1 // SPDX-License-Identifier: GPL-2.0-only
2 #include "cgroup-internal.h"
3
4 #include <linux/ctype.h>
5 #include <linux/kmod.h>
6 #include <linux/sort.h>
7 #include <linux/delay.h>
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/sched/task.h>
11 #include <linux/magic.h>
12 #include <linux/slab.h>
13 #include <linux/vmalloc.h>
14 #include <linux/delayacct.h>
15 #include <linux/pid_namespace.h>
16 #include <linux/cgroupstats.h>
17 #include <linux/fs_parser.h>
18
19 #include <trace/events/cgroup.h>
20
21 /*
22 * pidlists linger the following amount before being destroyed. The goal
23 * is avoiding frequent destruction in the middle of consecutive read calls
24 * Expiring in the middle is a performance problem not a correctness one.
25 * 1 sec should be enough.
26 */
27 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
28
29 /* Controllers blocked by the commandline in v1 */
30 static u16 cgroup_no_v1_mask;
31
32 /* disable named v1 mounts */
33 static bool cgroup_no_v1_named;
34
35 /*
36 * pidlist destructions need to be flushed on cgroup destruction. Use a
37 * separate workqueue as flush domain.
38 */
39 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
40
41 /* protects cgroup_subsys->release_agent_path */
42 static DEFINE_SPINLOCK(release_agent_path_lock);
43
cgroup1_ssid_disabled(int ssid)44 bool cgroup1_ssid_disabled(int ssid)
45 {
46 return cgroup_no_v1_mask & (1 << ssid);
47 }
48
49 /**
50 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
51 * @from: attach to all cgroups of a given task
52 * @tsk: the task to be attached
53 */
cgroup_attach_task_all(struct task_struct * from,struct task_struct * tsk)54 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
55 {
56 struct cgroup_root *root;
57 int retval = 0;
58
59 mutex_lock(&cgroup_mutex);
60 percpu_down_write(&cgroup_threadgroup_rwsem);
61 for_each_root(root) {
62 struct cgroup *from_cgrp;
63
64 if (root == &cgrp_dfl_root)
65 continue;
66
67 spin_lock_irq(&css_set_lock);
68 from_cgrp = task_cgroup_from_root(from, root);
69 spin_unlock_irq(&css_set_lock);
70
71 retval = cgroup_attach_task(from_cgrp, tsk, false);
72 if (retval)
73 break;
74 }
75 percpu_up_write(&cgroup_threadgroup_rwsem);
76 mutex_unlock(&cgroup_mutex);
77
78 return retval;
79 }
80 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
81
82 /**
83 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
84 * @to: cgroup to which the tasks will be moved
85 * @from: cgroup in which the tasks currently reside
86 *
87 * Locking rules between cgroup_post_fork() and the migration path
88 * guarantee that, if a task is forking while being migrated, the new child
89 * is guaranteed to be either visible in the source cgroup after the
90 * parent's migration is complete or put into the target cgroup. No task
91 * can slip out of migration through forking.
92 */
cgroup_transfer_tasks(struct cgroup * to,struct cgroup * from)93 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
94 {
95 DEFINE_CGROUP_MGCTX(mgctx);
96 struct cgrp_cset_link *link;
97 struct css_task_iter it;
98 struct task_struct *task;
99 int ret;
100
101 if (cgroup_on_dfl(to))
102 return -EINVAL;
103
104 ret = cgroup_migrate_vet_dst(to);
105 if (ret)
106 return ret;
107
108 mutex_lock(&cgroup_mutex);
109
110 percpu_down_write(&cgroup_threadgroup_rwsem);
111
112 /* all tasks in @from are being moved, all csets are source */
113 spin_lock_irq(&css_set_lock);
114 list_for_each_entry(link, &from->cset_links, cset_link)
115 cgroup_migrate_add_src(link->cset, to, &mgctx);
116 spin_unlock_irq(&css_set_lock);
117
118 ret = cgroup_migrate_prepare_dst(&mgctx);
119 if (ret)
120 goto out_err;
121
122 /*
123 * Migrate tasks one-by-one until @from is empty. This fails iff
124 * ->can_attach() fails.
125 */
126 do {
127 css_task_iter_start(&from->self, 0, &it);
128
129 do {
130 task = css_task_iter_next(&it);
131 } while (task && (task->flags & PF_EXITING));
132
133 if (task)
134 get_task_struct(task);
135 css_task_iter_end(&it);
136
137 if (task) {
138 ret = cgroup_migrate(task, false, &mgctx);
139 if (!ret)
140 TRACE_CGROUP_PATH(transfer_tasks, to, task, false);
141 put_task_struct(task);
142 }
143 } while (task && !ret);
144 out_err:
145 cgroup_migrate_finish(&mgctx);
146 percpu_up_write(&cgroup_threadgroup_rwsem);
147 mutex_unlock(&cgroup_mutex);
148 return ret;
149 }
150
151 /*
152 * Stuff for reading the 'tasks'/'procs' files.
153 *
154 * Reading this file can return large amounts of data if a cgroup has
155 * *lots* of attached tasks. So it may need several calls to read(),
156 * but we cannot guarantee that the information we produce is correct
157 * unless we produce it entirely atomically.
