1 /*
2 * Copyright © 2007 Red Hat Inc.
3 * Copyright © 2007-2017 Intel Corporation
4 * Copyright © 2006 VMware, Inc.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * IN THE SOFTWARE.
25 */
26
27 /*
28 * Authors: Thomas Hellström <thellstrom@vmware.com>
29 * Keith Whitwell <keithw@vmware.com>
30 * Eric Anholt <eric@anholt.net>
31 * Dave Airlie <airlied@linux.ie>
32 */
33
34 #include <xf86drm.h>
35 #include <util/u_atomic.h>
36 #include <fcntl.h>
37 #include <stdio.h>
38 #include <stdlib.h>
39 #include <string.h>
40 #include <unistd.h>
41 #include <assert.h>
42 #include <sys/ioctl.h>
43 #include <sys/stat.h>
44 #include <sys/types.h>
45 #include <stdbool.h>
46
47 #include "errno.h"
48 #include "common/intel_clflush.h"
49 #include "dev/intel_debug.h"
50 #include "common/intel_gem.h"
51 #include "dev/intel_device_info.h"
52 #include "libdrm_macros.h"
53 #include "main/macros.h"
54 #include "util/macros.h"
55 #include "util/hash_table.h"
56 #include "util/list.h"
57 #include "util/os_file.h"
58 #include "util/u_dynarray.h"
59 #include "util/vma.h"
60 #include "brw_bufmgr.h"
61 #include "brw_context.h"
62 #include "string.h"
63
64 #include "drm-uapi/i915_drm.h"
65
66 #ifdef HAVE_VALGRIND
67 #include <valgrind.h>
68 #include <memcheck.h>
69 #define VG(x) x
70 #else
71 #define VG(x)
72 #endif
73
74 /* Bufmgr is not aware of brw_context. */
75 #undef WARN_ONCE
76 #define WARN_ONCE(cond, fmt...) do { \
77 if (unlikely(cond)) { \
78 static bool _warned = false; \
79 if (!_warned) { \
80 fprintf(stderr, "WARNING: "); \
81 fprintf(stderr, fmt); \
82 _warned = true; \
83 } \
84 } \
85 } while (0)
86
87
88 /* VALGRIND_FREELIKE_BLOCK unfortunately does not actually undo the earlier
89 * VALGRIND_MALLOCLIKE_BLOCK but instead leaves vg convinced the memory is
90 * leaked. All because it does not call VG(cli_free) from its
91 * VG_USERREQ__FREELIKE_BLOCK handler. Instead of treating the memory like
92 * and allocation, we mark it available for use upon mmapping and remove
93 * it upon unmapping.
94 */
95 #define VG_DEFINED(ptr, size) VG(VALGRIND_MAKE_MEM_DEFINED(ptr, size))
96 #define VG_NOACCESS(ptr, size) VG(VALGRIND_MAKE_MEM_NOACCESS(ptr, size))
97
98 /* On FreeBSD PAGE_SIZE is already defined in
99 * /usr/include/machine/param.h that is indirectly
100 * included here.
101 */
102 #ifndef PAGE_SIZE
103 #define PAGE_SIZE 4096
104 #endif
105
106 #define FILE_DEBUG_FLAG DEBUG_BUFMGR
107
108 static inline int
atomic_add_unless(int * v,int add,int unless)109 atomic_add_unless(int *v, int add, int unless)
110 {
111 int c, old;
112 c = p_atomic_read(v);
113 while (c != unless && (old = p_atomic_cmpxchg(v, c, c + add)) != c)
114 c = old;
115 return c == unless;
116 }
117
118 /**
119 * i965 fixed-size bucketing VMA allocator.
120 *
121 * The BO cache maintains "cache buckets" for buffers of various sizes.
122 * All buffers in a given bucket are identically sized - when allocating,
123 * we always round up to the bucket size. This means that virtually all
124 * allocations are fixed-size; only buffers which are too large to fit in
125 * a bucket can be variably-sized.
126 *
127 * We create an allocator for each bucket. Each contains a free-list, where
128 * each node contains a <starting address, 64-bit bitmap> pair. Each bit
129 * represents a bucket-sized block of memory. (At the first level, each
130 * bit corresponds to a page. For the second bucket, bits correspond to
131 * two pages, and so on.) 1 means a block is free, and 0 means it's in-use.
132 * The lowest bit in the bitmap is for the first block.
133 *
134 * This makes allocations cheap - any bit of any node will do. We can pick
135 * the head of the list and use ffs() to find a free block. If there are
136 * none, we allocate 64 blocks from a larger allocator - either a bigger
137 * bucketing allocator, or a fallback top-level allocator for large objects.
138 */
139 struct vma_bucket_node {
140 uint64_t start_address;
141 uint64_t bitmap;
142 };
143
144 struct bo_cache_bucket {
145 /** List of cached BOs. */
146 struct list_head head;
147
148 /** Size of this bucket, in bytes. */
149 uint64_t size;
150
151 /** List of vma_bucket_nodes. */
152 struct util_dynarray vma_list[BRW_MEMZONE_COUNT];
153 };
154
155 struct bo_export {
156 /** File descriptor associated with a handle export. */
157 int drm_fd;
158
159 /** GEM handle in drm_fd */
160 uint32_t gem_handle;
161
162 struct list_head link;
163 };
164
165 struct brw_bufmgr {
166 uint32_t refcount;
167
168 struct list_head link;
169
170 int fd;
171
172 mtx_t lock;
173
174 /** Array of lists of cached gem objects of power-of-two sizes */
175 struct bo_cache_bucket cache_bucket[14 * 4];
176 int num_buckets;
177 time_t time;
178
179 struct hash_table *name_table;
180 struct hash_table *handle_table;
181
182 struct util_vma_heap vma_allocator[BRW_MEMZONE_COUNT];
183
184 bool has_llc:1;
185 bool has_mmap_wc:1;
186 bool has_mmap_offset:1;
187 bool bo_reuse:1;
188
189 uint64_t initial_kflags;
190 };
191
192 static mtx_t global_bufmgr_list_mutex = _MTX_INITIALIZER_NP;
193 static struct list_head global_bufmgr_list = {
194 .next = &global_bufmgr_list,
195 .prev = &global_bufmgr_list,
196 };
197
198 static int bo_set_tiling_internal(struct brw_bo *bo, uint32_t tiling_mode,
199 uint32_t stride);
200
201 static void bo_free(struct brw_bo *bo);
202
203 static uint64_t vma_alloc(struct brw_bufmgr *bufmgr,
204 enum brw_memory_zone memzone,
205 uint64_t size, uint64_t alignment);
206
207 static struct brw_bo *
hash_find_bo(struct hash_table * ht,unsigned int key)208 hash_find_bo(struct hash_table *ht, unsigned int key)
209 {
210 struct hash_entry *entry = _mesa_hash_table_search(ht, &key);
211 return entry ? (struct brw_bo *) entry->data : NULL;
212 }
213
214 static uint64_t
bo_tile_size(struct brw_bufmgr * bufmgr,uint64_t size,uint32_t tiling)215 bo_tile_size(struct brw_bufmgr *bufmgr, uint64_t size, uint32_t tiling)
216 {
217 if (tiling == I915_TILING_NONE)
218 return size;
219
220 /* 965+ just need multiples of page size for tiling */
221 return ALIGN(size, PAGE_SIZE);
222 }
223
224 /*
225 * Round a given pitch up to the minimum required for X tiling on a
226 * given chip. We use 512 as the minimum to allow for a later tiling
227 * change.
228 */
229 static uint32_t
bo_tile_pitch(struct brw_bufmgr * bufmgr,uint32_t pitch,uint32_t tiling)230 bo_tile_pitch(struct brw_bufmgr *bufmgr, uint32_t pitch, uint32_t tiling)
231 {
232 unsigned long tile_width;
233
234 /* If untiled, then just align it so that we can do rendering
235 * to it with the 3D engine.
236 */
237 if (tiling == I915_TILING_NONE)
238 return ALIGN(pitch, 64);
239
240 if (tiling == I915_TILING_X)
241 tile_width = 512;
242 else
243 tile_width = 128;
244
245 /* 965 is flexible */
246 return ALIGN(pitch, tile_width);
247 }
248
249 /**
250 * This function finds the correct bucket fit for the input size.
251 * The function works with O(1) complexity when the requested size
252 * was queried instead of iterating the size through all the buckets.
253 */
254 static struct bo_cache_bucket *
bucket_for_size(struct brw_bufmgr * bufmgr,uint64_t size)255 bucket_for_size(struct brw_bufmgr *bufmgr, uint64_t size)
256 {
257 /* Calculating the pages and rounding up to the page size. */
258 const unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
259
260 /* Row Bucket sizes clz((x-1) | 3) Row Column
261 * in pages stride size
262 * 0: 1 2 3 4 -> 30 30 30 30 4 1
263 * 1: 5 6 7 8 -> 29 29 29 29 4 1
264 * 2: 10 12 14 16 -> 28 28 28 28 8 2
265 * 3: 20 24 28 32 -> 27 27 27 27 16 4
266 */
267 const unsigned row = 30 - __builtin_clz((pages - 1) | 3);
268 const unsigned row_max_pages = 4 << row;
269
270 /* The '& ~2' is the special case for row 1. In row 1, max pages /
271 * 2 is 2, but the previous row maximum is zero (because there is
272 * no previous row). All row maximum sizes are power of 2, so that
273 * is the only case where that bit will be set.
