1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2018 Facebook */
3
4 #include <byteswap.h>
5 #include <endian.h>
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <fcntl.h>
10 #include <unistd.h>
11 #include <errno.h>
12 #include <sys/utsname.h>
13 #include <sys/param.h>
14 #include <sys/stat.h>
15 #include <linux/kernel.h>
16 #include <linux/err.h>
17 #include <linux/btf.h>
18 #include <gelf.h>
19 #include "btf.h"
20 #include "bpf.h"
21 #include "libbpf.h"
22 #include "libbpf_internal.h"
23 #include "hashmap.h"
24
25 #define BTF_MAX_NR_TYPES 0x7fffffffU
26 #define BTF_MAX_STR_OFFSET 0x7fffffffU
27
28 static struct btf_type btf_void;
29
30 struct btf {
31 /* raw BTF data in native endianness */
32 void *raw_data;
33 /* raw BTF data in non-native endianness */
34 void *raw_data_swapped;
35 __u32 raw_size;
36 /* whether target endianness differs from the native one */
37 bool swapped_endian;
38
39 /*
40 * When BTF is loaded from an ELF or raw memory it is stored
41 * in a contiguous memory block. The hdr, type_data, and, strs_data
42 * point inside that memory region to their respective parts of BTF
43 * representation:
44 *
45 * +--------------------------------+
46 * | Header | Types | Strings |
47 * +--------------------------------+
48 * ^ ^ ^
49 * | | |
50 * hdr | |
51 * types_data-+ |
52 * strs_data------------+
53 *
54 * If BTF data is later modified, e.g., due to types added or
55 * removed, BTF deduplication performed, etc, this contiguous
56 * representation is broken up into three independently allocated
57 * memory regions to be able to modify them independently.
58 * raw_data is nulled out at that point, but can be later allocated
59 * and cached again if user calls btf__get_raw_data(), at which point
60 * raw_data will contain a contiguous copy of header, types, and
61 * strings:
62 *
63 * +----------+ +---------+ +-----------+
64 * | Header | | Types | | Strings |
65 * +----------+ +---------+ +-----------+
66 * ^ ^ ^
67 * | | |
68 * hdr | |
69 * types_data----+ |
70 * strs_data------------------+
71 *
72 * +----------+---------+-----------+
73 * | Header | Types | Strings |
74 * raw_data----->+----------+---------+-----------+
75 */
76 struct btf_header *hdr;
77
78 void *types_data;
79 size_t types_data_cap; /* used size stored in hdr->type_len */
80
81 /* type ID to `struct btf_type *` lookup index */
82 __u32 *type_offs;
83 size_t type_offs_cap;
84 __u32 nr_types;
85
86 void *strs_data;
87 size_t strs_data_cap; /* used size stored in hdr->str_len */
88
89 /* lookup index for each unique string in strings section */
90 struct hashmap *strs_hash;
91 /* whether strings are already deduplicated */
92 bool strs_deduped;
93 /* BTF object FD, if loaded into kernel */
94 int fd;
95
96 /* Pointer size (in bytes) for a target architecture of this BTF */
97 int ptr_sz;
98 };
99
ptr_to_u64(const void * ptr)100 static inline __u64 ptr_to_u64(const void *ptr)
101 {
102 return (__u64) (unsigned long) ptr;
103 }
104
105 /* Ensure given dynamically allocated memory region pointed to by *data* with
106 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
107 * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements
108 * are already used. At most *max_cnt* elements can be ever allocated.
109 * If necessary, memory is reallocated and all existing data is copied over,
110 * new pointer to the memory region is stored at *data, new memory region
111 * capacity (in number of elements) is stored in *cap.
112 * On success, memory pointer to the beginning of unused memory is returned.
113 * On error, NULL is returned.
114 */
btf_add_mem(void ** data,size_t * cap_cnt,size_t elem_sz,size_t cur_cnt,size_t max_cnt,size_t add_cnt)115 void *btf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
116 size_t cur_cnt, size_t max_cnt, size_t add_cnt)
117 {
118 size_t new_cnt;
119 void *new_data;
120
121 if (cur_cnt + add_cnt <= *cap_cnt)
122 return *data + cur_cnt * elem_sz;
123
124 /* requested more than the set limit */
125 if (cur_cnt + add_cnt > max_cnt)
126 return NULL;
127
128 new_cnt = *cap_cnt;
129 new_cnt += new_cnt / 4; /* expand by 25% */
130 if (new_cnt < 16) /* but at least 16 elements */
131 new_cnt = 16;
132 if (new_cnt > max_cnt) /* but not exceeding a set limit */
133 new_cnt = max_cnt;
134 if (new_cnt < cur_cnt + add_cnt) /* also ensure we have enough memory */
135 new_cnt = cur_cnt + add_cnt;
136
137 new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
138 if (!new_data)
139 return NULL;
140
141 /* zero out newly allocated portion of memory */
142 memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
143
144 *data = new_data;
145 *cap_cnt = new_cnt;
146 return new_data + cur_cnt * elem_sz;
147 }
148
149 /* Ensure given dynamically allocated memory region has enough allocated space
150 * to accommodate *need_cnt* elements of size *elem_sz* bytes each
151 */
btf_ensure_mem(void ** data,size_t * cap_cnt,size_t elem_sz,size_t need_cnt)152 int btf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
153 {
154 void *p;
155
156 if (need_cnt <= *cap_cnt)
157 return 0;
158
159 p = btf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
160 if (!p)
161 return -ENOMEM;
162
163 return 0;
164 }
165
btf_add_type_idx_entry(struct btf * btf,__u32 type_off)166 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
167 {
168 __u32 *p;
169
170 p = btf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
171 btf->nr_types + 1, BTF_MAX_NR_TYPES, 1);
172 if (!p)
173 return -ENOMEM;
174
175 *p = type_off;
176 return 0;
177 }
178
btf_bswap_hdr(struct btf_header * h)179 static void btf_bswap_hdr(struct btf_header *h)
180 {
181 h->magic = bswap_16(h->magic);
182 h->hdr_len = bswap_32(h->hdr_len);
183 h->type_off = bswap_32(h->type_off);
184 h->type_len = bswap_32(h->type_len);
185 h->str_off = bswap_32(h->str_off);
186 h->str_len = bswap_32(h->str_len);
187 }
188
btf_parse_hdr(struct btf * btf)189 static int btf_parse_hdr(struct btf *btf)
190 {
191 struct btf_header *hdr = btf->hdr;
192 __u32 meta_left;
193
194 if (btf->raw_size < sizeof(struct btf_header)) {
195 pr_debug("BTF header not found\n");
196 return -EINVAL;
197 }
198
199 if (hdr->magic == bswap_16(BTF_MAGIC)) {
200 btf->swapped_endian = true;
201 if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
202 pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
203 bswap_32(hdr->hdr_len));
204 return -ENOTSUP;
205 }
206 btf_bswap_hdr(hdr);
207 } else if (hdr->magic != BTF_MAGIC) {
208 pr_debug("Invalid BTF magic: %x\n", hdr->magic);
209 return -EINVAL;
210 }
211
212 if (btf->raw_size < hdr->hdr_len) {
213 pr_debug("BTF header len %u larger than data size %u\n",
214 hdr->hdr_len, btf->raw_size);
215 return -EINVAL;
216 }
217
218 meta_left = btf->raw_size - hdr->hdr_len;
219 if (meta_left < (long long)hdr->str_off + hdr->str_len) {
220 pr_debug("Invalid BTF total size: %u\n", btf->raw_size);
221 return -EINVAL;
222 }
223
224 if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) {
225 pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
226 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
227 return -EINVAL;
228 }
229
230 if (hdr->type_off % 4) {
231 pr_debug("BTF type section is not aligned to 4 bytes\n");
232 return -EINVAL;
233 }
234
235 return 0;
236 }
237
btf_parse_str_sec(struct btf * btf)238 static int btf_parse_str_sec(struct btf *btf)
239 {
240 const struct btf_header *hdr = btf->hdr;
241 const char *start = btf->strs_data;
242 const char *end = start + btf->hdr->str_len;
243
244 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET ||
245 start[0] || end[-1]) {
246 pr_debug("Invalid BTF string section\n");
247 return -EINVAL;
248 }
249
250 return 0;
251 }
252
btf_type_size(const struct btf_type * t)253 static int btf_type_size(const struct btf_type *t)
254 {
255 const int base_size = sizeof(struct btf_type);
256 __u16 vlen = btf_vlen(t);
257
258 switch (btf_kind(t)) {
259 case BTF_KIND_FWD:
260 case BTF_KIND_CONST:
261 case BTF_KIND_VOLATILE:
262 case BTF_KIND_RESTRICT:
263 case BTF_KIND_PTR:
264 case BTF_KIND_TYPEDEF:
265 case BTF_KIND_FUNC:
266 return base_size;
267 case BTF_KIND_INT:
268 return base_size + sizeof(__u32);
269 case BTF_KIND_ENUM:
270 return base_size + vlen * sizeof(struct btf_enum);
271 case BTF_KIND_ARRAY:
272 return base_size + sizeof(struct btf_array);
273 case BTF_KIND_STRUCT:
274 case BTF_KIND_UNION:
275 return base_size + vlen * sizeof(struct btf_member);
276 case BTF_KIND_FUNC_PROTO:
277 return base_size + vlen * sizeof(struct btf_param);
278 case BTF_KIND_VAR:
279 return base_size + sizeof(struct btf_var);
280 case BTF_KIND_DATASEC:
281 return base_size + vlen * sizeof(struct btf_var_secinfo);
282 default:
283 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
284 return -EINVAL;
285 }
286 }
287
btf_bswap_type_base(struct btf_type * t)288 static void btf_bswap_type_base(struct btf_type *t)
289 {
290 t->name_off = bswap_32(t->name_off);
291 t->info = bswap_32(t->info);
292 t->type = bswap_32(t->type);
293 }
294
btf_bswap_type_rest(struct btf_type * t)295 static int btf_bswap_type_rest(struct btf_type *t)
296 {
297 struct btf_var_secinfo *v;
298 struct btf_member *m;
299 struct btf_array *a;
300 struct btf_param *p;
301 struct btf_enum *e;
302 __u16 vlen = btf_vlen(t);
303 int i;
304
305 switch (btf_kind(t)) {
306 case BTF_KIND_FWD:
307 case BTF_KIND_CONST:
308 case BTF_KIND_VOLATILE:
309 case BTF_KIND_RESTRICT:
310 case BTF_KIND_PTR:
311 case BTF_KIND_TYPEDEF:
312 case BTF_KIND_FUNC:
313 return 0;
314 case BTF_KIND_INT:
315 *(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
316 return 0;
317 case BTF_KIND_ENUM:
318 for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
319 e->name_off = bswap_32(e->name_off);
320 e->val = bswap_32(e->val);
321 }
322 return 0;
323 case BTF_KIND_ARRAY:
324 a = btf_array(t);
325 a->type = bswap_32(a->type);
326 a->index_type = bswap_32(a->index_type);
327 a->nelems = bswap_32(a->nelems);
328 return 0;
329 case BTF_KIND_STRUCT:
330 case BTF_KIND_UNION:
331 for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
332 m->name_off = bswap_32(m->name_off);
333 m->type = bswap_32(m->type);
334 m->offset = bswap_32(m->offset);
335 }
336 return 0;
337 case BTF_KIND_FUNC_PROTO:
338 for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
339 p->name_off = bswap_32(p->name_off);
340 p->type = bswap_32(p->type);
341 }
342 return 0;
343 case BTF_KIND_VAR:
344 btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
345 return 0;
346 case BTF_KIND_DATASEC:
347 for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
348 v->type = bswap_32(v->type);
349 v->offset = bswap_32(v->offset);
350 v->size = bswap_32(v->size);
351 }
352 return 0;
353 default:
354 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
355 return -EINVAL;
356 }
357 }
358
btf_parse_type_sec(struct btf * btf)359 static int btf_parse_type_sec(struct btf *btf)
360 {
361 struct btf_header *hdr = btf->hdr;
362 void *next_type = btf->types_data;
363 void *end_type = next_type + hdr->type_len;
364 int err, i = 0, type_size;
365
366 /* VOID (type_id == 0) is specially handled by btf__get_type_by_id(),
367 * so ensure we can never properly use its offset from index by
368 * setting it to a large value
369 */
370 err = btf_add_type_idx_entry(btf, UINT_MAX);
371 if (err)
372 return err;
373
374 while (next_type + sizeof(struct btf_type) <= end_type) {
375 i++;
376
377 if (btf->swapped_endian)
378 btf_bswap_type_base(next_type);
379
380 type_size = btf_type_size(next_type);
381 if (type_size < 0)
382 return type_size;
383 if (next_type + type_size > end_type) {
384 pr_warn("BTF type [%d] is malformed\n", i);
385 return -EINVAL;
386 }
387
388 if (btf->swapped_endian && btf_bswap_type_rest(next_type))
389 return -EINVAL;
390
391 err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
392 if (err)
393 return err;
394
395 next_type += type_size;
396 btf->nr_types++;
397 }
398
399 if (next_type != end_type) {
400 pr_warn("BTF types data is malformed\n");
401 return -EINVAL;
402 }
403
404 return 0;
405 }
406
btf__get_nr_types(const struct btf * btf)407 __u32 btf__get_nr_types(const struct btf *btf)
408 {
409 return btf->nr_types;
410 }
411
412 /* internal helper returning non-const pointer to a type */
btf_type_by_id(struct btf * btf,__u32 type_id)413 static struct btf_type *btf_type_by_id(struct btf *btf, __u32 type_id)
414 {
415 if (type_id == 0)
416 return &btf_void;
417
418 return btf->types_data + btf->type_offs[type_id];
419 }
420
btf__type_by_id(const struct btf * btf,__u32 type_id)421 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
422 {
423 if (type_id > btf->nr_types)
424 return NULL;
425 return btf_type_by_id((struct btf *)btf, type_id);
426 }
427
determine_ptr_size(const struct btf * btf)428 static int determine_ptr_size(const struct btf *btf)
429 {
430 const struct btf_type *t;
431 const char *name;
432 int i;
433
434 for (i = 1; i <= btf->nr_types; i++) {
435 t = btf__type_by_id(btf, i);
436 if (!btf_is_int(t))
437 continue;
438
439 name = btf__name_by_offset(btf, t->name_off);
440 if (!name)
441 continue;
442
443 if (strcmp(name, "long int") == 0 ||
444 strcmp(name, "long unsigned int") == 0) {
445 if (t->size != 4 && t->size != 8)
446 continue;
447 return t->size;
448 }
449 }
450
451 return -1;
452 }
453
btf_ptr_sz(const struct btf * btf)454 static size_t btf_ptr_sz(const struct btf *btf)
455 {
456 if (!btf->ptr_sz)
457 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
458 return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
459 }
460
461 /* Return pointer size this BTF instance assumes. The size is heuristically
462 * determined by looking for 'long' or 'unsigned long' integer type and
463 * recording its size in bytes. If BTF type information doesn't have any such
464 * type, this function returns 0. In the latter case, native architecture's
465 * pointer size is assumed, so will be either 4 or 8, depending on
466 * architecture that libbpf was compiled for. It's possible to override
467 * guessed value by using btf__set_pointer_size() API.
468 */
btf__pointer_size(const struct btf * btf)469 size_t btf__pointer_size(const struct btf *btf)
470 {
471 if (!btf->ptr_sz)
472 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
473
474 if (btf->ptr_sz < 0)
475 /* not enough BTF type info to guess */
476 return 0;
477
478 return btf->ptr_sz;
479 }
480
481 /* Override or set pointer size in bytes. Only values of 4 and 8 are
482 * supported.
