• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Boost.Geometry
2 
3 // Copyright (c) 2018 Adeel Ahmad, Islamabad, Pakistan.
4 
5 // Contributed and/or modified by Adeel Ahmad, as part of Google Summer of Code 2018 program.
6 
7 // This file was modified by Oracle on 2019.
8 // Modifications copyright (c) 2019 Oracle and/or its affiliates.
9 
10 // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
11 
12 // Use, modification and distribution is subject to the Boost Software License,
13 // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
14 // http://www.boost.org/LICENSE_1_0.txt)
15 
16 // This file is converted from GeographicLib, https://geographiclib.sourceforge.io
17 // GeographicLib is originally written by Charles Karney.
18 
19 // Author: Charles Karney (2008-2017)
20 
21 // Last updated version of GeographicLib: 1.49
22 
23 // Original copyright notice:
24 
25 // Copyright (c) Charles Karney (2008-2017) <charles@karney.com> and licensed
26 // under the MIT/X11 License. For more information, see
27 // https://geographiclib.sourceforge.io
28 
29 #ifndef BOOST_GEOMETRY_FORMULAS_KARNEY_INVERSE_HPP
30 #define BOOST_GEOMETRY_FORMULAS_KARNEY_INVERSE_HPP
31 
32 
33 #include <boost/math/constants/constants.hpp>
34 #include <boost/math/special_functions/hypot.hpp>
35 
36 #include <boost/geometry/util/condition.hpp>
37 #include <boost/geometry/util/math.hpp>
38 #include <boost/geometry/util/series_expansion.hpp>
39 #include <boost/geometry/util/normalize_spheroidal_coordinates.hpp>
40 
41 #include <boost/geometry/formulas/flattening.hpp>
42 #include <boost/geometry/formulas/result_inverse.hpp>
43 
44 
45 namespace boost { namespace geometry { namespace math {
46 
47 // TODO: Moved temporarily because of C++11 is used
48 
49 /*!
50 \brief The exact difference of two angles reduced to (-180deg, 180deg].
51 */
52 template<typename T>
difference_angle(T const & x,T const & y,T & e)53 inline T difference_angle(T const& x, T const& y, T& e)
54 {
55     T t, d = math::sum_error(std::remainder(-x, T(360)), std::remainder(y, T(360)), t);
56 
57     normalize_azimuth<degree, T>(d);
58 
59     // Here y - x = d + t (mod 360), exactly, where d is in (-180,180] and
60     // abs(t) <= eps (eps = 2^-45 for doubles).  The only case where the
61     // addition of t takes the result outside the range (-180,180] is d = 180
62     // and t > 0.  The case, d = -180 + eps, t = -eps, can't happen, since
63     // sum_error would have returned the exact result in such a case (i.e., given t = 0).
64     return math::sum_error(d == 180 && t > 0 ? -180 : d, t, e);
65 }
66 
67 }}} // namespace boost::geometry::math
68 
69 
70 namespace boost { namespace geometry { namespace formula
71 {
72 
73 namespace se = series_expansion;
74 
75 /*!
76 \brief The solution of the inverse problem of geodesics on latlong coordinates,
77        after Karney (2011).
78 \author See
79 - Charles F.F Karney, Algorithms for geodesics, 2011
80 https://arxiv.org/pdf/1109.4448.pdf
81 */
82 template <
83     typename CT,
84     bool EnableDistance,
85     bool EnableAzimuth,
86     bool EnableReverseAzimuth = false,
87     bool EnableReducedLength = false,
88     bool EnableGeodesicScale = false,
89     size_t SeriesOrder = 8
90 >
91 class karney_inverse
92 {
93     static const bool CalcQuantities = EnableReducedLength || EnableGeodesicScale;
94     static const bool CalcAzimuths = EnableAzimuth || EnableReverseAzimuth || CalcQuantities;
95     static const bool CalcFwdAzimuth = EnableAzimuth || CalcQuantities;
96     static const bool CalcRevAzimuth = EnableReverseAzimuth || CalcQuantities;
97 
98 public:
99     typedef result_inverse<CT> result_type;
100 
101     template <typename T1, typename T2, typename Spheroid>
apply(T1 const & lo1,T1 const & la1,T2 const & lo2,T2 const & la2,Spheroid const & spheroid)102     static inline result_type apply(T1 const& lo1,
103                                     T1 const& la1,
104                                     T2 const& lo2,
105                                     T2 const& la2,
106                                     Spheroid const& spheroid)
107     {
108         static CT const c0 = 0;
109         static CT const c0_001 = 0.001;
110         static CT const c0_1 = 0.1;
111         static CT const c1 = 1;
112         static CT const c2 = 2;
113         static CT const c3 = 3;
114         static CT const c8 = 8;
115         static CT const c16 = 16;
116         static CT const c90 = 90;
117         static CT const c180 = 180;
118         static CT const c200 = 200;
119         static CT const pi = math::pi<CT>();
120         static CT const d2r = math::d2r<CT>();
121         static CT const r2d = math::r2d<CT>();
122 
123         result_type result;
124 
125         CT lat1 = la1;
126         CT lat2 = la2;
127 
128         CT lon1 = lo1;
129         CT lon2 = lo2;
130 
131         CT const a = CT(get_radius<0>(spheroid));
132         CT const b = CT(get_radius<2>(spheroid));
133         CT const f = formula::flattening<CT>(spheroid);
134         CT const one_minus_f = c1 - f;
135         CT const two_minus_f = c2 - f;
136 
137         CT const tol0 = std::numeric_limits<CT>::epsilon();
138         CT const tol1 = c200 * tol0;
139         CT const tol2 = sqrt(tol0);
140 
141         // Check on bisection interval.
