1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 1997,1998,2003 Doug Rabson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD: releng/12.2/sys/kern/subr_bus.c 365540 2020-09-09 22:59:47Z imp $");
31
32 #include <sys/param.h>
33 #include <sys/kobj.h>
34 #include <sys/malloc.h>
35 #include <sys/queue.h>
36 #include <sys/systm.h>
37 #include <sys/bus.h>
38 #include <sys/mutex.h>
39 #include "los_hwi.h"
40
41 #ifndef BOOTVERBOSE
42 #define BOOTVERBOSE 0
43 #endif
44 int bootverbose = BOOTVERBOSE;
45
46 /*
47 * * Used to attach drivers to devclasses.
48 * */
49 typedef struct driverlink *driverlink_t;
50 struct driverlink {
51 kobj_class_t driver;
52 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */
53 int pass;
54 TAILQ_ENTRY(driverlink) passlink;
55 };
56
57 /*
58 * Forward declarations
59 */
60 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
61 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
62 typedef TAILQ_HEAD(device_list, device) device_list_t;
63
64 struct devclass {
65 TAILQ_ENTRY(devclass) link;
66 devclass_t parent; /* parent in devclass hierarchy */
67 driver_list_t drivers; /* bus devclasses store drivers for bus */
68 char *name;
69 device_t *devices; /* array of devices indexed by unit */
70 int maxunit; /* size of devices array */
71 int flags;
72 #define DC_HAS_CHILDREN 1
73 };
74
75 /**
76 * @brief Implementation of device.
77 */
78 struct device {
79 /*
80 * A device is a kernel object. The first field must be the
81 * current ops table for the object.
82 */
83 KOBJ_FIELDS;
84
85 /*
86 * Device hierarchy.
87 */
88 TAILQ_ENTRY(device) link; /**< list of devices in parent */
89 TAILQ_ENTRY(device) devlink; /**< global device list membership */
90 device_t parent; /**< parent of this device */
91 device_list_t children; /**< list of child devices */
92
93 /*
94 * Details of this device.
95 */
96 driver_t *driver; /**< current driver */
97 devclass_t devclass; /**< current device class */
98 int unit; /**< current unit number */
99 char* nameunit; /**< name+unit e.g. foodev0 */
100 char* desc; /**< driver specific description */
101 int busy; /**< count of calls to device_busy() */
102 device_state_t state; /**< current device state */
103 uint32_t devflags; /**< api level flags for device_get_flags() */
104 u_int flags; /**< internal device flags */
105 u_int order; /**< order from device_add_child_ordered() */
106 void *ivars; /**< instance variables */
107 void *softc; /**< current driver's variables */
108 };
109
110 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
111
112 #ifdef BUS_DEBUG
113 static int bus_debug = 1;
114
115 #define PDEBUG(a) if (bus_debug) {PRINTK("%s:%d: ", __func__, __LINE__), PRINTK a; PRINTK("\n");}
116 #define DEVICENAME(d) ((d)? device_get_name(d): "no device")
117 #define DRIVERNAME(d) ((d)? d->name : "no driver")
118 #define DEVCLANAME(d) ((d)? d->name : "no devclass")
119
120 /**
121 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
122 * prevent syslog from deleting initial spaces
123 */
124 #define indentprintf(p) do { int iJ; PRINTK("."); for (iJ=0; iJ<indent; iJ++) PRINTK(" "); PRINTK p ; } while (0)
125
126 static void print_device_short(device_t dev, int indent);
127 static void print_device(device_t dev, int indent);
128 void print_device_tree_short(device_t dev, int indent);
129 void print_device_tree(device_t dev, int indent);
130 static void print_driver_short(driver_t *driver, int indent);
131 static void print_driver(driver_t *driver, int indent);
132 static void print_driver_list(driver_list_t drivers, int indent);
133 static void print_devclass_short(devclass_t dc, int indent);
134 static void print_devclass(devclass_t dc, int indent);
135 void print_devclass_list_short(void);
136 void print_devclass_list(void);
137
138 #else
139 /* Make the compiler ignore the function calls */
140 #define PDEBUG(a) /* nop */
141 #define DEVICENAME(d) /* nop */
142 #define DRIVERNAME(d) /* nop */
143 #define DEVCLANAME(d) /* nop */
144
145 #define print_device_short(d,i) /* nop */
146 #define print_device(d,i) /* nop */
147 #define print_device_tree_short(d,i) /* nop */
148 #define print_device_tree(d,i) /* nop */
149 #define print_driver_short(d,i) /* nop */
150 #define print_driver(d,i) /* nop */
151 #define print_driver_list(d,i) /* nop */
152 #define print_devclass_short(d,i) /* nop */
153 #define print_devclass(d,i) /* nop */
154 #define print_devclass_list_short() /* nop */
155 #define print_devclass_list() /* nop */
156 #endif
157
158 static TAILQ_HEAD(,device) bus_data_devices;
159 static int bus_data_generation = 1;
160
161 static kobj_method_t null_methods[] = {
162 KOBJMETHOD_END
163 };
164
165 DEFINE_CLASS(null, null_methods, 0);
166
167 /*
168 * Bus pass implementation
169 */
170
171 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
172 int bus_current_pass = BUS_PASS_ROOT;
173
174 /**
175 * @brief Return the name of the device's devclass or @c NULL if there
176 * is none.
177 */
178 const char *
device_get_name(device_t dev)179 device_get_name(device_t dev)
180 {
181 if (dev != NULL && dev->devclass)
182 return (devclass_get_name(dev->devclass));
183 return (NULL);
184 }
185
186 /**
187 * @internal
188 * @brief Register the pass level of a new driver attachment
189 *
190 * Register a new driver attachment's pass level. If no driver
191 * attachment with the same pass level has been added, then @p new
192 * will be added to the global passes list.
193 *
194 * @param new the new driver attachment
195 */
196 static void
driver_register_pass(struct driverlink * new)197 driver_register_pass(struct driverlink *new)
198 {
199 struct driverlink *dl = NULL;
200
201 /* We only consider pass numbers during boot. */
202 if (bus_current_pass == BUS_PASS_DEFAULT)
203 return;
204
205 /*
206 * Walk the passes list. If we already know about this pass
207 * then there is nothing to do. If we don't, then insert this
208 * driver link into the list.
209 */
210 TAILQ_FOREACH(dl, &passes, passlink) {
211 if (dl->pass < new->pass)
212 continue;
213 if (dl->pass == new->pass)
214 return;
215 TAILQ_INSERT_BEFORE(dl, new, passlink);
216 return;
217 }
218 TAILQ_INSERT_TAIL(&passes, new, passlink);
219 }
220
221 /**
222 * @brief Raise the current bus pass
223 *
224 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS()
225 * method on the root bus to kick off a new device tree scan for each
226 * new pass level that has at least one driver.
227 */
228 void
bus_set_pass(int pass)229 bus_set_pass(int pass)
230 {
231 struct driverlink *dl = NULL;
232
233 if (bus_current_pass > pass)
234 panic("Attempt to lower bus pass level");
235
236 TAILQ_FOREACH(dl, &passes, passlink) {
237 /* Skip pass values below the current pass level. */
238 if (dl->pass <= bus_current_pass)
239 continue;
240
241 /*
242 * Bail once we hit a driver with a pass level that is
243 * too high.
244 */
245 if (dl->pass > pass)
246 break;
247
248 /*
249 * Raise the pass level to the next level and rescan
250 * the tree.
251 */
252 bus_current_pass = dl->pass;
253 BUS_NEW_PASS(root_bus);
254 }
255
256 /*
257 * If there isn't a driver registered for the requested pass,
258 * then bus_current_pass might still be less than 'pass'. Set
259 * it to 'pass' in that case.
260 */
261 if (bus_current_pass < pass)
262 bus_current_pass = pass;
263 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
264 }
265
266 /*
267 * Devclass implementation
268 */
269
270 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
271
272 /**
273 * @internal
274 * @brief Find or create a device class
275 *
276 * If a device class with the name @p classname exists, return it,
277 * otherwise if @p create is non-zero create and return a new device
278 * class.
279 *
280 * If @p parentname is non-NULL, the parent of the devclass is set to
281 * the devclass of that name.
282 *
283 * @param classname the devclass name to find or create
284 * @param parentname the parent devclass name or @c NULL
285 * @param create non-zero to create a devclass
286 */
287 static devclass_t
devclass_find_internal(const char * classname,const char * parentname,int create)288 devclass_find_internal(const char *classname, const char *parentname,
289 int create)
290 {
291 devclass_t dc;
292
293 PDEBUG(("looking for %s", classname));
294 if (!classname)
295 return (NULL);
296
297 TAILQ_FOREACH(dc, &devclasses, link) {
298 if (!strcmp(dc->name, classname))
299 break;
300 }
301
302 if (create && !dc) {
303 dc = bsd_malloc(sizeof(struct devclass) + strlen(classname) + 1,
304 M_BUS, M_NOWAIT | M_ZERO);
305 if (!dc)
306 return (NULL);
307 dc->parent = NULL;
308 dc->name = (char*) (dc + 1);
309 if (strcpy_s(dc->name, strlen(classname) + 1, classname) != EOK) {
310 bsd_free(dc, M_BUS);
311 return (NULL);
312 }
313 TAILQ_INIT(&dc->drivers);
314 TAILQ_INSERT_TAIL(&devclasses, dc, link);
315
316 PDEBUG(("create dc %p, %s", dc, classname));
317 bus_data_generation_update();
318 }
319
320 /*
321 * If a parent class is specified, then set that as our parent so
322 * that this devclass will support drivers for the parent class as
323 * well. If the parent class has the same name don't do this though
324 * as it creates a cycle that can trigger an infinite loop in
325 * device_probe_child() if a device exists for which there is no
326 * suitable driver.
327 */
328 if (parentname && dc && !dc->parent &&
329 strcmp(classname, parentname) != 0) {
330 dc->parent = devclass_find_internal(parentname, NULL, TRUE);
331 if (dc->parent == NULL) {
332 return (NULL);
333 }
334 dc->parent->flags = (unsigned int)dc->parent->flags | DC_HAS_CHILDREN;
335 }
336
337 PDEBUG(("found dc %p, %s", dc, classname));
338 return (dc);
339 }
340
341 /**
342 * @brief Create a device class
343 *
344 * If a device class with the name @p classname exists, return it,
345 * otherwise create and return a new device class.
346 *
347 * @param classname the devclass name to find or create
348 */
349 devclass_t
devclass_create(const char * classname)350 devclass_create(const char *classname)
351 {
352 return (devclass_find_internal(classname, NULL, TRUE));
353 }
354
355 /**
356 * @brief Find a device class
357 *
358 * If a device class with the name @p classname exists, return it,
359 * otherwise return @c NULL.
360 *
361 * @param classname the devclass name to find
362 */
363 devclass_t
devclass_find(const char * classname)364 devclass_find(const char *classname)
365 {
366 return (devclass_find_internal(classname, NULL, FALSE));
367 }
368
369 /**
370 * @brief Register that a device driver has been added to a devclass
371 *
372 * Register that a device driver has been added to a devclass. This
373 * is called by devclass_add_driver to accomplish the recursive
374 * notification of all the children classes of dc, as well as dc.
375 * Each layer will have BUS_DRIVER_ADDED() called for all instances of
376 * the devclass.
377 *
378 * We do a full search here of the devclass list at each iteration
379 * level to save storing children-lists in the devclass structure. If
380 * we ever move beyond a few dozen devices doing this, we may need to
381 * reevaluate...
382 *
383 * @param dc the devclass to edit
384 * @param driver the driver that was just added
385 */
386 static void
devclass_driver_added(devclass_t dc,driver_t * driver)387 devclass_driver_added(devclass_t dc, driver_t *driver)
388 {
389 devclass_t parent;
390 int i;
391
392 /*
393 * Call BUS_DRIVER_ADDED for any existing busses in this class.
