• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "misc.h"
14 #include "ctree.h"
15 #include "disk-io.h"
16 #include "transaction.h"
17 #include "locking.h"
18 #include "tree-log.h"
19 #include "inode-map.h"
20 #include "volumes.h"
21 #include "dev-replace.h"
22 #include "qgroup.h"
23 #include "block-group.h"
24 #include "space-info.h"
25 
26 #define BTRFS_ROOT_TRANS_TAG 0
27 
28 /*
29  * Transaction states and transitions
30  *
31  * No running transaction (fs tree blocks are not modified)
32  * |
33  * | To next stage:
34  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
35  * V
36  * Transaction N [[TRANS_STATE_RUNNING]]
37  * |
38  * | New trans handles can be attached to transaction N by calling all
39  * | start_transaction() variants.
40  * |
41  * | To next stage:
42  * |  Call btrfs_commit_transaction() on any trans handle attached to
43  * |  transaction N
44  * V
45  * Transaction N [[TRANS_STATE_COMMIT_START]]
46  * |
47  * | Will wait for previous running transaction to completely finish if there
48  * | is one
49  * |
50  * | Then one of the following happes:
51  * | - Wait for all other trans handle holders to release.
52  * |   The btrfs_commit_transaction() caller will do the commit work.
53  * | - Wait for current transaction to be committed by others.
54  * |   Other btrfs_commit_transaction() caller will do the commit work.
55  * |
56  * | At this stage, only btrfs_join_transaction*() variants can attach
57  * | to this running transaction.
58  * | All other variants will wait for current one to finish and attach to
59  * | transaction N+1.
60  * |
61  * | To next stage:
62  * |  Caller is chosen to commit transaction N, and all other trans handle
63  * |  haven been released.
64  * V
65  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
66  * |
67  * | The heavy lifting transaction work is started.
68  * | From running delayed refs (modifying extent tree) to creating pending
69  * | snapshots, running qgroups.
70  * | In short, modify supporting trees to reflect modifications of subvolume
71  * | trees.
72  * |
73  * | At this stage, all start_transaction() calls will wait for this
74  * | transaction to finish and attach to transaction N+1.
75  * |
76  * | To next stage:
77  * |  Until all supporting trees are updated.
78  * V
79  * Transaction N [[TRANS_STATE_UNBLOCKED]]
80  * |						    Transaction N+1
81  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
82  * | need to write them back to disk and update	    |
83  * | super blocks.				    |
84  * |						    |
85  * | At this stage, new transaction is allowed to   |
86  * | start.					    |
87  * | All new start_transaction() calls will be	    |
88  * | attached to transid N+1.			    |
89  * |						    |
90  * | To next stage:				    |
91  * |  Until all tree blocks are super blocks are    |
92  * |  written to block devices			    |
93  * V						    |
94  * Transaction N [[TRANS_STATE_COMPLETED]]	    V
95  *   All tree blocks and super blocks are written.  Transaction N+1
96  *   This transaction is finished and all its	    [[TRANS_STATE_COMMIT_START]]
97  *   data structures will be cleaned up.	    | Life goes on
98  */
99 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
100 	[TRANS_STATE_RUNNING]		= 0U,
101 	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
102 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
103 					   __TRANS_ATTACH |
104 					   __TRANS_JOIN |
105 					   __TRANS_JOIN_NOSTART),
106 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
107 					   __TRANS_ATTACH |
108 					   __TRANS_JOIN |
109 					   __TRANS_JOIN_NOLOCK |
110 					   __TRANS_JOIN_NOSTART),
111 	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
112 					   __TRANS_ATTACH |
113 					   __TRANS_JOIN |
114 					   __TRANS_JOIN_NOLOCK |
115 					   __TRANS_JOIN_NOSTART),
116 };
117 
btrfs_put_transaction(struct btrfs_transaction * transaction)118 void btrfs_put_transaction(struct btrfs_transaction *transaction)
119 {
120 	WARN_ON(refcount_read(&transaction->use_count) == 0);
121 	if (refcount_dec_and_test(&transaction->use_count)) {
122 		BUG_ON(!list_empty(&transaction->list));
123 		WARN_ON(!RB_EMPTY_ROOT(
124 				&transaction->delayed_refs.href_root.rb_root));
125 		WARN_ON(!RB_EMPTY_ROOT(
126 				&transaction->delayed_refs.dirty_extent_root));
127 		if (transaction->delayed_refs.pending_csums)
128 			btrfs_err(transaction->fs_info,
129 				  "pending csums is %llu",
130 				  transaction->delayed_refs.pending_csums);
131 		/*
132 		 * If any block groups are found in ->deleted_bgs then it's
133 		 * because the transaction was aborted and a commit did not
134 		 * happen (things failed before writing the new superblock
135 		 * and calling btrfs_finish_extent_commit()), so we can not
136 		 * discard the physical locations of the block groups.
137 		 */
138 		while (!list_empty(&transaction->deleted_bgs)) {
139 			struct btrfs_block_group *cache;
140 
141 			cache = list_first_entry(&transaction->deleted_bgs,
142 						 struct btrfs_block_group,
143 						 bg_list);
144 			list_del_init(&cache->bg_list);
145 			btrfs_unfreeze_block_group(cache);
146 			btrfs_put_block_group(cache);
147 		}
148 		WARN_ON(!list_empty(&transaction->dev_update_list));
149 		kfree(transaction);
150 	}
151 }
152 
switch_commit_roots(struct btrfs_trans_handle * trans)153 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
154 {
155 	struct btrfs_transaction *cur_trans = trans->transaction;
156 	struct btrfs_fs_info *fs_info = trans->fs_info;
157 	struct btrfs_root *root, *tmp;
158 	struct btrfs_caching_control *caching_ctl, *next;
159 
160 	down_write(&fs_info->commit_root_sem);
161 	list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
162 				 dirty_list) {
163 		list_del_init(&root->dirty_list);
164 		free_extent_buffer(root->commit_root);
165 		root->commit_root = btrfs_root_node(root);
166 		if (is_fstree(root->root_key.objectid))
167 			btrfs_unpin_free_ino(root);
168 		extent_io_tree_release(&root->dirty_log_pages);
169 		btrfs_qgroup_clean_swapped_blocks(root);
170 	}
171 
172 	/* We can free old roots now. */
173 	spin_lock(&cur_trans->dropped_roots_lock);
174 	while (!list_empty(&cur_trans->dropped_roots)) {
175 		root = list_first_entry(&cur_trans->dropped_roots,
176 					struct btrfs_root, root_list);
177 		list_del_init(&root->root_list);
178 		spin_unlock(&cur_trans->dropped_roots_lock);
179 		btrfs_free_log(trans, root);
180 		btrfs_drop_and_free_fs_root(fs_info, root);
181 		spin_lock(&cur_trans->dropped_roots_lock);
182 	}
183 	spin_unlock(&cur_trans->dropped_roots_lock);
184 
185 	/*
186 	 * We have to update the last_byte_to_unpin under the commit_root_sem,
187 	 * at the same time we swap out the commit roots.
188 	 *
189 	 * This is because we must have a real view of the last spot the caching
190 	 * kthreads were while caching.  Consider the following views of the
191 	 * extent tree for a block group
192 	 *
193 	 * commit root
194 	 * +----+----+----+----+----+----+----+
195 	 * |\\\\|    |\\\\|\\\\|    |\\\\|\\\\|
196 	 * +----+----+----+----+----+----+----+
197 	 * 0    1    2    3    4    5    6    7
198 	 *
199 	 * new commit root
200 	 * +----+----+----+----+----+----+----+
201 	 * |    |    |    |\\\\|    |    |\\\\|
202 	 * +----+----+----+----+----+----+----+
203 	 * 0    1    2    3    4    5    6    7
204 	 *
205 	 * If the cache_ctl->progress was at 3, then we are only allowed to
206 	 * unpin [0,1) and [2,3], because the caching thread has already
207 	 * processed those extents.  We are not allowed to unpin [5,6), because
208 	 * the caching thread will re-start it's search from 3, and thus find
209 	 * the hole from [4,6) to add to the free space cache.
210 	 */
211 	list_for_each_entry_safe(caching_ctl, next,
212 				 &fs_info->caching_block_groups, list) {
213 		struct btrfs_block_group *cache = caching_ctl->block_group;
214 
215 		if (btrfs_block_group_done(cache)) {
216 			cache->last_byte_to_unpin = (u64)-1;
217 			list_del_init(&caching_ctl->list);
218 			btrfs_put_caching_control(caching_ctl);
219 		} else {
220 			cache->last_byte_to_unpin = caching_ctl->progress;
221 		}
222 	}
223 	up_write(&fs_info->commit_root_sem);
224 }
225 
extwriter_counter_inc(struct btrfs_transaction * trans,unsigned int type)226 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
227 					 unsigned int type)
228 {
229 	if (type & TRANS_EXTWRITERS)
230 		atomic_inc(&trans->num_extwriters);
231 }
232 
extwriter_counter_dec(struct btrfs_transaction * trans,unsigned int type)233 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
234 					 unsigned int type)
235 {
236 	if (type & TRANS_EXTWRITERS)
237 		atomic_dec(&trans->num_extwriters);
238 }
239 
extwriter_counter_init(struct btrfs_transaction * trans,unsigned int type)240 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
241 					  unsigned int type)
242 {
243 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
244 }
245 
extwriter_counter_read(struct btrfs_transaction * trans)246 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
247 {
248 	return atomic_read(&trans->num_extwriters);
249 }
250 
251 /*
252  * To be called after all the new block groups attached to the transaction
253  * handle have been created (btrfs_create_pending_block_groups()).
254  */
btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle * trans)255 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
256 {
257 	struct btrfs_fs_info *fs_info = trans->fs_info;
258 
259 	if (!trans->chunk_bytes_reserved)
260 		return;
261 
262 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
263 
264 	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
265 				trans->chunk_bytes_reserved, NULL);
266 	trans->chunk_bytes_reserved = 0;
267 }
268 
269 /*
270  * either allocate a new transaction or hop into the existing one
271  */
join_transaction(struct btrfs_fs_info * fs_info,unsigned int type)272 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
273 				     unsigned int type)
274 {
275 	struct btrfs_transaction *cur_trans;
276 
277 	spin_lock(&fs_info->trans_lock);
278 loop:
279 	/* The file system has been taken offline. No new transactions. */
280 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
281 		spin_unlock(&fs_info->trans_lock);
282 		return -EROFS;
283 	}
284 
285 	cur_trans = fs_info->running_transaction;
286 	if (cur_trans) {
287 		if (TRANS_ABORTED(cur_trans)) {
288 			spin_unlock(&fs_info->trans_lock);
289 			return cur_trans->aborted;
290 		}
291 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
292 			spin_unlock(&fs_info->trans_lock);
293 			return -EBUSY;
294 		}
295 		refcount_inc(&cur_trans->use_count);
296 		atomic_inc(&cur_trans->num_writers);
297 		extwriter_counter_inc(cur_trans, type);
298 		spin_unlock(&fs_info->trans_lock);
299 		return 0;
300 	}
301 	spin_unlock(&fs_info->trans_lock);
302 
303 	/*
304 	 * If we are ATTACH, we just want to catch the current transaction,
305 	 * and commit it. If there is no transaction, just return ENOENT.
