• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Boost.Geometry
2 
3 // Copyright (c) 2016-2019 Oracle and/or its affiliates.
4 
5 // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
6 
7 // Use, modification and distribution is subject to the Boost Software License,
8 // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
9 // http://www.boost.org/LICENSE_1_0.txt)
10 
11 #ifndef BOOST_GEOMETRY_FORMULAS_INVERSE_DIFFERENTIAL_QUANTITIES_HPP
12 #define BOOST_GEOMETRY_FORMULAS_INVERSE_DIFFERENTIAL_QUANTITIES_HPP
13 
14 #include <boost/geometry/core/assert.hpp>
15 
16 #include <boost/geometry/util/condition.hpp>
17 #include <boost/geometry/util/math.hpp>
18 
19 
20 namespace boost { namespace geometry { namespace formula
21 {
22 
23 /*!
24 \brief The solution of a part of the inverse problem - differential quantities.
25 \author See
26 - Charles F.F Karney, Algorithms for geodesics, 2011
27 https://arxiv.org/pdf/1109.4448.pdf
28 */
29 template <
30     typename CT,
31     bool EnableReducedLength,
32     bool EnableGeodesicScale,
33     unsigned int Order = 2,
34     bool ApproxF = true
35 >
36 class differential_quantities
37 {
38 public:
apply(CT const & lon1,CT const & lat1,CT const & lon2,CT const & lat2,CT const & azimuth,CT const & reverse_azimuth,CT const & b,CT const & f,CT & reduced_length,CT & geodesic_scale)39     static inline void apply(CT const& lon1, CT const& lat1,
40                              CT const& lon2, CT const& lat2,
41                              CT const& azimuth, CT const& reverse_azimuth,
42                              CT const& b, CT const& f,
43                              CT & reduced_length, CT & geodesic_scale)
44     {
45         CT const dlon = lon2 - lon1;
46         CT const sin_lat1 = sin(lat1);
47         CT const cos_lat1 = cos(lat1);
48         CT const sin_lat2 = sin(lat2);
49         CT const cos_lat2 = cos(lat2);
50 
51         apply(dlon, sin_lat1, cos_lat1, sin_lat2, cos_lat2,
52               azimuth, reverse_azimuth,
53               b, f,
54               reduced_length, geodesic_scale);
55     }
56 
apply(CT const & dlon,CT const & sin_lat1,CT const & cos_lat1,CT const & sin_lat2,CT const & cos_lat2,CT const & azimuth,CT const & reverse_azimuth,CT const & b,CT const & f,CT & reduced_length,CT & geodesic_scale)57     static inline void apply(CT const& dlon,
58                              CT const& sin_lat1, CT const& cos_lat1,
59                              CT const& sin_lat2, CT const& cos_lat2,
60                              CT const& azimuth, CT const& reverse_azimuth,
61                              CT const& b, CT const& f,
62                              CT & reduced_length, CT & geodesic_scale)
63     {
64         CT const c0 = 0;
65         CT const c1 = 1;
66         CT const one_minus_f = c1 - f;
67 
68         CT sin_bet1 = one_minus_f * sin_lat1;
69         CT sin_bet2 = one_minus_f * sin_lat2;
70 
71         // equator
72         if (math::equals(sin_bet1, c0) && math::equals(sin_bet2, c0))
73         {
74             CT const sig_12 = dlon / one_minus_f;
75             if (BOOST_GEOMETRY_CONDITION(EnableReducedLength))
76             {