394 */
395 for (i = 0; i < dc->maxunit; i++)
396 if (dc->devices[i] && device_is_attached(dc->devices[i]))
397 BUS_DRIVER_ADDED(dc->devices[i], driver);
398
399 /*
400 * Walk through the children classes. Since we only keep a
401 * single parent pointer around, we walk the entire list of
402 * devclasses looking for children. We set the
403 * DC_HAS_CHILDREN flag when a child devclass is created on
404 * the parent, so we only walk the list for those devclasses
405 * that have children.
406 */
407 if (!((unsigned int)dc->flags & DC_HAS_CHILDREN))
408 return;
409 parent = dc;
410 TAILQ_FOREACH(dc, &devclasses, link) {
411 if (dc->parent == parent)
412 devclass_driver_added(dc, driver);
413 }
414 }
415
416 /**
417 * @brief Add a device driver to a device class
418 *
419 * Add a device driver to a devclass. This is normally called
420 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
421 * all devices in the devclass will be called to allow them to attempt
422 * to re-probe any unmatched children.
423 *
424 * @param dc the devclass to edit
425 * @param driver the driver to register
426 */
427 int
devclass_add_driver(devclass_t dc,driver_t * driver,int pass,devclass_t * dcp)428 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
429 {
430 driverlink_t dl = NULL;
431 const char *parentname = NULL;
432
433 PDEBUG(("%s +", DRIVERNAME(driver)));
434
435 /* Don't allow invalid pass values. */
436 if (pass <= BUS_PASS_ROOT)
437 return (EINVAL);
438
439 dl = bsd_malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
440 if (!dl)
441 return (ENOMEM);
442
443 /*
444 * Compile the driver's methods. Also increase the reference count
445 * so that the class doesn't get freed when the last instance
446 * goes. This means we can safely use static methods and avoids a
447 * double-free in devclass_delete_driver.
448 */
449 kobj_class_compile((kobj_class_t) driver);
450
451 /*
452 * If the driver has any base classes, make the
453 * devclass inherit from the devclass of the driver's
454 * first base class. This will allow the system to
455 * search for drivers in both devclasses for children
456 * of a device using this driver.
457 */
458 if (driver->baseclasses)
459 parentname = driver->baseclasses[0]->name;
460 else
461 parentname = NULL;
462 *dcp = devclass_find_internal(driver->name, parentname, TRUE);
463
464 dl->driver = driver;
465 TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
466 driver->refs++; /* XXX: kobj_mtx */
467 dl->pass = pass;
468 driver_register_pass(dl);
469
470 devclass_driver_added(dc, driver);
471 bus_data_generation_update();
472 PDEBUG(("%s -", DRIVERNAME(driver)));
473 return (0);
474 }
475
476 /**
477 * @brief Register that a device driver has been deleted from a devclass
478 *
479 * Register that a device driver has been removed from a devclass.
480 * This is called by devclass_delete_driver to accomplish the
481 * recursive notification of all the children classes of busclass, as
482 * well as busclass. Each layer will attempt to detach the driver
483 * from any devices that are children of the bus's devclass. The function
484 * will return an error if a device fails to detach.
485 *
486 * We do a full search here of the devclass list at each iteration
487 * level to save storing children-lists in the devclass structure. If
488 * we ever move beyond a few dozen devices doing this, we may need to
489 * reevaluate...
490 *
491 * @param busclass the devclass of the parent bus
492 * @param dc the devclass of the driver being deleted
493 * @param driver the driver being deleted
494 */
495 static int
devclass_driver_deleted(devclass_t busclass,devclass_t dc,driver_t * driver)496 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
497 {
498 devclass_t parent;
499 device_t dev;
500 int error, i;
501
502 /*
503 * Disassociate from any devices. We iterate through all the
504 * devices in the devclass of the driver and detach any which are
505 * using the driver and which have a parent in the devclass which
506 * we are deleting from.
507 *
508 * Note that since a driver can be in multiple devclasses, we
509 * should not detach devices which are not children of devices in
510 * the affected devclass.
511 */
512 for (i = 0; i < dc->maxunit; i++) {
513 if (dc->devices[i]) {
514 dev = dc->devices[i];
515 if (dev->driver == driver && dev->parent &&
516 dev->parent->devclass == busclass) {
517 if ((error = device_detach(dev)) != 0)
518 return (error);
519 BUS_PROBE_NOMATCH(dev->parent, dev);
520 // devnomatch(dev);
521 dev->flags |= DF_DONENOMATCH;
522 }
523 }
524 }
525
526 /*
527 * Walk through the children classes. Since we only keep a
528 * single parent pointer around, we walk the entire list of
529 * devclasses looking for children. We set the
530 * DC_HAS_CHILDREN flag when a child devclass is created on
531 * the parent, so we only walk the list for those devclasses
532 * that have children.
533 */
534 if (!((unsigned int)busclass->flags & DC_HAS_CHILDREN))
535 return (0);
536 parent = busclass;
537 TAILQ_FOREACH(busclass, &devclasses, link) {
538 if (busclass->parent == parent) {
539 error = devclass_driver_deleted(busclass, dc, driver);
540 if (error)
541 return (error);
542 }
543 }
544 return (0);
545 }
546
547 /**
548 * @brief Delete a device driver from a device class
549 *
550 * Delete a device driver from a devclass. This is normally called
551 * automatically by DRIVER_MODULE().
552 *
553 * If the driver is currently attached to any devices,
554 * devclass_delete_driver() will first attempt to detach from each
555 * device. If one of the detach calls fails, the driver will not be
556 * deleted.
557 *
558 * @param dc the devclass to edit
559 * @param driver the driver to unregister
560 */
561 int
devclass_delete_driver(devclass_t busclass,driver_t * driver)562 devclass_delete_driver(devclass_t busclass, driver_t *driver)
563 {
564 devclass_t dc = devclass_find(driver->name);
565 driverlink_t dl = NULL;
566 int error;
567
568 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
569
570 if (!dc)
571 return (0);
572
573 /*
574 * Find the link structure in the bus' list of drivers.
575 */
576 TAILQ_FOREACH(dl, &busclass->drivers, link) {
577 if (dl->driver == driver)
578 break;
579 }
580
581 if (!dl) {
582 PDEBUG(("%s not found in %s list", driver->name,
583 busclass->name));
584 return (ENOENT);
585 }
586
587 error = devclass_driver_deleted(busclass, dc, driver);
588 if (error != 0)
589 return (error);
590
591 TAILQ_REMOVE(&busclass->drivers, dl, link);
592 bsd_free(dl, M_BUS);
593
594 /* XXX: kobj_mtx */
595 driver->refs--;
596 if (driver->refs == 0)
597 kobj_class_free((kobj_class_t) driver);
598
599 bus_data_generation_update();
600 return (0);
601 }
602
603 /**
604 * @brief Quiesces a set of device drivers from a device class
605 *
606 * Quiesce a device driver from a devclass. This is normally called
607 * automatically by DRIVER_MODULE().
608 *
609 * If the driver is currently attached to any devices,
610 * devclass_quiesece_driver() will first attempt to quiesce each
611 * device.
612 *
613 * @param dc the devclass to edit
614 * @param driver the driver to unregister
615 */
616 static int
devclass_quiesce_driver(devclass_t busclass,driver_t * driver)617 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
618 {
619 devclass_t dc = devclass_find(driver->name);
620 driverlink_t dl = NULL;
621 device_t dev;
622 int i;
623 int error;
624
625 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
626
627 if (!dc)
628 return (0);
629
630 /*
631 * Find the link structure in the bus' list of drivers.
632 */
633 TAILQ_FOREACH(dl, &busclass->drivers, link) {
634 if (dl->driver == driver)
635 break;
636 }
637
638 if (!dl) {
639 PDEBUG(("%s not found in %s list", driver->name,
640 busclass->name));
641 return (ENOENT);
642 }
643
644 /*
645 * Quiesce all devices. We iterate through all the devices in
646 * the devclass of the driver and quiesce any which are using
647 * the driver and which have a parent in the devclass which we
648 * are quiescing.
649 *
650 * Note that since a driver can be in multiple devclasses, we
651 * should not quiesce devices which are not children of
652 * devices in the affected devclass.
653 */
654 for (i = 0; i < dc->maxunit; i++) {
655 if (dc->devices[i]) {
656 dev = dc->devices[i];
657 if (dev->driver == driver && dev->parent &&
658 dev->parent->devclass == busclass) {
659 if ((error = device_quiesce(dev)) != 0)
660 return (error);
661 }
662 }
663 }
664
665 return (0);
666 }
667
668 /**
669 * @internal
670 */
671 static driverlink_t
devclass_find_driver_internal(devclass_t dc,const char * classname)672 devclass_find_driver_internal(devclass_t dc, const char *classname)
673 {
674 driverlink_t dl = NULL;
675
676 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
677
678 TAILQ_FOREACH(dl, &dc->drivers, link) {
679 if (!strcmp(dl->driver->name, classname))
680 return (dl);
681 }
682
683 PDEBUG(("not found"));
684 return (NULL);
685 }
686
687 /**
688 * @brief Return the name of the devclass
689 */
690 const char *
devclass_get_name(devclass_t dc)691 devclass_get_name(devclass_t dc)
692 {
693 return (dc->name);
694 }
695
696 /**
697 * @brief Find a device given a unit number
698 *
699 * @param dc the devclass to search
700 * @param unit the unit number to search for
701 *
702 * @returns the device with the given unit number or @c
703 * NULL if there is no such device
704 */
705 device_t
devclass_get_device(devclass_t dc,int unit)706 devclass_get_device(devclass_t dc, int unit)
707 {
708 if (dc == NULL || unit < 0 || unit >= dc->maxunit)
709 return (NULL);
710 return (dc->devices[unit]);
711 }
712
713 /**
714 * @brief Find the softc field of a device given a unit number
715 *
716 * @param dc the devclass to search
717 * @param unit the unit number to search for
718 *
719 * @returns the softc field of the device with the given
720 * unit number or @c NULL if there is no such
721 * device
722 */
723 void *
devclass_get_softc(devclass_t dc,int unit)724 devclass_get_softc(devclass_t dc, int unit)
725 {
726 device_t dev;
727
728 dev = devclass_get_device(dc, unit);
729 if (!dev)
730 return (NULL);
731
732 return (device_get_softc(dev));
733 }
734
735 /**
736 * @brief Get a list of devices in the devclass
737 *
738 * An array containing a list of all the devices in the given devclass
739 * is allocated and returned in @p *devlistp. The number of devices
740 * in the array is returned in @p *devcountp. The caller should free
741 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
742 *
743 * @param dc the devclass to examine
744 * @param devlistp points at location for array pointer return
745 * value
746 * @param devcountp points at location for array size return value
747 *
748 * @retval 0 success
749 * @retval ENOMEM the array allocation failed
750 */
751 int
devclass_get_devices(devclass_t dc,device_t ** devlistp,int * devcountp)752 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
753 {
754 int count, i;
755 device_t *list;
756
757 count = devclass_get_count(dc);
758 list = bsd_malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
759 if (!list)
760 return (ENOMEM);
761
762 count = 0;
763 for (i = 0; i < dc->maxunit; i++) {
764 if (dc->devices[i]) {
765 list[count] = dc->devices[i];
766 count++;
767 }
768 }
769
770 *devlistp = list;
771 *devcountp = count;
772
773 return (0);
774 }
775
776 /**
777 * @brief Get a list of drivers in the devclass
778 *
779 * An array containing a list of pointers to all the drivers in the
780 * given devclass is allocated and returned in @p *listp. The number
781 * of drivers in the array is returned in @p *countp. The caller should
782 * free the array using @c free(p, M_TEMP).