306 	 */
307 	if (type == TRANS_ATTACH)
308 		return -ENOENT;
309 
310 	/*
311 	 * JOIN_NOLOCK only happens during the transaction commit, so
312 	 * it is impossible that ->running_transaction is NULL
313 	 */
314 	BUG_ON(type == TRANS_JOIN_NOLOCK);
315 
316 	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
317 	if (!cur_trans)
318 		return -ENOMEM;
319 
320 	spin_lock(&fs_info->trans_lock);
321 	if (fs_info->running_transaction) {
322 		/*
323 		 * someone started a transaction after we unlocked.  Make sure
324 		 * to redo the checks above
325 		 */
326 		kfree(cur_trans);
327 		goto loop;
328 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
329 		spin_unlock(&fs_info->trans_lock);
330 		kfree(cur_trans);
331 		return -EROFS;
332 	}
333 
334 	cur_trans->fs_info = fs_info;
335 	atomic_set(&cur_trans->pending_ordered, 0);
336 	init_waitqueue_head(&cur_trans->pending_wait);
337 	atomic_set(&cur_trans->num_writers, 1);
338 	extwriter_counter_init(cur_trans, type);
339 	init_waitqueue_head(&cur_trans->writer_wait);
340 	init_waitqueue_head(&cur_trans->commit_wait);
341 	cur_trans->state = TRANS_STATE_RUNNING;
342 	/*
343 	 * One for this trans handle, one so it will live on until we
344 	 * commit the transaction.
345 	 */
346 	refcount_set(&cur_trans->use_count, 2);
347 	cur_trans->flags = 0;
348 	cur_trans->start_time = ktime_get_seconds();
349 
350 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
351 
352 	cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
353 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
354 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
355 
356 	/*
357 	 * although the tree mod log is per file system and not per transaction,
358 	 * the log must never go across transaction boundaries.
359 	 */
360 	smp_mb();
361 	if (!list_empty(&fs_info->tree_mod_seq_list))
362 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
363 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
364 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
365 	atomic64_set(&fs_info->tree_mod_seq, 0);
366 
367 	spin_lock_init(&cur_trans->delayed_refs.lock);
368 
369 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
370 	INIT_LIST_HEAD(&cur_trans->dev_update_list);
371 	INIT_LIST_HEAD(&cur_trans->switch_commits);
372 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
373 	INIT_LIST_HEAD(&cur_trans->io_bgs);
374 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
375 	mutex_init(&cur_trans->cache_write_mutex);
376 	spin_lock_init(&cur_trans->dirty_bgs_lock);
377 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
378 	spin_lock_init(&cur_trans->dropped_roots_lock);
379 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
380 	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
381 			IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
382 	extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
383 			IO_TREE_FS_PINNED_EXTENTS, NULL);
384 	fs_info->generation++;
385 	cur_trans->transid = fs_info->generation;
386 	fs_info->running_transaction = cur_trans;
387 	cur_trans->aborted = 0;
388 	spin_unlock(&fs_info->trans_lock);
389 
390 	return 0;
391 }
392 
393 /*
394  * This does all the record keeping required to make sure that a shareable root
395  * is properly recorded in a given transaction.  This is required to make sure
396  * the old root from before we joined the transaction is deleted when the
397  * transaction commits.
398  */
record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,int force)399 static int record_root_in_trans(struct btrfs_trans_handle *trans,
400 			       struct btrfs_root *root,
401 			       int force)
402 {
403 	struct btrfs_fs_info *fs_info = root->fs_info;
404 
405 	if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
406 	    root->last_trans < trans->transid) || force) {
407 		WARN_ON(root == fs_info->extent_root);
408 		WARN_ON(!force && root->commit_root != root->node);
409 
410 		/*
411 		 * see below for IN_TRANS_SETUP usage rules
412 		 * we have the reloc mutex held now, so there
413 		 * is only one writer in this function
414 		 */
415 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
416 
417 		/* make sure readers find IN_TRANS_SETUP before
418 		 * they find our root->last_trans update
419 		 */
420 		smp_wmb();
421 
422 		spin_lock(&fs_info->fs_roots_radix_lock);
423 		if (root->last_trans == trans->transid && !force) {
424 			spin_unlock(&fs_info->fs_roots_radix_lock);
425 			return 0;
426 		}
427 		radix_tree_tag_set(&fs_info->fs_roots_radix,
428 				   (unsigned long)root->root_key.objectid,
429 				   BTRFS_ROOT_TRANS_TAG);
430 		spin_unlock(&fs_info->fs_roots_radix_lock);
431 		root->last_trans = trans->transid;
432 
433 		/* this is pretty tricky.  We don't want to
434 		 * take the relocation lock in btrfs_record_root_in_trans
435 		 * unless we're really doing the first setup for this root in
436 		 * this transaction.
437 		 *
438 		 * Normally we'd use root->last_trans as a flag to decide
439 		 * if we want to take the expensive mutex.
440 		 *
441 		 * But, we have to set root->last_trans before we
442 		 * init the relocation root, otherwise, we trip over warnings
443 		 * in ctree.c.  The solution used here is to flag ourselves
444 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
445 		 * fixing up the reloc trees and everyone must wait.
446 		 *
447 		 * When this is zero, they can trust root->last_trans and fly
448 		 * through btrfs_record_root_in_trans without having to take the
449 		 * lock.  smp_wmb() makes sure that all the writes above are
450 		 * done before we pop in the zero below
451 		 */
452 		btrfs_init_reloc_root(trans, root);
453 		smp_mb__before_atomic();
454 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
455 	}
456 	return 0;
457 }
458 
459 
btrfs_add_dropped_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)460 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
461 			    struct btrfs_root *root)
462 {
463 	struct btrfs_fs_info *fs_info = root->fs_info;
464 	struct btrfs_transaction *cur_trans = trans->transaction;
465 
466 	/* Add ourselves to the transaction dropped list */
467 	spin_lock(&cur_trans->dropped_roots_lock);
468 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
469 	spin_unlock(&cur_trans->dropped_roots_lock);
470 
471 	/* Make sure we don't try to update the root at commit time */
472 	spin_lock(&fs_info->fs_roots_radix_lock);
473 	radix_tree_tag_clear(&fs_info->fs_roots_radix,
474 			     (unsigned long)root->root_key.objectid,
475 			     BTRFS_ROOT_TRANS_TAG);
476 	spin_unlock(&fs_info->fs_roots_radix_lock);
477 }
478 
btrfs_record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root)479 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
480 			       struct btrfs_root *root)
481 {
482 	struct btrfs_fs_info *fs_info = root->fs_info;
483 
484 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
485 		return 0;
486 
487 	/*
488 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
489 	 * and barriers
490 	 */
491 	smp_rmb();
492 	if (root->last_trans == trans->transid &&
493 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
494 		return 0;
495 
496 	mutex_lock(&fs_info->reloc_mutex);
497 	record_root_in_trans(trans, root, 0);
498 	mutex_unlock(&fs_info->reloc_mutex);
499 
500 	return 0;
501 }
502 
is_transaction_blocked(struct btrfs_transaction * trans)503 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
504 {
505 	return (trans->state >= TRANS_STATE_COMMIT_START &&
506 		trans->state < TRANS_STATE_UNBLOCKED &&
507 		!TRANS_ABORTED(trans));
508 }
509 
510 /* wait for commit against the current transaction to become unblocked
511  * when this is done, it is safe to start a new transaction, but the current
512  * transaction might not be fully on disk.
513  */
wait_current_trans(struct btrfs_fs_info * fs_info)514 static void wait_current_trans(struct btrfs_fs_info *fs_info)
515 {
516 	struct btrfs_transaction *cur_trans;
517 
518 	spin_lock(&fs_info->trans_lock);
519 	cur_trans = fs_info->running_transaction;
520 	if (cur_trans && is_transaction_blocked(cur_trans)) {
521 		refcount_inc(&cur_trans->use_count);
522 		spin_unlock(&fs_info->trans_lock);
523 
524 		wait_event(fs_info->transaction_wait,
525 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
526 			   TRANS_ABORTED(cur_trans));
527 		btrfs_put_transaction(cur_trans);
528 	} else {
529 		spin_unlock(&fs_info->trans_lock);
530 	}
531 }
532 
may_wait_transaction(struct btrfs_fs_info * fs_info,int type)533 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
534 {
535 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
536 		return 0;
537 
538 	if (type == TRANS_START)
539 		return 1;
540 
541 	return 0;
542 }
543 
need_reserve_reloc_root(struct btrfs_root * root)544 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
545 {
546 	struct btrfs_fs_info *fs_info = root->fs_info;
547 
548 	if (!fs_info->reloc_ctl ||
549 	    !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
550 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
551 	    root->reloc_root)
552 		return false;
553 
554 	return true;
555 }
556 
557 static struct btrfs_trans_handle *
start_transaction(struct btrfs_root * root,unsigned int num_items,unsigned int type,enum btrfs_reserve_flush_enum flush,bool enforce_qgroups)558 start_transaction(struct btrfs_root *root, unsigned int num_items,
559 		  unsigned int type, enum btrfs_reserve_flush_enum flush,
560 		  bool enforce_qgroups)
561 {
562 	struct btrfs_fs_info *fs_info = root->fs_info;
563 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
564 	struct btrfs_trans_handle *h;
565 	struct btrfs_transaction *cur_trans;
566 	u64 num_bytes = 0;
567 	u64 qgroup_reserved = 0;
568 	bool reloc_reserved = false;
569 	bool do_chunk_alloc = false;
570 	int ret;
571 
572 	/* Send isn't supposed to start transactions. */
573 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
574 
575 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
576 		return ERR_PTR(-EROFS);
577 
578 	if (current->journal_info) {
579 		WARN_ON(type & TRANS_EXTWRITERS);
580 		h = current->journal_info;
581 		refcount_inc(&h->use_count);
582 		WARN_ON(refcount_read(&h->use_count) > 2);
583 		h->orig_rsv = h->block_rsv;
584 		h->block_rsv = NULL;
585 		goto got_it;
586 	}
587 
588 	/*
589 	 * Do the reservation before we join the transaction so we can do all
590 	 * the appropriate flushing if need be.
591 	 */
592 	if (num_items && root != fs_info->chunk_root) {
593 		struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
594 		u64 delayed_refs_bytes = 0;
595 
596 		qgroup_reserved = num_items * fs_info->nodesize;
597 		ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
598 				enforce_qgroups);
599 		if (ret)
600 			return ERR_PTR(ret);
601 
602 		/*
603 		 * We want to reserve all the bytes we may need all at once, so
604 		 * we only do 1 enospc flushing cycle per transaction start.  We
605 		 * accomplish this by simply assuming we'll do 2 x num_items
606 		 * worth of delayed refs updates in this trans handle, and
607 		 * refill that amount for whatever is missing in the reserve.