274 */
275 const unsigned prev_row_max_pages = (row_max_pages / 2) & ~2;
276 int col_size_log2 = row - 1;
277 col_size_log2 += (col_size_log2 < 0);
278
279 const unsigned col = (pages - prev_row_max_pages +
280 ((1 << col_size_log2) - 1)) >> col_size_log2;
281
282 /* Calculating the index based on the row and column. */
283 const unsigned index = (row * 4) + (col - 1);
284
285 return (index < bufmgr->num_buckets) ?
286 &bufmgr->cache_bucket[index] : NULL;
287 }
288
289 static enum brw_memory_zone
memzone_for_address(uint64_t address)290 memzone_for_address(uint64_t address)
291 {
292 const uint64_t _4GB = 1ull << 32;
293
294 if (address >= _4GB)
295 return BRW_MEMZONE_OTHER;
296
297 return BRW_MEMZONE_LOW_4G;
298 }
299
300 static uint64_t
bucket_vma_alloc(struct brw_bufmgr * bufmgr,struct bo_cache_bucket * bucket,enum brw_memory_zone memzone)301 bucket_vma_alloc(struct brw_bufmgr *bufmgr,
302 struct bo_cache_bucket *bucket,
303 enum brw_memory_zone memzone)
304 {
305 struct util_dynarray *vma_list = &bucket->vma_list[memzone];
306 struct vma_bucket_node *node;
307
308 if (vma_list->size == 0) {
309 /* This bucket allocator is out of space - allocate a new block of
310 * memory for 64 blocks from a larger allocator (either a larger
311 * bucket or util_vma).
312 *
313 * We align the address to the node size (64 blocks) so that
314 * bucket_vma_free can easily compute the starting address of this
315 * block by rounding any address we return down to the node size.
316 *
317 * Set the first bit used, and return the start address.
318 */
319 uint64_t node_size = 64ull * bucket->size;
320 node = util_dynarray_grow(vma_list, struct vma_bucket_node, 1);
321
322 if (unlikely(!node))
323 return 0ull;
324
325 uint64_t addr = vma_alloc(bufmgr, memzone, node_size, node_size);
326 node->start_address = intel_48b_address(addr);
327 node->bitmap = ~1ull;
328 return node->start_address;
329 }
330
331 /* Pick any bit from any node - they're all the right size and free. */
332 node = util_dynarray_top_ptr(vma_list, struct vma_bucket_node);
333 int bit = ffsll(node->bitmap) - 1;
334 assert(bit >= 0 && bit <= 63);
335
336 /* Reserve the memory by clearing the bit. */
337 assert((node->bitmap & (1ull << bit)) != 0ull);
338 node->bitmap &= ~(1ull << bit);
339
340 uint64_t addr = node->start_address + bit * bucket->size;
341
342 /* If this node is now completely full, remove it from the free list. */
343 if (node->bitmap == 0ull) {
344 (void) util_dynarray_pop(vma_list, struct vma_bucket_node);
345 }
346
347 return addr;
348 }
349
350 static void
bucket_vma_free(struct bo_cache_bucket * bucket,uint64_t address)351 bucket_vma_free(struct bo_cache_bucket *bucket, uint64_t address)
352 {
353 enum brw_memory_zone memzone = memzone_for_address(address);
354 struct util_dynarray *vma_list = &bucket->vma_list[memzone];
355 const uint64_t node_bytes = 64ull * bucket->size;
356 struct vma_bucket_node *node = NULL;
357
358 /* bucket_vma_alloc allocates 64 blocks at a time, and aligns it to
359 * that 64 block size. So, we can round down to get the starting address.
360 */
361 uint64_t start = (address / node_bytes) * node_bytes;
362
363 /* Dividing the offset from start by bucket size gives us the bit index. */
364 int bit = (address - start) / bucket->size;
365
366 assert(start + bit * bucket->size == address);
367
368 util_dynarray_foreach(vma_list, struct vma_bucket_node, cur) {
369 if (cur->start_address == start) {
370 node = cur;
371 break;
372 }
373 }
374
375 if (!node) {
376 /* No node - the whole group of 64 blocks must have been in-use. */
377 node = util_dynarray_grow(vma_list, struct vma_bucket_node, 1);
378
379 if (unlikely(!node))
380 return; /* bogus, leaks some GPU VMA, but nothing we can do... */
381
382 node->start_address = start;
383 node->bitmap = 0ull;
384 }
385
386 /* Set the bit to return the memory. */
387 assert((node->bitmap & (1ull << bit)) == 0ull);
388 node->bitmap |= 1ull << bit;
389
390 /* The block might be entirely free now, and if so, we could return it
391 * to the larger allocator. But we may as well hang on to it, in case
392 * we get more allocations at this block size.
393 */
394 }
395
396 static struct bo_cache_bucket *
get_bucket_allocator(struct brw_bufmgr * bufmgr,uint64_t size)397 get_bucket_allocator(struct brw_bufmgr *bufmgr, uint64_t size)
398 {
399 /* Skip using the bucket allocator for very large sizes, as it allocates
400 * 64 of them and this can balloon rather quickly.
401 */
402 if (size > 1024 * PAGE_SIZE)
403 return NULL;
404
405 struct bo_cache_bucket *bucket = bucket_for_size(bufmgr, size);
406
407 if (bucket && bucket->size == size)
408 return bucket;
409
410 return NULL;
411 }
412
413 /**
414 * Allocate a section of virtual memory for a buffer, assigning an address.
415 *
416 * This uses either the bucket allocator for the given size, or the large
417 * object allocator (util_vma).
418 */
419 static uint64_t
vma_alloc(struct brw_bufmgr * bufmgr,enum brw_memory_zone memzone,uint64_t size,uint64_t alignment)420 vma_alloc(struct brw_bufmgr *bufmgr,
421 enum brw_memory_zone memzone,
422 uint64_t size,
423 uint64_t alignment)
424 {
425 /* Without softpin support, we let the kernel assign addresses. */
426 assert(brw_using_softpin(bufmgr));
427
428 alignment = ALIGN(alignment, PAGE_SIZE);
429
430 struct bo_cache_bucket *bucket = get_bucket_allocator(bufmgr, size);
431 uint64_t addr;
432
433 if (bucket) {
434 addr = bucket_vma_alloc(bufmgr, bucket, memzone);
435 } else {
436 addr = util_vma_heap_alloc(&bufmgr->vma_allocator[memzone], size,
437 alignment);
438 }
439
440 assert((addr >> 48ull) == 0);
441 assert((addr % alignment) == 0);
442
443 return intel_canonical_address(addr);
444 }
445
446 /**
447 * Free a virtual memory area, allowing the address to be reused.
448 */
449 static void
vma_free(struct brw_bufmgr * bufmgr,uint64_t address,uint64_t size)450 vma_free(struct brw_bufmgr *bufmgr,
451 uint64_t address,
452 uint64_t size)
453 {
454 assert(brw_using_softpin(bufmgr));
455
456 /* Un-canonicalize the address. */
457 address = intel_48b_address(address);
458
459 if (address == 0ull)
460 return;
461
462 struct bo_cache_bucket *bucket = get_bucket_allocator(bufmgr, size);
463
464 if (bucket) {
465 bucket_vma_free(bucket, address);
466 } else {
467 enum brw_memory_zone memzone = memzone_for_address(address);
468 util_vma_heap_free(&bufmgr->vma_allocator[memzone], address, size);
469 }
470 }
471
472 int
brw_bo_busy(struct brw_bo * bo)473 brw_bo_busy(struct brw_bo *bo)
474 {
475 struct brw_bufmgr *bufmgr = bo->bufmgr;
476 struct drm_i915_gem_busy busy = { .handle = bo->gem_handle };
477
478 int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
479 if (ret == 0) {
480 bo->idle = !busy.busy;
481 return busy.busy;
482 }
483 return false;
484 }
485
486 int
brw_bo_madvise(struct brw_bo * bo,int state)487 brw_bo_madvise(struct brw_bo *bo, int state)
488 {
489 struct drm_i915_gem_madvise madv = {
490 .handle = bo->gem_handle,
491 .madv = state,
492 .retained = 1,
493 };
494
495 drmIoctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv);
496
497 return madv.retained;
498 }
499
500 /* drop the oldest entries that have been purged by the kernel */
501 static void
brw_bo_cache_purge_bucket(struct brw_bufmgr * bufmgr,struct bo_cache_bucket * bucket)502 brw_bo_cache_purge_bucket(struct brw_bufmgr *bufmgr,
503 struct bo_cache_bucket *bucket)
504 {
505 list_for_each_entry_safe(struct brw_bo, bo, &bucket->head, head) {
506 if (brw_bo_madvise(bo, I915_MADV_DONTNEED))
507 break;
508
509 list_del(&bo->head);
510 bo_free(bo);
511 }
512 }
513
514 static struct brw_bo *
bo_calloc(void)515 bo_calloc(void)
516 {
517 struct brw_bo *bo = calloc(1, sizeof(*bo));
518 if (!bo)
519 return NULL;
520
521 list_inithead(&bo->exports);
522
523 return bo;
524 }
525
526 static struct brw_bo *
bo_alloc_internal(struct brw_bufmgr * bufmgr,const char * name,uint64_t size,enum brw_memory_zone memzone,unsigned flags,uint32_t tiling_mode,uint32_t stride)527 bo_alloc_internal(struct brw_bufmgr *bufmgr,
528 const char *name,
529 uint64_t size,
530 enum brw_memory_zone memzone,
531 unsigned flags,
532 uint32_t tiling_mode,
533 uint32_t stride)
534 {
535 struct brw_bo *bo;
536 int ret;
537 struct bo_cache_bucket *bucket;
538 bool alloc_from_cache;
539 uint64_t bo_size;
540 bool busy = false;
541 bool zeroed = false;
542
543 if (flags & BO_ALLOC_BUSY)
544 busy = true;
545
546 if (flags & BO_ALLOC_ZEROED)
547 zeroed = true;
548
549 /* BUSY does doesn't really jive with ZEROED as we have to wait for it to
550 * be idle before we can memset. Just disallow that combination.