783 *
784 * @param dc the devclass to examine
785 * @param listp gives location for array pointer return value
786 * @param countp gives location for number of array elements
787 * return value
788 *
789 * @retval 0 success
790 * @retval ENOMEM the array allocation failed
791 */
792 int
devclass_get_drivers(devclass_t dc,driver_t *** listp,int * countp)793 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
794 {
795 driverlink_t dl = NULL;
796 driver_t **list = NULL;
797 int count;
798
799 count = 0;
800 TAILQ_FOREACH(dl, &dc->drivers, link)
801 count++;
802 list = bsd_malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
803 if (list == NULL)
804 return (ENOMEM);
805
806 count = 0;
807 TAILQ_FOREACH(dl, &dc->drivers, link) {
808 list[count] = dl->driver;
809 count++;
810 }
811 *listp = list;
812 *countp = count;
813
814 return (0);
815 }
816
817 /**
818 * @brief Get the number of devices in a devclass
819 *
820 * @param dc the devclass to examine
821 */
822 int
devclass_get_count(devclass_t dc)823 devclass_get_count(devclass_t dc)
824 {
825 int count, i;
826
827 count = 0;
828 for (i = 0; i < dc->maxunit; i++)
829 if (dc->devices[i])
830 count++;
831 return (count);
832 }
833
834 /**
835 * @brief Get the maximum unit number used in a devclass
836 *
837 * Note that this is one greater than the highest currently-allocated
838 * unit. If a null devclass_t is passed in, -1 is returned to indicate
839 * that not even the devclass has been allocated yet.
840 *
841 * @param dc the devclass to examine
842 */
843 int
devclass_get_maxunit(devclass_t dc)844 devclass_get_maxunit(devclass_t dc)
845 {
846 if (dc == NULL)
847 return (-1);
848 return (dc->maxunit);
849 }
850
851 /**
852 * @brief Find a free unit number in a devclass
853 *
854 * This function searches for the first unused unit number greater
855 * that or equal to @p unit.
856 *
857 * @param dc the devclass to examine
858 * @param unit the first unit number to check
859 */
860 int
devclass_find_free_unit(devclass_t dc,int unit)861 devclass_find_free_unit(devclass_t dc, int unit)
862 {
863 if (dc == NULL)
864 return (unit);
865 while (unit < dc->maxunit && dc->devices[unit] != NULL)
866 unit++;
867 return (unit);
868 }
869
870 /**
871 * @brief Set the parent of a devclass
872 *
873 * The parent class is normally initialised automatically by
874 * DRIVER_MODULE().
875 *
876 * @param dc the devclass to edit
877 * @param pdc the new parent devclass
878 */
879 void
devclass_set_parent(devclass_t dc,devclass_t pdc)880 devclass_set_parent(devclass_t dc, devclass_t pdc)
881 {
882 dc->parent = pdc;
883 }
884
885 /**
886 * @brief Get the parent of a devclass
887 *
888 * @param dc the devclass to examine
889 */
890 devclass_t
devclass_get_parent(devclass_t dc)891 devclass_get_parent(devclass_t dc)
892 {
893 return (dc->parent);
894 }
895
896 /**
897 * @internal
898 * @brief Allocate a unit number
899 *
900 * On entry, @p *unitp is the desired unit number (or @c -1 if any
901 * will do). The allocated unit number is returned in @p *unitp.
902
903 * @param dc the devclass to allocate from
904 * @param unitp points at the location for the allocated unit
905 * number
906 *
907 * @retval 0 success
908 * @retval EEXIST the requested unit number is already allocated
909 * @retval ENOMEM memory allocation failure
910 */
911 static int
devclass_alloc_unit(devclass_t dc,device_t dev,int * unitp)912 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
913 {
914 int unit = *unitp;
915
916 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
917
918 /* Ask the parent bus if it wants to wire this device. */
919 if (unit == -1)
920 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, &unit);
921
922 /* If we were given a wired unit number, check for existing device */
923 /* XXX imp XXX */
924 if (unit != -1) {
925 if (unit >= 0 && unit < dc->maxunit && dc->devices[unit] != NULL) {
926 if (bootverbose)
927 printf("%s: %s%d already exists; skipping it\n", dc->name, dc->name, *unitp);
928 return (EEXIST);
929 }
930 } else {
931 /* Unwired device, find the next available slot for it */
932 unit = 0;
933 for (unit = 0;; unit++) {
934 /* If this device slot is already in use, skip it. */
935 if (unit < dc->maxunit && dc->devices[unit] != NULL)
936 continue;
937
938 break;
939 }
940 }
941 PDEBUG(("mid: unit %d in devclass %s", unit, DEVCLANAME(dc)));
942 /*
943 * We've selected a unit beyond the length of the table, so let's
944 * extend the table to make room for all units up to and including
945 * this one.
946 */
947 if (unit >= dc->maxunit) {
948 device_t *newlist, *oldlist;
949 int newsize;
950
951 oldlist = dc->devices;
952 newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
953 newlist = bsd_malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
954 PDEBUG(("oldlist %p, newlist %p, newsize %d", oldlist, newlist, newsize));
955 if (!newlist)
956 return (ENOMEM);
957 PDEBUG(("start memcpy, size %d", sizeof(device_t) * dc->maxunit));
958 if (oldlist != NULL)
959 (void)memcpy_s(newlist, sizeof(device_t) * dc->maxunit, oldlist, sizeof(device_t) * dc->maxunit);
960 PDEBUG(("start memset, maxunit %d, size %d", dc->maxunit, sizeof(device_t) * (newsize - dc->maxunit)));
961 (void)memset_s(newlist + dc->maxunit, sizeof(device_t) * (newsize - dc->maxunit), 0,
962 sizeof(device_t) * (newsize - dc->maxunit));
963 dc->devices = newlist;
964 dc->maxunit = newsize;
965 if (oldlist != NULL)
966 bsd_free(oldlist, M_BUS);
967 }
968 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
969
970 *unitp = unit;
971 return (0);
972 }
973
974 /**
975 * @internal
976 */
977 static void
device_set_desc_internal(device_t dev,const char * desc,int copy)978 device_set_desc_internal(device_t dev, const char* desc, int copy)
979 {
980 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
981 bsd_free(dev->desc, M_BUS);
982 dev->flags &= ~DF_DESCMALLOCED;
983 dev->desc = NULL;
984 }
985
986 if (copy && desc) {
987 dev->desc = bsd_malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
988 if (dev->desc) {
989 if (strcpy_s(dev->desc, strlen(desc) + 1, desc) != EOK) {
990 PDEBUG(("desc internal copy desc failed!\n"));
991 }
992 dev->flags |= DF_DESCMALLOCED;
993 }
994 } else {
995 /* Avoid a -Wcast-qual warning */
996 dev->desc = (char *)(uintptr_t) desc;
997 }
998
999 bus_data_generation_update();
1000 }
1001
1002 /**
1003 * @brief Set the device's description
1004 *
1005 * The value of @c desc should be a string constant that will not
1006 * change (at least until the description is changed in a subsequent
1007 * call to device_set_desc() or device_set_desc_copy()).
1008 */
1009 void
device_set_desc(device_t dev,const char * desc)1010 device_set_desc(device_t dev, const char* desc)
1011 {
1012 device_set_desc_internal(dev, desc, FALSE);
1013 }
1014
1015 /**
1016 * @brief Set the device's description
1017 *
1018 * The string pointed to by @c desc is copied. Use this function if
1019 * the device description is generated, (e.g. with sprintf()).
1020 */
1021 void
device_set_desc_copy(device_t dev,const char * desc)1022 device_set_desc_copy(device_t dev, const char* desc)
1023 {
1024 device_set_desc_internal(dev, desc, TRUE);
1025 }
1026
1027 /**
1028 * @brief Return the device's description string
1029 */
1030 const char *
device_get_desc(device_t dev)1031 device_get_desc(device_t dev)
1032 {
1033 return (dev->desc);
1034 }
1035
1036 /**
1037 * @brief Return the device's softc field
1038 *
1039 * The softc is allocated and zeroed when a driver is attached, based
1040 * on the size field of the driver.
1041 */
1042 void *
device_get_softc(device_t dev)1043 device_get_softc(device_t dev)
1044 {
1045 return (dev->softc);
1046 }
1047
1048 /**
1049 * @brief Set the device's softc field
1050 *
1051 * Most drivers do not need to use this since the softc is allocated
1052 * automatically when the driver is attached.
1053 */
1054 void
device_set_softc(device_t dev,void * softc)1055 device_set_softc(device_t dev, void *softc)
1056 {
1057 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
1058 bsd_free(dev->softc, M_BUS_SC);
1059 dev->softc = softc;
1060 if (dev->softc)
1061 dev->flags |= DF_EXTERNALSOFTC;
1062 else
1063 dev->flags &= ~DF_EXTERNALSOFTC;
1064 }
1065
1066 /**
1067 * @brief Free claimed softc
1068 *
1069 * Most drivers do not need to use this since the softc is freed
1070 * automatically when the driver is detached.
1071 */
1072 void
device_free_softc(void * softc)1073 device_free_softc(void *softc)
1074 {
1075 bsd_free(softc, M_BUS_SC);
1076 }
1077
1078 /**
1079 * @brief Claim softc
1080 *
1081 * This function can be used to let the driver free the automatically
1082 * allocated softc using "device_free_softc()". This function is
1083 * useful when the driver is refcounting the softc and the softc
1084 * cannot be freed when the "device_detach" method is called.
1085 */
1086 void
device_claim_softc(device_t dev)1087 device_claim_softc(device_t dev)
1088 {
1089 if (dev->softc)
1090 dev->flags |= DF_EXTERNALSOFTC;
1091 else
1092 dev->flags &= ~DF_EXTERNALSOFTC;
1093 }
1094
1095 /**
1096 * @brief Get the device's ivars field
1097 *
1098 * The ivars field is used by the parent device to store per-device
1099 * state (e.g. the physical location of the device or a list of
1100 * resources).
1101 */
1102 void *
device_get_ivars(device_t dev)1103 device_get_ivars(device_t dev)
1104 {
1105
1106 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
1107 return (dev->ivars);
1108 }
1109
1110 /**
1111 * @brief Set the device's ivars field
1112 */
1113 void
device_set_ivars(device_t dev,void * ivars)1114 device_set_ivars(device_t dev, void * ivars)
1115 {
1116
1117 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
1118 dev->ivars = ivars;
1119 }
1120
1121 /**
1122 * @brief Return the device's state
1123 */
1124 device_state_t
device_get_state(device_t dev)1125 device_get_state(device_t dev)
1126 {
1127 return (dev->state);
1128 }
1129
1130 /**
1131 * @brief Set the DF_ENABLED flag for the device
1132 */
1133 void
device_enable(device_t dev)1134 device_enable(device_t dev)
1135 {
1136 dev->flags |= DF_ENABLED;
1137 }
1138
1139 /**
1140 * @brief Clear the DF_ENABLED flag for the device
1141 */
1142 void
device_disable(device_t dev)1143 device_disable(device_t dev)
1144 {
1145 dev->flags &= ~DF_ENABLED;
1146 }
1147
1148 /**
1149 * @brief Increment the busy counter for the device
1150 */
1151 void
device_busy(device_t dev)1152 device_busy(device_t dev)
1153 {
1154 if (dev->state < DS_ATTACHING)
1155 panic("device_busy: called for unattached device");
1156 if (dev->busy == 0 && dev->parent)
1157 device_busy(dev->parent);
1158 dev->busy++;
1159 if (dev->state == DS_ATTACHED)
1160 dev->state = DS_BUSY;
1161 }
1162
1163 /**
1164 * @brief Decrement the busy counter for the device
1165 */
1166 void
device_unbusy(device_t dev)1167 device_unbusy(device_t dev)
1168 {
1169 if (dev->busy != 0 && dev->state != DS_BUSY &&
1170 dev->state != DS_ATTACHING)
1171 panic("device_unbusy: called for non-busy device %s",
1172 device_get_nameunit(dev));
1173 dev->busy--;
1174 if (dev->busy == 0) {
1175 if (dev->parent)
1176 device_unbusy(dev->parent);
1177 if (dev->state == DS_BUSY)
1178 dev->state = DS_ATTACHED;
1179 }
1180 }
1181
1182 /**
1183 * @brief Set the DF_QUIET flag for the device
1184 */
1185 void
device_quiet(device_t dev)1186 device_quiet(device_t dev)
1187 {
1188 dev->flags |= DF_QUIET;
1189 }
1190
1191 /**
1192 * @brief Clear the DF_QUIET flag for the device
1193 */
1194 void
device_verbose(device_t dev)1195 device_verbose(device_t dev)
1196 {
1197 dev->flags &= ~DF_QUIET;
1198 }
1199
1200 /**
1201 * @brief Return non-zero if the DF_QUIET flag is set on the device
1202 */
1203 int
device_is_quiet(device_t dev)1204 device_is_quiet(device_t dev)
1205 {
1206 return ((dev->flags & DF_QUIET) != 0);
1207 }
1208
1209 /**
1210 * @brief Return non-zero if the DF_ENABLED flag is set on the device
1211 */
1212 int
device_is_enabled(device_t dev)1213 device_is_enabled(device_t dev)
1214 {
1215 return ((dev->flags & DF_ENABLED) != 0);
1216 }
1217
1218 /**
1219 * @brief Return non-zero if the device was successfully probed
1220 */
1221 int
device_is_alive(device_t dev)1222 device_is_alive(device_t dev)
1223 {
1224 return (dev->state >= DS_ALIVE);
1225 }
1226
1227 /**
1228 * @brief Return non-zero if the device currently has a driver
1229 * attached to it
1230 */
1231 int
device_is_attached(device_t dev)1232 device_is_attached(device_t dev)
1233 {
1234 return (dev->state >= DS_ATTACHED);
1235 }
1236
1237 /**
1238 * @brief Return non-zero if the device is currently suspended.
