• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cfg80211 scan result handling
4  *
5  * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2016	Intel Deutschland GmbH
8  * Copyright (C) 2018-2020 Intel Corporation
9  */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
19 #include <net/arp.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
23 #include "core.h"
24 #include "nl80211.h"
25 #include "wext-compat.h"
26 #include "rdev-ops.h"
27 
28 /**
29  * DOC: BSS tree/list structure
30  *
31  * At the top level, the BSS list is kept in both a list in each
32  * registered device (@bss_list) as well as an RB-tree for faster
33  * lookup. In the RB-tree, entries can be looked up using their
34  * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
35  * for other BSSes.
36  *
37  * Due to the possibility of hidden SSIDs, there's a second level
38  * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
39  * The hidden_list connects all BSSes belonging to a single AP
40  * that has a hidden SSID, and connects beacon and probe response
41  * entries. For a probe response entry for a hidden SSID, the
42  * hidden_beacon_bss pointer points to the BSS struct holding the
43  * beacon's information.
44  *
45  * Reference counting is done for all these references except for
46  * the hidden_list, so that a beacon BSS struct that is otherwise
47  * not referenced has one reference for being on the bss_list and
48  * one for each probe response entry that points to it using the
49  * hidden_beacon_bss pointer. When a BSS struct that has such a
50  * pointer is get/put, the refcount update is also propagated to
51  * the referenced struct, this ensure that it cannot get removed
52  * while somebody is using the probe response version.
53  *
54  * Note that the hidden_beacon_bss pointer never changes, due to
55  * the reference counting. Therefore, no locking is needed for
56  * it.
57  *
58  * Also note that the hidden_beacon_bss pointer is only relevant
59  * if the driver uses something other than the IEs, e.g. private
60  * data stored in the BSS struct, since the beacon IEs are
61  * also linked into the probe response struct.
62  */
63 
64 /*
65  * Limit the number of BSS entries stored in mac80211. Each one is
66  * a bit over 4k at most, so this limits to roughly 4-5M of memory.
67  * If somebody wants to really attack this though, they'd likely
68  * use small beacons, and only one type of frame, limiting each of
69  * the entries to a much smaller size (in order to generate more
70  * entries in total, so overhead is bigger.)
71  */
72 static int bss_entries_limit = 1000;
73 module_param(bss_entries_limit, int, 0644);
74 MODULE_PARM_DESC(bss_entries_limit,
75                  "limit to number of scan BSS entries (per wiphy, default 1000)");
76 
77 #define IEEE80211_SCAN_RESULT_EXPIRE	(30 * HZ)
78 
79 /**
80  * struct cfg80211_colocated_ap - colocated AP information
81  *
82  * @list: linked list to all colocated aPS
83  * @bssid: BSSID of the reported AP
84  * @ssid: SSID of the reported AP
85  * @ssid_len: length of the ssid
86  * @center_freq: frequency the reported AP is on
87  * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
88  *	that operate in the same channel as the reported AP and that might be
89  *	detected by a STA receiving this frame, are transmitting unsolicited
90  *	Probe Response frames every 20 TUs
91  * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
92  * @same_ssid: the reported AP has the same SSID as the reporting AP
93  * @multi_bss: the reported AP is part of a multiple BSSID set
94  * @transmitted_bssid: the reported AP is the transmitting BSSID
95  * @colocated_ess: all the APs that share the same ESS as the reported AP are
96  *	colocated and can be discovered via legacy bands.
97  * @short_ssid_valid: short_ssid is valid and can be used
98  * @short_ssid: the short SSID for this SSID
99  */
100 struct cfg80211_colocated_ap {
101 	struct list_head list;
102 	u8 bssid[ETH_ALEN];
103 	u8 ssid[IEEE80211_MAX_SSID_LEN];
104 	size_t ssid_len;
105 	u32 short_ssid;
106 	u32 center_freq;
107 	u8 unsolicited_probe:1,
108 	   oct_recommended:1,
109 	   same_ssid:1,
110 	   multi_bss:1,
111 	   transmitted_bssid:1,
112 	   colocated_ess:1,
113 	   short_ssid_valid:1;
114 };
115 
bss_free(struct cfg80211_internal_bss * bss)116 static void bss_free(struct cfg80211_internal_bss *bss)
117 {
118 	struct cfg80211_bss_ies *ies;
119 
120 	if (WARN_ON(atomic_read(&bss->hold)))
121 		return;
122 
123 	ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
124 	if (ies && !bss->pub.hidden_beacon_bss)
125 		kfree_rcu(ies, rcu_head);
126 	ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
127 	if (ies)
128 		kfree_rcu(ies, rcu_head);
129 
130 	/*
131 	 * This happens when the module is removed, it doesn't
132 	 * really matter any more save for completeness
133 	 */
134 	if (!list_empty(&bss->hidden_list))
135 		list_del(&bss->hidden_list);
136 
137 	kfree(bss);
138 }
139 
bss_ref_get(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)140 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
141 			       struct cfg80211_internal_bss *bss)
142 {
143 	lockdep_assert_held(&rdev->bss_lock);
144 
145 	bss->refcount++;
146 
147 	if (bss->pub.hidden_beacon_bss)
148 		bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
149 
150 	if (bss->pub.transmitted_bss)
151 		bss_from_pub(bss->pub.transmitted_bss)->refcount++;
152 }
153 
bss_ref_put(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)154 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
155 			       struct cfg80211_internal_bss *bss)
156 {
157 	lockdep_assert_held(&rdev->bss_lock);
158 
159 	if (bss->pub.hidden_beacon_bss) {
160 		struct cfg80211_internal_bss *hbss;
161 		hbss = container_of(bss->pub.hidden_beacon_bss,
162 				    struct cfg80211_internal_bss,
163 				    pub);
164 		hbss->refcount--;
165 		if (hbss->refcount == 0)
166 			bss_free(hbss);
167 	}
168 
169 	if (bss->pub.transmitted_bss) {
170 		struct cfg80211_internal_bss *tbss;
171 
172 		tbss = container_of(bss->pub.transmitted_bss,
173 				    struct cfg80211_internal_bss,
174 				    pub);
175 		tbss->refcount--;
176 		if (tbss->refcount == 0)
177 			bss_free(tbss);
178 	}
179 
180 	bss->refcount--;
181 	if (bss->refcount == 0)
182 		bss_free(bss);
183 }
184 
__cfg80211_unlink_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)185 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
186 				  struct cfg80211_internal_bss *bss)
187 {
188 	lockdep_assert_held(&rdev->bss_lock);
189 
190 	if (!list_empty(&bss->hidden_list)) {
191 		/*
192 		 * don't remove the beacon entry if it has
193 		 * probe responses associated with it
194 		 */
195 		if (!bss->pub.hidden_beacon_bss)
196 			return false;
197 		/*
198 		 * if it's a probe response entry break its
199 		 * link to the other entries in the group
200 		 */
201 		list_del_init(&bss->hidden_list);
202 	}
203 
204 	list_del_init(&bss->list);
205 	list_del_init(&bss->pub.nontrans_list);
206 	rb_erase(&bss->rbn, &rdev->bss_tree);
207 	rdev->bss_entries--;
208 	WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
209 		  "rdev bss entries[%d]/list[empty:%d] corruption\n",
210 		  rdev->bss_entries, list_empty(&rdev->bss_list));
211 	bss_ref_put(rdev, bss);
212 	return true;
213 }
214 
cfg80211_is_element_inherited(const struct element * elem,const struct element * non_inherit_elem)215 bool cfg80211_is_element_inherited(const struct element *elem,
216 				   const struct element *non_inherit_elem)
217 {
218 	u8 id_len, ext_id_len, i, loop_len, id;
219 	const u8 *list;
220 
221 	if (elem->id == WLAN_EID_MULTIPLE_BSSID)
222 		return false;
223 
224 	if (!non_inherit_elem || non_inherit_elem->datalen < 2)
225 		return true;
226 
227 	/*
228 	 * non inheritance element format is:
229 	 * ext ID (56) | IDs list len | list | extension IDs list len | list
230 	 * Both lists are optional. Both lengths are mandatory.
231 	 * This means valid length is:
232 	 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
233 	 */
234 	id_len = non_inherit_elem->data[1];
235 	if (non_inherit_elem->datalen < 3 + id_len)
236 		return true;
237 
238 	ext_id_len = non_inherit_elem->data[2 + id_len];
239 	if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
240 		return true;
241 
242 	if (elem->id == WLAN_EID_EXTENSION) {
243 		if (!ext_id_len)
244 			return true;
245 		loop_len = ext_id_len;
246 		list = &non_inherit_elem->data[3 + id_len];
247 		id = elem->data[0];
248 	} else {
249 		if (!id_len)
250 			return true;
251 		loop_len = id_len;
252 		list = &non_inherit_elem->data[2];
253 		id = elem->id;
254 	}
255 
256 	for (i = 0; i < loop_len; i++) {
257 		if (list[i] == id)
258 			return false;
259 	}
260 
261 	return true;
262 }
263 EXPORT_SYMBOL(cfg80211_is_element_inherited);
264 
cfg80211_gen_new_ie(const u8 * ie,size_t ielen,const u8 * subelement,size_t subie_len,u8 * new_ie,gfp_t gfp)265 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
266 				  const u8 *subelement, size_t subie_len,
267 				  u8 *new_ie, gfp_t gfp)
268 {
269 	u8 *pos, *tmp;
270 	const u8 *tmp_old, *tmp_new;
271 	const struct element *non_inherit_elem;
272 	u8 *sub_copy;
273 
274 	/* copy subelement as we need to change its content to
275 	 * mark an ie after it is processed.
276 	 */
277 	sub_copy = kmemdup(subelement, subie_len, gfp);
278 	if (!sub_copy)
279 		return 0;
280 
281 	pos = &new_ie[0];
282 
283 	/* set new ssid */
284 	tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len);
285 	if (tmp_new) {
286 		memcpy(pos, tmp_new, tmp_new[1] + 2);
287 		pos += (tmp_new[1] + 2);
288 	}
289 
290 	/* get non inheritance list if exists */
291 	non_inherit_elem =
292 		cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
293 				       sub_copy, subie_len);
294 
295 	/* go through IEs in ie (skip SSID) and subelement,
296 	 * merge them into new_ie
297 	 */
298 	tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
299 	tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie;
300 
301 	while (tmp_old + tmp_old[1] + 2 - ie <= ielen) {
302 		if (tmp_old[0] == 0) {
303 			tmp_old++;
304 			continue;
305 		}
306 
307 		if (tmp_old[0] == WLAN_EID_EXTENSION)
308 			tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy,
309 							 subie_len);
310 		else
311 			tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy,
312 						     subie_len);
313 
314 		if (!tmp) {
315 			const struct element *old_elem = (void *)tmp_old;
316 
317 			/* ie in old ie but not in subelement */
318 			if (cfg80211_is_element_inherited(old_elem,
319 							  non_inherit_elem)) {
320 				memcpy(pos, tmp_old, tmp_old[1] + 2);
321 				pos += tmp_old[1] + 2;
322 			}
323 		} else {
324 			/* ie in transmitting ie also in subelement,
325 			 * copy from subelement and flag the ie in subelement
326 			 * as copied (by setting eid field to WLAN_EID_SSID,
327 			 * which is skipped anyway).
328 			 * For vendor ie, compare OUI + type + subType to
329 			 * determine if they are the same ie.
330 			 */
331 			if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) {
332 				if (!memcmp(tmp_old + 2, tmp + 2, 5)) {
333 					/* same vendor ie, copy from
334 					 * subelement
335 					 */
336 					memcpy(pos, tmp, tmp[1] + 2);
337 					pos += tmp[1] + 2;
338 					tmp[0] = WLAN_EID_SSID;
339 				} else {
340 					memcpy(pos, tmp_old, tmp_old[1] + 2);
341 					pos += tmp_old[1] + 2;
342 				}
343 			} else {
344 				/* copy ie from subelement into new ie */
345 				memcpy(pos, tmp, tmp[1] + 2);
346 				pos += tmp[1] + 2;
347 				tmp[0] = WLAN_EID_SSID;
348 			}
349 		}
350 
351 		if (tmp_old + tmp_old[1] + 2 - ie == ielen)
352 			break;
353 
354 		tmp_old += tmp_old[1] + 2;
355 	}
356 
357 	/* go through subelement again to check if there is any ie not
358 	 * copied to new ie, skip ssid, capability, bssid-index ie
359 	 */
360 	tmp_new = sub_copy;
361 	while (tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) {
362 		if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP ||
363 		      tmp_new[0] == WLAN_EID_SSID)) {
364 			memcpy(pos, tmp_new, tmp_new[1] + 2);
365 			pos += tmp_new[1] + 2;
366 		}
367 		if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len)
368 			break;
369 		tmp_new += tmp_new[1] + 2;
370 	}
371 
372 	kfree(sub_copy);
373 	return pos - new_ie;
374 }
375 
is_bss(struct cfg80211_bss * a,const u8 * bssid,const u8 * ssid,size_t ssid_len)376 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
377 		   const u8 *ssid, size_t ssid_len)
378 {
379 	const struct cfg80211_bss_ies *ies;
380 	const u8 *ssidie;
381 
382 	if (bssid && !ether_addr_equal(a->bssid, bssid))
383 		return false;
384 
385 	if (!ssid)
386 		return true;
387 
388 	ies = rcu_access_pointer(a->ies);
389 	if (!ies)
390 		return false;
391 	ssidie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
392 	if (!ssidie)
393 		return false;
394 	if (ssidie[1] != ssid_len)
395 		return false;
396 	return memcmp(ssidie + 2, ssid, ssid_len) == 0;
397 }
398 
399 static int
cfg80211_add_nontrans_list(struct cfg80211_bss * trans_bss,struct cfg80211_bss * nontrans_bss)400 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
401 			   struct cfg80211_bss *nontrans_bss)
402 {
403 	const u8 *ssid;
404 	size_t ssid_len;
405 	struct cfg80211_bss *bss = NULL;
406 
407 	rcu_read_lock();
408 	ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
409 	if (!ssid) {
410 		rcu_read_unlock();
411 		return -EINVAL;
412 	}
413 	ssid_len = ssid[1];
414 	ssid = ssid + 2;
415 
416 	/* check if nontrans_bss is in the list */
417 	list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
418 		if (is_bss(bss, nontrans_bss->bssid, ssid, ssid_len)) {
419 			rcu_read_unlock();
420 			return 0;
421 		}
422 	}
423 
424 	rcu_read_unlock();
425 
426 	/*
427 	 * This is a bit weird - it's not on the list, but already on another
428 	 * one! The only way that could happen is if there's some BSSID/SSID
429 	 * shared by multiple APs in their multi-BSSID profiles, potentially
430 	 * with hidden SSID mixed in ... ignore it.