142         CT const tol_bisection = tol0 * tol2;
143 
144         CT const etol2 = c0_1 * tol2 /
145             sqrt((std::max)(c0_001, std::abs(f)) * (std::min)(c1, c1 - f / c2) / c2);
146 
147         CT tiny = std::sqrt((std::numeric_limits<CT>::min)());
148 
149         CT const n = f / two_minus_f;
150         CT const e2 = f * two_minus_f;
151         CT const ep2 = e2 / math::sqr(one_minus_f);
152 
153         // Compute the longitudinal difference.
154         CT lon12_error;
155         CT lon12 = math::difference_angle(lon1, lon2, lon12_error);
156 
157         int lon12_sign = lon12 >= 0 ? 1 : -1;
158 
159         // Make points close to the meridian to lie on it.
160         lon12 = lon12_sign * lon12;
161         lon12_error = (c180 - lon12) - lon12_sign * lon12_error;
162 
163         // Convert to radians.
164         CT lam12 = lon12 * d2r;
165         CT sin_lam12;
166         CT cos_lam12;
167 
168         if (lon12 > c90)
169         {
170             math::sin_cos_degrees(lon12_error, sin_lam12, cos_lam12);
171             cos_lam12 *= -c1;
172         }
173         else
174         {
175             math::sin_cos_degrees(lon12, sin_lam12, cos_lam12);
176         }
177 
178         // Make points close to the equator to lie on it.
179         lat1 = math::round_angle(std::abs(lat1) > c90 ? c90 : lat1);
180         lat2 = math::round_angle(std::abs(lat2) > c90 ? c90 : lat2);
181 
182         // Arrange points in a canonical form, as explained in
183         // paper, Algorithms for geodesics, Eq. (44):
184         //
185         //     0 <= lon12 <= 180
186         //     -90 <= lat1 <= 0
187         //     lat1 <= lat2 <= -lat1
188         int swap_point = std::abs(lat1) < std::abs(lat2) ? -1 : 1;
189 
190         if (swap_point < 0)
191         {
192             lon12_sign *= -1;
193             swap(lat1, lat2);
194         }
195 
196         // Enforce lat1 to be <= 0.
197         int lat_sign = lat1 < 0 ? 1 : -1;
198         lat1 *= lat_sign;
199         lat2 *= lat_sign;
200 
201         CT sin_beta1, cos_beta1;
202         math::sin_cos_degrees(lat1, sin_beta1, cos_beta1);
203         sin_beta1 *= one_minus_f;
204 
205         math::normalize_unit_vector<CT>(sin_beta1, cos_beta1);
206         cos_beta1 = (std::max)(tiny, cos_beta1);
207 
208         CT sin_beta2, cos_beta2;
209         math::sin_cos_degrees(lat2, sin_beta2, cos_beta2);
210         sin_beta2 *= one_minus_f;
211 
212         math::normalize_unit_vector<CT>(sin_beta2, cos_beta2);
213         cos_beta2 = (std::max)(tiny, cos_beta2);
214 
215         // If cos_beta1 < -sin_beta1, then cos_beta2 - cos_beta1 is a
216         // sensitive measure of the |beta1| - |beta2|. Alternatively,
217         // (cos_beta1 >= -sin_beta1), abs(sin_beta2) + sin_beta1 is
218         // a better measure.
219         // Sometimes these quantities vanish and in that case we
220         // force beta2 = +/- bet1a exactly.
221         if (cos_beta1 < -sin_beta1)
222         {
223             if (cos_beta1 == cos_beta2)
224             {
225                 sin_beta2 = sin_beta2 < 0 ? sin_beta1 : -sin_beta1;
226             }
227         }
228         else
229         {
230             if (std::abs(sin_beta2) == -sin_beta1)
231             {
232                 cos_beta2 = cos_beta1;
233             }
234         }
235 
236         CT const dn1 = sqrt(c1 + ep2 * math::sqr(sin_beta1));
237         CT const dn2 = sqrt(c1 + ep2 * math::sqr(sin_beta2));
238 
239         CT sigma12;
240         CT m12x, s12x, M21;
241 
242         // Index zero element of coeffs_C1 is unused.
243         se::coeffs_C1<SeriesOrder, CT> const coeffs_C1(n);
244 
245         bool meridian = lat1 == -90 || sin_lam12 == 0;
246 
247         CT cos_alpha1, sin_alpha1;
248         CT cos_alpha2, sin_alpha2;
249 
250         if (meridian)
251         {
252             // Endpoints lie on a single full meridian.
253 
254             // Point to the target latitude.
255             cos_alpha1 = cos_lam12;
256             sin_alpha1 = sin_lam12;
257 
258             // Heading north at the target.