1239 */
1240 int
device_is_suspended(device_t dev)1241 device_is_suspended(device_t dev)
1242 {
1243 return ((dev->flags & DF_SUSPENDED) != 0);
1244 }
1245
1246
1247
1248 /**
1249 * @brief Return a string containing the device's devclass name
1250 * followed by an ascii representation of the device's unit number
1251 * (e.g. @c "foo2").
1252 */
1253 const char *
device_get_nameunit(device_t dev)1254 device_get_nameunit(device_t dev)
1255 {
1256 return (dev->nameunit);
1257 }
1258
1259 /**
1260 * @internal
1261 * @brief Add a device to a devclass
1262 *
1263 * A unit number is allocated for the device (using the device's
1264 * preferred unit number if any) and the device is registered in the
1265 * devclass. This allows the device to be looked up by its unit
1266 * number, e.g. by decoding a dev_t minor number.
1267 *
1268 * @param dc the devclass to add to
1269 * @param dev the device to add
1270 *
1271 * @retval 0 success
1272 * @retval EEXIST the requested unit number is already allocated
1273 * @retval ENOMEM memory allocation failure
1274 */
1275 static int
devclass_add_device(devclass_t dc,device_t dev)1276 devclass_add_device(devclass_t dc, device_t dev)
1277 {
1278 int buflen, error;
1279
1280 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1281
1282 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1283 if (buflen < 0)
1284 return (ENOMEM);
1285 dev->nameunit = bsd_malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
1286 if (!dev->nameunit)
1287 return (ENOMEM);
1288
1289 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1290 bsd_free(dev->nameunit, M_BUS);
1291 dev->nameunit = NULL;
1292 return (error);
1293 }
1294 dc->devices[dev->unit] = dev;
1295 dev->devclass = dc;
1296 if (snprintf_s(dev->nameunit, buflen, buflen - 1, "%s%d", dc->name, dev->unit) < 0) {
1297 bsd_free(dev->nameunit, M_BUS);
1298 dev->nameunit = NULL;
1299 return (ENOMEM);
1300 }
1301 PDEBUG(("dev->nameunit : %s", dev->nameunit));
1302
1303 return (0);
1304 }
1305
1306 /**
1307 * @internal
1308 * @brief Delete a device from a devclass
1309 *
1310 * The device is removed from the devclass's device list and its unit
1311 * number is freed.
1312
1313 * @param dc the devclass to delete from
1314 * @param dev the device to delete
1315 *
1316 * @retval 0 success
1317 */
1318 static int
devclass_delete_device(devclass_t dc,device_t dev)1319 devclass_delete_device(devclass_t dc, device_t dev)
1320 {
1321 if (!dc || !dev)
1322 return (0);
1323
1324 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1325
1326 if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1327 panic("devclass_delete_device: inconsistent device class");
1328 dc->devices[dev->unit] = NULL;
1329 if (dev->flags & DF_WILDCARD)
1330 dev->unit = -1;
1331 dev->devclass = NULL;
1332 bsd_free(dev->nameunit, M_BUS);
1333 dev->nameunit = NULL;
1334
1335 return (0);
1336 }
1337
1338 /**
1339 * @internal
1340 * @brief Make a new device and add it as a child of @p parent
1341 *
1342 * @param parent the parent of the new device
1343 * @param name the devclass name of the new device or @c NULL
1344 * to leave the devclass unspecified
1345 * @parem unit the unit number of the new device of @c -1 to
1346 * leave the unit number unspecified
1347 *
1348 * @returns the new device
1349 */
1350 static device_t
make_device(device_t parent,const char * name,int unit)1351 make_device(device_t parent, const char *name, int unit)
1352 {
1353 device_t dev;
1354 devclass_t dc;
1355
1356 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1357
1358 if (name) {
1359 dc = devclass_find_internal(name, NULL, TRUE);
1360 if (!dc) {
1361 printf("make_device: can't find device class %s\n",
1362 name);
1363 return (NULL);
1364 }
1365 } else {
1366 dc = NULL;
1367 }
1368
1369 dev = bsd_malloc(sizeof(struct device), 0, M_NOWAIT|M_ZERO);
1370 if (!dev)
1371 return (NULL);
1372
1373 dev->parent = parent;
1374 TAILQ_INIT(&dev->children);
1375 kobj_init((kobj_t) dev, &null_class);
1376 dev->driver = NULL;
1377 dev->devclass = NULL;
1378 dev->unit = unit;
1379 dev->nameunit = NULL;
1380 dev->desc = NULL;
1381 dev->busy = 0;
1382 dev->devflags = 0;
1383 dev->flags = DF_ENABLED;
1384 dev->order = 0;
1385 if (unit == -1)
1386 dev->flags |= DF_WILDCARD;
1387 if (name) {
1388 dev->flags |= DF_FIXEDCLASS;
1389 if (devclass_add_device(dc, dev)) {
1390 kobj_delete((kobj_t) dev, NULL);
1391 return (NULL);
1392 }
1393 }
1394 dev->ivars = NULL;
1395 dev->softc = NULL;
1396
1397 dev->state = DS_NOTPRESENT;
1398
1399 PDEBUG(("bus_data_devices (%p) ", &bus_data_devices));
1400 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1401 bus_data_generation_update();
1402
1403 PDEBUG(("%s at %s as unit %d success", name, DEVICENAME(parent), unit));
1404 return (dev);
1405 }
1406
1407 /**
1408 * @internal
1409 * @brief Print a description of a device.
1410 */
1411 static int
device_print_child(device_t dev,device_t child)1412 device_print_child(device_t dev, device_t child)
1413 {
1414 int retval = 0;
1415
1416 if (device_is_alive(child))
1417 retval += BUS_PRINT_CHILD(dev, child);
1418 else
1419 retval += device_printf(child, " not found\n");
1420
1421 return (retval);
1422 }
1423
1424 /**
1425 * @brief Create a new device
1426 *
1427 * This creates a new device and adds it as a child of an existing
1428 * parent device. The new device will be added after the last existing
1429 * child with order zero.
1430 *
1431 * @param dev the device which will be the parent of the
1432 * new child device
1433 * @param name devclass name for new device or @c NULL if not
1434 * specified
1435 * @param unit unit number for new device or @c -1 if not
1436 * specified
1437 *
1438 * @returns the new device
1439 */
1440 device_t
device_add_child(device_t dev,const char * name,int unit)1441 device_add_child(device_t dev, const char *name, int unit)
1442 {
1443 return (device_add_child_ordered(dev, 0, name, unit));
1444 }
1445
1446 device_t
bus_get_device(device_t dev,const char * name)1447 bus_get_device(device_t dev, const char *name)
1448 {
1449 device_t child;
1450
1451 PDEBUG(("+"));
1452 TAILQ_FOREACH(child, &dev->children, link) {
1453 if (!strcmp(device_get_name(child), name))
1454 return (child);
1455 }
1456 PDEBUG(("-"));
1457 return (NULL);
1458 }
1459
1460 /**
1461 * @brief Create a new device
1462 *
1463 * This creates a new device and adds it as a child of an existing
1464 * parent device. The new device will be added after the last existing
1465 * child with the same order.
1466 *
1467 * @param dev the device which will be the parent of the
1468 * new child device
1469 * @param order a value which is used to partially sort the
1470 * children of @p dev - devices created using
1471 * lower values of @p order appear first in @p
1472 * dev's list of children
1473 * @param name devclass name for new device or @c NULL if not
1474 * specified
1475 * @param unit unit number for new device or @c -1 if not
1476 * specified
1477 *
1478 * @returns the new device
1479 */
1480 device_t
device_add_child_ordered(device_t dev,u_int order,const char * name,int unit)1481 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1482 {
1483 device_t child;
1484 device_t place;
1485
1486 PDEBUG(("%s at %s with order %u as unit %d",
1487 name, DEVICENAME(dev), order, unit));
1488 KASSERT(name != NULL || unit == -1,
1489 ("child device with wildcard name and specific unit number"));
1490
1491 child = make_device(dev, name, unit);
1492 if (child == NULL)
1493 return (child);
1494 child->order = order;
1495
1496 TAILQ_FOREACH(place, &dev->children, link) {
1497 if (place->order > order)
1498 break;
1499 }
1500
1501 if (place) {
1502 /*
1503 * The device 'place' is the first device whose order is
1504 * greater than the new child.
1505 */
1506 TAILQ_INSERT_BEFORE(place, child, link);
1507 } else {
1508 /*
1509 * The new child's order is greater or equal to the order of
1510 * any existing device. Add the child to the tail of the list.
1511 */
1512 TAILQ_INSERT_TAIL(&dev->children, child, link);
1513 }
1514
1515 bus_data_generation_update();
1516 PDEBUG(("%s at %s with order %u as unit %d success",
1517 name, DEVICENAME(dev), order, unit));
1518 return (child);
1519 }
1520
1521 /**
1522 * @brief Delete a device
1523 *
1524 * This function deletes a device along with all of its children. If
1525 * the device currently has a driver attached to it, the device is
1526 * detached first using device_detach().
1527 *
1528 * @param dev the parent device
1529 * @param child the device to delete
1530 *
1531 * @retval 0 success
1532 * @retval non-zero a unit error code describing the error
1533 */
1534 int
device_delete_child(device_t dev,device_t child)1535 device_delete_child(device_t dev, device_t child)
1536 {
1537 int error;
1538 device_t grandchild;
1539
1540 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1541
1542 /* detach parent before deleting children, if any */
1543 if ((error = device_detach(child)) != 0)
1544 return (error);
1545
1546 /* remove children second */
1547 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1548 error = device_delete_child(child, grandchild);
1549 if (error)
1550 return (error);
1551 }
1552
1553 if (child->devclass)
1554 devclass_delete_device(child->devclass, child);
1555 if (child->parent)
1556 BUS_CHILD_DELETED(dev, child);
1557 TAILQ_REMOVE(&dev->children, child, link);
1558 TAILQ_REMOVE(&bus_data_devices, child, devlink);
1559 kobj_delete((kobj_t) child, M_BUS);
1560
1561 bus_data_generation_update();
1562 return (0);
1563 }
1564
1565 /**
1566 * @brief Delete all children devices of the given device, if any.
1567 *
1568 * This function deletes all children devices of the given device, if
1569 * any, using the device_delete_child() function for each device it
1570 * finds. If a child device cannot be deleted, this function will
1571 * return an error code.