551 */
552 assert(!(busy && zeroed));
553
554 /* Round the allocated size up to a power of two number of pages. */
555 bucket = bucket_for_size(bufmgr, size);
556
557 /* If we don't have caching at this size, don't actually round the
558 * allocation up.
559 */
560 if (bucket == NULL) {
561 unsigned int page_size = getpagesize();
562 bo_size = size == 0 ? page_size : ALIGN(size, page_size);
563 } else {
564 bo_size = bucket->size;
565 }
566 assert(bo_size);
567
568 mtx_lock(&bufmgr->lock);
569 /* Get a buffer out of the cache if available */
570 retry:
571 alloc_from_cache = false;
572 if (bucket != NULL && !list_is_empty(&bucket->head)) {
573 if (busy && !zeroed) {
574 /* Allocate new render-target BOs from the tail (MRU)
575 * of the list, as it will likely be hot in the GPU
576 * cache and in the aperture for us. If the caller
577 * asked us to zero the buffer, we don't want this
578 * because we are going to mmap it.
579 */
580 bo = LIST_ENTRY(struct brw_bo, bucket->head.prev, head);
581 list_del(&bo->head);
582 alloc_from_cache = true;
583 } else {
584 /* For non-render-target BOs (where we're probably
585 * going to map it first thing in order to fill it
586 * with data), check if the last BO in the cache is
587 * unbusy, and only reuse in that case. Otherwise,
588 * allocating a new buffer is probably faster than
589 * waiting for the GPU to finish.
590 */
591 bo = LIST_ENTRY(struct brw_bo, bucket->head.next, head);
592 if (!brw_bo_busy(bo)) {
593 alloc_from_cache = true;
594 list_del(&bo->head);
595 }
596 }
597
598 if (alloc_from_cache) {
599 assert(list_is_empty(&bo->exports));
600 if (!brw_bo_madvise(bo, I915_MADV_WILLNEED)) {
601 bo_free(bo);
602 brw_bo_cache_purge_bucket(bufmgr, bucket);
603 goto retry;
604 }
605
606 if (bo_set_tiling_internal(bo, tiling_mode, stride)) {
607 bo_free(bo);
608 goto retry;
609 }
610
611 if (zeroed) {
612 void *map = brw_bo_map(NULL, bo, MAP_WRITE | MAP_RAW);
613 if (!map) {
614 bo_free(bo);
615 goto retry;
616 }
617 memset(map, 0, bo_size);
618 }
619 }
620 }
621
622 if (alloc_from_cache) {
623 /* If the cache BO isn't in the right memory zone, free the old
624 * memory and assign it a new address.
625 */
626 if ((bo->kflags & EXEC_OBJECT_PINNED) &&
627 memzone != memzone_for_address(bo->gtt_offset)) {
628 vma_free(bufmgr, bo->gtt_offset, bo->size);
629 bo->gtt_offset = 0ull;
630 }
631 } else {
632 bo = bo_calloc();
633 if (!bo)
634 goto err;
635
636 bo->size = bo_size;
637 bo->idle = true;
638
639 struct drm_i915_gem_create create = { .size = bo_size };
640
641 /* All new BOs we get from the kernel are zeroed, so we don't need to
642 * worry about that here.
643 */
644 ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CREATE, &create);
645 if (ret != 0) {
646 free(bo);
647 goto err;
648 }
649
650 bo->gem_handle = create.handle;
651
652 bo->bufmgr = bufmgr;
653
654 bo->tiling_mode = I915_TILING_NONE;
655 bo->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
656 bo->stride = 0;
657
658 if (bo_set_tiling_internal(bo, tiling_mode, stride))
659 goto err_free;
660
661 /* Calling set_domain() will allocate pages for the BO outside of the
662 * struct mutex lock in the kernel, which is more efficient than waiting
663 * to create them during the first execbuf that uses the BO.
664 */
665 struct drm_i915_gem_set_domain sd = {
666 .handle = bo->gem_handle,
667 .read_domains = I915_GEM_DOMAIN_CPU,
668 .write_domain = 0,
669 };
670
671 if (drmIoctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd) != 0)
672 goto err_free;
673 }
674
675 bo->name = name;
676 p_atomic_set(&bo->refcount, 1);
677 bo->reusable = true;
678 bo->cache_coherent = bufmgr->has_llc;
679 bo->index = -1;
680 bo->kflags = bufmgr->initial_kflags;
681
682 if ((bo->kflags & EXEC_OBJECT_PINNED) && bo->gtt_offset == 0ull) {
683 bo->gtt_offset = vma_alloc(bufmgr, memzone, bo->size, 1);
684
685 if (bo->gtt_offset == 0ull)
686 goto err_free;
687 }
688
689 mtx_unlock(&bufmgr->lock);
690
691 DBG("bo_create: buf %d (%s) %llub\n", bo->gem_handle, bo->name,
692 (unsigned long long) size);
693
694 return bo;
695
696 err_free:
697 bo_free(bo);
698 err:
699 mtx_unlock(&bufmgr->lock);
700 return NULL;
701 }
702
703 struct brw_bo *
brw_bo_alloc(struct brw_bufmgr * bufmgr,const char * name,uint64_t size,enum brw_memory_zone memzone)704 brw_bo_alloc(struct brw_bufmgr *bufmgr,
705 const char *name, uint64_t size,
706 enum brw_memory_zone memzone)
707 {
708 return bo_alloc_internal(bufmgr, name, size, memzone,
709 0, I915_TILING_NONE, 0);
710 }
711
712 struct brw_bo *
brw_bo_alloc_tiled(struct brw_bufmgr * bufmgr,const char * name,uint64_t size,enum brw_memory_zone memzone,uint32_t tiling_mode,uint32_t pitch,unsigned flags)713 brw_bo_alloc_tiled(struct brw_bufmgr *bufmgr, const char *name,
714 uint64_t size, enum brw_memory_zone memzone,
715 uint32_t tiling_mode, uint32_t pitch,
716 unsigned flags)
717 {
718 return bo_alloc_internal(bufmgr, name, size, memzone,
719 flags, tiling_mode, pitch);
720 }
721
722 struct brw_bo *
brw_bo_alloc_tiled_2d(struct brw_bufmgr * bufmgr,const char * name,int x,int y,int cpp,enum brw_memory_zone memzone,uint32_t tiling,uint32_t * pitch,unsigned flags)723 brw_bo_alloc_tiled_2d(struct brw_bufmgr *bufmgr, const char *name,
724 int x, int y, int cpp, enum brw_memory_zone memzone,
725 uint32_t tiling, uint32_t *pitch, unsigned flags)
726 {
727 uint64_t size;
728 uint32_t stride;
729 unsigned long aligned_y, height_alignment;
730
731 /* If we're tiled, our allocations are in 8 or 32-row blocks,
732 * so failure to align our height means that we won't allocate
733 * enough pages.
734 *
735 * If we're untiled, we still have to align to 2 rows high
736 * because the data port accesses 2x2 blocks even if the
737 * bottom row isn't to be rendered, so failure to align means
738 * we could walk off the end of the GTT and fault. This is
739 * documented on 965, and may be the case on older chipsets
740 * too so we try to be careful.
741 */
742 aligned_y = y;
743 height_alignment = 2;
744
745 if (tiling == I915_TILING_X)
746 height_alignment = 8;
747 else if (tiling == I915_TILING_Y)
748 height_alignment = 32;
749 aligned_y = ALIGN(y, height_alignment);
750
751 stride = x * cpp;
752 stride = bo_tile_pitch(bufmgr, stride, tiling);
753 size = stride * aligned_y;
754 size = bo_tile_size(bufmgr, size, tiling);
755 *pitch = stride;
756
757 if (tiling == I915_TILING_NONE)
758 stride = 0;
759
760 return bo_alloc_internal(bufmgr, name, size, memzone,
761 flags, tiling, stride);
762 }
763
764 /**
765 * Returns a brw_bo wrapping the given buffer object handle.
766 *
767 * This can be used when one application needs to pass a buffer object
768 * to another.
769 */
770 struct brw_bo *
brw_bo_gem_create_from_name(struct brw_bufmgr * bufmgr,const char * name,unsigned int handle)771 brw_bo_gem_create_from_name(struct brw_bufmgr *bufmgr,
772 const char *name, unsigned int handle)
773 {
774 struct brw_bo *bo;
775
776 /* At the moment most applications only have a few named bo.
777 * For instance, in a DRI client only the render buffers passed
778 * between X and the client are named. And since X returns the
779 * alternating names for the front/back buffer a linear search
780 * provides a sufficiently fast match.