483 */
btf__set_pointer_size(struct btf * btf,size_t ptr_sz)484 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
485 {
486 if (ptr_sz != 4 && ptr_sz != 8)
487 return -EINVAL;
488 btf->ptr_sz = ptr_sz;
489 return 0;
490 }
491
is_host_big_endian(void)492 static bool is_host_big_endian(void)
493 {
494 #if __BYTE_ORDER == __LITTLE_ENDIAN
495 return false;
496 #elif __BYTE_ORDER == __BIG_ENDIAN
497 return true;
498 #else
499 # error "Unrecognized __BYTE_ORDER__"
500 #endif
501 }
502
btf__endianness(const struct btf * btf)503 enum btf_endianness btf__endianness(const struct btf *btf)
504 {
505 if (is_host_big_endian())
506 return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
507 else
508 return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
509 }
510
btf__set_endianness(struct btf * btf,enum btf_endianness endian)511 int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
512 {
513 if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
514 return -EINVAL;
515
516 btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
517 if (!btf->swapped_endian) {
518 free(btf->raw_data_swapped);
519 btf->raw_data_swapped = NULL;
520 }
521 return 0;
522 }
523
btf_type_is_void(const struct btf_type * t)524 static bool btf_type_is_void(const struct btf_type *t)
525 {
526 return t == &btf_void || btf_is_fwd(t);
527 }
528
btf_type_is_void_or_null(const struct btf_type * t)529 static bool btf_type_is_void_or_null(const struct btf_type *t)
530 {
531 return !t || btf_type_is_void(t);
532 }
533
534 #define MAX_RESOLVE_DEPTH 32
535
btf__resolve_size(const struct btf * btf,__u32 type_id)536 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
537 {
538 const struct btf_array *array;
539 const struct btf_type *t;
540 __u32 nelems = 1;
541 __s64 size = -1;
542 int i;
543
544 t = btf__type_by_id(btf, type_id);
545 for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t);
546 i++) {
547 switch (btf_kind(t)) {
548 case BTF_KIND_INT:
549 case BTF_KIND_STRUCT:
550 case BTF_KIND_UNION:
551 case BTF_KIND_ENUM:
552 case BTF_KIND_DATASEC:
553 size = t->size;
554 goto done;
555 case BTF_KIND_PTR:
556 size = btf_ptr_sz(btf);
557 goto done;
558 case BTF_KIND_TYPEDEF:
559 case BTF_KIND_VOLATILE:
560 case BTF_KIND_CONST:
561 case BTF_KIND_RESTRICT:
562 case BTF_KIND_VAR:
563 type_id = t->type;
564 break;
565 case BTF_KIND_ARRAY:
566 array = btf_array(t);
567 if (nelems && array->nelems > UINT32_MAX / nelems)
568 return -E2BIG;
569 nelems *= array->nelems;
570 type_id = array->type;
571 break;
572 default:
573 return -EINVAL;
574 }
575
576 t = btf__type_by_id(btf, type_id);
577 }
578
579 done:
580 if (size < 0)
581 return -EINVAL;
582 if (nelems && size > UINT32_MAX / nelems)
583 return -E2BIG;
584
585 return nelems * size;
586 }
587
btf__align_of(const struct btf * btf,__u32 id)588 int btf__align_of(const struct btf *btf, __u32 id)
589 {
590 const struct btf_type *t = btf__type_by_id(btf, id);
591 __u16 kind = btf_kind(t);
592
593 switch (kind) {
594 case BTF_KIND_INT:
595 case BTF_KIND_ENUM:
596 return min(btf_ptr_sz(btf), (size_t)t->size);
597 case BTF_KIND_PTR:
598 return btf_ptr_sz(btf);
599 case BTF_KIND_TYPEDEF:
600 case BTF_KIND_VOLATILE:
601 case BTF_KIND_CONST:
602 case BTF_KIND_RESTRICT:
603 return btf__align_of(btf, t->type);
604 case BTF_KIND_ARRAY:
605 return btf__align_of(btf, btf_array(t)->type);
606 case BTF_KIND_STRUCT:
607 case BTF_KIND_UNION: {
608 const struct btf_member *m = btf_members(t);
609 __u16 vlen = btf_vlen(t);
610 int i, max_align = 1, align;
611
612 for (i = 0; i < vlen; i++, m++) {
613 align = btf__align_of(btf, m->type);
614 if (align <= 0)
615 return align;
616 max_align = max(max_align, align);
617 }
618
619 return max_align;
620 }
621 default:
622 pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
623 return 0;
624 }
625 }
626
btf__resolve_type(const struct btf * btf,__u32 type_id)627 int btf__resolve_type(const struct btf *btf, __u32 type_id)
628 {
629 const struct btf_type *t;
630 int depth = 0;
631
632 t = btf__type_by_id(btf, type_id);
633 while (depth < MAX_RESOLVE_DEPTH &&
634 !btf_type_is_void_or_null(t) &&
635 (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
636 type_id = t->type;
637 t = btf__type_by_id(btf, type_id);
638 depth++;
639 }
640
641 if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
642 return -EINVAL;
643
644 return type_id;
645 }
646
btf__find_by_name(const struct btf * btf,const char * type_name)647 __s32 btf__find_by_name(const struct btf *btf, const char *type_name)
648 {
649 __u32 i;
650
651 if (!strcmp(type_name, "void"))
652 return 0;
653
654 for (i = 1; i <= btf->nr_types; i++) {
655 const struct btf_type *t = btf__type_by_id(btf, i);
656 const char *name = btf__name_by_offset(btf, t->name_off);
657
658 if (name && !strcmp(type_name, name))
659 return i;
660 }
661
662 return -ENOENT;
663 }
664
btf__find_by_name_kind(const struct btf * btf,const char * type_name,__u32 kind)665 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
666 __u32 kind)
667 {
668 __u32 i;
669
670 if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
671 return 0;
672
673 for (i = 1; i <= btf->nr_types; i++) {
674 const struct btf_type *t = btf__type_by_id(btf, i);
675 const char *name;
676
677 if (btf_kind(t) != kind)
678 continue;
679 name = btf__name_by_offset(btf, t->name_off);
680 if (name && !strcmp(type_name, name))
681 return i;
682 }
683
684 return -ENOENT;
685 }
686
btf_is_modifiable(const struct btf * btf)687 static bool btf_is_modifiable(const struct btf *btf)
688 {
689 return (void *)btf->hdr != btf->raw_data;
690 }
691
btf__free(struct btf * btf)692 void btf__free(struct btf *btf)
693 {
694 if (IS_ERR_OR_NULL(btf))
695 return;
696
697 if (btf->fd >= 0)
698 close(btf->fd);
699
700 if (btf_is_modifiable(btf)) {
701 /* if BTF was modified after loading, it will have a split
702 * in-memory representation for header, types, and strings
703 * sections, so we need to free all of them individually. It
704 * might still have a cached contiguous raw data present,
705 * which will be unconditionally freed below.
706 */
707 free(btf->hdr);
708 free(btf->types_data);
709 free(btf->strs_data);
710 }
711 free(btf->raw_data);
712 free(btf->raw_data_swapped);
713 free(btf->type_offs);
714 free(btf);
715 }
716
btf__new_empty(void)717 struct btf *btf__new_empty(void)
718 {
719 struct btf *btf;
720
721 btf = calloc(1, sizeof(*btf));
722 if (!btf)
723 return ERR_PTR(-ENOMEM);
724
725 btf->fd = -1;
726 btf->ptr_sz = sizeof(void *);
727 btf->swapped_endian = false;
728
729 /* +1 for empty string at offset 0 */
730 btf->raw_size = sizeof(struct btf_header) + 1;
731 btf->raw_data = calloc(1, btf->raw_size);
732 if (!btf->raw_data) {
733 free(btf);
734 return ERR_PTR(-ENOMEM);
735 }
736
737 btf->hdr = btf->raw_data;
738 btf->hdr->hdr_len = sizeof(struct btf_header);
739 btf->hdr->magic = BTF_MAGIC;
740 btf->hdr->version = BTF_VERSION;
741
742 btf->types_data = btf->raw_data + btf->hdr->hdr_len;
743 btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
744 btf->hdr->str_len = 1; /* empty string at offset 0 */
745
746 return btf;
747 }
748
btf__new(const void * data,__u32 size)749 struct btf *btf__new(const void *data, __u32 size)
750 {
751 struct btf *btf;
752 int err;
753
754 btf = calloc(1, sizeof(struct btf));
755 if (!btf)
756 return ERR_PTR(-ENOMEM);
757
758 btf->raw_data = malloc(size);
759 if (!btf->raw_data) {
760 err = -ENOMEM;
761 goto done;
762 }
763 memcpy(btf->raw_data, data, size);
764 btf->raw_size = size;
765
766 btf->hdr = btf->raw_data;
767 err = btf_parse_hdr(btf);
768 if (err)
769 goto done;
770
771 btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
772 btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
773
774 err = btf_parse_str_sec(btf);
775 err = err ?: btf_parse_type_sec(btf);
776 if (err)
777 goto done;
778
779 btf->fd = -1;
780
781 done:
782 if (err) {
783 btf__free(btf);
784 return ERR_PTR(err);
785 }
786
787 return btf;
788 }
789
btf__parse_elf(const char * path,struct btf_ext ** btf_ext)790 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
791 {
792 Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
793 int err = 0, fd = -1, idx = 0;
794 struct btf *btf = NULL;
795 Elf_Scn *scn = NULL;
796 Elf *elf = NULL;
797 GElf_Ehdr ehdr;
798
799 if (elf_version(EV_CURRENT) == EV_NONE) {
800 pr_warn("failed to init libelf for %s\n", path);
801 return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
802 }
803
804 fd = open(path, O_RDONLY);
805 if (fd < 0) {
806 err = -errno;
807 pr_warn("failed to open %s: %s\n", path, strerror(errno));
808 return ERR_PTR(err);
809 }
810
811 err = -LIBBPF_ERRNO__FORMAT;
812
813 elf = elf_begin(fd, ELF_C_READ, NULL);
814 if (!elf) {
815 pr_warn("failed to open %s as ELF file\n", path);
816 goto done;
817 }
818 if (!gelf_getehdr(elf, &ehdr)) {
819 pr_warn("failed to get EHDR from %s\n", path);
820 goto done;
821 }
822 if (!elf_rawdata(elf_getscn(elf, ehdr.e_shstrndx), NULL)) {
823 pr_warn("failed to get e_shstrndx from %s\n", path);
824 goto done;
825 }
826
827 while ((scn = elf_nextscn(elf, scn)) != NULL) {
828 GElf_Shdr sh;
829 char *name;
830
831 idx++;
832 if (gelf_getshdr(scn, &sh) != &sh) {
833 pr_warn("failed to get section(%d) header from %s\n",
834 idx, path);
835 goto done;
836 }
837 name = elf_strptr(elf, ehdr.e_shstrndx, sh.sh_name);
838 if (!name) {
839 pr_warn("failed to get section(%d) name from %s\n",
840 idx, path);
841 goto done;
842 }
843 if (strcmp(name, BTF_ELF_SEC) == 0) {
844 btf_data = elf_getdata(scn, 0);
845 if (!btf_data) {
846 pr_warn("failed to get section(%d, %s) data from %s\n",
847 idx, name, path);
848 goto done;
849 }
850 continue;
851 } else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
852 btf_ext_data = elf_getdata(scn, 0);
853 if (!btf_ext_data) {
854 pr_warn("failed to get section(%d, %s) data from %s\n",
855 idx, name, path);
856 goto done;
857 }
858 continue;
859 }
860 }
861
862 err = 0;
863
864 if (!btf_data) {
865 err = -ENOENT;
866 goto done;
867 }
868 btf = btf__new(btf_data->d_buf, btf_data->d_size);
869 if (IS_ERR(btf))
870 goto done;
871
872 switch (gelf_getclass(elf)) {
873 case ELFCLASS32:
874 btf__set_pointer_size(btf, 4);
875 break;
876 case ELFCLASS64:
877 btf__set_pointer_size(btf, 8);
878 break;
879 default:
880 pr_warn("failed to get ELF class (bitness) for %s\n", path);
881 break;
882 }
883
884 if (btf_ext && btf_ext_data) {
885 *btf_ext = btf_ext__new(btf_ext_data->d_buf,
886 btf_ext_data->d_size);
887 if (IS_ERR(*btf_ext))
888 goto done;
889 } else if (btf_ext) {
890 *btf_ext = NULL;
891 }
892 done:
893 if (elf)
894 elf_end(elf);
895 close(fd);
896
897 if (err)
898 return ERR_PTR(err);
899 /*
900 * btf is always parsed before btf_ext, so no need to clean up
901 * btf_ext, if btf loading failed
902 */
903 if (IS_ERR(btf))
904 return btf;
905 if (btf_ext && IS_ERR(*btf_ext)) {
906 btf__free(btf);
907 err = PTR_ERR(*btf_ext);
908 return ERR_PTR(err);
909 }
910 return btf;
911 }
912
btf__parse_raw(const char * path)913 struct btf *btf__parse_raw(const char *path)
914 {
915 struct btf *btf = NULL;
916 void *data = NULL;
917 FILE *f = NULL;
918 __u16 magic;
919 int err = 0;
920 long sz;
921
922 f = fopen(path, "rb");
923 if (!f) {
924 err = -errno;
925 goto err_out;
926 }
927
928 /* check BTF magic */
929 if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
930 err = -EIO;
931 goto err_out;
932 }
933 if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
934 /* definitely not a raw BTF */
935 err = -EPROTO;
936 goto err_out;
937 }
938
939 /* get file size */
940 if (fseek(f, 0, SEEK_END)) {
941 err = -errno;
942 goto err_out;
943 }
944 sz = ftell(f);
945 if (sz < 0) {
946 err = -errno;
947 goto err_out;
948 }
949 /* rewind to the start */
950 if (fseek(f, 0, SEEK_SET)) {
951 err = -errno;
952 goto err_out;
953 }
954
955 /* pre-alloc memory and read all of BTF data */
956 data = malloc(sz);
957 if (!data) {
958 err = -ENOMEM;
959 goto err_out;
960 }
961 if (fread(data, 1, sz, f) < sz) {
962 err = -EIO;
963 goto err_out;
964 }
965
966 /* finally parse BTF data */
967 btf = btf__new(data, sz);
968
969 err_out:
970 free(data);
971 if (f)
972 fclose(f);
973 return err ? ERR_PTR(err) : btf;
974 }
975
btf__parse(const char * path,struct btf_ext ** btf_ext)976 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
977 {
978 struct btf *btf;
979
980 if (btf_ext)
981 *btf_ext = NULL;
982
983 btf = btf__parse_raw(path);
984 if (!IS_ERR(btf) || PTR_ERR(btf) != -EPROTO)
985 return btf;
986
987 return btf__parse_elf(path, btf_ext);
988 }
989
compare_vsi_off(const void * _a,const void * _b)990 static int compare_vsi_off(const void *_a, const void *_b)
991 {
992 const struct btf_var_secinfo *a = _a;
993 const struct btf_var_secinfo *b = _b;
994
995 return a->offset - b->offset;
996 }
997
btf_fixup_datasec(struct bpf_object * obj,struct btf * btf,struct btf_type * t)998 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
999 struct btf_type *t)
1000 {
1001 __u32 size = 0, off = 0, i, vars = btf_vlen(t);
1002 const char *name = btf__name_by_offset(btf, t->name_off);
1003 const struct btf_type *t_var;
1004 struct btf_var_secinfo *vsi;
1005 const struct btf_var *var;
1006 int ret;
1007
1008 if (!name) {
1009 pr_debug("No name found in string section for DATASEC kind.\n");
1010 return -ENOENT;
1011 }
1012
1013 /* .extern datasec size and var offsets were set correctly during
1014 * extern collection step, so just skip straight to sorting variables
1015 */
1016 if (t->size)
1017 goto sort_vars;
1018
1019 ret = bpf_object__section_size(obj, name, &size);
1020 if (ret || !size || (t->size && t->size != size)) {
1021 pr_debug("Invalid size for section %s: %u bytes\n", name, size);
1022 return -ENOENT;
1023 }
1024
1025 t->size = size;
1026
1027 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
1028 t_var = btf__type_by_id(btf, vsi->type);
1029 var = btf_var(t_var);
1030
1031 if (!btf_is_var(t_var)) {
1032 pr_debug("Non-VAR type seen in section %s\n", name);
1033 return -EINVAL;
1034 }
1035
1036 if (var->linkage == BTF_VAR_STATIC)
1037 continue;
1038
1039 name = btf__name_by_offset(btf, t_var->name_off);
1040 if (!name) {
1041 pr_debug("No name found in string section for VAR kind\n");
1042 return -ENOENT;
1043 }
1044
1045 ret = bpf_object__variable_offset(obj, name, &off);
1046 if (ret) {
1047 pr_debug("No offset found in symbol table for VAR %s\n",
1048 name);
1049 return -ENOENT;
1050 }
1051
1052 vsi->offset = off;
1053 }
1054
1055 sort_vars:
1056 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
1057 return 0;
1058 }
1059
btf__finalize_data(struct bpf_object * obj,struct btf * btf)1060 int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
1061 {
1062 int err = 0;
1063 __u32 i;
1064
1065 for (i = 1; i <= btf->nr_types; i++) {
1066 struct btf_type *t = btf_type_by_id(btf, i);
1067
1068 /* Loader needs to fix up some of the things compiler
1069 * couldn't get its hands on while emitting BTF. This
1070 * is section size and global variable offset. We use
1071 * the info from the ELF itself for this purpose.
1072 */
1073 if (btf_is_datasec(t)) {
1074 err = btf_fixup_datasec(obj, btf, t);
1075 if (err)
1076 break;
1077 }
1078 }
1079
1080 return err;
1081 }
1082
1083 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
1084
btf__load(struct btf * btf)1085 int btf__load(struct btf *btf)
1086 {
1087 __u32 log_buf_size = 0, raw_size;
1088 char *log_buf = NULL;
1089 void *raw_data;
1090 int err = 0;
1091
1092 if (btf->fd >= 0)
1093 return -EEXIST;
1094
1095 retry_load:
1096 if (log_buf_size) {
1097 log_buf = malloc(log_buf_size);
1098 if (!log_buf)
1099 return -ENOMEM;
1100
1101 *log_buf = 0;
1102 }
1103
1104 raw_data = btf_get_raw_data(btf, &raw_size, false);
1105 if (!raw_data) {
1106 err = -ENOMEM;
1107 goto done;
1108 }
1109 /* cache native raw data representation */
1110 btf->raw_size = raw_size;
1111 btf->raw_data = raw_data;
1112
1113 btf->fd = bpf_load_btf(raw_data, raw_size, log_buf, log_buf_size, false);
1114 if (btf->fd < 0) {
1115 if (!log_buf || errno == ENOSPC) {
1116 log_buf_size = max((__u32)BPF_LOG_BUF_SIZE,
1117 log_buf_size << 1);
1118 free(log_buf);
1119 goto retry_load;
1120 }
1121
1122 err = -errno;
1123 pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno);
1124 if (*log_buf)
1125 pr_warn("%s\n", log_buf);
1126 goto done;
1127 }
1128
1129 done:
1130 free(log_buf);
1131 return err;
1132 }
1133
btf__fd(const struct btf * btf)1134 int btf__fd(const struct btf *btf)
1135 {
1136 return btf->fd;
1137 }
1138
btf__set_fd(struct btf * btf,int fd)1139 void btf__set_fd(struct btf *btf, int fd)
1140 {
1141 btf->fd = fd;
1142 }
1143
btf_get_raw_data(const struct btf * btf,__u32 * size,bool swap_endian)1144 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1145 {
1146 struct btf_header *hdr = btf->hdr;
1147 struct btf_type *t;
1148 void *data, *p;
1149 __u32 data_sz;
1150 int i;
1151
1152 data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1153 if (data) {
1154 *size = btf->raw_size;
1155 return data;
1156 }
1157
1158 data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1159 data = calloc(1, data_sz);
1160 if (!data)
1161 return NULL;
1162 p = data;
1163
1164 memcpy(p, hdr, hdr->hdr_len);
1165 if (swap_endian)
1166 btf_bswap_hdr(p);
1167 p += hdr->hdr_len;
1168
1169 memcpy(p, btf->types_data, hdr->type_len);
1170 if (swap_endian) {
1171 for (i = 1; i <= btf->nr_types; i++) {
1172 t = p + btf->type_offs[i];
1173 /* btf_bswap_type_rest() relies on native t->info, so
1174 * we swap base type info after we swapped all the
1175 * additional information
1176 */
1177 if (btf_bswap_type_rest(t))
1178 goto err_out;
1179 btf_bswap_type_base(t);
1180 }
1181 }
1182 p += hdr->type_len;
1183
1184 memcpy(p, btf->strs_data, hdr->str_len);
1185 p += hdr->str_len;
1186
1187 *size = data_sz;
1188 return data;
1189 err_out:
1190 free(data);
1191 return NULL;
1192 }
1193
btf__get_raw_data(const struct btf * btf_ro,__u32 * size)1194 const void *btf__get_raw_data(const struct btf *btf_ro, __u32 *size)
1195 {
1196 struct btf *btf = (struct btf *)btf_ro;
1197 __u32 data_sz;
1198 void *data;
1199
1200 data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1201 if (!data)
1202 return NULL;
1203
1204 btf->raw_size = data_sz;
1205 if (btf->swapped_endian)
1206 btf->raw_data_swapped = data;
1207 else
1208 btf->raw_data = data;
1209 *size = data_sz;
1210 return data;
1211 }
1212
btf__str_by_offset(const struct btf * btf,__u32 offset)1213 const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1214 {
1215 if (offset < btf->hdr->str_len)
1216 return btf->strs_data + offset;
1217 else
1218 return NULL;
1219 }
1220
btf__name_by_offset(const struct btf * btf,__u32 offset)1221 const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1222 {
1223 return btf__str_by_offset(btf, offset);
1224 }
1225
btf__get_from_id(__u32 id,struct btf ** btf)1226 int btf__get_from_id(__u32 id, struct btf **btf)
1227 {
1228 struct bpf_btf_info btf_info = { 0 };
1229 __u32 len = sizeof(btf_info);
1230 __u32 last_size;
1231 int btf_fd;
1232 void *ptr;
1233 int err;
1234
1235 err = 0;
1236 *btf = NULL;
1237 btf_fd = bpf_btf_get_fd_by_id(id);
1238 if (btf_fd < 0)
1239 return 0;
1240
1241 /* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
1242 * let's start with a sane default - 4KiB here - and resize it only if
1243 * bpf_obj_get_info_by_fd() needs a bigger buffer.