431 	 */
432 	if (!list_empty(&nontrans_bss->nontrans_list))
433 		return -EINVAL;
434 
435 	/* add to the list */
436 	list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
437 	return 0;
438 }
439 
__cfg80211_bss_expire(struct cfg80211_registered_device * rdev,unsigned long expire_time)440 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
441 				  unsigned long expire_time)
442 {
443 	struct cfg80211_internal_bss *bss, *tmp;
444 	bool expired = false;
445 
446 	lockdep_assert_held(&rdev->bss_lock);
447 
448 	list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
449 		if (atomic_read(&bss->hold))
450 			continue;
451 		if (!time_after(expire_time, bss->ts))
452 			continue;
453 
454 		if (__cfg80211_unlink_bss(rdev, bss))
455 			expired = true;
456 	}
457 
458 	if (expired)
459 		rdev->bss_generation++;
460 }
461 
cfg80211_bss_expire_oldest(struct cfg80211_registered_device * rdev)462 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
463 {
464 	struct cfg80211_internal_bss *bss, *oldest = NULL;
465 	bool ret;
466 
467 	lockdep_assert_held(&rdev->bss_lock);
468 
469 	list_for_each_entry(bss, &rdev->bss_list, list) {
470 		if (atomic_read(&bss->hold))
471 			continue;
472 
473 		if (!list_empty(&bss->hidden_list) &&
474 		    !bss->pub.hidden_beacon_bss)
475 			continue;
476 
477 		if (oldest && time_before(oldest->ts, bss->ts))
478 			continue;
479 		oldest = bss;
480 	}
481 
482 	if (WARN_ON(!oldest))
483 		return false;
484 
485 	/*
486 	 * The callers make sure to increase rdev->bss_generation if anything
487 	 * gets removed (and a new entry added), so there's no need to also do
488 	 * it here.
489 	 */
490 
491 	ret = __cfg80211_unlink_bss(rdev, oldest);
492 	WARN_ON(!ret);
493 	return ret;
494 }
495 
cfg80211_parse_bss_param(u8 data,struct cfg80211_colocated_ap * coloc_ap)496 static u8 cfg80211_parse_bss_param(u8 data,
497 				   struct cfg80211_colocated_ap *coloc_ap)
498 {
499 	coloc_ap->oct_recommended =
500 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
501 	coloc_ap->same_ssid =
502 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
503 	coloc_ap->multi_bss =
504 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
505 	coloc_ap->transmitted_bssid =
506 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
507 	coloc_ap->unsolicited_probe =
508 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
509 	coloc_ap->colocated_ess =
510 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
511 
512 	return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
513 }
514 
cfg80211_calc_short_ssid(const struct cfg80211_bss_ies * ies,const struct element ** elem,u32 * s_ssid)515 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
516 				    const struct element **elem, u32 *s_ssid)
517 {
518 
519 	*elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
520 	if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
521 		return -EINVAL;
522 
523 	*s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
524 	return 0;
525 }
526 
cfg80211_free_coloc_ap_list(struct list_head * coloc_ap_list)527 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
528 {
529 	struct cfg80211_colocated_ap *ap, *tmp_ap;
530 
531 	list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
532 		list_del(&ap->list);
533 		kfree(ap);
534 	}
535 }
536 
cfg80211_parse_ap_info(struct cfg80211_colocated_ap * entry,const u8 * pos,u8 length,const struct element * ssid_elem,int s_ssid_tmp)537 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
538 				  const u8 *pos, u8 length,
539 				  const struct element *ssid_elem,
540 				  int s_ssid_tmp)
541 {
542 	/* skip the TBTT offset */
543 	pos++;
544 
545 	memcpy(entry->bssid, pos, ETH_ALEN);
546 	pos += ETH_ALEN;
547 
548 	if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) {
549 		memcpy(&entry->short_ssid, pos,
550 		       sizeof(entry->short_ssid));
551 		entry->short_ssid_valid = true;
552 		pos += 4;
553 	}
554 
555 	/* skip non colocated APs */
556 	if (!cfg80211_parse_bss_param(*pos, entry))
557 		return -EINVAL;
558 	pos++;
559 
560 	if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) {
561 		/*
562 		 * no information about the short ssid. Consider the entry valid
563 		 * for now. It would later be dropped in case there are explicit
564 		 * SSIDs that need to be matched
565 		 */
566 		if (!entry->same_ssid)
567 			return 0;
568 	}
569 
570 	if (entry->same_ssid) {
571 		entry->short_ssid = s_ssid_tmp;
572 		entry->short_ssid_valid = true;
573 
574 		/*
575 		 * This is safe because we validate datalen in
576 		 * cfg80211_parse_colocated_ap(), before calling this
577 		 * function.
578 		 */
579 		memcpy(&entry->ssid, &ssid_elem->data,
580 		       ssid_elem->datalen);
581 		entry->ssid_len = ssid_elem->datalen;
582 	}
583 	return 0;
584 }
585 
cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies * ies,struct list_head * list)586 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
587 				       struct list_head *list)
588 {
589 	struct ieee80211_neighbor_ap_info *ap_info;
590 	const struct element *elem, *ssid_elem;
591 	const u8 *pos, *end;
592 	u32 s_ssid_tmp;
593 	int n_coloc = 0, ret;
594 	LIST_HEAD(ap_list);
595 
596 	elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data,
597 				  ies->len);
598 	if (!elem || elem->datalen > IEEE80211_MAX_SSID_LEN)
599 		return 0;
600 
601 	pos = elem->data;
602 	end = pos + elem->datalen;
603 
604 	ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
605 	if (ret)
606 		return ret;
607 
608 	/* RNR IE may contain more than one NEIGHBOR_AP_INFO */
609 	while (pos + sizeof(*ap_info) <= end) {
610 		enum nl80211_band band;
611 		int freq;
612 		u8 length, i, count;
613 
614 		ap_info = (void *)pos;
615 		count = u8_get_bits(ap_info->tbtt_info_hdr,
616 				    IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
617 		length = ap_info->tbtt_info_len;
618 
619 		pos += sizeof(*ap_info);
620 
621 		if (!ieee80211_operating_class_to_band(ap_info->op_class,
622 						       &band))
623 			break;
624 
625 		freq = ieee80211_channel_to_frequency(ap_info->channel, band);
626 
627 		if (end - pos < count * ap_info->tbtt_info_len)
628 			break;
629 
630 		/*
631 		 * TBTT info must include bss param + BSSID +
632 		 * (short SSID or same_ssid bit to be set).
633 		 * ignore other options, and move to the
634 		 * next AP info
635 		 */
636 		if (band != NL80211_BAND_6GHZ ||
637 		    (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM &&
638 		     length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) {
639 			pos += count * ap_info->tbtt_info_len;
640 			continue;
641 		}
642 
643 		for (i = 0; i < count; i++) {
644 			struct cfg80211_colocated_ap *entry;
645 
646 			entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
647 					GFP_ATOMIC);
648 
649 			if (!entry)
650 				break;
651 
652 			entry->center_freq = freq;
653 
654 			if (!cfg80211_parse_ap_info(entry, pos, length,
655 						    ssid_elem, s_ssid_tmp)) {
656 				n_coloc++;
657 				list_add_tail(&entry->list, &ap_list);
658 			} else {
659 				kfree(entry);
660 			}
661 
662 			pos += ap_info->tbtt_info_len;
663 		}
664 	}
665 
666 	if (pos != end) {
667 		cfg80211_free_coloc_ap_list(&ap_list);
668 		return 0;
669 	}
670 
671 	list_splice_tail(&ap_list, list);
672 	return n_coloc;
673 }
674 
cfg80211_scan_req_add_chan(struct cfg80211_scan_request * request,struct ieee80211_channel * chan,bool add_to_6ghz)675 static  void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
676 					struct ieee80211_channel *chan,
677 					bool add_to_6ghz)
678 {
679 	int i;
680 	u32 n_channels = request->n_channels;
681 	struct cfg80211_scan_6ghz_params *params =
682 		&request->scan_6ghz_params[request->n_6ghz_params];
683 
684 	for (i = 0; i < n_channels; i++) {
685 		if (request->channels[i] == chan) {
686 			if (add_to_6ghz)
687 				params->channel_idx = i;
688 			return;
689 		}
690 	}
691 
692 	request->channels[n_channels] = chan;
693 	if (add_to_6ghz)
694 		request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
695 			n_channels;
696 
697 	request->n_channels++;
698 }
699 
cfg80211_find_ssid_match(struct cfg80211_colocated_ap * ap,struct cfg80211_scan_request * request)700 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
701 				     struct cfg80211_scan_request *request)
702 {
703 	int i;
704 	u32 s_ssid;
705 
706 	for (i = 0; i < request->n_ssids; i++) {
707 		/* wildcard ssid in the scan request */
708 		if (!request->ssids[i].ssid_len)
709 			return true;
710 
711 		if (ap->ssid_len &&
712 		    ap->ssid_len == request->ssids[i].ssid_len) {
713 			if (!memcmp(request->ssids[i].ssid, ap->ssid,
714 				    ap->ssid_len))
715 				return true;
716 		} else if (ap->short_ssid_valid) {
717 			s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
718 					   request->ssids[i].ssid_len);
719 
720 			if (ap->short_ssid == s_ssid)
721 				return true;
722 		}
723 	}
724 
725 	return false;
726 }
727 
cfg80211_scan_6ghz(struct cfg80211_registered_device * rdev)728 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
729 {
730 	u8 i;
731 	struct cfg80211_colocated_ap *ap;
732 	int n_channels, count = 0, err;
733 	struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
734 	LIST_HEAD(coloc_ap_list);
735 	bool need_scan_psc;
736 	const struct ieee80211_sband_iftype_data *iftd;
737 
738 	rdev_req->scan_6ghz = true;
739 
740 	if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
741 		return -EOPNOTSUPP;
742 
743 	iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
744 					       rdev_req->wdev->iftype);
745 	if (!iftd || !iftd->he_cap.has_he)
746 		return -EOPNOTSUPP;
747 
748 	n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
749 
750 	if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
751 		struct cfg80211_internal_bss *intbss;
752 
753 		spin_lock_bh(&rdev->bss_lock);
754 		list_for_each_entry(intbss, &rdev->bss_list, list) {
755 			struct cfg80211_bss *res = &intbss->pub;
756 			const struct cfg80211_bss_ies *ies;
757 
758 			ies = rcu_access_pointer(res->ies);
759 			count += cfg80211_parse_colocated_ap(ies,
760 							     &coloc_ap_list);
761 		}
762 		spin_unlock_bh(&rdev->bss_lock);
763 	}
764 
765 	request = kzalloc(struct_size(request, channels, n_channels) +
766 			  sizeof(*request->scan_6ghz_params) * count,
767 			  GFP_KERNEL);
768 	if (!request) {
769 		cfg80211_free_coloc_ap_list(&coloc_ap_list);
770 		return -ENOMEM;
771 	}
772 
773 	*request = *rdev_req;
774 	request->n_channels = 0;
775 	request->scan_6ghz_params =
776 		(void *)&request->channels[n_channels];
777 
778 	/*
779 	 * PSC channels should not be scanned if all the reported co-located APs
780 	 * are indicating that all APs in the same ESS are co-located
781 	 */
782 	if (count) {
783 		need_scan_psc = false;
784 
785 		list_for_each_entry(ap, &coloc_ap_list, list) {
786 			if (!ap->colocated_ess) {
787 				need_scan_psc = true;
788 				break;
789 			}
790 		}
791 	} else {
792 		need_scan_psc = true;
793 	}
794 
795 	/*
796 	 * add to the scan request the channels that need to be scanned
797 	 * regardless of the collocated APs (PSC channels or all channels
798 	 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
799 	 */
800 	for (i = 0; i < rdev_req->n_channels; i++) {
801 		if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
802 		    ((need_scan_psc &&
803 		      cfg80211_channel_is_psc(rdev_req->channels[i])) ||
804 		     !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
805 			cfg80211_scan_req_add_chan(request,
806 						   rdev_req->channels[i],
807 						   false);
808 		}
809 	}
810 
811 	if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
812 		goto skip;
813 
814 	list_for_each_entry(ap, &coloc_ap_list, list) {
815 		bool found = false;
816 		struct cfg80211_scan_6ghz_params *scan_6ghz_params =
817 			&request->scan_6ghz_params[request->n_6ghz_params];
818 		struct ieee80211_channel *chan =
819 			ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
820 
821 		if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
822 			continue;
823 
824 		for (i = 0; i < rdev_req->n_channels; i++) {
825 			if (rdev_req->channels[i] == chan)
826 				found = true;
827 		}
828 
829 		if (!found)
830 			continue;
831 
832 		if (request->n_ssids > 0 &&
833 		    !cfg80211_find_ssid_match(ap, request))
834 			continue;
835 
836 		cfg80211_scan_req_add_chan(request, chan, true);
837 		memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
838 		scan_6ghz_params->short_ssid = ap->short_ssid;
839 		scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
840 		scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
841 
842 		/*
843 		 * If a PSC channel is added to the scan and 'need_scan_psc' is
844 		 * set to false, then all the APs that the scan logic is
845 		 * interested with on the channel are collocated and thus there
846 		 * is no need to perform the initial PSC channel listen.