259             cos_alpha2 = c1;
260             sin_alpha2 = c0;
261 
262             CT sin_sigma1 = sin_beta1;
263             CT cos_sigma1 = cos_alpha1 * cos_beta1;
264 
265             CT sin_sigma2 = sin_beta2;
266             CT cos_sigma2 = cos_alpha2 * cos_beta2;
267 
268             CT sigma12 = std::atan2((std::max)(c0, cos_sigma1 * sin_sigma2 - sin_sigma1 * cos_sigma2),
269                                                    cos_sigma1 * cos_sigma2 + sin_sigma1 * sin_sigma2);
270 
271             CT dummy;
272             meridian_length(n, ep2, sigma12, sin_sigma1, cos_sigma1, dn1,
273                                              sin_sigma2, cos_sigma2, dn2,
274                                              cos_beta1, cos_beta2, s12x,
275                                              m12x, dummy, result.geodesic_scale,
276                                              M21, coeffs_C1);
277 
278             if (sigma12 < c1 || m12x >= c0)
279             {
280                 if (sigma12 < c3 * tiny)
281                 {
282                     sigma12  = m12x = s12x = c0;
283                 }
284 
285                 m12x *= b;
286                 s12x *= b;
287             }
288             else
289             {
290                 // m12 < 0, i.e., prolate and too close to anti-podal.
291                 meridian = false;
292             }
293         }
294 
295         CT omega12;
296 
297         if (!meridian && sin_beta1 == c0 &&
298             (f <= c0 || lon12_error >= f * c180))
299         {
300             // Points lie on the equator.
301             cos_alpha1 = cos_alpha2 = c0;
302             sin_alpha1 = sin_alpha2 = c1;
303 
304             s12x = a * lam12;
305             sigma12 = omega12 = lam12 / one_minus_f;
306             m12x = b * sin(sigma12);
307 
308             if (BOOST_GEOMETRY_CONDITION(EnableGeodesicScale))
309             {
310                 result.geodesic_scale = cos(sigma12);
311             }
312         }
313         else if (!meridian)
314         {
315             // If point1 and point2 belong within a hemisphere bounded by a
316             // meridian and geodesic is neither meridional nor equatorial.
317 
318             // Find the starting point for Newton's method.
319             CT dnm;
320             sigma12 = newton_start(sin_beta1, cos_beta1, dn1,
321                                    sin_beta2, cos_beta2, dn2,
322                                    lam12, sin_lam12, cos_lam12,
323                                    sin_alpha1, cos_alpha1,
324                                    sin_alpha2, cos_alpha2,
325                                    dnm, coeffs_C1, ep2,
326                                    tol1, tol2, etol2,
327                                    n, f);
328 
329             if (sigma12 >= c0)
330             {
331                 // Short lines case (newton_start sets sin_alpha2, cos_alpha2, dnm).
332                 s12x = sigma12 * b * dnm;
333                 m12x = math::sqr(dnm) * b * sin(sigma12 / dnm);
334                 if (BOOST_GEOMETRY_CONDITION(EnableGeodesicScale))
335                 {
336                     result.geodesic_scale = cos(sigma12 / dnm);
337                 }
338 
339                 // Convert to radians.
340                 omega12 = lam12 / (one_minus_f * dnm);
341             }
342             else
343             {
344                 // Apply the Newton's method.
345                 CT sin_sigma1 = c0, cos_sigma1 = c0;
346                 CT sin_sigma2 = c0, cos_sigma2 = c0;
347                 CT eps = c0, diff_omega12 = c0;
348 
349                 // Bracketing range.
350                 CT sin_alpha1a = tiny, cos_alpha1a = c1;
351                 CT sin_alpha1b = tiny, cos_alpha1b = -c1;
352 
353                 size_t iteration = 0;
354                 size_t max_iterations = 20 + std::numeric_limits<size_t>::digits + 10;
355 
356                 for (bool tripn = false, tripb = false;
357                      iteration < max_iterations;
358                      ++iteration)
359                 {
360                     CT dv;
361                     CT v = lambda12(sin_beta1, cos_beta1, dn1,
362                                     sin_beta2, cos_beta2, dn2,
363                                     sin_alpha1, cos_alpha1,
364                                     sin_lam12, cos_lam12,
365                                     sin_alpha2, cos_alpha2,
366                                     sigma12,
367                                     sin_sigma1, cos_sigma1,
368                                     sin_sigma2, cos_sigma2,
369                                     eps, diff_omega12,
370                                     iteration < max_iterations,
371                                     dv, f, n, ep2, tiny, coeffs_C1);
372 
373                     // Reversed test to allow escape with NaNs.
374                     if (tripb || !(std::abs(v) >= (tripn ? c8 : c1) * tol0))
375                         break;
376 
377                     // Update bracketing values.
378                     if (v > c0 && (iteration > max_iterations ||
379                         cos_alpha1 / sin_alpha1 > cos_alpha1b / sin_alpha1b))
380                     {
381                         sin_alpha1b = sin_alpha1;
382                         cos_alpha1b = cos_alpha1;
383                     }
384                     else if (v < c0 && (iteration > max_iterations ||
385                              cos_alpha1 / sin_alpha1 < cos_alpha1a / sin_alpha1a))
386                     {
387                         sin_alpha1a = sin_alpha1;
388                         cos_alpha1a = cos_alpha1;
389                     }
390 
391                     if (iteration < max_iterations && dv > c0)
392                     {
393                         CT diff_alpha1 = -v / dv;
394 
395                         CT sin_diff_alpha1 = sin(diff_alpha1);
396                         CT cos_diff_alpha1 = cos(diff_alpha1);
397 
398                         CT nsin_alpha1 = sin_alpha1 * cos_diff_alpha1 +
399                             cos_alpha1 * sin_diff_alpha1;
400 
401                         if (nsin_alpha1 > c0 && std::abs(diff_alpha1) < pi)
402                         {
403                             cos_alpha1 = cos_alpha1 * cos_diff_alpha1 - sin_alpha1 * sin_diff_alpha1;
404                             sin_alpha1 = nsin_alpha1;
405                             math::normalize_unit_vector<CT>(sin_alpha1, cos_alpha1);
406 
407                             // In some regimes we don't get quadratic convergence because
408                             // slope -> 0. So use convergence conditions based on epsilon
409                             // instead of sqrt(epsilon).