1244 */
1245 btf_info.btf_size = 4096;
1246 last_size = btf_info.btf_size;
1247 ptr = malloc(last_size);
1248 if (!ptr) {
1249 err = -ENOMEM;
1250 goto exit_free;
1251 }
1252
1253 memset(ptr, 0, last_size);
1254 btf_info.btf = ptr_to_u64(ptr);
1255 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1256
1257 if (!err && btf_info.btf_size > last_size) {
1258 void *temp_ptr;
1259
1260 last_size = btf_info.btf_size;
1261 temp_ptr = realloc(ptr, last_size);
1262 if (!temp_ptr) {
1263 err = -ENOMEM;
1264 goto exit_free;
1265 }
1266 ptr = temp_ptr;
1267 memset(ptr, 0, last_size);
1268 btf_info.btf = ptr_to_u64(ptr);
1269 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1270 }
1271
1272 if (err || btf_info.btf_size > last_size) {
1273 err = errno;
1274 goto exit_free;
1275 }
1276
1277 *btf = btf__new((__u8 *)(long)btf_info.btf, btf_info.btf_size);
1278 if (IS_ERR(*btf)) {
1279 err = PTR_ERR(*btf);
1280 *btf = NULL;
1281 }
1282
1283 exit_free:
1284 close(btf_fd);
1285 free(ptr);
1286
1287 return err;
1288 }
1289
btf__get_map_kv_tids(const struct btf * btf,const char * map_name,__u32 expected_key_size,__u32 expected_value_size,__u32 * key_type_id,__u32 * value_type_id)1290 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
1291 __u32 expected_key_size, __u32 expected_value_size,
1292 __u32 *key_type_id, __u32 *value_type_id)
1293 {
1294 const struct btf_type *container_type;
1295 const struct btf_member *key, *value;
1296 const size_t max_name = 256;
1297 char container_name[max_name];
1298 __s64 key_size, value_size;
1299 __s32 container_id;
1300
1301 if (snprintf(container_name, max_name, "____btf_map_%s", map_name) ==
1302 max_name) {
1303 pr_warn("map:%s length of '____btf_map_%s' is too long\n",
1304 map_name, map_name);
1305 return -EINVAL;
1306 }
1307
1308 container_id = btf__find_by_name(btf, container_name);
1309 if (container_id < 0) {
1310 pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
1311 map_name, container_name);
1312 return container_id;
1313 }
1314
1315 container_type = btf__type_by_id(btf, container_id);
1316 if (!container_type) {
1317 pr_warn("map:%s cannot find BTF type for container_id:%u\n",
1318 map_name, container_id);
1319 return -EINVAL;
1320 }
1321
1322 if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) {
1323 pr_warn("map:%s container_name:%s is an invalid container struct\n",
1324 map_name, container_name);
1325 return -EINVAL;
1326 }
1327
1328 key = btf_members(container_type);
1329 value = key + 1;
1330
1331 key_size = btf__resolve_size(btf, key->type);
1332 if (key_size < 0) {
1333 pr_warn("map:%s invalid BTF key_type_size\n", map_name);
1334 return key_size;
1335 }
1336
1337 if (expected_key_size != key_size) {
1338 pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
1339 map_name, (__u32)key_size, expected_key_size);
1340 return -EINVAL;
1341 }
1342
1343 value_size = btf__resolve_size(btf, value->type);
1344 if (value_size < 0) {
1345 pr_warn("map:%s invalid BTF value_type_size\n", map_name);
1346 return value_size;
1347 }
1348
1349 if (expected_value_size != value_size) {
1350 pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
1351 map_name, (__u32)value_size, expected_value_size);
1352 return -EINVAL;
1353 }
1354
1355 *key_type_id = key->type;
1356 *value_type_id = value->type;
1357
1358 return 0;
1359 }
1360
strs_hash_fn(const void * key,void * ctx)1361 static size_t strs_hash_fn(const void *key, void *ctx)
1362 {
1363 struct btf *btf = ctx;
1364 const char *str = btf->strs_data + (long)key;
1365
1366 return str_hash(str);
1367 }
1368
strs_hash_equal_fn(const void * key1,const void * key2,void * ctx)1369 static bool strs_hash_equal_fn(const void *key1, const void *key2, void *ctx)
1370 {
1371 struct btf *btf = ctx;
1372 const char *str1 = btf->strs_data + (long)key1;
1373 const char *str2 = btf->strs_data + (long)key2;
1374
1375 return strcmp(str1, str2) == 0;
1376 }
1377
btf_invalidate_raw_data(struct btf * btf)1378 static void btf_invalidate_raw_data(struct btf *btf)
1379 {
1380 if (btf->raw_data) {
1381 free(btf->raw_data);
1382 btf->raw_data = NULL;
1383 }
1384 if (btf->raw_data_swapped) {
1385 free(btf->raw_data_swapped);
1386 btf->raw_data_swapped = NULL;
1387 }
1388 }
1389
1390 /* Ensure BTF is ready to be modified (by splitting into a three memory
1391 * regions for header, types, and strings). Also invalidate cached
1392 * raw_data, if any.
1393 */
btf_ensure_modifiable(struct btf * btf)1394 static int btf_ensure_modifiable(struct btf *btf)
1395 {
1396 void *hdr, *types, *strs, *strs_end, *s;
1397 struct hashmap *hash = NULL;
1398 long off;
1399 int err;
1400
1401 if (btf_is_modifiable(btf)) {
1402 /* any BTF modification invalidates raw_data */
1403 btf_invalidate_raw_data(btf);
1404 return 0;
1405 }
1406
1407 /* split raw data into three memory regions */
1408 hdr = malloc(btf->hdr->hdr_len);
1409 types = malloc(btf->hdr->type_len);
1410 strs = malloc(btf->hdr->str_len);
1411 if (!hdr || !types || !strs)
1412 goto err_out;
1413
1414 memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1415 memcpy(types, btf->types_data, btf->hdr->type_len);
1416 memcpy(strs, btf->strs_data, btf->hdr->str_len);
1417
1418 /* build lookup index for all strings */
1419 hash = hashmap__new(strs_hash_fn, strs_hash_equal_fn, btf);
1420 if (IS_ERR(hash)) {
1421 err = PTR_ERR(hash);
1422 hash = NULL;
1423 goto err_out;
1424 }
1425
1426 strs_end = strs + btf->hdr->str_len;
1427 for (off = 0, s = strs; s < strs_end; off += strlen(s) + 1, s = strs + off) {
1428 /* hashmap__add() returns EEXIST if string with the same
1429 * content already is in the hash map
1430 */
1431 err = hashmap__add(hash, (void *)off, (void *)off);
1432 if (err == -EEXIST)
1433 continue; /* duplicate */
1434 if (err)
1435 goto err_out;
1436 }
1437
1438 /* only when everything was successful, update internal state */
1439 btf->hdr = hdr;
1440 btf->types_data = types;
1441 btf->types_data_cap = btf->hdr->type_len;
1442 btf->strs_data = strs;
1443 btf->strs_data_cap = btf->hdr->str_len;
1444 btf->strs_hash = hash;
1445 /* if BTF was created from scratch, all strings are guaranteed to be
1446 * unique and deduplicated
1447 */
1448 btf->strs_deduped = btf->hdr->str_len <= 1;
1449
1450 /* invalidate raw_data representation */
1451 btf_invalidate_raw_data(btf);
1452
1453 return 0;
1454
1455 err_out:
1456 hashmap__free(hash);
1457 free(hdr);
1458 free(types);
1459 free(strs);
1460 return -ENOMEM;
1461 }
1462
btf_add_str_mem(struct btf * btf,size_t add_sz)1463 static void *btf_add_str_mem(struct btf *btf, size_t add_sz)
1464 {
1465 return btf_add_mem(&btf->strs_data, &btf->strs_data_cap, 1,
1466 btf->hdr->str_len, BTF_MAX_STR_OFFSET, add_sz);
1467 }
1468
1469 /* Find an offset in BTF string section that corresponds to a given string *s*.
1470 * Returns:
1471 * - >0 offset into string section, if string is found;
1472 * - -ENOENT, if string is not in the string section;
1473 * - <0, on any other error.
1474 */
btf__find_str(struct btf * btf,const char * s)1475 int btf__find_str(struct btf *btf, const char *s)
1476 {
1477 long old_off, new_off, len;
1478 void *p;
1479
1480 /* BTF needs to be in a modifiable state to build string lookup index */
1481 if (btf_ensure_modifiable(btf))
1482 return -ENOMEM;
1483
1484 /* see btf__add_str() for why we do this */
1485 len = strlen(s) + 1;
1486 p = btf_add_str_mem(btf, len);
1487 if (!p)
1488 return -ENOMEM;
1489
1490 new_off = btf->hdr->str_len;
1491 memcpy(p, s, len);
1492
1493 if (hashmap__find(btf->strs_hash, (void *)new_off, (void **)&old_off))
1494 return old_off;
1495
1496 return -ENOENT;
1497 }
1498
1499 /* Add a string s to the BTF string section.
1500 * Returns:
1501 * - > 0 offset into string section, on success;
1502 * - < 0, on error.
1503 */
btf__add_str(struct btf * btf,const char * s)1504 int btf__add_str(struct btf *btf, const char *s)
1505 {
1506 long old_off, new_off, len;
1507 void *p;
1508 int err;
1509
1510 if (btf_ensure_modifiable(btf))
1511 return -ENOMEM;
1512
1513 /* Hashmap keys are always offsets within btf->strs_data, so to even
1514 * look up some string from the "outside", we need to first append it
1515 * at the end, so that it can be addressed with an offset. Luckily,
1516 * until btf->hdr->str_len is incremented, that string is just a piece
1517 * of garbage for the rest of BTF code, so no harm, no foul. On the
1518 * other hand, if the string is unique, it's already appended and
1519 * ready to be used, only a simple btf->hdr->str_len increment away.
1520 */
1521 len = strlen(s) + 1;
1522 p = btf_add_str_mem(btf, len);
1523 if (!p)
1524 return -ENOMEM;
1525
1526 new_off = btf->hdr->str_len;
1527 memcpy(p, s, len);
1528
1529 /* Now attempt to add the string, but only if the string with the same
1530 * contents doesn't exist already (HASHMAP_ADD strategy). If such
1531 * string exists, we'll get its offset in old_off (that's old_key).
1532 */
1533 err = hashmap__insert(btf->strs_hash, (void *)new_off, (void *)new_off,
1534 HASHMAP_ADD, (const void **)&old_off, NULL);
1535 if (err == -EEXIST)
1536 return old_off; /* duplicated string, return existing offset */
1537 if (err)
1538 return err;
1539
1540 btf->hdr->str_len += len; /* new unique string, adjust data length */
1541 return new_off;
1542 }
1543
btf_add_type_mem(struct btf * btf,size_t add_sz)1544 static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1545 {
1546 return btf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1547 btf->hdr->type_len, UINT_MAX, add_sz);
1548 }
1549
btf_type_info(int kind,int vlen,int kflag)1550 static __u32 btf_type_info(int kind, int vlen, int kflag)
1551 {
1552 return (kflag << 31) | (kind << 24) | vlen;
1553 }
1554
btf_type_inc_vlen(struct btf_type * t)1555 static void btf_type_inc_vlen(struct btf_type *t)
1556 {
1557 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1558 }
1559
1560 /*
1561 * Append new BTF_KIND_INT type with:
1562 * - *name* - non-empty, non-NULL type name;
1563 * - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1564 * - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1565 * Returns:
1566 * - >0, type ID of newly added BTF type;
1567 * - <0, on error.
1568 */
btf__add_int(struct btf * btf,const char * name,size_t byte_sz,int encoding)1569 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
1570 {
1571 struct btf_type *t;
1572 int sz, err, name_off;
1573
1574 /* non-empty name */
1575 if (!name || !name[0])
1576 return -EINVAL;
1577 /* byte_sz must be power of 2 */
1578 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
1579 return -EINVAL;
1580 if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
1581 return -EINVAL;
1582
1583 /* deconstruct BTF, if necessary, and invalidate raw_data */
1584 if (btf_ensure_modifiable(btf))
1585 return -ENOMEM;
1586
1587 sz = sizeof(struct btf_type) + sizeof(int);
1588 t = btf_add_type_mem(btf, sz);
1589 if (!t)
1590 return -ENOMEM;
1591
1592 /* if something goes wrong later, we might end up with an extra string,
1593 * but that shouldn't be a problem, because BTF can't be constructed
1594 * completely anyway and will most probably be just discarded
1595 */
1596 name_off = btf__add_str(btf, name);
1597 if (name_off < 0)
1598 return name_off;
1599
1600 t->name_off = name_off;
1601 t->info = btf_type_info(BTF_KIND_INT, 0, 0);
1602 t->size = byte_sz;
1603 /* set INT info, we don't allow setting legacy bit offset/size */
1604 *(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
1605
1606 err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1607 if (err)
1608 return err;
1609
1610 btf->hdr->type_len += sz;
1611 btf->hdr->str_off += sz;
1612 btf->nr_types++;
1613 return btf->nr_types;
1614 }
1615
1616 /* it's completely legal to append BTF types with type IDs pointing forward to
1617 * types that haven't been appended yet, so we only make sure that id looks
1618 * sane, we can't guarantee that ID will always be valid
1619 */
validate_type_id(int id)1620 static int validate_type_id(int id)
1621 {
1622 if (id < 0 || id > BTF_MAX_NR_TYPES)
1623 return -EINVAL;
1624 return 0;
1625 }
1626
1627 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
btf_add_ref_kind(struct btf * btf,int kind,const char * name,int ref_type_id)1628 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
1629 {
1630 struct btf_type *t;
1631 int sz, name_off = 0, err;
1632
1633 if (validate_type_id(ref_type_id))
1634 return -EINVAL;
1635
1636 if (btf_ensure_modifiable(btf))
1637 return -ENOMEM;
1638
1639 sz = sizeof(struct btf_type);
1640 t = btf_add_type_mem(btf, sz);
1641 if (!t)
1642 return -ENOMEM;
1643
1644 if (name && name[0]) {
1645 name_off = btf__add_str(btf, name);
1646 if (name_off < 0)
1647 return name_off;
1648 }
1649
1650 t->name_off = name_off;
1651 t->info = btf_type_info(kind, 0, 0);
1652 t->type = ref_type_id;
1653
1654 err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1655 if (err)
1656 return err;
1657
1658 btf->hdr->type_len += sz;
1659 btf->hdr->str_off += sz;
1660 btf->nr_types++;
1661 return btf->nr_types;
1662 }
1663
1664 /*
1665 * Append new BTF_KIND_PTR type with:
1666 * - *ref_type_id* - referenced type ID, it might not exist yet;
1667 * Returns:
1668 * - >0, type ID of newly added BTF type;
1669 * - <0, on error.
1670 */
btf__add_ptr(struct btf * btf,int ref_type_id)1671 int btf__add_ptr(struct btf *btf, int ref_type_id)
1672 {
1673 return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
1674 }
1675
1676 /*
1677 * Append new BTF_KIND_ARRAY type with:
1678 * - *index_type_id* - type ID of the type describing array index;
1679 * - *elem_type_id* - type ID of the type describing array element;
1680 * - *nr_elems* - the size of the array;
1681 * Returns:
1682 * - >0, type ID of newly added BTF type;
1683 * - <0, on error.
1684 */
btf__add_array(struct btf * btf,int index_type_id,int elem_type_id,__u32 nr_elems)1685 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
1686 {
1687 struct btf_type *t;
1688 struct btf_array *a;
1689 int sz, err;
1690
1691 if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
1692 return -EINVAL;
1693
1694 if (btf_ensure_modifiable(btf))
1695 return -ENOMEM;
1696
1697 sz = sizeof(struct btf_type) + sizeof(struct btf_array);
1698 t = btf_add_type_mem(btf, sz);
1699 if (!t)
1700 return -ENOMEM;
1701
1702 t->name_off = 0;
1703 t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
1704 t->size = 0;
1705
1706 a = btf_array(t);
1707 a->type = elem_type_id;
1708 a->index_type = index_type_id;
1709 a->nelems = nr_elems;
1710
1711 err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1712 if (err)
1713 return err;
1714
1715 btf->hdr->type_len += sz;
1716 btf->hdr->str_off += sz;
1717 btf->nr_types++;
1718 return btf->nr_types;
1719 }
1720
1721 /* generic STRUCT/UNION append function */
btf_add_composite(struct btf * btf,int kind,const char * name,__u32 bytes_sz)1722 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
1723 {
1724 struct btf_type *t;
1725 int sz, err, name_off = 0;
1726
1727 if (btf_ensure_modifiable(btf))
1728 return -ENOMEM;
1729
1730 sz = sizeof(struct btf_type);
1731 t = btf_add_type_mem(btf, sz);
1732 if (!t)
1733 return -ENOMEM;
1734
1735 if (name && name[0]) {
1736 name_off = btf__add_str(btf, name);
1737 if (name_off < 0)
1738 return name_off;
1739 }
1740
1741 /* start out with vlen=0 and no kflag; this will be adjusted when
1742 * adding each member
1743 */
1744 t->name_off = name_off;
1745 t->info = btf_type_info(kind, 0, 0);
1746 t->size = bytes_sz;
1747
1748 err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1749 if (err)
1750 return err;
1751
1752 btf->hdr->type_len += sz;
1753 btf->hdr->str_off += sz;
1754 btf->nr_types++;
1755 return btf->nr_types;
1756 }
1757
1758 /*
1759 * Append new BTF_KIND_STRUCT type with:
1760 * - *name* - name of the struct, can be NULL or empty for anonymous structs;
1761 * - *byte_sz* - size of the struct, in bytes;
1762 *
1763 * Struct initially has no fields in it. Fields can be added by
1764 * btf__add_field() right after btf__add_struct() succeeds.
1765 *
1766 * Returns:
1767 * - >0, type ID of newly added BTF type;
1768 * - <0, on error.