847 		 */
848 		if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
849 			scan_6ghz_params->psc_no_listen = true;
850 
851 		request->n_6ghz_params++;
852 	}
853 
854 skip:
855 	cfg80211_free_coloc_ap_list(&coloc_ap_list);
856 
857 	if (request->n_channels) {
858 		struct cfg80211_scan_request *old = rdev->int_scan_req;
859 
860 		rdev->int_scan_req = request;
861 
862 		/*
863 		 * If this scan follows a previous scan, save the scan start
864 		 * info from the first part of the scan
865 		 */
866 		if (old)
867 			rdev->int_scan_req->info = old->info;
868 
869 		err = rdev_scan(rdev, request);
870 		if (err) {
871 			rdev->int_scan_req = old;
872 			kfree(request);
873 		} else {
874 			kfree(old);
875 		}
876 
877 		return err;
878 	}
879 
880 	kfree(request);
881 	return -EINVAL;
882 }
883 
cfg80211_scan(struct cfg80211_registered_device * rdev)884 int cfg80211_scan(struct cfg80211_registered_device *rdev)
885 {
886 	struct cfg80211_scan_request *request;
887 	struct cfg80211_scan_request *rdev_req = rdev->scan_req;
888 	u32 n_channels = 0, idx, i;
889 
890 	if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
891 		return rdev_scan(rdev, rdev_req);
892 
893 	for (i = 0; i < rdev_req->n_channels; i++) {
894 		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
895 			n_channels++;
896 	}
897 
898 	if (!n_channels)
899 		return cfg80211_scan_6ghz(rdev);
900 
901 	request = kzalloc(struct_size(request, channels, n_channels),
902 			  GFP_KERNEL);
903 	if (!request)
904 		return -ENOMEM;
905 
906 	*request = *rdev_req;
907 	request->n_channels = n_channels;
908 
909 	for (i = idx = 0; i < rdev_req->n_channels; i++) {
910 		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
911 			request->channels[idx++] = rdev_req->channels[i];
912 	}
913 
914 	rdev_req->scan_6ghz = false;
915 	rdev->int_scan_req = request;
916 	return rdev_scan(rdev, request);
917 }
918 
___cfg80211_scan_done(struct cfg80211_registered_device * rdev,bool send_message)919 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
920 			   bool send_message)
921 {
922 	struct cfg80211_scan_request *request, *rdev_req;
923 	struct wireless_dev *wdev;
924 	struct sk_buff *msg;
925 #ifdef CONFIG_CFG80211_WEXT
926 	union iwreq_data wrqu;
927 #endif
928 
929 	ASSERT_RTNL();
930 
931 	if (rdev->scan_msg) {
932 		nl80211_send_scan_msg(rdev, rdev->scan_msg);
933 		rdev->scan_msg = NULL;
934 		return;
935 	}
936 
937 	rdev_req = rdev->scan_req;
938 	if (!rdev_req)
939 		return;
940 
941 	wdev = rdev_req->wdev;
942 	request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
943 
944 	if (wdev_running(wdev) &&
945 	    (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
946 	    !rdev_req->scan_6ghz && !request->info.aborted &&
947 	    !cfg80211_scan_6ghz(rdev))
948 		return;
949 
950 	/*
951 	 * This must be before sending the other events!
952 	 * Otherwise, wpa_supplicant gets completely confused with
953 	 * wext events.
954 	 */
955 	if (wdev->netdev)
956 		cfg80211_sme_scan_done(wdev->netdev);
957 
958 	if (!request->info.aborted &&
959 	    request->flags & NL80211_SCAN_FLAG_FLUSH) {
960 		/* flush entries from previous scans */
961 		spin_lock_bh(&rdev->bss_lock);
962 		__cfg80211_bss_expire(rdev, request->scan_start);
963 		spin_unlock_bh(&rdev->bss_lock);
964 	}
965 
966 	msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
967 
968 #ifdef CONFIG_CFG80211_WEXT
969 	if (wdev->netdev && !request->info.aborted) {
970 		memset(&wrqu, 0, sizeof(wrqu));
971 
972 		wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
973 	}
974 #endif
975 
976 	if (wdev->netdev)
977 		dev_put(wdev->netdev);
978 
979 	kfree(rdev->int_scan_req);
980 	rdev->int_scan_req = NULL;
981 
982 	kfree(rdev->scan_req);
983 	rdev->scan_req = NULL;
984 
985 	if (!send_message)
986 		rdev->scan_msg = msg;
987 	else
988 		nl80211_send_scan_msg(rdev, msg);
989 }
990 
__cfg80211_scan_done(struct work_struct * wk)991 void __cfg80211_scan_done(struct work_struct *wk)
992 {
993 	struct cfg80211_registered_device *rdev;
994 
995 	rdev = container_of(wk, struct cfg80211_registered_device,
996 			    scan_done_wk);
997 
998 	rtnl_lock();
999 	___cfg80211_scan_done(rdev, true);
1000 	rtnl_unlock();
1001 }
1002 
cfg80211_scan_done(struct cfg80211_scan_request * request,struct cfg80211_scan_info * info)1003 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1004 			struct cfg80211_scan_info *info)
1005 {
1006 	struct cfg80211_scan_info old_info = request->info;
1007 
1008 	trace_cfg80211_scan_done(request, info);
1009 	WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1010 		request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1011 
1012 	request->info = *info;
1013 
1014 	/*
1015 	 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1016 	 * be of the first part. In such a case old_info.scan_start_tsf should
1017 	 * be non zero.
1018 	 */
1019 	if (request->scan_6ghz && old_info.scan_start_tsf) {
1020 		request->info.scan_start_tsf = old_info.scan_start_tsf;
1021 		memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1022 		       sizeof(request->info.tsf_bssid));
1023 	}
1024 
1025 	request->notified = true;
1026 	queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1027 }
1028 EXPORT_SYMBOL(cfg80211_scan_done);
1029 
cfg80211_add_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req)1030 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1031 				 struct cfg80211_sched_scan_request *req)
1032 {
1033 	ASSERT_RTNL();
1034 
1035 	list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1036 }
1037 
cfg80211_del_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req)1038 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1039 					struct cfg80211_sched_scan_request *req)
1040 {
1041 	ASSERT_RTNL();
1042 
1043 	list_del_rcu(&req->list);
1044 	kfree_rcu(req, rcu_head);
1045 }
1046 
1047 static struct cfg80211_sched_scan_request *
cfg80211_find_sched_scan_req(struct cfg80211_registered_device * rdev,u64 reqid)1048 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1049 {
1050 	struct cfg80211_sched_scan_request *pos;
1051 
1052 	list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1053 				lockdep_rtnl_is_held()) {
1054 		if (pos->reqid == reqid)
1055 			return pos;
1056 	}
1057 	return NULL;
1058 }
1059 
1060 /*
1061  * Determines if a scheduled scan request can be handled. When a legacy
1062  * scheduled scan is running no other scheduled scan is allowed regardless
1063  * whether the request is for legacy or multi-support scan. When a multi-support
1064  * scheduled scan is running a request for legacy scan is not allowed. In this
1065  * case a request for multi-support scan can be handled if resources are
1066  * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1067  */
cfg80211_sched_scan_req_possible(struct cfg80211_registered_device * rdev,bool want_multi)1068 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1069 				     bool want_multi)
1070 {
1071 	struct cfg80211_sched_scan_request *pos;
1072 	int i = 0;
1073 
1074 	list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1075 		/* request id zero means legacy in progress */
1076 		if (!i && !pos->reqid)
1077 			return -EINPROGRESS;
1078 		i++;
1079 	}
1080 
1081 	if (i) {
1082 		/* no legacy allowed when multi request(s) are active */
1083 		if (!want_multi)
1084 			return -EINPROGRESS;
1085 
1086 		/* resource limit reached */
1087 		if (i == rdev->wiphy.max_sched_scan_reqs)
1088 			return -ENOSPC;
1089 	}
1090 	return 0;
1091 }
1092 
cfg80211_sched_scan_results_wk(struct work_struct * work)1093 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1094 {
1095 	struct cfg80211_registered_device *rdev;
1096 	struct cfg80211_sched_scan_request *req, *tmp;
1097 
1098 	rdev = container_of(work, struct cfg80211_registered_device,
1099 			   sched_scan_res_wk);
1100 
1101 	rtnl_lock();
1102 	list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1103 		if (req->report_results) {
1104 			req->report_results = false;
1105 			if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1106 				/* flush entries from previous scans */
1107 				spin_lock_bh(&rdev->bss_lock);
1108 				__cfg80211_bss_expire(rdev, req->scan_start);
1109 				spin_unlock_bh(&rdev->bss_lock);
1110 				req->scan_start = jiffies;
1111 			}
1112 			nl80211_send_sched_scan(req,
1113 						NL80211_CMD_SCHED_SCAN_RESULTS);
1114 		}
1115 	}
1116 	rtnl_unlock();
1117 }
1118 
cfg80211_sched_scan_results(struct wiphy * wiphy,u64 reqid)1119 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1120 {
1121 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1122 	struct cfg80211_sched_scan_request *request;
1123 
1124 	trace_cfg80211_sched_scan_results(wiphy, reqid);
1125 	/* ignore if we're not scanning */
1126 
1127 	rcu_read_lock();
1128 	request = cfg80211_find_sched_scan_req(rdev, reqid);
1129 	if (request) {
1130 		request->report_results = true;
1131 		queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1132 	}
1133 	rcu_read_unlock();
1134 }
1135 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1136 
cfg80211_sched_scan_stopped_rtnl(struct wiphy * wiphy,u64 reqid)1137 void cfg80211_sched_scan_stopped_rtnl(struct wiphy *wiphy, u64 reqid)
1138 {
1139 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1140 
1141 	ASSERT_RTNL();
1142 
1143 	trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1144 
1145 	__cfg80211_stop_sched_scan(rdev, reqid, true);
1146 }
1147 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_rtnl);
1148 
cfg80211_sched_scan_stopped(struct wiphy * wiphy,u64 reqid)1149 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1150 {
1151 	rtnl_lock();
1152 	cfg80211_sched_scan_stopped_rtnl(wiphy, reqid);
1153 	rtnl_unlock();
1154 }
1155 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1156 
cfg80211_stop_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req,bool driver_initiated)1157 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1158 				 struct cfg80211_sched_scan_request *req,
1159 				 bool driver_initiated)
1160 {
1161 	ASSERT_RTNL();
1162 
1163 	if (!driver_initiated) {
1164 		int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1165 		if (err)
1166 			return err;
1167 	}
1168 
1169 	nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1170 
1171 	cfg80211_del_sched_scan_req(rdev, req);
1172 
1173 	return 0;
1174 }
1175 
__cfg80211_stop_sched_scan(struct cfg80211_registered_device * rdev,u64 reqid,bool driver_initiated)1176 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1177 			       u64 reqid, bool driver_initiated)
1178 {
1179 	struct cfg80211_sched_scan_request *sched_scan_req;
1180 
1181 	ASSERT_RTNL();
1182 
1183 	sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1184 	if (!sched_scan_req)
1185 		return -ENOENT;
1186 
1187 	return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1188 					    driver_initiated);
1189 }
1190 
cfg80211_bss_age(struct cfg80211_registered_device * rdev,unsigned long age_secs)1191 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1192                       unsigned long age_secs)
1193 {
1194 	struct cfg80211_internal_bss *bss;
1195 	unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1196 
1197 	spin_lock_bh(&rdev->bss_lock);
1198 	list_for_each_entry(bss, &rdev->bss_list, list)
1199 		bss->ts -= age_jiffies;
1200 	spin_unlock_bh(&rdev->bss_lock);
1201 }
1202 
cfg80211_bss_expire(struct cfg80211_registered_device * rdev)1203 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1204 {
1205 	__cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1206 }
1207 
cfg80211_bss_flush(struct wiphy * wiphy)1208 void cfg80211_bss_flush(struct wiphy *wiphy)
1209 {
1210 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1211 
1212 	spin_lock_bh(&rdev->bss_lock);
1213 	__cfg80211_bss_expire(rdev, jiffies);
1214 	spin_unlock_bh(&rdev->bss_lock);
1215 }
1216 EXPORT_SYMBOL(cfg80211_bss_flush);
1217 
1218 const struct element *
cfg80211_find_elem_match(u8 eid,const u8 * ies,unsigned int len,const u8 * match,unsigned int match_len,unsigned int match_offset)1219 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1220 			 const u8 *match, unsigned int match_len,
1221 			 unsigned int match_offset)
1222 {
1223 	const struct element *elem;
1224 
1225 	for_each_element_id(elem, eid, ies, len) {
1226 		if (elem->datalen >= match_offset + match_len &&
1227 		    !memcmp(elem->data + match_offset, match, match_len))
1228 			return elem;
1229 	}
1230 
1231 	return NULL;
1232 }
1233 EXPORT_SYMBOL(cfg80211_find_elem_match);
1234 
cfg80211_find_vendor_elem(unsigned int oui,int oui_type,const u8 * ies,unsigned int len)1235 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1236 						const u8 *ies,
1237 						unsigned int len)
1238 {
1239 	const struct element *elem;
1240 	u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1241 	int match_len = (oui_type < 0) ? 3 : sizeof(match);
1242 
1243 	if (WARN_ON(oui_type > 0xff))
1244 		return NULL;
1245 
1246 	elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1247 					match, match_len, 0);
1248 
1249 	if (!elem || elem->datalen < 4)
1250 		return NULL;
1251 
1252 	return elem;
1253 }
1254 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1255 
1256 /**
1257  * enum bss_compare_mode - BSS compare mode
1258  * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1259  * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1260  * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1261  */
1262 enum bss_compare_mode {
1263 	BSS_CMP_REGULAR,
1264 	BSS_CMP_HIDE_ZLEN,
1265 	BSS_CMP_HIDE_NUL,
1266 };
1267 
cmp_bss(struct cfg80211_bss * a,struct cfg80211_bss * b,enum bss_compare_mode mode)1268 static int cmp_bss(struct cfg80211_bss *a,
1269 		   struct cfg80211_bss *b,
1270 		   enum bss_compare_mode mode)
1271 {
1272 	const struct cfg80211_bss_ies *a_ies, *b_ies;
1273 	const u8 *ie1 = NULL;
1274 	const u8 *ie2 = NULL;
1275 	int i, r;
1276 
1277 	if (a->channel != b->channel)
1278 		return b->channel->center_freq - a->channel->center_freq;
1279 
1280 	a_ies = rcu_access_pointer(a->ies);
1281 	if (!a_ies)
1282 		return -1;
1283 	b_ies = rcu_access_pointer(b->ies);
1284 	if (!b_ies)
1285 		return 1;
1286 
1287 	if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1288 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1289 				       a_ies->data, a_ies->len);
1290 	if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1291 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1292 				       b_ies->data, b_ies->len);
1293 	if (ie1 && ie2) {
1294 		int mesh_id_cmp;
1295 
1296 		if (ie1[1] == ie2[1])
1297 			mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1298 		else
1299 			mesh_id_cmp = ie2[1] - ie1[1];
1300 
1301 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1302 				       a_ies->data, a_ies->len);
1303 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1304 				       b_ies->data, b_ies->len);
1305 		if (ie1 && ie2) {
1306 			if (mesh_id_cmp)
1307 				return mesh_id_cmp;
1308 			if (ie1[1] != ie2[1])
1309 				return ie2[1] - ie1[1];
1310 			return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1311 		}
1312 	}
1313 
1314 	r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1315 	if (r)
1316 		return r;
1317 
1318 	ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1319 	ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1320 
1321 	if (!ie1 && !ie2)
1322 		return 0;
1323 
1324 	/*
1325 	 * Note that with "hide_ssid", the function returns a match if
1326 	 * the already-present BSS ("b") is a hidden SSID beacon for
1327 	 * the new BSS ("a").