410                             tripn = std::abs(v) <= c16 * tol0;
411                             continue;
412                         }
413                     }
414 
415                     // Either dv was not positive or updated value was outside legal
416                     // range. Use the midpoint of the bracket as the next estimate.
417                     // This mechanism is not needed for the WGS84 ellipsoid, but it does
418                     // catch problems with more eeccentric ellipsoids. Its efficacy is
419                     // such for the WGS84 test set with the starting guess set to alp1 =
420                     // 90deg:
421                     // the WGS84 test set: mean = 5.21, sd = 3.93, max = 24
422                     // WGS84 and random input: mean = 4.74, sd = 0.99
423                     sin_alpha1 = (sin_alpha1a + sin_alpha1b) / c2;
424                     cos_alpha1 = (cos_alpha1a + cos_alpha1b) / c2;
425                     math::normalize_unit_vector<CT>(sin_alpha1, cos_alpha1);
426                     tripn = false;
427                     tripb = (std::abs(sin_alpha1a - sin_alpha1) + (cos_alpha1a - cos_alpha1) < tol_bisection ||
428                              std::abs(sin_alpha1 - sin_alpha1b) + (cos_alpha1 - cos_alpha1b) < tol_bisection);
429                 }
430 
431                 CT dummy;
432                 se::coeffs_C1<SeriesOrder, CT> const coeffs_C1_eps(eps);
433                 // Ensure that the reduced length and geodesic scale are computed in
434                 // a "canonical" way, with the I2 integral.
435                 meridian_length(eps, ep2, sigma12, sin_sigma1, cos_sigma1, dn1,
436                                                    sin_sigma2, cos_sigma2, dn2,
437                                                    cos_beta1, cos_beta2, s12x,
438                                                    m12x, dummy, result.geodesic_scale,
439                                                    M21, coeffs_C1_eps);
440 
441                 m12x *= b;
442                 s12x *= b;
443             }
444         }
445 
446         if (swap_point < 0)
447         {
448             swap(sin_alpha1, sin_alpha2);
449             swap(cos_alpha1, cos_alpha2);
450             swap(result.geodesic_scale, M21);
451         }
452 
453         sin_alpha1 *= swap_point * lon12_sign;
454         cos_alpha1 *= swap_point * lat_sign;
455 
456         sin_alpha2 *= swap_point * lon12_sign;
457         cos_alpha2 *= swap_point * lat_sign;
458 
459         if (BOOST_GEOMETRY_CONDITION(EnableReducedLength))
460         {
461             result.reduced_length = m12x;
462         }
463 
464         if (BOOST_GEOMETRY_CONDITION(CalcAzimuths))
465         {
466             if (BOOST_GEOMETRY_CONDITION(CalcFwdAzimuth))
467             {
468                 result.azimuth = atan2(sin_alpha1, cos_alpha1) * r2d;
469             }
470 
471             if (BOOST_GEOMETRY_CONDITION(CalcRevAzimuth))
472             {
473                 result.reverse_azimuth = atan2(sin_alpha2, cos_alpha2) * r2d;
474             }
475         }
476 
477         if (BOOST_GEOMETRY_CONDITION(EnableDistance))
478         {
479             result.distance = s12x;
480         }
481 
482         return result;
483     }
484 
485     template <typename CoeffsC1>
meridian_length(CT const & epsilon,CT const & ep2,CT const & sigma12,CT const & sin_sigma1,CT const & cos_sigma1,CT const & dn1,CT const & sin_sigma2,CT const & cos_sigma2,CT const & dn2,CT const & cos_beta1,CT const & cos_beta2,CT & s12x,CT & m12x,CT & m0,CT & M12,CT & M21,CoeffsC1 const & coeffs_C1)486     static inline void meridian_length(CT const& epsilon, CT const& ep2, CT const& sigma12,
487                                        CT const& sin_sigma1, CT const& cos_sigma1, CT const& dn1,
488                                        CT const& sin_sigma2, CT const& cos_sigma2, CT const& dn2,
489                                        CT const& cos_beta1, CT const& cos_beta2,
490                                        CT& s12x, CT& m12x, CT& m0,
491                                        CT& M12, CT& M21,
492                                        CoeffsC1 const& coeffs_C1)
493     {
494         static CT const c1 = 1;
495 
496         CT A12x = 0, J12 = 0;
497         CT expansion_A1, expansion_A2;
498 
499         // Evaluate the coefficients for C2.
500         se::coeffs_C2<SeriesOrder, CT> coeffs_C2(epsilon);
501 
502         if (BOOST_GEOMETRY_CONDITION(EnableDistance) ||
503             BOOST_GEOMETRY_CONDITION(EnableReducedLength) ||
504             BOOST_GEOMETRY_CONDITION(EnableGeodesicScale))
505         {
506             // Find the coefficients for A1 by computing the
507             // series expansion using Horner scehme.