1769 */
btf__add_struct(struct btf * btf,const char * name,__u32 byte_sz)1770 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
1771 {
1772 return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
1773 }
1774
1775 /*
1776 * Append new BTF_KIND_UNION type with:
1777 * - *name* - name of the union, can be NULL or empty for anonymous union;
1778 * - *byte_sz* - size of the union, in bytes;
1779 *
1780 * Union initially has no fields in it. Fields can be added by
1781 * btf__add_field() right after btf__add_union() succeeds. All fields
1782 * should have *bit_offset* of 0.
1783 *
1784 * Returns:
1785 * - >0, type ID of newly added BTF type;
1786 * - <0, on error.
1787 */
btf__add_union(struct btf * btf,const char * name,__u32 byte_sz)1788 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
1789 {
1790 return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
1791 }
1792
1793 /*
1794 * Append new field for the current STRUCT/UNION type with:
1795 * - *name* - name of the field, can be NULL or empty for anonymous field;
1796 * - *type_id* - type ID for the type describing field type;
1797 * - *bit_offset* - bit offset of the start of the field within struct/union;
1798 * - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
1799 * Returns:
1800 * - 0, on success;
1801 * - <0, on error.
1802 */
btf__add_field(struct btf * btf,const char * name,int type_id,__u32 bit_offset,__u32 bit_size)1803 int btf__add_field(struct btf *btf, const char *name, int type_id,
1804 __u32 bit_offset, __u32 bit_size)
1805 {
1806 struct btf_type *t;
1807 struct btf_member *m;
1808 bool is_bitfield;
1809 int sz, name_off = 0;
1810
1811 /* last type should be union/struct */
1812 if (btf->nr_types == 0)
1813 return -EINVAL;
1814 t = btf_type_by_id(btf, btf->nr_types);
1815 if (!btf_is_composite(t))
1816 return -EINVAL;
1817
1818 if (validate_type_id(type_id))
1819 return -EINVAL;
1820 /* best-effort bit field offset/size enforcement */
1821 is_bitfield = bit_size || (bit_offset % 8 != 0);
1822 if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
1823 return -EINVAL;
1824
1825 /* only offset 0 is allowed for unions */
1826 if (btf_is_union(t) && bit_offset)
1827 return -EINVAL;
1828
1829 /* decompose and invalidate raw data */
1830 if (btf_ensure_modifiable(btf))
1831 return -ENOMEM;
1832
1833 sz = sizeof(struct btf_member);
1834 m = btf_add_type_mem(btf, sz);
1835 if (!m)
1836 return -ENOMEM;
1837
1838 if (name && name[0]) {
1839 name_off = btf__add_str(btf, name);
1840 if (name_off < 0)
1841 return name_off;
1842 }
1843
1844 m->name_off = name_off;
1845 m->type = type_id;
1846 m->offset = bit_offset | (bit_size << 24);
1847
1848 /* btf_add_type_mem can invalidate t pointer */
1849 t = btf_type_by_id(btf, btf->nr_types);
1850 /* update parent type's vlen and kflag */
1851 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
1852
1853 btf->hdr->type_len += sz;
1854 btf->hdr->str_off += sz;
1855 return 0;
1856 }
1857
1858 /*
1859 * Append new BTF_KIND_ENUM type with:
1860 * - *name* - name of the enum, can be NULL or empty for anonymous enums;
1861 * - *byte_sz* - size of the enum, in bytes.
1862 *
1863 * Enum initially has no enum values in it (and corresponds to enum forward
1864 * declaration). Enumerator values can be added by btf__add_enum_value()
1865 * immediately after btf__add_enum() succeeds.
1866 *
1867 * Returns:
1868 * - >0, type ID of newly added BTF type;
1869 * - <0, on error.
1870 */
btf__add_enum(struct btf * btf,const char * name,__u32 byte_sz)1871 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
1872 {
1873 struct btf_type *t;
1874 int sz, err, name_off = 0;
1875
1876 /* byte_sz must be power of 2 */
1877 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
1878 return -EINVAL;
1879
1880 if (btf_ensure_modifiable(btf))
1881 return -ENOMEM;
1882
1883 sz = sizeof(struct btf_type);
1884 t = btf_add_type_mem(btf, sz);
1885 if (!t)
1886 return -ENOMEM;
1887
1888 if (name && name[0]) {
1889 name_off = btf__add_str(btf, name);
1890 if (name_off < 0)
1891 return name_off;
1892 }
1893
1894 /* start out with vlen=0; it will be adjusted when adding enum values */
1895 t->name_off = name_off;
1896 t->info = btf_type_info(BTF_KIND_ENUM, 0, 0);
1897 t->size = byte_sz;
1898
1899 err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1900 if (err)
1901 return err;
1902
1903 btf->hdr->type_len += sz;
1904 btf->hdr->str_off += sz;
1905 btf->nr_types++;
1906 return btf->nr_types;
1907 }
1908
1909 /*
1910 * Append new enum value for the current ENUM type with:
1911 * - *name* - name of the enumerator value, can't be NULL or empty;
1912 * - *value* - integer value corresponding to enum value *name*;
1913 * Returns:
1914 * - 0, on success;
1915 * - <0, on error.
1916 */
btf__add_enum_value(struct btf * btf,const char * name,__s64 value)1917 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
1918 {
1919 struct btf_type *t;
1920 struct btf_enum *v;
1921 int sz, name_off;
1922
1923 /* last type should be BTF_KIND_ENUM */
1924 if (btf->nr_types == 0)
1925 return -EINVAL;
1926 t = btf_type_by_id(btf, btf->nr_types);
1927 if (!btf_is_enum(t))
1928 return -EINVAL;
1929
1930 /* non-empty name */
1931 if (!name || !name[0])
1932 return -EINVAL;
1933 if (value < INT_MIN || value > UINT_MAX)
1934 return -E2BIG;
1935
1936 /* decompose and invalidate raw data */
1937 if (btf_ensure_modifiable(btf))
1938 return -ENOMEM;
1939
1940 sz = sizeof(struct btf_enum);
1941 v = btf_add_type_mem(btf, sz);
1942 if (!v)
1943 return -ENOMEM;
1944
1945 name_off = btf__add_str(btf, name);
1946 if (name_off < 0)
1947 return name_off;
1948
1949 v->name_off = name_off;
1950 v->val = value;
1951
1952 /* update parent type's vlen */
1953 t = btf_type_by_id(btf, btf->nr_types);
1954 btf_type_inc_vlen(t);
1955
1956 btf->hdr->type_len += sz;
1957 btf->hdr->str_off += sz;
1958 return 0;
1959 }
1960
1961 /*
1962 * Append new BTF_KIND_FWD type with:
1963 * - *name*, non-empty/non-NULL name;
1964 * - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
1965 * BTF_FWD_UNION, or BTF_FWD_ENUM;
1966 * Returns:
1967 * - >0, type ID of newly added BTF type;
1968 * - <0, on error.
1969 */
btf__add_fwd(struct btf * btf,const char * name,enum btf_fwd_kind fwd_kind)1970 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
1971 {
1972 if (!name || !name[0])
1973 return -EINVAL;
1974
1975 switch (fwd_kind) {
1976 case BTF_FWD_STRUCT:
1977 case BTF_FWD_UNION: {
1978 struct btf_type *t;
1979 int id;
1980
1981 id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
1982 if (id <= 0)
1983 return id;
1984 t = btf_type_by_id(btf, id);
1985 t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
1986 return id;
1987 }
1988 case BTF_FWD_ENUM:
1989 /* enum forward in BTF currently is just an enum with no enum
1990 * values; we also assume a standard 4-byte size for it
1991 */
1992 return btf__add_enum(btf, name, sizeof(int));
1993 default:
1994 return -EINVAL;
1995 }
1996 }
1997
1998 /*
1999 * Append new BTF_KING_TYPEDEF type with:
2000 * - *name*, non-empty/non-NULL name;
2001 * - *ref_type_id* - referenced type ID, it might not exist yet;
2002 * Returns:
2003 * - >0, type ID of newly added BTF type;
2004 * - <0, on error.
2005 */
btf__add_typedef(struct btf * btf,const char * name,int ref_type_id)2006 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2007 {
2008 if (!name || !name[0])
2009 return -EINVAL;
2010
2011 return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
2012 }
2013
2014 /*
2015 * Append new BTF_KIND_VOLATILE type with:
2016 * - *ref_type_id* - referenced type ID, it might not exist yet;
2017 * Returns:
2018 * - >0, type ID of newly added BTF type;
2019 * - <0, on error.
2020 */
btf__add_volatile(struct btf * btf,int ref_type_id)2021 int btf__add_volatile(struct btf *btf, int ref_type_id)
2022 {
2023 return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
2024 }
2025
2026 /*
2027 * Append new BTF_KIND_CONST type with:
2028 * - *ref_type_id* - referenced type ID, it might not exist yet;
2029 * Returns:
2030 * - >0, type ID of newly added BTF type;
2031 * - <0, on error.
2032 */
btf__add_const(struct btf * btf,int ref_type_id)2033 int btf__add_const(struct btf *btf, int ref_type_id)
2034 {
2035 return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
2036 }
2037
2038 /*
2039 * Append new BTF_KIND_RESTRICT type with:
2040 * - *ref_type_id* - referenced type ID, it might not exist yet;
2041 * Returns:
2042 * - >0, type ID of newly added BTF type;
2043 * - <0, on error.
2044 */
btf__add_restrict(struct btf * btf,int ref_type_id)2045 int btf__add_restrict(struct btf *btf, int ref_type_id)
2046 {
2047 return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
2048 }
2049
2050 /*
2051 * Append new BTF_KIND_FUNC type with:
2052 * - *name*, non-empty/non-NULL name;
2053 * - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2054 * Returns:
2055 * - >0, type ID of newly added BTF type;
2056 * - <0, on error.
2057 */
btf__add_func(struct btf * btf,const char * name,enum btf_func_linkage linkage,int proto_type_id)2058 int btf__add_func(struct btf *btf, const char *name,
2059 enum btf_func_linkage linkage, int proto_type_id)
2060 {
2061 int id;
2062
2063 if (!name || !name[0])
2064 return -EINVAL;
2065 if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2066 linkage != BTF_FUNC_EXTERN)
2067 return -EINVAL;
2068
2069 id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
2070 if (id > 0) {
2071 struct btf_type *t = btf_type_by_id(btf, id);
2072
2073 t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
2074 }
2075 return id;
2076 }
2077
2078 /*
2079 * Append new BTF_KIND_FUNC_PROTO with:
2080 * - *ret_type_id* - type ID for return result of a function.
2081 *
2082 * Function prototype initially has no arguments, but they can be added by
2083 * btf__add_func_param() one by one, immediately after
2084 * btf__add_func_proto() succeeded.
2085 *
2086 * Returns:
2087 * - >0, type ID of newly added BTF type;
2088 * - <0, on error.
2089 */
btf__add_func_proto(struct btf * btf,int ret_type_id)2090 int btf__add_func_proto(struct btf *btf, int ret_type_id)
2091 {
2092 struct btf_type *t;
2093 int sz, err;
2094
2095 if (validate_type_id(ret_type_id))
2096 return -EINVAL;
2097
2098 if (btf_ensure_modifiable(btf))
2099 return -ENOMEM;
2100
2101 sz = sizeof(struct btf_type);
2102 t = btf_add_type_mem(btf, sz);
2103 if (!t)
2104 return -ENOMEM;
2105
2106 /* start out with vlen=0; this will be adjusted when adding enum
2107 * values, if necessary
2108 */
2109 t->name_off = 0;
2110 t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2111 t->type = ret_type_id;
2112
2113 err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
2114 if (err)
2115 return err;
2116
2117 btf->hdr->type_len += sz;
2118 btf->hdr->str_off += sz;
2119 btf->nr_types++;
2120 return btf->nr_types;
2121 }
2122
2123 /*
2124 * Append new function parameter for current FUNC_PROTO type with:
2125 * - *name* - parameter name, can be NULL or empty;
2126 * - *type_id* - type ID describing the type of the parameter.
2127 * Returns:
2128 * - 0, on success;
2129 * - <0, on error.
2130 */
btf__add_func_param(struct btf * btf,const char * name,int type_id)2131 int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2132 {
2133 struct btf_type *t;
2134 struct btf_param *p;
2135 int sz, name_off = 0;
2136
2137 if (validate_type_id(type_id))
2138 return -EINVAL;
2139
2140 /* last type should be BTF_KIND_FUNC_PROTO */
2141 if (btf->nr_types == 0)
2142 return -EINVAL;
2143 t = btf_type_by_id(btf, btf->nr_types);
2144 if (!btf_is_func_proto(t))
2145 return -EINVAL;
2146
2147 /* decompose and invalidate raw data */
2148 if (btf_ensure_modifiable(btf))
2149 return -ENOMEM;
2150
2151 sz = sizeof(struct btf_param);
2152 p = btf_add_type_mem(btf, sz);
2153 if (!p)
2154 return -ENOMEM;
2155
2156 if (name && name[0]) {
2157 name_off = btf__add_str(btf, name);
2158 if (name_off < 0)
2159 return name_off;
2160 }
2161
2162 p->name_off = name_off;
2163 p->type = type_id;
2164
2165 /* update parent type's vlen */
2166 t = btf_type_by_id(btf, btf->nr_types);
2167 btf_type_inc_vlen(t);
2168
2169 btf->hdr->type_len += sz;
2170 btf->hdr->str_off += sz;
2171 return 0;
2172 }
2173
2174 /*
2175 * Append new BTF_KIND_VAR type with:
2176 * - *name* - non-empty/non-NULL name;
2177 * - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2178 * BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2179 * - *type_id* - type ID of the type describing the type of the variable.
2180 * Returns:
2181 * - >0, type ID of newly added BTF type;
2182 * - <0, on error.
2183 */
btf__add_var(struct btf * btf,const char * name,int linkage,int type_id)2184 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2185 {
2186 struct btf_type *t;
2187 struct btf_var *v;
2188 int sz, err, name_off;
2189
2190 /* non-empty name */
2191 if (!name || !name[0])
2192 return -EINVAL;
2193 if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2194 linkage != BTF_VAR_GLOBAL_EXTERN)
2195 return -EINVAL;
2196 if (validate_type_id(type_id))
2197 return -EINVAL;
2198
2199 /* deconstruct BTF, if necessary, and invalidate raw_data */
2200 if (btf_ensure_modifiable(btf))
2201 return -ENOMEM;
2202
2203 sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2204 t = btf_add_type_mem(btf, sz);
2205 if (!t)
2206 return -ENOMEM;
2207
2208 name_off = btf__add_str(btf, name);
2209 if (name_off < 0)
2210 return name_off;
2211
2212 t->name_off = name_off;
2213 t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2214 t->type = type_id;
2215
2216 v = btf_var(t);
2217 v->linkage = linkage;
2218
2219 err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
2220 if (err)
2221 return err;
2222
2223 btf->hdr->type_len += sz;
2224 btf->hdr->str_off += sz;
2225 btf->nr_types++;
2226 return btf->nr_types;
2227 }
2228
2229 /*
2230 * Append new BTF_KIND_DATASEC type with:
2231 * - *name* - non-empty/non-NULL name;
2232 * - *byte_sz* - data section size, in bytes.
2233 *
2234 * Data section is initially empty. Variables info can be added with
2235 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2236 *
2237 * Returns:
2238 * - >0, type ID of newly added BTF type;
2239 * - <0, on error.
2240 */
btf__add_datasec(struct btf * btf,const char * name,__u32 byte_sz)2241 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2242 {
2243 struct btf_type *t;
2244 int sz, err, name_off;
2245
2246 /* non-empty name */
2247 if (!name || !name[0])
2248 return -EINVAL;
2249
2250 if (btf_ensure_modifiable(btf))
2251 return -ENOMEM;
2252
2253 sz = sizeof(struct btf_type);
2254 t = btf_add_type_mem(btf, sz);
2255 if (!t)
2256 return -ENOMEM;
2257
2258 name_off = btf__add_str(btf, name);
2259 if (name_off < 0)
2260 return name_off;
2261
2262 /* start with vlen=0, which will be update as var_secinfos are added */
2263 t->name_off = name_off;
2264 t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2265 t->size = byte_sz;
2266
2267 err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
2268 if (err)
2269 return err;
2270
2271 btf->hdr->type_len += sz;
2272 btf->hdr->str_off += sz;
2273 btf->nr_types++;
2274 return btf->nr_types;
2275 }
2276
2277 /*
2278 * Append new data section variable information entry for current DATASEC type:
2279 * - *var_type_id* - type ID, describing type of the variable;
2280 * - *offset* - variable offset within data section, in bytes;
2281 * - *byte_sz* - variable size, in bytes.
2282 *
2283 * Returns:
2284 * - 0, on success;
2285 * - <0, on error.