1572 *
1573 * @param dev the parent device
1574 *
1575 * @retval 0 success
1576 * @retval non-zero a device would not detach
1577 */
1578 int
device_delete_children(device_t dev)1579 device_delete_children(device_t dev)
1580 {
1581 device_t child;
1582 int error;
1583
1584 PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1585
1586 error = 0;
1587
1588 while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1589 error = device_delete_child(dev, child);
1590 if (error) {
1591 PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1592 break;
1593 }
1594 }
1595 return (error);
1596 }
1597
1598 /**
1599 * @brief Probe a device and attach a driver if possible
1600 *
1601 * calls device_probe() and attaches if that was successful.
1602 */
1603 int
device_probe_and_attach(device_t dev)1604 device_probe_and_attach(device_t dev)
1605 {
1606 int error;
1607
1608 PDEBUG(("+"));
1609 GIANT_REQUIRED;
1610
1611 error = device_probe(dev);
1612 if (error == -1)
1613 return (0);
1614 else if (error != 0)
1615 return (error);
1616
1617 //CURVNET_SET_QUIET(vnet0);
1618 error = device_attach(dev);
1619 //CURVNET_RESTORE();
1620 PDEBUG(("-"));
1621 return error;
1622 }
1623
1624 /**
1625 * @brief Attach a device driver to a device
1626 *
1627 * This function is a wrapper around the DEVICE_ATTACH() driver
1628 * method. In addition to calling DEVICE_ATTACH(), it initialises the
1629 * device's sysctl tree, optionally prints a description of the device
1630 * and queues a notification event for user-based device management
1631 * services.
1632 *
1633 * Normally this function is only called internally from
1634 * device_probe_and_attach().
1635 *
1636 * @param dev the device to initialise
1637 *
1638 * @retval 0 success
1639 * @retval ENXIO no driver was found
1640 * @retval ENOMEM memory allocation failure
1641 * @retval non-zero some other unix error code
1642 */
1643 int
device_attach(device_t dev)1644 device_attach(device_t dev)
1645 {
1646 uint64_t attachtime;
1647 int error;
1648 PDEBUG(("+"));
1649
1650 //if (resource_disabled(dev->driver->name, dev->unit)) {
1651 // device_disable(dev);
1652 // if (bootverbose)
1653 // device_printf(dev, "disabled via hints entry\n");
1654 // return (ENXIO);
1655 //}
1656
1657 //device_sysctl_init(dev);
1658 if (!device_is_quiet(dev))
1659 device_print_child(dev->parent, dev);
1660 // attachtime = get_cyclecount();
1661 dev->state = DS_ATTACHING;
1662 if ((error = DEVICE_ATTACH(dev)) != 0) {
1663 printf("device_attach: %s%d attach returned %d\n",
1664 dev->driver->name, dev->unit, error);
1665 if (!(dev->flags & DF_FIXEDCLASS))
1666 devclass_delete_device(dev->devclass, dev);
1667 (void)device_set_driver(dev, NULL);
1668 //device_sysctl_fini(dev);
1669 KASSERT(dev->busy == 0, ("attach failed but busy"));
1670 dev->state = DS_NOTPRESENT;
1671 return (error);
1672 }
1673 // attachtime = get_cyclecount() - attachtime;
1674 /*
1675 * 4 bits per device is a reasonable value for desktop and server
1676 * hardware with good get_cyclecount() implementations, but WILL
1677 * need to be adjusted on other platforms.
1678 */
1679 #define RANDOM_PROBE_BIT_GUESS 4
1680 if (bootverbose)
1681 printf("random: harvesting attach, %zu bytes (%d bits) from %s%d\n",
1682 sizeof(attachtime), RANDOM_PROBE_BIT_GUESS,
1683 dev->driver->name, dev->unit);
1684 //random_harvest_direct(&attachtime, sizeof(attachtime),
1685 // RANDOM_PROBE_BIT_GUESS, RANDOM_ATTACH);
1686 //device_sysctl_update(dev);
1687 if (dev->busy)
1688 dev->state = DS_BUSY;
1689 else
1690 dev->state = DS_ATTACHED;
1691 dev->flags &= ~DF_DONENOMATCH;
1692 //EVENTHANDLER_INVOKE(device_attach, dev);
1693 //devadded(dev);
1694 PDEBUG(("-"));
1695 return (0);
1696 }
1697
1698 /**
1699 * @brief Probe a device, and return this status.
1700 *
1701 * This function is the core of the device autoconfiguration
1702 * system. Its purpose is to select a suitable driver for a device and
1703 * then call that driver to initialise the hardware appropriately. The
1704 * driver is selected by calling the DEVICE_PROBE() method of a set of
1705 * candidate drivers and then choosing the driver which returned the
1706 * best value. This driver is then attached to the device using
1707 * device_attach().
1708 *
1709 * The set of suitable drivers is taken from the list of drivers in
1710 * the parent device's devclass. If the device was originally created
1711 * with a specific class name (see device_add_child()), only drivers
1712 * with that name are probed, otherwise all drivers in the devclass
1713 * are probed. If no drivers return successful probe values in the
1714 * parent devclass, the search continues in the parent of that
1715 * devclass (see devclass_get_parent()) if any.
1716 *
1717 * @param dev the device to initialise
1718 *
1719 * @retval 0 success
1720 * @retval ENXIO no driver was found
1721 * @retval ENOMEM memory allocation failure
1722 * @retval non-zero some other unix error code
1723 * @retval -1 Device already attached
1724 */
1725 int
device_probe(device_t dev)1726 device_probe(device_t dev)
1727 {
1728 int error;
1729
1730 GIANT_REQUIRED;
1731 PDEBUG(("+"));
1732
1733 if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
1734 return (-1);
1735
1736 if (!(dev->flags & DF_ENABLED)) {
1737 if (bootverbose && device_get_name(dev) != NULL) {
1738 device_print_prettyname(dev);
1739 printf("not probed (disabled)\n");
1740 }
1741 return (-1);
1742 }
1743 if ((error = device_probe_child(dev->parent, dev)) != 0) {
1744 if (bus_current_pass == BUS_PASS_DEFAULT &&
1745 !(dev->flags & DF_DONENOMATCH)) {
1746 BUS_PROBE_NOMATCH(dev->parent, dev);
1747 //devnomatch(dev);
1748 dev->flags |= DF_DONENOMATCH;
1749 }
1750 return (error);
1751 }
1752 PDEBUG(("-"));
1753 return (0);
1754 }
1755
1756 /**
1757 * @brief Tells a driver to quiesce itself.
1758 *
1759 * This function is a wrapper around the DEVICE_QUIESCE() driver
1760 * method. If the call to DEVICE_QUIESCE() succeeds.
1761 *
1762 * @param dev the device to quiesce
1763 *
1764 * @retval 0 success
1765 * @retval ENXIO no driver was found
1766 * @retval ENOMEM memory allocation failure
1767 * @retval non-zero some other unix error code
1768 */
1769 int
device_quiesce(device_t dev)1770 device_quiesce(device_t dev)
1771 {
1772
1773 PDEBUG(("%s", DEVICENAME(dev)));
1774 if (dev->state == DS_BUSY)
1775 return (EBUSY);
1776 if (dev->state != DS_ATTACHED)
1777 return (0);
1778
1779 return (DEVICE_QUIESCE(dev));
1780 }
1781
1782 /**
1783 * @brief Notify a device of system shutdown
1784 *
1785 * This function calls the DEVICE_SHUTDOWN() driver method if the
1786 * device currently has an attached driver.
1787 *
1788 * @returns the value returned by DEVICE_SHUTDOWN()
1789 */
1790 int
device_shutdown(device_t dev)1791 device_shutdown(device_t dev)
1792 {
1793 if (dev->state < DS_ATTACHED)
1794 return (0);
1795 return (DEVICE_SHUTDOWN(dev));
1796 }
1797
1798 // bus
1799 //
1800 //
1801 device_t
bus_generic_add_child(device_t dev,u_int order,const char * name,int unit)1802 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
1803 {
1804
1805 return (device_add_child_ordered(dev, order, name, unit));
1806 }
1807
1808 /**
1809 * @brief Helper function for implementing DEVICE_PROBE()
1810 *
1811 * This function can be used to help implement the DEVICE_PROBE() for
1812 * a bus (i.e. a device which has other devices attached to it). It
1813 * calls the DEVICE_IDENTIFY() method of each driver in the device's
1814 * devclass.
1815 */
1816 int
bus_generic_probe(device_t dev)1817 bus_generic_probe(device_t dev)
1818 {
1819 devclass_t dc = dev->devclass;
1820 driverlink_t dl = NULL;
1821 PDEBUG(("+"));
1822
1823 TAILQ_FOREACH(dl, &dc->drivers, link) {
1824 /*
1825 * If this driver's pass is too high, then ignore it.
1826 * For most drivers in the default pass, this will
1827 * never be true. For early-pass drivers they will
1828 * only call the identify routines of eligible drivers
1829 * when this routine is called. Drivers for later
1830 * passes should have their identify routines called
1831 * on early-pass busses during BUS_NEW_PASS().
1832 */
1833 if (dl->pass > bus_current_pass)
1834 continue;
1835 DEVICE_IDENTIFY(dl->driver, dev);
1836 }
1837
1838 PDEBUG(("-"));
1839 return (0);
1840 }
1841
1842 /**
1843 * @brief Helper function for implementing DEVICE_ATTACH()
1844 *
1845 * This function can be used to help implement the DEVICE_ATTACH() for
1846 * a bus. It calls device_probe_and_attach() for each of the device's
1847 * children.
1848 */
1849 int
bus_generic_attach(device_t dev)1850 bus_generic_attach(device_t dev)
1851 {
1852 device_t child;
1853
1854 PDEBUG(("+"));
1855 TAILQ_FOREACH(child, &dev->children, link) {
1856 device_probe_and_attach(child);
1857 }
1858 PDEBUG(("-"));
1859 return (0);
1860 }
1861
1862 /**
1863 * @brief Helper function for implementing DEVICE_DETACH()
1864 *
1865 * This function can be used to help implement the DEVICE_DETACH() for
1866 * a bus. It calls device_detach() for each of the device's
1867 * children.
1868 */
1869 int
bus_generic_detach(device_t dev)1870 bus_generic_detach(device_t dev)
1871 {
1872 device_t child;
1873 int error;
1874
1875 if (dev->state != DS_ATTACHED)
1876 return (EBUSY);
1877
1878 /*
1879 * Detach children in the reverse order.
1880 * See bus_generic_suspend for details.
1881 */
1882 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
1883 if ((error = device_detach(child)) != 0)
1884 return (error);
1885 }
1886
1887 return (0);
1888 }
1889
1890 /**
1891 * @brief Helper function for implementing DEVICE_SHUTDOWN()
1892 *
1893 * This function can be used to help implement the DEVICE_SHUTDOWN()
1894 * for a bus. It calls device_shutdown() for each of the device's
1895 * children.
1896 */
1897 int
bus_generic_shutdown(device_t dev)1898 bus_generic_shutdown(device_t dev)
1899 {
1900 device_t child;
1901
1902 /*
1903 * Shut down children in the reverse order.
1904 * See bus_generic_suspend for details.
1905 */
1906 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
1907 device_shutdown(child);
1908 }
1909
1910 return (0);
1911 }
1912
1913 /**
1914 * @brief Default function for suspending a child device.
1915 *
1916 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD().
1917 */
1918 int
bus_generic_suspend_child(device_t dev,device_t child)1919 bus_generic_suspend_child(device_t dev, device_t child)
1920 {
1921 int error;
1922
1923 error = DEVICE_SUSPEND(child);
1924
1925 if (error == 0)
1926 child->flags |= DF_SUSPENDED;
1927
1928 return (error);
1929 }
1930
1931 /**
1932 * @brief Default function for resuming a child device.
1933 *
1934 * This function is to be used by a bus's DEVICE_RESUME_CHILD().