158 *
159 */
160
161 /* which pidlist file are we talking about? */
162 enum cgroup_filetype {
163 CGROUP_FILE_PROCS,
164 CGROUP_FILE_TASKS,
165 };
166
167 /*
168 * A pidlist is a list of pids that virtually represents the contents of one
169 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
170 * a pair (one each for procs, tasks) for each pid namespace that's relevant
171 * to the cgroup.
172 */
173 struct cgroup_pidlist {
174 /*
175 * used to find which pidlist is wanted. doesn't change as long as
176 * this particular list stays in the list.
177 */
178 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
179 /* array of xids */
180 pid_t *list;
181 /* how many elements the above list has */
182 int length;
183 /* each of these stored in a list by its cgroup */
184 struct list_head links;
185 /* pointer to the cgroup we belong to, for list removal purposes */
186 struct cgroup *owner;
187 /* for delayed destruction */
188 struct delayed_work destroy_dwork;
189 };
190
191 /*
192 * Used to destroy all pidlists lingering waiting for destroy timer. None
193 * should be left afterwards.
194 */
cgroup1_pidlist_destroy_all(struct cgroup * cgrp)195 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
196 {
197 struct cgroup_pidlist *l, *tmp_l;
198
199 mutex_lock(&cgrp->pidlist_mutex);
200 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
201 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
202 mutex_unlock(&cgrp->pidlist_mutex);
203
204 flush_workqueue(cgroup_pidlist_destroy_wq);
205 BUG_ON(!list_empty(&cgrp->pidlists));
206 }
207
cgroup_pidlist_destroy_work_fn(struct work_struct * work)208 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
209 {
210 struct delayed_work *dwork = to_delayed_work(work);
211 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
212 destroy_dwork);
213 struct cgroup_pidlist *tofree = NULL;
214
215 mutex_lock(&l->owner->pidlist_mutex);
216
217 /*
218 * Destroy iff we didn't get queued again. The state won't change
219 * as destroy_dwork can only be queued while locked.
220 */
221 if (!delayed_work_pending(dwork)) {
222 list_del(&l->links);
223 kvfree(l->list);
224 put_pid_ns(l->key.ns);
225 tofree = l;
226 }
227
228 mutex_unlock(&l->owner->pidlist_mutex);
229 kfree(tofree);
230 }
231
232 /*
233 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
234 * Returns the number of unique elements.
235 */
pidlist_uniq(pid_t * list,int length)236 static int pidlist_uniq(pid_t *list, int length)
237 {
238 int src, dest = 1;
239
240 /*
241 * we presume the 0th element is unique, so i starts at 1. trivial
242 * edge cases first; no work needs to be done for either
243 */
244 if (length == 0 || length == 1)
245 return length;
246 /* src and dest walk down the list; dest counts unique elements */
247 for (src = 1; src < length; src++) {
248 /* find next unique element */
249 while (list[src] == list[src-1]) {
250 src++;
251 if (src == length)
252 goto after;
253 }
254 /* dest always points to where the next unique element goes */
255 list[dest] = list[src];
256 dest++;
257 }
258 after:
259 return dest;
260 }
261
262 /*
263 * The two pid files - task and cgroup.procs - guaranteed that the result
264 * is sorted, which forced this whole pidlist fiasco. As pid order is
265 * different per namespace, each namespace needs differently sorted list,
266 * making it impossible to use, for example, single rbtree of member tasks
267 * sorted by task pointer. As pidlists can be fairly large, allocating one
268 * per open file is dangerous, so cgroup had to implement shared pool of
269 * pidlists keyed by cgroup and namespace.
270 */
cmppid(const void * a,const void * b)271 static int cmppid(const void *a, const void *b)
272 {
273 return *(pid_t *)a - *(pid_t *)b;
274 }
275
cgroup_pidlist_find(struct cgroup * cgrp,enum cgroup_filetype type)276 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
277 enum cgroup_filetype type)
278 {
279 struct cgroup_pidlist *l;
280 /* don't need task_nsproxy() if we're looking at ourself */
281 struct pid_namespace *ns = task_active_pid_ns(current);
282
283 lockdep_assert_held(&cgrp->pidlist_mutex);
284
285 list_for_each_entry(l, &cgrp->pidlists, links)
286 if (l->key.type == type && l->key.ns == ns)
287 return l;
288 return NULL;
289 }
290
291 /*
292 * find the appropriate pidlist for our purpose (given procs vs tasks)
293 * returns with the lock on that pidlist already held, and takes care
294 * of the use count, or returns NULL with no locks held if we're out of
295 * memory.
296 */
cgroup_pidlist_find_create(struct cgroup * cgrp,enum cgroup_filetype type)297 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
298 enum cgroup_filetype type)
299 {
300 struct cgroup_pidlist *l;
301
302 lockdep_assert_held(&cgrp->pidlist_mutex);
303
304 l = cgroup_pidlist_find(cgrp, type);
305 if (l)
306 return l;
307
308 /* entry not found; create a new one */
309 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
310 if (!l)
311 return l;
312
313 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
314 l->key.type = type;
315 /* don't need task_nsproxy() if we're looking at ourself */
316 l->key.ns = get_pid_ns(task_active_pid_ns(current));
317 l->owner = cgrp;
318 list_add(&l->links, &cgrp->pidlists);
319 return l;
320 }
321
322 /*
323 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
324 */
pidlist_array_load(struct cgroup * cgrp,enum cgroup_filetype type,struct cgroup_pidlist ** lp)325 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
326 struct cgroup_pidlist **lp)
327 {
328 pid_t *array;
329 int length;
330 int pid, n = 0; /* used for populating the array */
331 struct css_task_iter it;
332 struct task_struct *tsk;
333 struct cgroup_pidlist *l;
334
335 lockdep_assert_held(&cgrp->pidlist_mutex);
336
337 /*
338 * If cgroup gets more users after we read count, we won't have
339 * enough space - tough. This race is indistinguishable to the
340 * caller from the case that the additional cgroup users didn't
341 * show up until sometime later on.