608 		 */
609 		num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
610 		if (flush == BTRFS_RESERVE_FLUSH_ALL &&
611 		    delayed_refs_rsv->full == 0) {
612 			delayed_refs_bytes = num_bytes;
613 			num_bytes <<= 1;
614 		}
615 
616 		/*
617 		 * Do the reservation for the relocation root creation
618 		 */
619 		if (need_reserve_reloc_root(root)) {
620 			num_bytes += fs_info->nodesize;
621 			reloc_reserved = true;
622 		}
623 
624 		ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
625 		if (ret)
626 			goto reserve_fail;
627 		if (delayed_refs_bytes) {
628 			btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
629 							  delayed_refs_bytes);
630 			num_bytes -= delayed_refs_bytes;
631 		}
632 
633 		if (rsv->space_info->force_alloc)
634 			do_chunk_alloc = true;
635 	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
636 		   !delayed_refs_rsv->full) {
637 		/*
638 		 * Some people call with btrfs_start_transaction(root, 0)
639 		 * because they can be throttled, but have some other mechanism
640 		 * for reserving space.  We still want these guys to refill the
641 		 * delayed block_rsv so just add 1 items worth of reservation
642 		 * here.
643 		 */
644 		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
645 		if (ret)
646 			goto reserve_fail;
647 	}
648 again:
649 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
650 	if (!h) {
651 		ret = -ENOMEM;
652 		goto alloc_fail;
653 	}
654 
655 	/*
656 	 * If we are JOIN_NOLOCK we're already committing a transaction and
657 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
658 	 * because we're already holding a ref.  We need this because we could
659 	 * have raced in and did an fsync() on a file which can kick a commit
660 	 * and then we deadlock with somebody doing a freeze.
661 	 *
662 	 * If we are ATTACH, it means we just want to catch the current
663 	 * transaction and commit it, so we needn't do sb_start_intwrite().
664 	 */
665 	if (type & __TRANS_FREEZABLE)
666 		sb_start_intwrite(fs_info->sb);
667 
668 	if (may_wait_transaction(fs_info, type))
669 		wait_current_trans(fs_info);
670 
671 	do {
672 		ret = join_transaction(fs_info, type);
673 		if (ret == -EBUSY) {
674 			wait_current_trans(fs_info);
675 			if (unlikely(type == TRANS_ATTACH ||
676 				     type == TRANS_JOIN_NOSTART))
677 				ret = -ENOENT;
678 		}
679 	} while (ret == -EBUSY);
680 
681 	if (ret < 0)
682 		goto join_fail;
683 
684 	cur_trans = fs_info->running_transaction;
685 
686 	h->transid = cur_trans->transid;
687 	h->transaction = cur_trans;
688 	h->root = root;
689 	refcount_set(&h->use_count, 1);
690 	h->fs_info = root->fs_info;
691 
692 	h->type = type;
693 	h->can_flush_pending_bgs = true;
694 	INIT_LIST_HEAD(&h->new_bgs);
695 
696 	smp_mb();
697 	if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
698 	    may_wait_transaction(fs_info, type)) {
699 		current->journal_info = h;
700 		btrfs_commit_transaction(h);
701 		goto again;
702 	}
703 
704 	if (num_bytes) {
705 		trace_btrfs_space_reservation(fs_info, "transaction",
706 					      h->transid, num_bytes, 1);
707 		h->block_rsv = &fs_info->trans_block_rsv;
708 		h->bytes_reserved = num_bytes;
709 		h->reloc_reserved = reloc_reserved;
710 	}
711 
712 got_it:
713 	if (!current->journal_info)
714 		current->journal_info = h;
715 
716 	/*
717 	 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
718 	 * ALLOC_FORCE the first run through, and then we won't allocate for
719 	 * anybody else who races in later.  We don't care about the return
720 	 * value here.
721 	 */
722 	if (do_chunk_alloc && num_bytes) {
723 		u64 flags = h->block_rsv->space_info->flags;
724 
725 		btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
726 				  CHUNK_ALLOC_NO_FORCE);
727 	}
728 
729 	/*
730 	 * btrfs_record_root_in_trans() needs to alloc new extents, and may
731 	 * call btrfs_join_transaction() while we're also starting a
732 	 * transaction.
733 	 *
734 	 * Thus it need to be called after current->journal_info initialized,
735 	 * or we can deadlock.
736 	 */
737 	btrfs_record_root_in_trans(h, root);
738 
739 	return h;
740 
741 join_fail:
742 	if (type & __TRANS_FREEZABLE)
743 		sb_end_intwrite(fs_info->sb);
744 	kmem_cache_free(btrfs_trans_handle_cachep, h);
745 alloc_fail:
746 	if (num_bytes)
747 		btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
748 					num_bytes, NULL);
749 reserve_fail:
750 	btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
751 	return ERR_PTR(ret);
752 }
753 
btrfs_start_transaction(struct btrfs_root * root,unsigned int num_items)754 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
755 						   unsigned int num_items)
756 {
757 	return start_transaction(root, num_items, TRANS_START,
758 				 BTRFS_RESERVE_FLUSH_ALL, true);
759 }
760 
btrfs_start_transaction_fallback_global_rsv(struct btrfs_root * root,unsigned int num_items)761 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
762 					struct btrfs_root *root,
763 					unsigned int num_items)
764 {
765 	return start_transaction(root, num_items, TRANS_START,
766 				 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
767 }
768 
btrfs_join_transaction(struct btrfs_root * root)769 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
770 {
771 	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
772 				 true);
773 }
774 
btrfs_join_transaction_spacecache(struct btrfs_root * root)775 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
776 {
777 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
778 				 BTRFS_RESERVE_NO_FLUSH, true);
779 }
780 
781 /*
782  * Similar to regular join but it never starts a transaction when none is
783  * running or after waiting for the current one to finish.
784  */
btrfs_join_transaction_nostart(struct btrfs_root * root)785 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
786 {
787 	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
788 				 BTRFS_RESERVE_NO_FLUSH, true);
789 }
790 
791 /*
792  * btrfs_attach_transaction() - catch the running transaction
793  *
794  * It is used when we want to commit the current the transaction, but
795  * don't want to start a new one.
796  *
797  * Note: If this function return -ENOENT, it just means there is no
798  * running transaction. But it is possible that the inactive transaction
799  * is still in the memory, not fully on disk. If you hope there is no
800  * inactive transaction in the fs when -ENOENT is returned, you should
801  * invoke
802  *     btrfs_attach_transaction_barrier()
803  */
btrfs_attach_transaction(struct btrfs_root * root)804 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
805 {
806 	return start_transaction(root, 0, TRANS_ATTACH,
807 				 BTRFS_RESERVE_NO_FLUSH, true);
808 }
809 
810 /*
811  * btrfs_attach_transaction_barrier() - catch the running transaction
812  *
813  * It is similar to the above function, the difference is this one
814  * will wait for all the inactive transactions until they fully
815  * complete.
816  */
817 struct btrfs_trans_handle *
btrfs_attach_transaction_barrier(struct btrfs_root * root)818 btrfs_attach_transaction_barrier(struct btrfs_root *root)
819 {
820 	struct btrfs_trans_handle *trans;
821 
822 	trans = start_transaction(root, 0, TRANS_ATTACH,
823 				  BTRFS_RESERVE_NO_FLUSH, true);
824 	if (trans == ERR_PTR(-ENOENT))
825 		btrfs_wait_for_commit(root->fs_info, 0);
826 
827 	return trans;
828 }
829 
830 /* wait for a transaction commit to be fully complete */
wait_for_commit(struct btrfs_transaction * commit)831 static noinline void wait_for_commit(struct btrfs_transaction *commit)
832 {
833 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
834 }
835 
btrfs_wait_for_commit(struct btrfs_fs_info * fs_info,u64 transid)836 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
837 {
838 	struct btrfs_transaction *cur_trans = NULL, *t;
839 	int ret = 0;
840 
841 	if (transid) {
842 		if (transid <= fs_info->last_trans_committed)
843 			goto out;
844 
845 		/* find specified transaction */
846 		spin_lock(&fs_info->trans_lock);
847 		list_for_each_entry(t, &fs_info->trans_list, list) {
848 			if (t->transid == transid) {
849 				cur_trans = t;
850 				refcount_inc(&cur_trans->use_count);
851 				ret = 0;
852 				break;
853 			}
854 			if (t->transid > transid) {
855 				ret = 0;
856 				break;
857 			}
858 		}
859 		spin_unlock(&fs_info->trans_lock);
860 
861 		/*
862 		 * The specified transaction doesn't exist, or we
863 		 * raced with btrfs_commit_transaction
864 		 */
865 		if (!cur_trans) {
866 			if (transid > fs_info->last_trans_committed)
867 				ret = -EINVAL;
868 			goto out;
869 		}
870 	} else {
871 		/* find newest transaction that is committing | committed */
872 		spin_lock(&fs_info->trans_lock);
873 		list_for_each_entry_reverse(t, &fs_info->trans_list,
874 					    list) {
875 			if (t->state >= TRANS_STATE_COMMIT_START) {
876 				if (t->state == TRANS_STATE_COMPLETED)
877 					break;
878 				cur_trans = t;
879 				refcount_inc(&cur_trans->use_count);
880 				break;
881 			}
882 		}
883 		spin_unlock(&fs_info->trans_lock);
884 		if (!cur_trans)
885 			goto out;  /* nothing committing|committed */
886 	}
887 
888 	wait_for_commit(cur_trans);
889 	btrfs_put_transaction(cur_trans);
890 out:
891 	return ret;
892 }
893 
btrfs_throttle(struct btrfs_fs_info * fs_info)894 void btrfs_throttle(struct btrfs_fs_info *fs_info)
895 {
896 	wait_current_trans(fs_info);
897 }
898 
should_end_transaction(struct btrfs_trans_handle * trans)899 static int should_end_transaction(struct btrfs_trans_handle *trans)
900 {
901 	struct btrfs_fs_info *fs_info = trans->fs_info;
902 
903 	if (btrfs_check_space_for_delayed_refs(fs_info))
904 		return 1;
905 
906 	return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
907 }
908 
btrfs_should_end_transaction(struct btrfs_trans_handle * trans)909 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
910 {
911 	struct btrfs_transaction *cur_trans = trans->transaction;
912 
913 	smp_mb();
914 	if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
915 	    cur_trans->delayed_refs.flushing)
916 		return 1;
917 
918 	return should_end_transaction(trans);
919 }
920 
btrfs_trans_release_metadata(struct btrfs_trans_handle * trans)921 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
922 
923 {
924 	struct btrfs_fs_info *fs_info = trans->fs_info;
925 
926 	if (!trans->block_rsv) {
927 		ASSERT(!trans->bytes_reserved);
928 		return;
929 	}
930 
931 	if (!trans->bytes_reserved)
932 		return;
933 
934 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
935 	trace_btrfs_space_reservation(fs_info, "transaction",
936 				      trans->transid, trans->bytes_reserved, 0);
937 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
938 				trans->bytes_reserved, NULL);
939 	trans->bytes_reserved = 0;
940 }
941 
__btrfs_end_transaction(struct btrfs_trans_handle * trans,int throttle)942 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
943 				   int throttle)
944 {
945 	struct btrfs_fs_info *info = trans->fs_info;
946 	struct btrfs_transaction *cur_trans = trans->transaction;
947 	int err = 0;
948 
949 	if (refcount_read(&trans->use_count) > 1) {
950 		refcount_dec(&trans->use_count);
951 		trans->block_rsv = trans->orig_rsv;
952 		return 0;
953 	}
954 
955 	btrfs_trans_release_metadata(trans);
956 	trans->block_rsv = NULL;
957 
958 	btrfs_create_pending_block_groups(trans);
959 
960 	btrfs_trans_release_chunk_metadata(trans);
961 
962 	if (trans->type & __TRANS_FREEZABLE)
963 		sb_end_intwrite(info->sb);
964 
965 	WARN_ON(cur_trans != info->running_transaction);
966 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
967 	atomic_dec(&cur_trans->num_writers);
968 	extwriter_counter_dec(cur_trans, trans->type);
969 
970 	cond_wake_up(&cur_trans->writer_wait);
971 	btrfs_put_transaction(cur_trans);
972 
973 	if (current->journal_info == trans)
974 		current->journal_info = NULL;
975 
976 	if (throttle)
977 		btrfs_run_delayed_iputs(info);
978 
979 	if (TRANS_ABORTED(trans) ||
980 	    test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
981 		wake_up_process(info->transaction_kthread);
982 		if (TRANS_ABORTED(trans))
983 			err = trans->aborted;
984 		else
985 			err = -EROFS;
986 	}
987 
988 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
989 	return err;
990 }
991 
btrfs_end_transaction(struct btrfs_trans_handle * trans)992 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
993 {
994 	return __btrfs_end_transaction(trans, 0);
995 }
996 
btrfs_end_transaction_throttle(struct btrfs_trans_handle * trans)997 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
998 {
999 	return __btrfs_end_transaction(trans, 1);
1000 }
1001 
1002 /*
1003  * when btree blocks are allocated, they have some corresponding bits set for
1004  * them in one of two extent_io trees.  This is used to make sure all of
1005  * those extents are sent to disk but does not wait on them
1006  */
btrfs_write_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)1007 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1008 			       struct extent_io_tree *dirty_pages, int mark)
1009 {
1010 	int err = 0;
1011 	int werr = 0;
1012 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1013 	struct extent_state *cached_state = NULL;
1014 	u64 start = 0;
1015 	u64 end;
1016 
1017 	atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1018 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1019 				      mark, &cached_state)) {
1020 		bool wait_writeback = false;
1021 
1022 		err = convert_extent_bit(dirty_pages, start, end,
1023 					 EXTENT_NEED_WAIT,
1024 					 mark, &cached_state);
1025 		/*
1026 		 * convert_extent_bit can return -ENOMEM, which is most of the
1027 		 * time a temporary error. So when it happens, ignore the error
1028 		 * and wait for writeback of this range to finish - because we
1029 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1030 		 * to __btrfs_wait_marked_extents() would not know that
1031 		 * writeback for this range started and therefore wouldn't
1032 		 * wait for it to finish - we don't want to commit a
1033 		 * superblock that points to btree nodes/leafs for which
1034 		 * writeback hasn't finished yet (and without errors).