508             expansion_A1 = se::evaluate_A1<SeriesOrder>(epsilon);
509 
510             if (BOOST_GEOMETRY_CONDITION(EnableReducedLength) ||
511                 BOOST_GEOMETRY_CONDITION(EnableGeodesicScale))
512             {
513                 // Find the coefficients for A2 by computing the
514                 // series expansion using Horner scehme.
515                 expansion_A2 = se::evaluate_A2<SeriesOrder>(epsilon);
516 
517                 A12x = expansion_A1 - expansion_A2;
518                 expansion_A2 += c1;
519             }
520             expansion_A1 += c1;
521         }
522 
523         if (BOOST_GEOMETRY_CONDITION(EnableDistance))
524         {
525             CT B1 = se::sin_cos_series(sin_sigma2, cos_sigma2, coeffs_C1)
526                   - se::sin_cos_series(sin_sigma1, cos_sigma1, coeffs_C1);
527 
528             s12x = expansion_A1 * (sigma12 + B1);
529 
530             if (BOOST_GEOMETRY_CONDITION(EnableReducedLength) ||
531                 BOOST_GEOMETRY_CONDITION(EnableGeodesicScale))
532             {
533                 CT B2 = se::sin_cos_series(sin_sigma2, cos_sigma2, coeffs_C2)
534                       - se::sin_cos_series(sin_sigma1, cos_sigma1, coeffs_C2);
535 
536                 J12 = A12x * sigma12 + (expansion_A1 * B1 - expansion_A2 * B2);
537             }
538         }
539         else if (BOOST_GEOMETRY_CONDITION(EnableReducedLength) ||
540                  BOOST_GEOMETRY_CONDITION(EnableGeodesicScale))
541         {
542             for (size_t i = 1; i <= SeriesOrder; ++i)
543             {
544                 coeffs_C2[i] = expansion_A1 * coeffs_C1[i] -
545                                expansion_A2 * coeffs_C2[i];
546             }
547 
548             J12 = A12x * sigma12 +
549                    (se::sin_cos_series(sin_sigma2, cos_sigma2, coeffs_C2)
550                   - se::sin_cos_series(sin_sigma1, cos_sigma1, coeffs_C2));
551         }
552 
553         if (BOOST_GEOMETRY_CONDITION(EnableReducedLength))
554         {
555             m0 = A12x;
556 
557             m12x = dn2 * (cos_sigma1 * sin_sigma2) -
558                    dn1 * (sin_sigma1 * cos_sigma2) -
559                    cos_sigma1 * cos_sigma2 * J12;
560         }
561 
562         if (BOOST_GEOMETRY_CONDITION(EnableGeodesicScale))
563         {
564             CT cos_sigma12 = cos_sigma1 * cos_sigma2 + sin_sigma1 * sin_sigma2;
565             CT t = ep2 * (cos_beta1 - cos_beta2) *
566                          (cos_beta1 + cos_beta2) / (dn1 + dn2);
567 
568             M12 = cos_sigma12 + (t * sin_sigma2 - cos_sigma2 * J12) * sin_sigma1 / dn1;
569             M21 = cos_sigma12 - (t * sin_sigma1 - cos_sigma1 * J12) * sin_sigma2 / dn2;
570         }
571     }
572 
573     /*
574      Return a starting point for Newton's method in sin_alpha1 and
575      cos_alpha1 (function value is -1). If Newton's method
576      doesn't need to be used, return also sin_alpha2 and
577      cos_alpha2 and function value is sig12.
578     */
579     template <typename CoeffsC1>
newton_start(CT const & sin_beta1,CT const & cos_beta1,CT const & dn1,CT const & sin_beta2,CT const & cos_beta2,CT dn2,CT const & lam12,CT const & sin_lam12,CT const & cos_lam12,CT & sin_alpha1,CT & cos_alpha1,CT & sin_alpha2,CT & cos_alpha2,CT & dnm,CoeffsC1 const & coeffs_C1,CT const & ep2,CT const & tol1,CT const & tol2,CT const & etol2,CT const & n,CT const & f)580     static inline CT newton_start(CT const& sin_beta1, CT const& cos_beta1, CT const& dn1,
581                                   CT const& sin_beta2, CT const& cos_beta2, CT dn2,
582                                   CT const& lam12, CT const& sin_lam12, CT const& cos_lam12,
583                                   CT& sin_alpha1, CT& cos_alpha1,
584                                   CT& sin_alpha2, CT& cos_alpha2,
585                                   CT& dnm, CoeffsC1 const& coeffs_C1, CT const& ep2,
586                                   CT const& tol1, CT const& tol2, CT const& etol2, CT const& n, CT const& f)
587     {
588         static CT const c0 = 0;
589         static CT const c0_01 = 0.01;
590         static CT const c0_1 = 0.1;
591         static CT const c0_5 = 0.5;
592         static CT const c1 = 1;
593         static CT const c2 = 2;
594         static CT const c6 = 6;
595         static CT const c1000 = 1000;
596         static CT const pi = math::pi<CT>();
597 
598         CT const one_minus_f = c1 - f;
599         CT const x_thresh = c1000 * tol2;
600 
601         // Return a starting point for Newton's method in sin_alpha1
602         // and cos_alpha1 (function value is -1). If Newton's method
603         // doesn't need to be used, return also sin_alpha2 and
604         // cos_alpha2 and function value is sig12.