342 */
343 length = cgroup_task_count(cgrp);
344 array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL);
345 if (!array)
346 return -ENOMEM;
347 /* now, populate the array */
348 css_task_iter_start(&cgrp->self, 0, &it);
349 while ((tsk = css_task_iter_next(&it))) {
350 if (unlikely(n == length))
351 break;
352 /* get tgid or pid for procs or tasks file respectively */
353 if (type == CGROUP_FILE_PROCS)
354 pid = task_tgid_vnr(tsk);
355 else
356 pid = task_pid_vnr(tsk);
357 if (pid > 0) /* make sure to only use valid results */
358 array[n++] = pid;
359 }
360 css_task_iter_end(&it);
361 length = n;
362 /* now sort & (if procs) strip out duplicates */
363 sort(array, length, sizeof(pid_t), cmppid, NULL);
364 if (type == CGROUP_FILE_PROCS)
365 length = pidlist_uniq(array, length);
366
367 l = cgroup_pidlist_find_create(cgrp, type);
368 if (!l) {
369 kvfree(array);
370 return -ENOMEM;
371 }
372
373 /* store array, freeing old if necessary */
374 kvfree(l->list);
375 l->list = array;
376 l->length = length;
377 *lp = l;
378 return 0;
379 }
380
381 /*
382 * seq_file methods for the tasks/procs files. The seq_file position is the
383 * next pid to display; the seq_file iterator is a pointer to the pid
384 * in the cgroup->l->list array.
385 */
386
cgroup_pidlist_start(struct seq_file * s,loff_t * pos)387 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
388 {
389 /*
390 * Initially we receive a position value that corresponds to
391 * one more than the last pid shown (or 0 on the first call or
392 * after a seek to the start). Use a binary-search to find the
393 * next pid to display, if any
394 */
395 struct kernfs_open_file *of = s->private;
396 struct cgroup_file_ctx *ctx = of->priv;
397 struct cgroup *cgrp = seq_css(s)->cgroup;
398 struct cgroup_pidlist *l;
399 enum cgroup_filetype type = seq_cft(s)->private;
400 int index = 0, pid = *pos;
401 int *iter, ret;
402
403 mutex_lock(&cgrp->pidlist_mutex);
404
405 /*
406 * !NULL @ctx->procs1.pidlist indicates that this isn't the first
407 * start() after open. If the matching pidlist is around, we can use
408 * that. Look for it. Note that @ctx->procs1.pidlist can't be used
409 * directly. It could already have been destroyed.
410 */
411 if (ctx->procs1.pidlist)
412 ctx->procs1.pidlist = cgroup_pidlist_find(cgrp, type);
413
414 /*
415 * Either this is the first start() after open or the matching
416 * pidlist has been destroyed inbetween. Create a new one.
417 */
418 if (!ctx->procs1.pidlist) {
419 ret = pidlist_array_load(cgrp, type, &ctx->procs1.pidlist);
420 if (ret)
421 return ERR_PTR(ret);
422 }
423 l = ctx->procs1.pidlist;
424
425 if (pid) {
426 int end = l->length;
427
428 while (index < end) {
429 int mid = (index + end) / 2;
430 if (l->list[mid] == pid) {
431 index = mid;
432 break;
433 } else if (l->list[mid] <= pid)
434 index = mid + 1;
435 else
436 end = mid;
437 }
438 }
439 /* If we're off the end of the array, we're done */
440 if (index >= l->length)
441 return NULL;
442 /* Update the abstract position to be the actual pid that we found */
443 iter = l->list + index;
444 *pos = *iter;
445 return iter;
446 }
447
cgroup_pidlist_stop(struct seq_file * s,void * v)448 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
449 {
450 struct kernfs_open_file *of = s->private;
451 struct cgroup_file_ctx *ctx = of->priv;
452 struct cgroup_pidlist *l = ctx->procs1.pidlist;
453
454 if (l)
455 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
456 CGROUP_PIDLIST_DESTROY_DELAY);
457 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
458 }
459
cgroup_pidlist_next(struct seq_file * s,void * v,loff_t * pos)460 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
461 {
462 struct kernfs_open_file *of = s->private;
463 struct cgroup_file_ctx *ctx = of->priv;
464 struct cgroup_pidlist *l = ctx->procs1.pidlist;
465 pid_t *p = v;
466 pid_t *end = l->list + l->length;
467 /*
468 * Advance to the next pid in the array. If this goes off the
469 * end, we're done
470 */
471 p++;
472 if (p >= end) {
473 (*pos)++;
474 return NULL;
475 } else {
476 *pos = *p;
477 return p;
478 }
479 }
480
cgroup_pidlist_show(struct seq_file * s,void * v)481 static int cgroup_pidlist_show(struct seq_file *s, void *v)
482 {
483 seq_printf(s, "%d\n", *(int *)v);
484
485 return 0;
486 }
487
__cgroup1_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,bool threadgroup)488 static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
489 char *buf, size_t nbytes, loff_t off,
490 bool threadgroup)
491 {
492 struct cgroup *cgrp;
493 struct task_struct *task;
494 const struct cred *cred, *tcred;
495 ssize_t ret;
496 bool locked;
497
498 cgrp = cgroup_kn_lock_live(of->kn, false);
499 if (!cgrp)
500 return -ENODEV;
501
502 task = cgroup_procs_write_start(buf, threadgroup, &locked);
503 ret = PTR_ERR_OR_ZERO(task);
504 if (ret)
505 goto out_unlock;
506
507 /*
508 * Even if we're attaching all tasks in the thread group, we only need
509 * to check permissions on one of them. Check permissions using the
510 * credentials from file open to protect against inherited fd attacks.
