUG spi %d\n", spi);
1902 WARN_ONCE(1, "verifier backtracking bug");
1903 return -EFAULT;
1904 }
1905 if (!(*stack_mask & (1ull << spi)))
1906 return 0;
1907 *stack_mask &= ~(1ull << spi);
1908 if (class == BPF_STX)
1909 *reg_mask |= sreg;
1910 } else if (class == BPF_JMP || class == BPF_JMP32) {
1911 if (opcode == BPF_CALL) {
1912 if (insn->src_reg == BPF_PSEUDO_CALL)
1913 return -ENOTSUPP;
1914 /* regular helper call sets R0 */
1915 *reg_mask &= ~1;
1916 if (*reg_mask & 0x3f) {
1917 /* if backtracing was looking for registers R1-R5
1918 * they should have been found already.
1919 */
1920 verbose(env, "BUG regs %x\n", *reg_mask);
1921 WARN_ONCE(1, "verifier backtracking bug");
1922 return -EFAULT;
1923 }
1924 } else if (opcode == BPF_EXIT) {
1925 return -ENOTSUPP;
1926 }
1927 } else if (class == BPF_LD) {
1928 if (!(*reg_mask & dreg))
1929 return 0;
1930 *reg_mask &= ~dreg;
1931 /* It's ld_imm64 or ld_abs or ld_ind.
1932 * For ld_imm64 no further tracking of precision
1933 * into parent is necessary
1934 */
1935 if (mode == BPF_IND || mode == BPF_ABS)
1936 /* to be analyzed */
1937 return -ENOTSUPP;
1938 }
1939 return 0;
1940 }
1941
1942 /* the scalar precision tracking algorithm:
1943 * . at the start all registers have precise=false.
1944 * . scalar ranges are tracked as normal through alu and jmp insns.
1945 * . once precise value of the scalar register is used in:
1946 * . ptr + scalar alu
1947 * . if (scalar cond K|scalar)
1948 * . helper_call(.., scalar, ...) where ARG_CONST is expected
1949 * backtrack through the verifier states and mark all registers and
1950 * stack slots with spilled constants that these scalar regisers
1951 * should be precise.
1952 * . during state pruning two registers (or spilled stack slots)
1953 * are equivalent if both are not precise.
1954 *
1955 * Note the verifier cannot simply walk register parentage chain,
1956 * since many different registers and stack slots could have been
1957 * used to compute single precise scalar.
1958 *
1959 * The approach of starting with precise=true for all registers and then
1960 * backtrack to mark a register as not precise when the verifier detects
1961 * that program doesn't care about specific value (e.g., when helper
1962 * takes register as ARG_ANYTHING parameter) is not safe.
1963 *
1964 * It's ok to walk single parentage chain of the verifier states.
1965 * It's possible that this backtracking will go all the way till 1st insn.
1966 * All other branches will be explored for needing precision later.
1967 *
1968 * The backtracking needs to deal with cases like:
1969 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1970 * r9 -= r8
1971 * r5 = r9
1972 * if r5 > 0x79f goto pc+7
1973 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1974 * r5 += 1
1975 * ...
1976 * call bpf_perf_event_output#25
1977 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1978 *
1979 * and this case:
1980 * r6 = 1
1981 * call foo // uses callee's r6 inside to compute r0
1982 * r0 += r6
1983 * if r0 == 0 goto
1984 *
1985 * to track above reg_mask/stack_mask needs to be independent for each frame.
1986 *
1987 * Also if parent's curframe > frame where backtracking started,
1988 * the verifier need to mark registers in both frames, otherwise callees
1989 * may incorrectly prune callers. This is similar to
1990 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1991 *
1992 * For now backtracking falls back into conservative marking.
1993 */
mark_all_scalars_precise(struct bpf_verifier_env * env,struct bpf_verifier_state * st)1994 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1995 struct bpf_verifier_state *st)
1996 {
1997 struct bpf_func_state *func;
1998 struct bpf_reg_state *reg;
1999 int i, j;
2000
2001 /* big hammer: mark all scalars precise in this path.
2002 * pop_stack may still get !precise scalars.
2003 */
2004 for (; st; st = st->parent)
2005 for (i = 0; i <= st->curframe; i++) {
2006 func = st->frame[i];
2007 for (j = 0; j < BPF_REG_FP; j++) {
2008 reg = &func->regs[j];
2009 if (reg->type != SCALAR_VALUE)
2010 continue;
2011 reg->precise = true;
2012 }
2013 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2014 if (func->stack[j].slot_type[0] != STACK_SPILL)
2015 continue;
2016 reg = &func->stack[j].spilled_ptr;
2017 if (reg->type != SCALAR_VALUE)
2018 continue;
2019 reg->precise = true;
2020 }
2021 }
2022 }
2023
__mark_chain_precision(struct bpf_verifier_env * env,int regno,int spi)2024 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2025 int spi)
2026 {
2027 struct bpf_verifier_state *st = env->cur_state;
2028 int first_idx = st->first_insn_idx;
2029 int last_idx = env->insn_idx;
2030 struct bpf_func_state *func;
2031 struct bpf_reg_state *reg;
2032 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2033 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2034 bool skip_first = true;
2035 bool new_marks = false;
2036 int i, err;
2037
2038 if (!env->bpf_capable)
2039 return 0;
2040
2041 func = st->frame[st->curframe];
2042 if (regno >= 0) {
2043 reg = &func->regs[regno];
2044 if (reg->type != SCALAR_VALUE) {
2045 WARN_ONCE(1, "backtracing misuse");
2046 return -EFAULT;
2047 }
2048 if (!reg->precise)
2049 new_marks = true;
2050 else
2051 reg_mask = 0;
2052 reg->precise = true;
2053 }
2054
2055 while (spi >= 0) {
2056 if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2057 stack_mask = 0;
2058 break;
2059 }
2060 reg = &func->stack[spi].spilled_ptr;
2061 if (reg->type != SCALAR_VALUE) {
2062 stack_mask = 0;
2063 break;
2064 }
2065 if (!reg->precise)
2066 new_marks = true;
2067 else
2068 stack_mask = 0;
2069 reg->precise = true;
2070 break;
2071 }
2072
2073 if (!new_marks)
2074 return 0;
2075 if (!reg_mask && !stack_mask)
2076 return 0;
2077 for (;;) {
2078 DECLARE_BITMAP(mask, 64);
2079 u32 history = st->jmp_history_cnt;
2080
2081 if (env->log.level & BPF_LOG_LEVEL)
2082 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2083 for (i = last_idx;;) {
2084 if (skip_first) {
2085 err = 0;
2086 skip_first = false;
2087 } else {
2088 err = backtrack_insn(env, i, ®_mask, &stack_mask);
2089 }
2090 if (err == -ENOTSUPP) {
2091 mark_all_scalars_precise(env, st);
2092 return 0;
2093 } else if (err) {
2094 return err;
2095 }
2096 if (!reg_mask && !stack_mask)
2097 /* Found assignment(s) into tracked register in this state.
2098 * Since this state is already marked, just return.
2099 * Nothing to be tracked further in the parent state.
2100 */
2101 return 0;
2102 if (i == first_idx)
2103 break;
2104 i = get_prev_insn_idx(st, i, &history);
2105 if (i >= env->prog->len) {
2106 /* This can happen if backtracking reached insn 0
2107 * and there are still reg_mask or stack_mask
2108 * to backtrack.
2109 * It means the backtracking missed the spot where
2110 * particular register was initialized with a constant.
2111 */
2112 verbose(env, "BUG backtracking idx %d\n", i);
2113 WARN_ONCE(1, "verifier backtracking bug");
2114 return -EFAULT;
2115 }
2116 }
2117 st = st->parent;
2118 if (!st)
2119 break;
2120
2121 new_marks = false;
2122 func = st->frame[st->curframe];
2123 bitmap_from_u64(mask, reg_mask);
2124 for_each_set_bit(i, mask, 32) {
2125 reg = &func->regs[i];
2126 if (reg->type != SCALAR_VALUE) {
2127 reg_mask &= ~(1u << i);
2128 continue;
2129 }
2130 if (!reg->precise)
2131 new_marks = true;
2132 reg->precise = true;
2133 }
2134
2135 bitmap_from_u64(mask, stack_mask);
2136 for_each_set_bit(i, mask, 64) {
2137 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2138 /* the sequence of instructions:
2139 * 2: (bf) r3 = r10
2140 * 3: (7b) *(u64 *)(r3 -8) = r0
2141 * 4: (79) r4 = *(u64 *)(r10 -8)
2142 * doesn't contain jmps. It's backtracked
2143 * as a single block.
2144 * During backtracking insn 3 is not recognized as
2145 * stack access, so at the end of backtracking
2146 * stack slot fp-8 is still marked in stack_mask.
2147 * However the parent state may not have accessed
2148 * fp-8 and it's "unallocated" stack space.
2149 * In such case fallback to conservative.
2150 */
2151 mark_all_scalars_precise(env, st);
2152 return 0;
2153 }
2154
2155 if (func->stack[i].slot_type[0] != STACK_SPILL) {
2156 stack_mask &= ~(1ull << i);
2157 continue;
2158 }
2159 reg = &func->stack[i].spilled_ptr;
2160 if (reg->type != SCALAR_VALUE) {
2161 stack_mask &= ~(1ull << i);
2162 continue;
2163 }
2164 if (!reg->precise)
2165 new_marks = true;
2166 reg->precise = true;
2167 }
2168 if (env->log.level & BPF_LOG_LEVEL) {
2169 print_verifier_state(env, func);
2170 verbose(env, "parent %s regs=%x stack=%llx marks\n",
2171 new_marks ? "didn't have" : "already had",
2172 reg_mask, stack_mask);
2173 }
2174
2175 if (!reg_mask && !stack_mask)
2176 break;
2177 if (!new_marks)
2178 break;
2179
2180 last_idx = st->last_insn_idx;
2181 first_idx = st->first_insn_idx;
2182 }
2183 return 0;
2184 }
2185
mark_chain_precision(struct bpf_verifier_env * env,int regno)2186 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2187 {
2188 return __mark_chain_precision(env, regno, -1);
2189 }
2190
mark_chain_precision_stack(struct bpf_verifier_env * env,int spi)2191 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2192 {
2193 return __mark_chain_precision(env, -1, spi);
2194 }
2195
is_spillable_regtype(enum bpf_reg_type type)2196 static bool is_spillable_regtype(enum bpf_reg_type type)
2197 {
2198 switch (base_type(type)) {
2199 case PTR_TO_MAP_VALUE:
2200 case PTR_TO_STACK:
2201 case PTR_TO_CTX:
2202 case PTR_TO_PACKET:
2203 case PTR_TO_PACKET_META:
2204 case PTR_TO_PACKET_END:
2205 case PTR_TO_FLOW_KEYS:
2206 case CONST_PTR_TO_MAP:
2207 case PTR_TO_SOCKET:
2208 case PTR_TO_SOCK_COMMON:
2209 case PTR_TO_TCP_SOCK:
2210 case PTR_TO_XDP_SOCK:
2211 case PTR_TO_BTF_ID:
2212 case PTR_TO_BUF:
2213 case PTR_TO_PERCPU_BTF_ID:
2214 case PTR_TO_MEM:
2215 return true;
2216 default:
2217 return false;
2218 }
2219 }
2220
2221 /* Does this register contain a constant zero? */
register_is_null(struct bpf_reg_state * reg)2222 static bool register_is_null(struct bpf_reg_state *reg)
2223 {
2224 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2225 }
2226
register_is_const(struct bpf_reg_state * reg)2227 static bool register_is_const(struct bpf_reg_state *reg)
2228 {
2229 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2230 }
2231
__is_scalar_unbounded(struct bpf_reg_state * reg)2232 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2233 {
2234 return tnum_is_unknown(reg->var_off) &&
2235 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2236 reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2237 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2238 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2239 }
2240
register_is_bounded(struct bpf_reg_state * reg)2241 static bool register_is_bounded(struct bpf_reg_state *reg)
2242 {
2243 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2244 }
2245
__is_pointer_value(bool allow_ptr_leaks,const struct bpf_reg_state * reg)2246 static bool __is_pointer_value(bool allow_ptr_leaks,
2247 const struct bpf_reg_state *reg)
2248 {
2249 if (allow_ptr_leaks)
2250 return false;
2251
2252 return reg->type != SCALAR_VALUE;
2253 }
2254
save_register_state(struct bpf_func_state * state,int spi,struct bpf_reg_state * reg)2255 static void save_register_state(struct bpf_func_state *state,
2256 int spi, struct bpf_reg_state *reg)
2257 {
2258 int i;
2259
2260 state->stack[spi].spilled_ptr = *reg;
2261 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2262
2263 for (i = 0; i < BPF_REG_SIZE; i++)
2264 state->stack[spi].slot_type[i] = STACK_SPILL;
2265 }
2266
2267 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
2268 * stack boundary and alignment are checked in check_mem_access()
2269 */
check_stack_write_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int off,int size,int value_regno,int insn_idx)2270 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2271 /* stack frame we're writing to */
2272 struct bpf_func_state *state,
2273 int off, int size, int value_regno,
2274 int insn_idx)
2275 {
2276 struct bpf_func_state *cur; /* state of the current function */
2277 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2278 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2279 struct bpf_reg_state *reg = NULL;
2280
2281 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
2282 state->acquired_refs, true);
2283 if (err)
2284 return err;
2285 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2286 * so it's aligned access and [off, off + size) are within stack limits
2287 */
2288 if (!env->allow_ptr_leaks &&
2289 state->stack[spi].slot_type[0] == STACK_SPILL &&
2290 size != BPF_REG_SIZE) {
2291 verbose(env, "attempt to corrupt spilled pointer on stack\n");
2292 return -EACCES;
2293 }
2294
2295 cur = env->cur_state->frame[env->cur_state->curframe];
2296 if (value_regno >= 0)
2297 reg = &cur->regs[value_regno];
2298 if (!env->bypass_spec_v4) {
2299 bool sanitize = reg && is_spillable_regtype(reg->type);
2300
2301 for (i = 0; i < size; i++) {
2302 if (state->stack[spi].slot_type[i] == STACK_INVALID) {
2303 sanitize = true;
2304 break;
2305 }
2306 }
2307
2308 if (sanitize)
2309 env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
2310 }
2311
2312 if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) &&
2313 !register_is_null(reg) && env->bpf_capable) {
2314 if (dst_reg != BPF_REG_FP) {
2315 /* The backtracking logic can only recognize explicit
2316 * stack slot address like [fp - 8]. Other spill of
2317 * scalar via different register has to be conervative.
2318 * Backtrack from here and mark all registers as precise
2319 * that contributed into 'reg' being a constant.
2320 */
2321 err = mark_chain_precision(env, value_regno);
2322 if (err)
2323 return err;
2324 }
2325 save_register_state(state, spi, reg);
2326 } else if (reg && is_spillable_regtype(reg->type)) {
2327 /* register containing pointer is being spilled into stack */
2328 if (size != BPF_REG_SIZE) {
2329 verbose_linfo(env, insn_idx, "; ");
2330 verbose(env, "invalid size of register spill\n");
2331 return -EACCES;
2332 }
2333 if (state != cur && reg->type == PTR_TO_STACK) {
2334 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2335 return -EINVAL;
2336 }
2337 save_register_state(state, spi, reg);
2338 } else {
2339 u8 type = STACK_MISC;
2340
2341 /* regular write of data into stack destroys any spilled ptr */
2342 state->stack[spi].spilled_ptr.type = NOT_INIT;
2343 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2344 if (state->stack[spi].slot_type[0] == STACK_SPILL)
2345 for (i = 0; i < BPF_REG_SIZE; i++)
2346 state->stack[spi].slot_type[i] = STACK_MISC;
2347
2348 /* only mark the slot as written if all 8 bytes were written
2349 * otherwise read propagation may incorrectly stop too soon
2350 * when stack slots are partially written.
2351 * This heuristic means that read propagation will be
2352 * conservative, since it will add reg_live_read marks
2353 * to stack slots all the way to first state when programs
2354 * writes+reads less than 8 bytes
2355 */
2356 if (size == BPF_REG_SIZE)
2357 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2358
2359 /* when we zero initialize stack slots mark them as such */
2360 if (reg && register_is_null(reg)) {
2361 /* backtracking doesn't work for STACK_ZERO yet. */
2362 err = mark_chain_precision(env, value_regno);
2363 if (err)
2364 return err;
2365 type = STACK_ZERO;
2366 }
2367
2368 /* Mark slots affected by this stack write. */
2369 for (i = 0; i < size; i++)
2370 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2371 type;
2372 }
2373 return 0;
2374 }
2375
2376 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2377 * known to contain a variable offset.
2378 * This function checks whether the write is permitted and conservatively
2379 * tracks the effects of the write, considering that each stack slot in the
2380 * dynamic range is potentially written to.
2381 *
2382 * 'off' includes 'regno->off'.
2383 * 'value_regno' can be -1, meaning that an unknown value is being written to
2384 * the stack.
2385 *
2386 * Spilled pointers in range are not marked as written because we don't know
2387 * what's going to be actually written. This means that read propagation for
2388 * future reads cannot be terminated by this write.
2389 *
2390 * For privileged programs, uninitialized stack slots are considered
2391 * initialized by this write (even though we don't know exactly what offsets
2392 * are going to be written to). The idea is that we don't want the verifier to
2393 * reject future reads that access slots written to through variable offsets.
2394 */
check_stack_write_var_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int ptr_regno,int off,int size,int value_regno,int insn_idx)2395 static int check_stack_write_var_off(struct bpf_verifier_env *env,
2396 /* func where register points to */
2397 struct bpf_func_state *state,
2398 int ptr_regno, int off, int size,
2399 int value_regno, int insn_idx)
2400 {
2401 struct bpf_func_state *cur; /* state of the current function */
2402 int min_off, max_off;
2403 int i, err;
2404 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2405 bool writing_zero = false;
2406 /* set if the fact that we're writing a zero is used to let any
2407 * stack slots remain STACK_ZERO
2408 */
2409 bool zero_used = false;
2410
2411 cur = env->cur_state->frame[env->cur_state->curframe];
2412 ptr_reg = &cur->regs[ptr_regno];
2413 min_off = ptr_reg->smin_value + off;
2414 max_off = ptr_reg->smax_value + off + size;
2415 if (value_regno >= 0)
2416 value_reg = &cur->regs[value_regno];
2417 if (value_reg && register_is_null(value_reg))
2418 writing_zero = true;
2419
2420 err = realloc_func_state(state, round_up(-min_off, BPF_REG_SIZE),
2421 state->acquired_refs, true);
2422 if (err)
2423 return err;
2424
2425
2426 /* Variable offset writes destroy any spilled pointers in range. */
2427 for (i = min_off; i < max_off; i++) {
2428 u8 new_type, *stype;
2429 int slot, spi;
2430
2431 slot = -i - 1;
2432 spi = slot / BPF_REG_SIZE;
2433 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2434
2435 if (!env->allow_ptr_leaks
2436 && *stype != NOT_INIT
2437 && *stype != SCALAR_VALUE) {
2438 /* Reject the write if there's are spilled pointers in
2439 * range. If we didn't reject here, the ptr status
2440 * would be erased below (even though not all slots are
2441 * actually overwritten), possibly opening the door to
2442 * leaks.
2443 */
2444 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
2445 insn_idx, i);
2446 return -EINVAL;
2447 }
2448
2449 /* Erase all spilled pointers. */
2450 state->stack[spi].spilled_ptr.type = NOT_INIT;
2451
2452 /* Update the slot type. */
2453 new_type = STACK_MISC;
2454 if (writing_zero && *stype == STACK_ZERO) {
2455 new_type = STACK_ZERO;
2456 zero_used = true;
2457 }
2458 /* If the slot is STACK_INVALID, we check whether it's OK to
2459 * pretend that it will be initialized by this write. The slot
2460 * might not actually be written to, and so if we mark it as
2461 * initialized future reads might leak uninitialized memory.
2462 * For privileged programs, we will accept such reads to slots
2463 * that may or may not be written because, if we're reject
2464 * them, the error would be too confusing.
2465 */
2466 if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
2467 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
2468 insn_idx, i);
2469 return -EINVAL;
2470 }
2471 *stype = new_type;
2472 }
2473 if (zero_used) {
2474 /* backtracking doesn't work for STACK_ZERO yet. */
2475 err = mark_chain_precision(env, value_regno);
2476 if (err)
2477 return err;
2478 }
2479 return 0;
2480 }
2481
2482 /* When register 'dst_regno' is assigned some values from stack[min_off,
2483 * max_off), we set the register's type according to the types of the
2484 * respective stack slots. If all the stack values are known to be zeros, then
2485 * so is the destination reg. Otherwise, the register is considered to be
2486 * SCALAR. This function does not deal with register filling; the caller must
2487 * ensure that all spilled registers in the stack range have been marked as
2488 * read.
2489 */
mark_reg_stack_read(struct bpf_verifier_env * env,struct bpf_func_state * ptr_state,int min_off,int max_off,int dst_regno)2490 static void mark_reg_stack_read(struct bpf_verifier_env *env,
2491 /* func where src register points to */
2492 struct bpf_func_state *ptr_state,
2493 int min_off, int max_off, int dst_regno)
2494 {
2495 struct bpf_verifier_state *vstate = env->cur_state;
2496 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2497 int i, slot, spi;
2498 u8 *stype;
2499 int zeros = 0;
2500
2501 for (i = min_off; i < max_off; i++) {
2502 slot = -i - 1;
2503 spi = slot / BPF_REG_SIZE;
2504 stype = ptr_state->stack[spi].slot_type;
2505 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
2506 break;
2507 zeros++;
2508 }
2509 if (zeros == max_off - min_off) {
2510 /* any access_size read into register is zero extended,
2511 * so the whole register == const_zero
2512 */
2513 __mark_reg_const_zero(&state->regs[dst_regno]);
2514 /* backtracking doesn't support STACK_ZERO yet,
2515 * so mark it precise here, so that later
2516 * backtracking can stop here.
2517 * Backtracking may not need this if this register
2518 * doesn't participate in pointer adjustment.
2519 * Forward propagation of precise flag is not
2520 * necessary either. This mark is only to stop
2521 * backtracking. Any register that contributed
2522 * to const 0 was marked precise before spill.
2523 */
2524 state->regs[dst_regno].precise = true;
2525 } else {
2526 /* have read misc data from the stack */
2527 mark_reg_unknown(env, state->regs, dst_regno);
2528 }
2529 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2530 }
2531
2532 /* Read the stack at 'off' and put the results into the register indicated by
2533 * 'dst_regno'. It handles reg filling if the addressed stack slot is a
2534 * spilled reg.
2535 *
2536 * 'dst_regno' can be -1, meaning that the read value is not going to a
2537 * register.
2538 *
2539 * The access is assumed to be within the current stack bounds.
2540 */
check_stack_read_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * reg_state,int off,int size,int dst_regno)2541 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
2542 /* func where src register points to */
2543 struct bpf_func_state *reg_state,
2544 int off, int size, int dst_regno)
2545 {
2546 struct bpf_verifier_state *vstate = env->cur_state;
2547 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2548 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2549 struct bpf_reg_state *reg;
2550 u8 *stype;
2551
2552 stype = reg_state->stack[spi].slot_type;
2553 reg = ®_state->stack[spi].spilled_ptr;
2554
2555 if (stype[0] == STACK_SPILL) {
2556 if (size != BPF_REG_SIZE) {
2557 if (reg->type != SCALAR_VALUE) {
2558 verbose_linfo(env, env->insn_idx, "; ");
2559 verbose(env, "invalid size of register fill\n");
2560 return -EACCES;
2561 }
2562 if (dst_regno >= 0) {
2563 mark_reg_unknown(env, state->regs, dst_regno);
2564 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2565 }
2566 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2567 return 0;
2568 }
2569 for (i = 1; i < BPF_REG_SIZE; i++) {
2570 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2571 verbose(env, "corrupted spill memory\n");
2572 return -EACCES;
2573 }
2574 }
2575
2576 if (dst_regno >= 0) {
2577 /* restore register state from stack */
2578 state->regs[dst_regno] = *reg;
2579 /* mark reg as written since spilled pointer state likely
2580 * has its liveness marks cleared by is_state_visited()
2581 * which resets stack/reg liveness for state transitions
2582 */
2583 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2584 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2585 /* If dst_regno==-1, the caller is asking us whether
2586 * it is acceptable to use this value as a SCALAR_VALUE
2587 * (e.g. for XADD).
2588 * We must not allow unprivileged callers to do that
2589 * with spilled pointers.
2590 */
2591 verbose(env, "leaking pointer from stack off %d\n",
2592 off);
2593 return -EACCES;
2594 }
2595 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2596 } else {
2597 u8 type;
2598
2599 for (i = 0; i < size; i++) {
2600 type = stype[(slot - i) % BPF_REG_SIZE];
2601 if (type == STACK_MISC)
2602 continue;
2603 if (type == STACK_ZERO)
2604 continue;
2605 verbose(env, "invalid read from stack off %d+%d size %d\n",
2606 off, i, size);
2607 return -EACCES;
2608 }
2609 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2610 if (dst_regno >= 0)
2611 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
2612 }
2613 return 0;
2614 }
2615
2616 enum stack_access_src {
2617 ACCESS_DIRECT = 1, /* the access is performed by an instruction */
2618 ACCESS_HELPER = 2, /* the access is performed by a helper */
2619 };
2620
2621 static int check_stack_range_initialized(struct bpf_verifier_env *env,
2622 int regno, int off, int access_size,
2623 bool zero_size_allowed,
2624 enum stack_access_src type,
2625 struct bpf_call_arg_meta *meta);
2626
reg_state(struct bpf_verifier_env * env,int regno)2627 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2628 {
2629 return cur_regs(env) + regno;
2630 }
2631
2632 /* Read the stack at 'ptr_regno + off' and put the result into the register
2633 * 'dst_regno'.
2634 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
2635 * but not its variable offset.
2636 * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
2637 *
2638 * As opposed to check_stack_read_fixed_off, this function doesn't deal with
2639 * filling registers (i.e. reads of spilled register cannot be detected when
2640 * the offset is not fixed). We conservatively mark 'dst_regno' as containing
2641 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
2642 * offset; for a fixed offset check_stack_read_fixed_off should be used
2643 * instead.
2644 */
check_stack_read_var_off(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)2645 static int check_stack_read_var_off(struct bpf_verifier_env *env,
2646 int ptr_regno, int off, int size, int dst_regno)
2647 {
2648 /* The state of the source register. */
2649 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2650 struct bpf_func_state *ptr_state = func(env, reg);
2651 int err;
2652 int min_off, max_off;
2653
2654 /* Note that we pass a NULL meta, so raw access will not be permitted.
2655 */
2656 err = check_stack_range_initialized(env, ptr_regno, off, size,
2657 false, ACCESS_DIRECT, NULL);
2658 if (err)
2659 return err;
2660
2661 min_off = reg->smin_value + off;
2662 max_off = reg->smax_value + off;
2663 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
2664 return 0;
2665 }
2666
2667 /* check_stack_read dispatches to check_stack_read_fixed_off or
2668 * check_stack_read_var_off.
2669 *
2670 * The caller must ensure that the offset falls within the allocated stack
2671 * bounds.
2672 *
2673 * 'dst_regno' is a register which will receive the value from the stack. It
2674 * can be -1, meaning that the read value is not going to a register.
2675 */
check_stack_read(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)2676 static int check_stack_read(struct bpf_verifier_env *env,
2677 int ptr_regno, int off, int size,
2678 int dst_regno)
2679 {
2680 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2681 struct bpf_func_state *state = func(env, reg);
2682 int err;
2683 /* Some accesses are only permitted with a static offset. */
2684 bool var_off = !tnum_is_const(reg->var_off);
2685
2686 /* The offset is required to be static when reads don't go to a
2687 * register, in order to not leak pointers (see
2688 * check_stack_read_fixed_off).
2689 */
2690 if (dst_regno < 0 && var_off) {
2691 char tn_buf[48];
2692
2693 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2694 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
2695 tn_buf, off, size);
2696 return -EACCES;
2697 }
2698 /* Variable offset is prohibited for unprivileged mode for simplicity
2699 * since it requires corresponding support in Spectre masking for stack
2700 * ALU. See also retrieve_ptr_limit().
2701 */
2702 if (!env->bypass_spec_v1 && var_off) {
2703 char tn_buf[48];
2704
2705 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2706 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
2707 ptr_regno, tn_buf);
2708 return -EACCES;
2709 }
2710
2711 if (!var_off) {
2712 off += reg->var_off.value;
2713 err = check_stack_read_fixed_off(env, state, off, size,
2714 dst_regno);
2715 } else {
2716 /* Variable offset stack reads need more conservative handling
2717 * than fixed offset ones. Note that dst_regno >= 0 on this
2718 * branch.
2719 */
2720 err = check_stack_read_var_off(env, ptr_regno, off, size,
2721 dst_regno);
2722 }
2723 return err;
2724 }
2725
2726
2727 /* check_stack_write dispatches to check_stack_write_fixed_off or
2728 * check_stack_write_var_off.
2729 *
2730 * 'ptr_regno' is the register used as a pointer into the stack.
2731 * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
2732 * 'value_regno' is the register whose value we're writing to the stack. It can
2733 * be -1, meaning that we're not writing from a register.
2734 *
2735 * The caller must ensure that the offset falls within the maximum stack size.
2736 */
check_stack_write(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int value_regno,int insn_idx)2737 static int check_stack_write(struct bpf_verifier_env *env,
2738 int ptr_regno, int off, int size,
2739 int value_regno, int insn_idx)
2740 {
2741 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2742 struct bpf_func_state *state = func(env, reg);
2743 int err;
2744
2745 if (tnum_is_const(reg->var_off)) {
2746 off += reg->var_off.value;
2747 err = check_stack_write_fixed_off(env, state, off, size,
2748 value_regno, insn_idx);
2749 } else {
2750 /* Variable offset stack reads need more conservative handling
2751 * than fixed offset ones.
2752 */
2753 err = check_stack_write_var_off(env, state,
2754 ptr_regno, off, size,
2755 value_regno, insn_idx);
2756 }
2757 return err;
2758 }
2759
check_map_access_type(struct bpf_verifier_env * env,u32 regno,int off,int size,enum bpf_access_type type)2760 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2761 int off, int size, enum bpf_access_type type)
2762 {
2763 struct bpf_reg_state *regs = cur_regs(env);
2764 struct bpf_map *map = regs[regno].map_ptr;
2765 u32 cap = bpf_map_flags_to_cap(map);
2766
2767 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2768 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2769 map->value_size, off, size);
2770 return -EACCES;
2771 }
2772
2773 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2774 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2775 map->value_size, off, size);
2776 return -EACCES;
2777 }
2778
2779 return 0;
2780 }
2781
2782 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
__check_mem_access(struct bpf_verifier_env * env,int regno,int off,int size,u32 mem_size,bool zero_size_allowed)2783 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
2784 int off, int size, u32 mem_size,
2785 bool zero_size_allowed)
2786 {
2787 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
2788 struct bpf_reg_state *reg;
2789
2790 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
2791 return 0;
2792
2793 reg = &cur_regs(env)[regno];
2794 switch (reg->type) {
2795 case PTR_TO_MAP_VALUE:
2796 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
2797 mem_size, off, size);
2798 break;
2799 case PTR_TO_PACKET:
2800 case PTR_TO_PACKET_META:
2801 case PTR_TO_PACKET_END:
2802 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2803 off, size, regno, reg->id, off, mem_size);
2804 break;
2805 case PTR_TO_MEM:
2806 default:
2807 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
2808 mem_size, off, size);
2809 }
2810
2811 return -EACCES;
2812 }
2813
2814 /* check read/write into a memory region with possible variable offset */
check_mem_region_access(struct bpf_verifier_env * env,u32 regno,int off,int size,u32 mem_size,bool zero_size_allowed)2815 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
2816 int off, int size, u32 mem_size,
2817 bool zero_size_allowed)
2818 {
2819 struct bpf_verifier_state *vstate = env->cur_state;
2820 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2821 struct bpf_reg_state *reg = &state->regs[regno];
2822 int err;
2823
2824 /* We may have adjusted the register pointing to memory region, so we
2825 * need to try adding each of min_value and max_value to off
2826 * to make sure our theoretical access will be safe.
2827 */
2828 if (env->log.level & BPF_LOG_LEVEL)
2829 print_verifier_state(env, state);
2830
2831 /* The minimum value is only important with signed
2832 * comparisons where we can't assume the floor of a
2833 * value is 0. If we are using signed variables for our
2834 * index'es we need to make sure that whatever we use
2835 * will have a set floor within our range.
2836 */
2837 if (reg->smin_value < 0 &&
2838 (reg->smin_value == S64_MIN ||
2839 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2840 reg->smin_value + off < 0)) {
2841 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2842 regno);
2843 return -EACCES;
2844 }
2845 err = __check_mem_access(env, regno, reg->smin_value + off, size,
2846 mem_size, zero_size_allowed);
2847 if (err) {
2848 verbose(env, "R%d min value is outside of the allowed memory range\n",
2849 regno);
2850 return err;
2851 }
2852
2853 /* If we haven't set a max value then we need to bail since we can't be
2854 * sure we won't do bad things.
2855 * If reg->umax_value + off could overflow, treat that as unbounded too.
2856 */
2857 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
2858 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
2859 regno);
2860 return -EACCES;
2861 }
2862 err = __check_mem_access(env, regno, reg->umax_value + off, size,
2863 mem_size, zero_size_allowed);
2864 if (err) {
2865 verbose(env, "R%d max value is outside of the allowed memory range\n",
2866 regno);
2867 return err;
2868 }
2869
2870 return 0;
2871 }
2872
2873 /* check read/write into a map element with possible variable offset */
check_map_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed)2874 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2875 int off, int size, bool zero_size_allowed)
2876 {
2877 struct bpf_verifier_state *vstate = env->cur_state;
2878 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2879 struct bpf_reg_state *reg = &state->regs[regno];
2880 struct bpf_map *map = reg->map_ptr;
2881 int err;
2882
2883 err = check_mem_region_access(env, regno, off, size, map->value_size,
2884 zero_size_allowed);
2885 if (err)
2886 return err;
2887
2888 if (map_value_has_spin_lock(map)) {
2889 u32 lock = map->spin_lock_off;
2890
2891 /* if any part of struct bpf_spin_lock can be touched by
2892 * load/store reject this program.
2893 * To check that [x1, x2) overlaps with [y1, y2)
2894 * it is sufficient to check x1 < y2 && y1 < x2.
2895 */
2896 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2897 lock < reg->umax_value + off + size) {
2898 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2899 return -EACCES;
2900 }
2901 }
2902 return err;
2903 }
2904
2905 #define MAX_PACKET_OFF 0xffff
2906
resolve_prog_type(struct bpf_prog * prog)2907 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
2908 {
2909 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
2910 }
2911
may_access_direct_pkt_data(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_access_type t)2912 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
2913 const struct bpf_call_arg_meta *meta,
2914 enum bpf_access_type t)
2915 {
2916 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
2917
2918 switch (prog_type) {
2919 /* Program types only with direct read access go here! */
2920 case BPF_PROG_TYPE_LWT_IN:
2921 case BPF_PROG_TYPE_LWT_OUT:
2922 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2923 case BPF_PROG_TYPE_SK_REUSEPORT:
2924 case BPF_PROG_TYPE_FLOW_DISSECTOR:
2925 case BPF_PROG_TYPE_CGROUP_SKB:
2926 if (t == BPF_WRITE)
2927 return false;
2928 fallthrough;
2929
2930 /* Program types with direct read + write access go here! */
2931 case BPF_PROG_TYPE_SCHED_CLS:
2932 case BPF_PROG_TYPE_SCHED_ACT:
2933 case BPF_PROG_TYPE_XDP:
2934 case BPF_PROG_TYPE_LWT_XMIT:
2935 case BPF_PROG_TYPE_SK_SKB:
2936 case BPF_PROG_TYPE_SK_MSG:
2937 if (meta)
2938 return meta->pkt_access;
2939
2940 env->seen_direct_write = true;
2941 return true;
2942
2943 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2944 if (t == BPF_WRITE)
2945 env->seen_direct_write = true;
2946
2947 return true;
2948
2949 default:
2950 return false;
2951 }
2952 }
2953
check_packet_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed)2954 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
2955 int size, bool zero_size_allowed)
2956 {
2957 struct bpf_reg_state *regs = cur_regs(env);
2958 struct bpf_reg_state *reg = ®s[regno];
2959 int err;
2960
2961 /* We may have added a variable offset to the packet pointer; but any
2962 * reg->range we have comes after that. We are only checking the fixed
2963 * offset.
2964 */
2965
2966 /* We don't allow negative numbers, because we aren't tracking enough
2967 * detail to prove they're safe.
2968 */
2969 if (reg->smin_value < 0) {
2970 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2971 regno);
2972 return -EACCES;
2973 }
2974 err = __check_mem_access(env, regno, off, size, reg->range,
2975 zero_size_allowed);
2976 if (err) {
2977 verbose(env, "R%d offset is outside of the packet\n", regno);
2978 return err;
2979 }
2980
2981 /* __check_mem_access has made sure "off + size - 1" is within u16.
2982 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2983 * otherwise find_good_pkt_pointers would have refused to set range info
2984 * that __check_mem_access would have rejected this pkt access.
2985 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2986 */
2987 env->prog->aux->max_pkt_offset =
2988 max_t(u32, env->prog->aux->max_pkt_offset,
2989 off + reg->umax_value + size - 1);
2990
2991 return err;
2992 }
2993
2994 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
check_ctx_access(struct bpf_verifier_env * env,int insn_idx,int off,int size,enum bpf_access_type t,enum bpf_reg_type * reg_type,u32 * btf_id)2995 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
2996 enum bpf_access_type t, enum bpf_reg_type *reg_type,
2997 u32 *btf_id)
2998 {
2999 struct bpf_insn_access_aux info = {
3000 .reg_type = *reg_type,
3001 .log = &env->log,
3002 };
3003
3004 if (env->ops->is_valid_access &&
3005 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
3006 /* A non zero info.ctx_field_size indicates that this field is a
3007 * candidate for later verifier transformation to load the whole
3008 * field and then apply a mask when accessed with a narrower
3009 * access than actual ctx access size. A zero info.ctx_field_size
3010 * will only allow for whole field access and rejects any other
3011 * type of narrower access.
3012 */
3013 *reg_type = info.reg_type;
3014
3015 if (base_type(*reg_type) == PTR_TO_BTF_ID)
3016 *btf_id = info.btf_id;
3017 else
3018 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
3019 /* remember the offset of last byte accessed in ctx */
3020 if (env->prog->aux->max_ctx_offset < off + size)
3021 env->prog->aux->max_ctx_offset = off + size;
3022 return 0;
3023 }
3024
3025 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
3026 return -EACCES;
3027 }
3028
check_flow_keys_access(struct bpf_verifier_env * env,int off,int size)3029 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3030 int size)
3031 {
3032 if (size < 0 || off < 0 ||
3033 (u64)off + size > sizeof(struct bpf_flow_keys)) {
3034 verbose(env, "invalid access to flow keys off=%d size=%d\n",
3035 off, size);
3036 return -EACCES;
3037 }
3038 return 0;
3039 }
3040
check_sock_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int size,enum bpf_access_type t)3041 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3042 u32 regno, int off, int size,
3043 enum bpf_access_type t)
3044 {
3045 struct bpf_reg_state *regs = cur_regs(env);
3046 struct bpf_reg_state *reg = ®s[regno];
3047 struct bpf_insn_access_aux info = {};
3048 bool valid;
3049
3050 if (reg->smin_value < 0) {
3051 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3052 regno);
3053 return -EACCES;
3054 }
3055
3056 switch (reg->type) {
3057 case PTR_TO_SOCK_COMMON:
3058 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3059 break;
3060 case PTR_TO_SOCKET:
3061 valid = bpf_sock_is_valid_access(off, size, t, &info);
3062 break;
3063 case PTR_TO_TCP_SOCK:
3064 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3065 break;
3066 case PTR_TO_XDP_SOCK:
3067 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3068 break;
3069 default:
3070 valid = false;
3071 }
3072
3073
3074 if (valid) {
3075 env->insn_aux_data[insn_idx].ctx_field_size =
3076 info.ctx_field_size;
3077 return 0;
3078 }
3079
3080 verbose(env, "R%d invalid %s access off=%d size=%d\n",
3081 regno, reg_type_str(env, reg->type), off, size);
3082
3083 return -EACCES;
3084 }
3085
is_pointer_value(struct bpf_verifier_env * env,int regno)3086 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3087 {
3088 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
3089 }
3090
is_ctx_reg(struct bpf_verifier_env * env,int regno)3091 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3092 {
3093 const struct bpf_reg_state *reg = reg_state(env, regno);
3094
3095 return reg->type == PTR_TO_CTX;
3096 }
3097
is_sk_reg(struct bpf_verifier_env * env,int regno)3098 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3099 {
3100 const struct bpf_reg_state *reg = reg_state(env, regno);
3101
3102 return type_is_sk_pointer(reg->type);
3103 }
3104
is_pkt_reg(struct bpf_verifier_env * env,int regno)3105 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3106 {
3107 const struct bpf_reg_state *reg = reg_state(env, regno);
3108
3109 return type_is_pkt_pointer(reg->type);
3110 }
3111
is_flow_key_reg(struct bpf_verifier_env * env,int regno)3112 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3113 {
3114 const struct bpf_reg_state *reg = reg_state(env, regno);
3115
3116 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3117 return reg->type == PTR_TO_FLOW_KEYS;
3118 }
3119
check_pkt_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict)3120 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3121 const struct bpf_reg_state *reg,
3122 int off, int size, bool strict)
3123 {
3124 struct tnum reg_off;
3125 int ip_align;
3126
3127 /* Byte size accesses are always allowed. */
3128 if (!strict || size == 1)
3129 return 0;
3130
3131 /* For platforms that do not have a Kconfig enabling
3132 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3133 * NET_IP_ALIGN is universally set to '2'. And on platforms
3134 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3135 * to this code only in strict mode where we want to emulate
3136 * the NET_IP_ALIGN==2 checking. Therefore use an
3137 * unconditional IP align value of '2'.
3138 */
3139 ip_align = 2;
3140
3141 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3142 if (!tnum_is_aligned(reg_off, size)) {
3143 char tn_buf[48];
3144
3145 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3146 verbose(env,
3147 "misaligned packet access off %d+%s+%d+%d size %d\n",
3148 ip_align, tn_buf, reg->off, off, size);
3149 return -EACCES;
3150 }
3151
3152 return 0;
3153 }
3154
check_generic_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,const char * pointer_desc,int off,int size,bool strict)3155 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3156 const struct bpf_reg_state *reg,
3157 const char *pointer_desc,
3158 int off, int size, bool strict)
3159 {
3160 struct tnum reg_off;
3161
3162 /* Byte size accesses are always allowed. */
3163 if (!strict || size == 1)
3164 return 0;
3165
3166 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3167 if (!tnum_is_aligned(reg_off, size)) {
3168 char tn_buf[48];
3169
3170 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3171 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
3172 pointer_desc, tn_buf, reg->off, off, size);
3173 return -EACCES;
3174 }
3175
3176 return 0;
3177 }
3178
check_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict_alignment_once)3179 static int check_ptr_alignment(struct bpf_verifier_env *env,
3180 const struct bpf_reg_state *reg, int off,
3181 int size, bool strict_alignment_once)
3182 {
3183 bool strict = env->strict_alignment || strict_alignment_once;
3184 const char *pointer_desc = "";
3185
3186 switch (reg->type) {
3187 case PTR_TO_PACKET:
3188 case PTR_TO_PACKET_META:
3189 /* Special case, because of NET_IP_ALIGN. Given metadata sits
3190 * right in front, treat it the very same way.
3191 */
3192 return check_pkt_ptr_alignment(env, reg, off, size, strict);
3193 case PTR_TO_FLOW_KEYS:
3194 pointer_desc = "flow keys ";
3195 break;
3196 case PTR_TO_MAP_VALUE:
3197 pointer_desc = "value ";
3198 break;
3199 case PTR_TO_CTX:
3200 pointer_desc = "context ";
3201 break;
3202 case PTR_TO_STACK:
3203 pointer_desc = "stack ";
3204 /* The stack spill tracking logic in check_stack_write_fixed_off()
3205 * and check_stack_read_fixed_off() relies on stack accesses being
3206 * aligned.
3207 */
3208 strict = true;
3209 break;
3210 case PTR_TO_SOCKET:
3211 pointer_desc = "sock ";
3212 break;
3213 case PTR_TO_SOCK_COMMON:
3214 pointer_desc = "sock_common ";
3215 break;
3216 case PTR_TO_TCP_SOCK:
3217 pointer_desc = "tcp_sock ";
3218 break;
3219 case PTR_TO_XDP_SOCK:
3220 pointer_desc = "xdp_sock ";
3221 break;
3222 default:
3223 break;
3224 }
3225 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3226 strict);
3227 }
3228
update_stack_depth(struct bpf_verifier_env * env,const struct bpf_func_state * func,int off)3229 static int update_stack_depth(struct bpf_verifier_env *env,
3230 const struct bpf_func_state *func,
3231 int off)
3232 {
3233 u16 stack = env->subprog_info[func->subprogno].stack_depth;
3234
3235 if (stack >= -off)
3236 return 0;
3237
3238 /* update known max for given subprogram */
3239 env->subprog_info[func->subprogno].stack_depth = -off;
3240 return 0;
3241 }
3242
3243 /* starting from main bpf function walk all instructions of the function
3244 * and recursively walk all callees that given function can call.