605         CT sig12 = -c1;
606 
607         // bet12 = bet2 - bet1 in [0, pi); beta12a = bet2 + bet1 in (-pi, 0]
608         CT sin_beta12 = sin_beta2 * cos_beta1 - cos_beta2 * sin_beta1;
609         CT cos_beta12 = cos_beta2 * cos_beta1 + sin_beta2 * sin_beta1;
610 
611         CT sin_beta12a = sin_beta2 * cos_beta1 + cos_beta2 * sin_beta1;
612 
613         bool shortline = cos_beta12 >= c0 && sin_beta12 < c0_5 &&
614             cos_beta2 * lam12 < c0_5;
615 
616         CT sin_omega12, cos_omega12;
617 
618         if (shortline)
619         {
620             CT sin_beta_m2 = math::sqr(sin_beta1 + sin_beta2);
621 
622             sin_beta_m2 /= sin_beta_m2 + math::sqr(cos_beta1 + cos_beta2);
623             dnm = math::sqrt(c1 + ep2 * sin_beta_m2);
624 
625             CT omega12 = lam12 / (one_minus_f * dnm);
626 
627             sin_omega12 = sin(omega12);
628             cos_omega12 = cos(omega12);
629         }
630         else
631         {
632             sin_omega12 = sin_lam12;
633             cos_omega12 = cos_lam12;
634         }
635 
636         sin_alpha1 = cos_beta2 * sin_omega12;
637         cos_alpha1 = cos_omega12 >= c0 ?
638             sin_beta12 + cos_beta2 * sin_beta1 * math::sqr(sin_omega12) / (c1 + cos_omega12) :
639             sin_beta12a - cos_beta2 * sin_beta1 * math::sqr(sin_omega12) / (c1 - cos_omega12);
640 
641         CT sin_sigma12 = boost::math::hypot(sin_alpha1, cos_alpha1);
642         CT cos_sigma12 = sin_beta1 * sin_beta2 + cos_beta1 * cos_beta2 * cos_omega12;
643 
644         if (shortline && sin_sigma12 < etol2)
645         {
646             sin_alpha2 = cos_beta1 * sin_omega12;
647             cos_alpha2 = sin_beta12 - cos_beta1 * sin_beta2 *
648                 (cos_omega12 >= c0 ? math::sqr(sin_omega12) /
649                 (c1 + cos_omega12) : c1 - cos_omega12);
650 
651             math::normalize_unit_vector<CT>(sin_alpha2, cos_alpha2);
652             // Set return value.
653             sig12 = atan2(sin_sigma12, cos_sigma12);
654         }
655         // Skip astroid calculation if too eccentric.
656         else if (std::abs(n) > c0_1 ||
657                  cos_sigma12 >= c0 ||
658                  sin_sigma12 >= c6 * std::abs(n) * pi *
659                  math::sqr(cos_beta1))
660         {
661             // Nothing to do, zeroth order spherical approximation will do.
662         }
663         else
664         {
665             // Scale lam12 and bet2 to x, y coordinate system where antipodal
666             // point is at origin and singular point is at y = 0, x = -1.
667             CT lambda_scale, beta_scale;
668 
669             CT y;
670             volatile CT x;
671 
672             CT lam12x = atan2(-sin_lam12, -cos_lam12);
673             if (f >= c0)
674             {
675                 CT k2 = math::sqr(sin_beta1) * ep2;
676                 CT eps = k2 / (c2 * (c1 + sqrt(c1 + k2)) + k2);
677 
678                 se::coeffs_A3<SeriesOrder, CT> const coeffs_A3(n);
679 
680                 CT const A3 = math::horner_evaluate(eps, coeffs_A3.begin(), coeffs_A3.end());
681 
682                 lambda_scale = f * cos_beta1 * A3 * pi;
683                 beta_scale = lambda_scale * cos_beta1;
684 
685                 x = lam12x / lambda_scale;
686                 y = sin_beta12a / beta_scale;
687             }
688             else
689             {
690                 CT cos_beta12a = cos_beta2 * cos_beta1 - sin_beta2 * sin_beta1;
691                 CT beta12a = atan2(sin_beta12a, cos_beta12a);
692 
693                 CT m12b, m0, dummy;
694                 meridian_length(n, ep2, pi + beta12a,
695                                 sin_beta1, -cos_beta1, dn1,
696                                 sin_beta2, cos_beta2, dn2,
697                                 cos_beta1, cos_beta2, dummy,
698                                 m12b, m0, dummy, dummy, coeffs_C1);
699 
700                 x = -c1 + m12b / (cos_beta1 * cos_beta2 * m0 * pi);
701                 beta_scale = x < -c0_01
702                            ? sin_beta12a / x
703                            : -f * math::sqr(cos_beta1) * pi;
704                 lambda_scale = beta_scale / cos_beta1;
705 
706                 y = lam12x / lambda_scale;
707             }
708 
709             if (y > -tol1 && x > -c1 - x_thresh)
710             {
711                 // Strip near cut.
712                 if (f >= c0)
713                 {
714                     sin_alpha1 = (std::min)(c1, -CT(x));
715                     cos_alpha1 = - math::sqrt(c1 - math::sqr(sin_alpha1));
716                 }
717                 else
718                 {
719                     cos_alpha1 = (std::max)(CT(x > -tol1 ? c0 : -c1), CT(x));
720                     sin_alpha1 = math::sqrt(c1 - math::sqr(cos_alpha1));
721                 }
722             }
723             else
724             {
725                 // Solve the astroid problem.