781 */
782 mtx_lock(&bufmgr->lock);
783 bo = hash_find_bo(bufmgr->name_table, handle);
784 if (bo) {
785 brw_bo_reference(bo);
786 goto out;
787 }
788
789 struct drm_gem_open open_arg = { .name = handle };
790 int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_GEM_OPEN, &open_arg);
791 if (ret != 0) {
792 DBG("Couldn't reference %s handle 0x%08x: %s\n",
793 name, handle, strerror(errno));
794 bo = NULL;
795 goto out;
796 }
797 /* Now see if someone has used a prime handle to get this
798 * object from the kernel before by looking through the list
799 * again for a matching gem_handle
800 */
801 bo = hash_find_bo(bufmgr->handle_table, open_arg.handle);
802 if (bo) {
803 brw_bo_reference(bo);
804 goto out;
805 }
806
807 bo = bo_calloc();
808 if (!bo)
809 goto out;
810
811 p_atomic_set(&bo->refcount, 1);
812
813 bo->size = open_arg.size;
814 bo->gtt_offset = 0;
815 bo->bufmgr = bufmgr;
816 bo->gem_handle = open_arg.handle;
817 bo->name = name;
818 bo->global_name = handle;
819 bo->reusable = false;
820 bo->external = true;
821 bo->kflags = bufmgr->initial_kflags;
822
823 if (bo->kflags & EXEC_OBJECT_PINNED)
824 bo->gtt_offset = vma_alloc(bufmgr, BRW_MEMZONE_OTHER, bo->size, 1);
825
826 _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
827 _mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo);
828
829 struct drm_i915_gem_get_tiling get_tiling = { .handle = bo->gem_handle };
830 ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling);
831 if (ret != 0)
832 goto err_unref;
833
834 bo->tiling_mode = get_tiling.tiling_mode;
835 bo->swizzle_mode = get_tiling.swizzle_mode;
836 /* XXX stride is unknown */
837 DBG("bo_create_from_handle: %d (%s)\n", handle, bo->name);
838
839 out:
840 mtx_unlock(&bufmgr->lock);
841 return bo;
842
843 err_unref:
844 bo_free(bo);
845 mtx_unlock(&bufmgr->lock);
846 return NULL;
847 }
848
849 static void
bo_free(struct brw_bo * bo)850 bo_free(struct brw_bo *bo)
851 {
852 struct brw_bufmgr *bufmgr = bo->bufmgr;
853
854 if (bo->map_cpu) {
855 VG_NOACCESS(bo->map_cpu, bo->size);
856 drm_munmap(bo->map_cpu, bo->size);
857 }
858 if (bo->map_wc) {
859 VG_NOACCESS(bo->map_wc, bo->size);
860 drm_munmap(bo->map_wc, bo->size);
861 }
862 if (bo->map_gtt) {
863 VG_NOACCESS(bo->map_gtt, bo->size);
864 drm_munmap(bo->map_gtt, bo->size);
865 }
866
867 if (bo->external) {
868 struct hash_entry *entry;
869
870 if (bo->global_name) {
871 entry = _mesa_hash_table_search(bufmgr->name_table, &bo->global_name);
872 _mesa_hash_table_remove(bufmgr->name_table, entry);
873 }
874
875 entry = _mesa_hash_table_search(bufmgr->handle_table, &bo->gem_handle);
876 _mesa_hash_table_remove(bufmgr->handle_table, entry);
877 } else {
878 assert(list_is_empty(&bo->exports));
879 }
880
881 /* Close this object */
882 struct drm_gem_close close = { .handle = bo->gem_handle };
883 int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &close);
884 if (ret != 0) {
885 DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n",
886 bo->gem_handle, bo->name, strerror(errno));
887 }
888
889 if (bo->kflags & EXEC_OBJECT_PINNED)
890 vma_free(bo->bufmgr, bo->gtt_offset, bo->size);
891
892 free(bo);
893 }
894
895 /** Frees all cached buffers significantly older than @time. */
896 static void
cleanup_bo_cache(struct brw_bufmgr * bufmgr,time_t time)897 cleanup_bo_cache(struct brw_bufmgr *bufmgr, time_t time)
898 {
899 int i;
900
901 if (bufmgr->time == time)
902 return;
903
904 for (i = 0; i < bufmgr->num_buckets; i++) {
905 struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
906
907 list_for_each_entry_safe(struct brw_bo, bo, &bucket->head, head) {
908 if (time - bo->free_time <= 1)
909 break;
910
911 list_del(&bo->head);
912
913 bo_free(bo);
914 }
915 }
916
917 bufmgr->time = time;
918 }
919
920 static void
bo_unreference_final(struct brw_bo * bo,time_t time)921 bo_unreference_final(struct brw_bo *bo, time_t time)
922 {
923 struct brw_bufmgr *bufmgr = bo->bufmgr;
924 struct bo_cache_bucket *bucket;
925
926 DBG("bo_unreference final: %d (%s)\n", bo->gem_handle, bo->name);
927
928 list_for_each_entry_safe(struct bo_export, export, &bo->exports, link) {
929 struct drm_gem_close close = { .handle = export->gem_handle };
930 intel_ioctl(export->drm_fd, DRM_IOCTL_GEM_CLOSE, &close);
931
932 list_del(&export->link);
933 free(export);
934 }
935
936 bucket = bucket_for_size(bufmgr, bo->size);
937 /* Put the buffer into our internal cache for reuse if we can. */
938 if (bufmgr->bo_reuse && bo->reusable && bucket != NULL &&
939 brw_bo_madvise(bo, I915_MADV_DONTNEED)) {
940 bo->free_time = time;
941
942 bo->name = NULL;
943
944 list_addtail(&bo->head, &bucket->head);
945 } else {
946 bo_free(bo);
947 }
948 }
949
950 void
brw_bo_unreference(struct brw_bo * bo)951 brw_bo_unreference(struct brw_bo *bo)
952 {
953 if (bo == NULL)
954 return;
955
956 assert(p_atomic_read(&bo->refcount) > 0);
957
958 if (atomic_add_unless(&bo->refcount, -1, 1)) {
959 struct brw_bufmgr *bufmgr = bo->bufmgr;
960 struct timespec time;
961
962 clock_gettime(CLOCK_MONOTONIC, &time);
963
964 mtx_lock(&bufmgr->lock);
965
966 if (p_atomic_dec_zero(&bo->refcount)) {
967 bo_unreference_final(bo, time.tv_sec);
968 cleanup_bo_cache(bufmgr, time.tv_sec);
969 }
970
971 mtx_unlock(&bufmgr->lock);
972 }
973 }
974
975 static void
bo_wait_with_stall_warning(struct brw_context * brw,struct brw_bo * bo,const char * action)976 bo_wait_with_stall_warning(struct brw_context *brw,
977 struct brw_bo *bo,
978 const char *action)
979 {
980 bool busy = brw && brw->perf_debug && !bo->idle;
981 double elapsed = unlikely(busy) ? -get_time() : 0.0;
982
983 brw_bo_wait_rendering(bo);
984
985 if (unlikely(busy)) {
986 elapsed += get_time();
987 if (elapsed > 1e-5) /* 0.01ms */
988 perf_debug("%s a busy \"%s\" BO stalled and took %.03f ms.\n",
989 action, bo->name, elapsed * 1000);
990 }
991 }
992
993 static void
print_flags(unsigned flags)994 print_flags(unsigned flags)
995 {
996 if (flags & MAP_READ)
997 DBG("READ ");
998 if (flags & MAP_WRITE)
999 DBG("WRITE ");
1000 if (flags & MAP_ASYNC)
1001 DBG("ASYNC ");
1002 if (flags & MAP_PERSISTENT)
1003 DBG("PERSISTENT ");
1004 if (flags & MAP_COHERENT)
1005 DBG("COHERENT ");
1006 if (flags & MAP_RAW)
1007 DBG("RAW ");
1008 DBG("\n");
1009 }
1010
1011 static void *
brw_bo_gem_mmap_legacy(struct brw_context * brw,struct brw_bo * bo,bool wc)1012 brw_bo_gem_mmap_legacy(struct brw_context *brw, struct brw_bo *bo, bool wc)
1013 {
1014 struct brw_bufmgr *bufmgr = bo->bufmgr;
1015
1016 struct drm_i915_gem_mmap mmap_arg = {
1017 .handle = bo->gem_handle,
1018 .size = bo->size,
1019 .flags = wc ? I915_MMAP_WC : 0,
1020 };
1021
1022 int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg);
1023 if (ret != 0) {
1024 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1025 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
1026 return NULL;
1027 }
1028 void *map = (void *) (uintptr_t) mmap_arg.addr_ptr;
1029
1030 return map;
1031 }
1032
1033 static void *
brw_bo_gem_mmap_offset(struct brw_context * brw,struct brw_bo * bo,bool wc)1034 brw_bo_gem_mmap_offset(struct brw_context *brw, struct brw_bo *bo, bool wc)
1035 {
1036 struct brw_bufmgr *bufmgr = bo->bufmgr;
1037
1038 struct drm_i915_gem_mmap_offset mmap_arg = {
1039 .handle = bo->gem_handle,
1040 .flags = wc ? I915_MMAP_OFFSET_WC : I915_MMAP_OFFSET_WB,
1041 };
1042
1043 /* Get the fake offset back */
1044 int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP_OFFSET, &mmap_arg);
1045 if (ret != 0) {
1046 DBG("%s:%d: Error preparing buffer %d (%s): %s .\n",
1047 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
1048 return NULL;
1049 }
1050
1051 /* And map it */
1052 void *map = drm_mmap(0, bo->size, PROT_READ | PROT_WRITE, MAP_SHARED,
1053 bufmgr->fd, mmap_arg.offset);
1054 if (map == MAP_FAILED) {
1055 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1056 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
1057 return NULL;
1058 }
1059
1060 return map;
1061 }
1062
1063 static void *
brw_bo_gem_mmap(struct brw_context * brw,struct brw_bo * bo,bool wc)1064 brw_bo_gem_mmap(struct brw_context *brw, struct brw_bo *bo, bool wc)
1065 {
1066 struct brw_bufmgr *bufmgr = bo->bufmgr;
1067
1068 if (bufmgr->has_mmap_offset)
1069 return brw_bo_gem_mmap_offset(brw, bo, wc);
1070 else
1071 return brw_bo_gem_mmap_legacy(brw, bo, wc);
1072 }
1073
1074 static void *
brw_bo_map_cpu(struct brw_context * brw,struct brw_bo * bo,unsigned flags)1075 brw_bo_map_cpu(struct brw_context *brw, struct brw_bo *bo, unsigned flags)
1076 {
1077 /* We disallow CPU maps for writing to non-coherent buffers, as the
1078 * CPU map can become invalidated when a batch is flushed out, which
1079 * can happen at unpredictable times. You should use WC maps instead.