3245 * Ignore jump and exit insns.
3246 * Since recursion is prevented by check_cfg() this algorithm
3247 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3248 */
check_max_stack_depth(struct bpf_verifier_env * env)3249 static int check_max_stack_depth(struct bpf_verifier_env *env)
3250 {
3251 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3252 struct bpf_subprog_info *subprog = env->subprog_info;
3253 struct bpf_insn *insn = env->prog->insnsi;
3254 bool tail_call_reachable = false;
3255 int ret_insn[MAX_CALL_FRAMES];
3256 int ret_prog[MAX_CALL_FRAMES];
3257 int j;
3258
3259 process_func:
3260 /* protect against potential stack overflow that might happen when
3261 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3262 * depth for such case down to 256 so that the worst case scenario
3263 * would result in 8k stack size (32 which is tailcall limit * 256 =
3264 * 8k).
3265 *
3266 * To get the idea what might happen, see an example:
3267 * func1 -> sub rsp, 128
3268 * subfunc1 -> sub rsp, 256
3269 * tailcall1 -> add rsp, 256
3270 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3271 * subfunc2 -> sub rsp, 64
3272 * subfunc22 -> sub rsp, 128
3273 * tailcall2 -> add rsp, 128
3274 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3275 *
3276 * tailcall will unwind the current stack frame but it will not get rid
3277 * of caller's stack as shown on the example above.
3278 */
3279 if (idx && subprog[idx].has_tail_call && depth >= 256) {
3280 verbose(env,
3281 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3282 depth);
3283 return -EACCES;
3284 }
3285 /* round up to 32-bytes, since this is granularity
3286 * of interpreter stack size
3287 */
3288 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3289 if (depth > MAX_BPF_STACK) {
3290 verbose(env, "combined stack size of %d calls is %d. Too large\n",
3291 frame + 1, depth);
3292 return -EACCES;
3293 }
3294 continue_func:
3295 subprog_end = subprog[idx + 1].start;
3296 for (; i < subprog_end; i++) {
3297 if (insn[i].code != (BPF_JMP | BPF_CALL))
3298 continue;
3299 if (insn[i].src_reg != BPF_PSEUDO_CALL)
3300 continue;
3301 /* remember insn and function to return to */
3302 ret_insn[frame] = i + 1;
3303 ret_prog[frame] = idx;
3304
3305 /* find the callee */
3306 i = i + insn[i].imm + 1;
3307 idx = find_subprog(env, i);
3308 if (idx < 0) {
3309 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3310 i);
3311 return -EFAULT;
3312 }
3313
3314 if (subprog[idx].has_tail_call)
3315 tail_call_reachable = true;
3316
3317 frame++;
3318 if (frame >= MAX_CALL_FRAMES) {
3319 verbose(env, "the call stack of %d frames is too deep !\n",
3320 frame);
3321 return -E2BIG;
3322 }
3323 goto process_func;
3324 }
3325 /* if tail call got detected across bpf2bpf calls then mark each of the
3326 * currently present subprog frames as tail call reachable subprogs;
3327 * this info will be utilized by JIT so that we will be preserving the
3328 * tail call counter throughout bpf2bpf calls combined with tailcalls
3329 */
3330 if (tail_call_reachable)
3331 for (j = 0; j < frame; j++)
3332 subprog[ret_prog[j]].tail_call_reachable = true;
3333 if (subprog[0].tail_call_reachable)
3334 env->prog->aux->tail_call_reachable = true;
3335
3336 /* end of for() loop means the last insn of the 'subprog'
3337 * was reached. Doesn't matter whether it was JA or EXIT
3338 */
3339 if (frame == 0)
3340 return 0;
3341 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3342 frame--;
3343 i = ret_insn[frame];
3344 idx = ret_prog[frame];
3345 goto continue_func;
3346 }
3347
3348 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
get_callee_stack_depth(struct bpf_verifier_env * env,const struct bpf_insn * insn,int idx)3349 static int get_callee_stack_depth(struct bpf_verifier_env *env,
3350 const struct bpf_insn *insn, int idx)
3351 {
3352 int start = idx + insn->imm + 1, subprog;
3353
3354 subprog = find_subprog(env, start);
3355 if (subprog < 0) {
3356 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3357 start);
3358 return -EFAULT;
3359 }
3360 return env->subprog_info[subprog].stack_depth;
3361 }
3362 #endif
3363
__check_ptr_off_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,bool fixed_off_ok)3364 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
3365 const struct bpf_reg_state *reg, int regno,
3366 bool fixed_off_ok)
3367 {
3368 /* Access to this pointer-typed register or passing it to a helper
3369 * is only allowed in its original, unmodified form.
3370 */
3371
3372 if (!fixed_off_ok && reg->off) {
3373 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
3374 reg_type_str(env, reg->type), regno, reg->off);
3375 return -EACCES;
3376 }
3377
3378 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3379 char tn_buf[48];
3380
3381 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3382 verbose(env, "variable %s access var_off=%s disallowed\n",
3383 reg_type_str(env, reg->type), tn_buf);
3384 return -EACCES;
3385 }
3386
3387 return 0;
3388 }
3389
check_ptr_off_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno)3390 int check_ptr_off_reg(struct bpf_verifier_env *env,
3391 const struct bpf_reg_state *reg, int regno)
3392 {
3393 return __check_ptr_off_reg(env, reg, regno, false);
3394 }
3395
__check_buffer_access(struct bpf_verifier_env * env,const char * buf_info,const struct bpf_reg_state * reg,int regno,int off,int size)3396 static int __check_buffer_access(struct bpf_verifier_env *env,
3397 const char *buf_info,
3398 const struct bpf_reg_state *reg,
3399 int regno, int off, int size)
3400 {
3401 if (off < 0) {
3402 verbose(env,
3403 "R%d invalid %s buffer access: off=%d, size=%d\n",
3404 regno, buf_info, off, size);
3405 return -EACCES;
3406 }
3407 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3408 char tn_buf[48];
3409
3410 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3411 verbose(env,
3412 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
3413 regno, off, tn_buf);
3414 return -EACCES;
3415 }
3416
3417 return 0;
3418 }
3419
check_tp_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size)3420 static int check_tp_buffer_access(struct bpf_verifier_env *env,
3421 const struct bpf_reg_state *reg,
3422 int regno, int off, int size)
3423 {
3424 int err;
3425
3426 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3427 if (err)
3428 return err;
3429
3430 if (off + size > env->prog->aux->max_tp_access)
3431 env->prog->aux->max_tp_access = off + size;
3432
3433 return 0;
3434 }
3435
check_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size,bool zero_size_allowed,const char * buf_info,u32 * max_access)3436 static int check_buffer_access(struct bpf_verifier_env *env,
3437 const struct bpf_reg_state *reg,
3438 int regno, int off, int size,
3439 bool zero_size_allowed,
3440 const char *buf_info,
3441 u32 *max_access)
3442 {
3443 int err;
3444
3445 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3446 if (err)
3447 return err;
3448
3449 if (off + size > *max_access)
3450 *max_access = off + size;
3451
3452 return 0;
3453 }
3454
3455 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
zext_32_to_64(struct bpf_reg_state * reg)3456 static void zext_32_to_64(struct bpf_reg_state *reg)
3457 {
3458 reg->var_off = tnum_subreg(reg->var_off);
3459 __reg_assign_32_into_64(reg);
3460 }
3461
3462 /* truncate register to smaller size (in bytes)
3463 * must be called with size < BPF_REG_SIZE
3464 */
coerce_reg_to_size(struct bpf_reg_state * reg,int size)3465 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3466 {
3467 u64 mask;
3468
3469 /* clear high bits in bit representation */
3470 reg->var_off = tnum_cast(reg->var_off, size);
3471
3472 /* fix arithmetic bounds */
3473 mask = ((u64)1 << (size * 8)) - 1;
3474 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3475 reg->umin_value &= mask;
3476 reg->umax_value &= mask;
3477 } else {
3478 reg->umin_value = 0;
3479 reg->umax_value = mask;
3480 }
3481 reg->smin_value = reg->umin_value;
3482 reg->smax_value = reg->umax_value;
3483
3484 /* If size is smaller than 32bit register the 32bit register
3485 * values are also truncated so we push 64-bit bounds into
3486 * 32-bit bounds. Above were truncated < 32-bits already.
3487 */
3488 if (size >= 4)
3489 return;
3490 __reg_combine_64_into_32(reg);
3491 }
3492
bpf_map_is_rdonly(const struct bpf_map * map)3493 static bool bpf_map_is_rdonly(const struct bpf_map *map)
3494 {
3495 /* A map is considered read-only if the following condition are true:
3496 *
3497 * 1) BPF program side cannot change any of the map content. The
3498 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
3499 * and was set at map creation time.
3500 * 2) The map value(s) have been initialized from user space by a
3501 * loader and then "frozen", such that no new map update/delete
3502 * operations from syscall side are possible for the rest of
3503 * the map's lifetime from that point onwards.
3504 * 3) Any parallel/pending map update/delete operations from syscall
3505 * side have been completed. Only after that point, it's safe to
3506 * assume that map value(s) are immutable.
3507 */
3508 return (map->map_flags & BPF_F_RDONLY_PROG) &&
3509 READ_ONCE(map->frozen) &&
3510 !bpf_map_write_active(map);
3511 }
3512
bpf_map_direct_read(struct bpf_map * map,int off,int size,u64 * val)3513 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3514 {
3515 void *ptr;
3516 u64 addr;
3517 int err;
3518
3519 err = map->ops->map_direct_value_addr(map, &addr, off);
3520 if (err)
3521 return err;
3522 ptr = (void *)(long)addr + off;
3523
3524 switch (size) {
3525 case sizeof(u8):
3526 *val = (u64)*(u8 *)ptr;
3527 break;
3528 case sizeof(u16):
3529 *val = (u64)*(u16 *)ptr;
3530 break;
3531 case sizeof(u32):
3532 *val = (u64)*(u32 *)ptr;
3533 break;
3534 case sizeof(u64):
3535 *val = *(u64 *)ptr;
3536 break;
3537 default:
3538 return -EINVAL;
3539 }
3540 return 0;
3541 }
3542
check_ptr_to_btf_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)3543 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3544 struct bpf_reg_state *regs,
3545 int regno, int off, int size,
3546 enum bpf_access_type atype,
3547 int value_regno)
3548 {
3549 struct bpf_reg_state *reg = regs + regno;
3550 const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id);
3551 const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3552 u32 btf_id;
3553 int ret;
3554
3555 if (off < 0) {
3556 verbose(env,
3557 "R%d is ptr_%s invalid negative access: off=%d\n",
3558 regno, tname, off);
3559 return -EACCES;
3560 }
3561 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3562 char tn_buf[48];
3563
3564 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3565 verbose(env,
3566 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3567 regno, tname, off, tn_buf);
3568 return -EACCES;
3569 }
3570
3571 if (env->ops->btf_struct_access) {
3572 ret = env->ops->btf_struct_access(&env->log, t, off, size,
3573 atype, &btf_id);
3574 } else {
3575 if (atype != BPF_READ) {
3576 verbose(env, "only read is supported\n");
3577 return -EACCES;
3578 }
3579
3580 ret = btf_struct_access(&env->log, t, off, size, atype,
3581 &btf_id);
3582 }
3583
3584 if (ret < 0)
3585 return ret;
3586
3587 if (atype == BPF_READ && value_regno >= 0)
3588 mark_btf_ld_reg(env, regs, value_regno, ret, btf_id);
3589
3590 return 0;
3591 }
3592
check_ptr_to_map_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)3593 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3594 struct bpf_reg_state *regs,
3595 int regno, int off, int size,
3596 enum bpf_access_type atype,
3597 int value_regno)
3598 {
3599 struct bpf_reg_state *reg = regs + regno;
3600 struct bpf_map *map = reg->map_ptr;
3601 const struct btf_type *t;
3602 const char *tname;
3603 u32 btf_id;
3604 int ret;
3605
3606 if (!btf_vmlinux) {
3607 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3608 return -ENOTSUPP;
3609 }
3610
3611 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3612 verbose(env, "map_ptr access not supported for map type %d\n",
3613 map->map_type);
3614 return -ENOTSUPP;
3615 }
3616
3617 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3618 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3619
3620 if (!env->allow_ptr_to_map_access) {
3621 verbose(env,
3622 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3623 tname);
3624 return -EPERM;
3625 }
3626
3627 if (off < 0) {
3628 verbose(env, "R%d is %s invalid negative access: off=%d\n",
3629 regno, tname, off);
3630 return -EACCES;
3631 }
3632
3633 if (atype != BPF_READ) {
3634 verbose(env, "only read from %s is supported\n", tname);
3635 return -EACCES;
3636 }
3637
3638 ret = btf_struct_access(&env->log, t, off, size, atype, &btf_id);
3639 if (ret < 0)
3640 return ret;
3641
3642 if (value_regno >= 0)
3643 mark_btf_ld_reg(env, regs, value_regno, ret, btf_id);
3644
3645 return 0;
3646 }
3647
3648 /* Check that the stack access at the given offset is within bounds. The
3649 * maximum valid offset is -1.
3650 *
3651 * The minimum valid offset is -MAX_BPF_STACK for writes, and
3652 * -state->allocated_stack for reads.
3653 */
check_stack_slot_within_bounds(int off,struct bpf_func_state * state,enum bpf_access_type t)3654 static int check_stack_slot_within_bounds(int off,
3655 struct bpf_func_state *state,
3656 enum bpf_access_type t)
3657 {
3658 int min_valid_off;
3659
3660 if (t == BPF_WRITE)
3661 min_valid_off = -MAX_BPF_STACK;
3662 else
3663 min_valid_off = -state->allocated_stack;
3664
3665 if (off < min_valid_off || off > -1)
3666 return -EACCES;
3667 return 0;
3668 }
3669
3670 /* Check that the stack access at 'regno + off' falls within the maximum stack
3671 * bounds.
3672 *
3673 * 'off' includes `regno->offset`, but not its dynamic part (if any).
3674 */
check_stack_access_within_bounds(struct bpf_verifier_env * env,int regno,int off,int access_size,enum stack_access_src src,enum bpf_access_type type)3675 static int check_stack_access_within_bounds(
3676 struct bpf_verifier_env *env,
3677 int regno, int off, int access_size,
3678 enum stack_access_src src, enum bpf_access_type type)
3679 {
3680 struct bpf_reg_state *regs = cur_regs(env);
3681 struct bpf_reg_state *reg = regs + regno;
3682 struct bpf_func_state *state = func(env, reg);
3683 int min_off, max_off;
3684 int err;
3685 char *err_extra;
3686
3687 if (src == ACCESS_HELPER)
3688 /* We don't know if helpers are reading or writing (or both). */
3689 err_extra = " indirect access to";
3690 else if (type == BPF_READ)
3691 err_extra = " read from";
3692 else
3693 err_extra = " write to";
3694
3695 if (tnum_is_const(reg->var_off)) {
3696 min_off = reg->var_off.value + off;
3697 if (access_size > 0)
3698 max_off = min_off + access_size - 1;
3699 else
3700 max_off = min_off;
3701 } else {
3702 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3703 reg->smin_value <= -BPF_MAX_VAR_OFF) {
3704 verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
3705 err_extra, regno);
3706 return -EACCES;
3707 }
3708 min_off = reg->smin_value + off;
3709 if (access_size > 0)
3710 max_off = reg->smax_value + off + access_size - 1;
3711 else
3712 max_off = min_off;
3713 }
3714
3715 err = check_stack_slot_within_bounds(min_off, state, type);
3716 if (!err)
3717 err = check_stack_slot_within_bounds(max_off, state, type);
3718
3719 if (err) {
3720 if (tnum_is_const(reg->var_off)) {
3721 verbose(env, "invalid%s stack R%d off=%d size=%d\n",
3722 err_extra, regno, off, access_size);
3723 } else {
3724 char tn_buf[48];
3725
3726 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3727 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
3728 err_extra, regno, tn_buf, access_size);
3729 }
3730 }
3731 return err;
3732 }
3733
3734 /* check whether memory at (regno + off) is accessible for t = (read | write)
3735 * if t==write, value_regno is a register which value is stored into memory
3736 * if t==read, value_regno is a register which will receive the value from memory
3737 * if t==write && value_regno==-1, some unknown value is stored into memory
3738 * if t==read && value_regno==-1, don't care what we read from memory
3739 */
check_mem_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int bpf_size,enum bpf_access_type t,int value_regno,bool strict_alignment_once)3740 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
3741 int off, int bpf_size, enum bpf_access_type t,
3742 int value_regno, bool strict_alignment_once)
3743 {
3744 struct bpf_reg_state *regs = cur_regs(env);
3745 struct bpf_reg_state *reg = regs + regno;
3746 struct bpf_func_state *state;
3747 int size, err = 0;
3748
3749 size = bpf_size_to_bytes(bpf_size);
3750 if (size < 0)
3751 return size;
3752
3753 /* alignment checks will add in reg->off themselves */
3754 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
3755 if (err)
3756 return err;
3757
3758 /* for access checks, reg->off is just part of off */
3759 off += reg->off;
3760
3761 if (reg->type == PTR_TO_MAP_VALUE) {
3762 if (t == BPF_WRITE && value_regno >= 0 &&
3763 is_pointer_value(env, value_regno)) {
3764 verbose(env, "R%d leaks addr into map\n", value_regno);
3765 return -EACCES;
3766 }
3767 err = check_map_access_type(env, regno, off, size, t);
3768 if (err)
3769 return err;
3770 err = check_map_access(env, regno, off, size, false);
3771 if (!err && t == BPF_READ && value_regno >= 0) {
3772 struct bpf_map *map = reg->map_ptr;
3773
3774 /* if map is read-only, track its contents as scalars */
3775 if (tnum_is_const(reg->var_off) &&
3776 bpf_map_is_rdonly(map) &&
3777 map->ops->map_direct_value_addr) {
3778 int map_off = off + reg->var_off.value;
3779 u64 val = 0;
3780
3781 err = bpf_map_direct_read(map, map_off, size,
3782 &val);
3783 if (err)
3784 return err;
3785
3786 regs[value_regno].type = SCALAR_VALUE;
3787 __mark_reg_known(®s[value_regno], val);
3788 } else {
3789 mark_reg_unknown(env, regs, value_regno);
3790 }
3791 }
3792 } else if (base_type(reg->type) == PTR_TO_MEM) {
3793 bool rdonly_mem = type_is_rdonly_mem(reg->type);
3794
3795 if (type_may_be_null(reg->type)) {
3796 verbose(env, "R%d invalid mem access '%s'\n", regno,
3797 reg_type_str(env, reg->type));
3798 return -EACCES;
3799 }
3800
3801 if (t == BPF_WRITE && rdonly_mem) {
3802 verbose(env, "R%d cannot write into %s\n",
3803 regno, reg_type_str(env, reg->type));
3804 return -EACCES;
3805 }
3806
3807 if (t == BPF_WRITE && value_regno >= 0 &&
3808 is_pointer_value(env, value_regno)) {
3809 verbose(env, "R%d leaks addr into mem\n", value_regno);
3810 return -EACCES;
3811 }
3812
3813 err = check_mem_region_access(env, regno, off, size,
3814 reg->mem_size, false);
3815 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
3816 mark_reg_unknown(env, regs, value_regno);
3817 } else if (reg->type == PTR_TO_CTX) {
3818 enum bpf_reg_type reg_type = SCALAR_VALUE;
3819 u32 btf_id = 0;
3820
3821 if (t == BPF_WRITE && value_regno >= 0 &&
3822 is_pointer_value(env, value_regno)) {
3823 verbose(env, "R%d leaks addr into ctx\n", value_regno);
3824 return -EACCES;
3825 }
3826
3827 err = check_ptr_off_reg(env, reg, regno);
3828 if (err < 0)
3829 return err;
3830
3831 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf_id);
3832 if (err)
3833 verbose_linfo(env, insn_idx, "; ");
3834 if (!err && t == BPF_READ && value_regno >= 0) {
3835 /* ctx access returns either a scalar, or a
3836 * PTR_TO_PACKET[_META,_END]. In the latter
3837 * case, we know the offset is zero.
3838 */
3839 if (reg_type == SCALAR_VALUE) {
3840 mark_reg_unknown(env, regs, value_regno);
3841 } else {
3842 mark_reg_known_zero(env, regs,
3843 value_regno);
3844 if (type_may_be_null(reg_type))
3845 regs[value_regno].id = ++env->id_gen;
3846 /* A load of ctx field could have different
3847 * actual load size with the one encoded in the
3848 * insn. When the dst is PTR, it is for sure not
3849 * a sub-register.
3850 */
3851 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
3852 if (base_type(reg_type) == PTR_TO_BTF_ID)
3853 regs[value_regno].btf_id = btf_id;
3854 }
3855 regs[value_regno].type = reg_type;
3856 }
3857
3858 } else if (reg->type == PTR_TO_STACK) {
3859 /* Basic bounds checks. */
3860 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
3861 if (err)
3862 return err;
3863
3864 state = func(env, reg);
3865 err = update_stack_depth(env, state, off);
3866 if (err)
3867 return err;
3868
3869 if (t == BPF_READ)
3870 err = check_stack_read(env, regno, off, size,
3871 value_regno);
3872 else
3873 err = check_stack_write(env, regno, off, size,
3874 value_regno, insn_idx);
3875 } else if (reg_is_pkt_pointer(reg)) {
3876 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
3877 verbose(env, "cannot write into packet\n");
3878 return -EACCES;
3879 }
3880 if (t == BPF_WRITE && value_regno >= 0 &&
3881 is_pointer_value(env, value_regno)) {
3882 verbose(env, "R%d leaks addr into packet\n",
3883 value_regno);
3884 return -EACCES;
3885 }
3886 err = check_packet_access(env, regno, off, size, false);
3887 if (!err && t == BPF_READ && value_regno >= 0)
3888 mark_reg_unknown(env, regs, value_regno);
3889 } else if (reg->type == PTR_TO_FLOW_KEYS) {
3890 if (t == BPF_WRITE && value_regno >= 0 &&
3891 is_pointer_value(env, value_regno)) {
3892 verbose(env, "R%d leaks addr into flow keys\n",
3893 value_regno);
3894 return -EACCES;
3895 }
3896
3897 err = check_flow_keys_access(env, off, size);
3898 if (!err && t == BPF_READ && value_regno >= 0)
3899 mark_reg_unknown(env, regs, value_regno);
3900 } else if (type_is_sk_pointer(reg->type)) {
3901 if (t == BPF_WRITE) {
3902 verbose(env, "R%d cannot write into %s\n",
3903 regno, reg_type_str(env, reg->type));
3904 return -EACCES;
3905 }
3906 err = check_sock_access(env, insn_idx, regno, off, size, t);
3907 if (!err && value_regno >= 0)
3908 mark_reg_unknown(env, regs, value_regno);
3909 } else if (reg->type == PTR_TO_TP_BUFFER) {
3910 err = check_tp_buffer_access(env, reg, regno, off, size);
3911 if (!err && t == BPF_READ && value_regno >= 0)
3912 mark_reg_unknown(env, regs, value_regno);
3913 } else if (reg->type == PTR_TO_BTF_ID) {
3914 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
3915 value_regno);
3916 } else if (reg->type == CONST_PTR_TO_MAP) {
3917 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
3918 value_regno);
3919 } else if (base_type(reg->type) == PTR_TO_BUF) {
3920 bool rdonly_mem = type_is_rdonly_mem(reg->type);
3921 const char *buf_info;
3922 u32 *max_access;
3923
3924 if (rdonly_mem) {
3925 if (t == BPF_WRITE) {
3926 verbose(env, "R%d cannot write into %s\n",
3927 regno, reg_type_str(env, reg->type));
3928 return -EACCES;
3929 }
3930 buf_info = "rdonly";
3931 max_access = &env->prog->aux->max_rdonly_access;
3932 } else {
3933 buf_info = "rdwr";
3934 max_access = &env->prog->aux->max_rdwr_access;
3935 }
3936
3937 err = check_buffer_access(env, reg, regno, off, size, false,
3938 buf_info, max_access);
3939 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
3940 mark_reg_unknown(env, regs, value_regno);
3941 } else {
3942 verbose(env, "R%d invalid mem access '%s'\n", regno,
3943 reg_type_str(env, reg->type));
3944 return -EACCES;
3945 }
3946
3947 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
3948 regs[value_regno].type == SCALAR_VALUE) {
3949 /* b/h/w load zero-extends, mark upper bits as known 0 */
3950 coerce_reg_to_size(®s[value_regno], size);
3951 }
3952 return err;
3953 }
3954
check_xadd(struct bpf_verifier_env * env,int insn_idx,struct bpf_insn * insn)3955 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
3956 {
3957 int err;
3958
3959 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
3960 insn->imm != 0) {
3961 verbose(env, "BPF_XADD uses reserved fields\n");
3962 return -EINVAL;
3963 }
3964
3965 /* check src1 operand */
3966 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3967 if (err)
3968 return err;
3969
3970 /* check src2 operand */
3971 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3972 if (err)
3973 return err;
3974
3975 if (is_pointer_value(env, insn->src_reg)) {
3976 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
3977 return -EACCES;
3978 }
3979
3980 if (is_ctx_reg(env, insn->dst_reg) ||
3981 is_pkt_reg(env, insn->dst_reg) ||
3982 is_flow_key_reg(env, insn->dst_reg) ||
3983 is_sk_reg(env, insn->dst_reg)) {
3984 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
3985 insn->dst_reg,
3986 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
3987 return -EACCES;
3988 }
3989
3990 /* check whether atomic_add can read the memory */
3991 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3992 BPF_SIZE(insn->code), BPF_READ, -1, true);
3993 if (err)
3994 return err;
3995
3996 /* check whether atomic_add can write into the same memory */
3997 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3998 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
3999 }
4000
4001 /* When register 'regno' is used to read the stack (either directly or through
4002 * a helper function) make sure that it's within stack boundary and, depending
4003 * on the access type, that all elements of the stack are initialized.
4004 *
4005 * 'off' includes 'regno->off', but not its dynamic part (if any).
4006 *
4007 * All registers that have been spilled on the stack in the slots within the
4008 * read offsets are marked as read.
4009 */
check_stack_range_initialized(struct bpf_verifier_env * env,int regno,int off,int access_size,bool zero_size_allowed,enum stack_access_src type,struct bpf_call_arg_meta * meta)4010 static int check_stack_range_initialized(
4011 struct bpf_verifier_env *env, int regno, int off,
4012 int access_size, bool zero_size_allowed,
4013 enum stack_access_src type, struct bpf_call_arg_meta *meta)
4014 {
4015 struct bpf_reg_state *reg = reg_state(env, regno);
4016 struct bpf_func_state *state = func(env, reg);
4017 int err, min_off, max_off, i, j, slot, spi;
4018 char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4019 enum bpf_access_type bounds_check_type;
4020 /* Some accesses can write anything into the stack, others are
4021 * read-only.
4022 */
4023 bool clobber = false;
4024
4025 if (access_size == 0 && !zero_size_allowed) {
4026 verbose(env, "invalid zero-sized read\n");
4027 return -EACCES;
4028 }
4029
4030 if (type == ACCESS_HELPER) {
4031 /* The bounds checks for writes are more permissive than for
4032 * reads. However, if raw_mode is not set, we'll do extra
4033 * checks below.
4034 */
4035 bounds_check_type = BPF_WRITE;
4036 clobber = true;
4037 } else {
4038 bounds_check_type = BPF_READ;
4039 }
4040 err = check_stack_access_within_bounds(env, regno, off, access_size,
4041 type, bounds_check_type);
4042 if (err)
4043 return err;
4044
4045
4046 if (tnum_is_const(reg->var_off)) {
4047 min_off = max_off = reg->var_off.value + off;
4048 } else {
4049 /* Variable offset is prohibited for unprivileged mode for
4050 * simplicity since it requires corresponding support in
4051 * Spectre masking for stack ALU.
4052 * See also retrieve_ptr_limit().
4053 */
4054 if (!env->bypass_spec_v1) {
4055 char tn_buf[48];
4056
4057 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4058 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4059 regno, err_extra, tn_buf);
4060 return -EACCES;
4061 }
4062 /* Only initialized buffer on stack is allowed to be accessed
4063 * with variable offset. With uninitialized buffer it's hard to
4064 * guarantee that whole memory is marked as initialized on
4065 * helper return since specific bounds are unknown what may
4066 * cause uninitialized stack leaking.
4067 */
4068 if (meta && meta->raw_mode)
4069 meta = NULL;
4070
4071 min_off = reg->smin_value + off;
4072 max_off = reg->smax_value + off;
4073 }
4074
4075 if (meta && meta->raw_mode) {
4076 meta->access_size = access_size;
4077 meta->regno = regno;
4078 return 0;
4079 }
4080
4081 for (i = min_off; i < max_off + access_size; i++) {
4082 u8 *stype;
4083
4084 slot = -i - 1;
4085 spi = slot / BPF_REG_SIZE;
4086 if (state->allocated_stack <= slot)
4087 goto err;
4088 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4089 if (*stype == STACK_MISC)
4090 goto mark;
4091 if (*stype == STACK_ZERO) {
4092 if (clobber) {
4093 /* helper can write anything into the stack */
4094 *stype = STACK_MISC;
4095 }
4096 goto mark;
4097 }
4098
4099 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4100 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
4101 goto mark;
4102
4103 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4104 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4105 env->allow_ptr_leaks)) {
4106 if (clobber) {
4107 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4108 for (j = 0; j < BPF_REG_SIZE; j++)
4109 state->stack[spi].slot_type[j] = STACK_MISC;
4110 }
4111 goto mark;
4112 }
4113
4114 err:
4115 if (tnum_is_const(reg->var_off)) {
4116 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4117 err_extra, regno, min_off, i - min_off, access_size);
4118 } else {
4119 char tn_buf[48];
4120
4121 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4122 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4123 err_extra, regno, tn_buf, i - min_off, access_size);
4124 }
4125 return -EACCES;
4126 mark:
4127 /* reading any byte out of 8-byte 'spill_slot' will cause
4128 * the whole slot to be marked as 'read'
4129 */
4130 mark_reg_read(env, &state->stack[spi].spilled_ptr,
4131 state->stack[spi].spilled_ptr.parent,
4132 REG_LIVE_READ64);
4133 }
4134 return update_stack_depth(env, state, min_off);
4135 }
4136
check_helper_mem_access(struct bpf_verifier_env * env,int regno,int access_size,bool zero_size_allowed,struct bpf_call_arg_meta * meta)4137 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4138 int access_size, bool zero_size_allowed,
4139 struct bpf_call_arg_meta *meta)
4140 {
4141 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
4142 const char *buf_info;
4143 u32 *max_access;
4144
4145 switch (base_type(reg->type)) {
4146 case PTR_TO_PACKET:
4147 case PTR_TO_PACKET_META:
4148 return check_packet_access(env, regno, reg->off, access_size,
4149 zero_size_allowed);
4150 case PTR_TO_MAP_VALUE:
4151 if (check_map_access_type(env, regno, reg->off, access_size,
4152 meta && meta->raw_mode ? BPF_WRITE :
4153 BPF_READ))
4154 return -EACCES;
4155 return check_map_access(env, regno, reg->off, access_size,
4156 zero_size_allowed);
4157 case PTR_TO_MEM:
4158 return check_mem_region_access(env, regno, reg->off,
4159 access_size, reg->mem_size,
4160 zero_size_allowed);
4161 case PTR_TO_BUF:
4162 if (type_is_rdonly_mem(reg->type)) {
4163 if (meta && meta->raw_mode)
4164 return -EACCES;
4165
4166 buf_info = "rdonly";
4167 max_access = &env->prog->aux->max_rdonly_access;
4168 } else {
4169 buf_info = "rdwr";
4170 max_access = &env->prog->aux->max_rdwr_access;
4171 }
4172 return check_buffer_access(env, reg, regno, reg->off,
4173 access_size, zero_size_allowed,
4174 buf_info, max_access);
4175 case PTR_TO_STACK:
4176 return check_stack_range_initialized(
4177 env,
4178 regno, reg->off, access_size,
4179 zero_size_allowed, ACCESS_HELPER, meta);
4180 default: /* scalar_value or invalid ptr */
4181 /* Allow zero-byte read from NULL, regardless of pointer type */
4182 if (zero_size_allowed && access_size == 0 &&
4183 register_is_null(reg))
4184 return 0;
4185
4186 verbose(env, "R%d type=%s ", regno,
4187 reg_type_str(env, reg->type));
4188 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
4189 return -EACCES;
4190 }
4191 }
4192
4193 /* Implementation details:
4194 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
4195 * Two bpf_map_lookups (even with the same key) will have different reg->id.
4196 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
4197 * value_or_null->value transition, since the verifier only cares about
4198 * the range of access to valid map value pointer and doesn't care about actual
4199 * address of the map element.
4200 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
4201 * reg->id > 0 after value_or_null->value transition. By doing so
4202 * two bpf_map_lookups will be considered two different pointers that
4203 * point to different bpf_spin_locks.
4204 * The verifier allows taking only one bpf_spin_lock at a time to avoid
4205 * dead-locks.
4206 * Since only one bpf_spin_lock is allowed the checks are simpler than
4207 * reg_is_refcounted() logic. The verifier needs to remember only
4208 * one spin_lock instead of array of acquired_refs.
4209 * cur_state->active_spin_lock remembers which map value element got locked
4210 * and clears it after bpf_spin_unlock.
4211 */
process_spin_lock(struct bpf_verifier_env * env,int regno,bool is_lock)4212 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
4213 bool is_lock)
4214 {
4215 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
4216 struct bpf_verifier_state *cur = env->cur_state;
4217 bool is_const = tnum_is_const(reg->var_off);
4218 struct bpf_map *map = reg->map_ptr;
4219 u64 val = reg->var_off.value;
4220
4221 if (!is_const) {
4222 verbose(env,
4223 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
4224 regno);
4225 return -EINVAL;
4226 }
4227 if (!map->btf) {
4228 verbose(env,
4229 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
4230 map->name);
4231 return -EINVAL;
4232 }
4233 if (!map_value_has_spin_lock(map)) {
4234 if (map->spin_lock_off == -E2BIG)
4235 verbose(env,
4236 "map '%s' has more than one 'struct bpf_spin_lock'\n",
4237 map->name);
4238 else if (map->spin_lock_off == -ENOENT)
4239 verbose(env,
4240 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
4241 map->name);
4242 else
4243 verbose(env,
4244 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
4245 map->name);
4246 return -EINVAL;
4247 }
4248 if (map->spin_lock_off != val + reg->off) {
4249 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
4250 val + reg->off);
4251 return -EINVAL;
4252 }
4253 if (is_lock) {
4254 if (cur->active_spin_lock) {
4255 verbose(env,
4256 "Locking two bpf_spin_locks are not allowed\n");
4257 return -EINVAL;
4258 }
4259 cur->active_spin_lock = reg->id;
4260 } else {
4261 if (!cur->active_spin_lock) {
4262 verbose(env, "bpf_spin_unlock without taking a lock\n");
4263 return -EINVAL;
4264 }
4265 if (cur->active_spin_lock != reg->id) {
4266 verbose(env, "bpf_spin_unlock of different lock\n");
4267 return -EINVAL;
4268 }
4269 cur->active_spin_lock = 0;
4270 }
4271 return 0;
4272 }
4273
arg_type_is_mem_ptr(enum bpf_arg_type type)4274 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
4275 {
4276 return base_type(type) == ARG_PTR_TO_MEM ||
4277 base_type(type) == ARG_PTR_TO_UNINIT_MEM;
4278 }
4279
arg_type_is_mem_size(enum bpf_arg_type type)4280 static bool arg_type_is_mem_size(enum bpf_arg_type type)
4281 {
4282 return type == ARG_CONST_SIZE ||
4283 type == ARG_CONST_SIZE_OR_ZERO;
4284 }
4285
arg_type_is_alloc_size(enum bpf_arg_type type)4286 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
4287 {
4288 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
4289 }
4290
arg_type_is_int_ptr(enum bpf_arg_type type)4291 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
4292 {
4293 return type == ARG_PTR_TO_INT ||
4294 type == ARG_PTR_TO_LONG;
4295 }
4296
int_ptr_type_to_size(enum bpf_arg_type type)4297 static int int_ptr_type_to_size(enum bpf_arg_type type)
4298 {
4299 if (type == ARG_PTR_TO_INT)
4300 return sizeof(u32);
4301 else if (type == ARG_PTR_TO_LONG)
4302 return sizeof(u64);
4303
4304 return -EINVAL;
4305 }
4306
resolve_map_arg_type(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_arg_type * arg_type)4307 static int resolve_map_arg_type(struct bpf_verifier_env *env,
4308 const struct bpf_call_arg_meta *meta,
4309 enum bpf_arg_type *arg_type)
4310 {
4311 if (!meta->map_ptr) {
4312 /* kernel subsystem misconfigured verifier */
4313 verbose(env, "invalid map_ptr to access map->type\n");
4314 return -EACCES;
4315 }
4316
4317 switch (meta->map_ptr->map_type) {
4318 case BPF_MAP_TYPE_SOCKMAP:
4319 case BPF_MAP_TYPE_SOCKHASH:
4320 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
4321 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
4322 } else {
4323 verbose(env, "invalid arg_type for sockmap/sockhash\n");
4324 return -EINVAL;
4325 }
4326 break;
4327
4328 default:
4329 break;
4330 }
4331 return 0;
4332 }
4333
4334 struct bpf_reg_types {
4335 const enum bpf_reg_type types[10];
4336 u32 *btf_id;
4337 };
4338
4339 static const struct bpf_reg_types map_key_value_types = {
4340 .types = {
4341 PTR_TO_STACK,
4342 PTR_TO_PACKET,
4343 PTR_TO_PACKET_META,
4344 PTR_TO_MAP_VALUE,
4345 },
4346 };
4347
4348 static const struct bpf_reg_types sock_types = {
4349 .types = {
4350 PTR_TO_SOCK_COMMON,
4351 PTR_TO_SOCKET,
4352 PTR_TO_TCP_SOCK,
4353 PTR_TO_XDP_SOCK,
4354 },
4355 };
4356
4357 #ifdef CONFIG_NET
4358 static const struct bpf_reg_types btf_id_sock_common_types = {
4359 .types = {
4360 PTR_TO_SOCK_COMMON,
4361 PTR_TO_SOCKET,
4362 PTR_TO_TCP_SOCK,
4363 PTR_TO_XDP_SOCK,
4364 PTR_TO_BTF_ID,
4365 },
4366 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
4367 };
4368 #endif
4369
4370 static const struct bpf_reg_types mem_types = {
4371 .types = {
4372 PTR_TO_STACK,
4373 PTR_TO_PACKET,
4374 PTR_TO_PACKET_META,
4375 PTR_TO_MAP_VALUE,
4376 PTR_TO_MEM,
4377 PTR_TO_MEM | MEM_ALLOC,
4378 PTR_TO_BUF,
4379 },
4380 };
4381
4382 static const struct bpf_reg_types int_ptr_types = {
4383 .types = {
4384 PTR_TO_STACK,
4385 PTR_TO_PACKET,
4386 PTR_TO_PACKET_META,
4387 PTR_TO_MAP_VALUE,
4388 },
4389 };
4390
4391 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
4392 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
4393 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
4394 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM | MEM_ALLOC } };
4395 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
4396 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
4397 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
4398 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
4399
4400 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
4401 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types,
4402 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types,
4403 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types,
4404 [ARG_CONST_SIZE] = &scalar_types,
4405 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
4406 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
4407 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
4408 [ARG_PTR_TO_CTX] = &context_types,
4409 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
4410 #ifdef CONFIG_NET
4411 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
4412 #endif
4413 [ARG_PTR_TO_SOCKET] = &fullsock_types,
4414 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
4415 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
4416 [ARG_PTR_TO_MEM] = &mem_types,
4417 [ARG_PTR_TO_UNINIT_MEM] = &mem_types,
4418 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types,
4419 [ARG_PTR_TO_INT] = &int_ptr_types,
4420 [ARG_PTR_TO_LONG] = &int_ptr_types,
4421 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
4422 };
4423
check_reg_type(struct bpf_verifier_env * env,u32 regno,enum bpf_arg_type arg_type,const u32 * arg_btf_id)4424 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
4425 enum bpf_arg_type arg_type,
4426 const u32 *arg_btf_id)
4427 {
4428 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
4429 enum bpf_reg_type expected, type = reg->type;
4430 const struct bpf_reg_types *compatible;
4431 int i, j;
4432
4433 compatible = compatible_reg_types[base_type(arg_type)];
4434 if (!compatible) {
4435 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
4436 return -EFAULT;
4437 }
4438
4439 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
4440 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
4441 *
4442 * Same for MAYBE_NULL:
4443 *
4444 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
4445 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
4446 *
4447 * Therefore we fold these flags depending on the arg_type before comparison.
4448 */
4449 if (arg_type & MEM_RDONLY)
4450 type &= ~MEM_RDONLY;
4451 if (arg_type & PTR_MAYBE_NULL)
4452 type &= ~PTR_MAYBE_NULL;
4453
4454 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
4455 expected = compatible->types[i];
4456 if (expected == NOT_INIT)
4457 break;
4458
4459 if (type == expected)
4460 goto found;
4461 }
4462
4463 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
4464 for (j = 0; j + 1 < i; j++)
4465 verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
4466 verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
4467 return -EACCES;
4468
4469 found:
4470 if (reg->type == PTR_TO_BTF_ID) {
4471 if (!arg_btf_id) {
4472 if (!compatible->btf_id) {
4473 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
4474 return -EFAULT;
4475 }
4476 arg_btf_id = compatible->btf_id;
4477 }
4478
4479 if (!btf_struct_ids_match(&env->log, reg->off, reg->btf_id,
4480 *arg_btf_id)) {
4481 verbose(env, "R%d is of type %s but %s is expected\n",
4482 regno, kernel_type_name(reg->btf_id),
4483 kernel_type_name(*arg_btf_id));
4484 return -EACCES;
4485 }
4486 }
4487
4488 return 0;
4489 }
4490
check_func_arg(struct bpf_verifier_env * env,u32 arg,struct bpf_call_arg_meta * meta,const struct bpf_func_proto * fn)4491 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
4492 struct bpf_call_arg_meta *meta,
4493 const struct bpf_func_proto *fn)
4494 {
4495 u32 regno = BPF_REG_1 + arg;
4496 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
4497 enum bpf_arg_type arg_type = fn->arg_type[arg];
4498 enum bpf_reg_type type = reg->type;
4499 int err = 0;
4500
4501 if (arg_type == ARG_DONTCARE)
4502 return 0;
4503
4504 err = check_reg_arg(env, regno, SRC_OP);
4505 if (err)
4506 return err;
4507
4508 if (arg_type == ARG_ANYTHING) {
4509 if (is_pointer_value(env, regno)) {
4510 verbose(env, "R%d leaks addr into helper function\n",
4511 regno);
4512 return -EACCES;
4513 }
4514 return 0;
4515 }
4516
4517 if (type_is_pkt_pointer(type) &&
4518 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
4519 verbose(env, "helper access to the packet is not allowed\n");
4520 return -EACCES;
4521 }
4522
4523 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE ||
4524 base_type(arg_type) == ARG_PTR_TO_UNINIT_MAP_VALUE) {
4525 err = resolve_map_arg_type(env, meta, &arg_type);
4526 if (err)
4527 return err;
4528 }
4529
4530 if (register_is_null(reg) && type_may_be_null(arg_type))
4531 /* A NULL register has a SCALAR_VALUE type, so skip
4532 * type checking.
4533 */
4534 goto skip_type_check;
4535
4536 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
4537 if (err)
4538 return err;
4539
4540 switch ((u32)type) {
4541 case SCALAR_VALUE:
4542 /* Pointer types where reg offset is explicitly allowed: */
4543 case PTR_TO_PACKET:
4544 case PTR_TO_PACKET_META:
4545 case PTR_TO_MAP_VALUE:
4546 case PTR_TO_MEM:
4547 case PTR_TO_MEM | MEM_RDONLY:
4548 case PTR_TO_MEM | MEM_ALLOC:
4549 case PTR_TO_BUF:
4550 case PTR_TO_BUF | MEM_RDONLY:
4551 case PTR_TO_STACK:
4552 /* Some of the argument types nevertheless require a
4553 * zero register offset.