1035 		 * We cleanup any entries left in the io tree when committing
1036 		 * the transaction (through extent_io_tree_release()).
1037 		 */
1038 		if (err == -ENOMEM) {
1039 			err = 0;
1040 			wait_writeback = true;
1041 		}
1042 		if (!err)
1043 			err = filemap_fdatawrite_range(mapping, start, end);
1044 		if (err)
1045 			werr = err;
1046 		else if (wait_writeback)
1047 			werr = filemap_fdatawait_range(mapping, start, end);
1048 		free_extent_state(cached_state);
1049 		cached_state = NULL;
1050 		cond_resched();
1051 		start = end + 1;
1052 	}
1053 	atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1054 	return werr;
1055 }
1056 
1057 /*
1058  * when btree blocks are allocated, they have some corresponding bits set for
1059  * them in one of two extent_io trees.  This is used to make sure all of
1060  * those extents are on disk for transaction or log commit.  We wait
1061  * on all the pages and clear them from the dirty pages state tree
1062  */
__btrfs_wait_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages)1063 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1064 				       struct extent_io_tree *dirty_pages)
1065 {
1066 	int err = 0;
1067 	int werr = 0;
1068 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1069 	struct extent_state *cached_state = NULL;
1070 	u64 start = 0;
1071 	u64 end;
1072 
1073 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1074 				      EXTENT_NEED_WAIT, &cached_state)) {
1075 		/*
1076 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1077 		 * When committing the transaction, we'll remove any entries
1078 		 * left in the io tree. For a log commit, we don't remove them
1079 		 * after committing the log because the tree can be accessed
1080 		 * concurrently - we do it only at transaction commit time when
1081 		 * it's safe to do it (through extent_io_tree_release()).
1082 		 */
1083 		err = clear_extent_bit(dirty_pages, start, end,
1084 				       EXTENT_NEED_WAIT, 0, 0, &cached_state);
1085 		if (err == -ENOMEM)
1086 			err = 0;
1087 		if (!err)
1088 			err = filemap_fdatawait_range(mapping, start, end);
1089 		if (err)
1090 			werr = err;
1091 		free_extent_state(cached_state);
1092 		cached_state = NULL;
1093 		cond_resched();
1094 		start = end + 1;
1095 	}
1096 	if (err)
1097 		werr = err;
1098 	return werr;
1099 }
1100 
btrfs_wait_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages)1101 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1102 		       struct extent_io_tree *dirty_pages)
1103 {
1104 	bool errors = false;
1105 	int err;
1106 
1107 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1108 	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1109 		errors = true;
1110 
1111 	if (errors && !err)
1112 		err = -EIO;
1113 	return err;
1114 }
1115 
btrfs_wait_tree_log_extents(struct btrfs_root * log_root,int mark)1116 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1117 {
1118 	struct btrfs_fs_info *fs_info = log_root->fs_info;
1119 	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1120 	bool errors = false;
1121 	int err;
1122 
1123 	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1124 
1125 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1126 	if ((mark & EXTENT_DIRTY) &&
1127 	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1128 		errors = true;
1129 
1130 	if ((mark & EXTENT_NEW) &&
1131 	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1132 		errors = true;
1133 
1134 	if (errors && !err)
1135 		err = -EIO;
1136 	return err;
1137 }
1138 
1139 /*
1140  * When btree blocks are allocated the corresponding extents are marked dirty.
1141  * This function ensures such extents are persisted on disk for transaction or
1142  * log commit.
1143  *
1144  * @trans: transaction whose dirty pages we'd like to write
1145  */
btrfs_write_and_wait_transaction(struct btrfs_trans_handle * trans)1146 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1147 {
1148 	int ret;
1149 	int ret2;
1150 	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1151 	struct btrfs_fs_info *fs_info = trans->fs_info;
1152 	struct blk_plug plug;
1153 
1154 	blk_start_plug(&plug);
1155 	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1156 	blk_finish_plug(&plug);
1157 	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1158 
1159 	extent_io_tree_release(&trans->transaction->dirty_pages);
1160 
1161 	if (ret)
1162 		return ret;
1163 	else if (ret2)
1164 		return ret2;
1165 	else
1166 		return 0;
1167 }
1168 
1169 /*
1170  * this is used to update the root pointer in the tree of tree roots.
1171  *
1172  * But, in the case of the extent allocation tree, updating the root
1173  * pointer may allocate blocks which may change the root of the extent
1174  * allocation tree.
1175  *
1176  * So, this loops and repeats and makes sure the cowonly root didn't
1177  * change while the root pointer was being updated in the metadata.
1178  */
update_cowonly_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)1179 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1180 			       struct btrfs_root *root)
1181 {
1182 	int ret;
1183 	u64 old_root_bytenr;
1184 	u64 old_root_used;
1185 	struct btrfs_fs_info *fs_info = root->fs_info;
1186 	struct btrfs_root *tree_root = fs_info->tree_root;
1187 
1188 	old_root_used = btrfs_root_used(&root->root_item);
1189 
1190 	while (1) {
1191 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1192 		if (old_root_bytenr == root->node->start &&
1193 		    old_root_used == btrfs_root_used(&root->root_item))
1194 			break;
1195 
1196 		btrfs_set_root_node(&root->root_item, root->node);
1197 		ret = btrfs_update_root(trans, tree_root,
1198 					&root->root_key,
1199 					&root->root_item);
1200 		if (ret)
1201 			return ret;
1202 
1203 		old_root_used = btrfs_root_used(&root->root_item);
1204 	}
1205 
1206 	return 0;
1207 }
1208 
1209 /*
1210  * update all the cowonly tree roots on disk
1211  *
1212  * The error handling in this function may not be obvious. Any of the
1213  * failures will cause the file system to go offline. We still need
1214  * to clean up the delayed refs.