1328 	 */
1329 
1330 	/* sort missing IE before (left of) present IE */
1331 	if (!ie1)
1332 		return -1;
1333 	if (!ie2)
1334 		return 1;
1335 
1336 	switch (mode) {
1337 	case BSS_CMP_HIDE_ZLEN:
1338 		/*
1339 		 * In ZLEN mode we assume the BSS entry we're
1340 		 * looking for has a zero-length SSID. So if
1341 		 * the one we're looking at right now has that,
1342 		 * return 0. Otherwise, return the difference
1343 		 * in length, but since we're looking for the
1344 		 * 0-length it's really equivalent to returning
1345 		 * the length of the one we're looking at.
1346 		 *
1347 		 * No content comparison is needed as we assume
1348 		 * the content length is zero.
1349 		 */
1350 		return ie2[1];
1351 	case BSS_CMP_REGULAR:
1352 	default:
1353 		/* sort by length first, then by contents */
1354 		if (ie1[1] != ie2[1])
1355 			return ie2[1] - ie1[1];
1356 		return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1357 	case BSS_CMP_HIDE_NUL:
1358 		if (ie1[1] != ie2[1])
1359 			return ie2[1] - ie1[1];
1360 		/* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1361 		for (i = 0; i < ie2[1]; i++)
1362 			if (ie2[i + 2])
1363 				return -1;
1364 		return 0;
1365 	}
1366 }
1367 
cfg80211_bss_type_match(u16 capability,enum nl80211_band band,enum ieee80211_bss_type bss_type)1368 static bool cfg80211_bss_type_match(u16 capability,
1369 				    enum nl80211_band band,
1370 				    enum ieee80211_bss_type bss_type)
1371 {
1372 	bool ret = true;
1373 	u16 mask, val;
1374 
1375 	if (bss_type == IEEE80211_BSS_TYPE_ANY)
1376 		return ret;
1377 
1378 	if (band == NL80211_BAND_60GHZ) {
1379 		mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1380 		switch (bss_type) {
1381 		case IEEE80211_BSS_TYPE_ESS:
1382 			val = WLAN_CAPABILITY_DMG_TYPE_AP;
1383 			break;
1384 		case IEEE80211_BSS_TYPE_PBSS:
1385 			val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1386 			break;
1387 		case IEEE80211_BSS_TYPE_IBSS:
1388 			val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1389 			break;
1390 		default:
1391 			return false;
1392 		}
1393 	} else {
1394 		mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1395 		switch (bss_type) {
1396 		case IEEE80211_BSS_TYPE_ESS:
1397 			val = WLAN_CAPABILITY_ESS;
1398 			break;
1399 		case IEEE80211_BSS_TYPE_IBSS:
1400 			val = WLAN_CAPABILITY_IBSS;
1401 			break;
1402 		case IEEE80211_BSS_TYPE_MBSS:
1403 			val = 0;
1404 			break;
1405 		default:
1406 			return false;
1407 		}
1408 	}
1409 
1410 	ret = ((capability & mask) == val);
1411 	return ret;
1412 }
1413 
1414 /* Returned bss is reference counted and must be cleaned up appropriately. */
cfg80211_get_bss(struct wiphy * wiphy,struct ieee80211_channel * channel,const u8 * bssid,const u8 * ssid,size_t ssid_len,enum ieee80211_bss_type bss_type,enum ieee80211_privacy privacy)1415 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1416 				      struct ieee80211_channel *channel,
1417 				      const u8 *bssid,
1418 				      const u8 *ssid, size_t ssid_len,
1419 				      enum ieee80211_bss_type bss_type,
1420 				      enum ieee80211_privacy privacy)
1421 {
1422 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1423 	struct cfg80211_internal_bss *bss, *res = NULL;
1424 	unsigned long now = jiffies;
1425 	int bss_privacy;
1426 
1427 	trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1428 			       privacy);
1429 
1430 	spin_lock_bh(&rdev->bss_lock);
1431 
1432 	list_for_each_entry(bss, &rdev->bss_list, list) {
1433 		if (!cfg80211_bss_type_match(bss->pub.capability,
1434 					     bss->pub.channel->band, bss_type))
1435 			continue;
1436 
1437 		bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1438 		if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1439 		    (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1440 			continue;
1441 		if (channel && bss->pub.channel != channel)
1442 			continue;
1443 		if (!is_valid_ether_addr(bss->pub.bssid))
1444 			continue;
1445 		/* Don't get expired BSS structs */
1446 		if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1447 		    !atomic_read(&bss->hold))
1448 			continue;
1449 		if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1450 			res = bss;
1451 			bss_ref_get(rdev, res);
1452 			break;
1453 		}
1454 	}
1455 
1456 	spin_unlock_bh(&rdev->bss_lock);
1457 	if (!res)
1458 		return NULL;
1459 	trace_cfg80211_return_bss(&res->pub);
1460 	return &res->pub;
1461 }
1462 EXPORT_SYMBOL(cfg80211_get_bss);
1463 
rb_insert_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)1464 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1465 			  struct cfg80211_internal_bss *bss)
1466 {
1467 	struct rb_node **p = &rdev->bss_tree.rb_node;
1468 	struct rb_node *parent = NULL;
1469 	struct cfg80211_internal_bss *tbss;
1470 	int cmp;
1471 
1472 	while (*p) {
1473 		parent = *p;
1474 		tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1475 
1476 		cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1477 
1478 		if (WARN_ON(!cmp)) {
1479 			/* will sort of leak this BSS */
1480 			return;
1481 		}
1482 
1483 		if (cmp < 0)
1484 			p = &(*p)->rb_left;
1485 		else
1486 			p = &(*p)->rb_right;
1487 	}
1488 
1489 	rb_link_node(&bss->rbn, parent, p);
1490 	rb_insert_color(&bss->rbn, &rdev->bss_tree);
1491 }
1492 
1493 static struct cfg80211_internal_bss *
rb_find_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * res,enum bss_compare_mode mode)1494 rb_find_bss(struct cfg80211_registered_device *rdev,
1495 	    struct cfg80211_internal_bss *res,
1496 	    enum bss_compare_mode mode)
1497 {
1498 	struct rb_node *n = rdev->bss_tree.rb_node;
1499 	struct cfg80211_internal_bss *bss;
1500 	int r;
1501 
1502 	while (n) {
1503 		bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1504 		r = cmp_bss(&res->pub, &bss->pub, mode);
1505 
1506 		if (r == 0)
1507 			return bss;
1508 		else if (r < 0)
1509 			n = n->rb_left;
1510 		else
1511 			n = n->rb_right;
1512 	}
1513 
1514 	return NULL;
1515 }
1516 
cfg80211_combine_bsses(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * new)1517 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1518 				   struct cfg80211_internal_bss *new)
1519 {
1520 	const struct cfg80211_bss_ies *ies;
1521 	struct cfg80211_internal_bss *bss;
1522 	const u8 *ie;
1523 	int i, ssidlen;
1524 	u8 fold = 0;
1525 	u32 n_entries = 0;
1526 
1527 	ies = rcu_access_pointer(new->pub.beacon_ies);
1528 	if (WARN_ON(!ies))
1529 		return false;
1530 
1531 	ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1532 	if (!ie) {
1533 		/* nothing to do */
1534 		return true;
1535 	}
1536 
1537 	ssidlen = ie[1];
1538 	for (i = 0; i < ssidlen; i++)
1539 		fold |= ie[2 + i];
1540 
1541 	if (fold) {
1542 		/* not a hidden SSID */
1543 		return true;
1544 	}
1545 
1546 	/* This is the bad part ... */
1547 
1548 	list_for_each_entry(bss, &rdev->bss_list, list) {
1549 		/*
1550 		 * we're iterating all the entries anyway, so take the
1551 		 * opportunity to validate the list length accounting
1552 		 */
1553 		n_entries++;
1554 
1555 		if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1556 			continue;
1557 		if (bss->pub.channel != new->pub.channel)
1558 			continue;
1559 		if (bss->pub.scan_width != new->pub.scan_width)
1560 			continue;
1561 		if (rcu_access_pointer(bss->pub.beacon_ies))
1562 			continue;
1563 		ies = rcu_access_pointer(bss->pub.ies);
1564 		if (!ies)
1565 			continue;
1566 		ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1567 		if (!ie)
1568 			continue;
1569 		if (ssidlen && ie[1] != ssidlen)
1570 			continue;
1571 		if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1572 			continue;
1573 		if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1574 			list_del(&bss->hidden_list);
1575 		/* combine them */
1576 		list_add(&bss->hidden_list, &new->hidden_list);
1577 		bss->pub.hidden_beacon_bss = &new->pub;
1578 		new->refcount += bss->refcount;
1579 		rcu_assign_pointer(bss->pub.beacon_ies,
1580 				   new->pub.beacon_ies);
1581 	}
1582 
1583 	WARN_ONCE(n_entries != rdev->bss_entries,
1584 		  "rdev bss entries[%d]/list[len:%d] corruption\n",
1585 		  rdev->bss_entries, n_entries);
1586 
1587 	return true;
1588 }
1589 
1590 struct cfg80211_non_tx_bss {
1591 	struct cfg80211_bss *tx_bss;
1592 	u8 max_bssid_indicator;
1593 	u8 bssid_index;
1594 };
1595 
1596 static bool
cfg80211_update_known_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * known,struct cfg80211_internal_bss * new,bool signal_valid)1597 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1598 			  struct cfg80211_internal_bss *known,
1599 			  struct cfg80211_internal_bss *new,
1600 			  bool signal_valid)
1601 {
1602 	lockdep_assert_held(&rdev->bss_lock);
1603 
1604 	/* Update IEs */
1605 	if (rcu_access_pointer(new->pub.proberesp_ies)) {
1606 		const struct cfg80211_bss_ies *old;
1607 
1608 		old = rcu_access_pointer(known->pub.proberesp_ies);
1609 
1610 		rcu_assign_pointer(known->pub.proberesp_ies,
1611 				   new->pub.proberesp_ies);
1612 		/* Override possible earlier Beacon frame IEs */
1613 		rcu_assign_pointer(known->pub.ies,
1614 				   new->pub.proberesp_ies);
1615 		if (old)
1616 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1617 	} else if (rcu_access_pointer(new->pub.beacon_ies)) {
1618 		const struct cfg80211_bss_ies *old;
1619 		struct cfg80211_internal_bss *bss;
1620 
1621 		if (known->pub.hidden_beacon_bss &&
1622 		    !list_empty(&known->hidden_list)) {
1623 			const struct cfg80211_bss_ies *f;
1624 
1625 			/* The known BSS struct is one of the probe
1626 			 * response members of a group, but we're
1627 			 * receiving a beacon (beacon_ies in the new
1628 			 * bss is used). This can only mean that the
1629 			 * AP changed its beacon from not having an
1630 			 * SSID to showing it, which is confusing so
1631 			 * drop this information.
1632 			 */
1633 
1634 			f = rcu_access_pointer(new->pub.beacon_ies);
1635 			kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1636 			return false;
1637 		}
1638 
1639 		old = rcu_access_pointer(known->pub.beacon_ies);
1640 
1641 		rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1642 
1643 		/* Override IEs if they were from a beacon before */
1644 		if (old == rcu_access_pointer(known->pub.ies))
1645 			rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1646 
1647 		/* Assign beacon IEs to all sub entries */
1648 		list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1649 			const struct cfg80211_bss_ies *ies;
1650 
1651 			ies = rcu_access_pointer(bss->pub.beacon_ies);
1652 			WARN_ON(ies != old);
1653 
1654 			rcu_assign_pointer(bss->pub.beacon_ies,
1655 					   new->pub.beacon_ies);
1656 		}
1657 
1658 		if (old)
1659 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1660 	}
1661 
1662 	known->pub.beacon_interval = new->pub.beacon_interval;
1663 
1664 	/* don't update the signal if beacon was heard on
1665 	 * adjacent channel.