4554 */
4555 if (arg_type == ARG_PTR_TO_ALLOC_MEM)
4556 goto force_off_check;
4557 break;
4558 /* All the rest must be rejected: */
4559 default:
4560 force_off_check:
4561 err = __check_ptr_off_reg(env, reg, regno,
4562 type == PTR_TO_BTF_ID);
4563 if (err < 0)
4564 return err;
4565 break;
4566 }
4567
4568 skip_type_check:
4569 if (reg->ref_obj_id) {
4570 if (meta->ref_obj_id) {
4571 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4572 regno, reg->ref_obj_id,
4573 meta->ref_obj_id);
4574 return -EFAULT;
4575 }
4576 meta->ref_obj_id = reg->ref_obj_id;
4577 }
4578
4579 if (arg_type == ARG_CONST_MAP_PTR) {
4580 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
4581 meta->map_ptr = reg->map_ptr;
4582 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4583 /* bpf_map_xxx(..., map_ptr, ..., key) call:
4584 * check that [key, key + map->key_size) are within
4585 * stack limits and initialized
4586 */
4587 if (!meta->map_ptr) {
4588 /* in function declaration map_ptr must come before
4589 * map_key, so that it's verified and known before
4590 * we have to check map_key here. Otherwise it means
4591 * that kernel subsystem misconfigured verifier
4592 */
4593 verbose(env, "invalid map_ptr to access map->key\n");
4594 return -EACCES;
4595 }
4596 err = check_helper_mem_access(env, regno,
4597 meta->map_ptr->key_size, false,
4598 NULL);
4599 } else if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE ||
4600 base_type(arg_type) == ARG_PTR_TO_UNINIT_MAP_VALUE) {
4601 if (type_may_be_null(arg_type) && register_is_null(reg))
4602 return 0;
4603
4604 /* bpf_map_xxx(..., map_ptr, ..., value) call:
4605 * check [value, value + map->value_size) validity
4606 */
4607 if (!meta->map_ptr) {
4608 /* kernel subsystem misconfigured verifier */
4609 verbose(env, "invalid map_ptr to access map->value\n");
4610 return -EACCES;
4611 }
4612 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
4613 err = check_helper_mem_access(env, regno,
4614 meta->map_ptr->value_size, false,
4615 meta);
4616 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
4617 if (!reg->btf_id) {
4618 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
4619 return -EACCES;
4620 }
4621 meta->ret_btf_id = reg->btf_id;
4622 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
4623 if (meta->func_id == BPF_FUNC_spin_lock) {
4624 if (process_spin_lock(env, regno, true))
4625 return -EACCES;
4626 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
4627 if (process_spin_lock(env, regno, false))
4628 return -EACCES;
4629 } else {
4630 verbose(env, "verifier internal error\n");
4631 return -EFAULT;
4632 }
4633 } else if (arg_type_is_mem_ptr(arg_type)) {
4634 /* The access to this pointer is only checked when we hit the
4635 * next is_mem_size argument below.
4636 */
4637 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
4638 } else if (arg_type_is_mem_size(arg_type)) {
4639 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
4640
4641 /* This is used to refine r0 return value bounds for helpers
4642 * that enforce this value as an upper bound on return values.
4643 * See do_refine_retval_range() for helpers that can refine
4644 * the return value. C type of helper is u32 so we pull register
4645 * bound from umax_value however, if negative verifier errors
4646 * out. Only upper bounds can be learned because retval is an
4647 * int type and negative retvals are allowed.
4648 */
4649 meta->msize_max_value = reg->umax_value;
4650
4651 /* The register is SCALAR_VALUE; the access check
4652 * happens using its boundaries.
4653 */
4654 if (!tnum_is_const(reg->var_off))
4655 /* For unprivileged variable accesses, disable raw
4656 * mode so that the program is required to
4657 * initialize all the memory that the helper could
4658 * just partially fill up.
4659 */
4660 meta = NULL;
4661
4662 if (reg->smin_value < 0) {
4663 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
4664 regno);
4665 return -EACCES;
4666 }
4667
4668 if (reg->umin_value == 0) {
4669 err = check_helper_mem_access(env, regno - 1, 0,
4670 zero_size_allowed,
4671 meta);
4672 if (err)
4673 return err;
4674 }
4675
4676 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
4677 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
4678 regno);
4679 return -EACCES;
4680 }
4681 err = check_helper_mem_access(env, regno - 1,
4682 reg->umax_value,
4683 zero_size_allowed, meta);
4684 if (!err)
4685 err = mark_chain_precision(env, regno);
4686 } else if (arg_type_is_alloc_size(arg_type)) {
4687 if (!tnum_is_const(reg->var_off)) {
4688 verbose(env, "R%d unbounded size, use 'var &= const' or 'if (var < const)'\n",
4689 regno);
4690 return -EACCES;
4691 }
4692 meta->mem_size = reg->var_off.value;
4693 } else if (arg_type_is_int_ptr(arg_type)) {
4694 int size = int_ptr_type_to_size(arg_type);
4695
4696 err = check_helper_mem_access(env, regno, size, false, meta);
4697 if (err)
4698 return err;
4699 err = check_ptr_alignment(env, reg, 0, size, true);
4700 }
4701
4702 return err;
4703 }
4704
may_update_sockmap(struct bpf_verifier_env * env,int func_id)4705 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
4706 {
4707 enum bpf_attach_type eatype = env->prog->expected_attach_type;
4708 enum bpf_prog_type type = resolve_prog_type(env->prog);
4709
4710 if (func_id != BPF_FUNC_map_update_elem)
4711 return false;
4712
4713 /* It's not possible to get access to a locked struct sock in these
4714 * contexts, so updating is safe.
4715 */
4716 switch (type) {
4717 case BPF_PROG_TYPE_TRACING:
4718 if (eatype == BPF_TRACE_ITER)
4719 return true;
4720 break;
4721 case BPF_PROG_TYPE_SOCKET_FILTER:
4722 case BPF_PROG_TYPE_SCHED_CLS:
4723 case BPF_PROG_TYPE_SCHED_ACT:
4724 case BPF_PROG_TYPE_XDP:
4725 case BPF_PROG_TYPE_SK_REUSEPORT:
4726 case BPF_PROG_TYPE_FLOW_DISSECTOR:
4727 case BPF_PROG_TYPE_SK_LOOKUP:
4728 return true;
4729 default:
4730 break;
4731 }
4732
4733 verbose(env, "cannot update sockmap in this context\n");
4734 return false;
4735 }
4736
allow_tail_call_in_subprogs(struct bpf_verifier_env * env)4737 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
4738 {
4739 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
4740 }
4741
check_map_func_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,int func_id)4742 static int check_map_func_compatibility(struct bpf_verifier_env *env,
4743 struct bpf_map *map, int func_id)
4744 {
4745 if (!map)
4746 return 0;
4747
4748 /* We need a two way check, first is from map perspective ... */
4749 switch (map->map_type) {
4750 case BPF_MAP_TYPE_PROG_ARRAY:
4751 if (func_id != BPF_FUNC_tail_call)
4752 goto error;
4753 break;
4754 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4755 if (func_id != BPF_FUNC_perf_event_read &&
4756 func_id != BPF_FUNC_perf_event_output &&
4757 func_id != BPF_FUNC_skb_output &&
4758 func_id != BPF_FUNC_perf_event_read_value &&
4759 func_id != BPF_FUNC_xdp_output)
4760 goto error;
4761 break;
4762 case BPF_MAP_TYPE_RINGBUF:
4763 if (func_id != BPF_FUNC_ringbuf_output &&
4764 func_id != BPF_FUNC_ringbuf_reserve &&
4765 func_id != BPF_FUNC_ringbuf_query)
4766 goto error;
4767 break;
4768 case BPF_MAP_TYPE_STACK_TRACE:
4769 if (func_id != BPF_FUNC_get_stackid)
4770 goto error;
4771 break;
4772 case BPF_MAP_TYPE_CGROUP_ARRAY:
4773 if (func_id != BPF_FUNC_skb_under_cgroup &&
4774 func_id != BPF_FUNC_current_task_under_cgroup)
4775 goto error;
4776 break;
4777 case BPF_MAP_TYPE_CGROUP_STORAGE:
4778 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
4779 if (func_id != BPF_FUNC_get_local_storage)
4780 goto error;
4781 break;
4782 case BPF_MAP_TYPE_DEVMAP:
4783 case BPF_MAP_TYPE_DEVMAP_HASH:
4784 if (func_id != BPF_FUNC_redirect_map &&
4785 func_id != BPF_FUNC_map_lookup_elem)
4786 goto error;
4787 break;
4788 /* Restrict bpf side of cpumap and xskmap, open when use-cases
4789 * appear.
4790 */
4791 case BPF_MAP_TYPE_CPUMAP:
4792 if (func_id != BPF_FUNC_redirect_map)
4793 goto error;
4794 break;
4795 case BPF_MAP_TYPE_XSKMAP:
4796 if (func_id != BPF_FUNC_redirect_map &&
4797 func_id != BPF_FUNC_map_lookup_elem)
4798 goto error;
4799 break;
4800 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
4801 case BPF_MAP_TYPE_HASH_OF_MAPS:
4802 if (func_id != BPF_FUNC_map_lookup_elem)
4803 goto error;
4804 break;
4805 case BPF_MAP_TYPE_SOCKMAP:
4806 if (func_id != BPF_FUNC_sk_redirect_map &&
4807 func_id != BPF_FUNC_sock_map_update &&
4808 func_id != BPF_FUNC_map_delete_elem &&
4809 func_id != BPF_FUNC_msg_redirect_map &&
4810 func_id != BPF_FUNC_sk_select_reuseport &&
4811 func_id != BPF_FUNC_map_lookup_elem &&
4812 !may_update_sockmap(env, func_id))
4813 goto error;
4814 break;
4815 case BPF_MAP_TYPE_SOCKHASH:
4816 if (func_id != BPF_FUNC_sk_redirect_hash &&
4817 func_id != BPF_FUNC_sock_hash_update &&
4818 func_id != BPF_FUNC_map_delete_elem &&
4819 func_id != BPF_FUNC_msg_redirect_hash &&
4820 func_id != BPF_FUNC_sk_select_reuseport &&
4821 func_id != BPF_FUNC_map_lookup_elem &&
4822 !may_update_sockmap(env, func_id))
4823 goto error;
4824 break;
4825 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
4826 if (func_id != BPF_FUNC_sk_select_reuseport)
4827 goto error;
4828 break;
4829 case BPF_MAP_TYPE_QUEUE:
4830 case BPF_MAP_TYPE_STACK:
4831 if (func_id != BPF_FUNC_map_peek_elem &&
4832 func_id != BPF_FUNC_map_pop_elem &&
4833 func_id != BPF_FUNC_map_push_elem)
4834 goto error;
4835 break;
4836 case BPF_MAP_TYPE_SK_STORAGE:
4837 if (func_id != BPF_FUNC_sk_storage_get &&
4838 func_id != BPF_FUNC_sk_storage_delete)
4839 goto error;
4840 break;
4841 case BPF_MAP_TYPE_INODE_STORAGE:
4842 if (func_id != BPF_FUNC_inode_storage_get &&
4843 func_id != BPF_FUNC_inode_storage_delete)
4844 goto error;
4845 break;
4846 default:
4847 break;
4848 }
4849
4850 /* ... and second from the function itself. */
4851 switch (func_id) {
4852 case BPF_FUNC_tail_call:
4853 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
4854 goto error;
4855 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
4856 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
4857 return -EINVAL;
4858 }
4859 break;
4860 case BPF_FUNC_perf_event_read:
4861 case BPF_FUNC_perf_event_output:
4862 case BPF_FUNC_perf_event_read_value:
4863 case BPF_FUNC_skb_output:
4864 case BPF_FUNC_xdp_output:
4865 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
4866 goto error;
4867 break;
4868 case BPF_FUNC_ringbuf_output:
4869 case BPF_FUNC_ringbuf_reserve:
4870 case BPF_FUNC_ringbuf_query:
4871 if (map->map_type != BPF_MAP_TYPE_RINGBUF)
4872 goto error;
4873 break;
4874 case BPF_FUNC_get_stackid:
4875 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
4876 goto error;
4877 break;
4878 case BPF_FUNC_current_task_under_cgroup:
4879 case BPF_FUNC_skb_under_cgroup:
4880 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
4881 goto error;
4882 break;
4883 case BPF_FUNC_redirect_map:
4884 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
4885 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
4886 map->map_type != BPF_MAP_TYPE_CPUMAP &&
4887 map->map_type != BPF_MAP_TYPE_XSKMAP)
4888 goto error;
4889 break;
4890 case BPF_FUNC_sk_redirect_map:
4891 case BPF_FUNC_msg_redirect_map:
4892 case BPF_FUNC_sock_map_update:
4893 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
4894 goto error;
4895 break;
4896 case BPF_FUNC_sk_redirect_hash:
4897 case BPF_FUNC_msg_redirect_hash:
4898 case BPF_FUNC_sock_hash_update:
4899 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
4900 goto error;
4901 break;
4902 case BPF_FUNC_get_local_storage:
4903 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
4904 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
4905 goto error;
4906 break;
4907 case BPF_FUNC_sk_select_reuseport:
4908 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
4909 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
4910 map->map_type != BPF_MAP_TYPE_SOCKHASH)
4911 goto error;
4912 break;
4913 case BPF_FUNC_map_peek_elem:
4914 case BPF_FUNC_map_pop_elem:
4915 case BPF_FUNC_map_push_elem:
4916 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
4917 map->map_type != BPF_MAP_TYPE_STACK)
4918 goto error;
4919 break;
4920 case BPF_FUNC_sk_storage_get:
4921 case BPF_FUNC_sk_storage_delete:
4922 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
4923 goto error;
4924 break;
4925 case BPF_FUNC_inode_storage_get:
4926 case BPF_FUNC_inode_storage_delete:
4927 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
4928 goto error;
4929 break;
4930 default:
4931 break;
4932 }
4933
4934 return 0;
4935 error:
4936 verbose(env, "cannot pass map_type %d into func %s#%d\n",
4937 map->map_type, func_id_name(func_id), func_id);
4938 return -EINVAL;
4939 }
4940
check_raw_mode_ok(const struct bpf_func_proto * fn)4941 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
4942 {
4943 int count = 0;
4944
4945 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
4946 count++;
4947 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
4948 count++;
4949 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
4950 count++;
4951 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
4952 count++;
4953 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
4954 count++;
4955
4956 /* We only support one arg being in raw mode at the moment,
4957 * which is sufficient for the helper functions we have
4958 * right now.
4959 */
4960 return count <= 1;
4961 }
4962
check_args_pair_invalid(enum bpf_arg_type arg_curr,enum bpf_arg_type arg_next)4963 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
4964 enum bpf_arg_type arg_next)
4965 {
4966 return (arg_type_is_mem_ptr(arg_curr) &&
4967 !arg_type_is_mem_size(arg_next)) ||
4968 (!arg_type_is_mem_ptr(arg_curr) &&
4969 arg_type_is_mem_size(arg_next));
4970 }
4971
check_arg_pair_ok(const struct bpf_func_proto * fn)4972 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
4973 {
4974 /* bpf_xxx(..., buf, len) call will access 'len'
4975 * bytes from memory 'buf'. Both arg types need
4976 * to be paired, so make sure there's no buggy
4977 * helper function specification.
4978 */
4979 if (arg_type_is_mem_size(fn->arg1_type) ||
4980 arg_type_is_mem_ptr(fn->arg5_type) ||
4981 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
4982 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
4983 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
4984 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
4985 return false;
4986
4987 return true;
4988 }
4989
check_refcount_ok(const struct bpf_func_proto * fn,int func_id)4990 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
4991 {
4992 int count = 0;
4993
4994 if (arg_type_may_be_refcounted(fn->arg1_type))
4995 count++;
4996 if (arg_type_may_be_refcounted(fn->arg2_type))
4997 count++;
4998 if (arg_type_may_be_refcounted(fn->arg3_type))
4999 count++;
5000 if (arg_type_may_be_refcounted(fn->arg4_type))
5001 count++;
5002 if (arg_type_may_be_refcounted(fn->arg5_type))
5003 count++;
5004
5005 /* A reference acquiring function cannot acquire
5006 * another refcounted ptr.
5007 */
5008 if (may_be_acquire_function(func_id) && count)
5009 return false;
5010
5011 /* We only support one arg being unreferenced at the moment,
5012 * which is sufficient for the helper functions we have right now.
5013 */
5014 return count <= 1;
5015 }
5016
check_btf_id_ok(const struct bpf_func_proto * fn)5017 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
5018 {
5019 int i;
5020
5021 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
5022 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
5023 return false;
5024
5025 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
5026 return false;
5027 }
5028
5029 return true;
5030 }
5031
check_func_proto(const struct bpf_func_proto * fn,int func_id)5032 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
5033 {
5034 return check_raw_mode_ok(fn) &&
5035 check_arg_pair_ok(fn) &&
5036 check_btf_id_ok(fn) &&
5037 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
5038 }
5039
5040 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
5041 * are now invalid, so turn them into unknown SCALAR_VALUE.
5042 */
__clear_all_pkt_pointers(struct bpf_verifier_env * env,struct bpf_func_state * state)5043 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
5044 struct bpf_func_state *state)
5045 {
5046 struct bpf_reg_state *regs = state->regs, *reg;
5047 int i;
5048
5049 for (i = 0; i < MAX_BPF_REG; i++)
5050 if (reg_is_pkt_pointer_any(®s[i]))
5051 mark_reg_unknown(env, regs, i);
5052
5053 bpf_for_each_spilled_reg(i, state, reg) {
5054 if (!reg)
5055 continue;
5056 if (reg_is_pkt_pointer_any(reg))
5057 __mark_reg_unknown(env, reg);
5058 }
5059 }
5060
clear_all_pkt_pointers(struct bpf_verifier_env * env)5061 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
5062 {
5063 struct bpf_verifier_state *vstate = env->cur_state;
5064 int i;
5065
5066 for (i = 0; i <= vstate->curframe; i++)
5067 __clear_all_pkt_pointers(env, vstate->frame[i]);
5068 }
5069
release_reg_references(struct bpf_verifier_env * env,struct bpf_func_state * state,int ref_obj_id)5070 static void release_reg_references(struct bpf_verifier_env *env,
5071 struct bpf_func_state *state,
5072 int ref_obj_id)
5073 {
5074 struct bpf_reg_state *regs = state->regs, *reg;
5075 int i;
5076
5077 for (i = 0; i < MAX_BPF_REG; i++)
5078 if (regs[i].ref_obj_id == ref_obj_id)
5079 mark_reg_unknown(env, regs, i);
5080
5081 bpf_for_each_spilled_reg(i, state, reg) {
5082 if (!reg)
5083 continue;
5084 if (reg->ref_obj_id == ref_obj_id)
5085 __mark_reg_unknown(env, reg);
5086 }
5087 }
5088
5089 /* The pointer with the specified id has released its reference to kernel
5090 * resources. Identify all copies of the same pointer and clear the reference.
5091 */
release_reference(struct bpf_verifier_env * env,int ref_obj_id)5092 static int release_reference(struct bpf_verifier_env *env,
5093 int ref_obj_id)
5094 {
5095 struct bpf_verifier_state *vstate = env->cur_state;
5096 int err;
5097 int i;
5098
5099 err = release_reference_state(cur_func(env), ref_obj_id);
5100 if (err)
5101 return err;
5102
5103 for (i = 0; i <= vstate->curframe; i++)
5104 release_reg_references(env, vstate->frame[i], ref_obj_id);
5105
5106 return 0;
5107 }
5108
clear_caller_saved_regs(struct bpf_verifier_env * env,struct bpf_reg_state * regs)5109 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
5110 struct bpf_reg_state *regs)
5111 {
5112 int i;
5113
5114 /* after the call registers r0 - r5 were scratched */
5115 for (i = 0; i < CALLER_SAVED_REGS; i++) {
5116 mark_reg_not_init(env, regs, caller_saved[i]);
5117 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5118 }
5119 }
5120
check_func_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)5121 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5122 int *insn_idx)
5123 {
5124 struct bpf_verifier_state *state = env->cur_state;
5125 struct bpf_func_info_aux *func_info_aux;
5126 struct bpf_func_state *caller, *callee;
5127 int i, err, subprog, target_insn;
5128 bool is_global = false;
5129
5130 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
5131 verbose(env, "the call stack of %d frames is too deep\n",
5132 state->curframe + 2);
5133 return -E2BIG;
5134 }
5135
5136 target_insn = *insn_idx + insn->imm;
5137 subprog = find_subprog(env, target_insn + 1);
5138 if (subprog < 0) {
5139 verbose(env, "verifier bug. No program starts at insn %d\n",
5140 target_insn + 1);
5141 return -EFAULT;
5142 }
5143
5144 caller = state->frame[state->curframe];
5145 if (state->frame[state->curframe + 1]) {
5146 verbose(env, "verifier bug. Frame %d already allocated\n",
5147 state->curframe + 1);
5148 return -EFAULT;
5149 }
5150
5151 func_info_aux = env->prog->aux->func_info_aux;
5152 if (func_info_aux)
5153 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5154 err = btf_check_func_arg_match(env, subprog, caller->regs);
5155 if (err == -EFAULT)
5156 return err;
5157 if (is_global) {
5158 if (err) {
5159 verbose(env, "Caller passes invalid args into func#%d\n",
5160 subprog);
5161 return err;
5162 } else {
5163 if (env->log.level & BPF_LOG_LEVEL)
5164 verbose(env,
5165 "Func#%d is global and valid. Skipping.\n",
5166 subprog);
5167 clear_caller_saved_regs(env, caller->regs);
5168
5169 /* All global functions return a 64-bit SCALAR_VALUE */
5170 mark_reg_unknown(env, caller->regs, BPF_REG_0);
5171 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5172
5173 /* continue with next insn after call */
5174 return 0;
5175 }
5176 }
5177
5178 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
5179 if (!callee)
5180 return -ENOMEM;
5181 state->frame[state->curframe + 1] = callee;
5182
5183 /* callee cannot access r0, r6 - r9 for reading and has to write
5184 * into its own stack before reading from it.
5185 * callee can read/write into caller's stack
5186 */
5187 init_func_state(env, callee,
5188 /* remember the callsite, it will be used by bpf_exit */
5189 *insn_idx /* callsite */,
5190 state->curframe + 1 /* frameno within this callchain */,
5191 subprog /* subprog number within this prog */);
5192
5193 /* Transfer references to the callee */
5194 err = transfer_reference_state(callee, caller);
5195 if (err)
5196 return err;
5197
5198 /* copy r1 - r5 args that callee can access. The copy includes parent
5199 * pointers, which connects us up to the liveness chain
5200 */
5201 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
5202 callee->regs[i] = caller->regs[i];
5203
5204 clear_caller_saved_regs(env, caller->regs);
5205
5206 /* only increment it after check_reg_arg() finished */
5207 state->curframe++;
5208
5209 /* and go analyze first insn of the callee */
5210 *insn_idx = target_insn;
5211
5212 if (env->log.level & BPF_LOG_LEVEL) {
5213 verbose(env, "caller:\n");
5214 print_verifier_state(env, caller);
5215 verbose(env, "callee:\n");
5216 print_verifier_state(env, callee);
5217 }
5218 return 0;
5219 }
5220
prepare_func_exit(struct bpf_verifier_env * env,int * insn_idx)5221 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
5222 {
5223 struct bpf_verifier_state *state = env->cur_state;
5224 struct bpf_func_state *caller, *callee;
5225 struct bpf_reg_state *r0;
5226 int err;
5227
5228 callee = state->frame[state->curframe];
5229 r0 = &callee->regs[BPF_REG_0];
5230 if (r0->type == PTR_TO_STACK) {
5231 /* technically it's ok to return caller's stack pointer
5232 * (or caller's caller's pointer) back to the caller,
5233 * since these pointers are valid. Only current stack
5234 * pointer will be invalid as soon as function exits,
5235 * but let's be conservative
5236 */
5237 verbose(env, "cannot return stack pointer to the caller\n");
5238 return -EINVAL;
5239 }
5240
5241 state->curframe--;
5242 caller = state->frame[state->curframe];
5243 /* return to the caller whatever r0 had in the callee */
5244 caller->regs[BPF_REG_0] = *r0;
5245
5246 /* Transfer references to the caller */
5247 err = transfer_reference_state(caller, callee);
5248 if (err)
5249 return err;
5250
5251 *insn_idx = callee->callsite + 1;
5252 if (env->log.level & BPF_LOG_LEVEL) {
5253 verbose(env, "returning from callee:\n");
5254 print_verifier_state(env, callee);
5255 verbose(env, "to caller at %d:\n", *insn_idx);
5256 print_verifier_state(env, caller);
5257 }
5258 /* clear everything in the callee */
5259 free_func_state(callee);
5260 state->frame[state->curframe + 1] = NULL;
5261 return 0;
5262 }
5263
do_refine_retval_range(struct bpf_reg_state * regs,int ret_type,int func_id,struct bpf_call_arg_meta * meta)5264 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
5265 int func_id,
5266 struct bpf_call_arg_meta *meta)
5267 {
5268 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0];
5269
5270 if (ret_type != RET_INTEGER ||
5271 (func_id != BPF_FUNC_get_stack &&
5272 func_id != BPF_FUNC_probe_read_str &&
5273 func_id != BPF_FUNC_probe_read_kernel_str &&
5274 func_id != BPF_FUNC_probe_read_user_str))
5275 return;
5276
5277 ret_reg->smax_value = meta->msize_max_value;
5278 ret_reg->s32_max_value = meta->msize_max_value;
5279 ret_reg->smin_value = -MAX_ERRNO;
5280 ret_reg->s32_min_value = -MAX_ERRNO;
5281 __reg_deduce_bounds(ret_reg);
5282 __reg_bound_offset(ret_reg);
5283 __update_reg_bounds(ret_reg);
5284 }
5285
5286 static int
record_func_map(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)5287 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5288 int func_id, int insn_idx)
5289 {
5290 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5291 struct bpf_map *map = meta->map_ptr;
5292
5293 if (func_id != BPF_FUNC_tail_call &&
5294 func_id != BPF_FUNC_map_lookup_elem &&
5295 func_id != BPF_FUNC_map_update_elem &&
5296 func_id != BPF_FUNC_map_delete_elem &&
5297 func_id != BPF_FUNC_map_push_elem &&
5298 func_id != BPF_FUNC_map_pop_elem &&
5299 func_id != BPF_FUNC_map_peek_elem)
5300 return 0;
5301
5302 if (map == NULL) {
5303 verbose(env, "kernel subsystem misconfigured verifier\n");
5304 return -EINVAL;
5305 }
5306
5307 /* In case of read-only, some additional restrictions
5308 * need to be applied in order to prevent altering the
5309 * state of the map from program side.
5310 */
5311 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
5312 (func_id == BPF_FUNC_map_delete_elem ||
5313 func_id == BPF_FUNC_map_update_elem ||
5314 func_id == BPF_FUNC_map_push_elem ||
5315 func_id == BPF_FUNC_map_pop_elem)) {
5316 verbose(env, "write into map forbidden\n");
5317 return -EACCES;
5318 }
5319
5320 if (!BPF_MAP_PTR(aux->map_ptr_state))
5321 bpf_map_ptr_store(aux, meta->map_ptr,
5322 !meta->map_ptr->bypass_spec_v1);
5323 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
5324 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
5325 !meta->map_ptr->bypass_spec_v1);
5326 return 0;
5327 }
5328
5329 static int
record_func_key(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)5330 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5331 int func_id, int insn_idx)
5332 {
5333 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5334 struct bpf_reg_state *regs = cur_regs(env), *reg;
5335 struct bpf_map *map = meta->map_ptr;
5336 u64 val, max;
5337 int err;
5338
5339 if (func_id != BPF_FUNC_tail_call)
5340 return 0;
5341 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
5342 verbose(env, "kernel subsystem misconfigured verifier\n");
5343 return -EINVAL;
5344 }
5345
5346 reg = ®s[BPF_REG_3];
5347 val = reg->var_off.value;
5348 max = map->max_entries;
5349
5350 if (!(register_is_const(reg) && val < max)) {
5351 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5352 return 0;
5353 }
5354
5355 err = mark_chain_precision(env, BPF_REG_3);
5356 if (err)
5357 return err;
5358 if (bpf_map_key_unseen(aux))
5359 bpf_map_key_store(aux, val);
5360 else if (!bpf_map_key_poisoned(aux) &&
5361 bpf_map_key_immediate(aux) != val)
5362 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5363 return 0;
5364 }
5365
check_reference_leak(struct bpf_verifier_env * env)5366 static int check_reference_leak(struct bpf_verifier_env *env)
5367 {
5368 struct bpf_func_state *state = cur_func(env);
5369 int i;
5370
5371 for (i = 0; i < state->acquired_refs; i++) {
5372 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
5373 state->refs[i].id, state->refs[i].insn_idx);
5374 }
5375 return state->acquired_refs ? -EINVAL : 0;
5376 }
5377
check_helper_call(struct bpf_verifier_env * env,int func_id,int insn_idx)5378 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
5379 {
5380 const struct bpf_func_proto *fn = NULL;
5381 enum bpf_return_type ret_type;
5382 enum bpf_type_flag ret_flag;
5383 struct bpf_reg_state *regs;
5384 struct bpf_call_arg_meta meta;
5385 bool changes_data;
5386 int i, err;
5387
5388 /* find function prototype */
5389 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
5390 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
5391 func_id);
5392 return -EINVAL;
5393 }
5394
5395 if (env->ops->get_func_proto)
5396 fn = env->ops->get_func_proto(func_id, env->prog);
5397 if (!fn) {
5398 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
5399 func_id);
5400 return -EINVAL;
5401 }
5402
5403 /* eBPF programs must be GPL compatible to use GPL-ed functions */
5404 if (!env->prog->gpl_compatible && fn->gpl_only) {
5405 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
5406 return -EINVAL;
5407 }
5408
5409 if (fn->allowed && !fn->allowed(env->prog)) {
5410 verbose(env, "helper call is not allowed in probe\n");
5411 return -EINVAL;
5412 }
5413
5414 /* With LD_ABS/IND some JITs save/restore skb from r1. */
5415 changes_data = bpf_helper_changes_pkt_data(fn->func);
5416 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
5417 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
5418 func_id_name(func_id), func_id);
5419 return -EINVAL;
5420 }
5421
5422 memset(&meta, 0, sizeof(meta));
5423 meta.pkt_access = fn->pkt_access;
5424
5425 err = check_func_proto(fn, func_id);
5426 if (err) {
5427 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
5428 func_id_name(func_id), func_id);
5429 return err;
5430 }
5431
5432 meta.func_id = func_id;
5433 /* check args */
5434 for (i = 0; i < 5; i++) {
5435 err = check_func_arg(env, i, &meta, fn);
5436 if (err)
5437 return err;
5438 }
5439
5440 err = record_func_map(env, &meta, func_id, insn_idx);
5441 if (err)
5442 return err;
5443
5444 err = record_func_key(env, &meta, func_id, insn_idx);
5445 if (err)
5446 return err;
5447
5448 /* Mark slots with STACK_MISC in case of raw mode, stack offset
5449 * is inferred from register state.
5450 */
5451 for (i = 0; i < meta.access_size; i++) {
5452 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
5453 BPF_WRITE, -1, false);
5454 if (err)
5455 return err;
5456 }
5457
5458 if (func_id == BPF_FUNC_tail_call) {
5459 err = check_reference_leak(env);
5460 if (err) {
5461 verbose(env, "tail_call would lead to reference leak\n");
5462 return err;
5463 }
5464 } else if (is_release_function(func_id)) {
5465 err = release_reference(env, meta.ref_obj_id);
5466 if (err) {
5467 verbose(env, "func %s#%d reference has not been acquired before\n",
5468 func_id_name(func_id), func_id);
5469 return err;
5470 }
5471 }
5472
5473 regs = cur_regs(env);
5474
5475 /* check that flags argument in get_local_storage(map, flags) is 0,
5476 * this is required because get_local_storage() can't return an error.
5477 */
5478 if (func_id == BPF_FUNC_get_local_storage &&
5479 !register_is_null(®s[BPF_REG_2])) {
5480 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
5481 return -EINVAL;
5482 }
5483
5484 /* reset caller saved regs */
5485 for (i = 0; i < CALLER_SAVED_REGS; i++) {
5486 mark_reg_not_init(env, regs, caller_saved[i]);
5487 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5488 }
5489
5490 /* helper call returns 64-bit value. */
5491 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5492
5493 /* update return register (already marked as written above) */
5494 ret_type = fn->ret_type;
5495 ret_flag = type_flag(fn->ret_type);
5496 if (ret_type == RET_INTEGER) {
5497 /* sets type to SCALAR_VALUE */
5498 mark_reg_unknown(env, regs, BPF_REG_0);
5499 } else if (ret_type == RET_VOID) {
5500 regs[BPF_REG_0].type = NOT_INIT;
5501 } else if (base_type(ret_type) == RET_PTR_TO_MAP_VALUE) {
5502 /* There is no offset yet applied, variable or fixed */
5503 mark_reg_known_zero(env, regs, BPF_REG_0);
5504 /* remember map_ptr, so that check_map_access()
5505 * can check 'value_size' boundary of memory access
5506 * to map element returned from bpf_map_lookup_elem()
5507 */
5508 if (meta.map_ptr == NULL) {
5509 verbose(env,
5510 "kernel subsystem misconfigured verifier\n");
5511 return -EINVAL;
5512 }
5513 regs[BPF_REG_0].map_ptr = meta.map_ptr;
5514 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
5515 if (!type_may_be_null(ret_type) &&
5516 map_value_has_spin_lock(meta.map_ptr)) {
5517 regs[BPF_REG_0].id = ++env->id_gen;
5518 }
5519 } else if (base_type(ret_type) == RET_PTR_TO_SOCKET) {
5520 mark_reg_known_zero(env, regs, BPF_REG_0);
5521 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
5522 } else if (base_type(ret_type) == RET_PTR_TO_SOCK_COMMON) {
5523 mark_reg_known_zero(env, regs, BPF_REG_0);
5524 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
5525 } else if (base_type(ret_type) == RET_PTR_TO_TCP_SOCK) {
5526 mark_reg_known_zero(env, regs, BPF_REG_0);
5527 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
5528 } else if (base_type(ret_type) == RET_PTR_TO_ALLOC_MEM) {
5529 mark_reg_known_zero(env, regs, BPF_REG_0);
5530 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
5531 regs[BPF_REG_0].mem_size = meta.mem_size;
5532 } else if (base_type(ret_type) == RET_PTR_TO_MEM_OR_BTF_ID) {
5533 const struct btf_type *t;
5534
5535 mark_reg_known_zero(env, regs, BPF_REG_0);
5536 t = btf_type_skip_modifiers(btf_vmlinux, meta.ret_btf_id, NULL);
5537 if (!btf_type_is_struct(t)) {
5538 u32 tsize;
5539 const struct btf_type *ret;
5540 const char *tname;
5541
5542 /* resolve the type size of ksym. */
5543 ret = btf_resolve_size(btf_vmlinux, t, &tsize);
5544 if (IS_ERR(ret)) {
5545 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
5546 verbose(env, "unable to resolve the size of type '%s': %ld\n",
5547 tname, PTR_ERR(ret));
5548 return -EINVAL;
5549 }
5550 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
5551 regs[BPF_REG_0].mem_size = tsize;
5552 } else {
5553 /* MEM_RDONLY may be carried from ret_flag, but it
5554 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
5555 * it will confuse the check of PTR_TO_BTF_ID in
5556 * check_mem_access().
5557 */
5558 ret_flag &= ~MEM_RDONLY;
5559
5560 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
5561 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
5562 }
5563 } else if (base_type(ret_type) == RET_PTR_TO_BTF_ID) {
5564 int ret_btf_id;
5565
5566 mark_reg_known_zero(env, regs, BPF_REG_0);
5567 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
5568 ret_btf_id = *fn->ret_btf_id;
5569 if (ret_btf_id == 0) {
5570 verbose(env, "invalid return type %u of func %s#%d\n",
5571 base_type(ret_type), func_id_name(func_id),
5572 func_id);
5573 return -EINVAL;
5574 }
5575 regs[BPF_REG_0].btf_id = ret_btf_id;
5576 } else {
5577 verbose(env, "unknown return type %u of func %s#%d\n",
5578 base_type(ret_type), func_id_name(func_id), func_id);
5579 return -EINVAL;
5580 }
5581
5582 if (type_may_be_null(regs[BPF_REG_0].type))
5583 regs[BPF_REG_0].id = ++env->id_gen;
5584
5585 if (is_ptr_cast_function(func_id)) {
5586 /* For release_reference() */
5587 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
5588 } else if (is_acquire_function(func_id, meta.map_ptr)) {
5589 int id = acquire_reference_state(env, insn_idx);
5590
5591 if (id < 0)
5592 return id;
5593 /* For mark_ptr_or_null_reg() */
5594 regs[BPF_REG_0].id = id;
5595 /* For release_reference() */
5596 regs[BPF_REG_0].ref_obj_id = id;
5597 }
5598
5599 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
5600
5601 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
5602 if (err)
5603 return err;
5604
5605 if ((func_id == BPF_FUNC_get_stack ||
5606 func_id == BPF_FUNC_get_task_stack) &&
5607 !env->prog->has_callchain_buf) {
5608 const char *err_str;
5609
5610 #ifdef CONFIG_PERF_EVENTS
5611 err = get_callchain_buffers(sysctl_perf_event_max_stack);
5612 err_str = "cannot get callchain buffer for func %s#%d\n";
5613 #else
5614 err = -ENOTSUPP;
5615 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
5616 #endif
5617 if (err) {
5618 verbose(env, err_str, func_id_name(func_id), func_id);
5619 return err;
5620 }
5621
5622 env->prog->has_callchain_buf = true;
5623 }
5624
5625 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
5626 env->prog->call_get_stack = true;
5627
5628 if (changes_data)
5629 clear_all_pkt_pointers(env);
5630 return 0;
5631 }
5632
signed_add_overflows(s64 a,s64 b)5633 static bool signed_add_overflows(s64 a, s64 b)
5634 {
5635 /* Do the add in u64, where overflow is well-defined */
5636 s64 res = (s64)((u64)a + (u64)b);
5637
5638 if (b < 0)
5639 return res > a;
5640 return res < a;
5641 }
5642
signed_add32_overflows(s32 a,s32 b)5643 static bool signed_add32_overflows(s32 a, s32 b)
5644 {
5645 /* Do the add in u32, where overflow is well-defined */
5646 s32 res = (s32)((u32)a + (u32)b);
5647
5648 if (b < 0)
5649 return res > a;
5650 return res < a;
5651 }
5652
signed_sub_overflows(s64 a,s64 b)5653 static bool signed_sub_overflows(s64 a, s64 b)
5654 {
5655 /* Do the sub in u64, where overflow is well-defined */
5656 s64 res = (s64)((u64)a - (u64)b);
5657
5658 if (b < 0)
5659 return res < a;
5660 return res > a;
5661 }
5662
signed_sub32_overflows(s32 a,s32 b)5663 static bool signed_sub32_overflows(s32 a, s32 b)
5664 {
5665 /* Do the sub in u32, where overflow is well-defined */
5666 s32 res = (s32)((u32)a - (u32)b);
5667
5668 if (b < 0)
5669 return res < a;
5670 return res > a;
5671 }
5672
check_reg_sane_offset(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,enum bpf_reg_type type)5673 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
5674 const struct bpf_reg_state *reg,
5675 enum bpf_reg_type type)
5676 {
5677 bool known = tnum_is_const(reg->var_off);
5678 s64 val = reg->var_off.value;
5679 s64 smin = reg->smin_value;
5680
5681 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
5682 verbose(env, "math between %s pointer and %lld is not allowed\n",
5683 reg_type_str(env, type), val);
5684 return false;
5685 }
5686
5687 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
5688 verbose(env, "%s pointer offset %d is not allowed\n",
5689 reg_type_str(env, type), reg->off);
5690 return false;
5691 }
5692
5693 if (smin == S64_MIN) {
5694 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
5695 reg_type_str(env, type));
5696 return false;
5697 }
5698
5699 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
5700 verbose(env, "value %lld makes %s pointer be out of bounds\n",
5701 smin, reg_type_str(env, type));
5702 return false;
5703 }
5704
5705 return true;
5706 }
5707
cur_aux(struct bpf_verifier_env * env)5708 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
5709 {
5710 return &env->insn_aux_data[env->insn_idx];
5711 }
5712
5713 enum {
5714 REASON_BOUNDS = -1,
5715 REASON_TYPE = -2,
5716 REASON_PATHS = -3,
5717 REASON_LIMIT = -4,
5718 REASON_STACK = -5,
5719 };
5720
retrieve_ptr_limit(const struct bpf_reg_state * ptr_reg,u32 * alu_limit,bool mask_to_left)5721 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
5722 u32 *alu_limit, bool mask_to_left)
5723 {
5724 u32 max = 0, ptr_limit = 0;
5725
5726 switch (ptr_reg->type) {
5727 case PTR_TO_STACK:
5728 /* Offset 0 is out-of-bounds, but acceptable start for the
5729 * left direction, see BPF_REG_FP. Also, unknown scalar
5730 * offset where we would need to deal with min/max bounds is
5731 * currently prohibited for unprivileged.
5732 */
5733 max = MAX_BPF_STACK + mask_to_left;
5734 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
5735 break;
5736 case PTR_TO_MAP_VALUE:
5737 max = ptr_reg->map_ptr->value_size;
5738 ptr_limit = (mask_to_left ?
5739 ptr_reg->smin_value :
5740 ptr_reg->umax_value) + ptr_reg->off;
5741 break;
5742 default:
5743 return REASON_TYPE;
5744 }
5745
5746 if (ptr_limit >= max)
5747 return REASON_LIMIT;
5748 *alu_limit = ptr_limit;
5749 return 0;
5750 }
5751
can_skip_alu_sanitation(const struct bpf_verifier_env * env,const struct bpf_insn * insn)5752 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
5753 const struct bpf_insn *insn)
5754 {
5755 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
5756 }
5757
update_alu_sanitation_state(struct bpf_insn_aux_data * aux,u32 alu_state,u32 alu_limit)5758 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
5759 u32 alu_state, u32 alu_limit)
5760 {
5761 /* If we arrived here from different branches with different
5762 * state or limits to sanitize, then this won't work.
5763 */
5764 if (aux->alu_state &&
5765 (aux->alu_state != alu_state ||
5766 aux->alu_limit != alu_limit))
5767 return REASON_PATHS;
5768
5769 /* Corresponding fixup done in fixup_bpf_calls(). */
5770 aux->alu_state = alu_state;
5771 aux->alu_limit = alu_limit;
5772 return 0;
5773 }
5774
sanitize_val_alu(struct bpf_verifier_env * env,struct bpf_insn * insn)5775 static int sanitize_val_alu(struct bpf_verifier_env *env,
5776 struct bpf_insn *insn)
5777 {
5778 struct bpf_insn_aux_data *aux = cur_aux(env);
5779
5780 if (can_skip_alu_sanitation(env, insn))
5781 return 0;
5782
5783 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
5784 }
5785
sanitize_needed(u8 opcode)5786 static bool sanitize_needed(u8 opcode)
5787 {
5788 return opcode == BPF_ADD || opcode == BPF_SUB;
5789 }
5790
5791 struct bpf_sanitize_info {
5792 struct bpf_insn_aux_data aux;
5793 bool mask_to_left;
5794 };
5795
5796 static struct bpf_verifier_state *
sanitize_speculative_path(struct bpf_verifier_env * env,const struct bpf_insn * insn,u32 next_idx,u32 curr_idx)5797 sanitize_speculative_path(struct bpf_verifier_env *env,
5798 const struct bpf_insn *insn,
5799 u32 next_idx, u32 curr_idx)
5800 {
5801 struct bpf_verifier_state *branch;
5802 struct bpf_reg_state *regs;
5803
5804 branch = push_stack(env, next_idx, curr_idx, true);
5805 if (branch && insn) {
5806 regs = branch->frame[branch->curframe]->regs;
5807 if (BPF_SRC(insn->code) == BPF_K) {
5808 mark_reg_unknown(env, regs, insn->dst_reg);
5809 } else if (BPF_SRC(insn->code) == BPF_X) {
5810 mark_reg_unknown(env, regs, insn->dst_reg);
5811 mark_reg_unknown(env, regs, insn->src_reg);
5812 }
5813 }
5814 return branch;
5815 }
5816
sanitize_ptr_alu(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg,struct bpf_reg_state * dst_reg,struct bpf_sanitize_info * info,const bool commit_window)5817 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
5818 struct bpf_insn *insn,
5819 const struct bpf_reg_state *ptr_reg,
5820 const struct bpf_reg_state *off_reg,
5821 struct bpf_reg_state *dst_reg,
5822 struct bpf_sanitize_info *info,
5823 const bool commit_window)
5824 {
5825 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
5826 struct bpf_verifier_state *vstate = env->cur_state;
5827 bool off_is_imm = tnum_is_const(off_reg->var_off);
5828 bool off_is_neg = off_reg->smin_value < 0;
5829 bool ptr_is_dst_reg = ptr_reg == dst_reg;
5830 u8 opcode = BPF_OP(insn->code);
5831 u32 alu_state, alu_limit;
5832 struct bpf_reg_state tmp;
5833 bool ret;
5834 int err;
5835
5836 if (can_skip_alu_sanitation(env, insn))
5837 return 0;
5838
5839 /* We already marked aux for masking from non-speculative
5840 * paths, thus we got here in the first place. We only care
5841 * to explore bad access from here.
5842 */
5843 if (vstate->speculative)
5844 goto do_sim;
5845
5846 if (!commit_window) {
5847 if (!tnum_is_const(off_reg->var_off) &&
5848 (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
5849 return REASON_BOUNDS;
5850
5851 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
5852 (opcode == BPF_SUB && !off_is_neg);
5853 }
5854
5855 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
5856 if (err < 0)
5857 return err;
5858
5859 if (commit_window) {
5860 /* In commit phase we narrow the masking window based on
5861 * the observed pointer move after the simulated operation.
5862 */
5863 alu_state = info->aux.alu_state;
5864 alu_limit = abs(info->aux.alu_limit - alu_limit);
5865 } else {
5866 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
5867 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
5868 alu_state |= ptr_is_dst_reg ?
5869 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
5870
5871 /* Limit pruning on unknown scalars to enable deep search for
5872 * potential masking differences from other program paths.
5873 */
5874 if (!off_is_imm)
5875 env->explore_alu_limits = true;
5876 }
5877
5878 err = update_alu_sanitation_state(aux, alu_state, alu_limit);
5879 if (err < 0)
5880 return err;
5881 do_sim:
5882 /* If we're in commit phase, we're done here given we already
5883 * pushed the truncated dst_reg into the speculative verification
5884 * stack.
