• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83 
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85 
86 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
87 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
88 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
89 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
90 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
91 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
92 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
93 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
96 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
102 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
103 
104 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
107 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
108 
109 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
110 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
111 
112 #define REXMIT_NONE	0 /* no loss recovery to do */
113 #define REXMIT_LOST	1 /* retransmit packets marked lost */
114 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
115 
116 #if IS_ENABLED(CONFIG_TLS_DEVICE)
117 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
118 
clean_acked_data_enable(struct inet_connection_sock * icsk,void (* cad)(struct sock * sk,u32 ack_seq))119 void clean_acked_data_enable(struct inet_connection_sock *icsk,
120 			     void (*cad)(struct sock *sk, u32 ack_seq))
121 {
122 	icsk->icsk_clean_acked = cad;
123 	static_branch_deferred_inc(&clean_acked_data_enabled);
124 }
125 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
126 
clean_acked_data_disable(struct inet_connection_sock * icsk)127 void clean_acked_data_disable(struct inet_connection_sock *icsk)
128 {
129 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
130 	icsk->icsk_clean_acked = NULL;
131 }
132 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
133 
clean_acked_data_flush(void)134 void clean_acked_data_flush(void)
135 {
136 	static_key_deferred_flush(&clean_acked_data_enabled);
137 }
138 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
139 #endif
140 
141 #ifdef CONFIG_CGROUP_BPF
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)142 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
143 {
144 	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
145 		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
146 				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
147 	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
148 						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
149 	struct bpf_sock_ops_kern sock_ops;
150 
151 	if (likely(!unknown_opt && !parse_all_opt))
152 		return;
153 
154 	/* The skb will be handled in the
155 	 * bpf_skops_established() or
156 	 * bpf_skops_write_hdr_opt().
157 	 */
158 	switch (sk->sk_state) {
159 	case TCP_SYN_RECV:
160 	case TCP_SYN_SENT:
161 	case TCP_LISTEN:
162 		return;
163 	}
164 
165 	sock_owned_by_me(sk);
166 
167 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
168 	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
169 	sock_ops.is_fullsock = 1;
170 	sock_ops.sk = sk;
171 	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
172 
173 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
174 }
175 
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)176 static void bpf_skops_established(struct sock *sk, int bpf_op,
177 				  struct sk_buff *skb)
178 {
179 	struct bpf_sock_ops_kern sock_ops;
180 
181 	sock_owned_by_me(sk);
182 
183 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
184 	sock_ops.op = bpf_op;
185 	sock_ops.is_fullsock = 1;
186 	sock_ops.sk = sk;
187 	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
188 	if (skb)
189 		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
190 
191 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
192 }
193 #else
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)194 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
195 {
196 }
197 
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)198 static void bpf_skops_established(struct sock *sk, int bpf_op,
199 				  struct sk_buff *skb)
200 {
201 }
202 #endif
203 
tcp_gro_dev_warn(struct sock * sk,const struct sk_buff * skb,unsigned int len)204 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
205 			     unsigned int len)
206 {
207 	static bool __once __read_mostly;
208 
209 	if (!__once) {
210 		struct net_device *dev;
211 
212 		__once = true;
213 
214 		rcu_read_lock();
215 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
216 		if (!dev || len >= dev->mtu)
217 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
218 				dev ? dev->name : "Unknown driver");
219 		rcu_read_unlock();
220 	}
221 }
222 
223 /* Adapt the MSS value used to make delayed ack decision to the
224  * real world.
225  */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)226 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
227 {
228 	struct inet_connection_sock *icsk = inet_csk(sk);
229 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
230 	unsigned int len;
231 
232 	icsk->icsk_ack.last_seg_size = 0;
233 
234 	/* skb->len may jitter because of SACKs, even if peer
235 	 * sends good full-sized frames.
236 	 */
237 	len = skb_shinfo(skb)->gso_size ? : skb->len;
238 	if (len >= icsk->icsk_ack.rcv_mss) {
239 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
240 					       tcp_sk(sk)->advmss);
241 		/* Account for possibly-removed options */
242 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
243 				   MAX_TCP_OPTION_SPACE))
244 			tcp_gro_dev_warn(sk, skb, len);
245 	} else {
246 		/* Otherwise, we make more careful check taking into account,
247 		 * that SACKs block is variable.