1215  */
commit_cowonly_roots(struct btrfs_trans_handle * trans)1216 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1217 {
1218 	struct btrfs_fs_info *fs_info = trans->fs_info;
1219 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1220 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1221 	struct list_head *next;
1222 	struct extent_buffer *eb;
1223 	int ret;
1224 
1225 	eb = btrfs_lock_root_node(fs_info->tree_root);
1226 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1227 			      0, &eb, BTRFS_NESTING_COW);
1228 	btrfs_tree_unlock(eb);
1229 	free_extent_buffer(eb);
1230 
1231 	if (ret)
1232 		return ret;
1233 
1234 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1235 	if (ret)
1236 		return ret;
1237 
1238 	ret = btrfs_run_dev_stats(trans);
1239 	if (ret)
1240 		return ret;
1241 	ret = btrfs_run_dev_replace(trans);
1242 	if (ret)
1243 		return ret;
1244 	ret = btrfs_run_qgroups(trans);
1245 	if (ret)
1246 		return ret;
1247 
1248 	ret = btrfs_setup_space_cache(trans);
1249 	if (ret)
1250 		return ret;
1251 
1252 	/* run_qgroups might have added some more refs */
1253 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1254 	if (ret)
1255 		return ret;
1256 again:
1257 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1258 		struct btrfs_root *root;
1259 		next = fs_info->dirty_cowonly_roots.next;
1260 		list_del_init(next);
1261 		root = list_entry(next, struct btrfs_root, dirty_list);
1262 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1263 
1264 		if (root != fs_info->extent_root)
1265 			list_add_tail(&root->dirty_list,
1266 				      &trans->transaction->switch_commits);
1267 		ret = update_cowonly_root(trans, root);
1268 		if (ret)
1269 			return ret;
1270 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1271 		if (ret)
1272 			return ret;
1273 	}
1274 
1275 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1276 		ret = btrfs_write_dirty_block_groups(trans);
1277 		if (ret)
1278 			return ret;
1279 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1280 		if (ret)
1281 			return ret;
1282 	}
1283 
1284 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1285 		goto again;
1286 
1287 	list_add_tail(&fs_info->extent_root->dirty_list,
1288 		      &trans->transaction->switch_commits);
1289 
1290 	/* Update dev-replace pointer once everything is committed */
1291 	fs_info->dev_replace.committed_cursor_left =
1292 		fs_info->dev_replace.cursor_left_last_write_of_item;
1293 
1294 	return 0;
1295 }
1296 
1297 /*
1298  * dead roots are old snapshots that need to be deleted.  This allocates
1299  * a dirty root struct and adds it into the list of dead roots that need to
1300  * be deleted
1301  */
btrfs_add_dead_root(struct btrfs_root * root)1302 void btrfs_add_dead_root(struct btrfs_root *root)
1303 {
1304 	struct btrfs_fs_info *fs_info = root->fs_info;
1305 
1306 	spin_lock(&fs_info->trans_lock);
1307 	if (list_empty(&root->root_list)) {
1308 		btrfs_grab_root(root);
1309 		list_add_tail(&root->root_list, &fs_info->dead_roots);
1310 	}
1311 	spin_unlock(&fs_info->trans_lock);
1312 }
1313 
1314 /*
1315  * update all the cowonly tree roots on disk
1316  */
commit_fs_roots(struct btrfs_trans_handle * trans)1317 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1318 {
1319 	struct btrfs_fs_info *fs_info = trans->fs_info;
1320 	struct btrfs_root *gang[8];
1321 	int i;
1322 	int ret;
1323 
1324 	spin_lock(&fs_info->fs_roots_radix_lock);
1325 	while (1) {
1326 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1327 						 (void **)gang, 0,
1328 						 ARRAY_SIZE(gang),
1329 						 BTRFS_ROOT_TRANS_TAG);
1330 		if (ret == 0)
1331 			break;
1332 		for (i = 0; i < ret; i++) {
1333 			struct btrfs_root *root = gang[i];
1334 			int ret2;
1335 
1336 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1337 					(unsigned long)root->root_key.objectid,
1338 					BTRFS_ROOT_TRANS_TAG);
1339 			spin_unlock(&fs_info->fs_roots_radix_lock);
1340 
1341 			btrfs_free_log(trans, root);
1342 			btrfs_update_reloc_root(trans, root);
1343 
1344 			btrfs_save_ino_cache(root, trans);
1345 
1346 			/* see comments in should_cow_block() */
1347 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1348 			smp_mb__after_atomic();
1349 
1350 			if (root->commit_root != root->node) {
1351 				list_add_tail(&root->dirty_list,
1352 					&trans->transaction->switch_commits);
1353 				btrfs_set_root_node(&root->root_item,
1354 						    root->node);
1355 			}
1356 
1357 			ret2 = btrfs_update_root(trans, fs_info->tree_root,
1358 						&root->root_key,
1359 						&root->root_item);
1360 			if (ret2)
1361 				return ret2;
1362 			spin_lock(&fs_info->fs_roots_radix_lock);
1363 			btrfs_qgroup_free_meta_all_pertrans(root);
1364 		}
1365 	}
1366 	spin_unlock(&fs_info->fs_roots_radix_lock);
1367 	return 0;
1368 }
1369 
1370 /*
1371  * defrag a given btree.
1372  * Every leaf in the btree is read and defragged.
1373  */
btrfs_defrag_root(struct btrfs_root * root)1374 int btrfs_defrag_root(struct btrfs_root *root)
1375 {
1376 	struct btrfs_fs_info *info = root->fs_info;
1377 	struct btrfs_trans_handle *trans;
1378 	int ret;
1379 
1380 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1381 		return 0;
1382 
1383 	while (1) {
1384 		trans = btrfs_start_transaction(root, 0);
1385 		if (IS_ERR(trans)) {
1386 			ret = PTR_ERR(trans);
1387 			break;
1388 		}
1389 
1390 		ret = btrfs_defrag_leaves(trans, root);
1391 
1392 		btrfs_end_transaction(trans);
1393 		btrfs_btree_balance_dirty(info);
1394 		cond_resched();
1395 
1396 		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1397 			break;
1398 
1399 		if (btrfs_defrag_cancelled(info)) {
1400 			btrfs_debug(info, "defrag_root cancelled");
1401 			ret = -EAGAIN;
1402 			break;
1403 		}
1404 	}
1405 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1406 	return ret;
1407 }
1408 
1409 /*
1410  * Do all special snapshot related qgroup dirty hack.
1411  *
1412  * Will do all needed qgroup inherit and dirty hack like switch commit
1413  * roots inside one transaction and write all btree into disk, to make
1414  * qgroup works.
1415  */
qgroup_account_snapshot(struct btrfs_trans_handle * trans,struct btrfs_root * src,struct btrfs_root * parent,struct btrfs_qgroup_inherit * inherit,u64 dst_objectid)1416 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1417 				   struct btrfs_root *src,
1418 				   struct btrfs_root *parent,
1419 				   struct btrfs_qgroup_inherit *inherit,
1420 				   u64 dst_objectid)
1421 {
1422 	struct btrfs_fs_info *fs_info = src->fs_info;
1423 	int ret;
1424 
1425 	/*
1426 	 * Save some performance in the case that qgroups are not
1427 	 * enabled. If this check races with the ioctl, rescan will
1428 	 * kick in anyway.
1429 	 */
1430 	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1431 		return 0;
1432 
1433 	/*
1434 	 * Ensure dirty @src will be committed.  Or, after coming
1435 	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1436 	 * recorded root will never be updated again, causing an outdated root
1437 	 * item.
1438 	 */
1439 	record_root_in_trans(trans, src, 1);
1440 
1441 	/*
1442 	 * We are going to commit transaction, see btrfs_commit_transaction()
1443 	 * comment for reason locking tree_log_mutex
1444 	 */
1445 	mutex_lock(&fs_info->tree_log_mutex);
1446 
1447 	ret = commit_fs_roots(trans);
1448 	if (ret)
1449 		goto out;
1450 	ret = btrfs_qgroup_account_extents(trans);
1451 	if (ret < 0)
1452 		goto out;
1453 
1454 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1455 	ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1456 				   inherit);
1457 	if (ret < 0)
1458 		goto out;
1459 
1460 	/*
1461 	 * Now we do a simplified commit transaction, which will:
1462 	 * 1) commit all subvolume and extent tree
1463 	 *    To ensure all subvolume and extent tree have a valid
1464 	 *    commit_root to accounting later insert_dir_item()
1465 	 * 2) write all btree blocks onto disk
1466 	 *    This is to make sure later btree modification will be cowed
1467 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1468 	 * In this simplified commit, we don't really care about other trees
1469 	 * like chunk and root tree, as they won't affect qgroup.
1470 	 * And we don't write super to avoid half committed status.
1471 	 */
1472 	ret = commit_cowonly_roots(trans);
1473 	if (ret)
1474 		goto out;
1475 	switch_commit_roots(trans);
1476 	ret = btrfs_write_and_wait_transaction(trans);
1477 	if (ret)
1478 		btrfs_handle_fs_error(fs_info, ret,
1479 			"Error while writing out transaction for qgroup");
1480 
1481 out:
1482 	mutex_unlock(&fs_info->tree_log_mutex);
1483 
1484 	/*
1485 	 * Force parent root to be updated, as we recorded it before so its
1486 	 * last_trans == cur_transid.
1487 	 * Or it won't be committed again onto disk after later
1488 	 * insert_dir_item()
1489 	 */
1490 	if (!ret)
1491 		record_root_in_trans(trans, parent, 1);
1492 	return ret;
1493 }
1494 
1495 /*
1496  * new snapshots need to be created at a very specific time in the
1497  * transaction commit.  This does the actual creation.
1498  *
1499  * Note:
1500  * If the error which may affect the commitment of the current transaction
1501  * happens, we should return the error number. If the error which just affect
1502  * the creation of the pending snapshots, just return 0.
1503  */
create_pending_snapshot(struct btrfs_trans_handle * trans,struct btrfs_pending_snapshot * pending)1504 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1505 				   struct btrfs_pending_snapshot *pending)
1506 {
1507 
1508 	struct btrfs_fs_info *fs_info = trans->fs_info;
1509 	struct btrfs_key key;
1510 	struct btrfs_root_item *new_root_item;
1511 	struct btrfs_root *tree_root = fs_info->tree_root;
1512 	struct btrfs_root *root = pending->root;
1513 	struct btrfs_root *parent_root;
1514 	struct btrfs_block_rsv *rsv;
1515 	struct inode *parent_inode;
1516 	struct btrfs_path *path;
1517 	struct btrfs_dir_item *dir_item;
1518 	struct dentry *dentry;
1519 	struct extent_buffer *tmp;
1520 	struct extent_buffer *old;
1521 	struct timespec64 cur_time;
1522 	int ret = 0;
1523 	u64 to_reserve = 0;
1524 	u64 index = 0;
1525 	u64 objectid;
1526 	u64 root_flags;
1527 
1528 	ASSERT(pending->path);
1529 	path = pending->path;
1530 
1531 	ASSERT(pending->root_item);
1532 	new_root_item = pending->root_item;
1533 
1534 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1535 	if (pending->error)
1536 		goto no_free_objectid;
1537 
1538 	/*
1539 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1540 	 * accounted by later btrfs_qgroup_inherit().