1666 	 */
1667 	if (signal_valid)
1668 		known->pub.signal = new->pub.signal;
1669 	known->pub.capability = new->pub.capability;
1670 	known->ts = new->ts;
1671 	known->ts_boottime = new->ts_boottime;
1672 	known->parent_tsf = new->parent_tsf;
1673 	known->pub.chains = new->pub.chains;
1674 	memcpy(known->pub.chain_signal, new->pub.chain_signal,
1675 	       IEEE80211_MAX_CHAINS);
1676 	ether_addr_copy(known->parent_bssid, new->parent_bssid);
1677 	known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1678 	known->pub.bssid_index = new->pub.bssid_index;
1679 
1680 	return true;
1681 }
1682 
1683 /* Returned bss is reference counted and must be cleaned up appropriately. */
1684 struct cfg80211_internal_bss *
cfg80211_bss_update(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * tmp,bool signal_valid,unsigned long ts)1685 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1686 		    struct cfg80211_internal_bss *tmp,
1687 		    bool signal_valid, unsigned long ts)
1688 {
1689 	struct cfg80211_internal_bss *found = NULL;
1690 
1691 	if (WARN_ON(!tmp->pub.channel))
1692 		return NULL;
1693 
1694 	tmp->ts = ts;
1695 
1696 	spin_lock_bh(&rdev->bss_lock);
1697 
1698 	if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1699 		spin_unlock_bh(&rdev->bss_lock);
1700 		return NULL;
1701 	}
1702 
1703 	found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1704 
1705 	if (found) {
1706 		if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1707 			goto drop;
1708 	} else {
1709 		struct cfg80211_internal_bss *new;
1710 		struct cfg80211_internal_bss *hidden;
1711 		struct cfg80211_bss_ies *ies;
1712 
1713 		/*
1714 		 * create a copy -- the "res" variable that is passed in
1715 		 * is allocated on the stack since it's not needed in the
1716 		 * more common case of an update
1717 		 */
1718 		new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1719 			      GFP_ATOMIC);
1720 		if (!new) {
1721 			ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1722 			if (ies)
1723 				kfree_rcu(ies, rcu_head);
1724 			ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1725 			if (ies)
1726 				kfree_rcu(ies, rcu_head);
1727 			goto drop;
1728 		}
1729 		memcpy(new, tmp, sizeof(*new));
1730 		new->refcount = 1;
1731 		INIT_LIST_HEAD(&new->hidden_list);
1732 		INIT_LIST_HEAD(&new->pub.nontrans_list);
1733 		/* we'll set this later if it was non-NULL */
1734 		new->pub.transmitted_bss = NULL;
1735 
1736 		if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1737 			hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1738 			if (!hidden)
1739 				hidden = rb_find_bss(rdev, tmp,
1740 						     BSS_CMP_HIDE_NUL);
1741 			if (hidden) {
1742 				new->pub.hidden_beacon_bss = &hidden->pub;
1743 				list_add(&new->hidden_list,
1744 					 &hidden->hidden_list);
1745 				hidden->refcount++;
1746 				rcu_assign_pointer(new->pub.beacon_ies,
1747 						   hidden->pub.beacon_ies);
1748 			}
1749 		} else {
1750 			/*
1751 			 * Ok so we found a beacon, and don't have an entry. If
1752 			 * it's a beacon with hidden SSID, we might be in for an
1753 			 * expensive search for any probe responses that should
1754 			 * be grouped with this beacon for updates ...
1755 			 */
1756 			if (!cfg80211_combine_bsses(rdev, new)) {
1757 				bss_ref_put(rdev, new);
1758 				goto drop;
1759 			}
1760 		}
1761 
1762 		if (rdev->bss_entries >= bss_entries_limit &&
1763 		    !cfg80211_bss_expire_oldest(rdev)) {
1764 			bss_ref_put(rdev, new);
1765 			goto drop;
1766 		}
1767 
1768 		/* This must be before the call to bss_ref_get */
1769 		if (tmp->pub.transmitted_bss) {
1770 			struct cfg80211_internal_bss *pbss =
1771 				container_of(tmp->pub.transmitted_bss,
1772 					     struct cfg80211_internal_bss,
1773 					     pub);
1774 
1775 			new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1776 			bss_ref_get(rdev, pbss);
1777 		}
1778 
1779 		list_add_tail(&new->list, &rdev->bss_list);
1780 		rdev->bss_entries++;
1781 		rb_insert_bss(rdev, new);
1782 		found = new;
1783 	}
1784 
1785 	rdev->bss_generation++;
1786 	bss_ref_get(rdev, found);
1787 	spin_unlock_bh(&rdev->bss_lock);
1788 
1789 	return found;
1790  drop:
1791 	spin_unlock_bh(&rdev->bss_lock);
1792 	return NULL;
1793 }
1794 
1795 /*
1796  * Update RX channel information based on the available frame payload
1797  * information. This is mainly for the 2.4 GHz band where frames can be received
1798  * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1799  * element to indicate the current (transmitting) channel, but this might also
1800  * be needed on other bands if RX frequency does not match with the actual
1801  * operating channel of a BSS.
1802  */
1803 static struct ieee80211_channel *
cfg80211_get_bss_channel(struct wiphy * wiphy,const u8 * ie,size_t ielen,struct ieee80211_channel * channel,enum nl80211_bss_scan_width scan_width)1804 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1805 			 struct ieee80211_channel *channel,
1806 			 enum nl80211_bss_scan_width scan_width)
1807 {
1808 	const u8 *tmp;
1809 	u32 freq;
1810 	int channel_number = -1;
1811 	struct ieee80211_channel *alt_channel;
1812 
1813 	if (channel->band == NL80211_BAND_S1GHZ) {
1814 		tmp = cfg80211_find_ie(WLAN_EID_S1G_OPERATION, ie, ielen);
1815 		if (tmp && tmp[1] >= sizeof(struct ieee80211_s1g_oper_ie)) {
1816 			struct ieee80211_s1g_oper_ie *s1gop = (void *)(tmp + 2);
1817 
1818 			channel_number = s1gop->primary_ch;
1819 		}
1820 	} else {
1821 		tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen);
1822 		if (tmp && tmp[1] == 1) {
1823 			channel_number = tmp[2];
1824 		} else {
1825 			tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen);
1826 			if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) {
1827 				struct ieee80211_ht_operation *htop = (void *)(tmp + 2);
1828 
1829 				channel_number = htop->primary_chan;
1830 			}
1831 		}
1832 	}
1833 
1834 	if (channel_number < 0) {
1835 		/* No channel information in frame payload */
1836 		return channel;
1837 	}
1838 
1839 	freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1840 	alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1841 	if (!alt_channel) {
1842 		if (channel->band == NL80211_BAND_2GHZ) {
1843 			/*
1844 			 * Better not allow unexpected channels when that could
1845 			 * be going beyond the 1-11 range (e.g., discovering
1846 			 * BSS on channel 12 when radio is configured for
1847 			 * channel 11.
1848 			 */
1849 			return NULL;
1850 		}
1851 
1852 		/* No match for the payload channel number - ignore it */
1853 		return channel;
1854 	}
1855 
1856 	if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1857 	    scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1858 		/*
1859 		 * Ignore channel number in 5 and 10 MHz channels where there
1860 		 * may not be an n:1 or 1:n mapping between frequencies and
1861 		 * channel numbers.
1862 		 */
1863 		return channel;
1864 	}
1865 
1866 	/*
1867 	 * Use the channel determined through the payload channel number
1868 	 * instead of the RX channel reported by the driver.
1869 	 */
1870 	if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1871 		return NULL;
1872 	return alt_channel;
1873 }
1874 
1875 /* Returned bss is reference counted and must be cleaned up appropriately. */
1876 static struct cfg80211_bss *
cfg80211_inform_single_bss_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 capability,u16 beacon_interval,const u8 * ie,size_t ielen,struct cfg80211_non_tx_bss * non_tx_data,gfp_t gfp)1877 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
1878 				struct cfg80211_inform_bss *data,
1879 				enum cfg80211_bss_frame_type ftype,
1880 				const u8 *bssid, u64 tsf, u16 capability,
1881 				u16 beacon_interval, const u8 *ie, size_t ielen,
1882 				struct cfg80211_non_tx_bss *non_tx_data,
1883 				gfp_t gfp)
1884 {
1885 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1886 	struct cfg80211_bss_ies *ies;
1887 	struct ieee80211_channel *channel;
1888 	struct cfg80211_internal_bss tmp = {}, *res;
1889 	int bss_type;
1890 	bool signal_valid;
1891 	unsigned long ts;
1892 
1893 	if (WARN_ON(!wiphy))
1894 		return NULL;
1895 
1896 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1897 		    (data->signal < 0 || data->signal > 100)))
1898 		return NULL;
1899 
1900 	channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
1901 					   data->scan_width);
1902 	if (!channel)
1903 		return NULL;
1904 
1905 	memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1906 	tmp.pub.channel = channel;
1907 	tmp.pub.scan_width = data->scan_width;
1908 	tmp.pub.signal = data->signal;
1909 	tmp.pub.beacon_interval = beacon_interval;
1910 	tmp.pub.capability = capability;
1911 	tmp.ts_boottime = data->boottime_ns;
1912 	if (non_tx_data) {
1913 		tmp.pub.transmitted_bss = non_tx_data->tx_bss;
1914 		ts = bss_from_pub(non_tx_data->tx_bss)->ts;
1915 		tmp.pub.bssid_index = non_tx_data->bssid_index;
1916 		tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
1917 	} else {
1918 		ts = jiffies;
1919 	}
1920 
1921 	/*
1922 	 * If we do not know here whether the IEs are from a Beacon or Probe
1923 	 * Response frame, we need to pick one of the options and only use it
1924 	 * with the driver that does not provide the full Beacon/Probe Response
1925 	 * frame. Use Beacon frame pointer to avoid indicating that this should
1926 	 * override the IEs pointer should we have received an earlier
1927 	 * indication of Probe Response data.
1928 	 */
1929 	ies = kzalloc(sizeof(*ies) + ielen, gfp);
1930 	if (!ies)
1931 		return NULL;
1932 	ies->len = ielen;
1933 	ies->tsf = tsf;
1934 	ies->from_beacon = false;
1935 	memcpy(ies->data, ie, ielen);
1936 
1937 	switch (ftype) {
1938 	case CFG80211_BSS_FTYPE_BEACON:
1939 		ies->from_beacon = true;
1940 		fallthrough;
1941 	case CFG80211_BSS_FTYPE_UNKNOWN:
1942 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1943 		break;
1944 	case CFG80211_BSS_FTYPE_PRESP:
1945 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1946 		break;
1947 	}
1948 	rcu_assign_pointer(tmp.pub.ies, ies);
1949 
1950 	signal_valid = data->chan == channel;
1951 	res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts);
1952 	if (!res)
1953 		return NULL;
1954 
1955 	if (channel->band == NL80211_BAND_60GHZ) {
1956 		bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1957 		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1958 		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1959 			regulatory_hint_found_beacon(wiphy, channel, gfp);
1960 	} else {
1961 		if (res->pub.capability & WLAN_CAPABILITY_ESS)
1962 			regulatory_hint_found_beacon(wiphy, channel, gfp);
1963 	}
1964 
1965 	if (non_tx_data) {
1966 		/* this is a nontransmitting bss, we need to add it to
1967 		 * transmitting bss' list if it is not there
1968 		 */
1969 		spin_lock_bh(&rdev->bss_lock);
1970 		if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
1971 					       &res->pub)) {
1972 			if (__cfg80211_unlink_bss(rdev, res)) {
1973 				rdev->bss_generation++;
1974 				res = NULL;
1975 			}
1976 		}
1977 		spin_unlock_bh(&rdev->bss_lock);
1978 
1979 		if (!res)
1980 			return NULL;
1981 	}
1982 
1983 	trace_cfg80211_return_bss(&res->pub);
1984 	/* cfg80211_bss_update gives us a referenced result */
1985 	return &res->pub;
1986 }
1987 
1988 static const struct element
cfg80211_get_profile_continuation(const u8 * ie,size_t ielen,const struct element * mbssid_elem,const struct element * sub_elem)1989 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
1990 				   const struct element *mbssid_elem,
1991 				   const struct element *sub_elem)
1992 {
1993 	const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
1994 	const struct element *next_mbssid;
1995 	const struct element *next_sub;
1996 
1997 	next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
1998 					 mbssid_end,
1999 					 ielen - (mbssid_end - ie));
2000 
2001 	/*
2002 	 * If it is not the last subelement in current MBSSID IE or there isn't
2003 	 * a next MBSSID IE - profile is complete.