511 */
512 cred = of->file->f_cred;
513 tcred = get_task_cred(task);
514 #ifdef CONFIG_HYPERHOLD
515 if (!uid_eq(cred->euid, GLOBAL_MEMMGR_UID) &&
516 !uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
517 #else
518 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
519 #endif
520 !uid_eq(cred->euid, tcred->uid) &&
521 !uid_eq(cred->euid, tcred->suid))
522 ret = -EACCES;
523 put_cred(tcred);
524 if (ret)
525 goto out_finish;
526
527 ret = cgroup_attach_task(cgrp, task, threadgroup);
528
529 out_finish:
530 cgroup_procs_write_finish(task, locked);
531 out_unlock:
532 cgroup_kn_unlock(of->kn);
533
534 return ret ?: nbytes;
535 }
536
cgroup1_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)537 static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
538 char *buf, size_t nbytes, loff_t off)
539 {
540 return __cgroup1_procs_write(of, buf, nbytes, off, true);
541 }
542
cgroup1_tasks_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)543 static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
544 char *buf, size_t nbytes, loff_t off)
545 {
546 return __cgroup1_procs_write(of, buf, nbytes, off, false);
547 }
548
cgroup_release_agent_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)549 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
550 char *buf, size_t nbytes, loff_t off)
551 {
552 struct cgroup *cgrp;
553
554 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
555
556 /*
557 * Release agent gets called with all capabilities,
558 * require capabilities to set release agent.
559 */
560 if ((of->file->f_cred->user_ns != &init_user_ns) ||
561 !capable(CAP_SYS_ADMIN))
562 return -EPERM;
563
564 cgrp = cgroup_kn_lock_live(of->kn, false);
565 if (!cgrp)
566 return -ENODEV;
567 spin_lock(&release_agent_path_lock);
568 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
569 sizeof(cgrp->root->release_agent_path));
570 spin_unlock(&release_agent_path_lock);
571 cgroup_kn_unlock(of->kn);
572 return nbytes;
573 }
574
cgroup_release_agent_show(struct seq_file * seq,void * v)575 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
576 {
577 struct cgroup *cgrp = seq_css(seq)->cgroup;
578
579 spin_lock(&release_agent_path_lock);
580 seq_puts(seq, cgrp->root->release_agent_path);
581 spin_unlock(&release_agent_path_lock);
582 seq_putc(seq, '\n');
583 return 0;
584 }
585
cgroup_sane_behavior_show(struct seq_file * seq,void * v)586 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
587 {
588 seq_puts(seq, "0\n");
589 return 0;
590 }
591
cgroup_read_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft)592 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
593 struct cftype *cft)
594 {
595 return notify_on_release(css->cgroup);
596 }
597
cgroup_write_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)598 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
599 struct cftype *cft, u64 val)
600 {
601 if (val)
602 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
603 else
604 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
605 return 0;
606 }
607
cgroup_clone_children_read(struct cgroup_subsys_state * css,struct cftype * cft)608 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
609 struct cftype *cft)
610 {
611 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
612 }
613
cgroup_clone_children_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)614 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
615 struct cftype *cft, u64 val)
616 {
617 if (val)
618 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
619 else
620 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
621 return 0;
622 }
623
624 /* cgroup core interface files for the legacy hierarchies */
625 struct cftype cgroup1_base_files[] = {
626 {
627 .name = "cgroup.procs",
628 .seq_start = cgroup_pidlist_start,
629 .seq_next = cgroup_pidlist_next,
630 .seq_stop = cgroup_pidlist_stop,
631 .seq_show = cgroup_pidlist_show,
632 .private = CGROUP_FILE_PROCS,
633 .write = cgroup1_procs_write,
634 },
635 {
636 .name = "cgroup.clone_children",
637 .read_u64 = cgroup_clone_children_read,
638 .write_u64 = cgroup_clone_children_write,
639 },
640 {
641 .name = "cgroup.sane_behavior",
642 .flags = CFTYPE_ONLY_ON_ROOT,
643 .seq_show = cgroup_sane_behavior_show,
644 },
645 {
646 .name = "tasks",
647 .seq_start = cgroup_pidlist_start,
648 .seq_next = cgroup_pidlist_next,
649 .seq_stop = cgroup_pidlist_stop,
650 .seq_show = cgroup_pidlist_show,
651 .private = CGROUP_FILE_TASKS,
652 .write = cgroup1_tasks_write,
653 },
654 {
655 .name = "notify_on_release",
656 .read_u64 = cgroup_read_notify_on_release,
657 .write_u64 = cgroup_write_notify_on_release,
658 },
659 {
660 .name = "release_agent",
661 .flags = CFTYPE_ONLY_ON_ROOT,
662 .seq_show = cgroup_release_agent_show,
663 .write = cgroup_release_agent_write,
664 .max_write_len = PATH_MAX - 1,
665 },
666 { } /* terminate */
667 };
668
669 /* Display information about each subsystem and each hierarchy */
proc_cgroupstats_show(struct seq_file * m,void * v)670 int proc_cgroupstats_show(struct seq_file *m, void *v)
671 {
672 struct cgroup_subsys *ss;
673 int i;
674 bool dead;
675
676 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
677 /*
678 * ideally we don't want subsystems moving around while we do this.