2286 */
btf__add_datasec_var_info(struct btf * btf,int var_type_id,__u32 offset,__u32 byte_sz)2287 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2288 {
2289 struct btf_type *t;
2290 struct btf_var_secinfo *v;
2291 int sz;
2292
2293 /* last type should be BTF_KIND_DATASEC */
2294 if (btf->nr_types == 0)
2295 return -EINVAL;
2296 t = btf_type_by_id(btf, btf->nr_types);
2297 if (!btf_is_datasec(t))
2298 return -EINVAL;
2299
2300 if (validate_type_id(var_type_id))
2301 return -EINVAL;
2302
2303 /* decompose and invalidate raw data */
2304 if (btf_ensure_modifiable(btf))
2305 return -ENOMEM;
2306
2307 sz = sizeof(struct btf_var_secinfo);
2308 v = btf_add_type_mem(btf, sz);
2309 if (!v)
2310 return -ENOMEM;
2311
2312 v->type = var_type_id;
2313 v->offset = offset;
2314 v->size = byte_sz;
2315
2316 /* update parent type's vlen */
2317 t = btf_type_by_id(btf, btf->nr_types);
2318 btf_type_inc_vlen(t);
2319
2320 btf->hdr->type_len += sz;
2321 btf->hdr->str_off += sz;
2322 return 0;
2323 }
2324
2325 struct btf_ext_sec_setup_param {
2326 __u32 off;
2327 __u32 len;
2328 __u32 min_rec_size;
2329 struct btf_ext_info *ext_info;
2330 const char *desc;
2331 };
2332
btf_ext_setup_info(struct btf_ext * btf_ext,struct btf_ext_sec_setup_param * ext_sec)2333 static int btf_ext_setup_info(struct btf_ext *btf_ext,
2334 struct btf_ext_sec_setup_param *ext_sec)
2335 {
2336 const struct btf_ext_info_sec *sinfo;
2337 struct btf_ext_info *ext_info;
2338 __u32 info_left, record_size;
2339 /* The start of the info sec (including the __u32 record_size). */
2340 void *info;
2341
2342 if (ext_sec->len == 0)
2343 return 0;
2344
2345 if (ext_sec->off & 0x03) {
2346 pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2347 ext_sec->desc);
2348 return -EINVAL;
2349 }
2350
2351 info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
2352 info_left = ext_sec->len;
2353
2354 if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
2355 pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2356 ext_sec->desc, ext_sec->off, ext_sec->len);
2357 return -EINVAL;
2358 }
2359
2360 /* At least a record size */
2361 if (info_left < sizeof(__u32)) {
2362 pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
2363 return -EINVAL;
2364 }
2365
2366 /* The record size needs to meet the minimum standard */
2367 record_size = *(__u32 *)info;
2368 if (record_size < ext_sec->min_rec_size ||
2369 record_size & 0x03) {
2370 pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2371 ext_sec->desc, record_size);
2372 return -EINVAL;
2373 }
2374
2375 sinfo = info + sizeof(__u32);
2376 info_left -= sizeof(__u32);
2377
2378 /* If no records, return failure now so .BTF.ext won't be used. */
2379 if (!info_left) {
2380 pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
2381 return -EINVAL;
2382 }
2383
2384 while (info_left) {
2385 unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
2386 __u64 total_record_size;
2387 __u32 num_records;
2388
2389 if (info_left < sec_hdrlen) {
2390 pr_debug("%s section header is not found in .BTF.ext\n",
2391 ext_sec->desc);
2392 return -EINVAL;
2393 }
2394
2395 num_records = sinfo->num_info;
2396 if (num_records == 0) {
2397 pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2398 ext_sec->desc);
2399 return -EINVAL;
2400 }
2401
2402 total_record_size = sec_hdrlen +
2403 (__u64)num_records * record_size;
2404 if (info_left < total_record_size) {
2405 pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2406 ext_sec->desc);
2407 return -EINVAL;
2408 }
2409
2410 info_left -= total_record_size;
2411 sinfo = (void *)sinfo + total_record_size;
2412 }
2413
2414 ext_info = ext_sec->ext_info;
2415 ext_info->len = ext_sec->len - sizeof(__u32);
2416 ext_info->rec_size = record_size;
2417 ext_info->info = info + sizeof(__u32);
2418
2419 return 0;
2420 }
2421
btf_ext_setup_func_info(struct btf_ext * btf_ext)2422 static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
2423 {
2424 struct btf_ext_sec_setup_param param = {
2425 .off = btf_ext->hdr->func_info_off,
2426 .len = btf_ext->hdr->func_info_len,
2427 .min_rec_size = sizeof(struct bpf_func_info_min),
2428 .ext_info = &btf_ext->func_info,
2429 .desc = "func_info"
2430 };
2431
2432 return btf_ext_setup_info(btf_ext, ¶m);
2433 }
2434
btf_ext_setup_line_info(struct btf_ext * btf_ext)2435 static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
2436 {
2437 struct btf_ext_sec_setup_param param = {
2438 .off = btf_ext->hdr->line_info_off,
2439 .len = btf_ext->hdr->line_info_len,
2440 .min_rec_size = sizeof(struct bpf_line_info_min),
2441 .ext_info = &btf_ext->line_info,
2442 .desc = "line_info",
2443 };
2444
2445 return btf_ext_setup_info(btf_ext, ¶m);
2446 }
2447
btf_ext_setup_core_relos(struct btf_ext * btf_ext)2448 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext)
2449 {
2450 struct btf_ext_sec_setup_param param = {
2451 .off = btf_ext->hdr->core_relo_off,
2452 .len = btf_ext->hdr->core_relo_len,
2453 .min_rec_size = sizeof(struct bpf_core_relo),
2454 .ext_info = &btf_ext->core_relo_info,
2455 .desc = "core_relo",
2456 };
2457
2458 return btf_ext_setup_info(btf_ext, ¶m);
2459 }
2460
btf_ext_parse_hdr(__u8 * data,__u32 data_size)2461 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
2462 {
2463 const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
2464
2465 if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
2466 data_size < hdr->hdr_len) {
2467 pr_debug("BTF.ext header not found");
2468 return -EINVAL;
2469 }
2470
2471 if (hdr->magic == bswap_16(BTF_MAGIC)) {
2472 pr_warn("BTF.ext in non-native endianness is not supported\n");
2473 return -ENOTSUP;
2474 } else if (hdr->magic != BTF_MAGIC) {
2475 pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
2476 return -EINVAL;
2477 }
2478
2479 if (hdr->version != BTF_VERSION) {
2480 pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
2481 return -ENOTSUP;
2482 }
2483
2484 if (hdr->flags) {
2485 pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
2486 return -ENOTSUP;
2487 }
2488
2489 if (data_size == hdr->hdr_len) {
2490 pr_debug("BTF.ext has no data\n");
2491 return -EINVAL;
2492 }
2493
2494 return 0;
2495 }
2496
btf_ext__free(struct btf_ext * btf_ext)2497 void btf_ext__free(struct btf_ext *btf_ext)
2498 {
2499 if (IS_ERR_OR_NULL(btf_ext))
2500 return;
2501 free(btf_ext->data);
2502 free(btf_ext);
2503 }
2504
btf_ext__new(__u8 * data,__u32 size)2505 struct btf_ext *btf_ext__new(__u8 *data, __u32 size)
2506 {
2507 struct btf_ext *btf_ext;
2508 int err;
2509
2510 err = btf_ext_parse_hdr(data, size);
2511 if (err)
2512 return ERR_PTR(err);
2513
2514 btf_ext = calloc(1, sizeof(struct btf_ext));
2515 if (!btf_ext)
2516 return ERR_PTR(-ENOMEM);
2517
2518 btf_ext->data_size = size;
2519 btf_ext->data = malloc(size);
2520 if (!btf_ext->data) {
2521 err = -ENOMEM;
2522 goto done;
2523 }
2524 memcpy(btf_ext->data, data, size);
2525
2526 if (btf_ext->hdr->hdr_len <
2527 offsetofend(struct btf_ext_header, line_info_len))
2528 goto done;
2529 err = btf_ext_setup_func_info(btf_ext);
2530 if (err)
2531 goto done;
2532
2533 err = btf_ext_setup_line_info(btf_ext);
2534 if (err)
2535 goto done;
2536
2537 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
2538 goto done;
2539 err = btf_ext_setup_core_relos(btf_ext);
2540 if (err)
2541 goto done;
2542
2543 done:
2544 if (err) {
2545 btf_ext__free(btf_ext);
2546 return ERR_PTR(err);
2547 }
2548
2549 return btf_ext;
2550 }
2551
btf_ext__get_raw_data(const struct btf_ext * btf_ext,__u32 * size)2552 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
2553 {
2554 *size = btf_ext->data_size;
2555 return btf_ext->data;
2556 }
2557
btf_ext_reloc_info(const struct btf * btf,const struct btf_ext_info * ext_info,const char * sec_name,__u32 insns_cnt,void ** info,__u32 * cnt)2558 static int btf_ext_reloc_info(const struct btf *btf,
2559 const struct btf_ext_info *ext_info,
2560 const char *sec_name, __u32 insns_cnt,
2561 void **info, __u32 *cnt)
2562 {
2563 __u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
2564 __u32 i, record_size, existing_len, records_len;
2565 struct btf_ext_info_sec *sinfo;
2566 const char *info_sec_name;
2567 __u64 remain_len;
2568 void *data;
2569
2570 record_size = ext_info->rec_size;
2571 sinfo = ext_info->info;
2572 remain_len = ext_info->len;
2573 while (remain_len > 0) {
2574 records_len = sinfo->num_info * record_size;
2575 info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
2576 if (strcmp(info_sec_name, sec_name)) {
2577 remain_len -= sec_hdrlen + records_len;
2578 sinfo = (void *)sinfo + sec_hdrlen + records_len;
2579 continue;
2580 }
2581
2582 existing_len = (*cnt) * record_size;
2583 data = realloc(*info, existing_len + records_len);
2584 if (!data)
2585 return -ENOMEM;
2586
2587 memcpy(data + existing_len, sinfo->data, records_len);
2588 /* adjust insn_off only, the rest data will be passed
2589 * to the kernel.
2590 */
2591 for (i = 0; i < sinfo->num_info; i++) {
2592 __u32 *insn_off;
2593
2594 insn_off = data + existing_len + (i * record_size);
2595 *insn_off = *insn_off / sizeof(struct bpf_insn) +
2596 insns_cnt;
2597 }
2598 *info = data;
2599 *cnt += sinfo->num_info;
2600 return 0;
2601 }
2602
2603 return -ENOENT;
2604 }
2605
btf_ext__reloc_func_info(const struct btf * btf,const struct btf_ext * btf_ext,const char * sec_name,__u32 insns_cnt,void ** func_info,__u32 * cnt)2606 int btf_ext__reloc_func_info(const struct btf *btf,
2607 const struct btf_ext *btf_ext,
2608 const char *sec_name, __u32 insns_cnt,
2609 void **func_info, __u32 *cnt)
2610 {
2611 return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
2612 insns_cnt, func_info, cnt);
2613 }
2614
btf_ext__reloc_line_info(const struct btf * btf,const struct btf_ext * btf_ext,const char * sec_name,__u32 insns_cnt,void ** line_info,__u32 * cnt)2615 int btf_ext__reloc_line_info(const struct btf *btf,
2616 const struct btf_ext *btf_ext,
2617 const char *sec_name, __u32 insns_cnt,
2618 void **line_info, __u32 *cnt)
2619 {
2620 return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
2621 insns_cnt, line_info, cnt);
2622 }
2623
btf_ext__func_info_rec_size(const struct btf_ext * btf_ext)2624 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
2625 {
2626 return btf_ext->func_info.rec_size;
2627 }
2628
btf_ext__line_info_rec_size(const struct btf_ext * btf_ext)2629 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
2630 {
2631 return btf_ext->line_info.rec_size;
2632 }
2633
2634 struct btf_dedup;
2635
2636 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
2637 const struct btf_dedup_opts *opts);
2638 static void btf_dedup_free(struct btf_dedup *d);
2639 static int btf_dedup_strings(struct btf_dedup *d);
2640 static int btf_dedup_prim_types(struct btf_dedup *d);
2641 static int btf_dedup_struct_types(struct btf_dedup *d);
2642 static int btf_dedup_ref_types(struct btf_dedup *d);
2643 static int btf_dedup_compact_types(struct btf_dedup *d);
2644 static int btf_dedup_remap_types(struct btf_dedup *d);
2645
2646 /*
2647 * Deduplicate BTF types and strings.
2648 *
2649 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
2650 * section with all BTF type descriptors and string data. It overwrites that
2651 * memory in-place with deduplicated types and strings without any loss of
2652 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
2653 * is provided, all the strings referenced from .BTF.ext section are honored
2654 * and updated to point to the right offsets after deduplication.
2655 *
2656 * If function returns with error, type/string data might be garbled and should
2657 * be discarded.
2658 *
2659 * More verbose and detailed description of both problem btf_dedup is solving,
2660 * as well as solution could be found at:
2661 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
2662 *
2663 * Problem description and justification
2664 * =====================================
2665 *
2666 * BTF type information is typically emitted either as a result of conversion
2667 * from DWARF to BTF or directly by compiler. In both cases, each compilation
2668 * unit contains information about a subset of all the types that are used
2669 * in an application. These subsets are frequently overlapping and contain a lot
2670 * of duplicated information when later concatenated together into a single
2671 * binary. This algorithm ensures that each unique type is represented by single
2672 * BTF type descriptor, greatly reducing resulting size of BTF data.
2673 *
2674 * Compilation unit isolation and subsequent duplication of data is not the only
2675 * problem. The same type hierarchy (e.g., struct and all the type that struct
2676 * references) in different compilation units can be represented in BTF to
2677 * various degrees of completeness (or, rather, incompleteness) due to
2678 * struct/union forward declarations.
2679 *
2680 * Let's take a look at an example, that we'll use to better understand the
2681 * problem (and solution). Suppose we have two compilation units, each using
2682 * same `struct S`, but each of them having incomplete type information about
2683 * struct's fields:
2684 *
2685 * // CU #1:
2686 * struct S;
2687 * struct A {
2688 * int a;
2689 * struct A* self;
2690 * struct S* parent;
2691 * };
2692 * struct B;
2693 * struct S {
2694 * struct A* a_ptr;
2695 * struct B* b_ptr;
2696 * };
2697 *
2698 * // CU #2:
2699 * struct S;
2700 * struct A;
2701 * struct B {
2702 * int b;
2703 * struct B* self;
2704 * struct S* parent;
2705 * };
2706 * struct S {
2707 * struct A* a_ptr;
2708 * struct B* b_ptr;
2709 * };
2710 *
2711 * In case of CU #1, BTF data will know only that `struct B` exist (but no
2712 * more), but will know the complete type information about `struct A`. While
2713 * for CU #2, it will know full type information about `struct B`, but will
2714 * only know about forward declaration of `struct A` (in BTF terms, it will
2715 * have `BTF_KIND_FWD` type descriptor with name `B`).
2716 *
2717 * This compilation unit isolation means that it's possible that there is no
2718 * single CU with complete type information describing structs `S`, `A`, and
2719 * `B`. Also, we might get tons of duplicated and redundant type information.
2720 *
2721 * Additional complication we need to keep in mind comes from the fact that
2722 * types, in general, can form graphs containing cycles, not just DAGs.
2723 *
2724 * While algorithm does deduplication, it also merges and resolves type
2725 * information (unless disabled throught `struct btf_opts`), whenever possible.
2726 * E.g., in the example above with two compilation units having partial type
2727 * information for structs `A` and `B`, the output of algorithm will emit
2728 * a single copy of each BTF type that describes structs `A`, `B`, and `S`
2729 * (as well as type information for `int` and pointers), as if they were defined
2730 * in a single compilation unit as:
2731 *
2732 * struct A {
2733 * int a;
2734 * struct A* self;
2735 * struct S* parent;
2736 * };
2737 * struct B {
2738 * int b;
2739 * struct B* self;
2740 * struct S* parent;
2741 * };
2742 * struct S {
2743 * struct A* a_ptr;
2744 * struct B* b_ptr;
2745 * };
2746 *
2747 * Algorithm summary
2748 * =================
2749 *
2750 * Algorithm completes its work in 6 separate passes:
2751 *
2752 * 1. Strings deduplication.
2753 * 2. Primitive types deduplication (int, enum, fwd).
2754 * 3. Struct/union types deduplication.
2755 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
2756 * protos, and const/volatile/restrict modifiers).
2757 * 5. Types compaction.
2758 * 6. Types remapping.
2759 *
2760 * Algorithm determines canonical type descriptor, which is a single
2761 * representative type for each truly unique type. This canonical type is the
2762 * one that will go into final deduplicated BTF type information. For
2763 * struct/unions, it is also the type that algorithm will merge additional type
2764 * information into (while resolving FWDs), as it discovers it from data in
2765 * other CUs. Each input BTF type eventually gets either mapped to itself, if
2766 * that type is canonical, or to some other type, if that type is equivalent
2767 * and was chosen as canonical representative. This mapping is stored in
2768 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
2769 * FWD type got resolved to.
2770 *
2771 * To facilitate fast discovery of canonical types, we also maintain canonical
2772 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
2773 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
2774 * that match that signature. With sufficiently good choice of type signature
2775 * hashing function, we can limit number of canonical types for each unique type
2776 * signature to a very small number, allowing to find canonical type for any
2777 * duplicated type very quickly.
2778 *
2779 * Struct/union deduplication is the most critical part and algorithm for
2780 * deduplicating structs/unions is described in greater details in comments for
2781 * `btf_dedup_is_equiv` function.
2782 */
btf__dedup(struct btf * btf,struct btf_ext * btf_ext,const struct btf_dedup_opts * opts)2783 int btf__dedup(struct btf *btf, struct btf_ext *btf_ext,
2784 const struct btf_dedup_opts *opts)
2785 {
2786 struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts);
2787 int err;
2788
2789 if (IS_ERR(d)) {
2790 pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
2791 return -EINVAL;
2792 }
2793
2794 if (btf_ensure_modifiable(btf))
2795 return -ENOMEM;
2796
2797 err = btf_dedup_strings(d);
2798 if (err < 0) {
2799 pr_debug("btf_dedup_strings failed:%d\n", err);
2800 goto done;
2801 }
2802 err = btf_dedup_prim_types(d);
2803 if (err < 0) {
2804 pr_debug("btf_dedup_prim_types failed:%d\n", err);
2805 goto done;
2806 }
2807 err = btf_dedup_struct_types(d);
2808 if (err < 0) {
2809 pr_debug("btf_dedup_struct_types failed:%d\n", err);
2810 goto done;
2811 }
2812 err = btf_dedup_ref_types(d);
2813 if (err < 0) {
2814 pr_debug("btf_dedup_ref_types failed:%d\n", err);
2815 goto done;
2816 }
2817 err = btf_dedup_compact_types(d);
2818 if (err < 0) {
2819 pr_debug("btf_dedup_compact_types failed:%d\n", err);
2820 goto done;
2821 }
2822 err = btf_dedup_remap_types(d);
2823 if (err < 0) {
2824 pr_debug("btf_dedup_remap_types failed:%d\n", err);
2825 goto done;
2826 }
2827
2828 done:
2829 btf_dedup_free(d);
2830 return err;
2831 }
2832
2833 #define BTF_UNPROCESSED_ID ((__u32)-1)
2834 #define BTF_IN_PROGRESS_ID ((__u32)-2)
2835
2836 struct btf_dedup {
2837 /* .BTF section to be deduped in-place */
2838 struct btf *btf;
2839 /*
2840 * Optional .BTF.ext section. When provided, any strings referenced
2841 * from it will be taken into account when deduping strings
2842 */
2843 struct btf_ext *btf_ext;
2844 /*
2845 * This is a map from any type's signature hash to a list of possible
2846 * canonical representative type candidates. Hash collisions are
2847 * ignored, so even types of various kinds can share same list of
2848 * candidates, which is fine because we rely on subsequent
2849 * btf_xxx_equal() checks to authoritatively verify type equality.