77                 BOOST_GEOMETRY_ASSERT((-math::pi<CT>() <= azimuth && azimuth <= math::pi<CT>()));
78 
79                 int azi_sign = math::sign(azimuth) >= 0 ? 1 : -1; // for antipodal
80                 CT m12 = azi_sign * sin(sig_12) * b;
81                 reduced_length = m12;
82             }
83 
84             if (BOOST_GEOMETRY_CONDITION(EnableGeodesicScale))
85             {
86                 CT M12 = cos(sig_12);
87                 geodesic_scale = M12;
88             }
89         }
90         else
91         {
92             CT const c2 = 2;
93             CT const e2 = f * (c2 - f);
94             CT const ep2 = e2 / math::sqr(one_minus_f);
95 
96             CT const sin_alp1 = sin(azimuth);
97             CT const cos_alp1 = cos(azimuth);
98             //CT const sin_alp2 = sin(reverse_azimuth);
99             CT const cos_alp2 = cos(reverse_azimuth);
100 
101             CT cos_bet1 = cos_lat1;
102             CT cos_bet2 = cos_lat2;
103 
104             normalize(sin_bet1, cos_bet1);
105             normalize(sin_bet2, cos_bet2);
106 
107             CT sin_sig1 = sin_bet1;
108             CT cos_sig1 = cos_alp1 * cos_bet1;
109             CT sin_sig2 = sin_bet2;
110             CT cos_sig2 = cos_alp2 * cos_bet2;
111 
112             normalize(sin_sig1, cos_sig1);
113             normalize(sin_sig2, cos_sig2);
114 
115             CT const sin_alp0 = sin_alp1 * cos_bet1;
116             CT const cos_alp0_sqr = c1 - math::sqr(sin_alp0);
117 
118             CT const J12 = BOOST_GEOMETRY_CONDITION(ApproxF) ?
119                            J12_f(sin_sig1, cos_sig1, sin_sig2, cos_sig2, cos_alp0_sqr, f) :
120                            J12_ep_sqr(sin_sig1, cos_sig1, sin_sig2, cos_sig2, cos_alp0_sqr, ep2) ;
121 
122             CT const dn1 = math::sqrt(c1 + ep2 * math::sqr(sin_bet1));
123             CT const dn2 = math::sqrt(c1 + ep2 * math::sqr(sin_bet2));
124 
125             if (BOOST_GEOMETRY_CONDITION(EnableReducedLength))
126             {
127                 CT const m12_b = dn2 * (cos_sig1 * sin_sig2)
128                                - dn1 * (sin_sig1 * cos_sig2)
129                                - cos_sig1 * cos_sig2 * J12;
130                 CT const m12 = m12_b * b;
131 
132                 reduced_length = m12;
133             }
134 
135             if (BOOST_GEOMETRY_CONDITION(EnableGeodesicScale))
136             {
137                 CT const cos_sig12 = cos_sig1 * cos_sig2 + sin_sig1 * sin_sig2;
138                 CT const t = ep2 * (cos_bet1 - cos_bet2) * (cos_bet1 + cos_bet2) / (dn1 + dn2);
139                 CT const M12 = cos_sig12 + (t * sin_sig2 - cos_sig2 * J12) * sin_sig1 / dn1;
140 
141                 geodesic_scale = M12;
142             }
143         }
144     }
145 
146 private:
147     /*! Approximation of J12, expanded into taylor series in f
148         Maxima script:
149         ep2: f * (2-f) / ((1-f)^2);
150         k2: ca02 * ep2;
151         assume(f < 1);
152         assume(sig > 0);
153         I1(sig):= integrate(sqrt(1 + k2 * sin(s)^2), s, 0, sig);
154         I2(sig):= integrate(1/sqrt(1 + k2 * sin(s)^2), s, 0, sig);
155         J(sig):= I1(sig) - I2(sig);
156         S: taylor(J(sig), f, 0, 3);