1080 */
1081 assert(bo->cache_coherent || !(flags & MAP_WRITE));
1082
1083 if (!bo->map_cpu) {
1084 DBG("brw_bo_map_cpu: %d (%s)\n", bo->gem_handle, bo->name);
1085
1086 void *map = brw_bo_gem_mmap(brw, bo, false);
1087 VG_DEFINED(map, bo->size);
1088
1089 if (p_atomic_cmpxchg(&bo->map_cpu, NULL, map)) {
1090 VG_NOACCESS(map, bo->size);
1091 drm_munmap(map, bo->size);
1092 }
1093 }
1094 assert(bo->map_cpu);
1095
1096 DBG("brw_bo_map_cpu: %d (%s) -> %p, ", bo->gem_handle, bo->name,
1097 bo->map_cpu);
1098 print_flags(flags);
1099
1100 if (!(flags & MAP_ASYNC)) {
1101 bo_wait_with_stall_warning(brw, bo, "CPU mapping");
1102 }
1103
1104 if (!bo->cache_coherent && !bo->bufmgr->has_llc) {
1105 /* If we're reusing an existing CPU mapping, the CPU caches may
1106 * contain stale data from the last time we read from that mapping.
1107 * (With the BO cache, it might even be data from a previous buffer!)
1108 * Even if it's a brand new mapping, the kernel may have zeroed the
1109 * buffer via CPU writes.
1110 *
1111 * We need to invalidate those cachelines so that we see the latest
1112 * contents, and so long as we only read from the CPU mmap we do not
1113 * need to write those cachelines back afterwards.
1114 *
1115 * On LLC, the emprical evidence suggests that writes from the GPU
1116 * that bypass the LLC (i.e. for scanout) do *invalidate* the CPU
1117 * cachelines. (Other reads, such as the display engine, bypass the
1118 * LLC entirely requiring us to keep dirty pixels for the scanout
1119 * out of any cache.)
1120 */
1121 intel_invalidate_range(bo->map_cpu, bo->size);
1122 }
1123
1124 return bo->map_cpu;
1125 }
1126
1127 static void *
brw_bo_map_wc(struct brw_context * brw,struct brw_bo * bo,unsigned flags)1128 brw_bo_map_wc(struct brw_context *brw, struct brw_bo *bo, unsigned flags)
1129 {
1130 struct brw_bufmgr *bufmgr = bo->bufmgr;
1131
1132 if (!bufmgr->has_mmap_wc)
1133 return NULL;
1134
1135 if (!bo->map_wc) {
1136 DBG("brw_bo_map_wc: %d (%s)\n", bo->gem_handle, bo->name);
1137 void *map = brw_bo_gem_mmap(brw, bo, true);
1138 VG_DEFINED(map, bo->size);
1139
1140 if (p_atomic_cmpxchg(&bo->map_wc, NULL, map)) {
1141 VG_NOACCESS(map, bo->size);
1142 drm_munmap(map, bo->size);
1143 }
1144 }
1145 assert(bo->map_wc);
1146
1147 DBG("brw_bo_map_wc: %d (%s) -> %p\n", bo->gem_handle, bo->name, bo->map_wc);
1148 print_flags(flags);
1149
1150 if (!(flags & MAP_ASYNC)) {
1151 bo_wait_with_stall_warning(brw, bo, "WC mapping");
1152 }
1153
1154 return bo->map_wc;
1155 }
1156
1157 /**
1158 * Perform an uncached mapping via the GTT.
1159 *
1160 * Write access through the GTT is not quite fully coherent. On low power
1161 * systems especially, like modern Atoms, we can observe reads from RAM before
1162 * the write via GTT has landed. A write memory barrier that flushes the Write
1163 * Combining Buffer (i.e. sfence/mfence) is not sufficient to order the later
1164 * read after the write as the GTT write suffers a small delay through the GTT
1165 * indirection. The kernel uses an uncached mmio read to ensure the GTT write
1166 * is ordered with reads (either by the GPU, WB or WC) and unconditionally
1167 * flushes prior to execbuf submission. However, if we are not informing the
1168 * kernel about our GTT writes, it will not flush before earlier access, such
1169 * as when using the cmdparser. Similarly, we need to be careful if we should
1170 * ever issue a CPU read immediately following a GTT write.
1171 *
1172 * Telling the kernel about write access also has one more important
1173 * side-effect. Upon receiving notification about the write, it cancels any
1174 * scanout buffering for FBC/PSR and friends. Later FBC/PSR is then flushed by
1175 * either SW_FINISH or DIRTYFB. The presumption is that we never write to the
1176 * actual scanout via a mmaping, only to a backbuffer and so all the FBC/PSR
1177 * tracking is handled on the buffer exchange instead.
1178 */
1179 static void *
brw_bo_map_gtt(struct brw_context * brw,struct brw_bo * bo,unsigned flags)1180 brw_bo_map_gtt(struct brw_context *brw, struct brw_bo *bo, unsigned flags)
1181 {
1182 struct brw_bufmgr *bufmgr = bo->bufmgr;
1183
1184 /* Get a mapping of the buffer if we haven't before. */
1185 if (bo->map_gtt == NULL) {
1186 DBG("bo_map_gtt: mmap %d (%s)\n", bo->gem_handle, bo->name);
1187
1188 struct drm_i915_gem_mmap_gtt mmap_arg = { .handle = bo->gem_handle };
1189
1190 /* Get the fake offset back... */
1191 int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP_GTT, &mmap_arg);
1192 if (ret != 0) {
1193 DBG("%s:%d: Error preparing buffer map %d (%s): %s .\n",
1194 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
1195 return NULL;
1196 }
1197
1198 /* and mmap it. */
1199 void *map = drm_mmap(0, bo->size, PROT_READ | PROT_WRITE,
1200 MAP_SHARED, bufmgr->fd, mmap_arg.offset);
1201 if (map == MAP_FAILED) {
1202 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1203 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
1204 return NULL;
1205 }
1206
1207 /* We don't need to use VALGRIND_MALLOCLIKE_BLOCK because Valgrind will
1208 * already intercept this mmap call. However, for consistency between
1209 * all the mmap paths, we mark the pointer as defined now and mark it
1210 * as inaccessible afterwards.
1211 */
1212 VG_DEFINED(map, bo->size);
1213
1214 if (p_atomic_cmpxchg(&bo->map_gtt, NULL, map)) {
1215 VG_NOACCESS(map, bo->size);
1216 drm_munmap(map, bo->size);
1217 }
1218 }
1219 assert(bo->map_gtt);
1220
1221 DBG("bo_map_gtt: %d (%s) -> %p, ", bo->gem_handle, bo->name, bo->map_gtt);
1222 print_flags(flags);
1223
1224 if (!(flags & MAP_ASYNC)) {
1225 bo_wait_with_stall_warning(brw, bo, "GTT mapping");
1226 }
1227
1228 return bo->map_gtt;
1229 }
1230
1231 static bool
can_map_cpu(struct brw_bo * bo,unsigned flags)1232 can_map_cpu(struct brw_bo *bo, unsigned flags)
1233 {
1234 if (bo->cache_coherent)
1235 return true;
1236
1237 /* Even if the buffer itself is not cache-coherent (such as a scanout), on
1238 * an LLC platform reads always are coherent (as they are performed via the
1239 * central system agent). It is just the writes that we need to take special
1240 * care to ensure that land in main memory and not stick in the CPU cache.
1241 */
1242 if (!(flags & MAP_WRITE) && bo->bufmgr->has_llc)
1243 return true;
1244
1245 /* If PERSISTENT or COHERENT are set, the mmapping needs to remain valid
1246 * across batch flushes where the kernel will change cache domains of the
1247 * bo, invalidating continued access to the CPU mmap on non-LLC device.
1248 *
1249 * Similarly, ASYNC typically means that the buffer will be accessed via
1250 * both the CPU and the GPU simultaneously. Batches may be executed that
1251 * use the BO even while it is mapped. While OpenGL technically disallows
1252 * most drawing while non-persistent mappings are active, we may still use
1253 * the GPU for blits or other operations, causing batches to happen at
1254 * inconvenient times.
1255 */
1256 if (flags & (MAP_PERSISTENT | MAP_COHERENT | MAP_ASYNC))
1257 return false;
1258
1259 return !(flags & MAP_WRITE);
1260 }
1261
1262 void *
brw_bo_map(struct brw_context * brw,struct brw_bo * bo,unsigned flags)1263 brw_bo_map(struct brw_context *brw, struct brw_bo *bo, unsigned flags)
1264 {
1265 if (bo->tiling_mode != I915_TILING_NONE && !(flags & MAP_RAW))
1266 return brw_bo_map_gtt(brw, bo, flags);
1267
1268 void *map;
1269
1270 if (can_map_cpu(bo, flags))
1271 map = brw_bo_map_cpu(brw, bo, flags);
1272 else
1273 map = brw_bo_map_wc(brw, bo, flags);
1274
1275 /* Allow the attempt to fail by falling back to the GTT where necessary.