2004 	*/
2005 	if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2006 	    !next_mbssid)
2007 		return NULL;
2008 
2009 	/* For any length error, just return NULL */
2010 
2011 	if (next_mbssid->datalen < 4)
2012 		return NULL;
2013 
2014 	next_sub = (void *)&next_mbssid->data[1];
2015 
2016 	if (next_mbssid->data + next_mbssid->datalen <
2017 	    next_sub->data + next_sub->datalen)
2018 		return NULL;
2019 
2020 	if (next_sub->id != 0 || next_sub->datalen < 2)
2021 		return NULL;
2022 
2023 	/*
2024 	 * Check if the first element in the next sub element is a start
2025 	 * of a new profile
2026 	 */
2027 	return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2028 	       NULL : next_mbssid;
2029 }
2030 
cfg80211_merge_profile(const u8 * ie,size_t ielen,const struct element * mbssid_elem,const struct element * sub_elem,u8 * merged_ie,size_t max_copy_len)2031 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2032 			      const struct element *mbssid_elem,
2033 			      const struct element *sub_elem,
2034 			      u8 *merged_ie, size_t max_copy_len)
2035 {
2036 	size_t copied_len = sub_elem->datalen;
2037 	const struct element *next_mbssid;
2038 
2039 	if (sub_elem->datalen > max_copy_len)
2040 		return 0;
2041 
2042 	memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2043 
2044 	while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2045 								mbssid_elem,
2046 								sub_elem))) {
2047 		const struct element *next_sub = (void *)&next_mbssid->data[1];
2048 
2049 		if (copied_len + next_sub->datalen > max_copy_len)
2050 			break;
2051 		memcpy(merged_ie + copied_len, next_sub->data,
2052 		       next_sub->datalen);
2053 		copied_len += next_sub->datalen;
2054 	}
2055 
2056 	return copied_len;
2057 }
2058 EXPORT_SYMBOL(cfg80211_merge_profile);
2059 
cfg80211_parse_mbssid_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 beacon_interval,const u8 * ie,size_t ielen,struct cfg80211_non_tx_bss * non_tx_data,gfp_t gfp)2060 static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2061 				       struct cfg80211_inform_bss *data,
2062 				       enum cfg80211_bss_frame_type ftype,
2063 				       const u8 *bssid, u64 tsf,
2064 				       u16 beacon_interval, const u8 *ie,
2065 				       size_t ielen,
2066 				       struct cfg80211_non_tx_bss *non_tx_data,
2067 				       gfp_t gfp)
2068 {
2069 	const u8 *mbssid_index_ie;
2070 	const struct element *elem, *sub;
2071 	size_t new_ie_len;
2072 	u8 new_bssid[ETH_ALEN];
2073 	u8 *new_ie, *profile;
2074 	u64 seen_indices = 0;
2075 	u16 capability;
2076 	struct cfg80211_bss *bss;
2077 
2078 	if (!non_tx_data)
2079 		return;
2080 	if (!cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2081 		return;
2082 	if (!wiphy->support_mbssid)
2083 		return;
2084 	if (wiphy->support_only_he_mbssid &&
2085 	    !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2086 		return;
2087 
2088 	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2089 	if (!new_ie)
2090 		return;
2091 
2092 	profile = kmalloc(ielen, gfp);
2093 	if (!profile)
2094 		goto out;
2095 
2096 	for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
2097 		if (elem->datalen < 4)
2098 			continue;
2099 		for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2100 			u8 profile_len;
2101 
2102 			if (sub->id != 0 || sub->datalen < 4) {
2103 				/* not a valid BSS profile */
2104 				continue;
2105 			}
2106 
2107 			if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2108 			    sub->data[1] != 2) {
2109 				/* The first element within the Nontransmitted
2110 				 * BSSID Profile is not the Nontransmitted
2111 				 * BSSID Capability element.
2112 				 */
2113 				continue;
2114 			}
2115 
2116 			memset(profile, 0, ielen);
2117 			profile_len = cfg80211_merge_profile(ie, ielen,
2118 							     elem,
2119 							     sub,
2120 							     profile,
2121 							     ielen);
2122 
2123 			/* found a Nontransmitted BSSID Profile */
2124 			mbssid_index_ie = cfg80211_find_ie
2125 				(WLAN_EID_MULTI_BSSID_IDX,
2126 				 profile, profile_len);
2127 			if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2128 			    mbssid_index_ie[2] == 0 ||
2129 			    mbssid_index_ie[2] > 46) {
2130 				/* No valid Multiple BSSID-Index element */
2131 				continue;
2132 			}
2133 
2134 			if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2135 				/* We don't support legacy split of a profile */
2136 				net_dbg_ratelimited("Partial info for BSSID index %d\n",
2137 						    mbssid_index_ie[2]);
2138 
2139 			seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2140 
2141 			non_tx_data->bssid_index = mbssid_index_ie[2];
2142 			non_tx_data->max_bssid_indicator = elem->data[0];
2143 
2144 			cfg80211_gen_new_bssid(bssid,
2145 					       non_tx_data->max_bssid_indicator,
2146 					       non_tx_data->bssid_index,
2147 					       new_bssid);
2148 			memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2149 			new_ie_len = cfg80211_gen_new_ie(ie, ielen,
2150 							 profile,
2151 							 profile_len, new_ie,
2152 							 gfp);
2153 			if (!new_ie_len)
2154 				continue;
2155 
2156 			capability = get_unaligned_le16(profile + 2);
2157 			bss = cfg80211_inform_single_bss_data(wiphy, data,
2158 							      ftype,
2159 							      new_bssid, tsf,
2160 							      capability,
2161 							      beacon_interval,
2162 							      new_ie,
2163 							      new_ie_len,
2164 							      non_tx_data,
2165 							      gfp);
2166 			if (!bss)
2167 				break;
2168 			cfg80211_put_bss(wiphy, bss);
2169 		}
2170 	}
2171 
2172 out:
2173 	kfree(new_ie);
2174 	kfree(profile);
2175 }
2176 
2177 struct cfg80211_bss *
cfg80211_inform_bss_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 capability,u16 beacon_interval,const u8 * ie,size_t ielen,gfp_t gfp)2178 cfg80211_inform_bss_data(struct wiphy *wiphy,
2179 			 struct cfg80211_inform_bss *data,
2180 			 enum cfg80211_bss_frame_type ftype,
2181 			 const u8 *bssid, u64 tsf, u16 capability,
2182 			 u16 beacon_interval, const u8 *ie, size_t ielen,
2183 			 gfp_t gfp)
2184 {
2185 	struct cfg80211_bss *res;
2186 	struct cfg80211_non_tx_bss non_tx_data;
2187 
2188 	res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
2189 					      capability, beacon_interval, ie,
2190 					      ielen, NULL, gfp);
2191 	if (!res)
2192 		return NULL;
2193 	non_tx_data.tx_bss = res;
2194 	cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
2195 				   beacon_interval, ie, ielen, &non_tx_data,
2196 				   gfp);
2197 	return res;
2198 }
2199 EXPORT_SYMBOL(cfg80211_inform_bss_data);
2200 
2201 static void
cfg80211_parse_mbssid_frame_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,struct ieee80211_mgmt * mgmt,size_t len,struct cfg80211_non_tx_bss * non_tx_data,gfp_t gfp)2202 cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy,
2203 				 struct cfg80211_inform_bss *data,
2204 				 struct ieee80211_mgmt *mgmt, size_t len,
2205 				 struct cfg80211_non_tx_bss *non_tx_data,
2206 				 gfp_t gfp)
2207 {
2208 	enum cfg80211_bss_frame_type ftype;
2209 	const u8 *ie = mgmt->u.probe_resp.variable;
2210 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
2211 				      u.probe_resp.variable);
2212 
2213 	ftype = ieee80211_is_beacon(mgmt->frame_control) ?
2214 		CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
2215 
2216 	cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
2217 				   le64_to_cpu(mgmt->u.probe_resp.timestamp),
2218 				   le16_to_cpu(mgmt->u.probe_resp.beacon_int),
2219 				   ie, ielen, non_tx_data, gfp);
2220 }
2221 
2222 static void
cfg80211_update_notlisted_nontrans(struct wiphy * wiphy,struct cfg80211_bss * nontrans_bss,struct ieee80211_mgmt * mgmt,size_t len)2223 cfg80211_update_notlisted_nontrans(struct wiphy *wiphy,
2224 				   struct cfg80211_bss *nontrans_bss,
2225 				   struct ieee80211_mgmt *mgmt, size_t len)
2226 {
2227 	u8 *ie, *new_ie, *pos;
2228 	const u8 *nontrans_ssid, *trans_ssid, *mbssid;
2229 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
2230 				      u.probe_resp.variable);
2231 	size_t new_ie_len;
2232 	struct cfg80211_bss_ies *new_ies;
2233 	const struct cfg80211_bss_ies *old;
2234 	size_t cpy_len;
2235 
2236 	lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock);
2237 
2238 	ie = mgmt->u.probe_resp.variable;
2239 
2240 	new_ie_len = ielen;
2241 	trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
2242 	if (!trans_ssid)
2243 		return;
2244 	new_ie_len -= trans_ssid[1];
2245 	mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen);
2246 	/*
2247 	 * It's not valid to have the MBSSID element before SSID
2248 	 * ignore if that happens - the code below assumes it is
2249 	 * after (while copying things inbetween).
2250 	 */
2251 	if (!mbssid || mbssid < trans_ssid)
2252 		return;
2253 	new_ie_len -= mbssid[1];
2254 
2255 	nontrans_ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
2256 	if (!nontrans_ssid)
2257 		return;
2258 
2259 	new_ie_len += nontrans_ssid[1];
2260 
2261 	/* generate new ie for nontrans BSS
2262 	 * 1. replace SSID with nontrans BSS' SSID
2263 	 * 2. skip MBSSID IE
2264 	 */
2265 	new_ie = kzalloc(new_ie_len, GFP_ATOMIC);
2266 	if (!new_ie)
2267 		return;
2268 
2269 	new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC);
2270 	if (!new_ies)
2271 		goto out_free;
2272 
2273 	pos = new_ie;
2274 
2275 	/* copy the nontransmitted SSID */
2276 	cpy_len = nontrans_ssid[1] + 2;
2277 	memcpy(pos, nontrans_ssid, cpy_len);
2278 	pos += cpy_len;
2279 	/* copy the IEs between SSID and MBSSID */
2280 	cpy_len = trans_ssid[1] + 2;
2281 	memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len)));
2282 	pos += (mbssid - (trans_ssid + cpy_len));
2283 	/* copy the IEs after MBSSID */
2284 	cpy_len = mbssid[1] + 2;
2285 	memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len)));
2286 
2287 	/* update ie */
2288 	new_ies->len = new_ie_len;
2289 	new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2290 	new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
2291 	memcpy(new_ies->data, new_ie, new_ie_len);
2292 	if (ieee80211_is_probe_resp(mgmt->frame_control)) {
2293 		old = rcu_access_pointer(nontrans_bss->proberesp_ies);
2294 		rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies);
2295 		rcu_assign_pointer(nontrans_bss->ies, new_ies);
2296 		if (old)
2297 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2298 	} else {
2299 		old = rcu_access_pointer(nontrans_bss->beacon_ies);
2300 		rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies);
2301 		rcu_assign_pointer(nontrans_bss->ies, new_ies);
2302 		if (old)
2303 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2304 	}
2305 
2306 out_free:
2307 	kfree(new_ie);
2308 }
2309 
2310 /* cfg80211_inform_bss_width_frame helper */
2311 static struct cfg80211_bss *
cfg80211_inform_single_bss_frame_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,struct ieee80211_mgmt * mgmt,size_t len,gfp_t gfp)2312 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2313 				      struct cfg80211_inform_bss *data,
2314 				      struct ieee80211_mgmt *mgmt, size_t len,
2315 				      gfp_t gfp)
2316 {
2317 	struct cfg80211_internal_bss tmp = {}, *res;
2318 	struct cfg80211_bss_ies *ies;
2319 	struct ieee80211_channel *channel;
2320 	bool signal_valid;
2321 	struct ieee80211_ext *ext = NULL;
2322 	u8 *bssid, *variable;
2323 	u16 capability, beacon_int;
2324 	size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2325 					     u.probe_resp.variable);
2326 	int bss_type;
2327 
2328 	BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2329 			offsetof(struct ieee80211_mgmt, u.beacon.variable));
2330 
2331 	trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2332 
2333 	if (WARN_ON(!mgmt))
2334 		return NULL;
2335 
2336 	if (WARN_ON(!wiphy))
2337 		return NULL;
2338 
2339 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2340 		    (data->signal < 0 || data->signal > 100)))
2341 		return NULL;
2342 
2343 	if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2344 		ext = (void *) mgmt;
2345 		min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2346 		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2347 			min_hdr_len = offsetof(struct ieee80211_ext,
2348 					       u.s1g_short_beacon.variable);
2349 	}
2350 
2351 	if (WARN_ON(len < min_hdr_len))
2352 		return NULL;
2353 
2354 	ielen = len - min_hdr_len;
2355 	variable = mgmt->u.probe_resp.variable;
2356 	if (ext) {
2357 		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2358 			variable = ext->u.s1g_short_beacon.variable;
2359 		else
2360 			variable = ext->u.s1g_beacon.variable;
2361 	}
2362 
2363 	channel = cfg80211_get_bss_channel(wiphy, variable,
2364 					   ielen, data->chan, data->scan_width);