1541 	 */
1542 	btrfs_set_skip_qgroup(trans, objectid);
1543 
1544 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1545 
1546 	if (to_reserve > 0) {
1547 		pending->error = btrfs_block_rsv_add(root,
1548 						     &pending->block_rsv,
1549 						     to_reserve,
1550 						     BTRFS_RESERVE_NO_FLUSH);
1551 		if (pending->error)
1552 			goto clear_skip_qgroup;
1553 	}
1554 
1555 	key.objectid = objectid;
1556 	key.offset = (u64)-1;
1557 	key.type = BTRFS_ROOT_ITEM_KEY;
1558 
1559 	rsv = trans->block_rsv;
1560 	trans->block_rsv = &pending->block_rsv;
1561 	trans->bytes_reserved = trans->block_rsv->reserved;
1562 	trace_btrfs_space_reservation(fs_info, "transaction",
1563 				      trans->transid,
1564 				      trans->bytes_reserved, 1);
1565 	dentry = pending->dentry;
1566 	parent_inode = pending->dir;
1567 	parent_root = BTRFS_I(parent_inode)->root;
1568 	record_root_in_trans(trans, parent_root, 0);
1569 
1570 	cur_time = current_time(parent_inode);
1571 
1572 	/*
1573 	 * insert the directory item
1574 	 */
1575 	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1576 	BUG_ON(ret); /* -ENOMEM */
1577 
1578 	/* check if there is a file/dir which has the same name. */
1579 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1580 					 btrfs_ino(BTRFS_I(parent_inode)),
1581 					 dentry->d_name.name,
1582 					 dentry->d_name.len, 0);
1583 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1584 		pending->error = -EEXIST;
1585 		goto dir_item_existed;
1586 	} else if (IS_ERR(dir_item)) {
1587 		ret = PTR_ERR(dir_item);
1588 		btrfs_abort_transaction(trans, ret);
1589 		goto fail;
1590 	}
1591 	btrfs_release_path(path);
1592 
1593 	/*
1594 	 * pull in the delayed directory update
1595 	 * and the delayed inode item
1596 	 * otherwise we corrupt the FS during
1597 	 * snapshot
1598 	 */
1599 	ret = btrfs_run_delayed_items(trans);
1600 	if (ret) {	/* Transaction aborted */
1601 		btrfs_abort_transaction(trans, ret);
1602 		goto fail;
1603 	}
1604 
1605 	record_root_in_trans(trans, root, 0);
1606 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1607 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1608 	btrfs_check_and_init_root_item(new_root_item);
1609 
1610 	root_flags = btrfs_root_flags(new_root_item);
1611 	if (pending->readonly)
1612 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1613 	else
1614 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1615 	btrfs_set_root_flags(new_root_item, root_flags);
1616 
1617 	btrfs_set_root_generation_v2(new_root_item,
1618 			trans->transid);
1619 	generate_random_guid(new_root_item->uuid);
1620 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1621 			BTRFS_UUID_SIZE);
1622 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1623 		memset(new_root_item->received_uuid, 0,
1624 		       sizeof(new_root_item->received_uuid));
1625 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1626 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1627 		btrfs_set_root_stransid(new_root_item, 0);
1628 		btrfs_set_root_rtransid(new_root_item, 0);
1629 	}
1630 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1631 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1632 	btrfs_set_root_otransid(new_root_item, trans->transid);
1633 
1634 	old = btrfs_lock_root_node(root);
1635 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1636 			      BTRFS_NESTING_COW);
1637 	if (ret) {
1638 		btrfs_tree_unlock(old);
1639 		free_extent_buffer(old);
1640 		btrfs_abort_transaction(trans, ret);
1641 		goto fail;
1642 	}
1643 
1644 	btrfs_set_lock_blocking_write(old);
1645 
1646 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1647 	/* clean up in any case */
1648 	btrfs_tree_unlock(old);
1649 	free_extent_buffer(old);
1650 	if (ret) {
1651 		btrfs_abort_transaction(trans, ret);
1652 		goto fail;
1653 	}
1654 	/* see comments in should_cow_block() */
1655 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1656 	smp_wmb();
1657 
1658 	btrfs_set_root_node(new_root_item, tmp);
1659 	/* record when the snapshot was created in key.offset */
1660 	key.offset = trans->transid;
1661 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1662 	btrfs_tree_unlock(tmp);
1663 	free_extent_buffer(tmp);
1664 	if (ret) {
1665 		btrfs_abort_transaction(trans, ret);
1666 		goto fail;
1667 	}
1668 
1669 	/*
1670 	 * insert root back/forward references
1671 	 */
1672 	ret = btrfs_add_root_ref(trans, objectid,
1673 				 parent_root->root_key.objectid,
1674 				 btrfs_ino(BTRFS_I(parent_inode)), index,
1675 				 dentry->d_name.name, dentry->d_name.len);
1676 	if (ret) {
1677 		btrfs_abort_transaction(trans, ret);
1678 		goto fail;
1679 	}
1680 
1681 	key.offset = (u64)-1;
1682 	pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1683 	if (IS_ERR(pending->snap)) {
1684 		ret = PTR_ERR(pending->snap);
1685 		pending->snap = NULL;
1686 		btrfs_abort_transaction(trans, ret);
1687 		goto fail;
1688 	}
1689 
1690 	ret = btrfs_reloc_post_snapshot(trans, pending);
1691 	if (ret) {
1692 		btrfs_abort_transaction(trans, ret);
1693 		goto fail;
1694 	}
1695 
1696 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1697 	if (ret) {
1698 		btrfs_abort_transaction(trans, ret);
1699 		goto fail;
1700 	}
1701 
1702 	/*
1703 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1704 	 * snapshot hack to do fast snapshot.
1705 	 * To co-operate with that hack, we do hack again.
1706 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1707 	 */
1708 	ret = qgroup_account_snapshot(trans, root, parent_root,
1709 				      pending->inherit, objectid);
1710 	if (ret < 0)
1711 		goto fail;
1712 
1713 	ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1714 				    dentry->d_name.len, BTRFS_I(parent_inode),
1715 				    &key, BTRFS_FT_DIR, index);
1716 	/* We have check then name at the beginning, so it is impossible. */
1717 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1718 	if (ret) {
1719 		btrfs_abort_transaction(trans, ret);
1720 		goto fail;
1721 	}
1722 
1723 	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1724 					 dentry->d_name.len * 2);
1725 	parent_inode->i_mtime = parent_inode->i_ctime =
1726 		current_time(parent_inode);
1727 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1728 	if (ret) {
1729 		btrfs_abort_transaction(trans, ret);
1730 		goto fail;
1731 	}
1732 	ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1733 				  BTRFS_UUID_KEY_SUBVOL,
1734 				  objectid);
1735 	if (ret) {
1736 		btrfs_abort_transaction(trans, ret);
1737 		goto fail;
1738 	}
1739 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1740 		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1741 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1742 					  objectid);
1743 		if (ret && ret != -EEXIST) {
1744 			btrfs_abort_transaction(trans, ret);
1745 			goto fail;
1746 		}
1747 	}
1748 
1749 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1750 	if (ret) {
1751 		btrfs_abort_transaction(trans, ret);
1752 		goto fail;
1753 	}
1754 
1755 fail:
1756 	pending->error = ret;
1757 dir_item_existed:
1758 	trans->block_rsv = rsv;
1759 	trans->bytes_reserved = 0;
1760 clear_skip_qgroup:
1761 	btrfs_clear_skip_qgroup(trans);
1762 no_free_objectid:
1763 	kfree(new_root_item);
1764 	pending->root_item = NULL;
1765 	btrfs_free_path(path);
1766 	pending->path = NULL;
1767 
1768 	return ret;
1769 }
1770 
1771 /*
1772  * create all the snapshots we've scheduled for creation
1773  */
create_pending_snapshots(struct btrfs_trans_handle * trans)1774 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1775 {
1776 	struct btrfs_pending_snapshot *pending, *next;
1777 	struct list_head *head = &trans->transaction->pending_snapshots;
1778 	int ret = 0;
1779 
1780 	list_for_each_entry_safe(pending, next, head, list) {
1781 		list_del(&pending->list);
1782 		ret = create_pending_snapshot(trans, pending);
1783 		if (ret)
1784 			break;
1785 	}
1786 	return ret;
1787 }
1788 
update_super_roots(struct btrfs_fs_info * fs_info)1789 static void update_super_roots(struct btrfs_fs_info *fs_info)
1790 {
1791 	struct btrfs_root_item *root_item;
1792 	struct btrfs_super_block *super;
1793 
1794 	super = fs_info->super_copy;
1795 
1796 	root_item = &fs_info->chunk_root->root_item;
1797 	super->chunk_root = root_item->bytenr;
1798 	super->chunk_root_generation = root_item->generation;
1799 	super->chunk_root_level = root_item->level;
1800 
1801 	root_item = &fs_info->tree_root->root_item;
1802 	super->root = root_item->bytenr;
1803 	super->generation = root_item->generation;
1804 	super->root_level = root_item->level;
1805 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1806 		super->cache_generation = root_item->generation;
1807 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1808 		super->uuid_tree_generation = root_item->generation;
1809 }
1810 
btrfs_transaction_in_commit(struct btrfs_fs_info * info)1811 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1812 {
1813 	struct btrfs_transaction *trans;
1814 	int ret = 0;
1815 
1816 	spin_lock(&info->trans_lock);
1817 	trans = info->running_transaction;
1818 	if (trans)
1819 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1820 	spin_unlock(&info->trans_lock);
1821 	return ret;
1822 }
1823 
btrfs_transaction_blocked(struct btrfs_fs_info * info)1824 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1825 {
1826 	struct btrfs_transaction *trans;
1827 	int ret = 0;
1828 
1829 	spin_lock(&info->trans_lock);
1830 	trans = info->running_transaction;
1831 	if (trans)
1832 		ret = is_transaction_blocked(trans);
1833 	spin_unlock(&info->trans_lock);
1834 	return ret;
1835 }
1836 
1837 /*
1838  * wait for the current transaction commit to start and block subsequent
1839  * transaction joins
1840  */
wait_current_trans_commit_start(struct btrfs_fs_info * fs_info,struct btrfs_transaction * trans)1841 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1842 					    struct btrfs_transaction *trans)
1843 {
1844 	wait_event(fs_info->transaction_blocked_wait,
1845 		   trans->state >= TRANS_STATE_COMMIT_START ||
1846 		   TRANS_ABORTED(trans));
1847 }
1848 
1849 /*
1850  * wait for the current transaction to start and then become unblocked.
1851  * caller holds ref.
1852  */
wait_current_trans_commit_start_and_unblock(struct btrfs_fs_info * fs_info,struct btrfs_transaction * trans)1853 static void wait_current_trans_commit_start_and_unblock(
1854 					struct btrfs_fs_info *fs_info,
1855 					struct btrfs_transaction *trans)
1856 {
1857 	wait_event(fs_info->transaction_wait,
1858 		   trans->state >= TRANS_STATE_UNBLOCKED ||
1859 		   TRANS_ABORTED(trans));
1860 }
1861 
1862 /*
1863  * commit transactions asynchronously. once btrfs_commit_transaction_async
1864  * returns, any subsequent transaction will not be allowed to join.
1865  */
1866 struct btrfs_async_commit {
1867 	struct btrfs_trans_handle *newtrans;
1868 	struct work_struct work;
1869 };
1870 
do_async_commit(struct work_struct * work)1871 static void do_async_commit(struct work_struct *work)
1872 {
1873 	struct btrfs_async_commit *ac =
1874 		container_of(work, struct btrfs_async_commit, work);
1875 
1876 	/*
1877 	 * We've got freeze protection passed with the transaction.
1878 	 * Tell lockdep about it.
1879 	 */
1880 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1881 		__sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1882 
1883 	current->journal_info = ac->newtrans;
1884 
1885 	btrfs_commit_transaction(ac->newtrans);
1886 	kfree(ac);
1887 }
1888 
btrfs_commit_transaction_async(struct btrfs_trans_handle * trans,int wait_for_unblock)1889 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1890 				   int wait_for_unblock)
1891 {
1892 	struct btrfs_fs_info *fs_info = trans->fs_info;
1893 	struct btrfs_async_commit *ac;
1894 	struct btrfs_transaction *cur_trans;
1895 
1896 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1897 	if (!ac)
1898 		return -ENOMEM;
1899 
1900 	INIT_WORK(&ac->work, do_async_commit);
1901 	ac->newtrans = btrfs_join_transaction(trans->root);
1902 	if (IS_ERR(ac->newtrans)) {
1903 		int err = PTR_ERR(ac->newtrans);
1904 		kfree(ac);
1905 		return err;
1906 	}
1907 
1908 	/* take transaction reference */
1909 	cur_trans = trans->transaction;
1910 	refcount_inc(&cur_trans->use_count);
1911 
1912 	btrfs_end_transaction(trans);
1913 
1914 	/*
1915 	 * Tell lockdep we've released the freeze rwsem, since the
1916 	 * async commit thread will be the one to unlock it.