1276 *
1277 * Not every buffer can be mmaped directly using the CPU (or WC), for
1278 * example buffers that wrap stolen memory or are imported from other
1279 * devices. For those, we have little choice but to use a GTT mmapping.
1280 * However, if we use a slow GTT mmapping for reads where we expected fast
1281 * access, that order of magnitude difference in throughput will be clearly
1282 * expressed by angry users.
1283 *
1284 * We skip MAP_RAW because we want to avoid map_gtt's fence detiling.
1285 */
1286 if (!map && !(flags & MAP_RAW)) {
1287 if (brw) {
1288 perf_debug("Fallback GTT mapping for %s with access flags %x\n",
1289 bo->name, flags);
1290 }
1291 map = brw_bo_map_gtt(brw, bo, flags);
1292 }
1293
1294 return map;
1295 }
1296
1297 int
brw_bo_subdata(struct brw_bo * bo,uint64_t offset,uint64_t size,const void * data)1298 brw_bo_subdata(struct brw_bo *bo, uint64_t offset,
1299 uint64_t size, const void *data)
1300 {
1301 struct brw_bufmgr *bufmgr = bo->bufmgr;
1302
1303 struct drm_i915_gem_pwrite pwrite = {
1304 .handle = bo->gem_handle,
1305 .offset = offset,
1306 .size = size,
1307 .data_ptr = (uint64_t) (uintptr_t) data,
1308 };
1309
1310 int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_PWRITE, &pwrite);
1311 if (ret != 0) {
1312 ret = -errno;
1313 DBG("%s:%d: Error writing data to buffer %d: "
1314 "(%"PRIu64" %"PRIu64") %s .\n",
1315 __FILE__, __LINE__, bo->gem_handle, offset, size, strerror(errno));
1316 }
1317
1318 return ret;
1319 }
1320
1321 /** Waits for all GPU rendering with the object to have completed. */
1322 void
brw_bo_wait_rendering(struct brw_bo * bo)1323 brw_bo_wait_rendering(struct brw_bo *bo)
1324 {
1325 /* We require a kernel recent enough for WAIT_IOCTL support.
1326 * See brw_init_bufmgr()
1327 */
1328 brw_bo_wait(bo, -1);
1329 }
1330
1331 /**
1332 * Waits on a BO for the given amount of time.
1333 *
1334 * @bo: buffer object to wait for
1335 * @timeout_ns: amount of time to wait in nanoseconds.
1336 * If value is less than 0, an infinite wait will occur.
1337 *
1338 * Returns 0 if the wait was successful ie. the last batch referencing the
1339 * object has completed within the allotted time. Otherwise some negative return
1340 * value describes the error. Of particular interest is -ETIME when the wait has
1341 * failed to yield the desired result.
1342 *
1343 * Similar to brw_bo_wait_rendering except a timeout parameter allows
1344 * the operation to give up after a certain amount of time. Another subtle
1345 * difference is the internal locking semantics are different (this variant does
1346 * not hold the lock for the duration of the wait). This makes the wait subject
1347 * to a larger userspace race window.
1348 *
1349 * The implementation shall wait until the object is no longer actively
1350 * referenced within a batch buffer at the time of the call. The wait will
1351 * not guarantee that the buffer is re-issued via another thread, or an flinked
1352 * handle. Userspace must make sure this race does not occur if such precision
1353 * is important.
1354 *
1355 * Note that some kernels have broken the inifite wait for negative values
1356 * promise, upgrade to latest stable kernels if this is the case.
1357 */
1358 int
brw_bo_wait(struct brw_bo * bo,int64_t timeout_ns)1359 brw_bo_wait(struct brw_bo *bo, int64_t timeout_ns)
1360 {
1361 struct brw_bufmgr *bufmgr = bo->bufmgr;
1362
1363 /* If we know it's idle, don't bother with the kernel round trip */
1364 if (bo->idle && !bo->external)
1365 return 0;
1366
1367 struct drm_i915_gem_wait wait = {
1368 .bo_handle = bo->gem_handle,
1369 .timeout_ns = timeout_ns,
1370 };
1371 int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_WAIT, &wait);
1372 if (ret != 0)
1373 return -errno;
1374
1375 bo->idle = true;
1376
1377 return ret;
1378 }
1379
1380 void
brw_bufmgr_unref(struct brw_bufmgr * bufmgr)1381 brw_bufmgr_unref(struct brw_bufmgr *bufmgr)
1382 {
1383 mtx_lock(&global_bufmgr_list_mutex);
1384 if (p_atomic_dec_zero(&bufmgr->refcount)) {
1385 list_del(&bufmgr->link);
1386 } else {
1387 bufmgr = NULL;
1388 }
1389 mtx_unlock(&global_bufmgr_list_mutex);
1390
1391 if (!bufmgr)
1392 return;
1393
1394 mtx_destroy(&bufmgr->lock);
1395
1396 /* Free any cached buffer objects we were going to reuse */
1397 for (int i = 0; i < bufmgr->num_buckets; i++) {
1398 struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
1399
1400 list_for_each_entry_safe(struct brw_bo, bo, &bucket->head, head) {
1401 list_del(&bo->head);
1402
1403 bo_free(bo);
1404 }
1405
1406 if (brw_using_softpin(bufmgr)) {
1407 for (int z = 0; z < BRW_MEMZONE_COUNT; z++) {
1408 util_dynarray_fini(&bucket->vma_list[z]);
1409 }
1410 }
1411 }
1412
1413 _mesa_hash_table_destroy(bufmgr->name_table, NULL);
1414 _mesa_hash_table_destroy(bufmgr->handle_table, NULL);
1415
1416 if (brw_using_softpin(bufmgr)) {
1417 for (int z = 0; z < BRW_MEMZONE_COUNT; z++) {
1418 util_vma_heap_finish(&bufmgr->vma_allocator[z]);
1419 }
1420 }
1421
1422 close(bufmgr->fd);
1423 bufmgr->fd = -1;
1424
1425 free(bufmgr);
1426 }
1427
1428 static int
bo_set_tiling_internal(struct brw_bo * bo,uint32_t tiling_mode,uint32_t stride)1429 bo_set_tiling_internal(struct brw_bo *bo, uint32_t tiling_mode,
1430 uint32_t stride)
1431 {
1432 struct brw_bufmgr *bufmgr = bo->bufmgr;
1433 struct drm_i915_gem_set_tiling set_tiling;
1434 int ret;
1435
1436 if (bo->global_name == 0 &&
1437 tiling_mode == bo->tiling_mode && stride == bo->stride)
1438 return 0;
1439
1440 memset(&set_tiling, 0, sizeof(set_tiling));
1441 do {
1442 /* set_tiling is slightly broken and overwrites the
1443 * input on the error path, so we have to open code
1444 * rmIoctl.