726                 CT k = astroid(CT(x), y);
727 
728                 CT omega12a = lambda_scale * (f >= c0 ? -x * k /
729                     (c1 + k) : -y * (c1 + k) / k);
730 
731                 sin_omega12 = sin(omega12a);
732                 cos_omega12 = -cos(omega12a);
733 
734                 // Update spherical estimate of alpha1 using omgega12 instead of lam12.
735                 sin_alpha1 = cos_beta2 * sin_omega12;
736                 cos_alpha1 = sin_beta12a - cos_beta2 * sin_beta1 *
737                     math::sqr(sin_omega12) / (c1 - cos_omega12);
738             }
739         }
740 
741         // Sanity check on starting guess. Backwards check allows NaN through.
742         if (!(sin_alpha1 <= c0))
743         {
744             math::normalize_unit_vector<CT>(sin_alpha1, cos_alpha1);
745         }
746         else
747         {
748             sin_alpha1 = c1;
749             cos_alpha1 = c0;
750         }
751 
752         return sig12;
753     }
754 
755     /*
756      Solve the astroid problem using the equation:
757      κ4 + 2κ3 + (1 − x2 − y 2 )κ2 − 2y 2 κ − y 2 = 0.
758 
759      For details, please refer to Eq. (65) in,
760      Geodesics on an ellipsoid of revolution, Charles F.F Karney,
761      https://arxiv.org/abs/1102.1215
762     */
astroid(CT const & x,CT const & y)763     static inline CT astroid(CT const& x, CT const& y)
764     {
765         static CT const c0 = 0;
766         static CT const c1 = 1;
767         static CT const c2 = 2;
768         static CT const c3 = 3;
769         static CT const c4 = 4;
770         static CT const c6 = 6;
771 
772         CT k;
773 
774         CT p = math::sqr(x);
775         CT q = math::sqr(y);
776         CT r = (p + q - c1) / c6;
777 
778         if (!(q == c0 && r <= c0))
779         {
780             // Avoid possible division by zero when r = 0 by multiplying
781             // equations for s and t by r^3 and r, respectively.
782             CT S = p * q / c4;
783             CT r2 = math::sqr(r);
784             CT r3 = r * r2;
785 
786             // The discriminant of the quadratic equation for T3. This is
787             // zero on the evolute curve p^(1/3)+q^(1/3) = 1.
788             CT discriminant = S * (S + c2 * r3);
789 
790             CT u = r;
791 
792             if (discriminant >= c0)
793             {
794                 CT T3 = S + r3;
795 
796                 // Pick the sign on the sqrt to maximize abs(T3). This minimizes
797                 // loss of precision due to cancellation. The result is unchanged
798                 // because of the way the T is used in definition of u.
799                 T3 += T3 < c0 ? -std::sqrt(discriminant) : std::sqrt(discriminant);
800 
801                 CT T = std::cbrt(T3);
802 
803                 // T can be zero; but then r2 / T -> 0.
804                 u += T + (T != c0 ? r2 / T : c0);
805             }
806             else
807             {
808                 CT ang = std::atan2(std::sqrt(-discriminant), -(S + r3));
809 
810                 // There are three possible cube roots. We choose the root which avoids
811                 // cancellation. Note that discriminant < 0 implies that r < 0.
812                 u += c2 * r * cos(ang / c3);
813             }
814 
815             CT v = std::sqrt(math::sqr(u) + q);
816 
817             // Avoid loss of accuracy when u < 0.
818             CT uv = u < c0 ? q / (v - u) : u + v;
819             CT w = (uv - q) / (c2 * v);
820 
821             // Rearrange expression for k to avoid loss of accuracy due to
822             // subtraction. Division by 0 not possible because uv > 0, w >= 0.
823             k = uv / (std::sqrt(uv + math::sqr(w)) + w);
824         }
825         else // q == 0 && r <= 0
826         {
827             // y = 0 with |x| <= 1. Handle this case directly.
828             // For y small, positive root is k = abs(y)/sqrt(1-x^2).
829             k = c0;
830         }
831         return k;
832     }
833 
834     template <typename CoeffsC1>
lambda12(CT const & sin_beta1,CT const & cos_beta1,CT const & dn1,CT const & sin_beta2,CT const & cos_beta2,CT const & dn2,CT const & sin_alpha1,CT cos_alpha1,CT const & sin_lam120,CT const & cos_lam120,CT & sin_alpha2,CT & cos_alpha2,CT & sigma12,CT & sin_sigma1,CT & cos_sigma1,CT & sin_sigma2,CT & cos_sigma2,CT & eps,CT & diff_omega12,bool diffp,CT & diff_lam12,CT const & f,CT const & n,CT const & ep2,CT const & tiny,CoeffsC1 const & coeffs_C1)835     static inline CT lambda12(CT const& sin_beta1, CT const& cos_beta1, CT const& dn1,
836                               CT const& sin_beta2, CT const& cos_beta2, CT const& dn2,
837                               CT const& sin_alpha1, CT cos_alpha1,
838                               CT const& sin_lam120, CT const& cos_lam120,
839                               CT& sin_alpha2, CT& cos_alpha2,
840                               CT& sigma12,
841                               CT& sin_sigma1, CT& cos_sigma1,
842                               CT& sin_sigma2, CT& cos_sigma2,
843                               CT& eps, CT& diff_omega12,
844                               bool diffp, CT& diff_lam12,
845                               CT const& f, CT const& n, CT const& ep2, CT const& tiny,
846                               CoeffsC1 const& coeffs_C1)
847     {
848         static CT const c0 = 0;
849         static CT const c1 = 1;
850         static CT const c2 = 2;
851 
852         CT const one_minus_f = c1 - f;
853 
854         if (sin_beta1 == c0 && cos_alpha1 == c0)
855         {
856             // Break degeneracy of equatorial line.