157         S1: factor( 2*integrate(sin(s)^2,s,0,sig)*ca02*f );
158         S2: factor( ((integrate(-6*ca02^2*sin(s)^4+6*ca02*sin(s)^2,s,0,sig)+integrate(-2*ca02^2*sin(s)^4+6*ca02*sin(s)^2,s,0,sig))*f^2)/4 );
159         S3: factor( ((integrate(30*ca02^3*sin(s)^6-54*ca02^2*sin(s)^4+24*ca02*sin(s)^2,s,0,sig)+integrate(6*ca02^3*sin(s)^6-18*ca02^2*sin(s)^4+24*ca02*sin(s)^2,s,0,sig))*f^3)/12 );
160     */
J12_f(CT const & sin_sig1,CT const & cos_sig1,CT const & sin_sig2,CT const & cos_sig2,CT const & cos_alp0_sqr,CT const & f)161     static inline CT J12_f(CT const& sin_sig1, CT const& cos_sig1,
162                            CT const& sin_sig2, CT const& cos_sig2,
163                            CT const& cos_alp0_sqr, CT const& f)
164     {
165         if (Order == 0)
166         {
167             return 0;
168         }
169 
170         CT const c2 = 2;
171 
172         CT const sig_12 = atan2(cos_sig1 * sin_sig2 - sin_sig1 * cos_sig2,
173                                 cos_sig1 * cos_sig2 + sin_sig1 * sin_sig2);
174         CT const sin_2sig1 = c2 * cos_sig1 * sin_sig1; // sin(2sig1)
175         CT const sin_2sig2 = c2 * cos_sig2 * sin_sig2; // sin(2sig2)
176         CT const sin_2sig_12 = sin_2sig2 - sin_2sig1;
177         CT const L1 = sig_12 - sin_2sig_12 / c2;
178 
179         if (Order == 1)
180         {
181             return cos_alp0_sqr * f * L1;
182         }
183 
184         CT const sin_4sig1 = c2 * sin_2sig1 * (math::sqr(cos_sig1) - math::sqr(sin_sig1)); // sin(4sig1)
185         CT const sin_4sig2 = c2 * sin_2sig2 * (math::sqr(cos_sig2) - math::sqr(sin_sig2)); // sin(4sig2)
186         CT const sin_4sig_12 = sin_4sig2 - sin_4sig1;
187 
188         CT const c8 = 8;
189         CT const c12 = 12;
190         CT const c16 = 16;
191         CT const c24 = 24;
192 
193         CT const L2 = -( cos_alp0_sqr * sin_4sig_12
194                          + (-c8 * cos_alp0_sqr + c12) * sin_2sig_12
195                          + (c12 * cos_alp0_sqr - c24) * sig_12)
196                        / c16;
197 
198         if (Order == 2)
199         {
200             return cos_alp0_sqr * f * (L1 + f * L2);
201         }
202 
203         CT const c4 = 4;
204         CT const c9 = 9;
205         CT const c48 = 48;
206         CT const c60 = 60;
207         CT const c64 = 64;
208         CT const c96 = 96;
209         CT const c128 = 128;
210         CT const c144 = 144;
211 
212         CT const cos_alp0_quad = math::sqr(cos_alp0_sqr);
213         CT const sin3_2sig1 = math::sqr(sin_2sig1) * sin_2sig1;
214         CT const sin3_2sig2 = math::sqr(sin_2sig2) * sin_2sig2;
215         CT const sin3_2sig_12 = sin3_2sig2 - sin3_2sig1;
216 
217         CT const A = (c9 * cos_alp0_quad - c12 * cos_alp0_sqr) * sin_4sig_12;
218         CT const B = c4 * cos_alp0_quad * sin3_2sig_12;
219         CT const C = (-c48 * cos_alp0_quad + c96 * cos_alp0_sqr - c64) * sin_2sig_12;
220         CT const D = (c60 * cos_alp0_quad - c144 * cos_alp0_sqr + c128) * sig_12;
221 
222         CT const L3 = (A + B + C + D) / c64;
223 
224         // Order 3 and higher
225         return cos_alp0_sqr * f * (L1 + f * (L2 + f * L3));
226     }
227 