5885 *
5886 * Also, when register is a known constant, we rewrite register-based
5887 * operation to immediate-based, and thus do not need masking (and as
5888 * a consequence, do not need to simulate the zero-truncation either).
5889 */
5890 if (commit_window || off_is_imm)
5891 return 0;
5892
5893 /* Simulate and find potential out-of-bounds access under
5894 * speculative execution from truncation as a result of
5895 * masking when off was not within expected range. If off
5896 * sits in dst, then we temporarily need to move ptr there
5897 * to simulate dst (== 0) +/-= ptr. Needed, for example,
5898 * for cases where we use K-based arithmetic in one direction
5899 * and truncated reg-based in the other in order to explore
5900 * bad access.
5901 */
5902 if (!ptr_is_dst_reg) {
5903 tmp = *dst_reg;
5904 *dst_reg = *ptr_reg;
5905 }
5906 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
5907 env->insn_idx);
5908 if (!ptr_is_dst_reg && ret)
5909 *dst_reg = tmp;
5910 return !ret ? REASON_STACK : 0;
5911 }
5912
sanitize_mark_insn_seen(struct bpf_verifier_env * env)5913 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
5914 {
5915 struct bpf_verifier_state *vstate = env->cur_state;
5916
5917 /* If we simulate paths under speculation, we don't update the
5918 * insn as 'seen' such that when we verify unreachable paths in
5919 * the non-speculative domain, sanitize_dead_code() can still
5920 * rewrite/sanitize them.
5921 */
5922 if (!vstate->speculative)
5923 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
5924 }
5925
sanitize_err(struct bpf_verifier_env * env,const struct bpf_insn * insn,int reason,const struct bpf_reg_state * off_reg,const struct bpf_reg_state * dst_reg)5926 static int sanitize_err(struct bpf_verifier_env *env,
5927 const struct bpf_insn *insn, int reason,
5928 const struct bpf_reg_state *off_reg,
5929 const struct bpf_reg_state *dst_reg)
5930 {
5931 static const char *err = "pointer arithmetic with it prohibited for !root";
5932 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
5933 u32 dst = insn->dst_reg, src = insn->src_reg;
5934
5935 switch (reason) {
5936 case REASON_BOUNDS:
5937 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
5938 off_reg == dst_reg ? dst : src, err);
5939 break;
5940 case REASON_TYPE:
5941 verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
5942 off_reg == dst_reg ? src : dst, err);
5943 break;
5944 case REASON_PATHS:
5945 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
5946 dst, op, err);
5947 break;
5948 case REASON_LIMIT:
5949 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
5950 dst, op, err);
5951 break;
5952 case REASON_STACK:
5953 verbose(env, "R%d could not be pushed for speculative verification, %s\n",
5954 dst, err);
5955 break;
5956 default:
5957 verbose(env, "verifier internal error: unknown reason (%d)\n",
5958 reason);
5959 break;
5960 }
5961
5962 return -EACCES;
5963 }
5964
5965 /* check that stack access falls within stack limits and that 'reg' doesn't
5966 * have a variable offset.
5967 *
5968 * Variable offset is prohibited for unprivileged mode for simplicity since it
5969 * requires corresponding support in Spectre masking for stack ALU. See also
5970 * retrieve_ptr_limit().
5971 *
5972 *
5973 * 'off' includes 'reg->off'.
5974 */
check_stack_access_for_ptr_arithmetic(struct bpf_verifier_env * env,int regno,const struct bpf_reg_state * reg,int off)5975 static int check_stack_access_for_ptr_arithmetic(
5976 struct bpf_verifier_env *env,
5977 int regno,
5978 const struct bpf_reg_state *reg,
5979 int off)
5980 {
5981 if (!tnum_is_const(reg->var_off)) {
5982 char tn_buf[48];
5983
5984 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5985 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
5986 regno, tn_buf, off);
5987 return -EACCES;
5988 }
5989
5990 if (off >= 0 || off < -MAX_BPF_STACK) {
5991 verbose(env, "R%d stack pointer arithmetic goes out of range, "
5992 "prohibited for !root; off=%d\n", regno, off);
5993 return -EACCES;
5994 }
5995
5996 return 0;
5997 }
5998
sanitize_check_bounds(struct bpf_verifier_env * env,const struct bpf_insn * insn,const struct bpf_reg_state * dst_reg)5999 static int sanitize_check_bounds(struct bpf_verifier_env *env,
6000 const struct bpf_insn *insn,
6001 const struct bpf_reg_state *dst_reg)
6002 {
6003 u32 dst = insn->dst_reg;
6004
6005 /* For unprivileged we require that resulting offset must be in bounds
6006 * in order to be able to sanitize access later on.
6007 */
6008 if (env->bypass_spec_v1)
6009 return 0;
6010
6011 switch (dst_reg->type) {
6012 case PTR_TO_STACK:
6013 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
6014 dst_reg->off + dst_reg->var_off.value))
6015 return -EACCES;
6016 break;
6017 case PTR_TO_MAP_VALUE:
6018 if (check_map_access(env, dst, dst_reg->off, 1, false)) {
6019 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
6020 "prohibited for !root\n", dst);
6021 return -EACCES;
6022 }
6023 break;
6024 default:
6025 break;
6026 }
6027
6028 return 0;
6029 }
6030
6031 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
6032 * Caller should also handle BPF_MOV case separately.
6033 * If we return -EACCES, caller may want to try again treating pointer as a
6034 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
6035 */
adjust_ptr_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg)6036 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
6037 struct bpf_insn *insn,
6038 const struct bpf_reg_state *ptr_reg,
6039 const struct bpf_reg_state *off_reg)
6040 {
6041 struct bpf_verifier_state *vstate = env->cur_state;
6042 struct bpf_func_state *state = vstate->frame[vstate->curframe];
6043 struct bpf_reg_state *regs = state->regs, *dst_reg;
6044 bool known = tnum_is_const(off_reg->var_off);
6045 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
6046 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
6047 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
6048 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
6049 struct bpf_sanitize_info info = {};
6050 u8 opcode = BPF_OP(insn->code);
6051 u32 dst = insn->dst_reg;
6052 int ret;
6053
6054 dst_reg = ®s[dst];
6055
6056 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
6057 smin_val > smax_val || umin_val > umax_val) {
6058 /* Taint dst register if offset had invalid bounds derived from
6059 * e.g. dead branches.
6060 */
6061 __mark_reg_unknown(env, dst_reg);
6062 return 0;
6063 }
6064
6065 if (BPF_CLASS(insn->code) != BPF_ALU64) {
6066 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
6067 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
6068 __mark_reg_unknown(env, dst_reg);
6069 return 0;
6070 }
6071
6072 verbose(env,
6073 "R%d 32-bit pointer arithmetic prohibited\n",
6074 dst);
6075 return -EACCES;
6076 }
6077
6078 if (ptr_reg->type & PTR_MAYBE_NULL) {
6079 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
6080 dst, reg_type_str(env, ptr_reg->type));
6081 return -EACCES;
6082 }
6083
6084 switch (base_type(ptr_reg->type)) {
6085 case CONST_PTR_TO_MAP:
6086 /* smin_val represents the known value */
6087 if (known && smin_val == 0 && opcode == BPF_ADD)
6088 break;
6089 fallthrough;
6090 case PTR_TO_PACKET_END:
6091 case PTR_TO_SOCKET:
6092 case PTR_TO_SOCK_COMMON:
6093 case PTR_TO_TCP_SOCK:
6094 case PTR_TO_XDP_SOCK:
6095 reject:
6096 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
6097 dst, reg_type_str(env, ptr_reg->type));
6098 return -EACCES;
6099 default:
6100 if (type_may_be_null(ptr_reg->type))
6101 goto reject;
6102 break;
6103 }
6104
6105 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
6106 * The id may be overwritten later if we create a new variable offset.
6107 */
6108 dst_reg->type = ptr_reg->type;
6109 dst_reg->id = ptr_reg->id;
6110
6111 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
6112 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
6113 return -EINVAL;
6114
6115 /* pointer types do not carry 32-bit bounds at the moment. */
6116 __mark_reg32_unbounded(dst_reg);
6117
6118 if (sanitize_needed(opcode)) {
6119 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
6120 &info, false);
6121 if (ret < 0)
6122 return sanitize_err(env, insn, ret, off_reg, dst_reg);
6123 }
6124
6125 switch (opcode) {
6126 case BPF_ADD:
6127 /* We can take a fixed offset as long as it doesn't overflow
6128 * the s32 'off' field
6129 */
6130 if (known && (ptr_reg->off + smin_val ==
6131 (s64)(s32)(ptr_reg->off + smin_val))) {
6132 /* pointer += K. Accumulate it into fixed offset */
6133 dst_reg->smin_value = smin_ptr;
6134 dst_reg->smax_value = smax_ptr;
6135 dst_reg->umin_value = umin_ptr;
6136 dst_reg->umax_value = umax_ptr;
6137 dst_reg->var_off = ptr_reg->var_off;
6138 dst_reg->off = ptr_reg->off + smin_val;
6139 dst_reg->raw = ptr_reg->raw;
6140 break;
6141 }
6142 /* A new variable offset is created. Note that off_reg->off
6143 * == 0, since it's a scalar.
6144 * dst_reg gets the pointer type and since some positive
6145 * integer value was added to the pointer, give it a new 'id'
6146 * if it's a PTR_TO_PACKET.
6147 * this creates a new 'base' pointer, off_reg (variable) gets
6148 * added into the variable offset, and we copy the fixed offset
6149 * from ptr_reg.
6150 */
6151 if (signed_add_overflows(smin_ptr, smin_val) ||
6152 signed_add_overflows(smax_ptr, smax_val)) {
6153 dst_reg->smin_value = S64_MIN;
6154 dst_reg->smax_value = S64_MAX;
6155 } else {
6156 dst_reg->smin_value = smin_ptr + smin_val;
6157 dst_reg->smax_value = smax_ptr + smax_val;
6158 }
6159 if (umin_ptr + umin_val < umin_ptr ||
6160 umax_ptr + umax_val < umax_ptr) {
6161 dst_reg->umin_value = 0;
6162 dst_reg->umax_value = U64_MAX;
6163 } else {
6164 dst_reg->umin_value = umin_ptr + umin_val;
6165 dst_reg->umax_value = umax_ptr + umax_val;
6166 }
6167 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
6168 dst_reg->off = ptr_reg->off;
6169 dst_reg->raw = ptr_reg->raw;
6170 if (reg_is_pkt_pointer(ptr_reg)) {
6171 dst_reg->id = ++env->id_gen;
6172 /* something was added to pkt_ptr, set range to zero */
6173 dst_reg->raw = 0;
6174 }
6175 break;
6176 case BPF_SUB:
6177 if (dst_reg == off_reg) {
6178 /* scalar -= pointer. Creates an unknown scalar */
6179 verbose(env, "R%d tried to subtract pointer from scalar\n",
6180 dst);
6181 return -EACCES;
6182 }
6183 /* We don't allow subtraction from FP, because (according to
6184 * test_verifier.c test "invalid fp arithmetic", JITs might not
6185 * be able to deal with it.
6186 */
6187 if (ptr_reg->type == PTR_TO_STACK) {
6188 verbose(env, "R%d subtraction from stack pointer prohibited\n",
6189 dst);
6190 return -EACCES;
6191 }
6192 if (known && (ptr_reg->off - smin_val ==
6193 (s64)(s32)(ptr_reg->off - smin_val))) {
6194 /* pointer -= K. Subtract it from fixed offset */
6195 dst_reg->smin_value = smin_ptr;
6196 dst_reg->smax_value = smax_ptr;
6197 dst_reg->umin_value = umin_ptr;
6198 dst_reg->umax_value = umax_ptr;
6199 dst_reg->var_off = ptr_reg->var_off;
6200 dst_reg->id = ptr_reg->id;
6201 dst_reg->off = ptr_reg->off - smin_val;
6202 dst_reg->raw = ptr_reg->raw;
6203 break;
6204 }
6205 /* A new variable offset is created. If the subtrahend is known
6206 * nonnegative, then any reg->range we had before is still good.
6207 */
6208 if (signed_sub_overflows(smin_ptr, smax_val) ||
6209 signed_sub_overflows(smax_ptr, smin_val)) {
6210 /* Overflow possible, we know nothing */
6211 dst_reg->smin_value = S64_MIN;
6212 dst_reg->smax_value = S64_MAX;
6213 } else {
6214 dst_reg->smin_value = smin_ptr - smax_val;
6215 dst_reg->smax_value = smax_ptr - smin_val;
6216 }
6217 if (umin_ptr < umax_val) {
6218 /* Overflow possible, we know nothing */
6219 dst_reg->umin_value = 0;
6220 dst_reg->umax_value = U64_MAX;
6221 } else {
6222 /* Cannot overflow (as long as bounds are consistent) */
6223 dst_reg->umin_value = umin_ptr - umax_val;
6224 dst_reg->umax_value = umax_ptr - umin_val;
6225 }
6226 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
6227 dst_reg->off = ptr_reg->off;
6228 dst_reg->raw = ptr_reg->raw;
6229 if (reg_is_pkt_pointer(ptr_reg)) {
6230 dst_reg->id = ++env->id_gen;
6231 /* something was added to pkt_ptr, set range to zero */
6232 if (smin_val < 0)
6233 dst_reg->raw = 0;
6234 }
6235 break;
6236 case BPF_AND:
6237 case BPF_OR:
6238 case BPF_XOR:
6239 /* bitwise ops on pointers are troublesome, prohibit. */
6240 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
6241 dst, bpf_alu_string[opcode >> 4]);
6242 return -EACCES;
6243 default:
6244 /* other operators (e.g. MUL,LSH) produce non-pointer results */
6245 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
6246 dst, bpf_alu_string[opcode >> 4]);
6247 return -EACCES;
6248 }
6249
6250 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
6251 return -EINVAL;
6252
6253 __update_reg_bounds(dst_reg);
6254 __reg_deduce_bounds(dst_reg);
6255 __reg_bound_offset(dst_reg);
6256
6257 if (sanitize_check_bounds(env, insn, dst_reg) < 0)
6258 return -EACCES;
6259 if (sanitize_needed(opcode)) {
6260 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
6261 &info, true);
6262 if (ret < 0)
6263 return sanitize_err(env, insn, ret, off_reg, dst_reg);
6264 }
6265
6266 return 0;
6267 }
6268
scalar32_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6269 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
6270 struct bpf_reg_state *src_reg)
6271 {
6272 s32 smin_val = src_reg->s32_min_value;
6273 s32 smax_val = src_reg->s32_max_value;
6274 u32 umin_val = src_reg->u32_min_value;
6275 u32 umax_val = src_reg->u32_max_value;
6276
6277 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
6278 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
6279 dst_reg->s32_min_value = S32_MIN;
6280 dst_reg->s32_max_value = S32_MAX;
6281 } else {
6282 dst_reg->s32_min_value += smin_val;
6283 dst_reg->s32_max_value += smax_val;
6284 }
6285 if (dst_reg->u32_min_value + umin_val < umin_val ||
6286 dst_reg->u32_max_value + umax_val < umax_val) {
6287 dst_reg->u32_min_value = 0;
6288 dst_reg->u32_max_value = U32_MAX;
6289 } else {
6290 dst_reg->u32_min_value += umin_val;
6291 dst_reg->u32_max_value += umax_val;
6292 }
6293 }
6294
scalar_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6295 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
6296 struct bpf_reg_state *src_reg)
6297 {
6298 s64 smin_val = src_reg->smin_value;
6299 s64 smax_val = src_reg->smax_value;
6300 u64 umin_val = src_reg->umin_value;
6301 u64 umax_val = src_reg->umax_value;
6302
6303 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
6304 signed_add_overflows(dst_reg->smax_value, smax_val)) {
6305 dst_reg->smin_value = S64_MIN;
6306 dst_reg->smax_value = S64_MAX;
6307 } else {
6308 dst_reg->smin_value += smin_val;
6309 dst_reg->smax_value += smax_val;
6310 }
6311 if (dst_reg->umin_value + umin_val < umin_val ||
6312 dst_reg->umax_value + umax_val < umax_val) {
6313 dst_reg->umin_value = 0;
6314 dst_reg->umax_value = U64_MAX;
6315 } else {
6316 dst_reg->umin_value += umin_val;
6317 dst_reg->umax_value += umax_val;
6318 }
6319 }
6320
scalar32_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6321 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
6322 struct bpf_reg_state *src_reg)
6323 {
6324 s32 smin_val = src_reg->s32_min_value;
6325 s32 smax_val = src_reg->s32_max_value;
6326 u32 umin_val = src_reg->u32_min_value;
6327 u32 umax_val = src_reg->u32_max_value;
6328
6329 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
6330 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
6331 /* Overflow possible, we know nothing */
6332 dst_reg->s32_min_value = S32_MIN;
6333 dst_reg->s32_max_value = S32_MAX;
6334 } else {
6335 dst_reg->s32_min_value -= smax_val;
6336 dst_reg->s32_max_value -= smin_val;
6337 }
6338 if (dst_reg->u32_min_value < umax_val) {
6339 /* Overflow possible, we know nothing */
6340 dst_reg->u32_min_value = 0;
6341 dst_reg->u32_max_value = U32_MAX;
6342 } else {
6343 /* Cannot overflow (as long as bounds are consistent) */
6344 dst_reg->u32_min_value -= umax_val;
6345 dst_reg->u32_max_value -= umin_val;
6346 }
6347 }
6348
scalar_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6349 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
6350 struct bpf_reg_state *src_reg)
6351 {
6352 s64 smin_val = src_reg->smin_value;
6353 s64 smax_val = src_reg->smax_value;
6354 u64 umin_val = src_reg->umin_value;
6355 u64 umax_val = src_reg->umax_value;
6356
6357 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
6358 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
6359 /* Overflow possible, we know nothing */
6360 dst_reg->smin_value = S64_MIN;
6361 dst_reg->smax_value = S64_MAX;
6362 } else {
6363 dst_reg->smin_value -= smax_val;
6364 dst_reg->smax_value -= smin_val;
6365 }
6366 if (dst_reg->umin_value < umax_val) {
6367 /* Overflow possible, we know nothing */
6368 dst_reg->umin_value = 0;
6369 dst_reg->umax_value = U64_MAX;
6370 } else {
6371 /* Cannot overflow (as long as bounds are consistent) */
6372 dst_reg->umin_value -= umax_val;
6373 dst_reg->umax_value -= umin_val;
6374 }
6375 }
6376
scalar32_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6377 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
6378 struct bpf_reg_state *src_reg)
6379 {
6380 s32 smin_val = src_reg->s32_min_value;
6381 u32 umin_val = src_reg->u32_min_value;
6382 u32 umax_val = src_reg->u32_max_value;
6383
6384 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
6385 /* Ain't nobody got time to multiply that sign */
6386 __mark_reg32_unbounded(dst_reg);
6387 return;
6388 }
6389 /* Both values are positive, so we can work with unsigned and
6390 * copy the result to signed (unless it exceeds S32_MAX).
6391 */
6392 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
6393 /* Potential overflow, we know nothing */
6394 __mark_reg32_unbounded(dst_reg);
6395 return;
6396 }
6397 dst_reg->u32_min_value *= umin_val;
6398 dst_reg->u32_max_value *= umax_val;
6399 if (dst_reg->u32_max_value > S32_MAX) {
6400 /* Overflow possible, we know nothing */
6401 dst_reg->s32_min_value = S32_MIN;
6402 dst_reg->s32_max_value = S32_MAX;
6403 } else {
6404 dst_reg->s32_min_value = dst_reg->u32_min_value;
6405 dst_reg->s32_max_value = dst_reg->u32_max_value;
6406 }
6407 }
6408
scalar_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6409 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
6410 struct bpf_reg_state *src_reg)
6411 {
6412 s64 smin_val = src_reg->smin_value;
6413 u64 umin_val = src_reg->umin_value;
6414 u64 umax_val = src_reg->umax_value;
6415
6416 if (smin_val < 0 || dst_reg->smin_value < 0) {
6417 /* Ain't nobody got time to multiply that sign */
6418 __mark_reg64_unbounded(dst_reg);
6419 return;
6420 }
6421 /* Both values are positive, so we can work with unsigned and
6422 * copy the result to signed (unless it exceeds S64_MAX).
6423 */
6424 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
6425 /* Potential overflow, we know nothing */
6426 __mark_reg64_unbounded(dst_reg);
6427 return;
6428 }
6429 dst_reg->umin_value *= umin_val;
6430 dst_reg->umax_value *= umax_val;
6431 if (dst_reg->umax_value > S64_MAX) {
6432 /* Overflow possible, we know nothing */
6433 dst_reg->smin_value = S64_MIN;
6434 dst_reg->smax_value = S64_MAX;
6435 } else {
6436 dst_reg->smin_value = dst_reg->umin_value;
6437 dst_reg->smax_value = dst_reg->umax_value;
6438 }
6439 }
6440
scalar32_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6441 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
6442 struct bpf_reg_state *src_reg)
6443 {
6444 bool src_known = tnum_subreg_is_const(src_reg->var_off);
6445 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6446 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6447 s32 smin_val = src_reg->s32_min_value;
6448 u32 umax_val = src_reg->u32_max_value;
6449
6450 if (src_known && dst_known) {
6451 __mark_reg32_known(dst_reg, var32_off.value);
6452 return;
6453 }
6454
6455 /* We get our minimum from the var_off, since that's inherently
6456 * bitwise. Our maximum is the minimum of the operands' maxima.
6457 */
6458 dst_reg->u32_min_value = var32_off.value;
6459 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
6460 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
6461 /* Lose signed bounds when ANDing negative numbers,
6462 * ain't nobody got time for that.
6463 */
6464 dst_reg->s32_min_value = S32_MIN;
6465 dst_reg->s32_max_value = S32_MAX;
6466 } else {
6467 /* ANDing two positives gives a positive, so safe to
6468 * cast result into s64.
6469 */
6470 dst_reg->s32_min_value = dst_reg->u32_min_value;
6471 dst_reg->s32_max_value = dst_reg->u32_max_value;
6472 }
6473 }
6474
scalar_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6475 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
6476 struct bpf_reg_state *src_reg)
6477 {
6478 bool src_known = tnum_is_const(src_reg->var_off);
6479 bool dst_known = tnum_is_const(dst_reg->var_off);
6480 s64 smin_val = src_reg->smin_value;
6481 u64 umax_val = src_reg->umax_value;
6482
6483 if (src_known && dst_known) {
6484 __mark_reg_known(dst_reg, dst_reg->var_off.value);
6485 return;
6486 }
6487
6488 /* We get our minimum from the var_off, since that's inherently
6489 * bitwise. Our maximum is the minimum of the operands' maxima.
6490 */
6491 dst_reg->umin_value = dst_reg->var_off.value;
6492 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
6493 if (dst_reg->smin_value < 0 || smin_val < 0) {
6494 /* Lose signed bounds when ANDing negative numbers,
6495 * ain't nobody got time for that.
6496 */
6497 dst_reg->smin_value = S64_MIN;
6498 dst_reg->smax_value = S64_MAX;
6499 } else {
6500 /* ANDing two positives gives a positive, so safe to
6501 * cast result into s64.
6502 */
6503 dst_reg->smin_value = dst_reg->umin_value;
6504 dst_reg->smax_value = dst_reg->umax_value;
6505 }
6506 /* We may learn something more from the var_off */
6507 __update_reg_bounds(dst_reg);
6508 }
6509
scalar32_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6510 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
6511 struct bpf_reg_state *src_reg)
6512 {
6513 bool src_known = tnum_subreg_is_const(src_reg->var_off);
6514 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6515 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6516 s32 smin_val = src_reg->s32_min_value;
6517 u32 umin_val = src_reg->u32_min_value;
6518
6519 if (src_known && dst_known) {
6520 __mark_reg32_known(dst_reg, var32_off.value);
6521 return;
6522 }
6523
6524 /* We get our maximum from the var_off, and our minimum is the
6525 * maximum of the operands' minima
6526 */
6527 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
6528 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6529 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
6530 /* Lose signed bounds when ORing negative numbers,
6531 * ain't nobody got time for that.
6532 */
6533 dst_reg->s32_min_value = S32_MIN;
6534 dst_reg->s32_max_value = S32_MAX;
6535 } else {
6536 /* ORing two positives gives a positive, so safe to
6537 * cast result into s64.
6538 */
6539 dst_reg->s32_min_value = dst_reg->u32_min_value;
6540 dst_reg->s32_max_value = dst_reg->u32_max_value;
6541 }
6542 }
6543
scalar_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6544 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
6545 struct bpf_reg_state *src_reg)
6546 {
6547 bool src_known = tnum_is_const(src_reg->var_off);
6548 bool dst_known = tnum_is_const(dst_reg->var_off);
6549 s64 smin_val = src_reg->smin_value;
6550 u64 umin_val = src_reg->umin_value;
6551
6552 if (src_known && dst_known) {
6553 __mark_reg_known(dst_reg, dst_reg->var_off.value);
6554 return;
6555 }
6556
6557 /* We get our maximum from the var_off, and our minimum is the
6558 * maximum of the operands' minima
6559 */
6560 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
6561 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6562 if (dst_reg->smin_value < 0 || smin_val < 0) {
6563 /* Lose signed bounds when ORing negative numbers,
6564 * ain't nobody got time for that.
6565 */
6566 dst_reg->smin_value = S64_MIN;
6567 dst_reg->smax_value = S64_MAX;
6568 } else {
6569 /* ORing two positives gives a positive, so safe to
6570 * cast result into s64.
6571 */
6572 dst_reg->smin_value = dst_reg->umin_value;
6573 dst_reg->smax_value = dst_reg->umax_value;
6574 }
6575 /* We may learn something more from the var_off */
6576 __update_reg_bounds(dst_reg);
6577 }
6578
scalar32_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6579 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
6580 struct bpf_reg_state *src_reg)
6581 {
6582 bool src_known = tnum_subreg_is_const(src_reg->var_off);
6583 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6584 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6585 s32 smin_val = src_reg->s32_min_value;
6586
6587 if (src_known && dst_known) {
6588 __mark_reg32_known(dst_reg, var32_off.value);
6589 return;
6590 }
6591
6592 /* We get both minimum and maximum from the var32_off. */
6593 dst_reg->u32_min_value = var32_off.value;
6594 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6595
6596 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
6597 /* XORing two positive sign numbers gives a positive,
6598 * so safe to cast u32 result into s32.
6599 */
6600 dst_reg->s32_min_value = dst_reg->u32_min_value;
6601 dst_reg->s32_max_value = dst_reg->u32_max_value;
6602 } else {
6603 dst_reg->s32_min_value = S32_MIN;
6604 dst_reg->s32_max_value = S32_MAX;
6605 }
6606 }
6607
scalar_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6608 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
6609 struct bpf_reg_state *src_reg)
6610 {
6611 bool src_known = tnum_is_const(src_reg->var_off);
6612 bool dst_known = tnum_is_const(dst_reg->var_off);
6613 s64 smin_val = src_reg->smin_value;
6614
6615 if (src_known && dst_known) {
6616 /* dst_reg->var_off.value has been updated earlier */
6617 __mark_reg_known(dst_reg, dst_reg->var_off.value);
6618 return;
6619 }
6620
6621 /* We get both minimum and maximum from the var_off. */
6622 dst_reg->umin_value = dst_reg->var_off.value;
6623 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6624
6625 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
6626 /* XORing two positive sign numbers gives a positive,
6627 * so safe to cast u64 result into s64.
6628 */
6629 dst_reg->smin_value = dst_reg->umin_value;
6630 dst_reg->smax_value = dst_reg->umax_value;
6631 } else {
6632 dst_reg->smin_value = S64_MIN;
6633 dst_reg->smax_value = S64_MAX;
6634 }
6635
6636 __update_reg_bounds(dst_reg);
6637 }
6638
__scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)6639 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6640 u64 umin_val, u64 umax_val)
6641 {
6642 /* We lose all sign bit information (except what we can pick
6643 * up from var_off)
6644 */
6645 dst_reg->s32_min_value = S32_MIN;
6646 dst_reg->s32_max_value = S32_MAX;
6647 /* If we might shift our top bit out, then we know nothing */
6648 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
6649 dst_reg->u32_min_value = 0;
6650 dst_reg->u32_max_value = U32_MAX;
6651 } else {
6652 dst_reg->u32_min_value <<= umin_val;
6653 dst_reg->u32_max_value <<= umax_val;
6654 }
6655 }
6656
scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6657 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6658 struct bpf_reg_state *src_reg)
6659 {
6660 u32 umax_val = src_reg->u32_max_value;
6661 u32 umin_val = src_reg->u32_min_value;
6662 /* u32 alu operation will zext upper bits */
6663 struct tnum subreg = tnum_subreg(dst_reg->var_off);
6664
6665 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6666 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
6667 /* Not required but being careful mark reg64 bounds as unknown so
6668 * that we are forced to pick them up from tnum and zext later and
6669 * if some path skips this step we are still safe.
6670 */
6671 __mark_reg64_unbounded(dst_reg);
6672 __update_reg32_bounds(dst_reg);
6673 }
6674
__scalar64_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)6675 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
6676 u64 umin_val, u64 umax_val)
6677 {
6678 /* Special case <<32 because it is a common compiler pattern to sign
6679 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
6680 * positive we know this shift will also be positive so we can track
6681 * bounds correctly. Otherwise we lose all sign bit information except
6682 * what we can pick up from var_off. Perhaps we can generalize this
6683 * later to shifts of any length.
6684 */
6685 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
6686 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
6687 else
6688 dst_reg->smax_value = S64_MAX;
6689
6690 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
6691 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
6692 else
6693 dst_reg->smin_value = S64_MIN;
6694
6695 /* If we might shift our top bit out, then we know nothing */
6696 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
6697 dst_reg->umin_value = 0;
6698 dst_reg->umax_value = U64_MAX;
6699 } else {
6700 dst_reg->umin_value <<= umin_val;
6701 dst_reg->umax_value <<= umax_val;
6702 }
6703 }
6704
scalar_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6705 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
6706 struct bpf_reg_state *src_reg)
6707 {
6708 u64 umax_val = src_reg->umax_value;
6709 u64 umin_val = src_reg->umin_value;
6710
6711 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
6712 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
6713 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6714
6715 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
6716 /* We may learn something more from the var_off */
6717 __update_reg_bounds(dst_reg);
6718 }
6719
scalar32_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6720 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
6721 struct bpf_reg_state *src_reg)
6722 {
6723 struct tnum subreg = tnum_subreg(dst_reg->var_off);
6724 u32 umax_val = src_reg->u32_max_value;
6725 u32 umin_val = src_reg->u32_min_value;
6726
6727 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
6728 * be negative, then either:
6729 * 1) src_reg might be zero, so the sign bit of the result is
6730 * unknown, so we lose our signed bounds
6731 * 2) it's known negative, thus the unsigned bounds capture the
6732 * signed bounds
6733 * 3) the signed bounds cross zero, so they tell us nothing
6734 * about the result
6735 * If the value in dst_reg is known nonnegative, then again the
6736 * unsigned bounts capture the signed bounds.
6737 * Thus, in all cases it suffices to blow away our signed bounds
6738 * and rely on inferring new ones from the unsigned bounds and
6739 * var_off of the result.
6740 */
6741 dst_reg->s32_min_value = S32_MIN;
6742 dst_reg->s32_max_value = S32_MAX;
6743
6744 dst_reg->var_off = tnum_rshift(subreg, umin_val);
6745 dst_reg->u32_min_value >>= umax_val;
6746 dst_reg->u32_max_value >>= umin_val;
6747
6748 __mark_reg64_unbounded(dst_reg);
6749 __update_reg32_bounds(dst_reg);
6750 }
6751
scalar_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6752 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
6753 struct bpf_reg_state *src_reg)
6754 {
6755 u64 umax_val = src_reg->umax_value;
6756 u64 umin_val = src_reg->umin_value;
6757
6758 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
6759 * be negative, then either:
6760 * 1) src_reg might be zero, so the sign bit of the result is
6761 * unknown, so we lose our signed bounds
6762 * 2) it's known negative, thus the unsigned bounds capture the
6763 * signed bounds
6764 * 3) the signed bounds cross zero, so they tell us nothing
6765 * about the result
6766 * If the value in dst_reg is known nonnegative, then again the
6767 * unsigned bounts capture the signed bounds.
6768 * Thus, in all cases it suffices to blow away our signed bounds
6769 * and rely on inferring new ones from the unsigned bounds and
6770 * var_off of the result.
6771 */
6772 dst_reg->smin_value = S64_MIN;
6773 dst_reg->smax_value = S64_MAX;
6774 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
6775 dst_reg->umin_value >>= umax_val;
6776 dst_reg->umax_value >>= umin_val;
6777
6778 /* Its not easy to operate on alu32 bounds here because it depends
6779 * on bits being shifted in. Take easy way out and mark unbounded
6780 * so we can recalculate later from tnum.
6781 */
6782 __mark_reg32_unbounded(dst_reg);
6783 __update_reg_bounds(dst_reg);
6784 }
6785
scalar32_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6786 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
6787 struct bpf_reg_state *src_reg)
6788 {
6789 u64 umin_val = src_reg->u32_min_value;
6790
6791 /* Upon reaching here, src_known is true and
6792 * umax_val is equal to umin_val.
6793 */
6794 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
6795 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
6796
6797 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
6798
6799 /* blow away the dst_reg umin_value/umax_value and rely on
6800 * dst_reg var_off to refine the result.
6801 */
6802 dst_reg->u32_min_value = 0;
6803 dst_reg->u32_max_value = U32_MAX;
6804
6805 __mark_reg64_unbounded(dst_reg);
6806 __update_reg32_bounds(dst_reg);
6807 }
6808
scalar_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6809 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
6810 struct bpf_reg_state *src_reg)
6811 {
6812 u64 umin_val = src_reg->umin_value;
6813
6814 /* Upon reaching here, src_known is true and umax_val is equal
6815 * to umin_val.
6816 */
6817 dst_reg->smin_value >>= umin_val;
6818 dst_reg->smax_value >>= umin_val;
6819
6820 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
6821
6822 /* blow away the dst_reg umin_value/umax_value and rely on
6823 * dst_reg var_off to refine the result.
6824 */
6825 dst_reg->umin_value = 0;
6826 dst_reg->umax_value = U64_MAX;
6827
6828 /* Its not easy to operate on alu32 bounds here because it depends
6829 * on bits being shifted in from upper 32-bits. Take easy way out
6830 * and mark unbounded so we can recalculate later from tnum.
6831 */
6832 __mark_reg32_unbounded(dst_reg);
6833 __update_reg_bounds(dst_reg);
6834 }
6835
6836 /* WARNING: This function does calculations on 64-bit values, but the actual
6837 * execution may occur on 32-bit values. Therefore, things like bitshifts
6838 * need extra checks in the 32-bit case.
6839 */
adjust_scalar_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state src_reg)6840 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
6841 struct bpf_insn *insn,
6842 struct bpf_reg_state *dst_reg,
6843 struct bpf_reg_state src_reg)
6844 {
6845 struct bpf_reg_state *regs = cur_regs(env);
6846 u8 opcode = BPF_OP(insn->code);
6847 bool src_known;
6848 s64 smin_val, smax_val;
6849 u64 umin_val, umax_val;
6850 s32 s32_min_val, s32_max_val;
6851 u32 u32_min_val, u32_max_val;
6852 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
6853 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
6854 int ret;
6855
6856 smin_val = src_reg.smin_value;
6857 smax_val = src_reg.smax_value;
6858 umin_val = src_reg.umin_value;
6859 umax_val = src_reg.umax_value;
6860
6861 s32_min_val = src_reg.s32_min_value;
6862 s32_max_val = src_reg.s32_max_value;
6863 u32_min_val = src_reg.u32_min_value;
6864 u32_max_val = src_reg.u32_max_value;
6865
6866 if (alu32) {
6867 src_known = tnum_subreg_is_const(src_reg.var_off);
6868 if ((src_known &&
6869 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
6870 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
6871 /* Taint dst register if offset had invalid bounds
6872 * derived from e.g. dead branches.
6873 */
6874 __mark_reg_unknown(env, dst_reg);
6875 return 0;
6876 }
6877 } else {
6878 src_known = tnum_is_const(src_reg.var_off);
6879 if ((src_known &&
6880 (smin_val != smax_val || umin_val != umax_val)) ||
6881 smin_val > smax_val || umin_val > umax_val) {
6882 /* Taint dst register if offset had invalid bounds
6883 * derived from e.g. dead branches.
6884 */
6885 __mark_reg_unknown(env, dst_reg);
6886 return 0;
6887 }
6888 }
6889
6890 if (!src_known &&
6891 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
6892 __mark_reg_unknown(env, dst_reg);
6893 return 0;
6894 }
6895
6896 if (sanitize_needed(opcode)) {
6897 ret = sanitize_val_alu(env, insn);
6898 if (ret < 0)
6899 return sanitize_err(env, insn, ret, NULL, NULL);
6900 }
6901
6902 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
6903 * There are two classes of instructions: The first class we track both
6904 * alu32 and alu64 sign/unsigned bounds independently this provides the
6905 * greatest amount of precision when alu operations are mixed with jmp32
6906 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
6907 * and BPF_OR. This is possible because these ops have fairly easy to
6908 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
6909 * See alu32 verifier tests for examples. The second class of
6910 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
6911 * with regards to tracking sign/unsigned bounds because the bits may
6912 * cross subreg boundaries in the alu64 case. When this happens we mark
6913 * the reg unbounded in the subreg bound space and use the resulting
6914 * tnum to calculate an approximation of the sign/unsigned bounds.
6915 */
6916 switch (opcode) {
6917 case BPF_ADD:
6918 scalar32_min_max_add(dst_reg, &src_reg);
6919 scalar_min_max_add(dst_reg, &src_reg);
6920 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
6921 break;
6922 case BPF_SUB:
6923 scalar32_min_max_sub(dst_reg, &src_reg);
6924 scalar_min_max_sub(dst_reg, &src_reg);
6925 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
6926 break;
6927 case BPF_MUL:
6928 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
6929 scalar32_min_max_mul(dst_reg, &src_reg);
6930 scalar_min_max_mul(dst_reg, &src_reg);
6931 break;
6932 case BPF_AND:
6933 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
6934 scalar32_min_max_and(dst_reg, &src_reg);
6935 scalar_min_max_and(dst_reg, &src_reg);
6936 break;
6937 case BPF_OR:
6938 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
6939 scalar32_min_max_or(dst_reg, &src_reg);
6940 scalar_min_max_or(dst_reg, &src_reg);
6941 break;
6942 case BPF_XOR:
6943 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
6944 scalar32_min_max_xor(dst_reg, &src_reg);
6945 scalar_min_max_xor(dst_reg, &src_reg);
6946 break;
6947 case BPF_LSH:
6948 if (umax_val >= insn_bitness) {
6949 /* Shifts greater than 31 or 63 are undefined.
6950 * This includes shifts by a negative number.
6951 */
6952 mark_reg_unknown(env, regs, insn->dst_reg);
6953 break;
6954 }
6955 if (alu32)
6956 scalar32_min_max_lsh(dst_reg, &src_reg);
6957 else
6958 scalar_min_max_lsh(dst_reg, &src_reg);
6959 break;
6960 case BPF_RSH:
6961 if (umax_val >= insn_bitness) {
6962 /* Shifts greater than 31 or 63 are undefined.
6963 * This includes shifts by a negative number.
6964 */
6965 mark_reg_unknown(env, regs, insn->dst_reg);
6966 break;
6967 }
6968 if (alu32)
6969 scalar32_min_max_rsh(dst_reg, &src_reg);
6970 else
6971 scalar_min_max_rsh(dst_reg, &src_reg);
6972 break;
6973 case BPF_ARSH:
6974 if (umax_val >= insn_bitness) {
6975 /* Shifts greater than 31 or 63 are undefined.
6976 * This includes shifts by a negative number.
6977 */
6978 mark_reg_unknown(env, regs, insn->dst_reg);
6979 break;
6980 }
6981 if (alu32)
6982 scalar32_min_max_arsh(dst_reg, &src_reg);
6983 else
6984 scalar_min_max_arsh(dst_reg, &src_reg);
6985 break;
6986 default:
6987 mark_reg_unknown(env, regs, insn->dst_reg);
6988 break;
6989 }
6990
6991 /* ALU32 ops are zero extended into 64bit register */
6992 if (alu32)
6993 zext_32_to_64(dst_reg);
6994
6995 __update_reg_bounds(dst_reg);
6996 __reg_deduce_bounds(dst_reg);
6997 __reg_bound_offset(dst_reg);
6998 return 0;
6999 }
7000
7001 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
7002 * and var_off.
7003 */
adjust_reg_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn)7004 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
7005 struct bpf_insn *insn)
7006 {
7007 struct bpf_verifier_state *vstate = env->cur_state;
7008 struct bpf_func_state *state = vstate->frame[vstate->curframe];
7009 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
7010 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
7011 u8 opcode = BPF_OP(insn->code);
7012 int err;
7013
7014 dst_reg = ®s[insn->dst_reg];
7015 src_reg = NULL;
7016 if (dst_reg->type != SCALAR_VALUE)
7017 ptr_reg = dst_reg;
7018 else
7019 /* Make sure ID is cleared otherwise dst_reg min/max could be
7020 * incorrectly propagated into other registers by find_equal_scalars()
7021 */
7022 dst_reg->id = 0;
7023 if (BPF_SRC(insn->code) == BPF_X) {
7024 src_reg = ®s[insn->src_reg];
7025 if (src_reg->type != SCALAR_VALUE) {
7026 if (dst_reg->type != SCALAR_VALUE) {
7027 /* Combining two pointers by any ALU op yields
7028 * an arbitrary scalar. Disallow all math except
7029 * pointer subtraction
7030 */
7031 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
7032 mark_reg_unknown(env, regs, insn->dst_reg);
7033 return 0;
7034 }
7035 verbose(env, "R%d pointer %s pointer prohibited\n",
7036 insn->dst_reg,
7037 bpf_alu_string[opcode >> 4]);
7038 return -EACCES;
7039 } else {
7040 /* scalar += pointer
7041 * This is legal, but we have to reverse our
7042 * src/dest handling in computing the range
7043 */
7044 err = mark_chain_precision(env, insn->dst_reg);
7045 if (err)
7046 return err;
7047 return adjust_ptr_min_max_vals(env, insn,
7048 src_reg, dst_reg);
7049 }
7050 } else if (ptr_reg) {
7051 /* pointer += scalar */
7052 err = mark_chain_precision(env, insn->src_reg);
7053 if (err)
7054 return err;
7055 return adjust_ptr_min_max_vals(env, insn,
7056 dst_reg, src_reg);
7057 }
7058 } else {
7059 /* Pretend the src is a reg with a known value, since we only
7060 * need to be able to read from this state.
7061 */
7062 off_reg.type = SCALAR_VALUE;
7063 __mark_reg_known(&off_reg, insn->imm);
7064 src_reg = &off_reg;
7065 if (ptr_reg) /* pointer += K */
7066 return adjust_ptr_min_max_vals(env, insn,
7067 ptr_reg, src_reg);
7068 }
7069
7070 /* Got here implies adding two SCALAR_VALUEs */
7071 if (WARN_ON_ONCE(ptr_reg)) {
7072 print_verifier_state(env, state);
7073 verbose(env, "verifier internal error: unexpected ptr_reg\n");
7074 return -EINVAL;
7075 }
7076 if (WARN_ON(!src_reg)) {
7077 print_verifier_state(env, state);
7078 verbose(env, "verifier internal error: no src_reg\n");
7079 return -EINVAL;
7080 }
7081 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
7082 }
7083
7084 /* check validity of 32-bit and 64-bit arithmetic operations */
check_alu_op(struct bpf_verifier_env * env,struct bpf_insn * insn)7085 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
7086 {
7087 struct bpf_reg_state *regs = cur_regs(env);
7088 u8 opcode = BPF_OP(insn->code);
7089 int err;
7090
7091 if (opcode == BPF_END || opcode == BPF_NEG) {
7092 if (opcode == BPF_NEG) {
7093 if (BPF_SRC(insn->code) != 0 ||
7094 insn->src_reg != BPF_REG_0 ||
7095 insn->off != 0 || insn->imm != 0) {
7096 verbose(env, "BPF_NEG uses reserved fields\n");
7097 return -EINVAL;
7098 }
7099 } else {
7100 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
7101 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
7102 BPF_CLASS(insn->code) == BPF_ALU64) {
7103 verbose(env, "BPF_END uses reserved fields\n");
7104 return -EINVAL;
7105 }
7106 }
7107
7108 /* check src operand */
7109 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7110 if (err)
7111 return err;
7112
7113 if (is_pointer_value(env, insn->dst_reg)) {
7114 verbose(env, "R%d pointer arithmetic prohibited\n",
7115 insn->dst_reg);
7116 return -EACCES;
7117 }
7118
7119 /* check dest operand */
7120 err = check_reg_arg(env, insn->dst_reg, DST_OP);
7121 if (err)
7122 return err;
7123
7124 } else if (opcode == BPF_MOV) {
7125
7126 if (BPF_SRC(insn->code) == BPF_X) {
7127 if (insn->imm != 0 || insn->off != 0) {
7128 verbose(env, "BPF_MOV uses reserved fields\n");
7129 return -EINVAL;
7130 }
7131
7132 /* check src operand */
7133 err = check_reg_arg(env, insn->src_reg, SRC_OP);
7134 if (err)
7135 return err;
7136 } else {
7137 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7138 verbose(env, "BPF_MOV uses reserved fields\n");
7139 return -EINVAL;
7140 }
7141 }
7142
7143 /* check dest operand, mark as required later */
7144 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7145 if (err)
7146 return err;
7147
7148 if (BPF_SRC(insn->code) == BPF_X) {
7149 struct bpf_reg_state *src_reg = regs + insn->src_reg;
7150 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
7151
7152 if (BPF_CLASS(insn->code) == BPF_ALU64) {
7153 /* case: R1 = R2
7154 * copy register state to dest reg
7155 */
7156 if (src_reg->type == SCALAR_VALUE && !src_reg->id)
7157 /* Assign src and dst registers the same ID
7158 * that will be used by find_equal_scalars()
7159 * to propagate min/max range.