1917 	 */
1918 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1919 		__sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1920 
1921 	schedule_work(&ac->work);
1922 
1923 	/* wait for transaction to start and unblock */
1924 	if (wait_for_unblock)
1925 		wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1926 	else
1927 		wait_current_trans_commit_start(fs_info, cur_trans);
1928 
1929 	if (current->journal_info == trans)
1930 		current->journal_info = NULL;
1931 
1932 	btrfs_put_transaction(cur_trans);
1933 	return 0;
1934 }
1935 
1936 
cleanup_transaction(struct btrfs_trans_handle * trans,int err)1937 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1938 {
1939 	struct btrfs_fs_info *fs_info = trans->fs_info;
1940 	struct btrfs_transaction *cur_trans = trans->transaction;
1941 
1942 	WARN_ON(refcount_read(&trans->use_count) > 1);
1943 
1944 	btrfs_abort_transaction(trans, err);
1945 
1946 	spin_lock(&fs_info->trans_lock);
1947 
1948 	/*
1949 	 * If the transaction is removed from the list, it means this
1950 	 * transaction has been committed successfully, so it is impossible
1951 	 * to call the cleanup function.
1952 	 */
1953 	BUG_ON(list_empty(&cur_trans->list));
1954 
1955 	if (cur_trans == fs_info->running_transaction) {
1956 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1957 		spin_unlock(&fs_info->trans_lock);
1958 		wait_event(cur_trans->writer_wait,
1959 			   atomic_read(&cur_trans->num_writers) == 1);
1960 
1961 		spin_lock(&fs_info->trans_lock);
1962 	}
1963 
1964 	/*
1965 	 * Now that we know no one else is still using the transaction we can
1966 	 * remove the transaction from the list of transactions. This avoids
1967 	 * the transaction kthread from cleaning up the transaction while some
1968 	 * other task is still using it, which could result in a use-after-free
1969 	 * on things like log trees, as it forces the transaction kthread to
1970 	 * wait for this transaction to be cleaned up by us.
1971 	 */
1972 	list_del_init(&cur_trans->list);
1973 
1974 	spin_unlock(&fs_info->trans_lock);
1975 
1976 	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1977 
1978 	spin_lock(&fs_info->trans_lock);
1979 	if (cur_trans == fs_info->running_transaction)
1980 		fs_info->running_transaction = NULL;
1981 	spin_unlock(&fs_info->trans_lock);
1982 
1983 	if (trans->type & __TRANS_FREEZABLE)
1984 		sb_end_intwrite(fs_info->sb);
1985 	btrfs_put_transaction(cur_trans);
1986 	btrfs_put_transaction(cur_trans);
1987 
1988 	trace_btrfs_transaction_commit(trans->root);
1989 
1990 	if (current->journal_info == trans)
1991 		current->journal_info = NULL;
1992 	btrfs_scrub_cancel(fs_info);
1993 
1994 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1995 }
1996 
1997 /*
1998  * Release reserved delayed ref space of all pending block groups of the
1999  * transaction and remove them from the list
2000  */
btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle * trans)2001 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2002 {
2003        struct btrfs_fs_info *fs_info = trans->fs_info;
2004        struct btrfs_block_group *block_group, *tmp;
2005 
2006        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2007                btrfs_delayed_refs_rsv_release(fs_info, 1);
2008                list_del_init(&block_group->bg_list);
2009        }
2010 }
2011 
btrfs_start_delalloc_flush(struct btrfs_trans_handle * trans)2012 static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans)
2013 {
2014 	struct btrfs_fs_info *fs_info = trans->fs_info;
2015 
2016 	/*
2017 	 * We use writeback_inodes_sb here because if we used
2018 	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2019 	 * Currently are holding the fs freeze lock, if we do an async flush
2020 	 * we'll do btrfs_join_transaction() and deadlock because we need to
2021 	 * wait for the fs freeze lock.  Using the direct flushing we benefit
2022 	 * from already being in a transaction and our join_transaction doesn't
2023 	 * have to re-take the fs freeze lock.
2024 	 */
2025 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
2026 		writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2027 	} else {
2028 		struct btrfs_pending_snapshot *pending;
2029 		struct list_head *head = &trans->transaction->pending_snapshots;
2030 
2031 		/*
2032 		 * Flush dellaloc for any root that is going to be snapshotted.
2033 		 * This is done to avoid a corrupted version of files, in the
2034 		 * snapshots, that had both buffered and direct IO writes (even
2035 		 * if they were done sequentially) due to an unordered update of
2036 		 * the inode's size on disk.
2037 		 */
2038 		list_for_each_entry(pending, head, list) {
2039 			int ret;
2040 
2041 			ret = btrfs_start_delalloc_snapshot(pending->root);
2042 			if (ret)
2043 				return ret;
2044 		}
2045 	}
2046 	return 0;
2047 }
2048 
btrfs_wait_delalloc_flush(struct btrfs_trans_handle * trans)2049 static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans)
2050 {
2051 	struct btrfs_fs_info *fs_info = trans->fs_info;
2052 
2053 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
2054 		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2055 	} else {
2056 		struct btrfs_pending_snapshot *pending;
2057 		struct list_head *head = &trans->transaction->pending_snapshots;
2058 
2059 		/*
2060 		 * Wait for any dellaloc that we started previously for the roots
2061 		 * that are going to be snapshotted. This is to avoid a corrupted
2062 		 * version of files in the snapshots that had both buffered and
2063 		 * direct IO writes (even if they were done sequentially).
2064 		 */
2065 		list_for_each_entry(pending, head, list)
2066 			btrfs_wait_ordered_extents(pending->root,
2067 						   U64_MAX, 0, U64_MAX);
2068 	}
2069 }
2070 
btrfs_commit_transaction(struct btrfs_trans_handle * trans)2071 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2072 {
2073 	struct btrfs_fs_info *fs_info = trans->fs_info;
2074 	struct btrfs_transaction *cur_trans = trans->transaction;
2075 	struct btrfs_transaction *prev_trans = NULL;
2076 	int ret;
2077 
2078 	ASSERT(refcount_read(&trans->use_count) == 1);
2079 
2080 	/*
2081 	 * Some places just start a transaction to commit it.  We need to make
2082 	 * sure that if this commit fails that the abort code actually marks the
2083 	 * transaction as failed, so set trans->dirty to make the abort code do
2084 	 * the right thing.
2085 	 */
2086 	trans->dirty = true;
2087 
2088 	/* Stop the commit early if ->aborted is set */
2089 	if (TRANS_ABORTED(cur_trans)) {
2090 		ret = cur_trans->aborted;
2091 		btrfs_end_transaction(trans);
2092 		return ret;
2093 	}
2094 
2095 	btrfs_trans_release_metadata(trans);
2096 	trans->block_rsv = NULL;
2097 
2098 	/* make a pass through all the delayed refs we have so far
2099 	 * any runnings procs may add more while we are here
2100 	 */
2101 	ret = btrfs_run_delayed_refs(trans, 0);
2102 	if (ret) {
2103 		btrfs_end_transaction(trans);
2104 		return ret;
2105 	}
2106 
2107 	cur_trans = trans->transaction;
2108 
2109 	/*
2110 	 * set the flushing flag so procs in this transaction have to
2111 	 * start sending their work down.
2112 	 */
2113 	cur_trans->delayed_refs.flushing = 1;
2114 	smp_wmb();
2115 
2116 	btrfs_create_pending_block_groups(trans);
2117 
2118 	ret = btrfs_run_delayed_refs(trans, 0);
2119 	if (ret) {
2120 		btrfs_end_transaction(trans);
2121 		return ret;
2122 	}
2123 
2124 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2125 		int run_it = 0;
2126 
2127 		/* this mutex is also taken before trying to set
2128 		 * block groups readonly.  We need to make sure
2129 		 * that nobody has set a block group readonly
2130 		 * after a extents from that block group have been
2131 		 * allocated for cache files.  btrfs_set_block_group_ro
2132 		 * will wait for the transaction to commit if it
2133 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2134 		 *
2135 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2136 		 * only one process starts all the block group IO.  It wouldn't
2137 		 * hurt to have more than one go through, but there's no
2138 		 * real advantage to it either.
2139 		 */
2140 		mutex_lock(&fs_info->ro_block_group_mutex);
2141 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2142 				      &cur_trans->flags))
2143 			run_it = 1;
2144 		mutex_unlock(&fs_info->ro_block_group_mutex);
2145 
2146 		if (run_it) {
2147 			ret = btrfs_start_dirty_block_groups(trans);
2148 			if (ret) {
2149 				btrfs_end_transaction(trans);
2150 				return ret;
2151 			}
2152 		}
2153 	}
2154 
2155 	spin_lock(&fs_info->trans_lock);
2156 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2157 		spin_unlock(&fs_info->trans_lock);
2158 		refcount_inc(&cur_trans->use_count);
2159 		ret = btrfs_end_transaction(trans);
2160 
2161 		wait_for_commit(cur_trans);
2162 
2163 		if (TRANS_ABORTED(cur_trans))
2164 			ret = cur_trans->aborted;
2165 
2166 		btrfs_put_transaction(cur_trans);
2167 
2168 		return ret;
2169 	}
2170 
2171 	cur_trans->state = TRANS_STATE_COMMIT_START;
2172 	wake_up(&fs_info->transaction_blocked_wait);
2173 
2174 	if (cur_trans->list.prev != &fs_info->trans_list) {
2175 		prev_trans = list_entry(cur_trans->list.prev,
2176 					struct btrfs_transaction, list);
2177 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
2178 			refcount_inc(&prev_trans->use_count);
2179 			spin_unlock(&fs_info->trans_lock);
2180 
2181 			wait_for_commit(prev_trans);
2182 			ret = READ_ONCE(prev_trans->aborted);
2183 
2184 			btrfs_put_transaction(prev_trans);
2185 			if (ret)
2186 				goto cleanup_transaction;
2187 		} else {
2188 			spin_unlock(&fs_info->trans_lock);
2189 		}
2190 	} else {
2191 		spin_unlock(&fs_info->trans_lock);
2192 		/*
2193 		 * The previous transaction was aborted and was already removed
2194 		 * from the list of transactions at fs_info->trans_list. So we
2195 		 * abort to prevent writing a new superblock that reflects a
2196 		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2197 		 */
2198 		if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2199 			ret = -EROFS;
2200 			goto cleanup_transaction;
2201 		}
2202 	}
2203 
2204 	extwriter_counter_dec(cur_trans, trans->type);
2205 
2206 	ret = btrfs_start_delalloc_flush(trans);
2207 	if (ret)
2208 		goto cleanup_transaction;
2209 
2210 	ret = btrfs_run_delayed_items(trans);
2211 	if (ret)
2212 		goto cleanup_transaction;
2213 
2214 	wait_event(cur_trans->writer_wait,
2215 		   extwriter_counter_read(cur_trans) == 0);
2216 
2217 	/* some pending stuffs might be added after the previous flush. */
2218 	ret = btrfs_run_delayed_items(trans);
2219 	if (ret)
2220 		goto cleanup_transaction;
2221 
2222 	btrfs_wait_delalloc_flush(trans);
2223 
2224 	/*
2225 	 * Wait for all ordered extents started by a fast fsync that joined this
2226 	 * transaction. Otherwise if this transaction commits before the ordered
2227 	 * extents complete we lose logged data after a power failure.