1445 */
1446 set_tiling.handle = bo->gem_handle;
1447 set_tiling.tiling_mode = tiling_mode;
1448 set_tiling.stride = stride;
1449
1450 ret = ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_TILING, &set_tiling);
1451 } while (ret == -1 && (errno == EINTR || errno == EAGAIN));
1452 if (ret == -1)
1453 return -errno;
1454
1455 bo->tiling_mode = set_tiling.tiling_mode;
1456 bo->swizzle_mode = set_tiling.swizzle_mode;
1457 bo->stride = set_tiling.stride;
1458 return 0;
1459 }
1460
1461 int
brw_bo_get_tiling(struct brw_bo * bo,uint32_t * tiling_mode,uint32_t * swizzle_mode)1462 brw_bo_get_tiling(struct brw_bo *bo, uint32_t *tiling_mode,
1463 uint32_t *swizzle_mode)
1464 {
1465 *tiling_mode = bo->tiling_mode;
1466 *swizzle_mode = bo->swizzle_mode;
1467 return 0;
1468 }
1469
1470 static struct brw_bo *
brw_bo_gem_create_from_prime_internal(struct brw_bufmgr * bufmgr,int prime_fd,int tiling_mode,uint32_t stride)1471 brw_bo_gem_create_from_prime_internal(struct brw_bufmgr *bufmgr, int prime_fd,
1472 int tiling_mode, uint32_t stride)
1473 {
1474 uint32_t handle;
1475 struct brw_bo *bo;
1476
1477 mtx_lock(&bufmgr->lock);
1478 int ret = drmPrimeFDToHandle(bufmgr->fd, prime_fd, &handle);
1479 if (ret) {
1480 DBG("create_from_prime: failed to obtain handle from fd: %s\n",
1481 strerror(errno));
1482 mtx_unlock(&bufmgr->lock);
1483 return NULL;
1484 }
1485
1486 /*
1487 * See if the kernel has already returned this buffer to us. Just as
1488 * for named buffers, we must not create two bo's pointing at the same
1489 * kernel object
1490 */
1491 bo = hash_find_bo(bufmgr->handle_table, handle);
1492 if (bo) {
1493 brw_bo_reference(bo);
1494 goto out;
1495 }
1496
1497 bo = bo_calloc();
1498 if (!bo)
1499 goto out;
1500
1501 p_atomic_set(&bo->refcount, 1);
1502
1503 /* Determine size of bo. The fd-to-handle ioctl really should
1504 * return the size, but it doesn't. If we have kernel 3.12 or
1505 * later, we can lseek on the prime fd to get the size. Older
1506 * kernels will just fail, in which case we fall back to the
1507 * provided (estimated or guess size). */
1508 ret = lseek(prime_fd, 0, SEEK_END);
1509 if (ret != -1)
1510 bo->size = ret;
1511
1512 bo->bufmgr = bufmgr;
1513
1514 bo->gem_handle = handle;
1515 _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
1516
1517 bo->name = "prime";
1518 bo->reusable = false;
1519 bo->external = true;
1520 bo->kflags = bufmgr->initial_kflags;
1521
1522 if (bo->kflags & EXEC_OBJECT_PINNED) {
1523 assert(bo->size > 0);
1524 bo->gtt_offset = vma_alloc(bufmgr, BRW_MEMZONE_OTHER, bo->size, 1);
1525 }
1526
1527 if (tiling_mode < 0) {
1528 struct drm_i915_gem_get_tiling get_tiling = { .handle = bo->gem_handle };
1529 if (drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling))
1530 goto err;
1531
1532 bo->tiling_mode = get_tiling.tiling_mode;
1533 bo->swizzle_mode = get_tiling.swizzle_mode;
1534 /* XXX stride is unknown */
1535 } else {
1536 bo_set_tiling_internal(bo, tiling_mode, stride);
1537 }
1538
1539 out:
1540 mtx_unlock(&bufmgr->lock);
1541 return bo;
1542
1543 err:
1544 bo_free(bo);
1545 mtx_unlock(&bufmgr->lock);
1546 return NULL;
1547 }
1548
1549 struct brw_bo *
brw_bo_gem_create_from_prime(struct brw_bufmgr * bufmgr,int prime_fd)1550 brw_bo_gem_create_from_prime(struct brw_bufmgr *bufmgr, int prime_fd)
1551 {
1552 return brw_bo_gem_create_from_prime_internal(bufmgr, prime_fd, -1, 0);
1553 }
1554
1555 struct brw_bo *
brw_bo_gem_create_from_prime_tiled(struct brw_bufmgr * bufmgr,int prime_fd,uint32_t tiling_mode,uint32_t stride)1556 brw_bo_gem_create_from_prime_tiled(struct brw_bufmgr *bufmgr, int prime_fd,
1557 uint32_t tiling_mode, uint32_t stride)
1558 {
1559 assert(tiling_mode == I915_TILING_NONE ||
1560 tiling_mode == I915_TILING_X ||
1561 tiling_mode == I915_TILING_Y);
1562
1563 return brw_bo_gem_create_from_prime_internal(bufmgr, prime_fd,
1564 tiling_mode, stride);
1565 }
1566
1567 static void
brw_bo_make_external(struct brw_bo * bo)1568 brw_bo_make_external(struct brw_bo *bo)
1569 {
1570 struct brw_bufmgr *bufmgr = bo->bufmgr;
1571
1572 if (!bo->external) {
1573 mtx_lock(&bufmgr->lock);
1574 if (!bo->external) {
1575 _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
1576 bo->external = true;
1577 }
1578 mtx_unlock(&bufmgr->lock);
1579 }
1580 }
1581
1582 int
brw_bo_gem_export_to_prime(struct brw_bo * bo,int * prime_fd)1583 brw_bo_gem_export_to_prime(struct brw_bo *bo, int *prime_fd)
1584 {
1585 struct brw_bufmgr *bufmgr = bo->bufmgr;
1586
1587 brw_bo_make_external(bo);
1588
1589 if (drmPrimeHandleToFD(bufmgr->fd, bo->gem_handle,
1590 DRM_CLOEXEC | DRM_RDWR, prime_fd) != 0)
1591 return -errno;
1592
1593 bo->reusable = false;
1594
1595 return 0;
1596 }
1597
1598 uint32_t
brw_bo_export_gem_handle(struct brw_bo * bo)1599 brw_bo_export_gem_handle(struct brw_bo *bo)
1600 {
1601 brw_bo_make_external(bo);
1602
1603 return bo->gem_handle;
1604 }
1605
1606 int
brw_bo_flink(struct brw_bo * bo,uint32_t * name)1607 brw_bo_flink(struct brw_bo *bo, uint32_t *name)
1608 {
1609 struct brw_bufmgr *bufmgr = bo->bufmgr;
1610
1611 if (!bo->global_name) {
1612 struct drm_gem_flink flink = { .handle = bo->gem_handle };
1613
1614 if (drmIoctl(bufmgr->fd, DRM_IOCTL_GEM_FLINK, &flink))
1615 return -errno;
1616
1617 brw_bo_make_external(bo);
1618 mtx_lock(&bufmgr->lock);
1619 if (!bo->global_name) {
1620 bo->global_name = flink.name;
1621 _mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo);
1622 }
1623 mtx_unlock(&bufmgr->lock);
1624
1625 bo->reusable = false;
1626 }
1627
1628 *name = bo->global_name;
1629 return 0;
1630 }
1631
1632 int
brw_bo_export_gem_handle_for_device(struct brw_bo * bo,int drm_fd,uint32_t * out_handle)1633 brw_bo_export_gem_handle_for_device(struct brw_bo *bo, int drm_fd,
1634 uint32_t *out_handle)
1635 {
1636 struct brw_bufmgr *bufmgr = bo->bufmgr;
1637
1638 /* Only add the new GEM handle to the list of export if it belongs to a
1639 * different GEM device. Otherwise we might close the same buffer multiple
1640 * times.
1641 */
1642 int ret = os_same_file_description(drm_fd, bufmgr->fd);
1643 WARN_ONCE(ret < 0,
1644 "Kernel has no file descriptor comparison support: %s\n",
1645 strerror(errno));
1646 if (ret == 0) {
1647 *out_handle = brw_bo_export_gem_handle(bo);
1648 return 0;
1649 }
1650
1651 struct bo_export *export = calloc(1, sizeof(*export));
1652 if (!export)
1653 return -ENOMEM;
1654
1655 export->drm_fd = drm_fd;
1656
1657 int dmabuf_fd = -1;
1658 int err = brw_bo_gem_export_to_prime(bo, &dmabuf_fd);
1659 if (err) {
1660 free(export);
1661 return err;
1662 }
1663
1664 mtx_lock(&bufmgr->lock);
1665 err = drmPrimeFDToHandle(drm_fd, dmabuf_fd, &export->gem_handle);
1666 close(dmabuf_fd);
1667 if (err) {
1668 mtx_unlock(&bufmgr->lock);
1669 free(export);
1670 return err;
1671 }
1672
1673 bool found = false;
1674 list_for_each_entry(struct bo_export, iter, &bo->exports, link) {
1675 if (iter->drm_fd != drm_fd)
1676 continue;
1677 /* Here we assume that for a given DRM fd, we'll always get back the
1678 * same GEM handle for a given buffer.
1679 */
1680 assert(iter->gem_handle == export->gem_handle);
1681 free(export);
1682 export = iter;
1683 found = true;
1684 break;
1685 }
1686 if (!found)
1687 list_addtail(&export->link, &bo->exports);
1688
1689 mtx_unlock(&bufmgr->lock);
1690
1691 *out_handle = export->gem_handle;
1692
1693 return 0;
1694 }
1695
1696 static void
add_bucket(struct brw_bufmgr * bufmgr,int size)1697 add_bucket(struct brw_bufmgr *bufmgr, int size)
1698 {
1699 unsigned int i = bufmgr->num_buckets;
1700
1701 assert(i < ARRAY_SIZE(bufmgr->cache_bucket));
1702
1703 list_inithead(&bufmgr->cache_bucket[i].head);
1704 if (brw_using_softpin(bufmgr)) {
1705 for (int z = 0; z < BRW_MEMZONE_COUNT; z++)
1706 util_dynarray_init(&bufmgr->cache_bucket[i].vma_list[z], NULL);
1707 }
1708 bufmgr->cache_bucket[i].size = size;
1709 bufmgr->num_buckets++;
1710
1711 assert(bucket_for_size(bufmgr, size) == &bufmgr->cache_bucket[i]);
1712 assert(bucket_for_size(bufmgr, size - 2048) == &bufmgr->cache_bucket[i]);
1713 assert(bucket_for_size(bufmgr, size + 1) != &bufmgr->cache_bucket[i]);
1714 }
1715
1716 static void
init_cache_buckets(struct brw_bufmgr * bufmgr)1717 init_cache_buckets(struct brw_bufmgr *bufmgr)
1718 {
1719 uint64_t size, cache_max_size = 64 * 1024 * 1024;
1720
1721 /* OK, so power of two buckets was too wasteful of memory.