228     /*! Approximation of J12, expanded into taylor series in e'^2
229         Maxima script:
230         k2: ca02 * ep2;
231         assume(sig > 0);
232         I1(sig):= integrate(sqrt(1 + k2 * sin(s)^2), s, 0, sig);
233         I2(sig):= integrate(1/sqrt(1 + k2 * sin(s)^2), s, 0, sig);
234         J(sig):= I1(sig) - I2(sig);
235         S: taylor(J(sig), ep2, 0, 3);
236         S1: factor( integrate(sin(s)^2,s,0,sig)*ca02*ep2 );
237         S2: factor( (integrate(sin(s)^4,s,0,sig)*ca02^2*ep2^2)/2 );
238         S3: factor( (3*integrate(sin(s)^6,s,0,sig)*ca02^3*ep2^3)/8 );
239     */
J12_ep_sqr(CT const & sin_sig1,CT const & cos_sig1,CT const & sin_sig2,CT const & cos_sig2,CT const & cos_alp0_sqr,CT const & ep_sqr)240     static inline CT J12_ep_sqr(CT const& sin_sig1, CT const& cos_sig1,
241                                 CT const& sin_sig2, CT const& cos_sig2,
242                                 CT const& cos_alp0_sqr, CT const& ep_sqr)
243     {
244         if (Order == 0)
245         {
246             return 0;
247         }
248 
249         CT const c2 = 2;
250         CT const c4 = 4;
251 
252         CT const c2a0ep2 = cos_alp0_sqr * ep_sqr;
253 
254         CT const sig_12 = atan2(cos_sig1 * sin_sig2 - sin_sig1 * cos_sig2,
255                                 cos_sig1 * cos_sig2 + sin_sig1 * sin_sig2); // sig2 - sig1
256         CT const sin_2sig1 = c2 * cos_sig1 * sin_sig1; // sin(2sig1)
257         CT const sin_2sig2 = c2 * cos_sig2 * sin_sig2; // sin(2sig2)
258         CT const sin_2sig_12 = sin_2sig2 - sin_2sig1;
259 
260         CT const L1 = (c2 * sig_12 - sin_2sig_12) / c4;
261 
262         if (Order == 1)
263         {
264             return c2a0ep2 * L1;
265         }
266 
267         CT const c8 = 8;
268         CT const c64 = 64;
269 
270         CT const sin_4sig1 = c2 * sin_2sig1 * (math::sqr(cos_sig1) - math::sqr(sin_sig1)); // sin(4sig1)
271         CT const sin_4sig2 = c2 * sin_2sig2 * (math::sqr(cos_sig2) - math::sqr(sin_sig2)); // sin(4sig2)
272         CT const sin_4sig_12 = sin_4sig2 - sin_4sig1;
273 
274         CT const L2 = (sin_4sig_12 - c8 * sin_2sig_12 + 12 * sig_12) / c64;
275 
276         if (Order == 2)
277         {
278             return c2a0ep2 * (L1 + c2a0ep2 * L2);
279         }
280 
281         CT const sin3_2sig1 = math::sqr(sin_2sig1) * sin_2sig1;
282         CT const sin3_2sig2 = math::sqr(sin_2sig2) * sin_2sig2;
283         CT const sin3_2sig_12 = sin3_2sig2 - sin3_2sig1;
284 
285         CT const c9 = 9;
286         CT const c48 = 48;
287         CT const c60 = 60;
288         CT const c512 = 512;
289 
290         CT const L3 = (c9 * sin_4sig_12 + c4 * sin3_2sig_12 - c48 * sin_2sig_12 + c60 * sig_12) / c512;
291 
292         // Order 3 and higher
293         return c2a0ep2 * (L1 + c2a0ep2 * (L2 + c2a0ep2 * L3));
294     }
295 
normalize(CT & x,CT & y)296     static inline void normalize(CT & x, CT & y)
297     {
298         CT const len = math::sqrt(math::sqr(x) + math::sqr(y));
299         x /= len;
300         y /= len;
301     }
302 };
303 
304 }}} // namespace boost::geometry::formula
305 
306 
307 #endif // BOOST_GEOMETRY_FORMULAS_INVERSE_DIFFERENTIAL_QUANTITIES_HPP
308