2228 	 */
2229 	wait_event(cur_trans->pending_wait,
2230 		   atomic_read(&cur_trans->pending_ordered) == 0);
2231 
2232 	btrfs_scrub_pause(fs_info);
2233 	/*
2234 	 * Ok now we need to make sure to block out any other joins while we
2235 	 * commit the transaction.  We could have started a join before setting
2236 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2237 	 */
2238 	spin_lock(&fs_info->trans_lock);
2239 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2240 	spin_unlock(&fs_info->trans_lock);
2241 	wait_event(cur_trans->writer_wait,
2242 		   atomic_read(&cur_trans->num_writers) == 1);
2243 
2244 	if (TRANS_ABORTED(cur_trans)) {
2245 		ret = cur_trans->aborted;
2246 		goto scrub_continue;
2247 	}
2248 	/*
2249 	 * the reloc mutex makes sure that we stop
2250 	 * the balancing code from coming in and moving
2251 	 * extents around in the middle of the commit
2252 	 */
2253 	mutex_lock(&fs_info->reloc_mutex);
2254 
2255 	/*
2256 	 * We needn't worry about the delayed items because we will
2257 	 * deal with them in create_pending_snapshot(), which is the
2258 	 * core function of the snapshot creation.
2259 	 */
2260 	ret = create_pending_snapshots(trans);
2261 	if (ret)
2262 		goto unlock_reloc;
2263 
2264 	/*
2265 	 * We insert the dir indexes of the snapshots and update the inode
2266 	 * of the snapshots' parents after the snapshot creation, so there
2267 	 * are some delayed items which are not dealt with. Now deal with
2268 	 * them.
2269 	 *
2270 	 * We needn't worry that this operation will corrupt the snapshots,
2271 	 * because all the tree which are snapshoted will be forced to COW
2272 	 * the nodes and leaves.
2273 	 */
2274 	ret = btrfs_run_delayed_items(trans);
2275 	if (ret)
2276 		goto unlock_reloc;
2277 
2278 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2279 	if (ret)
2280 		goto unlock_reloc;
2281 
2282 	/*
2283 	 * make sure none of the code above managed to slip in a
2284 	 * delayed item
2285 	 */
2286 	btrfs_assert_delayed_root_empty(fs_info);
2287 
2288 	WARN_ON(cur_trans != trans->transaction);
2289 
2290 	/* btrfs_commit_tree_roots is responsible for getting the
2291 	 * various roots consistent with each other.  Every pointer
2292 	 * in the tree of tree roots has to point to the most up to date
2293 	 * root for every subvolume and other tree.  So, we have to keep
2294 	 * the tree logging code from jumping in and changing any
2295 	 * of the trees.
2296 	 *
2297 	 * At this point in the commit, there can't be any tree-log
2298 	 * writers, but a little lower down we drop the trans mutex
2299 	 * and let new people in.  By holding the tree_log_mutex
2300 	 * from now until after the super is written, we avoid races
2301 	 * with the tree-log code.
2302 	 */
2303 	mutex_lock(&fs_info->tree_log_mutex);
2304 
2305 	ret = commit_fs_roots(trans);
2306 	if (ret)
2307 		goto unlock_tree_log;
2308 
2309 	/*
2310 	 * Since the transaction is done, we can apply the pending changes
2311 	 * before the next transaction.
2312 	 */
2313 	btrfs_apply_pending_changes(fs_info);
2314 
2315 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2316 	 * safe to free the root of tree log roots
2317 	 */
2318 	btrfs_free_log_root_tree(trans, fs_info);
2319 
2320 	/*
2321 	 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2322 	 * new delayed refs. Must handle them or qgroup can be wrong.
2323 	 */
2324 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2325 	if (ret)
2326 		goto unlock_tree_log;
2327 
2328 	/*
2329 	 * Since fs roots are all committed, we can get a quite accurate
2330 	 * new_roots. So let's do quota accounting.
2331 	 */
2332 	ret = btrfs_qgroup_account_extents(trans);
2333 	if (ret < 0)
2334 		goto unlock_tree_log;
2335 
2336 	ret = commit_cowonly_roots(trans);
2337 	if (ret)
2338 		goto unlock_tree_log;
2339 
2340 	/*
2341 	 * The tasks which save the space cache and inode cache may also
2342 	 * update ->aborted, check it.
2343 	 */
2344 	if (TRANS_ABORTED(cur_trans)) {
2345 		ret = cur_trans->aborted;
2346 		goto unlock_tree_log;
2347 	}
2348 
2349 	cur_trans = fs_info->running_transaction;
2350 
2351 	btrfs_set_root_node(&fs_info->tree_root->root_item,
2352 			    fs_info->tree_root->node);
2353 	list_add_tail(&fs_info->tree_root->dirty_list,
2354 		      &cur_trans->switch_commits);
2355 
2356 	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2357 			    fs_info->chunk_root->node);
2358 	list_add_tail(&fs_info->chunk_root->dirty_list,
2359 		      &cur_trans->switch_commits);
2360 
2361 	switch_commit_roots(trans);
2362 
2363 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2364 	ASSERT(list_empty(&cur_trans->io_bgs));
2365 	update_super_roots(fs_info);
2366 
2367 	btrfs_set_super_log_root(fs_info->super_copy, 0);
2368 	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2369 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2370 	       sizeof(*fs_info->super_copy));
2371 
2372 	btrfs_commit_device_sizes(cur_trans);
2373 
2374 	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2375 	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2376 
2377 	btrfs_trans_release_chunk_metadata(trans);
2378 
2379 	spin_lock(&fs_info->trans_lock);
2380 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2381 	fs_info->running_transaction = NULL;
2382 	spin_unlock(&fs_info->trans_lock);
2383 	mutex_unlock(&fs_info->reloc_mutex);
2384 
2385 	wake_up(&fs_info->transaction_wait);
2386 
2387 	ret = btrfs_write_and_wait_transaction(trans);
2388 	if (ret) {
2389 		btrfs_handle_fs_error(fs_info, ret,
2390 				      "Error while writing out transaction");
2391 		/*
2392 		 * reloc_mutex has been unlocked, tree_log_mutex is still held
2393 		 * but we can't jump to unlock_tree_log causing double unlock
2394 		 */
2395 		mutex_unlock(&fs_info->tree_log_mutex);
2396 		goto scrub_continue;
2397 	}
2398 
2399 	ret = write_all_supers(fs_info, 0);
2400 	/*
2401 	 * the super is written, we can safely allow the tree-loggers
2402 	 * to go about their business
2403 	 */
2404 	mutex_unlock(&fs_info->tree_log_mutex);
2405 	if (ret)
2406 		goto scrub_continue;
2407 
2408 	btrfs_finish_extent_commit(trans);
2409 
2410 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2411 		btrfs_clear_space_info_full(fs_info);
2412 
2413 	fs_info->last_trans_committed = cur_trans->transid;
2414 	/*
2415 	 * We needn't acquire the lock here because there is no other task
2416 	 * which can change it.
2417 	 */
2418 	cur_trans->state = TRANS_STATE_COMPLETED;
2419 	wake_up(&cur_trans->commit_wait);
2420 
2421 	spin_lock(&fs_info->trans_lock);
2422 	list_del_init(&cur_trans->list);
2423 	spin_unlock(&fs_info->trans_lock);
2424 
2425 	btrfs_put_transaction(cur_trans);
2426 	btrfs_put_transaction(cur_trans);
2427 
2428 	if (trans->type & __TRANS_FREEZABLE)
2429 		sb_end_intwrite(fs_info->sb);
2430 
2431 	trace_btrfs_transaction_commit(trans->root);
2432 
2433 	btrfs_scrub_continue(fs_info);
2434 
2435 	if (current->journal_info == trans)
2436 		current->journal_info = NULL;
2437 
2438 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2439 
2440 	return ret;
2441 
2442 unlock_tree_log:
2443 	mutex_unlock(&fs_info->tree_log_mutex);
2444 unlock_reloc:
2445 	mutex_unlock(&fs_info->reloc_mutex);
2446 scrub_continue:
2447 	btrfs_scrub_continue(fs_info);
2448 cleanup_transaction:
2449 	btrfs_trans_release_metadata(trans);
2450 	btrfs_cleanup_pending_block_groups(trans);
2451 	btrfs_trans_release_chunk_metadata(trans);
2452 	trans->block_rsv = NULL;
2453 	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2454 	if (current->journal_info == trans)
2455 		current->journal_info = NULL;
2456 	cleanup_transaction(trans, ret);
2457 
2458 	return ret;
2459 }
2460 
2461 /*
2462  * return < 0 if error
2463  * 0 if there are no more dead_roots at the time of call
2464  * 1 there are more to be processed, call me again
2465  *
2466  * The return value indicates there are certainly more snapshots to delete, but
2467  * if there comes a new one during processing, it may return 0. We don't mind,
2468  * because btrfs_commit_super will poke cleaner thread and it will process it a
2469  * few seconds later.
2470  */
btrfs_clean_one_deleted_snapshot(struct btrfs_root * root)2471 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2472 {
2473 	int ret;
2474 	struct btrfs_fs_info *fs_info = root->fs_info;
2475 
2476 	spin_lock(&fs_info->trans_lock);
2477 	if (list_empty(&fs_info->dead_roots)) {
2478 		spin_unlock(&fs_info->trans_lock);
2479 		return 0;
2480 	}
2481 	root = list_first_entry(&fs_info->dead_roots,
2482 			struct btrfs_root, root_list);
2483 	list_del_init(&root->root_list);
2484 	spin_unlock(&fs_info->trans_lock);
2485 
2486 	btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2487 
2488 	btrfs_kill_all_delayed_nodes(root);
2489 	if (root->ino_cache_inode) {
2490 		iput(root->ino_cache_inode);
2491 		root->ino_cache_inode = NULL;
2492 	}
2493 
2494 	if (btrfs_header_backref_rev(root->node) <
2495 			BTRFS_MIXED_BACKREF_REV)
2496 		ret = btrfs_drop_snapshot(root, 0, 0);
2497 	else
2498 		ret = btrfs_drop_snapshot(root, 1, 0);
2499 
2500 	btrfs_put_root(root);
2501 	return (ret < 0) ? 0 : 1;
2502 }
2503 
btrfs_apply_pending_changes(struct btrfs_fs_info * fs_info)2504 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2505 {
2506 	unsigned long prev;
2507 	unsigned long bit;
2508 
2509 	prev = xchg(&fs_info->pending_changes, 0);
2510 	if (!prev)
2511 		return;
2512 
2513 	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2514 	if (prev & bit)
2515 		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2516 	prev &= ~bit;
2517 
2518 	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2519 	if (prev & bit)
2520 		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2521 	prev &= ~bit;
2522 
2523 	bit = 1 << BTRFS_PENDING_COMMIT;
2524 	if (prev & bit)
2525 		btrfs_debug(fs_info, "pending commit done");
2526 	prev &= ~bit;
2527 
2528 	if (prev)
2529 		btrfs_warn(fs_info,
2530 			"unknown pending changes left 0x%lx, ignoring", prev);
2531 }
2532