679 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
680 * subsys/hierarchy state.
681 */
682 mutex_lock(&cgroup_mutex);
683
684 for_each_subsys(ss, i)
685 for_each_subsys(ss, i) {
686 dead = percpu_ref_is_dying(&ss->root->cgrp.self.refcnt);
687 seq_printf(m, "%s\t%d\t%d\t%d\n",
688 ss->legacy_name, dead ? 0 : ss->root->hierarchy_id,
689 dead ? 0 : atomic_read(&ss->root->nr_cgrps),
690 cgroup_ssid_enabled(i));
691 }
692
693 mutex_unlock(&cgroup_mutex);
694 return 0;
695 }
696
697 /**
698 * cgroupstats_build - build and fill cgroupstats
699 * @stats: cgroupstats to fill information into
700 * @dentry: A dentry entry belonging to the cgroup for which stats have
701 * been requested.
702 *
703 * Build and fill cgroupstats so that taskstats can export it to user
704 * space.
705 */
cgroupstats_build(struct cgroupstats * stats,struct dentry * dentry)706 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
707 {
708 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
709 struct cgroup *cgrp;
710 struct css_task_iter it;
711 struct task_struct *tsk;
712
713 /* it should be kernfs_node belonging to cgroupfs and is a directory */
714 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
715 kernfs_type(kn) != KERNFS_DIR)
716 return -EINVAL;
717
718 mutex_lock(&cgroup_mutex);
719
720 /*
721 * We aren't being called from kernfs and there's no guarantee on
722 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
723 * @kn->priv is RCU safe. Let's do the RCU dancing.
724 */
725 rcu_read_lock();
726 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
727 if (!cgrp || cgroup_is_dead(cgrp)) {
728 rcu_read_unlock();
729 mutex_unlock(&cgroup_mutex);
730 return -ENOENT;
731 }
732 rcu_read_unlock();
733
734 css_task_iter_start(&cgrp->self, 0, &it);
735 while ((tsk = css_task_iter_next(&it))) {
736 switch (tsk->state) {
737 case TASK_RUNNING:
738 stats->nr_running++;
739 break;
740 case TASK_INTERRUPTIBLE:
741 stats->nr_sleeping++;
742 break;
743 case TASK_UNINTERRUPTIBLE:
744 stats->nr_uninterruptible++;
745 break;
746 case TASK_STOPPED:
747 stats->nr_stopped++;
748 break;
749 default:
750 if (delayacct_is_task_waiting_on_io(tsk))
751 stats->nr_io_wait++;
752 break;
753 }
754 }
755 css_task_iter_end(&it);
756
757 mutex_unlock(&cgroup_mutex);
758 return 0;
759 }
760
cgroup1_check_for_release(struct cgroup * cgrp)761 void cgroup1_check_for_release(struct cgroup *cgrp)
762 {
763 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
764 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
765 schedule_work(&cgrp->release_agent_work);
766 }
767
768 /*
769 * Notify userspace when a cgroup is released, by running the
770 * configured release agent with the name of the cgroup (path
771 * relative to the root of cgroup file system) as the argument.
772 *
773 * Most likely, this user command will try to rmdir this cgroup.
774 *
775 * This races with the possibility that some other task will be
776 * attached to this cgroup before it is removed, or that some other
777 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
778 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
779 * unused, and this cgroup will be reprieved from its death sentence,
780 * to continue to serve a useful existence. Next time it's released,
781 * we will get notified again, if it still has 'notify_on_release' set.
782 *
783 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
784 * means only wait until the task is successfully execve()'d. The
785 * separate release agent task is forked by call_usermodehelper(),
786 * then control in this thread returns here, without waiting for the
787 * release agent task. We don't bother to wait because the caller of
788 * this routine has no use for the exit status of the release agent
789 * task, so no sense holding our caller up for that.
790 */
cgroup1_release_agent(struct work_struct * work)791 void cgroup1_release_agent(struct work_struct *work)
792 {
793 struct cgroup *cgrp =
794 container_of(work, struct cgroup, release_agent_work);
795 char *pathbuf, *agentbuf;
796 char *argv[3], *envp[3];
797 int ret;
798
799 /* snoop agent path and exit early if empty */
800 if (!cgrp->root->release_agent_path[0])
801 return;
802
803 /* prepare argument buffers */
804 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
805 agentbuf = kmalloc(PATH_MAX, GFP_KERNEL);
806 if (!pathbuf || !agentbuf)
807 goto out_free;
808
809 spin_lock(&release_agent_path_lock);
810 strlcpy(agentbuf, cgrp->root->release_agent_path, PATH_MAX);
811 spin_unlock(&release_agent_path_lock);
812 if (!agentbuf[0])
813 goto out_free;
814
815 ret = cgroup_path_ns(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
816 if (ret < 0 || ret >= PATH_MAX)
817 goto out_free;
818
819 argv[0] = agentbuf;
820 argv[1] = pathbuf;
821 argv[2] = NULL;
822
823 /* minimal command environment */
824 envp[0] = "HOME=/";
825 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
826 envp[2] = NULL;
827
828 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
829 out_free:
830 kfree(agentbuf);
831 kfree(pathbuf);
832 }
833
834 /*
835 * cgroup_rename - Only allow simple rename of directories in place.