2365 	if (!channel)
2366 		return NULL;
2367 
2368 	if (ext) {
2369 		const struct ieee80211_s1g_bcn_compat_ie *compat;
2370 		const struct element *elem;
2371 
2372 		elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
2373 					  variable, ielen);
2374 		if (!elem)
2375 			return NULL;
2376 		if (elem->datalen < sizeof(*compat))
2377 			return NULL;
2378 		compat = (void *)elem->data;
2379 		bssid = ext->u.s1g_beacon.sa;
2380 		capability = le16_to_cpu(compat->compat_info);
2381 		beacon_int = le16_to_cpu(compat->beacon_int);
2382 	} else {
2383 		bssid = mgmt->bssid;
2384 		beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2385 		capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2386 	}
2387 
2388 	ies = kzalloc(sizeof(*ies) + ielen, gfp);
2389 	if (!ies)
2390 		return NULL;
2391 	ies->len = ielen;
2392 	ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2393 	ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2394 			   ieee80211_is_s1g_beacon(mgmt->frame_control);
2395 	memcpy(ies->data, variable, ielen);
2396 
2397 	if (ieee80211_is_probe_resp(mgmt->frame_control))
2398 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2399 	else
2400 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2401 	rcu_assign_pointer(tmp.pub.ies, ies);
2402 
2403 	memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2404 	tmp.pub.beacon_interval = beacon_int;
2405 	tmp.pub.capability = capability;
2406 	tmp.pub.channel = channel;
2407 	tmp.pub.scan_width = data->scan_width;
2408 	tmp.pub.signal = data->signal;
2409 	tmp.ts_boottime = data->boottime_ns;
2410 	tmp.parent_tsf = data->parent_tsf;
2411 	tmp.pub.chains = data->chains;
2412 	memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2413 	ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2414 
2415 	signal_valid = data->chan == channel;
2416 	res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid,
2417 				  jiffies);
2418 	if (!res)
2419 		return NULL;
2420 
2421 	if (channel->band == NL80211_BAND_60GHZ) {
2422 		bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2423 		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2424 		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2425 			regulatory_hint_found_beacon(wiphy, channel, gfp);
2426 	} else {
2427 		if (res->pub.capability & WLAN_CAPABILITY_ESS)
2428 			regulatory_hint_found_beacon(wiphy, channel, gfp);
2429 	}
2430 
2431 	trace_cfg80211_return_bss(&res->pub);
2432 	/* cfg80211_bss_update gives us a referenced result */
2433 	return &res->pub;
2434 }
2435 
2436 struct cfg80211_bss *
cfg80211_inform_bss_frame_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,struct ieee80211_mgmt * mgmt,size_t len,gfp_t gfp)2437 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2438 			       struct cfg80211_inform_bss *data,
2439 			       struct ieee80211_mgmt *mgmt, size_t len,
2440 			       gfp_t gfp)
2441 {
2442 	struct cfg80211_bss *res, *tmp_bss;
2443 	const u8 *ie = mgmt->u.probe_resp.variable;
2444 	const struct cfg80211_bss_ies *ies1, *ies2;
2445 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
2446 				      u.probe_resp.variable);
2447 	struct cfg80211_non_tx_bss non_tx_data;
2448 
2449 	res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2450 						    len, gfp);
2451 	if (!res || !wiphy->support_mbssid ||
2452 	    !cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2453 		return res;
2454 	if (wiphy->support_only_he_mbssid &&
2455 	    !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2456 		return res;
2457 
2458 	non_tx_data.tx_bss = res;
2459 	/* process each non-transmitting bss */
2460 	cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len,
2461 					 &non_tx_data, gfp);
2462 
2463 	spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2464 
2465 	/* check if the res has other nontransmitting bss which is not
2466 	 * in MBSSID IE
2467 	 */
2468 	ies1 = rcu_access_pointer(res->ies);
2469 
2470 	/* go through nontrans_list, if the timestamp of the BSS is
2471 	 * earlier than the timestamp of the transmitting BSS then
2472 	 * update it
2473 	 */
2474 	list_for_each_entry(tmp_bss, &res->nontrans_list,
2475 			    nontrans_list) {
2476 		ies2 = rcu_access_pointer(tmp_bss->ies);
2477 		if (ies2->tsf < ies1->tsf)
2478 			cfg80211_update_notlisted_nontrans(wiphy, tmp_bss,
2479 							   mgmt, len);
2480 	}
2481 	spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2482 
2483 	return res;
2484 }
2485 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2486 
cfg80211_ref_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)2487 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2488 {
2489 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2490 	struct cfg80211_internal_bss *bss;
2491 
2492 	if (!pub)
2493 		return;
2494 
2495 	bss = container_of(pub, struct cfg80211_internal_bss, pub);
2496 
2497 	spin_lock_bh(&rdev->bss_lock);
2498 	bss_ref_get(rdev, bss);
2499 	spin_unlock_bh(&rdev->bss_lock);
2500 }
2501 EXPORT_SYMBOL(cfg80211_ref_bss);
2502 
cfg80211_put_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)2503 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2504 {
2505 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2506 	struct cfg80211_internal_bss *bss;
2507 
2508 	if (!pub)
2509 		return;
2510 
2511 	bss = container_of(pub, struct cfg80211_internal_bss, pub);
2512 
2513 	spin_lock_bh(&rdev->bss_lock);
2514 	bss_ref_put(rdev, bss);
2515 	spin_unlock_bh(&rdev->bss_lock);
2516 }
2517 EXPORT_SYMBOL(cfg80211_put_bss);
2518 
cfg80211_unlink_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)2519 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2520 {
2521 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2522 	struct cfg80211_internal_bss *bss, *tmp1;
2523 	struct cfg80211_bss *nontrans_bss, *tmp;
2524 
2525 	if (WARN_ON(!pub))
2526 		return;
2527 
2528 	bss = container_of(pub, struct cfg80211_internal_bss, pub);
2529 
2530 	spin_lock_bh(&rdev->bss_lock);
2531 	if (list_empty(&bss->list))
2532 		goto out;
2533 
2534 	list_for_each_entry_safe(nontrans_bss, tmp,
2535 				 &pub->nontrans_list,
2536 				 nontrans_list) {
2537 		tmp1 = container_of(nontrans_bss,
2538 				    struct cfg80211_internal_bss, pub);
2539 		if (__cfg80211_unlink_bss(rdev, tmp1))
2540 			rdev->bss_generation++;
2541 	}
2542 
2543 	if (__cfg80211_unlink_bss(rdev, bss))
2544 		rdev->bss_generation++;
2545 out:
2546 	spin_unlock_bh(&rdev->bss_lock);
2547 }
2548 EXPORT_SYMBOL(cfg80211_unlink_bss);
2549 
cfg80211_bss_iter(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,void (* iter)(struct wiphy * wiphy,struct cfg80211_bss * bss,void * data),void * iter_data)2550 void cfg80211_bss_iter(struct wiphy *wiphy,
2551 		       struct cfg80211_chan_def *chandef,
2552 		       void (*iter)(struct wiphy *wiphy,
2553 				    struct cfg80211_bss *bss,
2554 				    void *data),
2555 		       void *iter_data)
2556 {
2557 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2558 	struct cfg80211_internal_bss *bss;
2559 
2560 	spin_lock_bh(&rdev->bss_lock);
2561 
2562 	list_for_each_entry(bss, &rdev->bss_list, list) {
2563 		if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel))
2564 			iter(wiphy, &bss->pub, iter_data);
2565 	}
2566 
2567 	spin_unlock_bh(&rdev->bss_lock);
2568 }
2569 EXPORT_SYMBOL(cfg80211_bss_iter);
2570 
cfg80211_update_assoc_bss_entry(struct wireless_dev * wdev,struct ieee80211_channel * chan)2571 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
2572 				     struct ieee80211_channel *chan)
2573 {
2574 	struct wiphy *wiphy = wdev->wiphy;
2575 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2576 	struct cfg80211_internal_bss *cbss = wdev->current_bss;
2577 	struct cfg80211_internal_bss *new = NULL;
2578 	struct cfg80211_internal_bss *bss;
2579 	struct cfg80211_bss *nontrans_bss;
2580 	struct cfg80211_bss *tmp;
2581 
2582 	spin_lock_bh(&rdev->bss_lock);
2583 
2584 	/*
2585 	 * Some APs use CSA also for bandwidth changes, i.e., without actually
2586 	 * changing the control channel, so no need to update in such a case.
2587 	 */
2588 	if (cbss->pub.channel == chan)
2589 		goto done;
2590 
2591 	/* use transmitting bss */
2592 	if (cbss->pub.transmitted_bss)
2593 		cbss = container_of(cbss->pub.transmitted_bss,
2594 				    struct cfg80211_internal_bss,
2595 				    pub);
2596 
2597 	cbss->pub.channel = chan;
2598 
2599 	list_for_each_entry(bss, &rdev->bss_list, list) {
2600 		if (!cfg80211_bss_type_match(bss->pub.capability,
2601 					     bss->pub.channel->band,
2602 					     wdev->conn_bss_type))
2603 			continue;
2604 
2605 		if (bss == cbss)
2606 			continue;
2607 
2608 		if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
2609 			new = bss;
2610 			break;
2611 		}
2612 	}
2613 
2614 	if (new) {
2615 		/* to save time, update IEs for transmitting bss only */
2616 		if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
2617 			new->pub.proberesp_ies = NULL;
2618 			new->pub.beacon_ies = NULL;
2619 		}
2620 
2621 		list_for_each_entry_safe(nontrans_bss, tmp,
2622 					 &new->pub.nontrans_list,
2623 					 nontrans_list) {
2624 			bss = container_of(nontrans_bss,
2625 					   struct cfg80211_internal_bss, pub);
2626 			if (__cfg80211_unlink_bss(rdev, bss))
2627 				rdev->bss_generation++;
2628 		}
2629 
2630 		WARN_ON(atomic_read(&new->hold));
2631 		if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
2632 			rdev->bss_generation++;
2633 	}
2634 
2635 	rb_erase(&cbss->rbn, &rdev->bss_tree);
2636 	rb_insert_bss(rdev, cbss);
2637 	rdev->bss_generation++;
2638 
2639 	list_for_each_entry_safe(nontrans_bss, tmp,
2640 				 &cbss->pub.nontrans_list,
2641 				 nontrans_list) {
2642 		bss = container_of(nontrans_bss,
2643 				   struct cfg80211_internal_bss, pub);
2644 		bss->pub.channel = chan;
2645 		rb_erase(&bss->rbn, &rdev->bss_tree);
2646 		rb_insert_bss(rdev, bss);
2647 		rdev->bss_generation++;
2648 	}
2649 
2650 done:
2651 	spin_unlock_bh(&rdev->bss_lock);
2652 }
2653 
2654 #ifdef CONFIG_CFG80211_WEXT
2655 static struct cfg80211_registered_device *
cfg80211_get_dev_from_ifindex(struct net * net,int ifindex)2656 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
2657 {
2658 	struct cfg80211_registered_device *rdev;
2659 	struct net_device *dev;
2660 
2661 	ASSERT_RTNL();
2662 
2663 	dev = dev_get_by_index(net, ifindex);
2664 	if (!dev)
2665 		return ERR_PTR(-ENODEV);
2666 	if (dev->ieee80211_ptr)
2667 		rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
2668 	else
2669 		rdev = ERR_PTR(-ENODEV);
2670 	dev_put(dev);
2671 	return rdev;
2672 }
2673 
cfg80211_wext_siwscan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)2674 int cfg80211_wext_siwscan(struct net_device *dev,
2675 			  struct iw_request_info *info,
2676 			  union iwreq_data *wrqu, char *extra)
2677 {
2678 	struct cfg80211_registered_device *rdev;
2679 	struct wiphy *wiphy;
2680 	struct iw_scan_req *wreq = NULL;
2681 	struct cfg80211_scan_request *creq = NULL;
2682 	int i, err, n_channels = 0;
2683 	enum nl80211_band band;
2684 
2685 	if (!netif_running(dev))
2686 		return -ENETDOWN;
2687 
2688 	if (wrqu->data.length == sizeof(struct iw_scan_req))
2689 		wreq = (struct iw_scan_req *)extra;
2690 
2691 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2692 
2693 	if (IS_ERR(rdev))
2694 		return PTR_ERR(rdev);
2695 
2696 	if (rdev->scan_req || rdev->scan_msg) {
2697 		err = -EBUSY;
2698 		goto out;
2699 	}
2700 
2701 	wiphy = &rdev->wiphy;
2702 
2703 	/* Determine number of channels, needed to allocate creq */
2704 	if (wreq && wreq->num_channels)
2705 		n_channels = wreq->num_channels;
2706 	else
2707 		n_channels = ieee80211_get_num_supported_channels(wiphy);
2708 
2709 	creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
2710 		       n_channels * sizeof(void *),
2711 		       GFP_ATOMIC);
2712 	if (!creq) {
2713 		err = -ENOMEM;
2714 		goto out;
2715 	}
2716 
2717 	creq->wiphy = wiphy;
2718 	creq->wdev = dev->ieee80211_ptr;
2719 	/* SSIDs come after channels */
2720 	creq->ssids = (void *)&creq->channels[n_channels];
2721 	creq->n_channels = n_channels;
2722 	creq->n_ssids = 1;
2723 	creq->scan_start = jiffies;
2724 
2725 	/* translate "Scan on frequencies" request */
2726 	i = 0;
2727 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2728 		int j;
2729 
2730 		if (!wiphy->bands[band])
2731 			continue;
2732 
2733 		for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
2734 			/* ignore disabled channels */
2735 			if (wiphy->bands[band]->channels[j].flags &
2736 						IEEE80211_CHAN_DISABLED)
2737 				continue;
2738 
2739 			/* If we have a wireless request structure and the
2740 			 * wireless request specifies frequencies, then search
2741 			 * for the matching hardware channel.