2850 */
2851 struct hashmap *dedup_table;
2852 /* Canonical types map */
2853 __u32 *map;
2854 /* Hypothetical mapping, used during type graph equivalence checks */
2855 __u32 *hypot_map;
2856 __u32 *hypot_list;
2857 size_t hypot_cnt;
2858 size_t hypot_cap;
2859 /* Various option modifying behavior of algorithm */
2860 struct btf_dedup_opts opts;
2861 };
2862
2863 struct btf_str_ptr {
2864 const char *str;
2865 __u32 new_off;
2866 bool used;
2867 };
2868
2869 struct btf_str_ptrs {
2870 struct btf_str_ptr *ptrs;
2871 const char *data;
2872 __u32 cnt;
2873 __u32 cap;
2874 };
2875
hash_combine(long h,long value)2876 static long hash_combine(long h, long value)
2877 {
2878 return h * 31 + value;
2879 }
2880
2881 #define for_each_dedup_cand(d, node, hash) \
2882 hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
2883
btf_dedup_table_add(struct btf_dedup * d,long hash,__u32 type_id)2884 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
2885 {
2886 return hashmap__append(d->dedup_table,
2887 (void *)hash, (void *)(long)type_id);
2888 }
2889
btf_dedup_hypot_map_add(struct btf_dedup * d,__u32 from_id,__u32 to_id)2890 static int btf_dedup_hypot_map_add(struct btf_dedup *d,
2891 __u32 from_id, __u32 to_id)
2892 {
2893 if (d->hypot_cnt == d->hypot_cap) {
2894 __u32 *new_list;
2895
2896 d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
2897 new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
2898 if (!new_list)
2899 return -ENOMEM;
2900 d->hypot_list = new_list;
2901 }
2902 d->hypot_list[d->hypot_cnt++] = from_id;
2903 d->hypot_map[from_id] = to_id;
2904 return 0;
2905 }
2906
btf_dedup_clear_hypot_map(struct btf_dedup * d)2907 static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
2908 {
2909 int i;
2910
2911 for (i = 0; i < d->hypot_cnt; i++)
2912 d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
2913 d->hypot_cnt = 0;
2914 }
2915
btf_dedup_free(struct btf_dedup * d)2916 static void btf_dedup_free(struct btf_dedup *d)
2917 {
2918 hashmap__free(d->dedup_table);
2919 d->dedup_table = NULL;
2920
2921 free(d->map);
2922 d->map = NULL;
2923
2924 free(d->hypot_map);
2925 d->hypot_map = NULL;
2926
2927 free(d->hypot_list);
2928 d->hypot_list = NULL;
2929
2930 free(d);
2931 }
2932
btf_dedup_identity_hash_fn(const void * key,void * ctx)2933 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
2934 {
2935 return (size_t)key;
2936 }
2937
btf_dedup_collision_hash_fn(const void * key,void * ctx)2938 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
2939 {
2940 return 0;
2941 }
2942
btf_dedup_equal_fn(const void * k1,const void * k2,void * ctx)2943 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
2944 {
2945 return k1 == k2;
2946 }
2947
btf_dedup_new(struct btf * btf,struct btf_ext * btf_ext,const struct btf_dedup_opts * opts)2948 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
2949 const struct btf_dedup_opts *opts)
2950 {
2951 struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
2952 hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
2953 int i, err = 0;
2954
2955 if (!d)
2956 return ERR_PTR(-ENOMEM);
2957
2958 d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds;
2959 /* dedup_table_size is now used only to force collisions in tests */
2960 if (opts && opts->dedup_table_size == 1)
2961 hash_fn = btf_dedup_collision_hash_fn;
2962
2963 d->btf = btf;
2964 d->btf_ext = btf_ext;
2965
2966 d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
2967 if (IS_ERR(d->dedup_table)) {
2968 err = PTR_ERR(d->dedup_table);
2969 d->dedup_table = NULL;
2970 goto done;
2971 }
2972
2973 d->map = malloc(sizeof(__u32) * (1 + btf->nr_types));
2974 if (!d->map) {
2975 err = -ENOMEM;
2976 goto done;
2977 }
2978 /* special BTF "void" type is made canonical immediately */
2979 d->map[0] = 0;
2980 for (i = 1; i <= btf->nr_types; i++) {
2981 struct btf_type *t = btf_type_by_id(d->btf, i);
2982
2983 /* VAR and DATASEC are never deduped and are self-canonical */
2984 if (btf_is_var(t) || btf_is_datasec(t))
2985 d->map[i] = i;
2986 else
2987 d->map[i] = BTF_UNPROCESSED_ID;
2988 }
2989
2990 d->hypot_map = malloc(sizeof(__u32) * (1 + btf->nr_types));
2991 if (!d->hypot_map) {
2992 err = -ENOMEM;
2993 goto done;
2994 }
2995 for (i = 0; i <= btf->nr_types; i++)
2996 d->hypot_map[i] = BTF_UNPROCESSED_ID;
2997
2998 done:
2999 if (err) {
3000 btf_dedup_free(d);
3001 return ERR_PTR(err);
3002 }
3003
3004 return d;
3005 }
3006
3007 typedef int (*str_off_fn_t)(__u32 *str_off_ptr, void *ctx);
3008
3009 /*
3010 * Iterate over all possible places in .BTF and .BTF.ext that can reference
3011 * string and pass pointer to it to a provided callback `fn`.
3012 */
btf_for_each_str_off(struct btf_dedup * d,str_off_fn_t fn,void * ctx)3013 static int btf_for_each_str_off(struct btf_dedup *d, str_off_fn_t fn, void *ctx)
3014 {
3015 void *line_data_cur, *line_data_end;
3016 int i, j, r, rec_size;
3017 struct btf_type *t;
3018
3019 for (i = 1; i <= d->btf->nr_types; i++) {
3020 t = btf_type_by_id(d->btf, i);
3021 r = fn(&t->name_off, ctx);
3022 if (r)
3023 return r;
3024
3025 switch (btf_kind(t)) {
3026 case BTF_KIND_STRUCT:
3027 case BTF_KIND_UNION: {
3028 struct btf_member *m = btf_members(t);
3029 __u16 vlen = btf_vlen(t);
3030
3031 for (j = 0; j < vlen; j++) {
3032 r = fn(&m->name_off, ctx);
3033 if (r)
3034 return r;
3035 m++;
3036 }
3037 break;
3038 }
3039 case BTF_KIND_ENUM: {
3040 struct btf_enum *m = btf_enum(t);
3041 __u16 vlen = btf_vlen(t);
3042
3043 for (j = 0; j < vlen; j++) {
3044 r = fn(&m->name_off, ctx);
3045 if (r)
3046 return r;
3047 m++;
3048 }
3049 break;
3050 }
3051 case BTF_KIND_FUNC_PROTO: {
3052 struct btf_param *m = btf_params(t);
3053 __u16 vlen = btf_vlen(t);
3054
3055 for (j = 0; j < vlen; j++) {
3056 r = fn(&m->name_off, ctx);
3057 if (r)
3058 return r;
3059 m++;
3060 }
3061 break;
3062 }
3063 default:
3064 break;
3065 }
3066 }
3067
3068 if (!d->btf_ext)
3069 return 0;
3070
3071 line_data_cur = d->btf_ext->line_info.info;
3072 line_data_end = d->btf_ext->line_info.info + d->btf_ext->line_info.len;
3073 rec_size = d->btf_ext->line_info.rec_size;
3074
3075 while (line_data_cur < line_data_end) {
3076 struct btf_ext_info_sec *sec = line_data_cur;
3077 struct bpf_line_info_min *line_info;
3078 __u32 num_info = sec->num_info;
3079
3080 r = fn(&sec->sec_name_off, ctx);
3081 if (r)
3082 return r;
3083
3084 line_data_cur += sizeof(struct btf_ext_info_sec);
3085 for (i = 0; i < num_info; i++) {
3086 line_info = line_data_cur;
3087 r = fn(&line_info->file_name_off, ctx);
3088 if (r)
3089 return r;
3090 r = fn(&line_info->line_off, ctx);
3091 if (r)
3092 return r;
3093 line_data_cur += rec_size;
3094 }
3095 }
3096
3097 return 0;
3098 }
3099
str_sort_by_content(const void * a1,const void * a2)3100 static int str_sort_by_content(const void *a1, const void *a2)
3101 {
3102 const struct btf_str_ptr *p1 = a1;
3103 const struct btf_str_ptr *p2 = a2;
3104
3105 return strcmp(p1->str, p2->str);
3106 }
3107
str_sort_by_offset(const void * a1,const void * a2)3108 static int str_sort_by_offset(const void *a1, const void *a2)
3109 {
3110 const struct btf_str_ptr *p1 = a1;
3111 const struct btf_str_ptr *p2 = a2;
3112
3113 if (p1->str != p2->str)
3114 return p1->str < p2->str ? -1 : 1;
3115 return 0;
3116 }
3117
btf_dedup_str_ptr_cmp(const void * str_ptr,const void * pelem)3118 static int btf_dedup_str_ptr_cmp(const void *str_ptr, const void *pelem)
3119 {
3120 const struct btf_str_ptr *p = pelem;
3121
3122 if (str_ptr != p->str)
3123 return (const char *)str_ptr < p->str ? -1 : 1;
3124 return 0;
3125 }
3126
btf_str_mark_as_used(__u32 * str_off_ptr,void * ctx)3127 static int btf_str_mark_as_used(__u32 *str_off_ptr, void *ctx)
3128 {
3129 struct btf_str_ptrs *strs;
3130 struct btf_str_ptr *s;
3131
3132 if (*str_off_ptr == 0)
3133 return 0;
3134
3135 strs = ctx;
3136 s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt,
3137 sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp);
3138 if (!s)
3139 return -EINVAL;
3140 s->used = true;
3141 return 0;
3142 }
3143
btf_str_remap_offset(__u32 * str_off_ptr,void * ctx)3144 static int btf_str_remap_offset(__u32 *str_off_ptr, void *ctx)
3145 {
3146 struct btf_str_ptrs *strs;
3147 struct btf_str_ptr *s;
3148
3149 if (*str_off_ptr == 0)
3150 return 0;
3151
3152 strs = ctx;
3153 s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt,
3154 sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp);
3155 if (!s)
3156 return -EINVAL;
3157 *str_off_ptr = s->new_off;
3158 return 0;
3159 }
3160
3161 /*
3162 * Dedup string and filter out those that are not referenced from either .BTF
3163 * or .BTF.ext (if provided) sections.
3164 *
3165 * This is done by building index of all strings in BTF's string section,
3166 * then iterating over all entities that can reference strings (e.g., type
3167 * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3168 * strings as used. After that all used strings are deduped and compacted into
3169 * sequential blob of memory and new offsets are calculated. Then all the string
3170 * references are iterated again and rewritten using new offsets.
3171 */
btf_dedup_strings(struct btf_dedup * d)3172 static int btf_dedup_strings(struct btf_dedup *d)
3173 {
3174 char *start = d->btf->strs_data;
3175 char *end = start + d->btf->hdr->str_len;
3176 char *p = start, *tmp_strs = NULL;
3177 struct btf_str_ptrs strs = {
3178 .cnt = 0,
3179 .cap = 0,
3180 .ptrs = NULL,
3181 .data = start,
3182 };
3183 int i, j, err = 0, grp_idx;
3184 bool grp_used;
3185
3186 if (d->btf->strs_deduped)
3187 return 0;
3188
3189 /* build index of all strings */
3190 while (p < end) {
3191 if (strs.cnt + 1 > strs.cap) {
3192 struct btf_str_ptr *new_ptrs;
3193
3194 strs.cap += max(strs.cnt / 2, 16U);
3195 new_ptrs = libbpf_reallocarray(strs.ptrs, strs.cap, sizeof(strs.ptrs[0]));
3196 if (!new_ptrs) {
3197 err = -ENOMEM;
3198 goto done;
3199 }
3200 strs.ptrs = new_ptrs;
3201 }
3202
3203 strs.ptrs[strs.cnt].str = p;
3204 strs.ptrs[strs.cnt].used = false;
3205
3206 p += strlen(p) + 1;
3207 strs.cnt++;
3208 }
3209
3210 /* temporary storage for deduplicated strings */
3211 tmp_strs = malloc(d->btf->hdr->str_len);
3212 if (!tmp_strs) {
3213 err = -ENOMEM;
3214 goto done;
3215 }
3216
3217 /* mark all used strings */
3218 strs.ptrs[0].used = true;
3219 err = btf_for_each_str_off(d, btf_str_mark_as_used, &strs);
3220 if (err)
3221 goto done;
3222
3223 /* sort strings by context, so that we can identify duplicates */
3224 qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_content);
3225
3226 /*
3227 * iterate groups of equal strings and if any instance in a group was
3228 * referenced, emit single instance and remember new offset
3229 */
3230 p = tmp_strs;
3231 grp_idx = 0;
3232 grp_used = strs.ptrs[0].used;
3233 /* iterate past end to avoid code duplication after loop */
3234 for (i = 1; i <= strs.cnt; i++) {
3235 /*
3236 * when i == strs.cnt, we want to skip string comparison and go
3237 * straight to handling last group of strings (otherwise we'd
3238 * need to handle last group after the loop w/ duplicated code)
3239 */
3240 if (i < strs.cnt &&
3241 !strcmp(strs.ptrs[i].str, strs.ptrs[grp_idx].str)) {
3242 grp_used = grp_used || strs.ptrs[i].used;
3243 continue;
3244 }
3245
3246 /*
3247 * this check would have been required after the loop to handle
3248 * last group of strings, but due to <= condition in a loop
3249 * we avoid that duplication
3250 */
3251 if (grp_used) {
3252 int new_off = p - tmp_strs;
3253 __u32 len = strlen(strs.ptrs[grp_idx].str);
3254
3255 memmove(p, strs.ptrs[grp_idx].str, len + 1);
3256 for (j = grp_idx; j < i; j++)
3257 strs.ptrs[j].new_off = new_off;
3258 p += len + 1;
3259 }
3260
3261 if (i < strs.cnt) {
3262 grp_idx = i;
3263 grp_used = strs.ptrs[i].used;
3264 }
3265 }
3266
3267 /* replace original strings with deduped ones */
3268 d->btf->hdr->str_len = p - tmp_strs;
3269 memmove(start, tmp_strs, d->btf->hdr->str_len);
3270 end = start + d->btf->hdr->str_len;
3271
3272 /* restore original order for further binary search lookups */
3273 qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_offset);
3274
3275 /* remap string offsets */
3276 err = btf_for_each_str_off(d, btf_str_remap_offset, &strs);
3277 if (err)
3278 goto done;
3279
3280 d->btf->hdr->str_len = end - start;
3281 d->btf->strs_deduped = true;
3282
3283 done:
3284 free(tmp_strs);
3285 free(strs.ptrs);
3286 return err;
3287 }
3288
btf_hash_common(struct btf_type * t)3289 static long btf_hash_common(struct btf_type *t)
3290 {
3291 long h;
3292
3293 h = hash_combine(0, t->name_off);
3294 h = hash_combine(h, t->info);
3295 h = hash_combine(h, t->size);
3296 return h;
3297 }
3298
btf_equal_common(struct btf_type * t1,struct btf_type * t2)3299 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3300 {
3301 return t1->name_off == t2->name_off &&
3302 t1->info == t2->info &&
3303 t1->size == t2->size;
3304 }
3305
3306 /* Calculate type signature hash of INT. */
btf_hash_int(struct btf_type * t)3307 static long btf_hash_int(struct btf_type *t)
3308 {
3309 __u32 info = *(__u32 *)(t + 1);
3310 long h;
3311
3312 h = btf_hash_common(t);
3313 h = hash_combine(h, info);
3314 return h;
3315 }
3316
3317 /* Check structural equality of two INTs. */
btf_equal_int(struct btf_type * t1,struct btf_type * t2)3318 static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2)
3319 {
3320 __u32 info1, info2;
3321
3322 if (!btf_equal_common(t1, t2))
3323 return false;
3324 info1 = *(__u32 *)(t1 + 1);
3325 info2 = *(__u32 *)(t2 + 1);
3326 return info1 == info2;
3327 }
3328
3329 /* Calculate type signature hash of ENUM. */
btf_hash_enum(struct btf_type * t)3330 static long btf_hash_enum(struct btf_type *t)
3331 {
3332 long h;
3333
3334 /* don't hash vlen and enum members to support enum fwd resolving */
3335 h = hash_combine(0, t->name_off);
3336 h = hash_combine(h, t->info & ~0xffff);
3337 h = hash_combine(h, t->size);
3338 return h;
3339 }
3340
3341 /* Check structural equality of two ENUMs. */
btf_equal_enum(struct btf_type * t1,struct btf_type * t2)3342 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3343 {
3344 const struct btf_enum *m1, *m2;
3345 __u16 vlen;
3346 int i;
3347
3348 if (!btf_equal_common(t1, t2))
3349 return false;
3350
3351 vlen = btf_vlen(t1);
3352 m1 = btf_enum(t1);
3353 m2 = btf_enum(t2);
3354 for (i = 0; i < vlen; i++) {
3355 if (m1->name_off != m2->name_off || m1->val != m2->val)
3356 return false;
3357 m1++;
3358 m2++;
3359 }
3360 return true;
3361 }
3362
btf_is_enum_fwd(struct btf_type * t)3363 static inline bool btf_is_enum_fwd(struct btf_type *t)
3364 {
3365 return btf_is_enum(t) && btf_vlen(t) == 0;
3366 }
3367
btf_compat_enum(struct btf_type * t1,struct btf_type * t2)3368 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
3369 {
3370 if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3371 return btf_equal_enum(t1, t2);
3372 /* ignore vlen when comparing */
3373 return t1->name_off == t2->name_off &&
3374 (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
3375 t1->size == t2->size;
3376 }
3377
3378 /*
3379 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3380 * as referenced type IDs equivalence is established separately during type
3381 * graph equivalence check algorithm.
3382 */
btf_hash_struct(struct btf_type * t)3383 static long btf_hash_struct(struct btf_type *t)
3384 {
3385 const struct btf_member *member = btf_members(t);
3386 __u32 vlen = btf_vlen(t);
3387 long h = btf_hash_common(t);
3388 int i;
3389
3390 for (i = 0; i < vlen; i++) {
3391 h = hash_combine(h, member->name_off);
3392 h = hash_combine(h, member->offset);
3393 /* no hashing of referenced type ID, it can be unresolved yet */
3394 member++;
3395 }
3396 return h;
3397 }
3398
3399 /*
3400 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3401 * IDs. This check is performed during type graph equivalence check and
3402 * referenced types equivalence is checked separately.
3403 */
btf_shallow_equal_struct(struct btf_type * t1,struct btf_type * t2)3404 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
3405 {
3406 const struct btf_member *m1, *m2;
3407 __u16 vlen;
3408 int i;
3409
3410 if (!btf_equal_common(t1, t2))
3411 return false;
3412
3413 vlen = btf_vlen(t1);
3414 m1 = btf_members(t1);
3415 m2 = btf_members(t2);
3416 for (i = 0; i < vlen; i++) {
3417 if (m1->name_off != m2->name_off || m1->offset != m2->offset)
3418 return false;
3419 m1++;
3420 m2++;
3421 }
3422 return true;
3423 }
3424
3425 /*
3426 * Calculate type signature hash of ARRAY, including referenced type IDs,
3427 * under assumption that they were already resolved to canonical type IDs and
3428 * are not going to change.