836 */
cgroup1_rename(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name_str)837 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
838 const char *new_name_str)
839 {
840 struct cgroup *cgrp = kn->priv;
841 int ret;
842
843 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
844 if (strchr(new_name_str, '\n'))
845 return -EINVAL;
846
847 if (kernfs_type(kn) != KERNFS_DIR)
848 return -ENOTDIR;
849 if (kn->parent != new_parent)
850 return -EIO;
851
852 /*
853 * We're gonna grab cgroup_mutex which nests outside kernfs
854 * active_ref. kernfs_rename() doesn't require active_ref
855 * protection. Break them before grabbing cgroup_mutex.
856 */
857 kernfs_break_active_protection(new_parent);
858 kernfs_break_active_protection(kn);
859
860 mutex_lock(&cgroup_mutex);
861
862 ret = kernfs_rename(kn, new_parent, new_name_str);
863 if (!ret)
864 TRACE_CGROUP_PATH(rename, cgrp);
865
866 mutex_unlock(&cgroup_mutex);
867
868 kernfs_unbreak_active_protection(kn);
869 kernfs_unbreak_active_protection(new_parent);
870 return ret;
871 }
872
cgroup1_show_options(struct seq_file * seq,struct kernfs_root * kf_root)873 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
874 {
875 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
876 struct cgroup_subsys *ss;
877 int ssid;
878
879 for_each_subsys(ss, ssid)
880 if (root->subsys_mask & (1 << ssid))
881 seq_show_option(seq, ss->legacy_name, NULL);
882 if (root->flags & CGRP_ROOT_NOPREFIX)
883 seq_puts(seq, ",noprefix");
884 if (root->flags & CGRP_ROOT_XATTR)
885 seq_puts(seq, ",xattr");
886 if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
887 seq_puts(seq, ",cpuset_v2_mode");
888
889 spin_lock(&release_agent_path_lock);
890 if (strlen(root->release_agent_path))
891 seq_show_option(seq, "release_agent",
892 root->release_agent_path);
893 spin_unlock(&release_agent_path_lock);
894
895 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
896 seq_puts(seq, ",clone_children");
897 if (strlen(root->name))
898 seq_show_option(seq, "name", root->name);
899 return 0;
900 }
901
902 enum cgroup1_param {
903 Opt_all,
904 Opt_clone_children,
905 Opt_cpuset_v2_mode,
906 Opt_name,
907 Opt_none,
908 Opt_noprefix,
909 Opt_release_agent,
910 Opt_xattr,
911 };
912
913 const struct fs_parameter_spec cgroup1_fs_parameters[] = {
914 fsparam_flag ("all", Opt_all),
915 fsparam_flag ("clone_children", Opt_clone_children),
916 fsparam_flag ("cpuset_v2_mode", Opt_cpuset_v2_mode),
917 fsparam_string("name", Opt_name),
918 fsparam_flag ("none", Opt_none),
919 fsparam_flag ("noprefix", Opt_noprefix),
920 fsparam_string("release_agent", Opt_release_agent),
921 fsparam_flag ("xattr", Opt_xattr),
922 {}
923 };
924
cgroup1_parse_param(struct fs_context * fc,struct fs_parameter * param)925 int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param)
926 {
927 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
928 struct cgroup_subsys *ss;
929 struct fs_parse_result result;
930 int opt, i;
931
932 opt = fs_parse(fc, cgroup1_fs_parameters, param, &result);
933 if (opt == -ENOPARAM) {
934 int ret;
935
936 ret = vfs_parse_fs_param_source(fc, param);
937 if (ret != -ENOPARAM)
938 return ret;
939 for_each_subsys(ss, i) {
940 if (strcmp(param->key, ss->legacy_name))
941 continue;
942 if (!cgroup_ssid_enabled(i) || cgroup1_ssid_disabled(i))
943 return invalfc(fc, "Disabled controller '%s'",
944 param->key);
945 ctx->subsys_mask |= (1 << i);
946 return 0;
947 }
948 return invalfc(fc, "Unknown subsys name '%s'", param->key);
949 }
950 if (opt < 0)
951 return opt;
952
953 switch (opt) {
954 case Opt_none:
955 /* Explicitly have no subsystems */
956 ctx->none = true;
957 break;
958 case Opt_all:
959 ctx->all_ss = true;
960 break;
961 case Opt_noprefix:
962 ctx->flags |= CGRP_ROOT_NOPREFIX;
963 break;
964 case Opt_clone_children:
965 ctx->cpuset_clone_children = true;
966 break;
967 case Opt_cpuset_v2_mode:
968 ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
969 break;
970 case Opt_xattr:
971 ctx->flags |= CGRP_ROOT_XATTR;
972 break;
973 case Opt_release_agent:
974 /* Specifying two release agents is forbidden */
975 if (ctx->release_agent)
976 return invalfc(fc, "release_agent respecified");
977 /*
978 * Release agent gets called with all capabilities,
979 * require capabilities to set release agent.