857             cos_alpha1 = -tiny;
858         }
859 
860 
861         CT sin_alpha0 = sin_alpha1 * cos_beta1;
862         CT cos_alpha0 = boost::math::hypot(cos_alpha1, sin_alpha1 * sin_beta1);
863 
864         CT sin_omega1, cos_omega1;
865         CT sin_omega2, cos_omega2;
866         CT sin_omega12, cos_omega12;
867 
868         CT lam12;
869 
870         sin_sigma1 = sin_beta1;
871         sin_omega1 = sin_alpha0 * sin_beta1;
872 
873         cos_sigma1 = cos_omega1 = cos_alpha1 * cos_beta1;
874 
875         math::normalize_unit_vector<CT>(sin_sigma1, cos_sigma1);
876 
877         // Enforce symmetries in the case abs(beta2) = -beta1.
878         // Otherwise, this can yield singularities in the Newton iteration.
879 
880         // sin(alpha2) * cos(beta2) = sin(alpha0).
881         sin_alpha2 = cos_beta2 != cos_beta1 ?
882             sin_alpha0 / cos_beta2 : sin_alpha1;
883 
884         cos_alpha2 = cos_beta2 != cos_beta1 || std::abs(sin_beta2) != -sin_beta1 ?
885             sqrt(math::sqr(cos_alpha1 * cos_beta1) +
886                 (cos_beta1 < -sin_beta1 ?
887                     (cos_beta2 - cos_beta1) * (cos_beta1 + cos_beta2) :
888                     (sin_beta1 - sin_beta2) * (sin_beta1 + sin_beta2))) / cos_beta2 :
889             std::abs(cos_alpha1);
890 
891         sin_sigma2 = sin_beta2;
892         sin_omega2 = sin_alpha0 * sin_beta2;
893 
894         cos_sigma2 = cos_omega2 =
895             (cos_alpha2 * cos_beta2);
896 
897         // Break degeneracy of equatorial line.
898         math::normalize_unit_vector<CT>(sin_sigma2, cos_sigma2);
899 
900 
901         // sig12 = sig2 - sig1, limit to [0, pi].
902         sigma12 = atan2((std::max)(c0, cos_sigma1 * sin_sigma2 - sin_sigma1 * cos_sigma2),
903                                           cos_sigma1 * cos_sigma2 + sin_sigma1 * sin_sigma2);
904 
905         // omg12 = omg2 - omg1, limit to [0, pi].
906         sin_omega12 = (std::max)(c0, cos_omega1 * sin_omega2 - sin_omega1 * cos_omega2);
907         cos_omega12 = cos_omega1 * cos_omega2 + sin_omega1 * sin_omega2;
908 
909         // eta = omg12 - lam120.
910         CT eta = atan2(sin_omega12 * cos_lam120 - cos_omega12 * sin_lam120,
911                        cos_omega12 * cos_lam120 + sin_omega12 * sin_lam120);
912 
913         CT B312;
914         CT k2 = math::sqr(cos_alpha0) * ep2;
915 
916         eps = k2 / (c2 * (c1 + std::sqrt(c1 + k2)) + k2);
917 
918         se::coeffs_C3<SeriesOrder, CT> const coeffs_C3(n, eps);
919 
920         B312 = se::sin_cos_series(sin_sigma2, cos_sigma2, coeffs_C3)
921              - se::sin_cos_series(sin_sigma1, cos_sigma1, coeffs_C3);
922 
923         se::coeffs_A3<SeriesOrder, CT> const coeffs_A3(n);
924 
925         CT const A3 = math::horner_evaluate(eps, coeffs_A3.begin(), coeffs_A3.end());
926 
927         diff_omega12 = -f * A3 * sin_alpha0 * (sigma12 + B312);
928         lam12 = eta + diff_omega12;
929 
930         if (diffp)
931         {
932             if (cos_alpha2 == c0)
933             {
934                 diff_lam12 = - c2 * one_minus_f * dn1 / sin_beta1;
935             }
936             else
937             {
938                 CT dummy;
939                 meridian_length(eps, ep2, sigma12, sin_sigma1, cos_sigma1, dn1,
940                                                    sin_sigma2, cos_sigma2, dn2,
941                                                    cos_beta1, cos_beta2, dummy,
942                                                    diff_lam12, dummy, dummy,
943                                                    dummy, coeffs_C1);
944 
945                 diff_lam12 *= one_minus_f / (cos_alpha2 * cos_beta2);
946             }
947         }
948         return lam12;
949     }
950 
951 };
952 
953 }}} // namespace boost::geometry::formula
954 
955 
956 #endif // BOOST_GEOMETRY_FORMULAS_KARNEY_INVERSE_HPP
957