248 		 *
249 		 * "len" is invariant segment length, including TCP header.
250 		 */
251 		len += skb->data - skb_transport_header(skb);
252 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
253 		    /* If PSH is not set, packet should be
254 		     * full sized, provided peer TCP is not badly broken.
255 		     * This observation (if it is correct 8)) allows
256 		     * to handle super-low mtu links fairly.
257 		     */
258 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
259 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
260 			/* Subtract also invariant (if peer is RFC compliant),
261 			 * tcp header plus fixed timestamp option length.
262 			 * Resulting "len" is MSS free of SACK jitter.
263 			 */
264 			len -= tcp_sk(sk)->tcp_header_len;
265 			icsk->icsk_ack.last_seg_size = len;
266 			if (len == lss) {
267 				icsk->icsk_ack.rcv_mss = len;
268 				return;
269 			}
270 		}
271 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
272 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
273 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
274 	}
275 }
276 
tcp_incr_quickack(struct sock * sk,unsigned int max_quickacks)277 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
278 {
279 	struct inet_connection_sock *icsk = inet_csk(sk);
280 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
281 
282 	if (quickacks == 0)
283 		quickacks = 2;
284 	quickacks = min(quickacks, max_quickacks);
285 	if (quickacks > icsk->icsk_ack.quick)
286 		icsk->icsk_ack.quick = quickacks;
287 }
288 
tcp_enter_quickack_mode(struct sock * sk,unsigned int max_quickacks)289 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
290 {
291 	struct inet_connection_sock *icsk = inet_csk(sk);
292 
293 	tcp_incr_quickack(sk, max_quickacks);
294 	inet_csk_exit_pingpong_mode(sk);
295 	icsk->icsk_ack.ato = TCP_ATO_MIN;
296 }
297 EXPORT_SYMBOL(tcp_enter_quickack_mode);
298 
299 /* Send ACKs quickly, if "quick" count is not exhausted
300  * and the session is not interactive.
301  */
302 
tcp_in_quickack_mode(struct sock * sk)303 static bool tcp_in_quickack_mode(struct sock *sk)
304 {
305 	const struct inet_connection_sock *icsk = inet_csk(sk);
306 	const struct dst_entry *dst = __sk_dst_get(sk);
307 
308 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
309 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
310 }
311 
tcp_ecn_queue_cwr(struct tcp_sock * tp)312 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
313 {
314 	if (tp->ecn_flags & TCP_ECN_OK)
315 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
316 }
317 
tcp_ecn_accept_cwr(struct sock * sk,const struct sk_buff * skb)318 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
319 {
320 	if (tcp_hdr(skb)->cwr) {
321 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
322 
323 		/* If the sender is telling us it has entered CWR, then its
324 		 * cwnd may be very low (even just 1 packet), so we should ACK
325 		 * immediately.
326 		 */
327 		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
328 			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
329 	}
330 }
331 
tcp_ecn_withdraw_cwr(struct tcp_sock * tp)332 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
333 {
334 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
335 }
336 
__tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)337 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
338 {
339 	struct tcp_sock *tp = tcp_sk(sk);
340 
341 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
342 	case INET_ECN_NOT_ECT:
343 		/* Funny extension: if ECT is not set on a segment,
344 		 * and we already seen ECT on a previous segment,
345 		 * it is probably a retransmit.
346 		 */
347 		if (tp->ecn_flags & TCP_ECN_SEEN)
348 			tcp_enter_quickack_mode(sk, 2);
349 		break;
350 	case INET_ECN_CE:
351 		if (tcp_ca_needs_ecn(sk))
352 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
353 
354 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
355 			/* Better not delay acks, sender can have a very low cwnd */
356 			tcp_enter_quickack_mode(sk, 2);
357 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
358 		}
359 		tp->ecn_flags |= TCP_ECN_SEEN;
360 		break;
361 	default:
362 		if (tcp_ca_needs_ecn(sk))
363 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
364 		tp->ecn_flags |= TCP_ECN_SEEN;
365 		break;
366 	}
367 }
368 
tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)369 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
370 {
371 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
372 		__tcp_ecn_check_ce(sk, skb);
373 }
374 
tcp_ecn_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)375 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
376 {
377 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
378 		tp->ecn_flags &= ~TCP_ECN_OK;
379 }
380 
tcp_ecn_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)381 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
382 {
383 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
384 		tp->ecn_flags &= ~TCP_ECN_OK;
385 }
386 
tcp_ecn_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)387 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
388 {
389 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
390 		return true;
391 	return false;
392 }
393 
394 /* Buffer size and advertised window tuning.