980 */
981 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN))
982 return invalfc(fc, "Setting release_agent not allowed");
983 ctx->release_agent = param->string;
984 param->string = NULL;
985 break;
986 case Opt_name:
987 /* blocked by boot param? */
988 if (cgroup_no_v1_named)
989 return -ENOENT;
990 /* Can't specify an empty name */
991 if (!param->size)
992 return invalfc(fc, "Empty name");
993 if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1)
994 return invalfc(fc, "Name too long");
995 /* Must match [\w.-]+ */
996 for (i = 0; i < param->size; i++) {
997 char c = param->string[i];
998 if (isalnum(c))
999 continue;
1000 if ((c == '.') || (c == '-') || (c == '_'))
1001 continue;
1002 return invalfc(fc, "Invalid name");
1003 }
1004 /* Specifying two names is forbidden */
1005 if (ctx->name)
1006 return invalfc(fc, "name respecified");
1007 ctx->name = param->string;
1008 param->string = NULL;
1009 break;
1010 }
1011 return 0;
1012 }
1013
check_cgroupfs_options(struct fs_context * fc)1014 static int check_cgroupfs_options(struct fs_context *fc)
1015 {
1016 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1017 u16 mask = U16_MAX;
1018 u16 enabled = 0;
1019 struct cgroup_subsys *ss;
1020 int i;
1021
1022 #ifdef CONFIG_CPUSETS
1023 mask = ~((u16)1 << cpuset_cgrp_id);
1024 #endif
1025 for_each_subsys(ss, i)
1026 if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
1027 enabled |= 1 << i;
1028
1029 ctx->subsys_mask &= enabled;
1030
1031 /*
1032 * In absense of 'none', 'name=' or subsystem name options,
1033 * let's default to 'all'.
1034 */
1035 if (!ctx->subsys_mask && !ctx->none && !ctx->name)
1036 ctx->all_ss = true;
1037
1038 if (ctx->all_ss) {
1039 /* Mutually exclusive option 'all' + subsystem name */
1040 if (ctx->subsys_mask)
1041 return invalfc(fc, "subsys name conflicts with all");
1042 /* 'all' => select all the subsystems */
1043 ctx->subsys_mask = enabled;
1044 }
1045
1046 /*
1047 * We either have to specify by name or by subsystems. (So all
1048 * empty hierarchies must have a name).
1049 */
1050 if (!ctx->subsys_mask && !ctx->name)
1051 return invalfc(fc, "Need name or subsystem set");
1052
1053 /*
1054 * Option noprefix was introduced just for backward compatibility
1055 * with the old cpuset, so we allow noprefix only if mounting just
1056 * the cpuset subsystem.
1057 */
1058 if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask))
1059 return invalfc(fc, "noprefix used incorrectly");
1060
1061 /* Can't specify "none" and some subsystems */
1062 if (ctx->subsys_mask && ctx->none)
1063 return invalfc(fc, "none used incorrectly");
1064
1065 return 0;
1066 }
1067
cgroup1_reconfigure(struct fs_context * fc)1068 int cgroup1_reconfigure(struct fs_context *fc)
1069 {
1070 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1071 struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb);
1072 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1073 int ret = 0;
1074 u16 added_mask, removed_mask;
1075
1076 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1077
1078 /* See what subsystems are wanted */
1079 ret = check_cgroupfs_options(fc);
1080 if (ret)
1081 goto out_unlock;
1082
1083 if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent)
1084 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1085 task_tgid_nr(current), current->comm);
1086
1087 added_mask = ctx->subsys_mask & ~root->subsys_mask;
1088 removed_mask = root->subsys_mask & ~ctx->subsys_mask;
1089
1090 /* Don't allow flags or name to change at remount */
1091 if ((ctx->flags ^ root->flags) ||
1092 (ctx->name && strcmp(ctx->name, root->name))) {
1093 errorfc(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"",
1094 ctx->flags, ctx->name ?: "", root->flags, root->name);
1095 ret = -EINVAL;
1096 goto out_unlock;
1097 }
1098
1099 /* remounting is not allowed for populated hierarchies */
1100 if (!list_empty(&root->cgrp.self.children)) {
1101 ret = -EBUSY;
1102 goto out_unlock;
1103 }
1104
1105 ret = rebind_subsystems(root, added_mask);
1106 if (ret)
1107 goto out_unlock;
1108
1109 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1110
1111 if (ctx->release_agent) {
1112 spin_lock(&release_agent_path_lock);
1113 strcpy(root->release_agent_path, ctx->release_agent);
1114 spin_unlock(&release_agent_path_lock);
1115 }
1116
1117 trace_cgroup_remount(root);
1118
1119 out_unlock:
1120 mutex_unlock(&cgroup_mutex);
1121 return ret;
1122 }
1123
1124 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1125 .rename = cgroup1_rename,
1126 .show_options = cgroup1_show_options,
1127 .mkdir = cgroup_mkdir,
1128 .rmdir = cgroup_rmdir,
1129 .show_path = cgroup_show_path,
1130 };
1131
1132 /*
1133 * The guts of cgroup1 mount - find or create cgroup_root to use.