3429 */
btf_hash_array(struct btf_type * t)3430 static long btf_hash_array(struct btf_type *t)
3431 {
3432 const struct btf_array *info = btf_array(t);
3433 long h = btf_hash_common(t);
3434
3435 h = hash_combine(h, info->type);
3436 h = hash_combine(h, info->index_type);
3437 h = hash_combine(h, info->nelems);
3438 return h;
3439 }
3440
3441 /*
3442 * Check exact equality of two ARRAYs, taking into account referenced
3443 * type IDs, under assumption that they were already resolved to canonical
3444 * type IDs and are not going to change.
3445 * This function is called during reference types deduplication to compare
3446 * ARRAY to potential canonical representative.
3447 */
btf_equal_array(struct btf_type * t1,struct btf_type * t2)3448 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
3449 {
3450 const struct btf_array *info1, *info2;
3451
3452 if (!btf_equal_common(t1, t2))
3453 return false;
3454
3455 info1 = btf_array(t1);
3456 info2 = btf_array(t2);
3457 return info1->type == info2->type &&
3458 info1->index_type == info2->index_type &&
3459 info1->nelems == info2->nelems;
3460 }
3461
3462 /*
3463 * Check structural compatibility of two ARRAYs, ignoring referenced type
3464 * IDs. This check is performed during type graph equivalence check and
3465 * referenced types equivalence is checked separately.
3466 */
btf_compat_array(struct btf_type * t1,struct btf_type * t2)3467 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
3468 {
3469 if (!btf_equal_common(t1, t2))
3470 return false;
3471
3472 return btf_array(t1)->nelems == btf_array(t2)->nelems;
3473 }
3474
3475 /*
3476 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
3477 * under assumption that they were already resolved to canonical type IDs and
3478 * are not going to change.
3479 */
btf_hash_fnproto(struct btf_type * t)3480 static long btf_hash_fnproto(struct btf_type *t)
3481 {
3482 const struct btf_param *member = btf_params(t);
3483 __u16 vlen = btf_vlen(t);
3484 long h = btf_hash_common(t);
3485 int i;
3486
3487 for (i = 0; i < vlen; i++) {
3488 h = hash_combine(h, member->name_off);
3489 h = hash_combine(h, member->type);
3490 member++;
3491 }
3492 return h;
3493 }
3494
3495 /*
3496 * Check exact equality of two FUNC_PROTOs, taking into account referenced
3497 * type IDs, under assumption that they were already resolved to canonical
3498 * type IDs and are not going to change.
3499 * This function is called during reference types deduplication to compare
3500 * FUNC_PROTO to potential canonical representative.
3501 */
btf_equal_fnproto(struct btf_type * t1,struct btf_type * t2)3502 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
3503 {
3504 const struct btf_param *m1, *m2;
3505 __u16 vlen;
3506 int i;
3507
3508 if (!btf_equal_common(t1, t2))
3509 return false;
3510
3511 vlen = btf_vlen(t1);
3512 m1 = btf_params(t1);
3513 m2 = btf_params(t2);
3514 for (i = 0; i < vlen; i++) {
3515 if (m1->name_off != m2->name_off || m1->type != m2->type)
3516 return false;
3517 m1++;
3518 m2++;
3519 }
3520 return true;
3521 }
3522
3523 /*
3524 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3525 * IDs. This check is performed during type graph equivalence check and
3526 * referenced types equivalence is checked separately.
3527 */
btf_compat_fnproto(struct btf_type * t1,struct btf_type * t2)3528 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
3529 {
3530 const struct btf_param *m1, *m2;
3531 __u16 vlen;
3532 int i;
3533
3534 /* skip return type ID */
3535 if (t1->name_off != t2->name_off || t1->info != t2->info)
3536 return false;
3537
3538 vlen = btf_vlen(t1);
3539 m1 = btf_params(t1);
3540 m2 = btf_params(t2);
3541 for (i = 0; i < vlen; i++) {
3542 if (m1->name_off != m2->name_off)
3543 return false;
3544 m1++;
3545 m2++;
3546 }
3547 return true;
3548 }
3549
3550 /*
3551 * Deduplicate primitive types, that can't reference other types, by calculating
3552 * their type signature hash and comparing them with any possible canonical
3553 * candidate. If no canonical candidate matches, type itself is marked as
3554 * canonical and is added into `btf_dedup->dedup_table` as another candidate.
3555 */
btf_dedup_prim_type(struct btf_dedup * d,__u32 type_id)3556 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
3557 {
3558 struct btf_type *t = btf_type_by_id(d->btf, type_id);
3559 struct hashmap_entry *hash_entry;
3560 struct btf_type *cand;
3561 /* if we don't find equivalent type, then we are canonical */
3562 __u32 new_id = type_id;
3563 __u32 cand_id;
3564 long h;
3565
3566 switch (btf_kind(t)) {
3567 case BTF_KIND_CONST:
3568 case BTF_KIND_VOLATILE:
3569 case BTF_KIND_RESTRICT:
3570 case BTF_KIND_PTR:
3571 case BTF_KIND_TYPEDEF:
3572 case BTF_KIND_ARRAY:
3573 case BTF_KIND_STRUCT:
3574 case BTF_KIND_UNION:
3575 case BTF_KIND_FUNC:
3576 case BTF_KIND_FUNC_PROTO:
3577 case BTF_KIND_VAR:
3578 case BTF_KIND_DATASEC:
3579 return 0;
3580
3581 case BTF_KIND_INT:
3582 h = btf_hash_int(t);
3583 for_each_dedup_cand(d, hash_entry, h) {
3584 cand_id = (__u32)(long)hash_entry->value;
3585 cand = btf_type_by_id(d->btf, cand_id);
3586 if (btf_equal_int(t, cand)) {
3587 new_id = cand_id;
3588 break;
3589 }
3590 }
3591 break;
3592
3593 case BTF_KIND_ENUM:
3594 h = btf_hash_enum(t);
3595 for_each_dedup_cand(d, hash_entry, h) {
3596 cand_id = (__u32)(long)hash_entry->value;
3597 cand = btf_type_by_id(d->btf, cand_id);
3598 if (btf_equal_enum(t, cand)) {
3599 new_id = cand_id;
3600 break;
3601 }
3602 if (d->opts.dont_resolve_fwds)
3603 continue;
3604 if (btf_compat_enum(t, cand)) {
3605 if (btf_is_enum_fwd(t)) {
3606 /* resolve fwd to full enum */
3607 new_id = cand_id;
3608 break;
3609 }
3610 /* resolve canonical enum fwd to full enum */
3611 d->map[cand_id] = type_id;
3612 }
3613 }
3614 break;
3615
3616 case BTF_KIND_FWD:
3617 h = btf_hash_common(t);
3618 for_each_dedup_cand(d, hash_entry, h) {
3619 cand_id = (__u32)(long)hash_entry->value;
3620 cand = btf_type_by_id(d->btf, cand_id);
3621 if (btf_equal_common(t, cand)) {
3622 new_id = cand_id;
3623 break;
3624 }
3625 }
3626 break;
3627
3628 default:
3629 return -EINVAL;
3630 }
3631
3632 d->map[type_id] = new_id;
3633 if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
3634 return -ENOMEM;
3635
3636 return 0;
3637 }
3638
btf_dedup_prim_types(struct btf_dedup * d)3639 static int btf_dedup_prim_types(struct btf_dedup *d)
3640 {
3641 int i, err;
3642
3643 for (i = 1; i <= d->btf->nr_types; i++) {
3644 err = btf_dedup_prim_type(d, i);
3645 if (err)
3646 return err;
3647 }
3648 return 0;
3649 }
3650
3651 /*
3652 * Check whether type is already mapped into canonical one (could be to itself).
3653 */
is_type_mapped(struct btf_dedup * d,uint32_t type_id)3654 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
3655 {
3656 return d->map[type_id] <= BTF_MAX_NR_TYPES;
3657 }
3658
3659 /*
3660 * Resolve type ID into its canonical type ID, if any; otherwise return original
3661 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
3662 * STRUCT/UNION link and resolve it into canonical type ID as well.
3663 */
resolve_type_id(struct btf_dedup * d,__u32 type_id)3664 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
3665 {
3666 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3667 type_id = d->map[type_id];
3668 return type_id;
3669 }
3670
3671 /*
3672 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
3673 * type ID.
3674 */
resolve_fwd_id(struct btf_dedup * d,uint32_t type_id)3675 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
3676 {
3677 __u32 orig_type_id = type_id;
3678
3679 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3680 return type_id;
3681
3682 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3683 type_id = d->map[type_id];
3684
3685 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3686 return type_id;
3687
3688 return orig_type_id;
3689 }
3690
3691
btf_fwd_kind(struct btf_type * t)3692 static inline __u16 btf_fwd_kind(struct btf_type *t)
3693 {
3694 return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
3695 }
3696
3697 /*
3698 * Check equivalence of BTF type graph formed by candidate struct/union (we'll
3699 * call it "candidate graph" in this description for brevity) to a type graph
3700 * formed by (potential) canonical struct/union ("canonical graph" for brevity
3701 * here, though keep in mind that not all types in canonical graph are
3702 * necessarily canonical representatives themselves, some of them might be
3703 * duplicates or its uniqueness might not have been established yet).
3704 * Returns:
3705 * - >0, if type graphs are equivalent;
3706 * - 0, if not equivalent;
3707 * - <0, on error.
3708 *
3709 * Algorithm performs side-by-side DFS traversal of both type graphs and checks
3710 * equivalence of BTF types at each step. If at any point BTF types in candidate
3711 * and canonical graphs are not compatible structurally, whole graphs are
3712 * incompatible. If types are structurally equivalent (i.e., all information
3713 * except referenced type IDs is exactly the same), a mapping from `canon_id` to
3714 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
3715 * If a type references other types, then those referenced types are checked
3716 * for equivalence recursively.
3717 *
3718 * During DFS traversal, if we find that for current `canon_id` type we
3719 * already have some mapping in hypothetical map, we check for two possible
3720 * situations:
3721 * - `canon_id` is mapped to exactly the same type as `cand_id`. This will
3722 * happen when type graphs have cycles. In this case we assume those two
3723 * types are equivalent.
3724 * - `canon_id` is mapped to different type. This is contradiction in our
3725 * hypothetical mapping, because same graph in canonical graph corresponds
3726 * to two different types in candidate graph, which for equivalent type
3727 * graphs shouldn't happen. This condition terminates equivalence check
3728 * with negative result.
3729 *
3730 * If type graphs traversal exhausts types to check and find no contradiction,
3731 * then type graphs are equivalent.
3732 *
3733 * When checking types for equivalence, there is one special case: FWD types.
3734 * If FWD type resolution is allowed and one of the types (either from canonical
3735 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
3736 * flag) and their names match, hypothetical mapping is updated to point from
3737 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
3738 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
3739 *
3740 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
3741 * if there are two exactly named (or anonymous) structs/unions that are
3742 * compatible structurally, one of which has FWD field, while other is concrete
3743 * STRUCT/UNION, but according to C sources they are different structs/unions
3744 * that are referencing different types with the same name. This is extremely
3745 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
3746 * this logic is causing problems.
3747 *
3748 * Doing FWD resolution means that both candidate and/or canonical graphs can
3749 * consists of portions of the graph that come from multiple compilation units.
3750 * This is due to the fact that types within single compilation unit are always
3751 * deduplicated and FWDs are already resolved, if referenced struct/union
3752 * definiton is available. So, if we had unresolved FWD and found corresponding
3753 * STRUCT/UNION, they will be from different compilation units. This
3754 * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
3755 * type graph will likely have at least two different BTF types that describe
3756 * same type (e.g., most probably there will be two different BTF types for the
3757 * same 'int' primitive type) and could even have "overlapping" parts of type
3758 * graph that describe same subset of types.
3759 *
3760 * This in turn means that our assumption that each type in canonical graph
3761 * must correspond to exactly one type in candidate graph might not hold
3762 * anymore and will make it harder to detect contradictions using hypothetical
3763 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
3764 * resolution only in canonical graph. FWDs in candidate graphs are never
3765 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
3766 * that can occur:
3767 * - Both types in canonical and candidate graphs are FWDs. If they are
3768 * structurally equivalent, then they can either be both resolved to the
3769 * same STRUCT/UNION or not resolved at all. In both cases they are
3770 * equivalent and there is no need to resolve FWD on candidate side.
3771 * - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
3772 * so nothing to resolve as well, algorithm will check equivalence anyway.
3773 * - Type in canonical graph is FWD, while type in candidate is concrete
3774 * STRUCT/UNION. In this case candidate graph comes from single compilation
3775 * unit, so there is exactly one BTF type for each unique C type. After
3776 * resolving FWD into STRUCT/UNION, there might be more than one BTF type
3777 * in canonical graph mapping to single BTF type in candidate graph, but
3778 * because hypothetical mapping maps from canonical to candidate types, it's
3779 * alright, and we still maintain the property of having single `canon_id`
3780 * mapping to single `cand_id` (there could be two different `canon_id`
3781 * mapped to the same `cand_id`, but it's not contradictory).
3782 * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
3783 * graph is FWD. In this case we are just going to check compatibility of
3784 * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
3785 * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
3786 * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
3787 * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
3788 * canonical graph.
3789 */
btf_dedup_is_equiv(struct btf_dedup * d,__u32 cand_id,__u32 canon_id)3790 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
3791 __u32 canon_id)
3792 {
3793 struct btf_type *cand_type;
3794 struct btf_type *canon_type;
3795 __u32 hypot_type_id;
3796 __u16 cand_kind;
3797 __u16 canon_kind;
3798 int i, eq;
3799
3800 /* if both resolve to the same canonical, they must be equivalent */
3801 if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
3802 return 1;
3803
3804 canon_id = resolve_fwd_id(d, canon_id);
3805
3806 hypot_type_id = d->hypot_map[canon_id];
3807 if (hypot_type_id <= BTF_MAX_NR_TYPES)
3808 return hypot_type_id == cand_id;
3809
3810 if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
3811 return -ENOMEM;
3812
3813 cand_type = btf_type_by_id(d->btf, cand_id);
3814 canon_type = btf_type_by_id(d->btf, canon_id);
3815 cand_kind = btf_kind(cand_type);
3816 canon_kind = btf_kind(canon_type);
3817
3818 if (cand_type->name_off != canon_type->name_off)
3819 return 0;
3820
3821 /* FWD <--> STRUCT/UNION equivalence check, if enabled */
3822 if (!d->opts.dont_resolve_fwds
3823 && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
3824 && cand_kind != canon_kind) {
3825 __u16 real_kind;
3826 __u16 fwd_kind;
3827
3828 if (cand_kind == BTF_KIND_FWD) {
3829 real_kind = canon_kind;
3830 fwd_kind = btf_fwd_kind(cand_type);
3831 } else {
3832 real_kind = cand_kind;
3833 fwd_kind = btf_fwd_kind(canon_type);
3834 }
3835 return fwd_kind == real_kind;
3836 }
3837
3838 if (cand_kind != canon_kind)
3839 return 0;
3840
3841 switch (cand_kind) {
3842 case BTF_KIND_INT:
3843 return btf_equal_int(cand_type, canon_type);
3844
3845 case BTF_KIND_ENUM:
3846 if (d->opts.dont_resolve_fwds)
3847 return btf_equal_enum(cand_type, canon_type);
3848 else
3849 return btf_compat_enum(cand_type, canon_type);
3850
3851 case BTF_KIND_FWD:
3852 return btf_equal_common(cand_type, canon_type);
3853
3854 case BTF_KIND_CONST:
3855 case BTF_KIND_VOLATILE:
3856 case BTF_KIND_RESTRICT:
3857 case BTF_KIND_PTR:
3858 case BTF_KIND_TYPEDEF:
3859 case BTF_KIND_FUNC:
3860 if (cand_type->info != canon_type->info)
3861 return 0;
3862 return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
3863
3864 case BTF_KIND_ARRAY: {
3865 const struct btf_array *cand_arr, *canon_arr;
3866
3867 if (!btf_compat_array(cand_type, canon_type))
3868 return 0;
3869 cand_arr = btf_array(cand_type);
3870 canon_arr = btf_array(canon_type);
3871 eq = btf_dedup_is_equiv(d,
3872 cand_arr->index_type, canon_arr->index_type);
3873 if (eq <= 0)
3874 return eq;
3875 return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
3876 }
3877
3878 case BTF_KIND_STRUCT:
3879 case BTF_KIND_UNION: {
3880 const struct btf_member *cand_m, *canon_m;
3881 __u16 vlen;
3882
3883 if (!btf_shallow_equal_struct(cand_type, canon_type))
3884 return 0;
3885 vlen = btf_vlen(cand_type);
3886 cand_m = btf_members(cand_type);
3887 canon_m = btf_members(canon_type);
3888 for (i = 0; i < vlen; i++) {
3889 eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
3890 if (eq <= 0)
3891 return eq;
3892 cand_m++;
3893 canon_m++;
3894 }
3895
3896 return 1;
3897 }
3898
3899 case BTF_KIND_FUNC_PROTO: {
3900 const struct btf_param *cand_p, *canon_p;
3901 __u16 vlen;
3902
3903 if (!btf_compat_fnproto(cand_type, canon_type))
3904 return 0;
3905 eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
3906 if (eq <= 0)
3907 return eq;
3908 vlen = btf_vlen(cand_type);
3909 cand_p = btf_params(cand_type);
3910 canon_p = btf_params(canon_type);
3911 for (i = 0; i < vlen; i++) {
3912 eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
3913 if (eq <= 0)
3914 return eq;
3915 cand_p++;
3916 canon_p++;
3917 }
3918 return 1;
3919 }
3920
3921 default:
3922 return -EINVAL;
3923 }
3924 return 0;
3925 }
3926
3927 /*
3928 * Use hypothetical mapping, produced by successful type graph equivalence
3929 * check, to augment existing struct/union canonical mapping, where possible.
3930 *
3931 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
3932 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
3933 * it doesn't matter if FWD type was part of canonical graph or candidate one,
3934 * we are recording the mapping anyway. As opposed to carefulness required
3935 * for struct/union correspondence mapping (described below), for FWD resolution
3936 * it's not important, as by the time that FWD type (reference type) will be
3937 * deduplicated all structs/unions will be deduped already anyway.
3938 *
3939 * Recording STRUCT/UNION mapping is purely a performance optimization and is
3940 * not required for correctness. It needs to be done carefully to ensure that
3941 * struct/union from candidate's type graph is not mapped into corresponding
3942 * struct/union from canonical type graph that itself hasn't been resolved into
3943 * canonical representative. The only guarantee we have is that canonical
3944 * struct/union was determined as canonical and that won't change. But any
3945 * types referenced through that struct/union fields could have been not yet
3946 * resolved, so in case like that it's too early to establish any kind of
3947 * correspondence between structs/unions.