1722 * Give 3 other sizes between each power of two, to hopefully
1723 * cover things accurately enough. (The alternative is
1724 * probably to just go for exact matching of sizes, and assume
1725 * that for things like composited window resize the tiled
1726 * width/height alignment and rounding of sizes to pages will
1727 * get us useful cache hit rates anyway)
1728 */
1729 add_bucket(bufmgr, PAGE_SIZE);
1730 add_bucket(bufmgr, PAGE_SIZE * 2);
1731 add_bucket(bufmgr, PAGE_SIZE * 3);
1732
1733 /* Initialize the linked lists for BO reuse cache. */
1734 for (size = 4 * PAGE_SIZE; size <= cache_max_size; size *= 2) {
1735 add_bucket(bufmgr, size);
1736
1737 add_bucket(bufmgr, size + size * 1 / 4);
1738 add_bucket(bufmgr, size + size * 2 / 4);
1739 add_bucket(bufmgr, size + size * 3 / 4);
1740 }
1741 }
1742
1743 uint32_t
brw_create_hw_context(struct brw_bufmgr * bufmgr)1744 brw_create_hw_context(struct brw_bufmgr *bufmgr)
1745 {
1746 struct drm_i915_gem_context_create create = { };
1747 int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create);
1748 if (ret != 0) {
1749 DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n", strerror(errno));
1750 return 0;
1751 }
1752
1753 return create.ctx_id;
1754 }
1755
1756 int
brw_hw_context_set_priority(struct brw_bufmgr * bufmgr,uint32_t ctx_id,int priority)1757 brw_hw_context_set_priority(struct brw_bufmgr *bufmgr,
1758 uint32_t ctx_id,
1759 int priority)
1760 {
1761 struct drm_i915_gem_context_param p = {
1762 .ctx_id = ctx_id,
1763 .param = I915_CONTEXT_PARAM_PRIORITY,
1764 .value = priority,
1765 };
1766 int err;
1767
1768 err = 0;
1769 if (drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM, &p))
1770 err = -errno;
1771
1772 return err;
1773 }
1774
1775 void
brw_destroy_hw_context(struct brw_bufmgr * bufmgr,uint32_t ctx_id)1776 brw_destroy_hw_context(struct brw_bufmgr *bufmgr, uint32_t ctx_id)
1777 {
1778 struct drm_i915_gem_context_destroy d = { .ctx_id = ctx_id };
1779
1780 if (ctx_id != 0 &&
1781 drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY, &d) != 0) {
1782 fprintf(stderr, "DRM_IOCTL_I915_GEM_CONTEXT_DESTROY failed: %s\n",
1783 strerror(errno));
1784 }
1785 }
1786
1787 int
brw_reg_read(struct brw_bufmgr * bufmgr,uint32_t offset,uint64_t * result)1788 brw_reg_read(struct brw_bufmgr *bufmgr, uint32_t offset, uint64_t *result)
1789 {
1790 struct drm_i915_reg_read reg_read = { .offset = offset };
1791 int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_REG_READ, ®_read);
1792
1793 *result = reg_read.val;
1794 return ret;
1795 }
1796
1797 static int
gem_param(int fd,int name)1798 gem_param(int fd, int name)
1799 {
1800 int v = -1; /* No param uses (yet) the sign bit, reserve it for errors */
1801
1802 struct drm_i915_getparam gp = { .param = name, .value = &v };
1803 if (drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp))
1804 return -1;
1805
1806 return v;
1807 }
1808
1809 static int
gem_context_getparam(int fd,uint32_t context,uint64_t param,uint64_t * value)1810 gem_context_getparam(int fd, uint32_t context, uint64_t param, uint64_t *value)
1811 {
1812 struct drm_i915_gem_context_param gp = {
1813 .ctx_id = context,
1814 .param = param,
1815 };
1816
1817 if (drmIoctl(fd, DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM, &gp))
1818 return -1;
1819
1820 *value = gp.value;
1821
1822 return 0;
1823 }
1824
1825 bool
brw_using_softpin(struct brw_bufmgr * bufmgr)1826 brw_using_softpin(struct brw_bufmgr *bufmgr)
1827 {
1828 return bufmgr->initial_kflags & EXEC_OBJECT_PINNED;
1829 }
1830
1831 static struct brw_bufmgr *
brw_bufmgr_ref(struct brw_bufmgr * bufmgr)1832 brw_bufmgr_ref(struct brw_bufmgr *bufmgr)
1833 {
1834 p_atomic_inc(&bufmgr->refcount);
1835 return bufmgr;
1836 }
1837
1838 /**
1839 * Initializes the GEM buffer manager, which uses the kernel to allocate, map,
1840 * and manage map buffer objections.
1841 *
1842 * \param fd File descriptor of the opened DRM device.
1843 */
1844 static struct brw_bufmgr *
brw_bufmgr_create(struct intel_device_info * devinfo,int fd,bool bo_reuse)1845 brw_bufmgr_create(struct intel_device_info *devinfo, int fd, bool bo_reuse)
1846 {
1847 struct brw_bufmgr *bufmgr;
1848
1849 bufmgr = calloc(1, sizeof(*bufmgr));
1850 if (bufmgr == NULL)
1851 return NULL;
1852
1853 /* Handles to buffer objects belong to the device fd and are not
1854 * reference counted by the kernel. If the same fd is used by
1855 * multiple parties (threads sharing the same screen bufmgr, or
1856 * even worse the same device fd passed to multiple libraries)
1857 * ownership of those handles is shared by those independent parties.
1858 *
1859 * Don't do this! Ensure that each library/bufmgr has its own device
1860 * fd so that its namespace does not clash with another.
1861 */
1862 bufmgr->fd = os_dupfd_cloexec(fd);
1863 if (bufmgr->fd < 0) {
1864 free(bufmgr);
1865 return NULL;
1866 }
1867
1868 p_atomic_set(&bufmgr->refcount, 1);
1869
1870 if (mtx_init(&bufmgr->lock, mtx_plain) != 0) {
1871 close(bufmgr->fd);
1872 free(bufmgr);
1873 return NULL;
1874 }
1875
1876 uint64_t gtt_size;
1877 if (gem_context_getparam(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE, >t_size))
1878 gtt_size = 0;
1879
1880 bufmgr->has_llc = devinfo->has_llc;
1881 bufmgr->has_mmap_wc = gem_param(fd, I915_PARAM_MMAP_VERSION) > 0;
1882 bufmgr->bo_reuse = bo_reuse;
1883 bufmgr->has_mmap_offset = gem_param(fd, I915_PARAM_MMAP_GTT_VERSION) >= 4;
1884
1885 const uint64_t _4GB = 4ull << 30;
1886
1887 /* The STATE_BASE_ADDRESS size field can only hold 1 page shy of 4GB */
1888 const uint64_t _4GB_minus_1 = _4GB - PAGE_SIZE;
1889
1890 if (devinfo->ver >= 8 && gtt_size > _4GB) {
1891 bufmgr->initial_kflags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1892
1893 /* Allocate VMA in userspace if we have softpin and full PPGTT. */
1894 if (gem_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN) > 0 &&
1895 gem_param(fd, I915_PARAM_HAS_ALIASING_PPGTT) > 1) {
1896 bufmgr->initial_kflags |= EXEC_OBJECT_PINNED;
1897
1898 util_vma_heap_init(&bufmgr->vma_allocator[BRW_MEMZONE_LOW_4G],
1899 PAGE_SIZE, _4GB_minus_1);
1900
1901 /* Leave the last 4GB out of the high vma range, so that no state
1902 * base address + size can overflow 48 bits.
1903 */
1904 util_vma_heap_init(&bufmgr->vma_allocator[BRW_MEMZONE_OTHER],
1905 1 * _4GB, gtt_size - 2 * _4GB);
1906 } else if (devinfo->ver >= 10) {
1907 /* Softpin landed in 4.5, but GVT used an aliasing PPGTT until
1908 * kernel commit 6b3816d69628becb7ff35978aa0751798b4a940a in
1909 * 4.14. Gfx10+ GVT hasn't landed yet, so it's not actually a
1910 * problem - but extending this requirement back to earlier gens
1911 * might actually mean requiring 4.14.
1912 */
1913 fprintf(stderr, "i965 requires softpin (Kernel 4.5) on Gfx10+.");
1914 close(bufmgr->fd);
1915 free(bufmgr);
1916 return NULL;
1917 }
1918 }
1919
1920 init_cache_buckets(bufmgr);
1921
1922 bufmgr->name_table =
1923 _mesa_hash_table_create(NULL, _mesa_hash_uint, _mesa_key_uint_equal);
1924 bufmgr->handle_table =
1925 _mesa_hash_table_create(NULL, _mesa_hash_uint, _mesa_key_uint_equal);
1926
1927 return bufmgr;
1928 }
1929
1930 struct brw_bufmgr *
brw_bufmgr_get_for_fd(struct intel_device_info * devinfo,int fd,bool bo_reuse)1931 brw_bufmgr_get_for_fd(struct intel_device_info *devinfo, int fd, bool bo_reuse)
1932 {
1933 struct stat st;
1934
1935 if (fstat(fd, &st))
1936 return NULL;
1937
1938 struct brw_bufmgr *bufmgr = NULL;
1939
1940 mtx_lock(&global_bufmgr_list_mutex);
1941 list_for_each_entry(struct brw_bufmgr, iter_bufmgr, &global_bufmgr_list, link) {
1942 struct stat iter_st;
1943 if (fstat(iter_bufmgr->fd, &iter_st))
1944 continue;
1945
1946 if (st.st_rdev == iter_st.st_rdev) {
1947 assert(iter_bufmgr->bo_reuse == bo_reuse);
1948 bufmgr = brw_bufmgr_ref(iter_bufmgr);
1949 goto unlock;
1950 }
1951 }
1952
1953 bufmgr = brw_bufmgr_create(devinfo, fd, bo_reuse);
1954 if (bufmgr)
1955 list_addtail(&bufmgr->link, &global_bufmgr_list);
1956
1957 unlock:
1958 mtx_unlock(&global_bufmgr_list_mutex);
1959
1960 return bufmgr;
1961 }
1962
1963 int
brw_bufmgr_get_fd(struct brw_bufmgr * bufmgr)1964 brw_bufmgr_get_fd(struct brw_bufmgr *bufmgr)
1965 {
1966 return bufmgr->fd;
1967 }
1968