7160 */
7161 src_reg->id = ++env->id_gen;
7162 *dst_reg = *src_reg;
7163 dst_reg->live |= REG_LIVE_WRITTEN;
7164 dst_reg->subreg_def = DEF_NOT_SUBREG;
7165 } else {
7166 /* R1 = (u32) R2 */
7167 if (is_pointer_value(env, insn->src_reg)) {
7168 verbose(env,
7169 "R%d partial copy of pointer\n",
7170 insn->src_reg);
7171 return -EACCES;
7172 } else if (src_reg->type == SCALAR_VALUE) {
7173 *dst_reg = *src_reg;
7174 /* Make sure ID is cleared otherwise
7175 * dst_reg min/max could be incorrectly
7176 * propagated into src_reg by find_equal_scalars()
7177 */
7178 dst_reg->id = 0;
7179 dst_reg->live |= REG_LIVE_WRITTEN;
7180 dst_reg->subreg_def = env->insn_idx + 1;
7181 } else {
7182 mark_reg_unknown(env, regs,
7183 insn->dst_reg);
7184 }
7185 zext_32_to_64(dst_reg);
7186
7187 __update_reg_bounds(dst_reg);
7188 __reg_deduce_bounds(dst_reg);
7189 __reg_bound_offset(dst_reg);
7190 }
7191 } else {
7192 /* case: R = imm
7193 * remember the value we stored into this reg
7194 */
7195 /* clear any state __mark_reg_known doesn't set */
7196 mark_reg_unknown(env, regs, insn->dst_reg);
7197 regs[insn->dst_reg].type = SCALAR_VALUE;
7198 if (BPF_CLASS(insn->code) == BPF_ALU64) {
7199 __mark_reg_known(regs + insn->dst_reg,
7200 insn->imm);
7201 } else {
7202 __mark_reg_known(regs + insn->dst_reg,
7203 (u32)insn->imm);
7204 }
7205 }
7206
7207 } else if (opcode > BPF_END) {
7208 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
7209 return -EINVAL;
7210
7211 } else { /* all other ALU ops: and, sub, xor, add, ... */
7212
7213 if (BPF_SRC(insn->code) == BPF_X) {
7214 if (insn->imm != 0 || insn->off != 0) {
7215 verbose(env, "BPF_ALU uses reserved fields\n");
7216 return -EINVAL;
7217 }
7218 /* check src1 operand */
7219 err = check_reg_arg(env, insn->src_reg, SRC_OP);
7220 if (err)
7221 return err;
7222 } else {
7223 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7224 verbose(env, "BPF_ALU uses reserved fields\n");
7225 return -EINVAL;
7226 }
7227 }
7228
7229 /* check src2 operand */
7230 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7231 if (err)
7232 return err;
7233
7234 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
7235 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
7236 verbose(env, "div by zero\n");
7237 return -EINVAL;
7238 }
7239
7240 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
7241 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
7242 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
7243
7244 if (insn->imm < 0 || insn->imm >= size) {
7245 verbose(env, "invalid shift %d\n", insn->imm);
7246 return -EINVAL;
7247 }
7248 }
7249
7250 /* check dest operand */
7251 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7252 if (err)
7253 return err;
7254
7255 return adjust_reg_min_max_vals(env, insn);
7256 }
7257
7258 return 0;
7259 }
7260
__find_good_pkt_pointers(struct bpf_func_state * state,struct bpf_reg_state * dst_reg,enum bpf_reg_type type,u16 new_range)7261 static void __find_good_pkt_pointers(struct bpf_func_state *state,
7262 struct bpf_reg_state *dst_reg,
7263 enum bpf_reg_type type, u16 new_range)
7264 {
7265 struct bpf_reg_state *reg;
7266 int i;
7267
7268 for (i = 0; i < MAX_BPF_REG; i++) {
7269 reg = &state->regs[i];
7270 if (reg->type == type && reg->id == dst_reg->id)
7271 /* keep the maximum range already checked */
7272 reg->range = max(reg->range, new_range);
7273 }
7274
7275 bpf_for_each_spilled_reg(i, state, reg) {
7276 if (!reg)
7277 continue;
7278 if (reg->type == type && reg->id == dst_reg->id)
7279 reg->range = max(reg->range, new_range);
7280 }
7281 }
7282
find_good_pkt_pointers(struct bpf_verifier_state * vstate,struct bpf_reg_state * dst_reg,enum bpf_reg_type type,bool range_right_open)7283 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
7284 struct bpf_reg_state *dst_reg,
7285 enum bpf_reg_type type,
7286 bool range_right_open)
7287 {
7288 u16 new_range;
7289 int i;
7290
7291 if (dst_reg->off < 0 ||
7292 (dst_reg->off == 0 && range_right_open))
7293 /* This doesn't give us any range */
7294 return;
7295
7296 if (dst_reg->umax_value > MAX_PACKET_OFF ||
7297 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
7298 /* Risk of overflow. For instance, ptr + (1<<63) may be less
7299 * than pkt_end, but that's because it's also less than pkt.
7300 */
7301 return;
7302
7303 new_range = dst_reg->off;
7304 if (range_right_open)
7305 new_range++;
7306
7307 /* Examples for register markings:
7308 *
7309 * pkt_data in dst register:
7310 *
7311 * r2 = r3;
7312 * r2 += 8;
7313 * if (r2 > pkt_end) goto <handle exception>
7314 * <access okay>
7315 *
7316 * r2 = r3;
7317 * r2 += 8;
7318 * if (r2 < pkt_end) goto <access okay>
7319 * <handle exception>
7320 *
7321 * Where:
7322 * r2 == dst_reg, pkt_end == src_reg
7323 * r2=pkt(id=n,off=8,r=0)
7324 * r3=pkt(id=n,off=0,r=0)
7325 *
7326 * pkt_data in src register:
7327 *
7328 * r2 = r3;
7329 * r2 += 8;
7330 * if (pkt_end >= r2) goto <access okay>
7331 * <handle exception>
7332 *
7333 * r2 = r3;
7334 * r2 += 8;
7335 * if (pkt_end <= r2) goto <handle exception>
7336 * <access okay>
7337 *
7338 * Where:
7339 * pkt_end == dst_reg, r2 == src_reg
7340 * r2=pkt(id=n,off=8,r=0)
7341 * r3=pkt(id=n,off=0,r=0)
7342 *
7343 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
7344 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
7345 * and [r3, r3 + 8-1) respectively is safe to access depending on
7346 * the check.
7347 */
7348
7349 /* If our ids match, then we must have the same max_value. And we
7350 * don't care about the other reg's fixed offset, since if it's too big
7351 * the range won't allow anything.
7352 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
7353 */
7354 for (i = 0; i <= vstate->curframe; i++)
7355 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
7356 new_range);
7357 }
7358
is_branch32_taken(struct bpf_reg_state * reg,u32 val,u8 opcode)7359 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
7360 {
7361 struct tnum subreg = tnum_subreg(reg->var_off);
7362 s32 sval = (s32)val;
7363
7364 switch (opcode) {
7365 case BPF_JEQ:
7366 if (tnum_is_const(subreg))
7367 return !!tnum_equals_const(subreg, val);
7368 break;
7369 case BPF_JNE:
7370 if (tnum_is_const(subreg))
7371 return !tnum_equals_const(subreg, val);
7372 break;
7373 case BPF_JSET:
7374 if ((~subreg.mask & subreg.value) & val)
7375 return 1;
7376 if (!((subreg.mask | subreg.value) & val))
7377 return 0;
7378 break;
7379 case BPF_JGT:
7380 if (reg->u32_min_value > val)
7381 return 1;
7382 else if (reg->u32_max_value <= val)
7383 return 0;
7384 break;
7385 case BPF_JSGT:
7386 if (reg->s32_min_value > sval)
7387 return 1;
7388 else if (reg->s32_max_value <= sval)
7389 return 0;
7390 break;
7391 case BPF_JLT:
7392 if (reg->u32_max_value < val)
7393 return 1;
7394 else if (reg->u32_min_value >= val)
7395 return 0;
7396 break;
7397 case BPF_JSLT:
7398 if (reg->s32_max_value < sval)
7399 return 1;
7400 else if (reg->s32_min_value >= sval)
7401 return 0;
7402 break;
7403 case BPF_JGE:
7404 if (reg->u32_min_value >= val)
7405 return 1;
7406 else if (reg->u32_max_value < val)
7407 return 0;
7408 break;
7409 case BPF_JSGE:
7410 if (reg->s32_min_value >= sval)
7411 return 1;
7412 else if (reg->s32_max_value < sval)
7413 return 0;
7414 break;
7415 case BPF_JLE:
7416 if (reg->u32_max_value <= val)
7417 return 1;
7418 else if (reg->u32_min_value > val)
7419 return 0;
7420 break;
7421 case BPF_JSLE:
7422 if (reg->s32_max_value <= sval)
7423 return 1;
7424 else if (reg->s32_min_value > sval)
7425 return 0;
7426 break;
7427 }
7428
7429 return -1;
7430 }
7431
7432
is_branch64_taken(struct bpf_reg_state * reg,u64 val,u8 opcode)7433 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
7434 {
7435 s64 sval = (s64)val;
7436
7437 switch (opcode) {
7438 case BPF_JEQ:
7439 if (tnum_is_const(reg->var_off))
7440 return !!tnum_equals_const(reg->var_off, val);
7441 break;
7442 case BPF_JNE:
7443 if (tnum_is_const(reg->var_off))
7444 return !tnum_equals_const(reg->var_off, val);
7445 break;
7446 case BPF_JSET:
7447 if ((~reg->var_off.mask & reg->var_off.value) & val)
7448 return 1;
7449 if (!((reg->var_off.mask | reg->var_off.value) & val))
7450 return 0;
7451 break;
7452 case BPF_JGT:
7453 if (reg->umin_value > val)
7454 return 1;
7455 else if (reg->umax_value <= val)
7456 return 0;
7457 break;
7458 case BPF_JSGT:
7459 if (reg->smin_value > sval)
7460 return 1;
7461 else if (reg->smax_value <= sval)
7462 return 0;
7463 break;
7464 case BPF_JLT:
7465 if (reg->umax_value < val)
7466 return 1;
7467 else if (reg->umin_value >= val)
7468 return 0;
7469 break;
7470 case BPF_JSLT:
7471 if (reg->smax_value < sval)
7472 return 1;
7473 else if (reg->smin_value >= sval)
7474 return 0;
7475 break;
7476 case BPF_JGE:
7477 if (reg->umin_value >= val)
7478 return 1;
7479 else if (reg->umax_value < val)
7480 return 0;
7481 break;
7482 case BPF_JSGE:
7483 if (reg->smin_value >= sval)
7484 return 1;
7485 else if (reg->smax_value < sval)
7486 return 0;
7487 break;
7488 case BPF_JLE:
7489 if (reg->umax_value <= val)
7490 return 1;
7491 else if (reg->umin_value > val)
7492 return 0;
7493 break;
7494 case BPF_JSLE:
7495 if (reg->smax_value <= sval)
7496 return 1;
7497 else if (reg->smin_value > sval)
7498 return 0;
7499 break;
7500 }
7501
7502 return -1;
7503 }
7504
7505 /* compute branch direction of the expression "if (reg opcode val) goto target;"
7506 * and return:
7507 * 1 - branch will be taken and "goto target" will be executed
7508 * 0 - branch will not be taken and fall-through to next insn
7509 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
7510 * range [0,10]
7511 */
is_branch_taken(struct bpf_reg_state * reg,u64 val,u8 opcode,bool is_jmp32)7512 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
7513 bool is_jmp32)
7514 {
7515 if (__is_pointer_value(false, reg)) {
7516 if (!reg_type_not_null(reg->type))
7517 return -1;
7518
7519 /* If pointer is valid tests against zero will fail so we can
7520 * use this to direct branch taken.
7521 */
7522 if (val != 0)
7523 return -1;
7524
7525 switch (opcode) {
7526 case BPF_JEQ:
7527 return 0;
7528 case BPF_JNE:
7529 return 1;
7530 default:
7531 return -1;
7532 }
7533 }
7534
7535 if (is_jmp32)
7536 return is_branch32_taken(reg, val, opcode);
7537 return is_branch64_taken(reg, val, opcode);
7538 }
7539
7540 /* Adjusts the register min/max values in the case that the dst_reg is the
7541 * variable register that we are working on, and src_reg is a constant or we're
7542 * simply doing a BPF_K check.
7543 * In JEQ/JNE cases we also adjust the var_off values.
7544 */
reg_set_min_max(struct bpf_reg_state * true_reg,struct bpf_reg_state * false_reg,u64 val,u32 val32,u8 opcode,bool is_jmp32)7545 static void reg_set_min_max(struct bpf_reg_state *true_reg,
7546 struct bpf_reg_state *false_reg,
7547 u64 val, u32 val32,
7548 u8 opcode, bool is_jmp32)
7549 {
7550 struct tnum false_32off = tnum_subreg(false_reg->var_off);
7551 struct tnum false_64off = false_reg->var_off;
7552 struct tnum true_32off = tnum_subreg(true_reg->var_off);
7553 struct tnum true_64off = true_reg->var_off;
7554 s64 sval = (s64)val;
7555 s32 sval32 = (s32)val32;
7556
7557 /* If the dst_reg is a pointer, we can't learn anything about its
7558 * variable offset from the compare (unless src_reg were a pointer into
7559 * the same object, but we don't bother with that.
7560 * Since false_reg and true_reg have the same type by construction, we
7561 * only need to check one of them for pointerness.
7562 */
7563 if (__is_pointer_value(false, false_reg))
7564 return;
7565
7566 switch (opcode) {
7567 case BPF_JEQ:
7568 case BPF_JNE:
7569 {
7570 struct bpf_reg_state *reg =
7571 opcode == BPF_JEQ ? true_reg : false_reg;
7572
7573 /* JEQ/JNE comparison doesn't change the register equivalence.
7574 * r1 = r2;
7575 * if (r1 == 42) goto label;
7576 * ...
7577 * label: // here both r1 and r2 are known to be 42.
7578 *
7579 * Hence when marking register as known preserve it's ID.
7580 */
7581 if (is_jmp32)
7582 __mark_reg32_known(reg, val32);
7583 else
7584 ___mark_reg_known(reg, val);
7585 break;
7586 }
7587 case BPF_JSET:
7588 if (is_jmp32) {
7589 false_32off = tnum_and(false_32off, tnum_const(~val32));
7590 if (is_power_of_2(val32))
7591 true_32off = tnum_or(true_32off,
7592 tnum_const(val32));
7593 } else {
7594 false_64off = tnum_and(false_64off, tnum_const(~val));
7595 if (is_power_of_2(val))
7596 true_64off = tnum_or(true_64off,
7597 tnum_const(val));
7598 }
7599 break;
7600 case BPF_JGE:
7601 case BPF_JGT:
7602 {
7603 if (is_jmp32) {
7604 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
7605 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
7606
7607 false_reg->u32_max_value = min(false_reg->u32_max_value,
7608 false_umax);
7609 true_reg->u32_min_value = max(true_reg->u32_min_value,
7610 true_umin);
7611 } else {
7612 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
7613 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
7614
7615 false_reg->umax_value = min(false_reg->umax_value, false_umax);
7616 true_reg->umin_value = max(true_reg->umin_value, true_umin);
7617 }
7618 break;
7619 }
7620 case BPF_JSGE:
7621 case BPF_JSGT:
7622 {
7623 if (is_jmp32) {
7624 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
7625 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
7626
7627 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
7628 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
7629 } else {
7630 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
7631 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
7632
7633 false_reg->smax_value = min(false_reg->smax_value, false_smax);
7634 true_reg->smin_value = max(true_reg->smin_value, true_smin);
7635 }
7636 break;
7637 }
7638 case BPF_JLE:
7639 case BPF_JLT:
7640 {
7641 if (is_jmp32) {
7642 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
7643 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
7644
7645 false_reg->u32_min_value = max(false_reg->u32_min_value,
7646 false_umin);
7647 true_reg->u32_max_value = min(true_reg->u32_max_value,
7648 true_umax);
7649 } else {
7650 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
7651 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
7652
7653 false_reg->umin_value = max(false_reg->umin_value, false_umin);
7654 true_reg->umax_value = min(true_reg->umax_value, true_umax);
7655 }
7656 break;
7657 }
7658 case BPF_JSLE:
7659 case BPF_JSLT:
7660 {
7661 if (is_jmp32) {
7662 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
7663 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
7664
7665 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
7666 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
7667 } else {
7668 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
7669 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
7670
7671 false_reg->smin_value = max(false_reg->smin_value, false_smin);
7672 true_reg->smax_value = min(true_reg->smax_value, true_smax);
7673 }
7674 break;
7675 }
7676 default:
7677 return;
7678 }
7679
7680 if (is_jmp32) {
7681 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
7682 tnum_subreg(false_32off));
7683 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
7684 tnum_subreg(true_32off));
7685 __reg_combine_32_into_64(false_reg);
7686 __reg_combine_32_into_64(true_reg);
7687 } else {
7688 false_reg->var_off = false_64off;
7689 true_reg->var_off = true_64off;
7690 __reg_combine_64_into_32(false_reg);
7691 __reg_combine_64_into_32(true_reg);
7692 }
7693 }
7694
7695 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
7696 * the variable reg.
7697 */
reg_set_min_max_inv(struct bpf_reg_state * true_reg,struct bpf_reg_state * false_reg,u64 val,u32 val32,u8 opcode,bool is_jmp32)7698 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
7699 struct bpf_reg_state *false_reg,
7700 u64 val, u32 val32,
7701 u8 opcode, bool is_jmp32)
7702 {
7703 /* How can we transform "a <op> b" into "b <op> a"? */
7704 static const u8 opcode_flip[16] = {
7705 /* these stay the same */
7706 [BPF_JEQ >> 4] = BPF_JEQ,
7707 [BPF_JNE >> 4] = BPF_JNE,
7708 [BPF_JSET >> 4] = BPF_JSET,
7709 /* these swap "lesser" and "greater" (L and G in the opcodes) */
7710 [BPF_JGE >> 4] = BPF_JLE,
7711 [BPF_JGT >> 4] = BPF_JLT,
7712 [BPF_JLE >> 4] = BPF_JGE,
7713 [BPF_JLT >> 4] = BPF_JGT,
7714 [BPF_JSGE >> 4] = BPF_JSLE,
7715 [BPF_JSGT >> 4] = BPF_JSLT,
7716 [BPF_JSLE >> 4] = BPF_JSGE,
7717 [BPF_JSLT >> 4] = BPF_JSGT
7718 };
7719 opcode = opcode_flip[opcode >> 4];
7720 /* This uses zero as "not present in table"; luckily the zero opcode,
7721 * BPF_JA, can't get here.
7722 */
7723 if (opcode)
7724 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
7725 }
7726
7727 /* Regs are known to be equal, so intersect their min/max/var_off */
__reg_combine_min_max(struct bpf_reg_state * src_reg,struct bpf_reg_state * dst_reg)7728 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
7729 struct bpf_reg_state *dst_reg)
7730 {
7731 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
7732 dst_reg->umin_value);
7733 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
7734 dst_reg->umax_value);
7735 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
7736 dst_reg->smin_value);
7737 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
7738 dst_reg->smax_value);
7739 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
7740 dst_reg->var_off);
7741 /* We might have learned new bounds from the var_off. */
7742 __update_reg_bounds(src_reg);
7743 __update_reg_bounds(dst_reg);
7744 /* We might have learned something about the sign bit. */
7745 __reg_deduce_bounds(src_reg);
7746 __reg_deduce_bounds(dst_reg);
7747 /* We might have learned some bits from the bounds. */
7748 __reg_bound_offset(src_reg);
7749 __reg_bound_offset(dst_reg);
7750 /* Intersecting with the old var_off might have improved our bounds
7751 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
7752 * then new var_off is (0; 0x7f...fc) which improves our umax.
7753 */
7754 __update_reg_bounds(src_reg);
7755 __update_reg_bounds(dst_reg);
7756 }
7757
reg_combine_min_max(struct bpf_reg_state * true_src,struct bpf_reg_state * true_dst,struct bpf_reg_state * false_src,struct bpf_reg_state * false_dst,u8 opcode)7758 static void reg_combine_min_max(struct bpf_reg_state *true_src,
7759 struct bpf_reg_state *true_dst,
7760 struct bpf_reg_state *false_src,
7761 struct bpf_reg_state *false_dst,
7762 u8 opcode)
7763 {
7764 switch (opcode) {
7765 case BPF_JEQ:
7766 __reg_combine_min_max(true_src, true_dst);
7767 break;
7768 case BPF_JNE:
7769 __reg_combine_min_max(false_src, false_dst);
7770 break;
7771 }
7772 }
7773
mark_ptr_or_null_reg(struct bpf_func_state * state,struct bpf_reg_state * reg,u32 id,bool is_null)7774 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
7775 struct bpf_reg_state *reg, u32 id,
7776 bool is_null)
7777 {
7778 if (type_may_be_null(reg->type) && reg->id == id &&
7779 !WARN_ON_ONCE(!reg->id)) {
7780 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
7781 !tnum_equals_const(reg->var_off, 0) ||
7782 reg->off)) {
7783 /* Old offset (both fixed and variable parts) should
7784 * have been known-zero, because we don't allow pointer
7785 * arithmetic on pointers that might be NULL. If we
7786 * see this happening, don't convert the register.
7787 */
7788 return;
7789 }
7790 if (is_null) {
7791 reg->type = SCALAR_VALUE;
7792 } else if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
7793 const struct bpf_map *map = reg->map_ptr;
7794
7795 if (map->inner_map_meta) {
7796 reg->type = CONST_PTR_TO_MAP;
7797 reg->map_ptr = map->inner_map_meta;
7798 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
7799 reg->type = PTR_TO_XDP_SOCK;
7800 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
7801 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
7802 reg->type = PTR_TO_SOCKET;
7803 } else {
7804 reg->type = PTR_TO_MAP_VALUE;
7805 }
7806 } else {
7807 reg->type &= ~PTR_MAYBE_NULL;
7808 }
7809
7810 if (is_null) {
7811 /* We don't need id and ref_obj_id from this point
7812 * onwards anymore, thus we should better reset it,
7813 * so that state pruning has chances to take effect.
7814 */
7815 reg->id = 0;
7816 reg->ref_obj_id = 0;
7817 } else if (!reg_may_point_to_spin_lock(reg)) {
7818 /* For not-NULL ptr, reg->ref_obj_id will be reset
7819 * in release_reg_references().
7820 *
7821 * reg->id is still used by spin_lock ptr. Other
7822 * than spin_lock ptr type, reg->id can be reset.
7823 */
7824 reg->id = 0;
7825 }
7826 }
7827 }
7828
__mark_ptr_or_null_regs(struct bpf_func_state * state,u32 id,bool is_null)7829 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
7830 bool is_null)
7831 {
7832 struct bpf_reg_state *reg;
7833 int i;
7834
7835 for (i = 0; i < MAX_BPF_REG; i++)
7836 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
7837
7838 bpf_for_each_spilled_reg(i, state, reg) {
7839 if (!reg)
7840 continue;
7841 mark_ptr_or_null_reg(state, reg, id, is_null);
7842 }
7843 }
7844
7845 /* The logic is similar to find_good_pkt_pointers(), both could eventually
7846 * be folded together at some point.
7847 */
mark_ptr_or_null_regs(struct bpf_verifier_state * vstate,u32 regno,bool is_null)7848 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
7849 bool is_null)
7850 {
7851 struct bpf_func_state *state = vstate->frame[vstate->curframe];
7852 struct bpf_reg_state *regs = state->regs;
7853 u32 ref_obj_id = regs[regno].ref_obj_id;
7854 u32 id = regs[regno].id;
7855 int i;
7856
7857 if (ref_obj_id && ref_obj_id == id && is_null)
7858 /* regs[regno] is in the " == NULL" branch.
7859 * No one could have freed the reference state before
7860 * doing the NULL check.
7861 */
7862 WARN_ON_ONCE(release_reference_state(state, id));
7863
7864 for (i = 0; i <= vstate->curframe; i++)
7865 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
7866 }
7867
try_match_pkt_pointers(const struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,struct bpf_verifier_state * this_branch,struct bpf_verifier_state * other_branch)7868 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
7869 struct bpf_reg_state *dst_reg,
7870 struct bpf_reg_state *src_reg,
7871 struct bpf_verifier_state *this_branch,
7872 struct bpf_verifier_state *other_branch)
7873 {
7874 if (BPF_SRC(insn->code) != BPF_X)
7875 return false;
7876
7877 /* Pointers are always 64-bit. */
7878 if (BPF_CLASS(insn->code) == BPF_JMP32)
7879 return false;
7880
7881 switch (BPF_OP(insn->code)) {
7882 case BPF_JGT:
7883 if ((dst_reg->type == PTR_TO_PACKET &&
7884 src_reg->type == PTR_TO_PACKET_END) ||
7885 (dst_reg->type == PTR_TO_PACKET_META &&
7886 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7887 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
7888 find_good_pkt_pointers(this_branch, dst_reg,
7889 dst_reg->type, false);
7890 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7891 src_reg->type == PTR_TO_PACKET) ||
7892 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7893 src_reg->type == PTR_TO_PACKET_META)) {
7894 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
7895 find_good_pkt_pointers(other_branch, src_reg,
7896 src_reg->type, true);
7897 } else {
7898 return false;
7899 }
7900 break;
7901 case BPF_JLT:
7902 if ((dst_reg->type == PTR_TO_PACKET &&
7903 src_reg->type == PTR_TO_PACKET_END) ||
7904 (dst_reg->type == PTR_TO_PACKET_META &&
7905 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7906 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
7907 find_good_pkt_pointers(other_branch, dst_reg,
7908 dst_reg->type, true);
7909 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7910 src_reg->type == PTR_TO_PACKET) ||
7911 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7912 src_reg->type == PTR_TO_PACKET_META)) {
7913 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
7914 find_good_pkt_pointers(this_branch, src_reg,
7915 src_reg->type, false);
7916 } else {
7917 return false;
7918 }
7919 break;
7920 case BPF_JGE:
7921 if ((dst_reg->type == PTR_TO_PACKET &&
7922 src_reg->type == PTR_TO_PACKET_END) ||
7923 (dst_reg->type == PTR_TO_PACKET_META &&
7924 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7925 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
7926 find_good_pkt_pointers(this_branch, dst_reg,
7927 dst_reg->type, true);
7928 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7929 src_reg->type == PTR_TO_PACKET) ||
7930 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7931 src_reg->type == PTR_TO_PACKET_META)) {
7932 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
7933 find_good_pkt_pointers(other_branch, src_reg,
7934 src_reg->type, false);
7935 } else {
7936 return false;
7937 }
7938 break;
7939 case BPF_JLE:
7940 if ((dst_reg->type == PTR_TO_PACKET &&
7941 src_reg->type == PTR_TO_PACKET_END) ||
7942 (dst_reg->type == PTR_TO_PACKET_META &&
7943 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7944 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
7945 find_good_pkt_pointers(other_branch, dst_reg,
7946 dst_reg->type, false);
7947 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7948 src_reg->type == PTR_TO_PACKET) ||
7949 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7950 src_reg->type == PTR_TO_PACKET_META)) {
7951 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
7952 find_good_pkt_pointers(this_branch, src_reg,
7953 src_reg->type, true);
7954 } else {
7955 return false;
7956 }
7957 break;
7958 default:
7959 return false;
7960 }
7961
7962 return true;
7963 }
7964
find_equal_scalars(struct bpf_verifier_state * vstate,struct bpf_reg_state * known_reg)7965 static void find_equal_scalars(struct bpf_verifier_state *vstate,
7966 struct bpf_reg_state *known_reg)
7967 {
7968 struct bpf_func_state *state;
7969 struct bpf_reg_state *reg;
7970 int i, j;
7971
7972 for (i = 0; i <= vstate->curframe; i++) {
7973 state = vstate->frame[i];
7974 for (j = 0; j < MAX_BPF_REG; j++) {
7975 reg = &state->regs[j];
7976 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
7977 *reg = *known_reg;
7978 }
7979
7980 bpf_for_each_spilled_reg(j, state, reg) {
7981 if (!reg)
7982 continue;
7983 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
7984 *reg = *known_reg;
7985 }
7986 }
7987 }
7988
check_cond_jmp_op(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)7989 static int check_cond_jmp_op(struct bpf_verifier_env *env,
7990 struct bpf_insn *insn, int *insn_idx)
7991 {
7992 struct bpf_verifier_state *this_branch = env->cur_state;
7993 struct bpf_verifier_state *other_branch;
7994 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
7995 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
7996 u8 opcode = BPF_OP(insn->code);
7997 bool is_jmp32;
7998 int pred = -1;
7999 int err;
8000
8001 /* Only conditional jumps are expected to reach here. */
8002 if (opcode == BPF_JA || opcode > BPF_JSLE) {
8003 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
8004 return -EINVAL;
8005 }
8006
8007 if (BPF_SRC(insn->code) == BPF_X) {
8008 if (insn->imm != 0) {
8009 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8010 return -EINVAL;
8011 }
8012
8013 /* check src1 operand */
8014 err = check_reg_arg(env, insn->src_reg, SRC_OP);
8015 if (err)
8016 return err;
8017
8018 if (is_pointer_value(env, insn->src_reg)) {
8019 verbose(env, "R%d pointer comparison prohibited\n",
8020 insn->src_reg);
8021 return -EACCES;
8022 }
8023 src_reg = ®s[insn->src_reg];
8024 } else {
8025 if (insn->src_reg != BPF_REG_0) {
8026 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8027 return -EINVAL;
8028 }
8029 }
8030
8031 /* check src2 operand */
8032 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8033 if (err)
8034 return err;
8035
8036 dst_reg = ®s[insn->dst_reg];
8037 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
8038
8039 if (BPF_SRC(insn->code) == BPF_K) {
8040 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
8041 } else if (src_reg->type == SCALAR_VALUE &&
8042 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
8043 pred = is_branch_taken(dst_reg,
8044 tnum_subreg(src_reg->var_off).value,
8045 opcode,
8046 is_jmp32);
8047 } else if (src_reg->type == SCALAR_VALUE &&
8048 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
8049 pred = is_branch_taken(dst_reg,
8050 src_reg->var_off.value,
8051 opcode,
8052 is_jmp32);
8053 }
8054
8055 if (pred >= 0) {
8056 /* If we get here with a dst_reg pointer type it is because
8057 * above is_branch_taken() special cased the 0 comparison.
8058 */
8059 if (!__is_pointer_value(false, dst_reg))
8060 err = mark_chain_precision(env, insn->dst_reg);
8061 if (BPF_SRC(insn->code) == BPF_X && !err)
8062 err = mark_chain_precision(env, insn->src_reg);
8063 if (err)
8064 return err;
8065 }
8066
8067 if (pred == 1) {
8068 /* Only follow the goto, ignore fall-through. If needed, push
8069 * the fall-through branch for simulation under speculative
8070 * execution.
8071 */
8072 if (!env->bypass_spec_v1 &&
8073 !sanitize_speculative_path(env, insn, *insn_idx + 1,
8074 *insn_idx))
8075 return -EFAULT;
8076 *insn_idx += insn->off;
8077 return 0;
8078 } else if (pred == 0) {
8079 /* Only follow the fall-through branch, since that's where the
8080 * program will go. If needed, push the goto branch for
8081 * simulation under speculative execution.
8082 */
8083 if (!env->bypass_spec_v1 &&
8084 !sanitize_speculative_path(env, insn,
8085 *insn_idx + insn->off + 1,
8086 *insn_idx))
8087 return -EFAULT;
8088 return 0;
8089 }
8090
8091 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
8092 false);
8093 if (!other_branch)
8094 return -EFAULT;
8095 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
8096
8097 /* detect if we are comparing against a constant value so we can adjust
8098 * our min/max values for our dst register.
8099 * this is only legit if both are scalars (or pointers to the same
8100 * object, I suppose, but we don't support that right now), because
8101 * otherwise the different base pointers mean the offsets aren't
8102 * comparable.
8103 */
8104 if (BPF_SRC(insn->code) == BPF_X) {
8105 struct bpf_reg_state *src_reg = ®s[insn->src_reg];
8106
8107 if (dst_reg->type == SCALAR_VALUE &&
8108 src_reg->type == SCALAR_VALUE) {
8109 if (tnum_is_const(src_reg->var_off) ||
8110 (is_jmp32 &&
8111 tnum_is_const(tnum_subreg(src_reg->var_off))))
8112 reg_set_min_max(&other_branch_regs[insn->dst_reg],
8113 dst_reg,
8114 src_reg->var_off.value,
8115 tnum_subreg(src_reg->var_off).value,
8116 opcode, is_jmp32);
8117 else if (tnum_is_const(dst_reg->var_off) ||
8118 (is_jmp32 &&
8119 tnum_is_const(tnum_subreg(dst_reg->var_off))))
8120 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
8121 src_reg,
8122 dst_reg->var_off.value,
8123 tnum_subreg(dst_reg->var_off).value,
8124 opcode, is_jmp32);
8125 else if (!is_jmp32 &&
8126 (opcode == BPF_JEQ || opcode == BPF_JNE))
8127 /* Comparing for equality, we can combine knowledge */
8128 reg_combine_min_max(&other_branch_regs[insn->src_reg],
8129 &other_branch_regs[insn->dst_reg],
8130 src_reg, dst_reg, opcode);
8131 if (src_reg->id &&
8132 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
8133 find_equal_scalars(this_branch, src_reg);
8134 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
8135 }
8136
8137 }
8138 } else if (dst_reg->type == SCALAR_VALUE) {
8139 reg_set_min_max(&other_branch_regs[insn->dst_reg],
8140 dst_reg, insn->imm, (u32)insn->imm,
8141 opcode, is_jmp32);
8142 }
8143
8144 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
8145 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
8146 find_equal_scalars(this_branch, dst_reg);
8147 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
8148 }
8149
8150 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
8151 * NOTE: these optimizations below are related with pointer comparison
8152 * which will never be JMP32.
8153 */
8154 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
8155 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
8156 type_may_be_null(dst_reg->type)) {
8157 /* Mark all identical registers in each branch as either
8158 * safe or unknown depending R == 0 or R != 0 conditional.
8159 */
8160 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
8161 opcode == BPF_JNE);
8162 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
8163 opcode == BPF_JEQ);
8164 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg],
8165 this_branch, other_branch) &&
8166 is_pointer_value(env, insn->dst_reg)) {
8167 verbose(env, "R%d pointer comparison prohibited\n",
8168 insn->dst_reg);
8169 return -EACCES;
8170 }
8171 if (env->log.level & BPF_LOG_LEVEL)
8172 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
8173 return 0;
8174 }
8175
8176 /* verify BPF_LD_IMM64 instruction */
check_ld_imm(struct bpf_verifier_env * env,struct bpf_insn * insn)8177 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
8178 {
8179 struct bpf_insn_aux_data *aux = cur_aux(env);
8180 struct bpf_reg_state *regs = cur_regs(env);
8181 struct bpf_reg_state *dst_reg;
8182 struct bpf_map *map;
8183 int err;
8184
8185 if (BPF_SIZE(insn->code) != BPF_DW) {
8186 verbose(env, "invalid BPF_LD_IMM insn\n");
8187 return -EINVAL;
8188 }
8189 if (insn->off != 0) {
8190 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
8191 return -EINVAL;
8192 }
8193
8194 err = check_reg_arg(env, insn->dst_reg, DST_OP);
8195 if (err)
8196 return err;
8197
8198 dst_reg = ®s[insn->dst_reg];
8199 if (insn->src_reg == 0) {
8200 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
8201
8202 dst_reg->type = SCALAR_VALUE;
8203 __mark_reg_known(®s[insn->dst_reg], imm);
8204 return 0;
8205 }
8206
8207 /* All special src_reg cases are listed below. From this point onwards
8208 * we either succeed and assign a corresponding dst_reg->type after
8209 * zeroing the offset, or fail and reject the program.
8210 */
8211 mark_reg_known_zero(env, regs, insn->dst_reg);
8212
8213 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
8214 dst_reg->type = aux->btf_var.reg_type;
8215 switch (base_type(dst_reg->type)) {
8216 case PTR_TO_MEM:
8217 dst_reg->mem_size = aux->btf_var.mem_size;
8218 break;
8219 case PTR_TO_BTF_ID:
8220 case PTR_TO_PERCPU_BTF_ID:
8221 dst_reg->btf_id = aux->btf_var.btf_id;
8222 break;
8223 default:
8224 verbose(env, "bpf verifier is misconfigured\n");
8225 return -EFAULT;
8226 }
8227 return 0;
8228 }
8229
8230 map = env->used_maps[aux->map_index];
8231 dst_reg->map_ptr = map;
8232
8233 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
8234 dst_reg->type = PTR_TO_MAP_VALUE;
8235 dst_reg->off = aux->map_off;
8236 if (map_value_has_spin_lock(map))
8237 dst_reg->id = ++env->id_gen;
8238 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
8239 dst_reg->type = CONST_PTR_TO_MAP;
8240 } else {
8241 verbose(env, "bpf verifier is misconfigured\n");
8242 return -EINVAL;
8243 }
8244
8245 return 0;
8246 }
8247
may_access_skb(enum bpf_prog_type type)8248 static bool may_access_skb(enum bpf_prog_type type)
8249 {
8250 switch (type) {
8251 case BPF_PROG_TYPE_SOCKET_FILTER:
8252 case BPF_PROG_TYPE_SCHED_CLS:
8253 case BPF_PROG_TYPE_SCHED_ACT:
8254 return true;
8255 default:
8256 return false;
8257 }
8258 }
8259
8260 /* verify safety of LD_ABS|LD_IND instructions:
8261 * - they can only appear in the programs where ctx == skb
8262 * - since they are wrappers of function calls, they scratch R1-R5 registers,
8263 * preserve R6-R9, and store return value into R0
8264 *
8265 * Implicit input:
8266 * ctx == skb == R6 == CTX
8267 *
8268 * Explicit input:
8269 * SRC == any register
8270 * IMM == 32-bit immediate
8271 *
8272 * Output:
8273 * R0 - 8/16/32-bit skb data converted to cpu endianness
8274 */
check_ld_abs(struct bpf_verifier_env * env,struct bpf_insn * insn)8275 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
8276 {
8277 struct bpf_reg_state *regs = cur_regs(env);
8278 static const int ctx_reg = BPF_REG_6;
8279 u8 mode = BPF_MODE(insn->code);
8280 int i, err;
8281
8282 if (!may_access_skb(resolve_prog_type(env->prog))) {
8283 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
8284 return -EINVAL;
8285 }
8286
8287 if (!env->ops->gen_ld_abs) {
8288 verbose(env, "bpf verifier is misconfigured\n");
8289 return -EINVAL;
8290 }
8291
8292 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
8293 BPF_SIZE(insn->code) == BPF_DW ||
8294 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
8295 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
8296 return -EINVAL;
8297 }
8298
8299 /* check whether implicit source operand (register R6) is readable */
8300 err = check_reg_arg(env, ctx_reg, SRC_OP);
8301 if (err)
8302 return err;
8303
8304 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
8305 * gen_ld_abs() may terminate the program at runtime, leading to
8306 * reference leak.
8307 */
8308 err = check_reference_leak(env);
8309 if (err) {
8310 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
8311 return err;
8312 }
8313
8314 if (env->cur_state->active_spin_lock) {
8315 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
8316 return -EINVAL;
8317 }
8318
8319 if (regs[ctx_reg].type != PTR_TO_CTX) {
8320 verbose(env,
8321 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
8322 return -EINVAL;
8323 }
8324
8325 if (mode == BPF_IND) {
8326 /* check explicit source operand */
8327 err = check_reg_arg(env, insn->src_reg, SRC_OP);
8328 if (err)
8329 return err;
8330 }
8331
8332 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg);
8333 if (err < 0)
8334 return err;
8335
8336 /* reset caller saved regs to unreadable */
8337 for (i = 0; i < CALLER_SAVED_REGS; i++) {
8338 mark_reg_not_init(env, regs, caller_saved[i]);
8339 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
8340 }
8341
8342 /* mark destination R0 register as readable, since it contains
8343 * the value fetched from the packet.
8344 * Already marked as written above.
8345 */
8346 mark_reg_unknown(env, regs, BPF_REG_0);
8347 /* ld_abs load up to 32-bit skb data. */
8348 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
8349 return 0;
8350 }
8351
check_return_code(struct bpf_verifier_env * env)8352 static int check_return_code(struct bpf_verifier_env *env)
8353 {
8354 struct tnum enforce_attach_type_range = tnum_unknown;
8355 const struct bpf_prog *prog = env->prog;
8356 struct bpf_reg_state *reg;
8357 struct tnum range = tnum_range(0, 1);
8358 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
8359 int err;
8360 const bool is_subprog = env->cur_state->frame[0]->subprogno;
8361
8362 /* LSM and struct_ops func-ptr's return type could be "void" */
8363 if (!is_subprog &&
8364 (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
8365 prog_type == BPF_PROG_TYPE_LSM) &&
8366 !prog->aux->attach_func_proto->type)
8367 return 0;
8368
8369 /* eBPF calling convetion is such that R0 is used
8370 * to return the value from eBPF program.
8371 * Make sure that it's readable at this time
8372 * of bpf_exit, which means that program wrote
8373 * something into it earlier
8374 */
8375 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
8376 if (err)
8377 return err;
8378
8379 if (is_pointer_value(env, BPF_REG_0)) {
8380 verbose(env, "R0 leaks addr as return value\n");
8381 return -EACCES;
8382 }
8383
8384 reg = cur_regs(env) + BPF_REG_0;
8385 if (is_subprog) {
8386 if (reg->type != SCALAR_VALUE) {
8387 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
8388 reg_type_str(env, reg->type));
8389 return -EINVAL;
8390 }
8391 return 0;
8392 }
8393
8394 switch (prog_type) {
8395 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
8396 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
8397 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
8398 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
8399 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
8400 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
8401 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
8402 range = tnum_range(1, 1);
8403 break;
8404 case BPF_PROG_TYPE_CGROUP_SKB:
8405 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
8406 range = tnum_range(0, 3);
8407 enforce_attach_type_range = tnum_range(2, 3);
8408 }
8409 break;
8410 case BPF_PROG_TYPE_CGROUP_SOCK:
8411 case BPF_PROG_TYPE_SOCK_OPS:
8412 case BPF_PROG_TYPE_CGROUP_DEVICE:
8413 case BPF_PROG_TYPE_CGROUP_SYSCTL:
8414 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
8415 break;
8416 case BPF_PROG_TYPE_RAW_TRACEPOINT:
8417 if (!env->prog->aux->attach_btf_id)
8418 return 0;
8419 range = tnum_const(0);
8420 break;
8421 case BPF_PROG_TYPE_TRACING:
8422 switch (env->prog->expected_attach_type) {
8423 case BPF_TRACE_FENTRY:
8424 case BPF_TRACE_FEXIT:
8425 range = tnum_const(0);
8426 break;
8427 case BPF_TRACE_RAW_TP:
8428 case BPF_MODIFY_RETURN:
8429 return 0;
8430 case BPF_TRACE_ITER:
8431 break;
8432 default:
8433 return -ENOTSUPP;
8434 }
8435 break;
8436 case BPF_PROG_TYPE_SK_LOOKUP:
8437 range = tnum_range(SK_DROP, SK_PASS);
8438 break;
8439 case BPF_PROG_TYPE_EXT:
8440 /* freplace program can return anything as its return value
8441 * depends on the to-be-replaced kernel func or bpf program.