1935 */
1936 int
bus_generic_resume_child(device_t dev,device_t child)1937 bus_generic_resume_child(device_t dev, device_t child)
1938 {
1939
1940 DEVICE_RESUME(child);
1941 child->flags &= ~DF_SUSPENDED;
1942
1943 return (0);
1944 }
1945
1946 /**
1947 * @brief Helper function for implementing DEVICE_SUSPEND()
1948 *
1949 * This function can be used to help implement the DEVICE_SUSPEND()
1950 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
1951 * children. If any call to DEVICE_SUSPEND() fails, the suspend
1952 * operation is aborted and any devices which were suspended are
1953 * resumed immediately by calling their DEVICE_RESUME() methods.
1954 */
1955 int
bus_generic_suspend(device_t dev)1956 bus_generic_suspend(device_t dev)
1957 {
1958 int error;
1959 device_t child;
1960
1961 /*
1962 * Suspend children in the reverse order.
1963 * For most buses all children are equal, so the order does not matter.
1964 * Other buses, such as acpi, carefully order their child devices to
1965 * express implicit dependencies between them. For such buses it is
1966 * safer to bring down devices in the reverse order.
1967 */
1968 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
1969 error = BUS_SUSPEND_CHILD(dev, child);
1970 if (error != 0) {
1971 child = TAILQ_NEXT(child, link);
1972 if (child != NULL) {
1973 TAILQ_FOREACH_FROM(child, &dev->children, link)
1974 BUS_RESUME_CHILD(dev, child);
1975 }
1976 return (error);
1977 }
1978 }
1979 return (0);
1980 }
1981
1982 /**
1983 * @brief Helper function for implementing DEVICE_RESUME()
1984 *
1985 * This function can be used to help implement the DEVICE_RESUME() for
1986 * a bus. It calls DEVICE_RESUME() on each of the device's children.
1987 */
1988 int
bus_generic_resume(device_t dev)1989 bus_generic_resume(device_t dev)
1990 {
1991 device_t child;
1992
1993 TAILQ_FOREACH(child, &dev->children, link) {
1994 BUS_RESUME_CHILD(dev, child);
1995 /* if resume fails, there's nothing we can usefully do... */
1996 }
1997 return (0);
1998 }
1999
2000
2001
2002 /**
2003 * @brief Helper function for implementing BUS_PRINT_CHILD().
2004 *
2005 * This function prints the first part of the ascii representation of
2006 * @p child, including its name, unit and description (if any - see
2007 * device_set_desc()).
2008 *
2009 * @returns the number of characters printed
2010 */
2011 int
bus_print_child_header(device_t dev,device_t child)2012 bus_print_child_header(device_t dev, device_t child)
2013 {
2014 int retval = 0;
2015
2016 if (device_get_desc(child)) {
2017 retval += device_printf(child, "<%s>", device_get_desc(child));
2018 } else {
2019 retval += printf("%s", device_get_nameunit(child));
2020 }
2021
2022 return (retval);
2023 }
2024
2025 /**
2026 * @brief Helper function for implementing BUS_PRINT_CHILD().
2027 *
2028 * This function prints the last part of the ascii representation of
2029 * @p child, which consists of the string @c " on " followed by the
2030 * name and unit of the @p dev.
2031 *
2032 * @returns the number of characters printed
2033 */
2034 int
bus_print_child_footer(device_t dev,device_t child)2035 bus_print_child_footer(device_t dev, device_t child)
2036 {
2037 return (printf(" on %s\n", device_get_nameunit(dev)));
2038 }
2039
2040 /**
2041 * @brief Helper function for implementing BUS_PRINT_CHILD().
2042 *
2043 * This function prints out the VM domain for the given device.
2044 *
2045 * @returns the number of characters printed
2046 */
2047 int
bus_print_child_domain(device_t dev,device_t child)2048 bus_print_child_domain(device_t dev, device_t child)
2049 {
2050 int domain;
2051
2052 /* No domain? Don't print anything */
2053 if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
2054 return (0);
2055
2056 return (printf(" numa-domain %d", domain));
2057 }
2058
2059 /**
2060 * @brief Helper function for implementing BUS_PRINT_CHILD().
2061 *
2062 * This function simply calls bus_print_child_header() followed by
2063 * bus_print_child_footer().
2064 *
2065 * @returns the number of characters printed
2066 */
2067 int
bus_generic_print_child(device_t dev,device_t child)2068 bus_generic_print_child(device_t dev, device_t child)
2069 {
2070 int retval = 0;
2071
2072 retval += bus_print_child_header(dev, child);
2073 retval += bus_print_child_domain(dev, child);
2074 retval += bus_print_child_footer(dev, child);
2075
2076 return (retval);
2077 }
2078
2079 /**
2080 * @brief Helper function for implementing BUS_DRIVER_ADDED().
2081 *
2082 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
2083 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
2084 * and then calls device_probe_and_attach() for each unattached child.
2085 */
2086 void
bus_generic_driver_added(device_t dev,driver_t * driver)2087 bus_generic_driver_added(device_t dev, driver_t *driver)
2088 {
2089 device_t child;
2090 PDEBUG(("+"));
2091
2092 DEVICE_IDENTIFY(driver, dev);
2093 PDEBUG(("dev->children %p", dev->children));
2094 TAILQ_FOREACH(child, &dev->children, link) {
2095 if (child->state == DS_NOTPRESENT ||
2096 (child->flags & DF_REBID))
2097 device_probe_and_attach(child);
2098 }
2099 PDEBUG(("-"));
2100 }
2101
2102 /**
2103 * @brief Helper function for implementing BUS_NEW_PASS().
2104 *
2105 * This implementing of BUS_NEW_PASS() first calls the identify
2106 * routines for any drivers that probe at the current pass. Then it
2107 * walks the list of devices for this bus. If a device is already
2108 * attached, then it calls BUS_NEW_PASS() on that device. If the
2109 * device is not already attached, it attempts to attach a driver to
2110 * it.
2111 */
2112 void
bus_generic_new_pass(device_t dev)2113 bus_generic_new_pass(device_t dev)
2114 {
2115 driverlink_t dl = NULL;
2116 devclass_t dc;
2117 device_t child;
2118
2119 dc = dev->devclass;
2120 TAILQ_FOREACH(dl, &dc->drivers, link) {
2121 if (dl->pass == bus_current_pass)
2122 DEVICE_IDENTIFY(dl->driver, dev);
2123 }
2124 TAILQ_FOREACH(child, &dev->children, link) {
2125 if (child->state >= DS_ATTACHED)
2126 BUS_NEW_PASS(child);
2127 else if (child->state == DS_NOTPRESENT)
2128 device_probe_and_attach(child);
2129 }
2130 }
2131
2132 // delete resouce and intr
2133
2134 /**
2135 * @brief Helper function for implementing BUS_CHILD_PRESENT().
2136 *
2137 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
2138 * BUS_CHILD_PRESENT() method of the parent of @p dev.
2139 */
2140 int
bus_generic_child_present(device_t dev,device_t child)2141 bus_generic_child_present(device_t dev, device_t child)
2142 {
2143 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
2144 }
2145
2146 int
bus_generic_get_domain(device_t dev,device_t child,int * domain)2147 bus_generic_get_domain(device_t dev, device_t child, int *domain)
2148 {
2149
2150 if (dev->parent)
2151 return (BUS_GET_DOMAIN(dev->parent, dev, domain));
2152
2153 return (ENOENT);
2154 }
2155
2156 /**
2157 * @brief Helper function for implementing BUS_RESCAN().
2158 *
2159 * This null implementation of BUS_RESCAN() always fails to indicate
2160 * the bus does not support rescanning.
2161 */
2162 int
bus_null_rescan(device_t dev)2163 bus_null_rescan(device_t dev)
2164 {
2165
2166 return (ENXIO);
2167 }
2168
2169 /**
2170 * @brief Wrapper function for BUS_CHILD_PRESENT().
2171 *
2172 * This function simply calls the BUS_CHILD_PRESENT() method of the
2173 * parent of @p dev.
2174 */
2175 int
bus_child_present(device_t child)2176 bus_child_present(device_t child)
2177 {
2178 return (BUS_CHILD_PRESENT(device_get_parent(child), child));
2179 }
2180
2181 /**
2182 * @brief Wrapper function for BUS_GET_DOMAIN().
2183 *
2184 * This function simply calls the BUS_GET_DOMAIN() method of the
2185 * parent of @p dev.
2186 */
2187 int
bus_get_domain(device_t dev,int * domain)2188 bus_get_domain(device_t dev, int *domain)
2189 {
2190 return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
2191 }
2192
2193 int
bus_data_generation_check(int generation)2194 bus_data_generation_check(int generation)
2195 {
2196 if (generation != bus_data_generation)
2197 return (1);
2198
2199 /* XXX generate optimised lists here? */
2200 return (0);
2201 }
2202
2203 void
bus_data_generation_update(void)2204 bus_data_generation_update(void)
2205 {
2206 bus_data_generation++;
2207 }
2208
2209 /**
2210 * @brief Print the name of the device followed by a colon and a space
2211 *
2212 * @returns the number of characters printed
2213 */
2214 int
device_print_prettyname(device_t dev)2215 device_print_prettyname(device_t dev)
2216 {
2217 const char *name = device_get_name(dev);
2218
2219 if (name == NULL)
2220 return (printf("unknown: "));
2221 return (printf("%s%d: ", name, device_get_unit(dev)));
2222 }
2223
2224 /**
2225 * @brief Return the device's unit number.
2226 */
2227 int
device_get_unit(device_t dev)2228 device_get_unit(device_t dev)
2229 {
2230 return (dev->unit);
2231 }
2232
2233 /**
2234 * @internal
2235 */
2236 static driverlink_t
first_matching_driver(devclass_t dc,device_t dev)2237 first_matching_driver(devclass_t dc, device_t dev)
2238 {
2239 if (dev->devclass)
2240 return (devclass_find_driver_internal(dc, dev->devclass->name));
2241 return (TAILQ_FIRST(&dc->drivers));
2242 }
2243
2244 /**
2245 * @internal
2246 */
2247 static driverlink_t
next_matching_driver(devclass_t dc,device_t dev,driverlink_t last)2248 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
2249 {
2250 if (dev->devclass) {
2251 driverlink_t dl;
2252 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
2253 if (!strcmp(dev->devclass->name, dl->driver->name))
2254 return (dl);
2255 return (NULL);
2256 }
2257 return (TAILQ_NEXT(last, link));
2258 }
2259
2260
2261 /**
2262 * @brief Set the devclass of a device
2263 * @see devclass_add_device().
2264 */
2265 int
device_set_devclass(device_t dev,const char * classname)2266 device_set_devclass(device_t dev, const char *classname)
2267 {
2268 devclass_t dc;
2269 int error;
2270
2271 if (!classname) {
2272 if (dev->devclass)
2273 devclass_delete_device(dev->devclass, dev);
2274 return (0);
2275 }
2276
2277 if (dev->devclass) {
2278 printf("device_set_devclass: device class already set\n");
2279 return (EINVAL);
2280 }
2281
2282 dc = devclass_find_internal(classname, NULL, TRUE);
2283 if (!dc)
2284 return (ENOMEM);
2285
2286 error = devclass_add_device(dc, dev);
2287
2288 bus_data_generation_update();
2289 return (error);
2290 }
2291
2292 /**
2293 * @brief Detach a driver from a device
2294 *
2295 * This function is a wrapper around the DEVICE_DETACH() driver
2296 * method. If the call to DEVICE_DETACH() succeeds, it calls
2297 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2298 * notification event for user-based device management services and
2299 * cleans up the device's sysctl tree.