1134 * Called with cgroup_mutex held; returns 0 on success, -E... on
1135 * error and positive - in case when the candidate is busy dying.
1136 * On success it stashes a reference to cgroup_root into given
1137 * cgroup_fs_context; that reference is *NOT* counting towards the
1138 * cgroup_root refcount.
1139 */
cgroup1_root_to_use(struct fs_context * fc)1140 static int cgroup1_root_to_use(struct fs_context *fc)
1141 {
1142 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1143 struct cgroup_root *root;
1144 struct cgroup_subsys *ss;
1145 int i, ret;
1146
1147 /* First find the desired set of subsystems */
1148 ret = check_cgroupfs_options(fc);
1149 if (ret)
1150 return ret;
1151
1152 /*
1153 * Destruction of cgroup root is asynchronous, so subsystems may
1154 * still be dying after the previous unmount. Let's drain the
1155 * dying subsystems. We just need to ensure that the ones
1156 * unmounted previously finish dying and don't care about new ones
1157 * starting. Testing ref liveliness is good enough.
1158 */
1159 for_each_subsys(ss, i) {
1160 if (!(ctx->subsys_mask & (1 << i)) ||
1161 ss->root == &cgrp_dfl_root)
1162 continue;
1163
1164 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt))
1165 return 1; /* restart */
1166 cgroup_put(&ss->root->cgrp);
1167 }
1168
1169 for_each_root(root) {
1170 bool name_match = false;
1171
1172 if (root == &cgrp_dfl_root)
1173 continue;
1174
1175 /*
1176 * If we asked for a name then it must match. Also, if
1177 * name matches but sybsys_mask doesn't, we should fail.
1178 * Remember whether name matched.
1179 */
1180 if (ctx->name) {
1181 if (strcmp(ctx->name, root->name))
1182 continue;
1183 name_match = true;
1184 }
1185
1186 /*
1187 * If we asked for subsystems (or explicitly for no
1188 * subsystems) then they must match.
1189 */
1190 if ((ctx->subsys_mask || ctx->none) &&
1191 (ctx->subsys_mask != root->subsys_mask)) {
1192 if (!name_match)
1193 continue;
1194 return -EBUSY;
1195 }
1196
1197 if (root->flags ^ ctx->flags)
1198 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1199
1200 ctx->root = root;
1201 return 0;
1202 }
1203
1204 /*
1205 * No such thing, create a new one. name= matching without subsys
1206 * specification is allowed for already existing hierarchies but we
1207 * can't create new one without subsys specification.
1208 */
1209 if (!ctx->subsys_mask && !ctx->none)
1210 return invalfc(fc, "No subsys list or none specified");
1211
1212 /* Hierarchies may only be created in the initial cgroup namespace. */
1213 if (ctx->ns != &init_cgroup_ns)
1214 return -EPERM;
1215
1216 root = kzalloc(sizeof(*root), GFP_KERNEL);
1217 if (!root)
1218 return -ENOMEM;
1219
1220 ctx->root = root;
1221 init_cgroup_root(ctx);
1222
1223 ret = cgroup_setup_root(root, ctx->subsys_mask);
1224 if (ret)
1225 cgroup_free_root(root);
1226 return ret;
1227 }
1228
cgroup1_get_tree(struct fs_context * fc)1229 int cgroup1_get_tree(struct fs_context *fc)
1230 {
1231 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1232 int ret;
1233
1234 /* Check if the caller has permission to mount. */
1235 if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN))
1236 return -EPERM;
1237
1238 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1239
1240 ret = cgroup1_root_to_use(fc);
1241 if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt))
1242 ret = 1; /* restart */
1243
1244 mutex_unlock(&cgroup_mutex);
1245
1246 if (!ret)
1247 ret = cgroup_do_get_tree(fc);
1248
1249 if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) {
1250 fc_drop_locked(fc);
1251 ret = 1;
1252 }
1253
1254 if (unlikely(ret > 0)) {
1255 msleep(10);
1256 return restart_syscall();
1257 }
1258 return ret;
1259 }
1260
cgroup1_wq_init(void)1261 static int __init cgroup1_wq_init(void)
1262 {
1263 /*
1264 * Used to destroy pidlists and separate to serve as flush domain.
1265 * Cap @max_active to 1 too.
1266 */
1267 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1268 0, 1);
1269 BUG_ON(!cgroup_pidlist_destroy_wq);
1270 return 0;
1271 }
1272 core_initcall(cgroup1_wq_init);
1273
cgroup_no_v1(char * str)1274 static int __init cgroup_no_v1(char *str)
1275 {
1276 struct cgroup_subsys *ss;
1277 char *token;
1278 int i;
1279
1280 while ((token = strsep(&str, ",")) != NULL) {
1281 if (!*token)
1282 continue;
1283
1284 if (!strcmp(token, "all")) {
1285 cgroup_no_v1_mask = U16_MAX;
1286 continue;
1287 }
1288
1289 if (!strcmp(token, "named")) {
1290 cgroup_no_v1_named = true;
1291 continue;
1292 }
1293
1294 for_each_subsys(ss, i) {
1295 if (strcmp(token, ss->name) &&
1296 strcmp(token, ss->legacy_name))
1297 continue;
1298
1299 cgroup_no_v1_mask |= 1 << i;
1300 }
1301 }
1302 return 1;
1303 }
1304 __setup("cgroup_no_v1=", cgroup_no_v1);
1305