8442 */
8443 default:
8444 return 0;
8445 }
8446
8447 if (reg->type != SCALAR_VALUE) {
8448 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
8449 reg_type_str(env, reg->type));
8450 return -EINVAL;
8451 }
8452
8453 if (!tnum_in(range, reg->var_off)) {
8454 char tn_buf[48];
8455
8456 verbose(env, "At program exit the register R0 ");
8457 if (!tnum_is_unknown(reg->var_off)) {
8458 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
8459 verbose(env, "has value %s", tn_buf);
8460 } else {
8461 verbose(env, "has unknown scalar value");
8462 }
8463 tnum_strn(tn_buf, sizeof(tn_buf), range);
8464 verbose(env, " should have been in %s\n", tn_buf);
8465 return -EINVAL;
8466 }
8467
8468 if (!tnum_is_unknown(enforce_attach_type_range) &&
8469 tnum_in(enforce_attach_type_range, reg->var_off))
8470 env->prog->enforce_expected_attach_type = 1;
8471 return 0;
8472 }
8473
8474 /* non-recursive DFS pseudo code
8475 * 1 procedure DFS-iterative(G,v):
8476 * 2 label v as discovered
8477 * 3 let S be a stack
8478 * 4 S.push(v)
8479 * 5 while S is not empty
8480 * 6 t <- S.pop()
8481 * 7 if t is what we're looking for:
8482 * 8 return t
8483 * 9 for all edges e in G.adjacentEdges(t) do
8484 * 10 if edge e is already labelled
8485 * 11 continue with the next edge
8486 * 12 w <- G.adjacentVertex(t,e)
8487 * 13 if vertex w is not discovered and not explored
8488 * 14 label e as tree-edge
8489 * 15 label w as discovered
8490 * 16 S.push(w)
8491 * 17 continue at 5
8492 * 18 else if vertex w is discovered
8493 * 19 label e as back-edge
8494 * 20 else
8495 * 21 // vertex w is explored
8496 * 22 label e as forward- or cross-edge
8497 * 23 label t as explored
8498 * 24 S.pop()
8499 *
8500 * convention:
8501 * 0x10 - discovered
8502 * 0x11 - discovered and fall-through edge labelled
8503 * 0x12 - discovered and fall-through and branch edges labelled
8504 * 0x20 - explored
8505 */
8506
8507 enum {
8508 DISCOVERED = 0x10,
8509 EXPLORED = 0x20,
8510 FALLTHROUGH = 1,
8511 BRANCH = 2,
8512 };
8513
state_htab_size(struct bpf_verifier_env * env)8514 static u32 state_htab_size(struct bpf_verifier_env *env)
8515 {
8516 return env->prog->len;
8517 }
8518
explored_state(struct bpf_verifier_env * env,int idx)8519 static struct bpf_verifier_state_list **explored_state(
8520 struct bpf_verifier_env *env,
8521 int idx)
8522 {
8523 struct bpf_verifier_state *cur = env->cur_state;
8524 struct bpf_func_state *state = cur->frame[cur->curframe];
8525
8526 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
8527 }
8528
init_explored_state(struct bpf_verifier_env * env,int idx)8529 static void init_explored_state(struct bpf_verifier_env *env, int idx)
8530 {
8531 env->insn_aux_data[idx].prune_point = true;
8532 }
8533
8534 /* t, w, e - match pseudo-code above:
8535 * t - index of current instruction
8536 * w - next instruction
8537 * e - edge
8538 */
push_insn(int t,int w,int e,struct bpf_verifier_env * env,bool loop_ok)8539 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
8540 bool loop_ok)
8541 {
8542 int *insn_stack = env->cfg.insn_stack;
8543 int *insn_state = env->cfg.insn_state;
8544
8545 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
8546 return 0;
8547
8548 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
8549 return 0;
8550
8551 if (w < 0 || w >= env->prog->len) {
8552 verbose_linfo(env, t, "%d: ", t);
8553 verbose(env, "jump out of range from insn %d to %d\n", t, w);
8554 return -EINVAL;
8555 }
8556
8557 if (e == BRANCH)
8558 /* mark branch target for state pruning */
8559 init_explored_state(env, w);
8560
8561 if (insn_state[w] == 0) {
8562 /* tree-edge */
8563 insn_state[t] = DISCOVERED | e;
8564 insn_state[w] = DISCOVERED;
8565 if (env->cfg.cur_stack >= env->prog->len)
8566 return -E2BIG;
8567 insn_stack[env->cfg.cur_stack++] = w;
8568 return 1;
8569 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
8570 if (loop_ok && env->bpf_capable)
8571 return 0;
8572 verbose_linfo(env, t, "%d: ", t);
8573 verbose_linfo(env, w, "%d: ", w);
8574 verbose(env, "back-edge from insn %d to %d\n", t, w);
8575 return -EINVAL;
8576 } else if (insn_state[w] == EXPLORED) {
8577 /* forward- or cross-edge */
8578 insn_state[t] = DISCOVERED | e;
8579 } else {
8580 verbose(env, "insn state internal bug\n");
8581 return -EFAULT;
8582 }
8583 return 0;
8584 }
8585
8586 /* non-recursive depth-first-search to detect loops in BPF program
8587 * loop == back-edge in directed graph
8588 */
check_cfg(struct bpf_verifier_env * env)8589 static int check_cfg(struct bpf_verifier_env *env)
8590 {
8591 struct bpf_insn *insns = env->prog->insnsi;
8592 int insn_cnt = env->prog->len;
8593 int *insn_stack, *insn_state;
8594 int ret = 0;
8595 int i, t;
8596
8597 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
8598 if (!insn_state)
8599 return -ENOMEM;
8600
8601 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
8602 if (!insn_stack) {
8603 kvfree(insn_state);
8604 return -ENOMEM;
8605 }
8606
8607 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
8608 insn_stack[0] = 0; /* 0 is the first instruction */
8609 env->cfg.cur_stack = 1;
8610
8611 peek_stack:
8612 if (env->cfg.cur_stack == 0)
8613 goto check_state;
8614 t = insn_stack[env->cfg.cur_stack - 1];
8615
8616 if (BPF_CLASS(insns[t].code) == BPF_JMP ||
8617 BPF_CLASS(insns[t].code) == BPF_JMP32) {
8618 u8 opcode = BPF_OP(insns[t].code);
8619
8620 if (opcode == BPF_EXIT) {
8621 goto mark_explored;
8622 } else if (opcode == BPF_CALL) {
8623 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
8624 if (ret == 1)
8625 goto peek_stack;
8626 else if (ret < 0)
8627 goto err_free;
8628 if (t + 1 < insn_cnt)
8629 init_explored_state(env, t + 1);
8630 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
8631 init_explored_state(env, t);
8632 ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
8633 env, false);
8634 if (ret == 1)
8635 goto peek_stack;
8636 else if (ret < 0)
8637 goto err_free;
8638 }
8639 } else if (opcode == BPF_JA) {
8640 if (BPF_SRC(insns[t].code) != BPF_K) {
8641 ret = -EINVAL;
8642 goto err_free;
8643 }
8644 /* unconditional jump with single edge */
8645 ret = push_insn(t, t + insns[t].off + 1,
8646 FALLTHROUGH, env, true);
8647 if (ret == 1)
8648 goto peek_stack;
8649 else if (ret < 0)
8650 goto err_free;
8651 /* unconditional jmp is not a good pruning point,
8652 * but it's marked, since backtracking needs
8653 * to record jmp history in is_state_visited().
8654 */
8655 init_explored_state(env, t + insns[t].off + 1);
8656 /* tell verifier to check for equivalent states
8657 * after every call and jump
8658 */
8659 if (t + 1 < insn_cnt)
8660 init_explored_state(env, t + 1);
8661 } else {
8662 /* conditional jump with two edges */
8663 init_explored_state(env, t);
8664 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
8665 if (ret == 1)
8666 goto peek_stack;
8667 else if (ret < 0)
8668 goto err_free;
8669
8670 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
8671 if (ret == 1)
8672 goto peek_stack;
8673 else if (ret < 0)
8674 goto err_free;
8675 }
8676 } else {
8677 /* all other non-branch instructions with single
8678 * fall-through edge
8679 */
8680 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
8681 if (ret == 1)
8682 goto peek_stack;
8683 else if (ret < 0)
8684 goto err_free;
8685 }
8686
8687 mark_explored:
8688 insn_state[t] = EXPLORED;
8689 if (env->cfg.cur_stack-- <= 0) {
8690 verbose(env, "pop stack internal bug\n");
8691 ret = -EFAULT;
8692 goto err_free;
8693 }
8694 goto peek_stack;
8695
8696 check_state:
8697 for (i = 0; i < insn_cnt; i++) {
8698 if (insn_state[i] != EXPLORED) {
8699 verbose(env, "unreachable insn %d\n", i);
8700 ret = -EINVAL;
8701 goto err_free;
8702 }
8703 }
8704 ret = 0; /* cfg looks good */
8705
8706 err_free:
8707 kvfree(insn_state);
8708 kvfree(insn_stack);
8709 env->cfg.insn_state = env->cfg.insn_stack = NULL;
8710 return ret;
8711 }
8712
check_abnormal_return(struct bpf_verifier_env * env)8713 static int check_abnormal_return(struct bpf_verifier_env *env)
8714 {
8715 int i;
8716
8717 for (i = 1; i < env->subprog_cnt; i++) {
8718 if (env->subprog_info[i].has_ld_abs) {
8719 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
8720 return -EINVAL;
8721 }
8722 if (env->subprog_info[i].has_tail_call) {
8723 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
8724 return -EINVAL;
8725 }
8726 }
8727 return 0;
8728 }
8729
8730 /* The minimum supported BTF func info size */
8731 #define MIN_BPF_FUNCINFO_SIZE 8
8732 #define MAX_FUNCINFO_REC_SIZE 252
8733
check_btf_func(struct bpf_verifier_env * env,const union bpf_attr * attr,union bpf_attr __user * uattr)8734 static int check_btf_func(struct bpf_verifier_env *env,
8735 const union bpf_attr *attr,
8736 union bpf_attr __user *uattr)
8737 {
8738 const struct btf_type *type, *func_proto, *ret_type;
8739 u32 i, nfuncs, urec_size, min_size;
8740 u32 krec_size = sizeof(struct bpf_func_info);
8741 struct bpf_func_info *krecord;
8742 struct bpf_func_info_aux *info_aux = NULL;
8743 struct bpf_prog *prog;
8744 const struct btf *btf;
8745 void __user *urecord;
8746 u32 prev_offset = 0;
8747 bool scalar_return;
8748 int ret = -ENOMEM;
8749
8750 nfuncs = attr->func_info_cnt;
8751 if (!nfuncs) {
8752 if (check_abnormal_return(env))
8753 return -EINVAL;
8754 return 0;
8755 }
8756
8757 if (nfuncs != env->subprog_cnt) {
8758 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
8759 return -EINVAL;
8760 }
8761
8762 urec_size = attr->func_info_rec_size;
8763 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
8764 urec_size > MAX_FUNCINFO_REC_SIZE ||
8765 urec_size % sizeof(u32)) {
8766 verbose(env, "invalid func info rec size %u\n", urec_size);
8767 return -EINVAL;
8768 }
8769
8770 prog = env->prog;
8771 btf = prog->aux->btf;
8772
8773 urecord = u64_to_user_ptr(attr->func_info);
8774 min_size = min_t(u32, krec_size, urec_size);
8775
8776 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
8777 if (!krecord)
8778 return -ENOMEM;
8779 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
8780 if (!info_aux)
8781 goto err_free;
8782
8783 for (i = 0; i < nfuncs; i++) {
8784 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
8785 if (ret) {
8786 if (ret == -E2BIG) {
8787 verbose(env, "nonzero tailing record in func info");
8788 /* set the size kernel expects so loader can zero
8789 * out the rest of the record.
8790 */
8791 if (put_user(min_size, &uattr->func_info_rec_size))
8792 ret = -EFAULT;
8793 }
8794 goto err_free;
8795 }
8796
8797 if (copy_from_user(&krecord[i], urecord, min_size)) {
8798 ret = -EFAULT;
8799 goto err_free;
8800 }
8801
8802 /* check insn_off */
8803 ret = -EINVAL;
8804 if (i == 0) {
8805 if (krecord[i].insn_off) {
8806 verbose(env,
8807 "nonzero insn_off %u for the first func info record",
8808 krecord[i].insn_off);
8809 goto err_free;
8810 }
8811 } else if (krecord[i].insn_off <= prev_offset) {
8812 verbose(env,
8813 "same or smaller insn offset (%u) than previous func info record (%u)",
8814 krecord[i].insn_off, prev_offset);
8815 goto err_free;
8816 }
8817
8818 if (env->subprog_info[i].start != krecord[i].insn_off) {
8819 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
8820 goto err_free;
8821 }
8822
8823 /* check type_id */
8824 type = btf_type_by_id(btf, krecord[i].type_id);
8825 if (!type || !btf_type_is_func(type)) {
8826 verbose(env, "invalid type id %d in func info",
8827 krecord[i].type_id);
8828 goto err_free;
8829 }
8830 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
8831
8832 func_proto = btf_type_by_id(btf, type->type);
8833 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
8834 /* btf_func_check() already verified it during BTF load */
8835 goto err_free;
8836 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
8837 scalar_return =
8838 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
8839 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
8840 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
8841 goto err_free;
8842 }
8843 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
8844 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
8845 goto err_free;
8846 }
8847
8848 prev_offset = krecord[i].insn_off;
8849 urecord += urec_size;
8850 }
8851
8852 prog->aux->func_info = krecord;
8853 prog->aux->func_info_cnt = nfuncs;
8854 prog->aux->func_info_aux = info_aux;
8855 return 0;
8856
8857 err_free:
8858 kvfree(krecord);
8859 kfree(info_aux);
8860 return ret;
8861 }
8862
adjust_btf_func(struct bpf_verifier_env * env)8863 static void adjust_btf_func(struct bpf_verifier_env *env)
8864 {
8865 struct bpf_prog_aux *aux = env->prog->aux;
8866 int i;
8867
8868 if (!aux->func_info)
8869 return;
8870
8871 for (i = 0; i < env->subprog_cnt; i++)
8872 aux->func_info[i].insn_off = env->subprog_info[i].start;
8873 }
8874
8875 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
8876 sizeof(((struct bpf_line_info *)(0))->line_col))
8877 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
8878
check_btf_line(struct bpf_verifier_env * env,const union bpf_attr * attr,union bpf_attr __user * uattr)8879 static int check_btf_line(struct bpf_verifier_env *env,
8880 const union bpf_attr *attr,
8881 union bpf_attr __user *uattr)
8882 {
8883 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
8884 struct bpf_subprog_info *sub;
8885 struct bpf_line_info *linfo;
8886 struct bpf_prog *prog;
8887 const struct btf *btf;
8888 void __user *ulinfo;
8889 int err;
8890
8891 nr_linfo = attr->line_info_cnt;
8892 if (!nr_linfo)
8893 return 0;
8894 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
8895 return -EINVAL;
8896
8897 rec_size = attr->line_info_rec_size;
8898 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
8899 rec_size > MAX_LINEINFO_REC_SIZE ||
8900 rec_size & (sizeof(u32) - 1))
8901 return -EINVAL;
8902
8903 /* Need to zero it in case the userspace may
8904 * pass in a smaller bpf_line_info object.
8905 */
8906 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
8907 GFP_KERNEL | __GFP_NOWARN);
8908 if (!linfo)
8909 return -ENOMEM;
8910
8911 prog = env->prog;
8912 btf = prog->aux->btf;
8913
8914 s = 0;
8915 sub = env->subprog_info;
8916 ulinfo = u64_to_user_ptr(attr->line_info);
8917 expected_size = sizeof(struct bpf_line_info);
8918 ncopy = min_t(u32, expected_size, rec_size);
8919 for (i = 0; i < nr_linfo; i++) {
8920 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
8921 if (err) {
8922 if (err == -E2BIG) {
8923 verbose(env, "nonzero tailing record in line_info");
8924 if (put_user(expected_size,
8925 &uattr->line_info_rec_size))
8926 err = -EFAULT;
8927 }
8928 goto err_free;
8929 }
8930
8931 if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
8932 err = -EFAULT;
8933 goto err_free;
8934 }
8935
8936 /*
8937 * Check insn_off to ensure
8938 * 1) strictly increasing AND
8939 * 2) bounded by prog->len
8940 *
8941 * The linfo[0].insn_off == 0 check logically falls into
8942 * the later "missing bpf_line_info for func..." case
8943 * because the first linfo[0].insn_off must be the
8944 * first sub also and the first sub must have
8945 * subprog_info[0].start == 0.
8946 */
8947 if ((i && linfo[i].insn_off <= prev_offset) ||
8948 linfo[i].insn_off >= prog->len) {
8949 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
8950 i, linfo[i].insn_off, prev_offset,
8951 prog->len);
8952 err = -EINVAL;
8953 goto err_free;
8954 }
8955
8956 if (!prog->insnsi[linfo[i].insn_off].code) {
8957 verbose(env,
8958 "Invalid insn code at line_info[%u].insn_off\n",
8959 i);
8960 err = -EINVAL;
8961 goto err_free;
8962 }
8963
8964 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
8965 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
8966 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
8967 err = -EINVAL;
8968 goto err_free;
8969 }
8970
8971 if (s != env->subprog_cnt) {
8972 if (linfo[i].insn_off == sub[s].start) {
8973 sub[s].linfo_idx = i;
8974 s++;
8975 } else if (sub[s].start < linfo[i].insn_off) {
8976 verbose(env, "missing bpf_line_info for func#%u\n", s);
8977 err = -EINVAL;
8978 goto err_free;
8979 }
8980 }
8981
8982 prev_offset = linfo[i].insn_off;
8983 ulinfo += rec_size;
8984 }
8985
8986 if (s != env->subprog_cnt) {
8987 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
8988 env->subprog_cnt - s, s);
8989 err = -EINVAL;
8990 goto err_free;
8991 }
8992
8993 prog->aux->linfo = linfo;
8994 prog->aux->nr_linfo = nr_linfo;
8995
8996 return 0;
8997
8998 err_free:
8999 kvfree(linfo);
9000 return err;
9001 }
9002
check_btf_info(struct bpf_verifier_env * env,const union bpf_attr * attr,union bpf_attr __user * uattr)9003 static int check_btf_info(struct bpf_verifier_env *env,
9004 const union bpf_attr *attr,
9005 union bpf_attr __user *uattr)
9006 {
9007 struct btf *btf;
9008 int err;
9009
9010 if (!attr->func_info_cnt && !attr->line_info_cnt) {
9011 if (check_abnormal_return(env))
9012 return -EINVAL;
9013 return 0;
9014 }
9015
9016 btf = btf_get_by_fd(attr->prog_btf_fd);
9017 if (IS_ERR(btf))
9018 return PTR_ERR(btf);
9019 env->prog->aux->btf = btf;
9020
9021 err = check_btf_func(env, attr, uattr);
9022 if (err)
9023 return err;
9024
9025 err = check_btf_line(env, attr, uattr);
9026 if (err)
9027 return err;
9028
9029 return 0;
9030 }
9031
9032 /* check %cur's range satisfies %old's */
range_within(struct bpf_reg_state * old,struct bpf_reg_state * cur)9033 static bool range_within(struct bpf_reg_state *old,
9034 struct bpf_reg_state *cur)
9035 {
9036 return old->umin_value <= cur->umin_value &&
9037 old->umax_value >= cur->umax_value &&
9038 old->smin_value <= cur->smin_value &&
9039 old->smax_value >= cur->smax_value &&
9040 old->u32_min_value <= cur->u32_min_value &&
9041 old->u32_max_value >= cur->u32_max_value &&
9042 old->s32_min_value <= cur->s32_min_value &&
9043 old->s32_max_value >= cur->s32_max_value;
9044 }
9045
9046 /* If in the old state two registers had the same id, then they need to have
9047 * the same id in the new state as well. But that id could be different from
9048 * the old state, so we need to track the mapping from old to new ids.
9049 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
9050 * regs with old id 5 must also have new id 9 for the new state to be safe. But
9051 * regs with a different old id could still have new id 9, we don't care about
9052 * that.
9053 * So we look through our idmap to see if this old id has been seen before. If
9054 * so, we require the new id to match; otherwise, we add the id pair to the map.
9055 */
check_ids(u32 old_id,u32 cur_id,struct bpf_id_pair * idmap)9056 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
9057 {
9058 unsigned int i;
9059
9060 for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
9061 if (!idmap[i].old) {
9062 /* Reached an empty slot; haven't seen this id before */
9063 idmap[i].old = old_id;
9064 idmap[i].cur = cur_id;
9065 return true;
9066 }
9067 if (idmap[i].old == old_id)
9068 return idmap[i].cur == cur_id;
9069 }
9070 /* We ran out of idmap slots, which should be impossible */
9071 WARN_ON_ONCE(1);
9072 return false;
9073 }
9074
clean_func_state(struct bpf_verifier_env * env,struct bpf_func_state * st)9075 static void clean_func_state(struct bpf_verifier_env *env,
9076 struct bpf_func_state *st)
9077 {
9078 enum bpf_reg_liveness live;
9079 int i, j;
9080
9081 for (i = 0; i < BPF_REG_FP; i++) {
9082 live = st->regs[i].live;
9083 /* liveness must not touch this register anymore */
9084 st->regs[i].live |= REG_LIVE_DONE;
9085 if (!(live & REG_LIVE_READ))
9086 /* since the register is unused, clear its state
9087 * to make further comparison simpler
9088 */
9089 __mark_reg_not_init(env, &st->regs[i]);
9090 }
9091
9092 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
9093 live = st->stack[i].spilled_ptr.live;
9094 /* liveness must not touch this stack slot anymore */
9095 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
9096 if (!(live & REG_LIVE_READ)) {
9097 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9098 for (j = 0; j < BPF_REG_SIZE; j++)
9099 st->stack[i].slot_type[j] = STACK_INVALID;
9100 }
9101 }
9102 }
9103
clean_verifier_state(struct bpf_verifier_env * env,struct bpf_verifier_state * st)9104 static void clean_verifier_state(struct bpf_verifier_env *env,
9105 struct bpf_verifier_state *st)
9106 {
9107 int i;
9108
9109 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
9110 /* all regs in this state in all frames were already marked */
9111 return;
9112
9113 for (i = 0; i <= st->curframe; i++)
9114 clean_func_state(env, st->frame[i]);
9115 }
9116
9117 /* the parentage chains form a tree.
9118 * the verifier states are added to state lists at given insn and
9119 * pushed into state stack for future exploration.
9120 * when the verifier reaches bpf_exit insn some of the verifer states
9121 * stored in the state lists have their final liveness state already,
9122 * but a lot of states will get revised from liveness point of view when
9123 * the verifier explores other branches.
9124 * Example:
9125 * 1: r0 = 1
9126 * 2: if r1 == 100 goto pc+1
9127 * 3: r0 = 2
9128 * 4: exit
9129 * when the verifier reaches exit insn the register r0 in the state list of
9130 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
9131 * of insn 2 and goes exploring further. At the insn 4 it will walk the
9132 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
9133 *
9134 * Since the verifier pushes the branch states as it sees them while exploring
9135 * the program the condition of walking the branch instruction for the second
9136 * time means that all states below this branch were already explored and
9137 * their final liveness markes are already propagated.
9138 * Hence when the verifier completes the search of state list in is_state_visited()
9139 * we can call this clean_live_states() function to mark all liveness states
9140 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
9141 * will not be used.
9142 * This function also clears the registers and stack for states that !READ
9143 * to simplify state merging.
9144 *
9145 * Important note here that walking the same branch instruction in the callee
9146 * doesn't meant that the states are DONE. The verifier has to compare
9147 * the callsites
9148 */
clean_live_states(struct bpf_verifier_env * env,int insn,struct bpf_verifier_state * cur)9149 static void clean_live_states(struct bpf_verifier_env *env, int insn,
9150 struct bpf_verifier_state *cur)
9151 {
9152 struct bpf_verifier_state_list *sl;
9153 int i;
9154
9155 sl = *explored_state(env, insn);
9156 while (sl) {
9157 if (sl->state.branches)
9158 goto next;
9159 if (sl->state.insn_idx != insn ||
9160 sl->state.curframe != cur->curframe)
9161 goto next;
9162 for (i = 0; i <= cur->curframe; i++)
9163 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
9164 goto next;
9165 clean_verifier_state(env, &sl->state);
9166 next:
9167 sl = sl->next;
9168 }
9169 }
9170
9171 /* Returns true if (rold safe implies rcur safe) */
regsafe(struct bpf_verifier_env * env,struct bpf_reg_state * rold,struct bpf_reg_state * rcur,struct bpf_id_pair * idmap)9172 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
9173 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
9174 {
9175 bool equal;
9176
9177 if (!(rold->live & REG_LIVE_READ))
9178 /* explored state didn't use this */
9179 return true;
9180
9181 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
9182
9183 if (rold->type == PTR_TO_STACK)
9184 /* two stack pointers are equal only if they're pointing to
9185 * the same stack frame, since fp-8 in foo != fp-8 in bar
9186 */
9187 return equal && rold->frameno == rcur->frameno;
9188
9189 if (equal)
9190 return true;
9191
9192 if (rold->type == NOT_INIT)
9193 /* explored state can't have used this */
9194 return true;
9195 if (rcur->type == NOT_INIT)
9196 return false;
9197 switch (base_type(rold->type)) {
9198 case SCALAR_VALUE:
9199 if (env->explore_alu_limits)
9200 return false;
9201 if (rcur->type == SCALAR_VALUE) {
9202 if (!rold->precise && !rcur->precise)
9203 return true;
9204 /* new val must satisfy old val knowledge */
9205 return range_within(rold, rcur) &&
9206 tnum_in(rold->var_off, rcur->var_off);
9207 } else {
9208 /* We're trying to use a pointer in place of a scalar.
9209 * Even if the scalar was unbounded, this could lead to
9210 * pointer leaks because scalars are allowed to leak
9211 * while pointers are not. We could make this safe in
9212 * special cases if root is calling us, but it's
9213 * probably not worth the hassle.
9214 */
9215 return false;
9216 }
9217 case PTR_TO_MAP_VALUE:
9218 /* a PTR_TO_MAP_VALUE could be safe to use as a
9219 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
9220 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
9221 * checked, doing so could have affected others with the same
9222 * id, and we can't check for that because we lost the id when
9223 * we converted to a PTR_TO_MAP_VALUE.
9224 */
9225 if (type_may_be_null(rold->type)) {
9226 if (!type_may_be_null(rcur->type))
9227 return false;
9228 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
9229 return false;
9230 /* Check our ids match any regs they're supposed to */
9231 return check_ids(rold->id, rcur->id, idmap);
9232 }
9233
9234 /* If the new min/max/var_off satisfy the old ones and
9235 * everything else matches, we are OK.
9236 * 'id' is not compared, since it's only used for maps with
9237 * bpf_spin_lock inside map element and in such cases if
9238 * the rest of the prog is valid for one map element then
9239 * it's valid for all map elements regardless of the key
9240 * used in bpf_map_lookup()
9241 */
9242 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
9243 range_within(rold, rcur) &&
9244 tnum_in(rold->var_off, rcur->var_off);
9245 case PTR_TO_PACKET_META:
9246 case PTR_TO_PACKET:
9247 if (rcur->type != rold->type)
9248 return false;
9249 /* We must have at least as much range as the old ptr
9250 * did, so that any accesses which were safe before are
9251 * still safe. This is true even if old range < old off,
9252 * since someone could have accessed through (ptr - k), or
9253 * even done ptr -= k in a register, to get a safe access.
9254 */
9255 if (rold->range > rcur->range)
9256 return false;
9257 /* If the offsets don't match, we can't trust our alignment;
9258 * nor can we be sure that we won't fall out of range.
9259 */
9260 if (rold->off != rcur->off)
9261 return false;
9262 /* id relations must be preserved */
9263 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
9264 return false;
9265 /* new val must satisfy old val knowledge */
9266 return range_within(rold, rcur) &&
9267 tnum_in(rold->var_off, rcur->var_off);
9268 case PTR_TO_CTX:
9269 case CONST_PTR_TO_MAP:
9270 case PTR_TO_PACKET_END:
9271 case PTR_TO_FLOW_KEYS:
9272 case PTR_TO_SOCKET:
9273 case PTR_TO_SOCK_COMMON:
9274 case PTR_TO_TCP_SOCK:
9275 case PTR_TO_XDP_SOCK:
9276 /* Only valid matches are exact, which memcmp() above
9277 * would have accepted
9278 */
9279 default:
9280 /* Don't know what's going on, just say it's not safe */
9281 return false;
9282 }
9283
9284 /* Shouldn't get here; if we do, say it's not safe */
9285 WARN_ON_ONCE(1);
9286 return false;
9287 }
9288
stacksafe(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur,struct bpf_id_pair * idmap)9289 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
9290 struct bpf_func_state *cur, struct bpf_id_pair *idmap)
9291 {
9292 int i, spi;
9293
9294 /* walk slots of the explored stack and ignore any additional
9295 * slots in the current stack, since explored(safe) state
9296 * didn't use them
9297 */
9298 for (i = 0; i < old->allocated_stack; i++) {
9299 spi = i / BPF_REG_SIZE;
9300
9301 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
9302 i += BPF_REG_SIZE - 1;
9303 /* explored state didn't use this */
9304 continue;
9305 }
9306
9307 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
9308 continue;
9309
9310 /* explored stack has more populated slots than current stack
9311 * and these slots were used
9312 */
9313 if (i >= cur->allocated_stack)
9314 return false;
9315
9316 /* if old state was safe with misc data in the stack
9317 * it will be safe with zero-initialized stack.
9318 * The opposite is not true
9319 */
9320 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
9321 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
9322 continue;
9323 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
9324 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
9325 /* Ex: old explored (safe) state has STACK_SPILL in
9326 * this stack slot, but current has STACK_MISC ->
9327 * this verifier states are not equivalent,
9328 * return false to continue verification of this path
9329 */
9330 return false;
9331 if (i % BPF_REG_SIZE)
9332 continue;
9333 if (old->stack[spi].slot_type[0] != STACK_SPILL)
9334 continue;
9335 if (!regsafe(env, &old->stack[spi].spilled_ptr,
9336 &cur->stack[spi].spilled_ptr, idmap))
9337 /* when explored and current stack slot are both storing
9338 * spilled registers, check that stored pointers types
9339 * are the same as well.
9340 * Ex: explored safe path could have stored
9341 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
9342 * but current path has stored:
9343 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
9344 * such verifier states are not equivalent.
9345 * return false to continue verification of this path
9346 */
9347 return false;
9348 }
9349 return true;
9350 }
9351
refsafe(struct bpf_func_state * old,struct bpf_func_state * cur)9352 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
9353 {
9354 if (old->acquired_refs != cur->acquired_refs)
9355 return false;
9356 return !memcmp(old->refs, cur->refs,
9357 sizeof(*old->refs) * old->acquired_refs);
9358 }
9359
9360 /* compare two verifier states
9361 *
9362 * all states stored in state_list are known to be valid, since
9363 * verifier reached 'bpf_exit' instruction through them
9364 *
9365 * this function is called when verifier exploring different branches of
9366 * execution popped from the state stack. If it sees an old state that has
9367 * more strict register state and more strict stack state then this execution
9368 * branch doesn't need to be explored further, since verifier already
9369 * concluded that more strict state leads to valid finish.
9370 *
9371 * Therefore two states are equivalent if register state is more conservative
9372 * and explored stack state is more conservative than the current one.
9373 * Example:
9374 * explored current
9375 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
9376 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
9377 *
9378 * In other words if current stack state (one being explored) has more
9379 * valid slots than old one that already passed validation, it means
9380 * the verifier can stop exploring and conclude that current state is valid too
9381 *
9382 * Similarly with registers. If explored state has register type as invalid
9383 * whereas register type in current state is meaningful, it means that
9384 * the current state will reach 'bpf_exit' instruction safely
9385 */
func_states_equal(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur)9386 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
9387 struct bpf_func_state *cur)
9388 {
9389 int i;
9390
9391 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
9392 for (i = 0; i < MAX_BPF_REG; i++)
9393 if (!regsafe(env, &old->regs[i], &cur->regs[i],
9394 env->idmap_scratch))
9395 return false;
9396
9397 if (!stacksafe(env, old, cur, env->idmap_scratch))
9398 return false;
9399
9400 if (!refsafe(old, cur))
9401 return false;
9402
9403 return true;
9404 }
9405
states_equal(struct bpf_verifier_env * env,struct bpf_verifier_state * old,struct bpf_verifier_state * cur)9406 static bool states_equal(struct bpf_verifier_env *env,
9407 struct bpf_verifier_state *old,
9408 struct bpf_verifier_state *cur)
9409 {
9410 int i;
9411
9412 if (old->curframe != cur->curframe)
9413 return false;
9414
9415 /* Verification state from speculative execution simulation
9416 * must never prune a non-speculative execution one.
9417 */
9418 if (old->speculative && !cur->speculative)
9419 return false;
9420
9421 if (old->active_spin_lock != cur->active_spin_lock)
9422 return false;
9423
9424 /* for states to be equal callsites have to be the same
9425 * and all frame states need to be equivalent
9426 */
9427 for (i = 0; i <= old->curframe; i++) {
9428 if (old->frame[i]->callsite != cur->frame[i]->callsite)
9429 return false;
9430 if (!func_states_equal(env, old->frame[i], cur->frame[i]))
9431 return false;
9432 }
9433 return true;
9434 }
9435
9436 /* Return 0 if no propagation happened. Return negative error code if error
9437 * happened. Otherwise, return the propagated bit.
9438 */
propagate_liveness_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct bpf_reg_state * parent_reg)9439 static int propagate_liveness_reg(struct bpf_verifier_env *env,
9440 struct bpf_reg_state *reg,
9441 struct bpf_reg_state *parent_reg)
9442 {
9443 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
9444 u8 flag = reg->live & REG_LIVE_READ;
9445 int err;
9446
9447 /* When comes here, read flags of PARENT_REG or REG could be any of
9448 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
9449 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
9450 */
9451 if (parent_flag == REG_LIVE_READ64 ||
9452 /* Or if there is no read flag from REG. */
9453 !flag ||
9454 /* Or if the read flag from REG is the same as PARENT_REG. */
9455 parent_flag == flag)
9456 return 0;
9457
9458 err = mark_reg_read(env, reg, parent_reg, flag);
9459 if (err)
9460 return err;
9461
9462 return flag;
9463 }
9464
9465 /* A write screens off any subsequent reads; but write marks come from the
9466 * straight-line code between a state and its parent. When we arrive at an
9467 * equivalent state (jump target or such) we didn't arrive by the straight-line
9468 * code, so read marks in the state must propagate to the parent regardless
9469 * of the state's write marks. That's what 'parent == state->parent' comparison
9470 * in mark_reg_read() is for.
9471 */
propagate_liveness(struct bpf_verifier_env * env,const struct bpf_verifier_state * vstate,struct bpf_verifier_state * vparent)9472 static int propagate_liveness(struct bpf_verifier_env *env,
9473 const struct bpf_verifier_state *vstate,
9474 struct bpf_verifier_state *vparent)
9475 {
9476 struct bpf_reg_state *state_reg, *parent_reg;
9477 struct bpf_func_state *state, *parent;
9478 int i, frame, err = 0;
9479
9480 if (vparent->curframe != vstate->curframe) {
9481 WARN(1, "propagate_live: parent frame %d current frame %d\n",
9482 vparent->curframe, vstate->curframe);
9483 return -EFAULT;
9484 }
9485 /* Propagate read liveness of registers... */
9486 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
9487 for (frame = 0; frame <= vstate->curframe; frame++) {
9488 parent = vparent->frame[frame];
9489 state = vstate->frame[frame];
9490 parent_reg = parent->regs;
9491 state_reg = state->regs;
9492 /* We don't need to worry about FP liveness, it's read-only */
9493 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
9494 err = propagate_liveness_reg(env, &state_reg[i],
9495 &parent_reg[i]);
9496 if (err < 0)
9497 return err;
9498 if (err == REG_LIVE_READ64)
9499 mark_insn_zext(env, &parent_reg[i]);
9500 }
9501
9502 /* Propagate stack slots. */
9503 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
9504 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
9505 parent_reg = &parent->stack[i].spilled_ptr;
9506 state_reg = &state->stack[i].spilled_ptr;
9507 err = propagate_liveness_reg(env, state_reg,
9508 parent_reg);
9509 if (err < 0)
9510 return err;
9511 }
9512 }
9513 return 0;
9514 }
9515
9516 /* find precise scalars in the previous equivalent state and
9517 * propagate them into the current state
9518 */
propagate_precision(struct bpf_verifier_env * env,const struct bpf_verifier_state * old)9519 static int propagate_precision(struct bpf_verifier_env *env,
9520 const struct bpf_verifier_state *old)
9521 {
9522 struct bpf_reg_state *state_reg;
9523 struct bpf_func_state *state;
9524 int i, err = 0;
9525
9526 state = old->frame[old->curframe];
9527 state_reg = state->regs;
9528 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
9529 if (state_reg->type != SCALAR_VALUE ||
9530 !state_reg->precise)
9531 continue;
9532 if (env->log.level & BPF_LOG_LEVEL2)
9533 verbose(env, "propagating r%d\n", i);
9534 err = mark_chain_precision(env, i);
9535 if (err < 0)
9536 return err;
9537 }
9538
9539 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
9540 if (state->stack[i].slot_type[0] != STACK_SPILL)
9541 continue;
9542 state_reg = &state->stack[i].spilled_ptr;
9543 if (state_reg->type != SCALAR_VALUE ||
9544 !state_reg->precise)
9545 continue;
9546 if (env->log.level & BPF_LOG_LEVEL2)
9547 verbose(env, "propagating fp%d\n",
9548 (-i - 1) * BPF_REG_SIZE);
9549 err = mark_chain_precision_stack(env, i);
9550 if (err < 0)
9551 return err;
9552 }
9553 return 0;
9554 }
9555
states_maybe_looping(struct bpf_verifier_state * old,struct bpf_verifier_state * cur)9556 static bool states_maybe_looping(struct bpf_verifier_state *old,
9557 struct bpf_verifier_state *cur)
9558 {
9559 struct bpf_func_state *fold, *fcur;
9560 int i, fr = cur->curframe;
9561
9562 if (old->curframe != fr)
9563 return false;
9564
9565 fold = old->frame[fr];
9566 fcur = cur->frame[fr];
9567 for (i = 0; i < MAX_BPF_REG; i++)
9568 if (memcmp(&fold->regs[i], &fcur->regs[i],
9569 offsetof(struct bpf_reg_state, parent)))
9570 return false;
9571 return true;
9572 }
9573
9574
is_state_visited(struct bpf_verifier_env * env,int insn_idx)9575 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
9576 {
9577 struct bpf_verifier_state_list *new_sl;
9578 struct bpf_verifier_state_list *sl, **pprev;
9579 struct bpf_verifier_state *cur = env->cur_state, *new;
9580 int i, j, err, states_cnt = 0;
9581 bool add_new_state = env->test_state_freq ? true : false;
9582
9583 cur->last_insn_idx = env->prev_insn_idx;
9584 if (!env->insn_aux_data[insn_idx].prune_point)
9585 /* this 'insn_idx' instruction wasn't marked, so we will not
9586 * be doing state search here
9587 */
9588 return 0;
9589
9590 /* bpf progs typically have pruning point every 4 instructions
9591 * http://vger.kernel.org/bpfconf2019.html#session-1
9592 * Do not add new state for future pruning if the verifier hasn't seen
9593 * at least 2 jumps and at least 8 instructions.
9594 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
9595 * In tests that amounts to up to 50% reduction into total verifier
9596 * memory consumption and 20% verifier time speedup.
9597 */
9598 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
9599 env->insn_processed - env->prev_insn_processed >= 8)
9600 add_new_state = true;
9601
9602 pprev = explored_state(env, insn_idx);
9603 sl = *pprev;
9604
9605 clean_live_states(env, insn_idx, cur);
9606
9607 while (sl) {
9608 states_cnt++;
9609 if (sl->state.insn_idx != insn_idx)
9610 goto next;
9611 if (sl->state.branches) {
9612 if (states_maybe_looping(&sl->state, cur) &&
9613 states_equal(env, &sl->state, cur)) {
9614 verbose_linfo(env, insn_idx, "; ");
9615 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
9616 return -EINVAL;
9617 }
9618 /* if the verifier is processing a loop, avoid adding new state
9619 * too often, since different loop iterations have distinct
9620 * states and may not help future pruning.
9621 * This threshold shouldn't be too low to make sure that
9622 * a loop with large bound will be rejected quickly.
9623 * The most abusive loop will be:
9624 * r1 += 1
9625 * if r1 < 1000000 goto pc-2
9626 * 1M insn_procssed limit / 100 == 10k peak states.
9627 * This threshold shouldn't be too high either, since states
9628 * at the end of the loop are likely to be useful in pruning.
9629 */
9630 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
9631 env->insn_processed - env->prev_insn_processed < 100)
9632 add_new_state = false;
9633 goto miss;
9634 }
9635 if (states_equal(env, &sl->state, cur)) {
9636 sl->hit_cnt++;
9637 /* reached equivalent register/stack state,
9638 * prune the search.
9639 * Registers read by the continuation are read by us.
9640 * If we have any write marks in env->cur_state, they
9641 * will prevent corresponding reads in the continuation
9642 * from reaching our parent (an explored_state). Our
9643 * own state will get the read marks recorded, but
9644 * they'll be immediately forgotten as we're pruning
9645 * this state and will pop a new one.
9646 */
9647 err = propagate_liveness(env, &sl->state, cur);
9648
9649 /* if previous state reached the exit with precision and
9650 * current state is equivalent to it (except precsion marks)
9651 * the precision needs to be propagated back in
9652 * the current state.
9653 */
9654 err = err ? : push_jmp_history(env, cur);
9655 err = err ? : propagate_precision(env, &sl->state);
9656 if (err)
9657 return err;
9658 return 1;
9659 }
9660 miss:
9661 /* when new state is not going to be added do not increase miss count.
9662 * Otherwise several loop iterations will remove the state
9663 * recorded earlier. The goal of these heuristics is to have
9664 * states from some iterations of the loop (some in the beginning
9665 * and some at the end) to help pruning.
9666 */
9667 if (add_new_state)
9668 sl->miss_cnt++;
9669 /* heuristic to determine whether this state is beneficial
9670 * to keep checking from state equivalence point of view.
9671 * Higher numbers increase max_states_per_insn and verification time,
9672 * but do not meaningfully decrease insn_processed.
9673 */
9674 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
9675 /* the state is unlikely to be useful. Remove it to
9676 * speed up verification
9677 */
9678 *pprev = sl->next;
9679 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
9680 u32 br = sl->state.branches;
9681
9682 WARN_ONCE(br,
9683 "BUG live_done but branches_to_explore %d\n",
9684 br);
9685 free_verifier_state(&sl->state, false);
9686 kfree(sl);
9687 env->peak_states--;
9688 } else {
9689 /* cannot free this state, since parentage chain may
9690 * walk it later. Add it for free_list instead to
9691 * be freed at the end of verification
9692 */
9693 sl->next = env->free_list;
9694 env->free_list = sl;
9695 }
9696 sl = *pprev;
9697 continue;
9698 }
9699 next:
9700 pprev = &sl->next;
9701 sl = *pprev;
9702 }
9703
9704 if (env->max_states_per_insn < states_cnt)
9705 env->max_states_per_insn = states_cnt;
9706
9707 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
9708 return push_jmp_history(env, cur);
9709
9710 if (!add_new_state)
9711 return push_jmp_history(env, cur);
9712
9713 /* There were no equivalent states, remember the current one.
9714 * Technically the current state is not proven to be safe yet,
9715 * but it will either reach outer most bpf_exit (which means it's safe)
9716 * or it will be rejected. When there are no loops the verifier won't be
9717 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
9718 * again on the way to bpf_exit.
9719 * When looping the sl->state.branches will be > 0 and this state
9720 * will not be considered for equivalence until branches == 0.
9721 */
9722 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
9723 if (!new_sl)
9724 return -ENOMEM;
9725 env->total_states++;
9726 env->peak_states++;
9727 env->prev_jmps_processed = env->jmps_processed;
9728 env->prev_insn_processed = env->insn_processed;
9729
9730 /* add new state to the head of linked list */
9731 new = &new_sl->state;
9732 err = copy_verifier_state(new, cur);
9733 if (err) {
9734 free_verifier_state(new, false);
9735 kfree(new_sl);
9736 return err;
9737 }
9738 new->insn_idx = insn_idx;
9739 WARN_ONCE(new->branches != 1,
9740 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
9741
9742 cur->parent = new;
9743 cur->first_insn_idx = insn_idx;
9744 clear_jmp_history(cur);
9745 new_sl->next = *explored_state(env, insn_idx);
9746 *explored_state(env, insn_idx) = new_sl;
9747 /* connect new state to parentage chain. Current frame needs all
9748 * registers connected. Only r6 - r9 of the callers are alive (pushed
9749 * to the stack implicitly by JITs) so in callers' frames connect just
9750 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
9751 * the state of the call instruction (with WRITTEN set), and r0 comes
9752 * from callee with its full parentage chain, anyway.
9753 */
9754 /* clear write marks in current state: the writes we did are not writes
9755 * our child did, so they don't screen off its reads from us.
9756 * (There are no read marks in current state, because reads always mark
9757 * their parent and current state never has children yet. Only
9758 * explored_states can get read marks.)
9759 */
9760 for (j = 0; j <= cur->curframe; j++) {
9761 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
9762 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
9763 for (i = 0; i < BPF_REG_FP; i++)
9764 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
9765 }
9766
9767 /* all stack frames are accessible from callee, clear them all */
9768 for (j = 0; j <= cur->curframe; j++) {
9769 struct bpf_func_state *frame = cur->frame[j];
9770 struct bpf_func_state *newframe = new->frame[j];
9771
9772 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
9773 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
9774 frame->stack[i].spilled_ptr.parent =
9775 &newframe->stack[i].spilled_ptr;
9776 }
9777 }
9778 return 0;
9779 }
9780
9781 /* Return true if it's OK to have the same insn return a different type. */
reg_type_mismatch_ok(enum bpf_reg_type type)9782 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
9783 {
9784 switch (base_type(type)) {
9785 case PTR_TO_CTX:
9786 case PTR_TO_SOCKET:
9787 case PTR_TO_SOCK_COMMON:
9788 case PTR_TO_TCP_SOCK:
9789 case PTR_TO_XDP_SOCK:
9790 case PTR_TO_BTF_ID:
9791 return false;
9792 default:
9793 return true;
9794 }
9795 }
9796
9797 /* If an instruction was previously used with particular pointer types, then we
9798 * need to be careful to avoid cases such as the below, where it may be ok
9799 * for one branch accessing the pointer, but not ok for the other branch:
9800 *
9801 * R1 = sock_ptr
9802 * goto X;
9803 * ...
9804 * R1 = some_other_valid_ptr;
9805 * goto X;
9806 * ...