2300 *
2301 * @param dev the device to un-initialise
2302 *
2303 * @retval 0 success
2304 * @retval ENXIO no driver was found
2305 * @retval ENOMEM memory allocation failure
2306 * @retval non-zero some other unix error code
2307 */
2308 int
device_detach(device_t dev)2309 device_detach(device_t dev)
2310 {
2311 int error;
2312
2313 GIANT_REQUIRED;
2314
2315 PDEBUG(("%s", DEVICENAME(dev)));
2316 if (dev->state == DS_BUSY)
2317 return (EBUSY);
2318 if (dev->state == DS_ATTACHING) {
2319 device_printf(dev, "device in attaching state! Deferring detach.\n");
2320 return (EBUSY);
2321 }
2322 if (dev->state != DS_ATTACHED)
2323 return (0);
2324
2325 if ((error = DEVICE_DETACH(dev)) != 0) {
2326 return (error);
2327 }
2328
2329 if (!device_is_quiet(dev))
2330 device_printf(dev, "detached\n");
2331 if (dev->parent) {
2332 PDEBUG(("BUS_CHILD_DETACHED %s", DEVICENAME(dev->parent)));
2333 BUS_CHILD_DETACHED(dev->parent, dev);
2334 }
2335
2336 if (!(dev->flags & DF_FIXEDCLASS)) {
2337 PDEBUG(("devclass_delete_device"));
2338 devclass_delete_device(dev->devclass, dev);
2339 }
2340
2341 device_verbose(dev);
2342 dev->state = DS_NOTPRESENT;
2343 (void)device_set_driver(dev, NULL);
2344
2345 return (0);
2346 }
2347
2348 /**
2349 * @brief Return the parent of a device
2350 */
2351 device_t
device_get_parent(device_t dev)2352 device_get_parent(device_t dev)
2353 {
2354 return (dev->parent);
2355 }
2356
2357 /**
2358 * @brief Print the name of the device followed by a colon, a space
2359 * and the result of calling vprintf() with the value of @p fmt and
2360 * the following arguments.
2361 *
2362 * @returns the number of characters printed
2363 */
2364 int
device_printf(device_t dev,const char * fmt,...)2365 device_printf(device_t dev, const char * fmt, ...)
2366 {
2367 va_list ap;
2368 int retval;
2369
2370 retval = device_print_prettyname(dev);
2371 va_start(ap, fmt);
2372 retval += vprintf(fmt, ap);
2373 va_end(ap);
2374 return (retval);
2375 }
2376
2377 /**
2378 * @brief Set the driver of a device
2379 *
2380 * @retval 0 success
2381 * @retval EBUSY the device already has a driver attached
2382 * @retval ENOMEM a memory allocation failure occurred
2383 */
2384 int
device_set_driver(device_t dev,driver_t * driver)2385 device_set_driver(device_t dev, driver_t *driver)
2386 {
2387 if (dev->state >= DS_ATTACHED)
2388 return (EBUSY);
2389
2390 if (dev->driver == driver)
2391 return (0);
2392
2393 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2394 bsd_free(dev->softc, M_BUS_SC);
2395 dev->softc = NULL;
2396 }
2397 device_set_desc(dev, NULL);
2398 kobj_delete((kobj_t) dev, NULL);
2399 dev->driver = driver;
2400 if (driver) {
2401 kobj_init((kobj_t) dev, (kobj_class_t) driver);
2402 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2403 dev->softc = bsd_malloc(driver->size, M_BUS_SC,
2404 M_NOWAIT | M_ZERO);
2405 if (!dev->softc) {
2406 kobj_delete((kobj_t) dev, NULL);
2407 kobj_init((kobj_t) dev, &null_class);
2408 dev->driver = NULL;
2409 return (ENOMEM);
2410 }
2411 }
2412 } else {
2413 kobj_init((kobj_t) dev, &null_class);
2414 }
2415
2416 bus_data_generation_update();
2417 return (0);
2418 }
2419
2420 /**
2421 * @internal
2422 */
2423 int
device_probe_child(device_t dev,device_t child)2424 device_probe_child(device_t dev, device_t child)
2425 {
2426 devclass_t dc;
2427 driverlink_t best = NULL;
2428 driverlink_t dl = NULL;
2429 int result, pri = 0;
2430 int hasclass = (child->devclass != NULL);
2431
2432 GIANT_REQUIRED;
2433
2434 dc = dev->devclass;
2435 if (!dc)
2436 panic("device_probe_child: parent device has no devclass");
2437
2438 /*
2439 * If the state is already probed, then return. However, don't
2440 * return if we can rebid this object.
2441 */
2442 if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
2443 return (0);
2444
2445 for (; dc; dc = dc->parent) {
2446 for (dl = first_matching_driver(dc, child);
2447 dl;
2448 dl = next_matching_driver(dc, child, dl)) {
2449 /* If this driver's pass is too high, then ignore it. */
2450 if (dl->pass > bus_current_pass)
2451 continue;
2452
2453 PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
2454 result = device_set_driver(child, dl->driver);
2455 if (result == ENOMEM)
2456 return (result);
2457 else if (result != 0)
2458 continue;
2459 if (!hasclass) {
2460 if (device_set_devclass(child,
2461 dl->driver->name) != 0) {
2462 char const * devname =
2463 device_get_name(child);
2464 if (devname == NULL)
2465 devname = "(unknown)";
2466 printf("driver bug: Unable to set "
2467 "devclass (class: %s "
2468 "devname: %s)\n",
2469 dl->driver->name,
2470 devname);
2471 (void)device_set_driver(child, NULL);
2472 continue;
2473 }
2474 }
2475
2476 /* Fetch any flags for the device before probing. */
2477 // resource_int_value(dl->driver->name, child->unit,
2478 // "flags", &child->devflags);
2479 PDEBUG(("start DEVICE_PROBE"));
2480 result = DEVICE_PROBE(child);
2481
2482 /* Reset flags and devclass before the next probe. */
2483 child->devflags = 0;
2484 if (!hasclass)
2485 (void)device_set_devclass(child, NULL);
2486
2487 /*
2488 * If the driver returns SUCCESS, there can be
2489 * no higher match for this device.
2490 */
2491 if (result == 0) {
2492 best = dl;
2493 pri = 0;
2494 break;
2495 }
2496
2497 /*
2498 * Reset DF_QUIET in case this driver doesn't
2499 * end up as the best driver.
2500 */
2501 device_verbose(child);
2502
2503 PDEBUG(("probe result: %d", result));
2504 /*
2505 * Probes that return BUS_PROBE_NOWILDCARD or lower
2506 * only match on devices whose driver was explicitly
2507 * specified.
2508 */
2509 if (result <= BUS_PROBE_NOWILDCARD &&
2510 !(child->flags & DF_FIXEDCLASS)) {
2511 result = ENXIO;
2512 }
2513
2514 /*
2515 * The driver returned an error so it
2516 * certainly doesn't match.
2517 */
2518 if (result > 0) {
2519 (void)device_set_driver(child, NULL);
2520 continue;
2521 }
2522
2523 /*
2524 * A priority lower than SUCCESS, remember the
2525 * best matching driver. Initialise the value
2526 * of pri for the first match.
2527 */
2528 if (best == NULL || result > pri) {
2529 best = dl;
2530 pri = result;
2531 continue;
2532 }
2533 }
2534 /*
2535 * If we have an unambiguous match in this devclass,
2536 * don't look in the parent.
2537 */
2538 if (best && pri == 0)
2539 break;
2540 }
2541
2542 /*
2543 * If we found a driver, change state and initialise the devclass.
2544 */
2545 /* XXX What happens if we rebid and got no best? */
2546 if (best) {
2547 PDEBUG(("in best"));
2548 /*
2549 * If this device was attached, and we were asked to
2550 * rescan, and it is a different driver, then we have
2551 * to detach the old driver and reattach this new one.
2552 * Note, we don't have to check for DF_REBID here
2553 * because if the state is > DS_ALIVE, we know it must
2554 * be.
2555 *
2556 * This assumes that all DF_REBID drivers can have
2557 * their probe routine called at any time and that
2558 * they are idempotent as well as completely benign in
2559 * normal operations.
2560 *
2561 * We also have to make sure that the detach
2562 * succeeded, otherwise we fail the operation (or
2563 * maybe it should just fail silently? I'm torn).
2564 */
2565 if (child->state > DS_ALIVE && best->driver != child->driver)
2566 if ((result = device_detach(dev)) != 0)
2567 return (result);
2568
2569 /* Set the winning driver, devclass, and flags. */
2570 if (!child->devclass) {
2571 result = device_set_devclass(child, best->driver->name);
2572 if (result != 0)
2573 return (result);
2574 }
2575 result = device_set_driver(child, best->driver);
2576 if (result != 0)
2577 return (result);
2578 // resource_int_value(best->driver->name, child->unit,
2579 // "flags", &child->devflags);
2580
2581 if (pri < 0) {
2582 /*
2583 * A bit bogus. Call the probe method again to make
2584 * sure that we have the right description.
2585 */
2586 DEVICE_PROBE(child);
2587 #if 0
2588 child->flags |= DF_REBID;
2589 #endif
2590 } else
2591 child->flags &= ~DF_REBID;
2592 child->state = DS_ALIVE;
2593
2594 bus_data_generation_update();
2595 PDEBUG(("-"));
2596 return (0);
2597 }
2598
2599 PDEBUG(("ENXIO -"));
2600 return (ENXIO);
2601 }
2602
2603
2604 /**
2605 * @brief Return the current devclass for the device or @c NULL if
2606 * there is none.
2607 */
2608 devclass_t
device_get_devclass(device_t dev)2609 device_get_devclass(device_t dev)
2610 {
2611 return (dev->devclass);
2612 }
2613
2614 /**
2615 * @brief Initialise a resource list.
2616 *
2617 * @param rl the resource list to initialise
2618 */
2619 void
resource_list_init(struct resource_list * rl)2620 resource_list_init(struct resource_list *rl)
2621 {
2622 STAILQ_INIT(rl);
2623 }
2624
2625 /**
2626 * @brief Reclaim memory used by a resource list.
2627 *
2628 * This function frees the memory for all resource entries on the list
2629 * (if any).
2630 *
2631 * @param rl the resource list to free
2632 */
2633 void
resource_list_free(struct resource_list * rl)2634 resource_list_free(struct resource_list *rl)
2635 {
2636 struct resource_list_entry *rle;
2637
2638 while ((rle = STAILQ_FIRST(rl)) != NULL) {
2639 if (rle->res)
2640 bsd_free(rle->res, M_BUS);
2641 STAILQ_REMOVE_HEAD(rl, link);
2642 bsd_free(rle, M_BUS);
2643 }
2644 }
2645
2646 /**
2647 * @brief Add or modify a resource entry.
2648 *
2649 * If an existing entry exists with the same type and rid, it will be
2650 * modified using the given values of @p start, @p end and @p
2651 * count. If no entry exists, a new one will be created using the
2652 * given values. The resource list entry that matches is then returned.
2653 *
2654 * @param rl the resource list to edit
2655 * @param type the resource entry type (e.g. SYS_RES_MEMORY)
2656 * @param rid the resource identifier
2657 * @param start the start address of the resource
2658 * @param end the end address of the resource
2659 * @param count XXX end-start+1
2660 */
2661 struct resource_list_entry *
resource_list_add(struct resource_list * rl,int type,int rid,rman_res_t start,rman_res_t end,rman_res_t count)2662 resource_list_add(struct resource_list *rl, int type, int rid,
2663 rman_res_t start, rman_res_t end, rman_res_t count)
2664 {
2665 struct resource_list_entry *rle;
2666
2667 rle = resource_list_find(rl, type, rid);
2668 if (!rle) {
2669 rle = bsd_malloc(sizeof(struct resource_list_entry), M_BUS,
2670 M_NOWAIT);
2671 if (!rle)
2672 panic("resource_list_add: can't record entry");
2673 STAILQ_INSERT_TAIL(rl, rle, link);
2674 rle->type = type;
2675 rle->rid = rid;
2676 rle->res = NULL;
2677 rle->flags = 0;
2678 }
2679
2680 if (rle->res)
2681 panic("resource_list_add: resource entry is busy");
2682
2683 rle->res = bsd_malloc(sizeof(struct resource), M_BUS, M_NOWAIT);
2684 if (rle->res == NULL) {
2685 panic("resource_list_add: resource is busy");
2686 }
2687 rle->res->start = start;
2688 rle->res->end = end;
2689 rle->res->count = count;
2690 return (rle);
2691 }
2692
2693 /**
2694 * @brief Find a resource entry by type and rid.