2742 			 */
2743 			if (wreq && wreq->num_channels) {
2744 				int k;
2745 				int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
2746 				for (k = 0; k < wreq->num_channels; k++) {
2747 					struct iw_freq *freq =
2748 						&wreq->channel_list[k];
2749 					int wext_freq =
2750 						cfg80211_wext_freq(freq);
2751 
2752 					if (wext_freq == wiphy_freq)
2753 						goto wext_freq_found;
2754 				}
2755 				goto wext_freq_not_found;
2756 			}
2757 
2758 		wext_freq_found:
2759 			creq->channels[i] = &wiphy->bands[band]->channels[j];
2760 			i++;
2761 		wext_freq_not_found: ;
2762 		}
2763 	}
2764 	/* No channels found? */
2765 	if (!i) {
2766 		err = -EINVAL;
2767 		goto out;
2768 	}
2769 
2770 	/* Set real number of channels specified in creq->channels[] */
2771 	creq->n_channels = i;
2772 
2773 	/* translate "Scan for SSID" request */
2774 	if (wreq) {
2775 		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
2776 			if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
2777 				err = -EINVAL;
2778 				goto out;
2779 			}
2780 			memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
2781 			creq->ssids[0].ssid_len = wreq->essid_len;
2782 		}
2783 		if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
2784 			creq->n_ssids = 0;
2785 	}
2786 
2787 	for (i = 0; i < NUM_NL80211_BANDS; i++)
2788 		if (wiphy->bands[i])
2789 			creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
2790 
2791 	eth_broadcast_addr(creq->bssid);
2792 
2793 	rdev->scan_req = creq;
2794 	err = rdev_scan(rdev, creq);
2795 	if (err) {
2796 		rdev->scan_req = NULL;
2797 		/* creq will be freed below */
2798 	} else {
2799 		nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
2800 		/* creq now owned by driver */
2801 		creq = NULL;
2802 		dev_hold(dev);
2803 	}
2804  out:
2805 	kfree(creq);
2806 	return err;
2807 }
2808 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
2809 
ieee80211_scan_add_ies(struct iw_request_info * info,const struct cfg80211_bss_ies * ies,char * current_ev,char * end_buf)2810 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
2811 				    const struct cfg80211_bss_ies *ies,
2812 				    char *current_ev, char *end_buf)
2813 {
2814 	const u8 *pos, *end, *next;
2815 	struct iw_event iwe;
2816 
2817 	if (!ies)
2818 		return current_ev;
2819 
2820 	/*
2821 	 * If needed, fragment the IEs buffer (at IE boundaries) into short
2822 	 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
2823 	 */
2824 	pos = ies->data;
2825 	end = pos + ies->len;
2826 
2827 	while (end - pos > IW_GENERIC_IE_MAX) {
2828 		next = pos + 2 + pos[1];
2829 		while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
2830 			next = next + 2 + next[1];
2831 
2832 		memset(&iwe, 0, sizeof(iwe));
2833 		iwe.cmd = IWEVGENIE;
2834 		iwe.u.data.length = next - pos;
2835 		current_ev = iwe_stream_add_point_check(info, current_ev,
2836 							end_buf, &iwe,
2837 							(void *)pos);
2838 		if (IS_ERR(current_ev))
2839 			return current_ev;
2840 		pos = next;
2841 	}
2842 
2843 	if (end > pos) {
2844 		memset(&iwe, 0, sizeof(iwe));
2845 		iwe.cmd = IWEVGENIE;
2846 		iwe.u.data.length = end - pos;
2847 		current_ev = iwe_stream_add_point_check(info, current_ev,
2848 							end_buf, &iwe,
2849 							(void *)pos);
2850 		if (IS_ERR(current_ev))
2851 			return current_ev;
2852 	}
2853 
2854 	return current_ev;
2855 }
2856 
2857 static char *
ieee80211_bss(struct wiphy * wiphy,struct iw_request_info * info,struct cfg80211_internal_bss * bss,char * current_ev,char * end_buf)2858 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
2859 	      struct cfg80211_internal_bss *bss, char *current_ev,
2860 	      char *end_buf)
2861 {
2862 	const struct cfg80211_bss_ies *ies;
2863 	struct iw_event iwe;
2864 	const u8 *ie;
2865 	u8 buf[50];
2866 	u8 *cfg, *p, *tmp;
2867 	int rem, i, sig;
2868 	bool ismesh = false;
2869 
2870 	memset(&iwe, 0, sizeof(iwe));
2871 	iwe.cmd = SIOCGIWAP;
2872 	iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
2873 	memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
2874 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2875 						IW_EV_ADDR_LEN);
2876 	if (IS_ERR(current_ev))
2877 		return current_ev;
2878 
2879 	memset(&iwe, 0, sizeof(iwe));
2880 	iwe.cmd = SIOCGIWFREQ;
2881 	iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
2882 	iwe.u.freq.e = 0;
2883 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2884 						IW_EV_FREQ_LEN);
2885 	if (IS_ERR(current_ev))
2886 		return current_ev;
2887 
2888 	memset(&iwe, 0, sizeof(iwe));
2889 	iwe.cmd = SIOCGIWFREQ;
2890 	iwe.u.freq.m = bss->pub.channel->center_freq;
2891 	iwe.u.freq.e = 6;
2892 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2893 						IW_EV_FREQ_LEN);
2894 	if (IS_ERR(current_ev))
2895 		return current_ev;
2896 
2897 	if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
2898 		memset(&iwe, 0, sizeof(iwe));
2899 		iwe.cmd = IWEVQUAL;
2900 		iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
2901 				     IW_QUAL_NOISE_INVALID |
2902 				     IW_QUAL_QUAL_UPDATED;
2903 		switch (wiphy->signal_type) {
2904 		case CFG80211_SIGNAL_TYPE_MBM:
2905 			sig = bss->pub.signal / 100;
2906 			iwe.u.qual.level = sig;
2907 			iwe.u.qual.updated |= IW_QUAL_DBM;
2908 			if (sig < -110)		/* rather bad */
2909 				sig = -110;
2910 			else if (sig > -40)	/* perfect */
2911 				sig = -40;
2912 			/* will give a range of 0 .. 70 */
2913 			iwe.u.qual.qual = sig + 110;
2914 			break;
2915 		case CFG80211_SIGNAL_TYPE_UNSPEC:
2916 			iwe.u.qual.level = bss->pub.signal;
2917 			/* will give range 0 .. 100 */
2918 			iwe.u.qual.qual = bss->pub.signal;
2919 			break;
2920 		default:
2921 			/* not reached */
2922 			break;
2923 		}
2924 		current_ev = iwe_stream_add_event_check(info, current_ev,
2925 							end_buf, &iwe,
2926 							IW_EV_QUAL_LEN);
2927 		if (IS_ERR(current_ev))
2928 			return current_ev;
2929 	}
2930 
2931 	memset(&iwe, 0, sizeof(iwe));
2932 	iwe.cmd = SIOCGIWENCODE;
2933 	if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
2934 		iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
2935 	else
2936 		iwe.u.data.flags = IW_ENCODE_DISABLED;
2937 	iwe.u.data.length = 0;
2938 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2939 						&iwe, "");
2940 	if (IS_ERR(current_ev))
2941 		return current_ev;
2942 
2943 	rcu_read_lock();
2944 	ies = rcu_dereference(bss->pub.ies);
2945 	rem = ies->len;
2946 	ie = ies->data;
2947 
2948 	while (rem >= 2) {
2949 		/* invalid data */
2950 		if (ie[1] > rem - 2)
2951 			break;
2952 
2953 		switch (ie[0]) {
2954 		case WLAN_EID_SSID:
2955 			memset(&iwe, 0, sizeof(iwe));
2956 			iwe.cmd = SIOCGIWESSID;
2957 			iwe.u.data.length = ie[1];
2958 			iwe.u.data.flags = 1;
2959 			current_ev = iwe_stream_add_point_check(info,
2960 								current_ev,
2961 								end_buf, &iwe,
2962 								(u8 *)ie + 2);
2963 			if (IS_ERR(current_ev))
2964 				goto unlock;
2965 			break;
2966 		case WLAN_EID_MESH_ID:
2967 			memset(&iwe, 0, sizeof(iwe));
2968 			iwe.cmd = SIOCGIWESSID;
2969 			iwe.u.data.length = ie[1];
2970 			iwe.u.data.flags = 1;
2971 			current_ev = iwe_stream_add_point_check(info,
2972 								current_ev,
2973 								end_buf, &iwe,
2974 								(u8 *)ie + 2);
2975 			if (IS_ERR(current_ev))
2976 				goto unlock;
2977 			break;
2978 		case WLAN_EID_MESH_CONFIG:
2979 			ismesh = true;
2980 			if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
2981 				break;
2982 			cfg = (u8 *)ie + 2;
2983 			memset(&iwe, 0, sizeof(iwe));
2984 			iwe.cmd = IWEVCUSTOM;
2985 			sprintf(buf, "Mesh Network Path Selection Protocol ID: "
2986 				"0x%02X", cfg[0]);
2987 			iwe.u.data.length = strlen(buf);
2988 			current_ev = iwe_stream_add_point_check(info,
2989 								current_ev,
2990 								end_buf,
2991 								&iwe, buf);
2992 			if (IS_ERR(current_ev))
2993 				goto unlock;
2994 			sprintf(buf, "Path Selection Metric ID: 0x%02X",
2995 				cfg[1]);
2996 			iwe.u.data.length = strlen(buf);
2997 			current_ev = iwe_stream_add_point_check(info,
2998 								current_ev,
2999 								end_buf,
3000 								&iwe, buf);
3001 			if (IS_ERR(current_ev))
3002 				goto unlock;
3003 			sprintf(buf, "Congestion Control Mode ID: 0x%02X",
3004 				cfg[2]);
3005 			iwe.u.data.length = strlen(buf);
3006 			current_ev = iwe_stream_add_point_check(info,
3007 								current_ev,
3008 								end_buf,
3009 								&iwe, buf);
3010 			if (IS_ERR(current_ev))
3011 				goto unlock;
3012 			sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
3013 			iwe.u.data.length = strlen(buf);
3014 			current_ev = iwe_stream_add_point_check(info,
3015 								current_ev,
3016 								end_buf,
3017 								&iwe, buf);
3018 			if (IS_ERR(current_ev))
3019 				goto unlock;
3020 			sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
3021 			iwe.u.data.length = strlen(buf);
3022 			current_ev = iwe_stream_add_point_check(info,
3023 								current_ev,
3024 								end_buf,
3025 								&iwe, buf);
3026 			if (IS_ERR(current_ev))
3027 				goto unlock;
3028 			sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
3029 			iwe.u.data.length = strlen(buf);
3030 			current_ev = iwe_stream_add_point_check(info,
3031 								current_ev,
3032 								end_buf,
3033 								&iwe, buf);
3034 			if (IS_ERR(current_ev))
3035 				goto unlock;
3036 			sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
3037 			iwe.u.data.length = strlen(buf);
3038 			current_ev = iwe_stream_add_point_check(info,
3039 								current_ev,
3040 								end_buf,
3041 								&iwe, buf);
3042 			if (IS_ERR(current_ev))
3043 				goto unlock;
3044 			break;
3045 		case WLAN_EID_SUPP_RATES:
3046 		case WLAN_EID_EXT_SUPP_RATES:
3047 			/* display all supported rates in readable format */
3048 			p = current_ev + iwe_stream_lcp_len(info);
3049 
3050 			memset(&iwe, 0, sizeof(iwe));
3051 			iwe.cmd = SIOCGIWRATE;
3052 			/* Those two flags are ignored... */
3053 			iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3054 
3055 			for (i = 0; i < ie[1]; i++) {
3056 				iwe.u.bitrate.value =
3057 					((ie[i + 2] & 0x7f) * 500000);
3058 				tmp = p;
3059 				p = iwe_stream_add_value(info, current_ev, p,
3060 							 end_buf, &iwe,
3061 							 IW_EV_PARAM_LEN);
3062 				if (p == tmp) {
3063 					current_ev = ERR_PTR(-E2BIG);
3064 					goto unlock;
3065 				}
3066 			}
3067 			current_ev = p;
3068 			break;
3069 		}
3070 		rem -= ie[1] + 2;
3071 		ie += ie[1] + 2;
3072 	}
3073 
3074 	if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3075 	    ismesh) {
3076 		memset(&iwe, 0, sizeof(iwe));
3077 		iwe.cmd = SIOCGIWMODE;
3078 		if (ismesh)
3079 			iwe.u.mode = IW_MODE_MESH;
3080 		else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3081 			iwe.u.mode = IW_MODE_MASTER;
3082 		else
3083 			iwe.u.mode = IW_MODE_ADHOC;
3084 		current_ev = iwe_stream_add_event_check(info, current_ev,
3085 							end_buf, &iwe,
3086 							IW_EV_UINT_LEN);
3087 		if (IS_ERR(current_ev))
3088 			goto unlock;
3089 	}
3090 
3091 	memset(&iwe, 0, sizeof(iwe));
3092 	iwe.cmd = IWEVCUSTOM;
3093 	sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
3094 	iwe.u.data.length = strlen(buf);
3095 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3096 						&iwe, buf);
3097 	if (IS_ERR(current_ev))
3098 		goto unlock;
3099 	memset(&iwe, 0, sizeof(iwe));
3100 	iwe.cmd = IWEVCUSTOM;
3101 	sprintf(buf, " Last beacon: %ums ago",
3102 		elapsed_jiffies_msecs(bss->ts));
3103 	iwe.u.data.length = strlen(buf);
3104 	current_ev = iwe_stream_add_point_check(info, current_ev,
3105 						end_buf, &iwe, buf);
3106 	if (IS_ERR(current_ev))
3107 		goto unlock;
3108 
3109 	current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3110 
3111  unlock:
3112 	rcu_read_unlock();
3113 	return current_ev;
3114 }
3115 
3116 
ieee80211_scan_results(struct cfg80211_registered_device * rdev,struct iw_request_info * info,char * buf,size_t len)3117 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3118 				  struct iw_request_info *info,
3119 				  char *buf, size_t len)
3120 {
3121 	char *current_ev = buf;
3122 	char *end_buf = buf + len;
3123 	struct cfg80211_internal_bss *bss;
3124 	int err = 0;
3125 
3126 	spin_lock_bh(&rdev->bss_lock);
3127 	cfg80211_bss_expire(rdev);
3128 
3129 	list_for_each_entry(bss, &rdev->bss_list, list) {
3130 		if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3131 			err = -E2BIG;
3132 			break;
3133 		}
3134 		current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3135 					   current_ev, end_buf);
3136 		if (IS_ERR(current_ev)) {
3137 			err = PTR_ERR(current_ev);
3138 			break;
3139 		}
3140 	}
3141 	spin_unlock_bh(&rdev->bss_lock);
3142 
3143 	if (err)
3144 		return err;
3145 	return current_ev - buf;
3146 }
3147 
3148 
cfg80211_wext_giwscan(struct net_device * dev,struct iw_request_info * info,struct iw_point * data,char * extra)3149 int cfg80211_wext_giwscan(struct net_device *dev,
3150 			  struct iw_request_info *info,
3151 			  struct iw_point *data, char *extra)
3152 {
3153 	struct cfg80211_registered_device *rdev;
3154 	int res;
3155 
3156 	if (!netif_running(dev))
3157 		return -ENETDOWN;
3158 
3159 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3160 
3161 	if (IS_ERR(rdev))
3162 		return PTR_ERR(rdev);
3163 
3164 	if (rdev->scan_req || rdev->scan_msg)
3165 		return -EAGAIN;
3166 
3167 	res = ieee80211_scan_results(rdev, info, extra, data->length);
3168 	data->length = 0;
3169 	if (res >= 0) {
3170 		data->length = res;
3171 		res = 0;
3172 	}
3173 
3174 	return res;
3175 }
3176 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3177 #endif
3178