3948 *
3949 * No canonical correspondence is derived for primitive types (they are already
3950 * deduplicated completely already anyway) or reference types (they rely on
3951 * stability of struct/union canonical relationship for equivalence checks).
3952 */
btf_dedup_merge_hypot_map(struct btf_dedup * d)3953 static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
3954 {
3955 __u32 cand_type_id, targ_type_id;
3956 __u16 t_kind, c_kind;
3957 __u32 t_id, c_id;
3958 int i;
3959
3960 for (i = 0; i < d->hypot_cnt; i++) {
3961 cand_type_id = d->hypot_list[i];
3962 targ_type_id = d->hypot_map[cand_type_id];
3963 t_id = resolve_type_id(d, targ_type_id);
3964 c_id = resolve_type_id(d, cand_type_id);
3965 t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
3966 c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
3967 /*
3968 * Resolve FWD into STRUCT/UNION.
3969 * It's ok to resolve FWD into STRUCT/UNION that's not yet
3970 * mapped to canonical representative (as opposed to
3971 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
3972 * eventually that struct is going to be mapped and all resolved
3973 * FWDs will automatically resolve to correct canonical
3974 * representative. This will happen before ref type deduping,
3975 * which critically depends on stability of these mapping. This
3976 * stability is not a requirement for STRUCT/UNION equivalence
3977 * checks, though.
3978 */
3979 if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
3980 d->map[c_id] = t_id;
3981 else if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
3982 d->map[t_id] = c_id;
3983
3984 if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
3985 c_kind != BTF_KIND_FWD &&
3986 is_type_mapped(d, c_id) &&
3987 !is_type_mapped(d, t_id)) {
3988 /*
3989 * as a perf optimization, we can map struct/union
3990 * that's part of type graph we just verified for
3991 * equivalence. We can do that for struct/union that has
3992 * canonical representative only, though.
3993 */
3994 d->map[t_id] = c_id;
3995 }
3996 }
3997 }
3998
3999 /*
4000 * Deduplicate struct/union types.
4001 *
4002 * For each struct/union type its type signature hash is calculated, taking
4003 * into account type's name, size, number, order and names of fields, but
4004 * ignoring type ID's referenced from fields, because they might not be deduped
4005 * completely until after reference types deduplication phase. This type hash
4006 * is used to iterate over all potential canonical types, sharing same hash.
4007 * For each canonical candidate we check whether type graphs that they form
4008 * (through referenced types in fields and so on) are equivalent using algorithm
4009 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4010 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4011 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4012 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4013 * potentially map other structs/unions to their canonical representatives,
4014 * if such relationship hasn't yet been established. This speeds up algorithm
4015 * by eliminating some of the duplicate work.
4016 *
4017 * If no matching canonical representative was found, struct/union is marked
4018 * as canonical for itself and is added into btf_dedup->dedup_table hash map
4019 * for further look ups.
4020 */
btf_dedup_struct_type(struct btf_dedup * d,__u32 type_id)4021 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4022 {
4023 struct btf_type *cand_type, *t;
4024 struct hashmap_entry *hash_entry;
4025 /* if we don't find equivalent type, then we are canonical */
4026 __u32 new_id = type_id;
4027 __u16 kind;
4028 long h;
4029
4030 /* already deduped or is in process of deduping (loop detected) */
4031 if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4032 return 0;
4033
4034 t = btf_type_by_id(d->btf, type_id);
4035 kind = btf_kind(t);
4036
4037 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4038 return 0;
4039
4040 h = btf_hash_struct(t);
4041 for_each_dedup_cand(d, hash_entry, h) {
4042 __u32 cand_id = (__u32)(long)hash_entry->value;
4043 int eq;
4044
4045 /*
4046 * Even though btf_dedup_is_equiv() checks for
4047 * btf_shallow_equal_struct() internally when checking two
4048 * structs (unions) for equivalence, we need to guard here
4049 * from picking matching FWD type as a dedup candidate.
4050 * This can happen due to hash collision. In such case just
4051 * relying on btf_dedup_is_equiv() would lead to potentially
4052 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4053 * FWD and compatible STRUCT/UNION are considered equivalent.
4054 */
4055 cand_type = btf_type_by_id(d->btf, cand_id);
4056 if (!btf_shallow_equal_struct(t, cand_type))
4057 continue;
4058
4059 btf_dedup_clear_hypot_map(d);
4060 eq = btf_dedup_is_equiv(d, type_id, cand_id);
4061 if (eq < 0)
4062 return eq;
4063 if (!eq)
4064 continue;
4065 new_id = cand_id;
4066 btf_dedup_merge_hypot_map(d);
4067 break;
4068 }
4069
4070 d->map[type_id] = new_id;
4071 if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4072 return -ENOMEM;
4073
4074 return 0;
4075 }
4076
btf_dedup_struct_types(struct btf_dedup * d)4077 static int btf_dedup_struct_types(struct btf_dedup *d)
4078 {
4079 int i, err;
4080
4081 for (i = 1; i <= d->btf->nr_types; i++) {
4082 err = btf_dedup_struct_type(d, i);
4083 if (err)
4084 return err;
4085 }
4086 return 0;
4087 }
4088
4089 /*
4090 * Deduplicate reference type.
4091 *
4092 * Once all primitive and struct/union types got deduplicated, we can easily
4093 * deduplicate all other (reference) BTF types. This is done in two steps:
4094 *
4095 * 1. Resolve all referenced type IDs into their canonical type IDs. This
4096 * resolution can be done either immediately for primitive or struct/union types
4097 * (because they were deduped in previous two phases) or recursively for
4098 * reference types. Recursion will always terminate at either primitive or
4099 * struct/union type, at which point we can "unwind" chain of reference types
4100 * one by one. There is no danger of encountering cycles because in C type
4101 * system the only way to form type cycle is through struct/union, so any chain
4102 * of reference types, even those taking part in a type cycle, will inevitably
4103 * reach struct/union at some point.
4104 *
4105 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4106 * becomes "stable", in the sense that no further deduplication will cause
4107 * any changes to it. With that, it's now possible to calculate type's signature
4108 * hash (this time taking into account referenced type IDs) and loop over all
4109 * potential canonical representatives. If no match was found, current type
4110 * will become canonical representative of itself and will be added into
4111 * btf_dedup->dedup_table as another possible canonical representative.
4112 */
btf_dedup_ref_type(struct btf_dedup * d,__u32 type_id)4113 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4114 {
4115 struct hashmap_entry *hash_entry;
4116 __u32 new_id = type_id, cand_id;
4117 struct btf_type *t, *cand;
4118 /* if we don't find equivalent type, then we are representative type */
4119 int ref_type_id;
4120 long h;
4121
4122 if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4123 return -ELOOP;
4124 if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4125 return resolve_type_id(d, type_id);
4126
4127 t = btf_type_by_id(d->btf, type_id);
4128 d->map[type_id] = BTF_IN_PROGRESS_ID;
4129
4130 switch (btf_kind(t)) {
4131 case BTF_KIND_CONST:
4132 case BTF_KIND_VOLATILE:
4133 case BTF_KIND_RESTRICT:
4134 case BTF_KIND_PTR:
4135 case BTF_KIND_TYPEDEF:
4136 case BTF_KIND_FUNC:
4137 ref_type_id = btf_dedup_ref_type(d, t->type);
4138 if (ref_type_id < 0)
4139 return ref_type_id;
4140 t->type = ref_type_id;
4141
4142 h = btf_hash_common(t);
4143 for_each_dedup_cand(d, hash_entry, h) {
4144 cand_id = (__u32)(long)hash_entry->value;
4145 cand = btf_type_by_id(d->btf, cand_id);
4146 if (btf_equal_common(t, cand)) {
4147 new_id = cand_id;
4148 break;
4149 }
4150 }
4151 break;
4152
4153 case BTF_KIND_ARRAY: {
4154 struct btf_array *info = btf_array(t);
4155
4156 ref_type_id = btf_dedup_ref_type(d, info->type);
4157 if (ref_type_id < 0)
4158 return ref_type_id;
4159 info->type = ref_type_id;
4160
4161 ref_type_id = btf_dedup_ref_type(d, info->index_type);
4162 if (ref_type_id < 0)
4163 return ref_type_id;
4164 info->index_type = ref_type_id;
4165
4166 h = btf_hash_array(t);
4167 for_each_dedup_cand(d, hash_entry, h) {
4168 cand_id = (__u32)(long)hash_entry->value;
4169 cand = btf_type_by_id(d->btf, cand_id);
4170 if (btf_equal_array(t, cand)) {
4171 new_id = cand_id;
4172 break;
4173 }
4174 }
4175 break;
4176 }
4177
4178 case BTF_KIND_FUNC_PROTO: {
4179 struct btf_param *param;
4180 __u16 vlen;
4181 int i;
4182
4183 ref_type_id = btf_dedup_ref_type(d, t->type);
4184 if (ref_type_id < 0)
4185 return ref_type_id;
4186 t->type = ref_type_id;
4187
4188 vlen = btf_vlen(t);
4189 param = btf_params(t);
4190 for (i = 0; i < vlen; i++) {
4191 ref_type_id = btf_dedup_ref_type(d, param->type);
4192 if (ref_type_id < 0)
4193 return ref_type_id;
4194 param->type = ref_type_id;
4195 param++;
4196 }
4197
4198 h = btf_hash_fnproto(t);
4199 for_each_dedup_cand(d, hash_entry, h) {
4200 cand_id = (__u32)(long)hash_entry->value;
4201 cand = btf_type_by_id(d->btf, cand_id);
4202 if (btf_equal_fnproto(t, cand)) {
4203 new_id = cand_id;
4204 break;
4205 }
4206 }
4207 break;
4208 }
4209
4210 default:
4211 return -EINVAL;
4212 }
4213
4214 d->map[type_id] = new_id;
4215 if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4216 return -ENOMEM;
4217
4218 return new_id;
4219 }
4220
btf_dedup_ref_types(struct btf_dedup * d)4221 static int btf_dedup_ref_types(struct btf_dedup *d)
4222 {
4223 int i, err;
4224
4225 for (i = 1; i <= d->btf->nr_types; i++) {
4226 err = btf_dedup_ref_type(d, i);
4227 if (err < 0)
4228 return err;
4229 }
4230 /* we won't need d->dedup_table anymore */
4231 hashmap__free(d->dedup_table);
4232 d->dedup_table = NULL;
4233 return 0;
4234 }
4235
4236 /*
4237 * Compact types.
4238 *
4239 * After we established for each type its corresponding canonical representative
4240 * type, we now can eliminate types that are not canonical and leave only
4241 * canonical ones layed out sequentially in memory by copying them over
4242 * duplicates. During compaction btf_dedup->hypot_map array is reused to store
4243 * a map from original type ID to a new compacted type ID, which will be used
4244 * during next phase to "fix up" type IDs, referenced from struct/union and
4245 * reference types.
4246 */
btf_dedup_compact_types(struct btf_dedup * d)4247 static int btf_dedup_compact_types(struct btf_dedup *d)
4248 {
4249 __u32 *new_offs;
4250 __u32 next_type_id = 1;
4251 void *p;
4252 int i, len;
4253
4254 /* we are going to reuse hypot_map to store compaction remapping */
4255 d->hypot_map[0] = 0;
4256 for (i = 1; i <= d->btf->nr_types; i++)
4257 d->hypot_map[i] = BTF_UNPROCESSED_ID;
4258
4259 p = d->btf->types_data;
4260
4261 for (i = 1; i <= d->btf->nr_types; i++) {
4262 if (d->map[i] != i)
4263 continue;
4264
4265 len = btf_type_size(btf__type_by_id(d->btf, i));
4266 if (len < 0)
4267 return len;
4268
4269 memmove(p, btf__type_by_id(d->btf, i), len);
4270 d->hypot_map[i] = next_type_id;
4271 d->btf->type_offs[next_type_id] = p - d->btf->types_data;
4272 p += len;
4273 next_type_id++;
4274 }
4275
4276 /* shrink struct btf's internal types index and update btf_header */
4277 d->btf->nr_types = next_type_id - 1;
4278 d->btf->type_offs_cap = d->btf->nr_types + 1;
4279 d->btf->hdr->type_len = p - d->btf->types_data;
4280 new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
4281 sizeof(*new_offs));
4282 if (!new_offs)
4283 return -ENOMEM;
4284 d->btf->type_offs = new_offs;
4285 d->btf->hdr->str_off = d->btf->hdr->type_len;
4286 d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
4287 return 0;
4288 }
4289
4290 /*
4291 * Figure out final (deduplicated and compacted) type ID for provided original
4292 * `type_id` by first resolving it into corresponding canonical type ID and
4293 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
4294 * which is populated during compaction phase.
4295 */
btf_dedup_remap_type_id(struct btf_dedup * d,__u32 type_id)4296 static int btf_dedup_remap_type_id(struct btf_dedup *d, __u32 type_id)
4297 {
4298 __u32 resolved_type_id, new_type_id;
4299
4300 resolved_type_id = resolve_type_id(d, type_id);
4301 new_type_id = d->hypot_map[resolved_type_id];
4302 if (new_type_id > BTF_MAX_NR_TYPES)
4303 return -EINVAL;
4304 return new_type_id;
4305 }
4306
4307 /*
4308 * Remap referenced type IDs into deduped type IDs.
4309 *
4310 * After BTF types are deduplicated and compacted, their final type IDs may
4311 * differ from original ones. The map from original to a corresponding
4312 * deduped type ID is stored in btf_dedup->hypot_map and is populated during
4313 * compaction phase. During remapping phase we are rewriting all type IDs
4314 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
4315 * their final deduped type IDs.
4316 */
btf_dedup_remap_type(struct btf_dedup * d,__u32 type_id)4317 static int btf_dedup_remap_type(struct btf_dedup *d, __u32 type_id)
4318 {
4319 struct btf_type *t = btf_type_by_id(d->btf, type_id);
4320 int i, r;
4321
4322 switch (btf_kind(t)) {
4323 case BTF_KIND_INT:
4324 case BTF_KIND_ENUM:
4325 break;
4326
4327 case BTF_KIND_FWD:
4328 case BTF_KIND_CONST:
4329 case BTF_KIND_VOLATILE:
4330 case BTF_KIND_RESTRICT:
4331 case BTF_KIND_PTR:
4332 case BTF_KIND_TYPEDEF:
4333 case BTF_KIND_FUNC:
4334 case BTF_KIND_VAR:
4335 r = btf_dedup_remap_type_id(d, t->type);
4336 if (r < 0)
4337 return r;
4338 t->type = r;
4339 break;
4340
4341 case BTF_KIND_ARRAY: {
4342 struct btf_array *arr_info = btf_array(t);
4343
4344 r = btf_dedup_remap_type_id(d, arr_info->type);
4345 if (r < 0)
4346 return r;
4347 arr_info->type = r;
4348 r = btf_dedup_remap_type_id(d, arr_info->index_type);
4349 if (r < 0)
4350 return r;
4351 arr_info->index_type = r;
4352 break;
4353 }
4354
4355 case BTF_KIND_STRUCT:
4356 case BTF_KIND_UNION: {
4357 struct btf_member *member = btf_members(t);
4358 __u16 vlen = btf_vlen(t);
4359
4360 for (i = 0; i < vlen; i++) {
4361 r = btf_dedup_remap_type_id(d, member->type);
4362 if (r < 0)
4363 return r;
4364 member->type = r;
4365 member++;
4366 }
4367 break;
4368 }
4369
4370 case BTF_KIND_FUNC_PROTO: {
4371 struct btf_param *param = btf_params(t);
4372 __u16 vlen = btf_vlen(t);
4373
4374 r = btf_dedup_remap_type_id(d, t->type);
4375 if (r < 0)
4376 return r;
4377 t->type = r;
4378
4379 for (i = 0; i < vlen; i++) {
4380 r = btf_dedup_remap_type_id(d, param->type);
4381 if (r < 0)
4382 return r;
4383 param->type = r;
4384 param++;
4385 }
4386 break;
4387 }
4388
4389 case BTF_KIND_DATASEC: {
4390 struct btf_var_secinfo *var = btf_var_secinfos(t);
4391 __u16 vlen = btf_vlen(t);
4392
4393 for (i = 0; i < vlen; i++) {
4394 r = btf_dedup_remap_type_id(d, var->type);
4395 if (r < 0)
4396 return r;
4397 var->type = r;
4398 var++;
4399 }
4400 break;
4401 }
4402
4403 default:
4404 return -EINVAL;
4405 }
4406
4407 return 0;
4408 }
4409
btf_dedup_remap_types(struct btf_dedup * d)4410 static int btf_dedup_remap_types(struct btf_dedup *d)
4411 {
4412 int i, r;
4413
4414 for (i = 1; i <= d->btf->nr_types; i++) {
4415 r = btf_dedup_remap_type(d, i);
4416 if (r < 0)
4417 return r;
4418 }
4419 return 0;
4420 }
4421
4422 /*
4423 * Probe few well-known locations for vmlinux kernel image and try to load BTF
4424 * data out of it to use for target BTF.
4425 */
libbpf_find_kernel_btf(void)4426 struct btf *libbpf_find_kernel_btf(void)
4427 {
4428 struct {
4429 const char *path_fmt;
4430 bool raw_btf;
4431 } locations[] = {
4432 /* try canonical vmlinux BTF through sysfs first */
4433 { "/sys/kernel/btf/vmlinux", true /* raw BTF */ },
4434 /* fall back to trying to find vmlinux ELF on disk otherwise */
4435 { "/boot/vmlinux-%1$s" },
4436 { "/lib/modules/%1$s/vmlinux-%1$s" },
4437 { "/lib/modules/%1$s/build/vmlinux" },
4438 { "/usr/lib/modules/%1$s/kernel/vmlinux" },
4439 { "/usr/lib/debug/boot/vmlinux-%1$s" },
4440 { "/usr/lib/debug/boot/vmlinux-%1$s.debug" },
4441 { "/usr/lib/debug/lib/modules/%1$s/vmlinux" },
4442 };
4443 char path[PATH_MAX + 1];
4444 struct utsname buf;
4445 struct btf *btf;
4446 int i;
4447
4448 uname(&buf);
4449
4450 for (i = 0; i < ARRAY_SIZE(locations); i++) {
4451 snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release);
4452
4453 if (access(path, R_OK))
4454 continue;
4455
4456 if (locations[i].raw_btf)
4457 btf = btf__parse_raw(path);
4458 else
4459 btf = btf__parse_elf(path, NULL);
4460
4461 pr_debug("loading kernel BTF '%s': %ld\n",
4462 path, IS_ERR(btf) ? PTR_ERR(btf) : 0);
4463 if (IS_ERR(btf))
4464 continue;
4465
4466 return btf;
4467 }
4468
4469 pr_warn("failed to find valid kernel BTF\n");
4470 return ERR_PTR(-ESRCH);
4471 }
4472