9807 * R2 = *(u32 *)(R1 + 0);
9808 */
reg_type_mismatch(enum bpf_reg_type src,enum bpf_reg_type prev)9809 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
9810 {
9811 return src != prev && (!reg_type_mismatch_ok(src) ||
9812 !reg_type_mismatch_ok(prev));
9813 }
9814
do_check(struct bpf_verifier_env * env)9815 static int do_check(struct bpf_verifier_env *env)
9816 {
9817 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
9818 struct bpf_verifier_state *state = env->cur_state;
9819 struct bpf_insn *insns = env->prog->insnsi;
9820 struct bpf_reg_state *regs;
9821 int insn_cnt = env->prog->len;
9822 bool do_print_state = false;
9823 int prev_insn_idx = -1;
9824
9825 for (;;) {
9826 struct bpf_insn *insn;
9827 u8 class;
9828 int err;
9829
9830 env->prev_insn_idx = prev_insn_idx;
9831 if (env->insn_idx >= insn_cnt) {
9832 verbose(env, "invalid insn idx %d insn_cnt %d\n",
9833 env->insn_idx, insn_cnt);
9834 return -EFAULT;
9835 }
9836
9837 insn = &insns[env->insn_idx];
9838 class = BPF_CLASS(insn->code);
9839
9840 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
9841 verbose(env,
9842 "BPF program is too large. Processed %d insn\n",
9843 env->insn_processed);
9844 return -E2BIG;
9845 }
9846
9847 err = is_state_visited(env, env->insn_idx);
9848 if (err < 0)
9849 return err;
9850 if (err == 1) {
9851 /* found equivalent state, can prune the search */
9852 if (env->log.level & BPF_LOG_LEVEL) {
9853 if (do_print_state)
9854 verbose(env, "\nfrom %d to %d%s: safe\n",
9855 env->prev_insn_idx, env->insn_idx,
9856 env->cur_state->speculative ?
9857 " (speculative execution)" : "");
9858 else
9859 verbose(env, "%d: safe\n", env->insn_idx);
9860 }
9861 goto process_bpf_exit;
9862 }
9863
9864 if (signal_pending(current))
9865 return -EAGAIN;
9866
9867 if (need_resched())
9868 cond_resched();
9869
9870 if (env->log.level & BPF_LOG_LEVEL2 ||
9871 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
9872 if (env->log.level & BPF_LOG_LEVEL2)
9873 verbose(env, "%d:", env->insn_idx);
9874 else
9875 verbose(env, "\nfrom %d to %d%s:",
9876 env->prev_insn_idx, env->insn_idx,
9877 env->cur_state->speculative ?
9878 " (speculative execution)" : "");
9879 print_verifier_state(env, state->frame[state->curframe]);
9880 do_print_state = false;
9881 }
9882
9883 if (env->log.level & BPF_LOG_LEVEL) {
9884 const struct bpf_insn_cbs cbs = {
9885 .cb_print = verbose,
9886 .private_data = env,
9887 };
9888
9889 verbose_linfo(env, env->insn_idx, "; ");
9890 verbose(env, "%d: ", env->insn_idx);
9891 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
9892 }
9893
9894 if (bpf_prog_is_dev_bound(env->prog->aux)) {
9895 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
9896 env->prev_insn_idx);
9897 if (err)
9898 return err;
9899 }
9900
9901 regs = cur_regs(env);
9902 sanitize_mark_insn_seen(env);
9903 prev_insn_idx = env->insn_idx;
9904
9905 if (class == BPF_ALU || class == BPF_ALU64) {
9906 err = check_alu_op(env, insn);
9907 if (err)
9908 return err;
9909
9910 } else if (class == BPF_LDX) {
9911 enum bpf_reg_type *prev_src_type, src_reg_type;
9912
9913 /* check for reserved fields is already done */
9914
9915 /* check src operand */
9916 err = check_reg_arg(env, insn->src_reg, SRC_OP);
9917 if (err)
9918 return err;
9919
9920 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
9921 if (err)
9922 return err;
9923
9924 src_reg_type = regs[insn->src_reg].type;
9925
9926 /* check that memory (src_reg + off) is readable,
9927 * the state of dst_reg will be updated by this func
9928 */
9929 err = check_mem_access(env, env->insn_idx, insn->src_reg,
9930 insn->off, BPF_SIZE(insn->code),
9931 BPF_READ, insn->dst_reg, false);
9932 if (err)
9933 return err;
9934
9935 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
9936
9937 if (*prev_src_type == NOT_INIT) {
9938 /* saw a valid insn
9939 * dst_reg = *(u32 *)(src_reg + off)
9940 * save type to validate intersecting paths
9941 */
9942 *prev_src_type = src_reg_type;
9943
9944 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9945 /* ABuser program is trying to use the same insn
9946 * dst_reg = *(u32*) (src_reg + off)
9947 * with different pointer types:
9948 * src_reg == ctx in one branch and
9949 * src_reg == stack|map in some other branch.
9950 * Reject it.
9951 */
9952 verbose(env, "same insn cannot be used with different pointers\n");
9953 return -EINVAL;
9954 }
9955
9956 } else if (class == BPF_STX) {
9957 enum bpf_reg_type *prev_dst_type, dst_reg_type;
9958
9959 if (BPF_MODE(insn->code) == BPF_XADD) {
9960 err = check_xadd(env, env->insn_idx, insn);
9961 if (err)
9962 return err;
9963 env->insn_idx++;
9964 continue;
9965 }
9966
9967 /* check src1 operand */
9968 err = check_reg_arg(env, insn->src_reg, SRC_OP);
9969 if (err)
9970 return err;
9971 /* check src2 operand */
9972 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
9973 if (err)
9974 return err;
9975
9976 dst_reg_type = regs[insn->dst_reg].type;
9977
9978 /* check that memory (dst_reg + off) is writeable */
9979 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
9980 insn->off, BPF_SIZE(insn->code),
9981 BPF_WRITE, insn->src_reg, false);
9982 if (err)
9983 return err;
9984
9985 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
9986
9987 if (*prev_dst_type == NOT_INIT) {
9988 *prev_dst_type = dst_reg_type;
9989 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
9990 verbose(env, "same insn cannot be used with different pointers\n");
9991 return -EINVAL;
9992 }
9993
9994 } else if (class == BPF_ST) {
9995 if (BPF_MODE(insn->code) != BPF_MEM ||
9996 insn->src_reg != BPF_REG_0) {
9997 verbose(env, "BPF_ST uses reserved fields\n");
9998 return -EINVAL;
9999 }
10000 /* check src operand */
10001 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10002 if (err)
10003 return err;
10004
10005 if (is_ctx_reg(env, insn->dst_reg)) {
10006 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
10007 insn->dst_reg,
10008 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
10009 return -EACCES;
10010 }
10011
10012 /* check that memory (dst_reg + off) is writeable */
10013 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10014 insn->off, BPF_SIZE(insn->code),
10015 BPF_WRITE, -1, false);
10016 if (err)
10017 return err;
10018
10019 } else if (class == BPF_JMP || class == BPF_JMP32) {
10020 u8 opcode = BPF_OP(insn->code);
10021
10022 env->jmps_processed++;
10023 if (opcode == BPF_CALL) {
10024 if (BPF_SRC(insn->code) != BPF_K ||
10025 insn->off != 0 ||
10026 (insn->src_reg != BPF_REG_0 &&
10027 insn->src_reg != BPF_PSEUDO_CALL) ||
10028 insn->dst_reg != BPF_REG_0 ||
10029 class == BPF_JMP32) {
10030 verbose(env, "BPF_CALL uses reserved fields\n");
10031 return -EINVAL;
10032 }
10033
10034 if (env->cur_state->active_spin_lock &&
10035 (insn->src_reg == BPF_PSEUDO_CALL ||
10036 insn->imm != BPF_FUNC_spin_unlock)) {
10037 verbose(env, "function calls are not allowed while holding a lock\n");
10038 return -EINVAL;
10039 }
10040 if (insn->src_reg == BPF_PSEUDO_CALL)
10041 err = check_func_call(env, insn, &env->insn_idx);
10042 else
10043 err = check_helper_call(env, insn->imm, env->insn_idx);
10044 if (err)
10045 return err;
10046
10047 } else if (opcode == BPF_JA) {
10048 if (BPF_SRC(insn->code) != BPF_K ||
10049 insn->imm != 0 ||
10050 insn->src_reg != BPF_REG_0 ||
10051 insn->dst_reg != BPF_REG_0 ||
10052 class == BPF_JMP32) {
10053 verbose(env, "BPF_JA uses reserved fields\n");
10054 return -EINVAL;
10055 }
10056
10057 env->insn_idx += insn->off + 1;
10058 continue;
10059
10060 } else if (opcode == BPF_EXIT) {
10061 if (BPF_SRC(insn->code) != BPF_K ||
10062 insn->imm != 0 ||
10063 insn->src_reg != BPF_REG_0 ||
10064 insn->dst_reg != BPF_REG_0 ||
10065 class == BPF_JMP32) {
10066 verbose(env, "BPF_EXIT uses reserved fields\n");
10067 return -EINVAL;
10068 }
10069
10070 if (env->cur_state->active_spin_lock) {
10071 verbose(env, "bpf_spin_unlock is missing\n");
10072 return -EINVAL;
10073 }
10074
10075 if (state->curframe) {
10076 /* exit from nested function */
10077 err = prepare_func_exit(env, &env->insn_idx);
10078 if (err)
10079 return err;
10080 do_print_state = true;
10081 continue;
10082 }
10083
10084 err = check_reference_leak(env);
10085 if (err)
10086 return err;
10087
10088 err = check_return_code(env);
10089 if (err)
10090 return err;
10091 process_bpf_exit:
10092 update_branch_counts(env, env->cur_state);
10093 err = pop_stack(env, &prev_insn_idx,
10094 &env->insn_idx, pop_log);
10095 if (err < 0) {
10096 if (err != -ENOENT)
10097 return err;
10098 break;
10099 } else {
10100 do_print_state = true;
10101 continue;
10102 }
10103 } else {
10104 err = check_cond_jmp_op(env, insn, &env->insn_idx);
10105 if (err)
10106 return err;
10107 }
10108 } else if (class == BPF_LD) {
10109 u8 mode = BPF_MODE(insn->code);
10110
10111 if (mode == BPF_ABS || mode == BPF_IND) {
10112 err = check_ld_abs(env, insn);
10113 if (err)
10114 return err;
10115
10116 } else if (mode == BPF_IMM) {
10117 err = check_ld_imm(env, insn);
10118 if (err)
10119 return err;
10120
10121 env->insn_idx++;
10122 sanitize_mark_insn_seen(env);
10123 } else {
10124 verbose(env, "invalid BPF_LD mode\n");
10125 return -EINVAL;
10126 }
10127 } else {
10128 verbose(env, "unknown insn class %d\n", class);
10129 return -EINVAL;
10130 }
10131
10132 env->insn_idx++;
10133 }
10134
10135 return 0;
10136 }
10137
10138 /* replace pseudo btf_id with kernel symbol address */
check_pseudo_btf_id(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_insn_aux_data * aux)10139 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
10140 struct bpf_insn *insn,
10141 struct bpf_insn_aux_data *aux)
10142 {
10143 const struct btf_var_secinfo *vsi;
10144 const struct btf_type *datasec;
10145 const struct btf_type *t;
10146 const char *sym_name;
10147 bool percpu = false;
10148 u32 type, id = insn->imm;
10149 s32 datasec_id;
10150 u64 addr;
10151 int i;
10152
10153 if (!btf_vmlinux) {
10154 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
10155 return -EINVAL;
10156 }
10157
10158 if (insn[1].imm != 0) {
10159 verbose(env, "reserved field (insn[1].imm) is used in pseudo_btf_id ldimm64 insn.\n");
10160 return -EINVAL;
10161 }
10162
10163 t = btf_type_by_id(btf_vmlinux, id);
10164 if (!t) {
10165 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
10166 return -ENOENT;
10167 }
10168
10169 if (!btf_type_is_var(t)) {
10170 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n",
10171 id);
10172 return -EINVAL;
10173 }
10174
10175 sym_name = btf_name_by_offset(btf_vmlinux, t->name_off);
10176 addr = kallsyms_lookup_name(sym_name);
10177 if (!addr) {
10178 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
10179 sym_name);
10180 return -ENOENT;
10181 }
10182
10183 datasec_id = btf_find_by_name_kind(btf_vmlinux, ".data..percpu",
10184 BTF_KIND_DATASEC);
10185 if (datasec_id > 0) {
10186 datasec = btf_type_by_id(btf_vmlinux, datasec_id);
10187 for_each_vsi(i, datasec, vsi) {
10188 if (vsi->type == id) {
10189 percpu = true;
10190 break;
10191 }
10192 }
10193 }
10194
10195 insn[0].imm = (u32)addr;
10196 insn[1].imm = addr >> 32;
10197
10198 type = t->type;
10199 t = btf_type_skip_modifiers(btf_vmlinux, type, NULL);
10200 if (percpu) {
10201 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
10202 aux->btf_var.btf_id = type;
10203 } else if (!btf_type_is_struct(t)) {
10204 const struct btf_type *ret;
10205 const char *tname;
10206 u32 tsize;
10207
10208 /* resolve the type size of ksym. */
10209 ret = btf_resolve_size(btf_vmlinux, t, &tsize);
10210 if (IS_ERR(ret)) {
10211 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
10212 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
10213 tname, PTR_ERR(ret));
10214 return -EINVAL;
10215 }
10216 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
10217 aux->btf_var.mem_size = tsize;
10218 } else {
10219 aux->btf_var.reg_type = PTR_TO_BTF_ID;
10220 aux->btf_var.btf_id = type;
10221 }
10222 return 0;
10223 }
10224
check_map_prealloc(struct bpf_map * map)10225 static int check_map_prealloc(struct bpf_map *map)
10226 {
10227 return (map->map_type != BPF_MAP_TYPE_HASH &&
10228 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
10229 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
10230 !(map->map_flags & BPF_F_NO_PREALLOC);
10231 }
10232
is_tracing_prog_type(enum bpf_prog_type type)10233 static bool is_tracing_prog_type(enum bpf_prog_type type)
10234 {
10235 switch (type) {
10236 case BPF_PROG_TYPE_KPROBE:
10237 case BPF_PROG_TYPE_TRACEPOINT:
10238 case BPF_PROG_TYPE_PERF_EVENT:
10239 case BPF_PROG_TYPE_RAW_TRACEPOINT:
10240 return true;
10241 default:
10242 return false;
10243 }
10244 }
10245
is_preallocated_map(struct bpf_map * map)10246 static bool is_preallocated_map(struct bpf_map *map)
10247 {
10248 if (!check_map_prealloc(map))
10249 return false;
10250 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
10251 return false;
10252 return true;
10253 }
10254
check_map_prog_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,struct bpf_prog * prog)10255 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
10256 struct bpf_map *map,
10257 struct bpf_prog *prog)
10258
10259 {
10260 enum bpf_prog_type prog_type = resolve_prog_type(prog);
10261 /*
10262 * Validate that trace type programs use preallocated hash maps.
10263 *
10264 * For programs attached to PERF events this is mandatory as the
10265 * perf NMI can hit any arbitrary code sequence.
10266 *
10267 * All other trace types using preallocated hash maps are unsafe as
10268 * well because tracepoint or kprobes can be inside locked regions
10269 * of the memory allocator or at a place where a recursion into the
10270 * memory allocator would see inconsistent state.
10271 *
10272 * On RT enabled kernels run-time allocation of all trace type
10273 * programs is strictly prohibited due to lock type constraints. On
10274 * !RT kernels it is allowed for backwards compatibility reasons for
10275 * now, but warnings are emitted so developers are made aware of
10276 * the unsafety and can fix their programs before this is enforced.
10277 */
10278 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
10279 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
10280 verbose(env, "perf_event programs can only use preallocated hash map\n");
10281 return -EINVAL;
10282 }
10283 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
10284 verbose(env, "trace type programs can only use preallocated hash map\n");
10285 return -EINVAL;
10286 }
10287 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
10288 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
10289 }
10290
10291 if ((is_tracing_prog_type(prog_type) ||
10292 prog_type == BPF_PROG_TYPE_SOCKET_FILTER) &&
10293 map_value_has_spin_lock(map)) {
10294 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
10295 return -EINVAL;
10296 }
10297
10298 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
10299 !bpf_offload_prog_map_match(prog, map)) {
10300 verbose(env, "offload device mismatch between prog and map\n");
10301 return -EINVAL;
10302 }
10303
10304 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
10305 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
10306 return -EINVAL;
10307 }
10308
10309 if (prog->aux->sleepable)
10310 switch (map->map_type) {
10311 case BPF_MAP_TYPE_HASH:
10312 case BPF_MAP_TYPE_LRU_HASH:
10313 case BPF_MAP_TYPE_ARRAY:
10314 if (!is_preallocated_map(map)) {
10315 verbose(env,
10316 "Sleepable programs can only use preallocated hash maps\n");
10317 return -EINVAL;
10318 }
10319 break;
10320 default:
10321 verbose(env,
10322 "Sleepable programs can only use array and hash maps\n");
10323 return -EINVAL;
10324 }
10325
10326 return 0;
10327 }
10328
bpf_map_is_cgroup_storage(struct bpf_map * map)10329 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
10330 {
10331 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
10332 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
10333 }
10334
10335 /* find and rewrite pseudo imm in ld_imm64 instructions:
10336 *
10337 * 1. if it accesses map FD, replace it with actual map pointer.
10338 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
10339 *
10340 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
10341 */
resolve_pseudo_ldimm64(struct bpf_verifier_env * env)10342 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
10343 {
10344 struct bpf_insn *insn = env->prog->insnsi;
10345 int insn_cnt = env->prog->len;
10346 int i, j, err;
10347
10348 err = bpf_prog_calc_tag(env->prog);
10349 if (err)
10350 return err;
10351
10352 for (i = 0; i < insn_cnt; i++, insn++) {
10353 if (BPF_CLASS(insn->code) == BPF_LDX &&
10354 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
10355 verbose(env, "BPF_LDX uses reserved fields\n");
10356 return -EINVAL;
10357 }
10358
10359 if (BPF_CLASS(insn->code) == BPF_STX &&
10360 ((BPF_MODE(insn->code) != BPF_MEM &&
10361 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
10362 verbose(env, "BPF_STX uses reserved fields\n");
10363 return -EINVAL;
10364 }
10365
10366 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
10367 struct bpf_insn_aux_data *aux;
10368 struct bpf_map *map;
10369 struct fd f;
10370 u64 addr;
10371
10372 if (i == insn_cnt - 1 || insn[1].code != 0 ||
10373 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
10374 insn[1].off != 0) {
10375 verbose(env, "invalid bpf_ld_imm64 insn\n");
10376 return -EINVAL;
10377 }
10378
10379 if (insn[0].src_reg == 0)
10380 /* valid generic load 64-bit imm */
10381 goto next_insn;
10382
10383 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
10384 aux = &env->insn_aux_data[i];
10385 err = check_pseudo_btf_id(env, insn, aux);
10386 if (err)
10387 return err;
10388 goto next_insn;
10389 }
10390
10391 /* In final convert_pseudo_ld_imm64() step, this is
10392 * converted into regular 64-bit imm load insn.
10393 */
10394 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
10395 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
10396 (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
10397 insn[1].imm != 0)) {
10398 verbose(env,
10399 "unrecognized bpf_ld_imm64 insn\n");
10400 return -EINVAL;
10401 }
10402
10403 f = fdget(insn[0].imm);
10404 map = __bpf_map_get(f);
10405 if (IS_ERR(map)) {
10406 verbose(env, "fd %d is not pointing to valid bpf_map\n",
10407 insn[0].imm);
10408 return PTR_ERR(map);
10409 }
10410
10411 err = check_map_prog_compatibility(env, map, env->prog);
10412 if (err) {
10413 fdput(f);
10414 return err;
10415 }
10416
10417 aux = &env->insn_aux_data[i];
10418 if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
10419 addr = (unsigned long)map;
10420 } else {
10421 u32 off = insn[1].imm;
10422
10423 if (off >= BPF_MAX_VAR_OFF) {
10424 verbose(env, "direct value offset of %u is not allowed\n", off);
10425 fdput(f);
10426 return -EINVAL;
10427 }
10428
10429 if (!map->ops->map_direct_value_addr) {
10430 verbose(env, "no direct value access support for this map type\n");
10431 fdput(f);
10432 return -EINVAL;
10433 }
10434
10435 err = map->ops->map_direct_value_addr(map, &addr, off);
10436 if (err) {
10437 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
10438 map->value_size, off);
10439 fdput(f);
10440 return err;
10441 }
10442
10443 aux->map_off = off;
10444 addr += off;
10445 }
10446
10447 insn[0].imm = (u32)addr;
10448 insn[1].imm = addr >> 32;
10449
10450 /* check whether we recorded this map already */
10451 for (j = 0; j < env->used_map_cnt; j++) {
10452 if (env->used_maps[j] == map) {
10453 aux->map_index = j;
10454 fdput(f);
10455 goto next_insn;
10456 }
10457 }
10458
10459 if (env->used_map_cnt >= MAX_USED_MAPS) {
10460 fdput(f);
10461 return -E2BIG;
10462 }
10463
10464 /* hold the map. If the program is rejected by verifier,
10465 * the map will be released by release_maps() or it
10466 * will be used by the valid program until it's unloaded
10467 * and all maps are released in free_used_maps()
10468 */
10469 bpf_map_inc(map);
10470
10471 aux->map_index = env->used_map_cnt;
10472 env->used_maps[env->used_map_cnt++] = map;
10473
10474 if (bpf_map_is_cgroup_storage(map) &&
10475 bpf_cgroup_storage_assign(env->prog->aux, map)) {
10476 verbose(env, "only one cgroup storage of each type is allowed\n");
10477 fdput(f);
10478 return -EBUSY;
10479 }
10480
10481 fdput(f);
10482 next_insn:
10483 insn++;
10484 i++;
10485 continue;
10486 }
10487
10488 /* Basic sanity check before we invest more work here. */
10489 if (!bpf_opcode_in_insntable(insn->code)) {
10490 verbose(env, "unknown opcode %02x\n", insn->code);
10491 return -EINVAL;
10492 }
10493 }
10494
10495 /* now all pseudo BPF_LD_IMM64 instructions load valid
10496 * 'struct bpf_map *' into a register instead of user map_fd.
10497 * These pointers will be used later by verifier to validate map access.
10498 */
10499 return 0;
10500 }
10501
10502 /* drop refcnt of maps used by the rejected program */
release_maps(struct bpf_verifier_env * env)10503 static void release_maps(struct bpf_verifier_env *env)
10504 {
10505 __bpf_free_used_maps(env->prog->aux, env->used_maps,
10506 env->used_map_cnt);
10507 }
10508
10509 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
convert_pseudo_ld_imm64(struct bpf_verifier_env * env)10510 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
10511 {
10512 struct bpf_insn *insn = env->prog->insnsi;
10513 int insn_cnt = env->prog->len;
10514 int i;
10515
10516 for (i = 0; i < insn_cnt; i++, insn++)
10517 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
10518 insn->src_reg = 0;
10519 }
10520
10521 /* single env->prog->insni[off] instruction was replaced with the range
10522 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
10523 * [0, off) and [off, end) to new locations, so the patched range stays zero
10524 */
adjust_insn_aux_data(struct bpf_verifier_env * env,struct bpf_insn_aux_data * new_data,struct bpf_prog * new_prog,u32 off,u32 cnt)10525 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
10526 struct bpf_insn_aux_data *new_data,
10527 struct bpf_prog *new_prog, u32 off, u32 cnt)
10528 {
10529 struct bpf_insn_aux_data *old_data = env->insn_aux_data;
10530 struct bpf_insn *insn = new_prog->insnsi;
10531 u32 old_seen = old_data[off].seen;
10532 u32 prog_len;
10533 int i;
10534
10535 /* aux info at OFF always needs adjustment, no matter fast path
10536 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
10537 * original insn at old prog.
10538 */
10539 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
10540
10541 if (cnt == 1)
10542 return;
10543 prog_len = new_prog->len;
10544
10545 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
10546 memcpy(new_data + off + cnt - 1, old_data + off,
10547 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
10548 for (i = off; i < off + cnt - 1; i++) {
10549 /* Expand insni[off]'s seen count to the patched range. */
10550 new_data[i].seen = old_seen;
10551 new_data[i].zext_dst = insn_has_def32(env, insn + i);
10552 }
10553 env->insn_aux_data = new_data;
10554 vfree(old_data);
10555 }
10556
adjust_subprog_starts(struct bpf_verifier_env * env,u32 off,u32 len)10557 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
10558 {
10559 int i;
10560
10561 if (len == 1)
10562 return;
10563 /* NOTE: fake 'exit' subprog should be updated as well. */
10564 for (i = 0; i <= env->subprog_cnt; i++) {
10565 if (env->subprog_info[i].start <= off)
10566 continue;
10567 env->subprog_info[i].start += len - 1;
10568 }
10569 }
10570
adjust_poke_descs(struct bpf_prog * prog,u32 off,u32 len)10571 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
10572 {
10573 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
10574 int i, sz = prog->aux->size_poke_tab;
10575 struct bpf_jit_poke_descriptor *desc;
10576
10577 for (i = 0; i < sz; i++) {
10578 desc = &tab[i];
10579 if (desc->insn_idx <= off)
10580 continue;
10581 desc->insn_idx += len - 1;
10582 }
10583 }
10584
bpf_patch_insn_data(struct bpf_verifier_env * env,u32 off,const struct bpf_insn * patch,u32 len)10585 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
10586 const struct bpf_insn *patch, u32 len)
10587 {
10588 struct bpf_prog *new_prog;
10589 struct bpf_insn_aux_data *new_data = NULL;
10590
10591 if (len > 1) {
10592 new_data = vzalloc(array_size(env->prog->len + len - 1,
10593 sizeof(struct bpf_insn_aux_data)));
10594 if (!new_data)
10595 return NULL;
10596 }
10597
10598 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
10599 if (IS_ERR(new_prog)) {
10600 if (PTR_ERR(new_prog) == -ERANGE)
10601 verbose(env,
10602 "insn %d cannot be patched due to 16-bit range\n",
10603 env->insn_aux_data[off].orig_idx);
10604 vfree(new_data);
10605 return NULL;
10606 }
10607 adjust_insn_aux_data(env, new_data, new_prog, off, len);
10608 adjust_subprog_starts(env, off, len);
10609 adjust_poke_descs(new_prog, off, len);
10610 return new_prog;
10611 }
10612
adjust_subprog_starts_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)10613 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
10614 u32 off, u32 cnt)
10615 {
10616 int i, j;
10617
10618 /* find first prog starting at or after off (first to remove) */
10619 for (i = 0; i < env->subprog_cnt; i++)
10620 if (env->subprog_info[i].start >= off)
10621 break;
10622 /* find first prog starting at or after off + cnt (first to stay) */
10623 for (j = i; j < env->subprog_cnt; j++)
10624 if (env->subprog_info[j].start >= off + cnt)
10625 break;
10626 /* if j doesn't start exactly at off + cnt, we are just removing
10627 * the front of previous prog
10628 */
10629 if (env->subprog_info[j].start != off + cnt)
10630 j--;
10631
10632 if (j > i) {
10633 struct bpf_prog_aux *aux = env->prog->aux;
10634 int move;
10635
10636 /* move fake 'exit' subprog as well */
10637 move = env->subprog_cnt + 1 - j;
10638
10639 memmove(env->subprog_info + i,
10640 env->subprog_info + j,
10641 sizeof(*env->subprog_info) * move);
10642 env->subprog_cnt -= j - i;
10643
10644 /* remove func_info */
10645 if (aux->func_info) {
10646 move = aux->func_info_cnt - j;
10647
10648 memmove(aux->func_info + i,
10649 aux->func_info + j,
10650 sizeof(*aux->func_info) * move);
10651 aux->func_info_cnt -= j - i;
10652 /* func_info->insn_off is set after all code rewrites,
10653 * in adjust_btf_func() - no need to adjust
10654 */
10655 }
10656 } else {
10657 /* convert i from "first prog to remove" to "first to adjust" */
10658 if (env->subprog_info[i].start == off)
10659 i++;
10660 }
10661
10662 /* update fake 'exit' subprog as well */
10663 for (; i <= env->subprog_cnt; i++)
10664 env->subprog_info[i].start -= cnt;
10665
10666 return 0;
10667 }
10668
bpf_adj_linfo_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)10669 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
10670 u32 cnt)
10671 {
10672 struct bpf_prog *prog = env->prog;
10673 u32 i, l_off, l_cnt, nr_linfo;
10674 struct bpf_line_info *linfo;
10675
10676 nr_linfo = prog->aux->nr_linfo;
10677 if (!nr_linfo)
10678 return 0;
10679
10680 linfo = prog->aux->linfo;
10681
10682 /* find first line info to remove, count lines to be removed */
10683 for (i = 0; i < nr_linfo; i++)
10684 if (linfo[i].insn_off >= off)
10685 break;
10686
10687 l_off = i;
10688 l_cnt = 0;
10689 for (; i < nr_linfo; i++)
10690 if (linfo[i].insn_off < off + cnt)
10691 l_cnt++;
10692 else
10693 break;
10694
10695 /* First live insn doesn't match first live linfo, it needs to "inherit"
10696 * last removed linfo. prog is already modified, so prog->len == off
10697 * means no live instructions after (tail of the program was removed).
10698 */
10699 if (prog->len != off && l_cnt &&
10700 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
10701 l_cnt--;
10702 linfo[--i].insn_off = off + cnt;
10703 }
10704
10705 /* remove the line info which refer to the removed instructions */
10706 if (l_cnt) {
10707 memmove(linfo + l_off, linfo + i,
10708 sizeof(*linfo) * (nr_linfo - i));
10709
10710 prog->aux->nr_linfo -= l_cnt;
10711 nr_linfo = prog->aux->nr_linfo;
10712 }
10713
10714 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
10715 for (i = l_off; i < nr_linfo; i++)
10716 linfo[i].insn_off -= cnt;
10717
10718 /* fix up all subprogs (incl. 'exit') which start >= off */
10719 for (i = 0; i <= env->subprog_cnt; i++)
10720 if (env->subprog_info[i].linfo_idx > l_off) {
10721 /* program may have started in the removed region but
10722 * may not be fully removed
10723 */
10724 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
10725 env->subprog_info[i].linfo_idx -= l_cnt;
10726 else
10727 env->subprog_info[i].linfo_idx = l_off;
10728 }
10729
10730 return 0;
10731 }
10732
verifier_remove_insns(struct bpf_verifier_env * env,u32 off,u32 cnt)10733 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
10734 {
10735 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10736 unsigned int orig_prog_len = env->prog->len;
10737 int err;
10738
10739 if (bpf_prog_is_dev_bound(env->prog->aux))
10740 bpf_prog_offload_remove_insns(env, off, cnt);
10741
10742 err = bpf_remove_insns(env->prog, off, cnt);
10743 if (err)
10744 return err;
10745
10746 err = adjust_subprog_starts_after_remove(env, off, cnt);
10747 if (err)
10748 return err;
10749
10750 err = bpf_adj_linfo_after_remove(env, off, cnt);
10751 if (err)
10752 return err;
10753
10754 memmove(aux_data + off, aux_data + off + cnt,
10755 sizeof(*aux_data) * (orig_prog_len - off - cnt));
10756
10757 return 0;
10758 }
10759
10760 /* The verifier does more data flow analysis than llvm and will not
10761 * explore branches that are dead at run time. Malicious programs can
10762 * have dead code too. Therefore replace all dead at-run-time code
10763 * with 'ja -1'.
10764 *
10765 * Just nops are not optimal, e.g. if they would sit at the end of the
10766 * program and through another bug we would manage to jump there, then
10767 * we'd execute beyond program memory otherwise. Returning exception
10768 * code also wouldn't work since we can have subprogs where the dead
10769 * code could be located.
10770 */
sanitize_dead_code(struct bpf_verifier_env * env)10771 static void sanitize_dead_code(struct bpf_verifier_env *env)
10772 {
10773 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10774 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
10775 struct bpf_insn *insn = env->prog->insnsi;
10776 const int insn_cnt = env->prog->len;
10777 int i;
10778
10779 for (i = 0; i < insn_cnt; i++) {
10780 if (aux_data[i].seen)
10781 continue;
10782 memcpy(insn + i, &trap, sizeof(trap));
10783 aux_data[i].zext_dst = false;
10784 }
10785 }
10786
insn_is_cond_jump(u8 code)10787 static bool insn_is_cond_jump(u8 code)
10788 {
10789 u8 op;
10790
10791 if (BPF_CLASS(code) == BPF_JMP32)
10792 return true;
10793
10794 if (BPF_CLASS(code) != BPF_JMP)
10795 return false;
10796
10797 op = BPF_OP(code);
10798 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
10799 }
10800
opt_hard_wire_dead_code_branches(struct bpf_verifier_env * env)10801 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
10802 {
10803 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10804 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
10805 struct bpf_insn *insn = env->prog->insnsi;
10806 const int insn_cnt = env->prog->len;
10807 int i;
10808
10809 for (i = 0; i < insn_cnt; i++, insn++) {
10810 if (!insn_is_cond_jump(insn->code))
10811 continue;
10812
10813 if (!aux_data[i + 1].seen)
10814 ja.off = insn->off;
10815 else if (!aux_data[i + 1 + insn->off].seen)
10816 ja.off = 0;
10817 else
10818 continue;
10819
10820 if (bpf_prog_is_dev_bound(env->prog->aux))
10821 bpf_prog_offload_replace_insn(env, i, &ja);
10822
10823 memcpy(insn, &ja, sizeof(ja));
10824 }
10825 }
10826
opt_remove_dead_code(struct bpf_verifier_env * env)10827 static int opt_remove_dead_code(struct bpf_verifier_env *env)
10828 {
10829 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10830 int insn_cnt = env->prog->len;
10831 int i, err;
10832
10833 for (i = 0; i < insn_cnt; i++) {
10834 int j;
10835
10836 j = 0;
10837 while (i + j < insn_cnt && !aux_data[i + j].seen)
10838 j++;
10839 if (!j)
10840 continue;
10841
10842 err = verifier_remove_insns(env, i, j);
10843 if (err)
10844 return err;
10845 insn_cnt = env->prog->len;
10846 }
10847
10848 return 0;
10849 }
10850
opt_remove_nops(struct bpf_verifier_env * env)10851 static int opt_remove_nops(struct bpf_verifier_env *env)
10852 {
10853 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
10854 struct bpf_insn *insn = env->prog->insnsi;
10855 int insn_cnt = env->prog->len;
10856 int i, err;
10857
10858 for (i = 0; i < insn_cnt; i++) {
10859 if (memcmp(&insn[i], &ja, sizeof(ja)))
10860 continue;
10861
10862 err = verifier_remove_insns(env, i, 1);
10863 if (err)
10864 return err;
10865 insn_cnt--;
10866 i--;
10867 }
10868
10869 return 0;
10870 }
10871
opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env * env,const union bpf_attr * attr)10872 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
10873 const union bpf_attr *attr)
10874 {
10875 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
10876 struct bpf_insn_aux_data *aux = env->insn_aux_data;
10877 int i, patch_len, delta = 0, len = env->prog->len;
10878 struct bpf_insn *insns = env->prog->insnsi;
10879 struct bpf_prog *new_prog;
10880 bool rnd_hi32;
10881
10882 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
10883 zext_patch[1] = BPF_ZEXT_REG(0);
10884 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
10885 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
10886 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
10887 for (i = 0; i < len; i++) {
10888 int adj_idx = i + delta;
10889 struct bpf_insn insn;
10890
10891 insn = insns[adj_idx];
10892 if (!aux[adj_idx].zext_dst) {
10893 u8 code, class;
10894 u32 imm_rnd;
10895
10896 if (!rnd_hi32)
10897 continue;
10898
10899 code = insn.code;
10900 class = BPF_CLASS(code);
10901 if (insn_no_def(&insn))
10902 continue;
10903
10904 /* NOTE: arg "reg" (the fourth one) is only used for
10905 * BPF_STX which has been ruled out in above
10906 * check, it is safe to pass NULL here.
10907 */
10908 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
10909 if (class == BPF_LD &&
10910 BPF_MODE(code) == BPF_IMM)
10911 i++;
10912 continue;
10913 }
10914
10915 /* ctx load could be transformed into wider load. */
10916 if (class == BPF_LDX &&
10917 aux[adj_idx].ptr_type == PTR_TO_CTX)
10918 continue;
10919
10920 imm_rnd = get_random_int();
10921 rnd_hi32_patch[0] = insn;
10922 rnd_hi32_patch[1].imm = imm_rnd;
10923 rnd_hi32_patch[3].dst_reg = insn.dst_reg;
10924 patch = rnd_hi32_patch;
10925 patch_len = 4;
10926 goto apply_patch_buffer;
10927 }
10928
10929 if (!bpf_jit_needs_zext())
10930 continue;
10931
10932 zext_patch[0] = insn;
10933 zext_patch[1].dst_reg = insn.dst_reg;
10934 zext_patch[1].src_reg = insn.dst_reg;
10935 patch = zext_patch;
10936 patch_len = 2;
10937 apply_patch_buffer:
10938 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
10939 if (!new_prog)
10940 return -ENOMEM;
10941 env->prog = new_prog;
10942 insns = new_prog->insnsi;
10943 aux = env->insn_aux_data;
10944 delta += patch_len - 1;
10945 }
10946
10947 return 0;
10948 }
10949
10950 /* convert load instructions that access fields of a context type into a
10951 * sequence of instructions that access fields of the underlying structure:
10952 * struct __sk_buff -> struct sk_buff
10953 * struct bpf_sock_ops -> struct sock
10954 */
convert_ctx_accesses(struct bpf_verifier_env * env)10955 static int convert_ctx_accesses(struct bpf_verifier_env *env)
10956 {
10957 const struct bpf_verifier_ops *ops = env->ops;
10958 int i, cnt, size, ctx_field_size, delta = 0;
10959 const int insn_cnt = env->prog->len;
10960 struct bpf_insn insn_buf[16], *insn;
10961 u32 target_size, size_default, off;
10962 struct bpf_prog *new_prog;
10963 enum bpf_access_type type;
10964 bool is_narrower_load;
10965
10966 if (ops->gen_prologue || env->seen_direct_write) {
10967 if (!ops->gen_prologue) {
10968 verbose(env, "bpf verifier is misconfigured\n");
10969 return -EINVAL;
10970 }
10971 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
10972 env->prog);
10973 if (cnt >= ARRAY_SIZE(insn_buf)) {
10974 verbose(env, "bpf verifier is misconfigured\n");
10975 return -EINVAL;
10976 } else if (cnt) {
10977 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
10978 if (!new_prog)
10979 return -ENOMEM;
10980
10981 env->prog = new_prog;
10982 delta += cnt - 1;
10983 }
10984 }
10985
10986 if (bpf_prog_is_dev_bound(env->prog->aux))
10987 return 0;
10988
10989 insn = env->prog->insnsi + delta;
10990
10991 for (i = 0; i < insn_cnt; i++, insn++) {
10992 bpf_convert_ctx_access_t convert_ctx_access;
10993 bool ctx_access;
10994
10995 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
10996 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
10997 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
10998 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
10999 type = BPF_READ;
11000 ctx_access = true;
11001 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
11002 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
11003 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
11004 insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
11005 insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
11006 insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
11007 insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
11008 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
11009 type = BPF_WRITE;
11010 ctx_access = BPF_CLASS(insn->code) == BPF_STX;
11011 } else {
11012 continue;
11013 }
11014
11015 if (type == BPF_WRITE &&
11016 env->insn_aux_data[i + delta].sanitize_stack_spill) {
11017 struct bpf_insn patch[] = {
11018 *insn,
11019 BPF_ST_NOSPEC(),
11020 };
11021
11022 cnt = ARRAY_SIZE(patch);
11023 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
11024 if (!new_prog)
11025 return -ENOMEM;
11026
11027 delta += cnt - 1;
11028 env->prog = new_prog;
11029 insn = new_prog->insnsi + i + delta;
11030 continue;
11031 }
11032
11033 if (!ctx_access)
11034 continue;
11035
11036 switch (env->insn_aux_data[i + delta].ptr_type) {
11037 case PTR_TO_CTX:
11038 if (!ops->convert_ctx_access)
11039 continue;
11040 convert_ctx_access = ops->convert_ctx_access;
11041 break;
11042 case PTR_TO_SOCKET:
11043 case PTR_TO_SOCK_COMMON:
11044 convert_ctx_access = bpf_sock_convert_ctx_access;
11045 break;
11046 case PTR_TO_TCP_SOCK:
11047 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
11048 break;
11049 case PTR_TO_XDP_SOCK:
11050 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
11051 break;
11052 case PTR_TO_BTF_ID:
11053 if (type == BPF_READ) {
11054 insn->code = BPF_LDX | BPF_PROBE_MEM |
11055 BPF_SIZE((insn)->code);
11056 env->prog->aux->num_exentries++;
11057 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
11058 verbose(env, "Writes through BTF pointers are not allowed\n");
11059 return -EINVAL;
11060 }
11061 continue;
11062 default:
11063 continue;
11064 }
11065
11066 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
11067 size = BPF_LDST_BYTES(insn);
11068
11069 /* If the read access is a narrower load of the field,
11070 * convert to a 4/8-byte load, to minimum program type specific
11071 * convert_ctx_access changes. If conversion is successful,
11072 * we will apply proper mask to the result.
11073 */
11074 is_narrower_load = size < ctx_field_size;
11075 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
11076 off = insn->off;
11077 if (is_narrower_load) {
11078 u8 size_code;
11079
11080 if (type == BPF_WRITE) {
11081 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
11082 return -EINVAL;
11083 }
11084
11085 size_code = BPF_H;
11086 if (ctx_field_size == 4)
11087 size_code = BPF_W;
11088 else if (ctx_field_size == 8)
11089 size_code = BPF_DW;
11090
11091 insn->off = off & ~(size_default - 1);
11092 insn->code = BPF_LDX | BPF_MEM | size_code;
11093 }
11094
11095 target_size = 0;
11096 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
11097 &target_size);
11098 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
11099 (ctx_field_size && !target_size)) {
11100 verbose(env, "bpf verifier is misconfigured\n");
11101 return -EINVAL;
11102 }
11103
11104 if (is_narrower_load && size < target_size) {
11105 u8 shift = bpf_ctx_narrow_access_offset(
11106 off, size, size_default) * 8;
11107 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
11108 verbose(env, "bpf verifier narrow ctx load misconfigured\n");
11109 return -EINVAL;
11110 }
11111 if (ctx_field_size <= 4) {
11112 if (shift)
11113 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
11114 insn->dst_reg,
11115 shift);
11116 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
11117 (1 << size * 8) - 1);
11118 } else {
11119 if (shift)
11120 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
11121 insn->dst_reg,
11122 shift);
11123 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
11124 (1ULL << size * 8) - 1);
11125 }
11126 }
11127
11128 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11129 if (!new_prog)
11130 return -ENOMEM;
11131
11132 delta += cnt - 1;
11133
11134 /* keep walking new program and skip insns we just inserted */
11135 env->prog = new_prog;
11136 insn = new_prog->insnsi + i + delta;
11137 }
11138
11139 return 0;
11140 }
11141
jit_subprogs(struct bpf_verifier_env * env)11142 static int jit_subprogs(struct bpf_verifier_env *env)
11143 {
11144 struct bpf_prog *prog = env->prog, **func, *tmp;
11145 int i, j, subprog_start, subprog_end = 0, len, subprog;
11146 struct bpf_map *map_ptr;
11147 struct bpf_insn *insn;
11148 void *old_bpf_func;
11149 int err, num_exentries;
11150
11151 if (env->subprog_cnt <= 1)
11152 return 0;
11153
11154 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11155 if (insn->code != (BPF_JMP | BPF_CALL) ||
11156 insn->src_reg != BPF_PSEUDO_CALL)
11157 continue;
11158 /* Upon error here we cannot fall back to interpreter but
11159 * need a hard reject of the program. Thus -EFAULT is
11160 * propagated in any case.
11161 */
11162 subprog = find_subprog(env, i + insn->imm + 1);
11163 if (subprog < 0) {
11164 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
11165 i + insn->imm + 1);
11166 return -EFAULT;
11167 }
11168 /* temporarily remember subprog id inside insn instead of
11169 * aux_data, since next loop will split up all insns into funcs
11170 */
11171 insn->off = subprog;
11172 /* remember original imm in case JIT fails and fallback
11173 * to interpreter will be needed
11174 */
11175 env->insn_aux_data[i].call_imm = insn->imm;
11176 /* point imm to __bpf_call_base+1 from JITs point of view */
11177 insn->imm = 1;
11178 }
11179
11180 err = bpf_prog_alloc_jited_linfo(prog);
11181 if (err)
11182 goto out_undo_insn;
11183
11184 err = -ENOMEM;
11185 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
11186 if (!func)
11187 goto out_undo_insn;
11188
11189 for (i = 0; i < env->subprog_cnt; i++) {
11190 subprog_start = subprog_end;
11191 subprog_end = env->subprog_info[i + 1].start;
11192
11193 len = subprog_end - subprog_start;
11194 /* BPF_PROG_RUN doesn't call subprogs directly,
11195 * hence main prog stats include the runtime of subprogs.