2695 *
2696 * @param rl the resource list to search
2697 * @param type the resource entry type (e.g. SYS_RES_MEMORY)
2698 * @param rid the resource identifier
2699 *
2700 * @returns the resource entry pointer or NULL if there is no such
2701 * entry.
2702 */
2703 struct resource_list_entry *
resource_list_find(struct resource_list * rl,int type,int rid)2704 resource_list_find(struct resource_list *rl, int type, int rid)
2705 {
2706 struct resource_list_entry *rle = NULL;
2707
2708 STAILQ_FOREACH(rle, rl, link) {
2709 if (rle->type == type && rle->rid == rid)
2710 return (rle);
2711 }
2712 return (NULL);
2713 }
2714
2715 /**
2716 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
2717 *
2718 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
2719 * parent of @p dev.
2720 */
2721 struct resource *
bus_alloc_resource(device_t dev,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)2722 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start,
2723 rman_res_t end, rman_res_t count, u_int flags)
2724 {
2725 struct resource *res = NULL;
2726
2727 if (dev->parent == NULL)
2728 return (NULL);
2729 res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
2730 count, flags);
2731 return (res);
2732 }
2733
2734 // root driver
2735 static int
root_print_child(device_t dev,device_t child)2736 root_print_child(device_t dev, device_t child)
2737 {
2738 int retval = 0;
2739
2740 retval += bus_print_child_header(dev, child);
2741 retval += printf("\n");
2742
2743 return (retval);
2744 }
2745
2746 static kobj_method_t root_methods[] = {
2747 /* Device interface */
2748 KOBJMETHOD(device_shutdown, bus_generic_shutdown),
2749 KOBJMETHOD(device_suspend, bus_generic_suspend),
2750 KOBJMETHOD(device_resume, bus_generic_resume),
2751
2752 /* Bus interface */
2753 KOBJMETHOD(bus_print_child, root_print_child),
2754
2755 KOBJMETHOD_END
2756 };
2757
2758 static driver_t root_driver = {
2759 "root",
2760 root_methods,
2761 1, /* no softc */
2762 };
2763
2764 device_t root_bus;
2765 devclass_t root_devclass;
2766
2767 static int
root_bus_module_handler(module_t mod,int what,void * arg)2768 root_bus_module_handler(module_t mod, int what, void* arg)
2769 {
2770 PDEBUG(("+"));
2771 switch (what) {
2772 case MOD_LOAD:
2773 TAILQ_INIT(&bus_data_devices);
2774 kobj_class_compile((kobj_class_t) &root_driver);
2775 root_bus = make_device(NULL, "root", 0);
2776 root_bus->desc = "System root bus";
2777 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
2778 root_bus->driver = &root_driver;
2779 root_bus->state = DS_ATTACHED;
2780 root_devclass = devclass_find_internal("root", NULL, FALSE);
2781 //devinit();
2782 return (0);
2783
2784 case MOD_SHUTDOWN:
2785 device_shutdown(root_bus);
2786 return (0);
2787 default:
2788 return (EOPNOTSUPP);
2789 }
2790 PDEBUG(("-"));
2791
2792 return (0);
2793 }
2794
2795 /**
2796 * @brief Automatically configure devices
2797 *
2798 * This function begins the autoconfiguration process by calling
2799 * device_probe_and_attach() for each child of the @c root0 device.
2800 */
2801 void
root_bus_configure(void)2802 root_bus_configure(void)
2803 {
2804 PDEBUG(("+"));
2805 root_bus_module_handler(NULL, MOD_LOAD, NULL);
2806
2807 /* Eventually this will be split up, but this is sufficient for now. */
2808 bus_set_pass(BUS_PASS_DEFAULT);
2809 PDEBUG(("-"));
2810 }
2811
2812 /**
2813 * @brief Module handler for registering device drivers
2814 *
2815 * This module handler is used to automatically register device
2816 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
2817 * devclass_add_driver() for the driver described by the
2818 * driver_module_data structure pointed to by @p arg
2819 */
2820 int
driver_module_handler(module_t mod,int what,void * arg)2821 driver_module_handler(module_t mod, int what, void *arg)
2822 {
2823 struct driver_module_data *dmd = NULL;
2824 devclass_t bus_devclass;
2825 kobj_class_t driver;
2826 int error, pass;
2827
2828 PDEBUG(("+"));
2829
2830 dmd = (struct driver_module_data *)arg;
2831 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
2832 if (bus_devclass == NULL) {
2833 PDEBUG(("-"));
2834 return EINVAL;
2835 }
2836
2837 error = 0;
2838
2839 switch (what) {
2840 case MOD_LOAD:
2841 if (dmd->dmd_chainevh)
2842 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
2843
2844 pass = dmd->dmd_pass;
2845 driver = dmd->dmd_driver;
2846 PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
2847 DRIVERNAME(driver), dmd->dmd_busname, pass));
2848 error = devclass_add_driver(bus_devclass, driver, pass,
2849 dmd->dmd_devclass);
2850 break;
2851
2852 case MOD_UNLOAD:
2853 PDEBUG(("Unloading module: driver %s from bus %s",
2854 DRIVERNAME(dmd->dmd_driver),
2855 dmd->dmd_busname));
2856 error = devclass_delete_driver(bus_devclass,
2857 dmd->dmd_driver);
2858
2859 if (!error && dmd->dmd_chainevh)
2860 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
2861 break;
2862 case MOD_QUIESCE:
2863 PDEBUG(("Quiesce module: driver %s from bus %s",
2864 DRIVERNAME(dmd->dmd_driver),
2865 dmd->dmd_busname));
2866 error = devclass_quiesce_driver(bus_devclass,
2867 dmd->dmd_driver);
2868
2869 if (!error && dmd->dmd_chainevh)
2870 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
2871 break;
2872 default:
2873 error = EOPNOTSUPP;
2874 break;
2875 }
2876 PDEBUG(("-"));
2877
2878 return (error);
2879 }
2880
2881 #ifdef BUS_DEBUG
2882
2883 /* the _short versions avoid iteration by not calling anything that prints
2884 * more than oneliners. I love oneliners.
2885 */
2886
2887 static void
print_device_short(device_t dev,int indent)2888 print_device_short(device_t dev, int indent)
2889 {
2890 if (!dev)
2891 return;
2892
2893 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
2894 dev->unit, dev->desc,
2895 (dev->parent? "":"no "),
2896 (TAILQ_EMPTY(&dev->children)? "no ":""),
2897 (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
2898 (dev->flags&DF_FIXEDCLASS? "fixed,":""),
2899 (dev->flags&DF_WILDCARD? "wildcard,":""),
2900 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
2901 (dev->flags&DF_REBID? "rebiddable,":""),
2902 (dev->ivars? "":"no "),
2903 (dev->softc? "":"no "),
2904 dev->busy));
2905 }
2906
2907 static void
print_device(device_t dev,int indent)2908 print_device(device_t dev, int indent)
2909 {
2910 if (!dev)
2911 return;
2912
2913 print_device_short(dev, indent);
2914
2915 indentprintf(("Parent:\n"));
2916 print_device_short(dev->parent, indent+1);
2917 indentprintf(("Driver:\n"));
2918 print_driver_short(dev->driver, indent+1);
2919 indentprintf(("Devclass:\n"));
2920 print_devclass_short(dev->devclass, indent+1);
2921 }
2922
2923 void
print_device_tree_short(device_t dev,int indent)2924 print_device_tree_short(device_t dev, int indent)
2925 /* print the device and all its children (indented) */
2926 {
2927 device_t child;
2928
2929 if (!dev)
2930 return;
2931
2932 print_device_short(dev, indent);
2933
2934 TAILQ_FOREACH(child, &dev->children, link) {
2935 print_device_tree_short(child, indent+1);
2936 }
2937 }
2938
2939 void
print_device_tree(device_t dev,int indent)2940 print_device_tree(device_t dev, int indent)
2941 /* print the device and all its children (indented) */
2942 {
2943 device_t child;
2944
2945 if (!dev)
2946 return;
2947
2948 print_device(dev, indent);
2949
2950 TAILQ_FOREACH(child, &dev->children, link) {
2951 print_device_tree(child, indent+1);
2952 }
2953 }
2954
2955 static void
print_driver_short(driver_t * driver,int indent)2956 print_driver_short(driver_t *driver, int indent)
2957 {
2958 if (!driver)
2959 return;
2960
2961 indentprintf(("driver %s: softc size = %zd\n",
2962 driver->name, driver->size));
2963 }
2964
2965 static void
print_driver(driver_t * driver,int indent)2966 print_driver(driver_t *driver, int indent)
2967 {
2968 if (!driver)
2969 return;
2970
2971 print_driver_short(driver, indent);
2972 }
2973
2974 static void
print_driver_list(driver_list_t drivers,int indent)2975 print_driver_list(driver_list_t drivers, int indent)
2976 {
2977 driverlink_t driver = NULL;
2978
2979 TAILQ_FOREACH(driver, &drivers, link) {
2980 print_driver(driver->driver, indent);
2981 }
2982 }
2983
2984 static void
print_devclass_short(devclass_t dc,int indent)2985 print_devclass_short(devclass_t dc, int indent)
2986 {
2987 if ( !dc )
2988 return;
2989
2990 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
2991 }
2992
2993 static void
print_devclass(devclass_t dc,int indent)2994 print_devclass(devclass_t dc, int indent)
2995 {
2996 int i;
2997
2998 if ( !dc )
2999 return;
3000
3001 print_devclass_short(dc, indent);
3002 indentprintf(("Drivers:\n"));
3003 print_driver_list(dc->drivers, indent+1);
3004
3005 indentprintf(("Devices:\n"));
3006 for (i = 0; i < dc->maxunit; i++)
3007 if (dc->devices[i])
3008 print_device(dc->devices[i], indent+1);
3009 }
3010
3011 void
print_devclass_list_short(void)3012 print_devclass_list_short(void)
3013 {
3014 devclass_t dc;
3015
3016 printf("Short listing of devclasses, drivers & devices:\n");
3017 TAILQ_FOREACH(dc, &devclasses, link) {
3018 print_devclass_short(dc, 0);
3019 }
3020 }
3021
3022 void
print_devclass_list(void)3023 print_devclass_list(void)
3024 {
3025 devclass_t dc;
3026
3027 printf("Full listing of devclasses, drivers & devices:\n");
3028 TAILQ_FOREACH(dc, &devclasses, link) {
3029 print_devclass(dc, 0);
3030 }
3031 }
3032
3033 #endif
3034
3035 /* port for interrupt setup and teardown */
3036 int
bus_setup_intr(int irq,int flags,driver_intr_t * intr,void * arg)3037 bus_setup_intr(int irq, int flags, driver_intr_t *intr, void *arg)
3038 {
3039 int ret;
3040 HwiIrqParam irqParam = {0};
3041
3042 if (OS_INT_ACTIVE) {
3043 return OS_ERRNO_HWI_INTERR;
3044 }
3045
3046 irqParam.swIrq = irq;
3047 irqParam.pDevId = arg;
3048
3049 ret = LOS_HwiCreate(irq, 0, (HWI_MODE_T)flags, (HWI_PROC_FUNC)intr, &irqParam);
3050 if (ret == LOS_OK) {
3051 HalIrqUnmask(irq);
3052 }
3053 return ret;
3054 }
3055 int
bus_teardown_intr(int irq,void * arg)3056 bus_teardown_intr(int irq, void *arg)
3057 {
3058 HwiIrqParam irqParam = {0};
3059
3060 if (OS_INT_ACTIVE) {
3061 return -1;
3062 }
3063
3064 irqParam.swIrq = irq;
3065 irqParam.pDevId = arg;
3066
3067 return LOS_HwiDelete(irq, &irqParam);
3068 }
3069