11196 * subprogs don't have IDs and not reachable via prog_get_next_id
11197 * func[i]->aux->stats will never be accessed and stays NULL
11198 */
11199 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
11200 if (!func[i])
11201 goto out_free;
11202 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
11203 len * sizeof(struct bpf_insn));
11204 func[i]->type = prog->type;
11205 func[i]->len = len;
11206 if (bpf_prog_calc_tag(func[i]))
11207 goto out_free;
11208 func[i]->is_func = 1;
11209 func[i]->aux->func_idx = i;
11210 /* Below members will be freed only at prog->aux */
11211 func[i]->aux->btf = prog->aux->btf;
11212 func[i]->aux->func_info = prog->aux->func_info;
11213 func[i]->aux->poke_tab = prog->aux->poke_tab;
11214 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
11215
11216 for (j = 0; j < prog->aux->size_poke_tab; j++) {
11217 struct bpf_jit_poke_descriptor *poke;
11218
11219 poke = &prog->aux->poke_tab[j];
11220 if (poke->insn_idx < subprog_end &&
11221 poke->insn_idx >= subprog_start)
11222 poke->aux = func[i]->aux;
11223 }
11224
11225 /* Use bpf_prog_F_tag to indicate functions in stack traces.
11226 * Long term would need debug info to populate names
11227 */
11228 func[i]->aux->name[0] = 'F';
11229 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
11230 func[i]->jit_requested = 1;
11231 func[i]->aux->linfo = prog->aux->linfo;
11232 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
11233 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
11234 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
11235 num_exentries = 0;
11236 insn = func[i]->insnsi;
11237 for (j = 0; j < func[i]->len; j++, insn++) {
11238 if (BPF_CLASS(insn->code) == BPF_LDX &&
11239 BPF_MODE(insn->code) == BPF_PROBE_MEM)
11240 num_exentries++;
11241 }
11242 func[i]->aux->num_exentries = num_exentries;
11243 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
11244 func[i] = bpf_int_jit_compile(func[i]);
11245 if (!func[i]->jited) {
11246 err = -ENOTSUPP;
11247 goto out_free;
11248 }
11249 cond_resched();
11250 }
11251
11252 /* at this point all bpf functions were successfully JITed
11253 * now populate all bpf_calls with correct addresses and
11254 * run last pass of JIT
11255 */
11256 for (i = 0; i < env->subprog_cnt; i++) {
11257 insn = func[i]->insnsi;
11258 for (j = 0; j < func[i]->len; j++, insn++) {
11259 if (insn->code != (BPF_JMP | BPF_CALL) ||
11260 insn->src_reg != BPF_PSEUDO_CALL)
11261 continue;
11262 subprog = insn->off;
11263 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
11264 __bpf_call_base;
11265 }
11266
11267 /* we use the aux data to keep a list of the start addresses
11268 * of the JITed images for each function in the program
11269 *
11270 * for some architectures, such as powerpc64, the imm field
11271 * might not be large enough to hold the offset of the start
11272 * address of the callee's JITed image from __bpf_call_base
11273 *
11274 * in such cases, we can lookup the start address of a callee
11275 * by using its subprog id, available from the off field of
11276 * the call instruction, as an index for this list
11277 */
11278 func[i]->aux->func = func;
11279 func[i]->aux->func_cnt = env->subprog_cnt;
11280 }
11281 for (i = 0; i < env->subprog_cnt; i++) {
11282 old_bpf_func = func[i]->bpf_func;
11283 tmp = bpf_int_jit_compile(func[i]);
11284 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
11285 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
11286 err = -ENOTSUPP;
11287 goto out_free;
11288 }
11289 cond_resched();
11290 }
11291
11292 /* finally lock prog and jit images for all functions and
11293 * populate kallsysm
11294 */
11295 for (i = 0; i < env->subprog_cnt; i++) {
11296 bpf_prog_lock_ro(func[i]);
11297 bpf_prog_kallsyms_add(func[i]);
11298 }
11299
11300 /* Last step: make now unused interpreter insns from main
11301 * prog consistent for later dump requests, so they can
11302 * later look the same as if they were interpreted only.
11303 */
11304 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11305 if (insn->code != (BPF_JMP | BPF_CALL) ||
11306 insn->src_reg != BPF_PSEUDO_CALL)
11307 continue;
11308 insn->off = env->insn_aux_data[i].call_imm;
11309 subprog = find_subprog(env, i + insn->off + 1);
11310 insn->imm = subprog;
11311 }
11312
11313 prog->jited = 1;
11314 prog->bpf_func = func[0]->bpf_func;
11315 prog->aux->func = func;
11316 prog->aux->func_cnt = env->subprog_cnt;
11317 bpf_prog_free_unused_jited_linfo(prog);
11318 return 0;
11319 out_free:
11320 /* We failed JIT'ing, so at this point we need to unregister poke
11321 * descriptors from subprogs, so that kernel is not attempting to
11322 * patch it anymore as we're freeing the subprog JIT memory.
11323 */
11324 for (i = 0; i < prog->aux->size_poke_tab; i++) {
11325 map_ptr = prog->aux->poke_tab[i].tail_call.map;
11326 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
11327 }
11328 /* At this point we're guaranteed that poke descriptors are not
11329 * live anymore. We can just unlink its descriptor table as it's
11330 * released with the main prog.
11331 */
11332 for (i = 0; i < env->subprog_cnt; i++) {
11333 if (!func[i])
11334 continue;
11335 func[i]->aux->poke_tab = NULL;
11336 bpf_jit_free(func[i]);
11337 }
11338 kfree(func);
11339 out_undo_insn:
11340 /* cleanup main prog to be interpreted */
11341 prog->jit_requested = 0;
11342 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11343 if (insn->code != (BPF_JMP | BPF_CALL) ||
11344 insn->src_reg != BPF_PSEUDO_CALL)
11345 continue;
11346 insn->off = 0;
11347 insn->imm = env->insn_aux_data[i].call_imm;
11348 }
11349 bpf_prog_free_jited_linfo(prog);
11350 return err;
11351 }
11352
fixup_call_args(struct bpf_verifier_env * env)11353 static int fixup_call_args(struct bpf_verifier_env *env)
11354 {
11355 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
11356 struct bpf_prog *prog = env->prog;
11357 struct bpf_insn *insn = prog->insnsi;
11358 int i, depth;
11359 #endif
11360 int err = 0;
11361
11362 if (env->prog->jit_requested &&
11363 !bpf_prog_is_dev_bound(env->prog->aux)) {
11364 err = jit_subprogs(env);
11365 if (err == 0)
11366 return 0;
11367 if (err == -EFAULT)
11368 return err;
11369 }
11370 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
11371 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
11372 /* When JIT fails the progs with bpf2bpf calls and tail_calls
11373 * have to be rejected, since interpreter doesn't support them yet.
11374 */
11375 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
11376 return -EINVAL;
11377 }
11378 for (i = 0; i < prog->len; i++, insn++) {
11379 if (insn->code != (BPF_JMP | BPF_CALL) ||
11380 insn->src_reg != BPF_PSEUDO_CALL)
11381 continue;
11382 depth = get_callee_stack_depth(env, insn, i);
11383 if (depth < 0)
11384 return depth;
11385 bpf_patch_call_args(insn, depth);
11386 }
11387 err = 0;
11388 #endif
11389 return err;
11390 }
11391
11392 /* fixup insn->imm field of bpf_call instructions
11393 * and inline eligible helpers as explicit sequence of BPF instructions
11394 *
11395 * this function is called after eBPF program passed verification
11396 */
fixup_bpf_calls(struct bpf_verifier_env * env)11397 static int fixup_bpf_calls(struct bpf_verifier_env *env)
11398 {
11399 struct bpf_prog *prog = env->prog;
11400 bool expect_blinding = bpf_jit_blinding_enabled(prog);
11401 struct bpf_insn *insn = prog->insnsi;
11402 const struct bpf_func_proto *fn;
11403 const int insn_cnt = prog->len;
11404 const struct bpf_map_ops *ops;
11405 struct bpf_insn_aux_data *aux;
11406 struct bpf_insn insn_buf[16];
11407 struct bpf_prog *new_prog;
11408 struct bpf_map *map_ptr;
11409 int i, ret, cnt, delta = 0;
11410
11411 for (i = 0; i < insn_cnt; i++, insn++) {
11412 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
11413 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
11414 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
11415 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
11416 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
11417 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
11418 struct bpf_insn *patchlet;
11419 struct bpf_insn chk_and_div[] = {
11420 /* [R,W]x div 0 -> 0 */
11421 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
11422 BPF_JNE | BPF_K, insn->src_reg,
11423 0, 2, 0),
11424 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
11425 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
11426 *insn,
11427 };
11428 struct bpf_insn chk_and_mod[] = {
11429 /* [R,W]x mod 0 -> [R,W]x */
11430 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
11431 BPF_JEQ | BPF_K, insn->src_reg,
11432 0, 1 + (is64 ? 0 : 1), 0),
11433 *insn,
11434 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
11435 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
11436 };
11437
11438 patchlet = isdiv ? chk_and_div : chk_and_mod;
11439 cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
11440 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
11441
11442 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
11443 if (!new_prog)
11444 return -ENOMEM;
11445
11446 delta += cnt - 1;
11447 env->prog = prog = new_prog;
11448 insn = new_prog->insnsi + i + delta;
11449 continue;
11450 }
11451
11452 if (BPF_CLASS(insn->code) == BPF_LD &&
11453 (BPF_MODE(insn->code) == BPF_ABS ||
11454 BPF_MODE(insn->code) == BPF_IND)) {
11455 cnt = env->ops->gen_ld_abs(insn, insn_buf);
11456 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
11457 verbose(env, "bpf verifier is misconfigured\n");
11458 return -EINVAL;
11459 }
11460
11461 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11462 if (!new_prog)
11463 return -ENOMEM;
11464
11465 delta += cnt - 1;
11466 env->prog = prog = new_prog;
11467 insn = new_prog->insnsi + i + delta;
11468 continue;
11469 }
11470
11471 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
11472 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
11473 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
11474 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
11475 struct bpf_insn insn_buf[16];
11476 struct bpf_insn *patch = &insn_buf[0];
11477 bool issrc, isneg, isimm;
11478 u32 off_reg;
11479
11480 aux = &env->insn_aux_data[i + delta];
11481 if (!aux->alu_state ||
11482 aux->alu_state == BPF_ALU_NON_POINTER)
11483 continue;
11484
11485 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
11486 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
11487 BPF_ALU_SANITIZE_SRC;
11488 isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
11489
11490 off_reg = issrc ? insn->src_reg : insn->dst_reg;
11491 if (isimm) {
11492 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
11493 } else {
11494 if (isneg)
11495 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11496 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
11497 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
11498 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
11499 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
11500 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
11501 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
11502 }
11503 if (!issrc)
11504 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
11505 insn->src_reg = BPF_REG_AX;
11506 if (isneg)
11507 insn->code = insn->code == code_add ?
11508 code_sub : code_add;
11509 *patch++ = *insn;
11510 if (issrc && isneg && !isimm)
11511 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11512 cnt = patch - insn_buf;
11513
11514 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11515 if (!new_prog)
11516 return -ENOMEM;
11517
11518 delta += cnt - 1;
11519 env->prog = prog = new_prog;
11520 insn = new_prog->insnsi + i + delta;
11521 continue;
11522 }
11523
11524 if (insn->code != (BPF_JMP | BPF_CALL))
11525 continue;
11526 if (insn->src_reg == BPF_PSEUDO_CALL)
11527 continue;
11528
11529 if (insn->imm == BPF_FUNC_get_route_realm)
11530 prog->dst_needed = 1;
11531 if (insn->imm == BPF_FUNC_get_prandom_u32)
11532 bpf_user_rnd_init_once();
11533 if (insn->imm == BPF_FUNC_override_return)
11534 prog->kprobe_override = 1;
11535 if (insn->imm == BPF_FUNC_tail_call) {
11536 /* If we tail call into other programs, we
11537 * cannot make any assumptions since they can
11538 * be replaced dynamically during runtime in
11539 * the program array.
11540 */
11541 prog->cb_access = 1;
11542 if (!allow_tail_call_in_subprogs(env))
11543 prog->aux->stack_depth = MAX_BPF_STACK;
11544 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
11545
11546 /* mark bpf_tail_call as different opcode to avoid
11547 * conditional branch in the interpeter for every normal
11548 * call and to prevent accidental JITing by JIT compiler
11549 * that doesn't support bpf_tail_call yet
11550 */
11551 insn->imm = 0;
11552 insn->code = BPF_JMP | BPF_TAIL_CALL;
11553
11554 aux = &env->insn_aux_data[i + delta];
11555 if (env->bpf_capable && !expect_blinding &&
11556 prog->jit_requested &&
11557 !bpf_map_key_poisoned(aux) &&
11558 !bpf_map_ptr_poisoned(aux) &&
11559 !bpf_map_ptr_unpriv(aux)) {
11560 struct bpf_jit_poke_descriptor desc = {
11561 .reason = BPF_POKE_REASON_TAIL_CALL,
11562 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
11563 .tail_call.key = bpf_map_key_immediate(aux),
11564 .insn_idx = i + delta,
11565 };
11566
11567 ret = bpf_jit_add_poke_descriptor(prog, &desc);
11568 if (ret < 0) {
11569 verbose(env, "adding tail call poke descriptor failed\n");
11570 return ret;
11571 }
11572
11573 insn->imm = ret + 1;
11574 continue;
11575 }
11576
11577 if (!bpf_map_ptr_unpriv(aux))
11578 continue;
11579
11580 /* instead of changing every JIT dealing with tail_call
11581 * emit two extra insns:
11582 * if (index >= max_entries) goto out;
11583 * index &= array->index_mask;
11584 * to avoid out-of-bounds cpu speculation
11585 */
11586 if (bpf_map_ptr_poisoned(aux)) {
11587 verbose(env, "tail_call abusing map_ptr\n");
11588 return -EINVAL;
11589 }
11590
11591 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
11592 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
11593 map_ptr->max_entries, 2);
11594 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
11595 container_of(map_ptr,
11596 struct bpf_array,
11597 map)->index_mask);
11598 insn_buf[2] = *insn;
11599 cnt = 3;
11600 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11601 if (!new_prog)
11602 return -ENOMEM;
11603
11604 delta += cnt - 1;
11605 env->prog = prog = new_prog;
11606 insn = new_prog->insnsi + i + delta;
11607 continue;
11608 }
11609
11610 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
11611 * and other inlining handlers are currently limited to 64 bit
11612 * only.
11613 */
11614 if (prog->jit_requested && BITS_PER_LONG == 64 &&
11615 (insn->imm == BPF_FUNC_map_lookup_elem ||
11616 insn->imm == BPF_FUNC_map_update_elem ||
11617 insn->imm == BPF_FUNC_map_delete_elem ||
11618 insn->imm == BPF_FUNC_map_push_elem ||
11619 insn->imm == BPF_FUNC_map_pop_elem ||
11620 insn->imm == BPF_FUNC_map_peek_elem)) {
11621 aux = &env->insn_aux_data[i + delta];
11622 if (bpf_map_ptr_poisoned(aux))
11623 goto patch_call_imm;
11624
11625 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
11626 ops = map_ptr->ops;
11627 if (insn->imm == BPF_FUNC_map_lookup_elem &&
11628 ops->map_gen_lookup) {
11629 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
11630 if (cnt == -EOPNOTSUPP)
11631 goto patch_map_ops_generic;
11632 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
11633 verbose(env, "bpf verifier is misconfigured\n");
11634 return -EINVAL;
11635 }
11636
11637 new_prog = bpf_patch_insn_data(env, i + delta,
11638 insn_buf, cnt);
11639 if (!new_prog)
11640 return -ENOMEM;
11641
11642 delta += cnt - 1;
11643 env->prog = prog = new_prog;
11644 insn = new_prog->insnsi + i + delta;
11645 continue;
11646 }
11647
11648 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
11649 (void *(*)(struct bpf_map *map, void *key))NULL));
11650 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
11651 (int (*)(struct bpf_map *map, void *key))NULL));
11652 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
11653 (int (*)(struct bpf_map *map, void *key, void *value,
11654 u64 flags))NULL));
11655 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
11656 (int (*)(struct bpf_map *map, void *value,
11657 u64 flags))NULL));
11658 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
11659 (int (*)(struct bpf_map *map, void *value))NULL));
11660 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
11661 (int (*)(struct bpf_map *map, void *value))NULL));
11662 patch_map_ops_generic:
11663 switch (insn->imm) {
11664 case BPF_FUNC_map_lookup_elem:
11665 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
11666 __bpf_call_base;
11667 continue;
11668 case BPF_FUNC_map_update_elem:
11669 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
11670 __bpf_call_base;
11671 continue;
11672 case BPF_FUNC_map_delete_elem:
11673 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
11674 __bpf_call_base;
11675 continue;
11676 case BPF_FUNC_map_push_elem:
11677 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
11678 __bpf_call_base;
11679 continue;
11680 case BPF_FUNC_map_pop_elem:
11681 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
11682 __bpf_call_base;
11683 continue;
11684 case BPF_FUNC_map_peek_elem:
11685 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
11686 __bpf_call_base;
11687 continue;
11688 }
11689
11690 goto patch_call_imm;
11691 }
11692
11693 if (prog->jit_requested && BITS_PER_LONG == 64 &&
11694 insn->imm == BPF_FUNC_jiffies64) {
11695 struct bpf_insn ld_jiffies_addr[2] = {
11696 BPF_LD_IMM64(BPF_REG_0,
11697 (unsigned long)&jiffies),
11698 };
11699
11700 insn_buf[0] = ld_jiffies_addr[0];
11701 insn_buf[1] = ld_jiffies_addr[1];
11702 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
11703 BPF_REG_0, 0);
11704 cnt = 3;
11705
11706 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
11707 cnt);
11708 if (!new_prog)
11709 return -ENOMEM;
11710
11711 delta += cnt - 1;
11712 env->prog = prog = new_prog;
11713 insn = new_prog->insnsi + i + delta;
11714 continue;
11715 }
11716
11717 patch_call_imm:
11718 fn = env->ops->get_func_proto(insn->imm, env->prog);
11719 /* all functions that have prototype and verifier allowed
11720 * programs to call them, must be real in-kernel functions
11721 */
11722 if (!fn->func) {
11723 verbose(env,
11724 "kernel subsystem misconfigured func %s#%d\n",
11725 func_id_name(insn->imm), insn->imm);
11726 return -EFAULT;
11727 }
11728 insn->imm = fn->func - __bpf_call_base;
11729 }
11730
11731 /* Since poke tab is now finalized, publish aux to tracker. */
11732 for (i = 0; i < prog->aux->size_poke_tab; i++) {
11733 map_ptr = prog->aux->poke_tab[i].tail_call.map;
11734 if (!map_ptr->ops->map_poke_track ||
11735 !map_ptr->ops->map_poke_untrack ||
11736 !map_ptr->ops->map_poke_run) {
11737 verbose(env, "bpf verifier is misconfigured\n");
11738 return -EINVAL;
11739 }
11740
11741 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
11742 if (ret < 0) {
11743 verbose(env, "tracking tail call prog failed\n");
11744 return ret;
11745 }
11746 }
11747
11748 return 0;
11749 }
11750
free_states(struct bpf_verifier_env * env)11751 static void free_states(struct bpf_verifier_env *env)
11752 {
11753 struct bpf_verifier_state_list *sl, *sln;
11754 int i;
11755
11756 sl = env->free_list;
11757 while (sl) {
11758 sln = sl->next;
11759 free_verifier_state(&sl->state, false);
11760 kfree(sl);
11761 sl = sln;
11762 }
11763 env->free_list = NULL;
11764
11765 if (!env->explored_states)
11766 return;
11767
11768 for (i = 0; i < state_htab_size(env); i++) {
11769 sl = env->explored_states[i];
11770
11771 while (sl) {
11772 sln = sl->next;
11773 free_verifier_state(&sl->state, false);
11774 kfree(sl);
11775 sl = sln;
11776 }
11777 env->explored_states[i] = NULL;
11778 }
11779 }
11780
do_check_common(struct bpf_verifier_env * env,int subprog)11781 static int do_check_common(struct bpf_verifier_env *env, int subprog)
11782 {
11783 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
11784 struct bpf_verifier_state *state;
11785 struct bpf_reg_state *regs;
11786 int ret, i;
11787
11788 env->prev_linfo = NULL;
11789 env->pass_cnt++;
11790
11791 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
11792 if (!state)
11793 return -ENOMEM;
11794 state->curframe = 0;
11795 state->speculative = false;
11796 state->branches = 1;
11797 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
11798 if (!state->frame[0]) {
11799 kfree(state);
11800 return -ENOMEM;
11801 }
11802 env->cur_state = state;
11803 init_func_state(env, state->frame[0],
11804 BPF_MAIN_FUNC /* callsite */,
11805 0 /* frameno */,
11806 subprog);
11807
11808 regs = state->frame[state->curframe]->regs;
11809 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
11810 ret = btf_prepare_func_args(env, subprog, regs);
11811 if (ret)
11812 goto out;
11813 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
11814 if (regs[i].type == PTR_TO_CTX)
11815 mark_reg_known_zero(env, regs, i);
11816 else if (regs[i].type == SCALAR_VALUE)
11817 mark_reg_unknown(env, regs, i);
11818 }
11819 } else {
11820 /* 1st arg to a function */
11821 regs[BPF_REG_1].type = PTR_TO_CTX;
11822 mark_reg_known_zero(env, regs, BPF_REG_1);
11823 ret = btf_check_func_arg_match(env, subprog, regs);
11824 if (ret == -EFAULT)
11825 /* unlikely verifier bug. abort.
11826 * ret == 0 and ret < 0 are sadly acceptable for
11827 * main() function due to backward compatibility.
11828 * Like socket filter program may be written as:
11829 * int bpf_prog(struct pt_regs *ctx)
11830 * and never dereference that ctx in the program.
11831 * 'struct pt_regs' is a type mismatch for socket
11832 * filter that should be using 'struct __sk_buff'.
11833 */
11834 goto out;
11835 }
11836
11837 ret = do_check(env);
11838 out:
11839 /* check for NULL is necessary, since cur_state can be freed inside
11840 * do_check() under memory pressure.
11841 */
11842 if (env->cur_state) {
11843 free_verifier_state(env->cur_state, true);
11844 env->cur_state = NULL;
11845 }
11846 while (!pop_stack(env, NULL, NULL, false));
11847 if (!ret && pop_log)
11848 bpf_vlog_reset(&env->log, 0);
11849 free_states(env);
11850 return ret;
11851 }
11852
11853 /* Verify all global functions in a BPF program one by one based on their BTF.
11854 * All global functions must pass verification. Otherwise the whole program is rejected.
11855 * Consider:
11856 * int bar(int);
11857 * int foo(int f)
11858 * {
11859 * return bar(f);
11860 * }
11861 * int bar(int b)
11862 * {
11863 * ...
11864 * }
11865 * foo() will be verified first for R1=any_scalar_value. During verification it
11866 * will be assumed that bar() already verified successfully and call to bar()
11867 * from foo() will be checked for type match only. Later bar() will be verified
11868 * independently to check that it's safe for R1=any_scalar_value.
11869 */
do_check_subprogs(struct bpf_verifier_env * env)11870 static int do_check_subprogs(struct bpf_verifier_env *env)
11871 {
11872 struct bpf_prog_aux *aux = env->prog->aux;
11873 int i, ret;
11874
11875 if (!aux->func_info)
11876 return 0;
11877
11878 for (i = 1; i < env->subprog_cnt; i++) {
11879 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
11880 continue;
11881 env->insn_idx = env->subprog_info[i].start;
11882 WARN_ON_ONCE(env->insn_idx == 0);
11883 ret = do_check_common(env, i);
11884 if (ret) {
11885 return ret;
11886 } else if (env->log.level & BPF_LOG_LEVEL) {
11887 verbose(env,
11888 "Func#%d is safe for any args that match its prototype\n",
11889 i);
11890 }
11891 }
11892 return 0;
11893 }
11894
do_check_main(struct bpf_verifier_env * env)11895 static int do_check_main(struct bpf_verifier_env *env)
11896 {
11897 int ret;
11898
11899 env->insn_idx = 0;
11900 ret = do_check_common(env, 0);
11901 if (!ret)
11902 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
11903 return ret;
11904 }
11905
11906
print_verification_stats(struct bpf_verifier_env * env)11907 static void print_verification_stats(struct bpf_verifier_env *env)
11908 {
11909 int i;
11910
11911 if (env->log.level & BPF_LOG_STATS) {
11912 verbose(env, "verification time %lld usec\n",
11913 div_u64(env->verification_time, 1000));
11914 verbose(env, "stack depth ");
11915 for (i = 0; i < env->subprog_cnt; i++) {
11916 u32 depth = env->subprog_info[i].stack_depth;
11917
11918 verbose(env, "%d", depth);
11919 if (i + 1 < env->subprog_cnt)
11920 verbose(env, "+");
11921 }
11922 verbose(env, "\n");
11923 }
11924 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
11925 "total_states %d peak_states %d mark_read %d\n",
11926 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
11927 env->max_states_per_insn, env->total_states,
11928 env->peak_states, env->longest_mark_read_walk);
11929 }
11930
check_struct_ops_btf_id(struct bpf_verifier_env * env)11931 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
11932 {
11933 const struct btf_type *t, *func_proto;
11934 const struct bpf_struct_ops *st_ops;
11935 const struct btf_member *member;
11936 struct bpf_prog *prog = env->prog;
11937 u32 btf_id, member_idx;
11938 const char *mname;
11939
11940 if (!prog->gpl_compatible) {
11941 verbose(env, "struct ops programs must have a GPL compatible license\n");
11942 return -EINVAL;
11943 }
11944
11945 btf_id = prog->aux->attach_btf_id;
11946 st_ops = bpf_struct_ops_find(btf_id);
11947 if (!st_ops) {
11948 verbose(env, "attach_btf_id %u is not a supported struct\n",
11949 btf_id);
11950 return -ENOTSUPP;
11951 }
11952
11953 t = st_ops->type;
11954 member_idx = prog->expected_attach_type;
11955 if (member_idx >= btf_type_vlen(t)) {
11956 verbose(env, "attach to invalid member idx %u of struct %s\n",
11957 member_idx, st_ops->name);
11958 return -EINVAL;
11959 }
11960
11961 member = &btf_type_member(t)[member_idx];
11962 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
11963 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
11964 NULL);
11965 if (!func_proto) {
11966 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
11967 mname, member_idx, st_ops->name);
11968 return -EINVAL;
11969 }
11970
11971 if (st_ops->check_member) {
11972 int err = st_ops->check_member(t, member);
11973
11974 if (err) {
11975 verbose(env, "attach to unsupported member %s of struct %s\n",
11976 mname, st_ops->name);
11977 return err;
11978 }
11979 }
11980
11981 prog->aux->attach_func_proto = func_proto;
11982 prog->aux->attach_func_name = mname;
11983 env->ops = st_ops->verifier_ops;
11984
11985 return 0;
11986 }
11987 #define SECURITY_PREFIX "security_"
11988
check_attach_modify_return(unsigned long addr,const char * func_name)11989 static int check_attach_modify_return(unsigned long addr, const char *func_name)
11990 {
11991 if (within_error_injection_list(addr) ||
11992 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
11993 return 0;
11994
11995 return -EINVAL;
11996 }
11997
11998 /* non exhaustive list of sleepable bpf_lsm_*() functions */
11999 BTF_SET_START(btf_sleepable_lsm_hooks)
12000 #ifdef CONFIG_BPF_LSM
BTF_ID(func,bpf_lsm_bprm_committed_creds)12001 BTF_ID(func, bpf_lsm_bprm_committed_creds)
12002 #else
12003 BTF_ID_UNUSED
12004 #endif
12005 BTF_SET_END(btf_sleepable_lsm_hooks)
12006
12007 static int check_sleepable_lsm_hook(u32 btf_id)
12008 {
12009 return btf_id_set_contains(&btf_sleepable_lsm_hooks, btf_id);
12010 }
12011
12012 /* list of non-sleepable functions that are otherwise on
12013 * ALLOW_ERROR_INJECTION list
12014 */
12015 BTF_SET_START(btf_non_sleepable_error_inject)
12016 /* Three functions below can be called from sleepable and non-sleepable context.
12017 * Assume non-sleepable from bpf safety point of view.
12018 */
BTF_ID(func,__add_to_page_cache_locked)12019 BTF_ID(func, __add_to_page_cache_locked)
12020 BTF_ID(func, should_fail_alloc_page)
12021 BTF_ID(func, should_failslab)
12022 BTF_SET_END(btf_non_sleepable_error_inject)
12023
12024 static int check_non_sleepable_error_inject(u32 btf_id)
12025 {
12026 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
12027 }
12028
bpf_check_attach_target(struct bpf_verifier_log * log,const struct bpf_prog * prog,const struct bpf_prog * tgt_prog,u32 btf_id,struct bpf_attach_target_info * tgt_info)12029 int bpf_check_attach_target(struct bpf_verifier_log *log,
12030 const struct bpf_prog *prog,
12031 const struct bpf_prog *tgt_prog,
12032 u32 btf_id,
12033 struct bpf_attach_target_info *tgt_info)
12034 {
12035 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
12036 const char prefix[] = "btf_trace_";
12037 int ret = 0, subprog = -1, i;
12038 const struct btf_type *t;
12039 bool conservative = true;
12040 const char *tname;
12041 struct btf *btf;
12042 long addr = 0;
12043
12044 if (!btf_id) {
12045 bpf_log(log, "Tracing programs must provide btf_id\n");
12046 return -EINVAL;
12047 }
12048 btf = tgt_prog ? tgt_prog->aux->btf : btf_vmlinux;
12049 if (!btf) {
12050 bpf_log(log,
12051 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
12052 return -EINVAL;
12053 }
12054 t = btf_type_by_id(btf, btf_id);
12055 if (!t) {
12056 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
12057 return -EINVAL;
12058 }
12059 tname = btf_name_by_offset(btf, t->name_off);
12060 if (!tname) {
12061 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
12062 return -EINVAL;
12063 }
12064 if (tgt_prog) {
12065 struct bpf_prog_aux *aux = tgt_prog->aux;
12066
12067 for (i = 0; i < aux->func_info_cnt; i++)
12068 if (aux->func_info[i].type_id == btf_id) {
12069 subprog = i;
12070 break;
12071 }
12072 if (subprog == -1) {
12073 bpf_log(log, "Subprog %s doesn't exist\n", tname);
12074 return -EINVAL;
12075 }
12076 conservative = aux->func_info_aux[subprog].unreliable;
12077 if (prog_extension) {
12078 if (conservative) {
12079 bpf_log(log,
12080 "Cannot replace static functions\n");
12081 return -EINVAL;
12082 }
12083 if (!prog->jit_requested) {
12084 bpf_log(log,
12085 "Extension programs should be JITed\n");
12086 return -EINVAL;
12087 }
12088 }
12089 if (!tgt_prog->jited) {
12090 bpf_log(log, "Can attach to only JITed progs\n");
12091 return -EINVAL;
12092 }
12093 if (tgt_prog->type == prog->type) {
12094 /* Cannot fentry/fexit another fentry/fexit program.
12095 * Cannot attach program extension to another extension.
12096 * It's ok to attach fentry/fexit to extension program.
12097 */
12098 bpf_log(log, "Cannot recursively attach\n");
12099 return -EINVAL;
12100 }
12101 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
12102 prog_extension &&
12103 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
12104 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
12105 /* Program extensions can extend all program types
12106 * except fentry/fexit. The reason is the following.
12107 * The fentry/fexit programs are used for performance
12108 * analysis, stats and can be attached to any program
12109 * type except themselves. When extension program is
12110 * replacing XDP function it is necessary to allow
12111 * performance analysis of all functions. Both original
12112 * XDP program and its program extension. Hence
12113 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
12114 * allowed. If extending of fentry/fexit was allowed it
12115 * would be possible to create long call chain
12116 * fentry->extension->fentry->extension beyond
12117 * reasonable stack size. Hence extending fentry is not
12118 * allowed.
12119 */
12120 bpf_log(log, "Cannot extend fentry/fexit\n");
12121 return -EINVAL;
12122 }
12123 } else {
12124 if (prog_extension) {
12125 bpf_log(log, "Cannot replace kernel functions\n");
12126 return -EINVAL;
12127 }
12128 }
12129
12130 switch (prog->expected_attach_type) {
12131 case BPF_TRACE_RAW_TP:
12132 if (tgt_prog) {
12133 bpf_log(log,
12134 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
12135 return -EINVAL;
12136 }
12137 if (!btf_type_is_typedef(t)) {
12138 bpf_log(log, "attach_btf_id %u is not a typedef\n",
12139 btf_id);
12140 return -EINVAL;
12141 }
12142 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
12143 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
12144 btf_id, tname);
12145 return -EINVAL;
12146 }
12147 tname += sizeof(prefix) - 1;
12148 t = btf_type_by_id(btf, t->type);
12149 if (!btf_type_is_ptr(t))
12150 /* should never happen in valid vmlinux build */
12151 return -EINVAL;
12152 t = btf_type_by_id(btf, t->type);
12153 if (!btf_type_is_func_proto(t))
12154 /* should never happen in valid vmlinux build */
12155 return -EINVAL;
12156
12157 break;
12158 case BPF_TRACE_ITER:
12159 if (!btf_type_is_func(t)) {
12160 bpf_log(log, "attach_btf_id %u is not a function\n",
12161 btf_id);
12162 return -EINVAL;
12163 }
12164 t = btf_type_by_id(btf, t->type);
12165 if (!btf_type_is_func_proto(t))
12166 return -EINVAL;
12167 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
12168 if (ret)
12169 return ret;
12170 break;
12171 default:
12172 if (!prog_extension)
12173 return -EINVAL;
12174 fallthrough;
12175 case BPF_MODIFY_RETURN:
12176 case BPF_LSM_MAC:
12177 case BPF_TRACE_FENTRY:
12178 case BPF_TRACE_FEXIT:
12179 if (!btf_type_is_func(t)) {
12180 bpf_log(log, "attach_btf_id %u is not a function\n",
12181 btf_id);
12182 return -EINVAL;
12183 }
12184 if (prog_extension &&
12185 btf_check_type_match(log, prog, btf, t))
12186 return -EINVAL;
12187 t = btf_type_by_id(btf, t->type);
12188 if (!btf_type_is_func_proto(t))
12189 return -EINVAL;
12190
12191 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
12192 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
12193 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
12194 return -EINVAL;
12195
12196 if (tgt_prog && conservative)
12197 t = NULL;
12198
12199 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
12200 if (ret < 0)
12201 return ret;
12202
12203 if (tgt_prog) {
12204 if (subprog == 0)
12205 addr = (long) tgt_prog->bpf_func;
12206 else
12207 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
12208 } else {
12209 addr = kallsyms_lookup_name(tname);
12210 if (!addr) {
12211 bpf_log(log,
12212 "The address of function %s cannot be found\n",
12213 tname);
12214 return -ENOENT;
12215 }
12216 }
12217
12218 if (prog->aux->sleepable) {
12219 ret = -EINVAL;
12220 switch (prog->type) {
12221 case BPF_PROG_TYPE_TRACING:
12222 /* fentry/fexit/fmod_ret progs can be sleepable only if they are
12223 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
12224 */
12225 if (!check_non_sleepable_error_inject(btf_id) &&
12226 within_error_injection_list(addr))
12227 ret = 0;
12228 break;
12229 case BPF_PROG_TYPE_LSM:
12230 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
12231 * Only some of them are sleepable.
12232 */
12233 if (check_sleepable_lsm_hook(btf_id))
12234 ret = 0;
12235 break;
12236 default:
12237 break;
12238 }
12239 if (ret) {
12240 bpf_log(log, "%s is not sleepable\n", tname);
12241 return ret;
12242 }
12243 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
12244 if (tgt_prog) {
12245 bpf_log(log, "can't modify return codes of BPF programs\n");
12246 return -EINVAL;
12247 }
12248 ret = check_attach_modify_return(addr, tname);
12249 if (ret) {
12250 bpf_log(log, "%s() is not modifiable\n", tname);
12251 return ret;
12252 }
12253 }
12254
12255 break;
12256 }
12257 tgt_info->tgt_addr = addr;
12258 tgt_info->tgt_name = tname;
12259 tgt_info->tgt_type = t;
12260 return 0;
12261 }
12262
check_attach_btf_id(struct bpf_verifier_env * env)12263 static int check_attach_btf_id(struct bpf_verifier_env *env)
12264 {
12265 struct bpf_prog *prog = env->prog;
12266 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
12267 struct bpf_attach_target_info tgt_info = {};
12268 u32 btf_id = prog->aux->attach_btf_id;
12269 struct bpf_trampoline *tr;
12270 int ret;
12271 u64 key;
12272
12273 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
12274 prog->type != BPF_PROG_TYPE_LSM) {
12275 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
12276 return -EINVAL;
12277 }
12278
12279 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
12280 return check_struct_ops_btf_id(env);
12281
12282 if (prog->type != BPF_PROG_TYPE_TRACING &&
12283 prog->type != BPF_PROG_TYPE_LSM &&
12284 prog->type != BPF_PROG_TYPE_EXT)
12285 return 0;
12286
12287 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
12288 if (ret)
12289 return ret;
12290
12291 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
12292 /* to make freplace equivalent to their targets, they need to
12293 * inherit env->ops and expected_attach_type for the rest of the
12294 * verification
12295 */
12296 env->ops = bpf_verifier_ops[tgt_prog->type];
12297 prog->expected_attach_type = tgt_prog->expected_attach_type;
12298 }
12299
12300 /* store info about the attachment target that will be used later */
12301 prog->aux->attach_func_proto = tgt_info.tgt_type;
12302 prog->aux->attach_func_name = tgt_info.tgt_name;
12303
12304 if (tgt_prog) {
12305 prog->aux->saved_dst_prog_type = tgt_prog->type;
12306 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
12307 }
12308
12309 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
12310 prog->aux->attach_btf_trace = true;
12311 return 0;
12312 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
12313 if (!bpf_iter_prog_supported(prog))
12314 return -EINVAL;
12315 return 0;
12316 }
12317
12318 if (prog->type == BPF_PROG_TYPE_LSM) {
12319 ret = bpf_lsm_verify_prog(&env->log, prog);
12320 if (ret < 0)
12321 return ret;
12322 }
12323
12324 key = bpf_trampoline_compute_key(tgt_prog, btf_id);
12325 tr = bpf_trampoline_get(key, &tgt_info);
12326 if (!tr)
12327 return -ENOMEM;
12328
12329 prog->aux->dst_trampoline = tr;
12330 return 0;
12331 }
12332
bpf_get_btf_vmlinux(void)12333 struct btf *bpf_get_btf_vmlinux(void)
12334 {
12335 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
12336 mutex_lock(&bpf_verifier_lock);
12337 if (!btf_vmlinux)
12338 btf_vmlinux = btf_parse_vmlinux();
12339 mutex_unlock(&bpf_verifier_lock);
12340 }
12341 return btf_vmlinux;
12342 }
12343
bpf_check(struct bpf_prog ** prog,union bpf_attr * attr,union bpf_attr __user * uattr)12344 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
12345 union bpf_attr __user *uattr)
12346 {
12347 u64 start_time = ktime_get_ns();
12348 struct bpf_verifier_env *env;
12349 struct bpf_verifier_log *log;
12350 int i, len, ret = -EINVAL;
12351 bool is_priv;
12352
12353 /* no program is valid */
12354 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
12355 return -EINVAL;
12356
12357 /* 'struct bpf_verifier_env' can be global, but since it's not small,
12358 * allocate/free it every time bpf_check() is called
12359 */
12360 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
12361 if (!env)
12362 return -ENOMEM;
12363 log = &env->log;
12364
12365 len = (*prog)->len;
12366 env->insn_aux_data =
12367 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
12368 ret = -ENOMEM;
12369 if (!env->insn_aux_data)
12370 goto err_free_env;
12371 for (i = 0; i < len; i++)
12372 env->insn_aux_data[i].orig_idx = i;
12373 env->prog = *prog;
12374 env->ops = bpf_verifier_ops[env->prog->type];
12375 is_priv = bpf_capable();
12376
12377 bpf_get_btf_vmlinux();
12378
12379 /* grab the mutex to protect few globals used by verifier */
12380 if (!is_priv)
12381 mutex_lock(&bpf_verifier_lock);
12382
12383 if (attr->log_level || attr->log_buf || attr->log_size) {
12384 /* user requested verbose verifier output
12385 * and supplied buffer to store the verification trace
12386 */
12387 log->level = attr->log_level;
12388 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
12389 log->len_total = attr->log_size;
12390
12391 /* log attributes have to be sane */
12392 if (!bpf_verifier_log_attr_valid(log)) {
12393 ret = -EINVAL;
12394 goto err_unlock;
12395 }
12396 }
12397
12398 if (IS_ERR(btf_vmlinux)) {
12399 /* Either gcc or pahole or kernel are broken. */
12400 verbose(env, "in-kernel BTF is malformed\n");
12401 ret = PTR_ERR(btf_vmlinux);
12402 goto skip_full_check;
12403 }
12404
12405 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
12406 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
12407 env->strict_alignment = true;
12408 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
12409 env->strict_alignment = false;
12410
12411 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
12412 env->allow_uninit_stack = bpf_allow_uninit_stack();
12413 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
12414 env->bypass_spec_v1 = bpf_bypass_spec_v1();
12415 env->bypass_spec_v4 = bpf_bypass_spec_v4();
12416 env->bpf_capable = bpf_capable();
12417
12418 if (is_priv)
12419 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
12420
12421 env->explored_states = kvcalloc(state_htab_size(env),
12422 sizeof(struct bpf_verifier_state_list *),
12423 GFP_USER);
12424 ret = -ENOMEM;
12425 if (!env->explored_states)
12426 goto skip_full_check;
12427
12428 ret = check_subprogs(env);
12429 if (ret < 0)
12430 goto skip_full_check;
12431
12432 ret = check_btf_info(env, attr, uattr);
12433 if (ret < 0)
12434 goto skip_full_check;
12435
12436 ret = check_attach_btf_id(env);
12437 if (ret)
12438 goto skip_full_check;
12439
12440 ret = resolve_pseudo_ldimm64(env);
12441 if (ret < 0)
12442 goto skip_full_check;
12443
12444 if (bpf_prog_is_dev_bound(env->prog->aux)) {
12445 ret = bpf_prog_offload_verifier_prep(env->prog);
12446 if (ret)
12447 goto skip_full_check;
12448 }
12449
12450 ret = check_cfg(env);
12451 if (ret < 0)
12452 goto skip_full_check;
12453
12454 ret = do_check_subprogs(env);
12455 ret = ret ?: do_check_main(env);
12456
12457 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
12458 ret = bpf_prog_offload_finalize(env);
12459
12460 skip_full_check:
12461 kvfree(env->explored_states);
12462
12463 if (ret == 0)
12464 ret = check_max_stack_depth(env);
12465
12466 /* instruction rewrites happen after this point */
12467 if (is_priv) {
12468 if (ret == 0)
12469 opt_hard_wire_dead_code_branches(env);
12470 if (ret == 0)
12471 ret = opt_remove_dead_code(env);
12472 if (ret == 0)
12473 ret = opt_remove_nops(env);
12474 } else {
12475 if (ret == 0)
12476 sanitize_dead_code(env);
12477 }
12478
12479 if (ret == 0)
12480 /* program is valid, convert *(u32*)(ctx + off) accesses */
12481 ret = convert_ctx_accesses(env);
12482
12483 if (ret == 0)
12484 ret = fixup_bpf_calls(env);
12485
12486 /* do 32-bit optimization after insn patching has done so those patched
12487 * insns could be handled correctly.
12488 */
12489 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
12490 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
12491 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
12492 : false;
12493 }
12494
12495 if (ret == 0)
12496 ret = fixup_call_args(env);
12497
12498 env->verification_time = ktime_get_ns() - start_time;
12499 print_verification_stats(env);
12500
12501 if (log->level && bpf_verifier_log_full(log))
12502 ret = -ENOSPC;
12503 if (log->level && !log->ubuf) {
12504 ret = -EFAULT;
12505 goto err_release_maps;
12506 }
12507
12508 if (ret == 0 && env->used_map_cnt) {
12509 /* if program passed verifier, update used_maps in bpf_prog_info */
12510 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
12511 sizeof(env->used_maps[0]),
12512 GFP_KERNEL);
12513
12514 if (!env->prog->aux->used_maps) {
12515 ret = -ENOMEM;
12516 goto err_release_maps;
12517 }
12518
12519 memcpy(env->prog->aux->used_maps, env->used_maps,
12520 sizeof(env->used_maps[0]) * env->used_map_cnt);
12521 env->prog->aux->used_map_cnt = env->used_map_cnt;
12522
12523 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
12524 * bpf_ld_imm64 instructions
12525 */
12526 convert_pseudo_ld_imm64(env);
12527 }
12528
12529 if (ret == 0)
12530 adjust_btf_func(env);
12531
12532 err_release_maps:
12533 if (!env->prog->aux->used_maps)
12534 /* if we didn't copy map pointers into bpf_prog_info, release
12535 * them now. Otherwise free_used_maps() will release them.
12536 */
12537 release_maps(env);
12538
12539 /* extension progs temporarily inherit the attach_type of their targets
12540 for verification purposes, so set it back to zero before returning
12541 */
12542 if (env->prog->type == BPF_PROG_TYPE_EXT)
12543 env->prog->expected_attach_type = 0;
12544
12545 *prog = env->prog;
12546 err_unlock:
12547 if (!is_priv)
12548 mutex_unlock(&bpf_verifier_lock);
12549 vfree(env->insn_aux_data);
12550 err_free_env:
12551 kfree(env);
12552 return ret;
12553 }
12554