395  *
396  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
397  */
398 
tcp_sndbuf_expand(struct sock * sk)399 static void tcp_sndbuf_expand(struct sock *sk)
400 {
401 	const struct tcp_sock *tp = tcp_sk(sk);
402 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
403 	int sndmem, per_mss;
404 	u32 nr_segs;
405 
406 	/* Worst case is non GSO/TSO : each frame consumes one skb
407 	 * and skb->head is kmalloced using power of two area of memory
408 	 */
409 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
410 		  MAX_TCP_HEADER +
411 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
412 
413 	per_mss = roundup_pow_of_two(per_mss) +
414 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
415 
416 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
417 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
418 
419 	/* Fast Recovery (RFC 5681 3.2) :
420 	 * Cubic needs 1.7 factor, rounded to 2 to include
421 	 * extra cushion (application might react slowly to EPOLLOUT)
422 	 */
423 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
424 	sndmem *= nr_segs * per_mss;
425 
426 	if (sk->sk_sndbuf < sndmem)
427 		WRITE_ONCE(sk->sk_sndbuf,
428 			   min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
429 }
430 
431 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
432  *
433  * All tcp_full_space() is split to two parts: "network" buffer, allocated
434  * forward and advertised in receiver window (tp->rcv_wnd) and
435  * "application buffer", required to isolate scheduling/application
436  * latencies from network.
437  * window_clamp is maximal advertised window. It can be less than
438  * tcp_full_space(), in this case tcp_full_space() - window_clamp
439  * is reserved for "application" buffer. The less window_clamp is
440  * the smoother our behaviour from viewpoint of network, but the lower
441  * throughput and the higher sensitivity of the connection to losses. 8)
442  *
443  * rcv_ssthresh is more strict window_clamp used at "slow start"
444  * phase to predict further behaviour of this connection.
445  * It is used for two goals:
446  * - to enforce header prediction at sender, even when application
447  *   requires some significant "application buffer". It is check #1.
448  * - to prevent pruning of receive queue because of misprediction
449  *   of receiver window. Check #2.
450  *
451  * The scheme does not work when sender sends good segments opening
452  * window and then starts to feed us spaghetti. But it should work
453  * in common situations. Otherwise, we have to rely on queue collapsing.
454  */
455 
456 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb)457 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
458 {
459 	struct tcp_sock *tp = tcp_sk(sk);
460 	/* Optimize this! */
461 	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
462 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
463 
464 	while (tp->rcv_ssthresh <= window) {
465 		if (truesize <= skb->len)
466 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
467 
468 		truesize >>= 1;
469 		window >>= 1;
470 	}
471 	return 0;
472 }
473 
tcp_grow_window(struct sock * sk,const struct sk_buff * skb)474 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
475 {
476 	struct tcp_sock *tp = tcp_sk(sk);
477 	int room;
478 
479 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
480 
481 	/* Check #1 */
482 	if (room > 0 && !tcp_under_memory_pressure(sk)) {
483 		int incr;
484 
485 		/* Check #2. Increase window, if skb with such overhead
486 		 * will fit to rcvbuf in future.
487 		 */
488 		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
489 			incr = 2 * tp->advmss;
490 		else
491 			incr = __tcp_grow_window(sk, skb);
492 
493 		if (incr) {
494 			incr = max_t(int, incr, 2 * skb->len);
495 			tp->rcv_ssthresh += min(room, incr);
496 			inet_csk(sk)->icsk_ack.quick |= 1;
497 		}
498 	}
499 }
500 
501 /* 3. Try to fixup all. It is made immediately after connection enters
502  *    established state.
503  */
tcp_init_buffer_space(struct sock * sk)504 static void tcp_init_buffer_space(struct sock *sk)
505 {
506 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
507 	struct tcp_sock *tp = tcp_sk(sk);
508 	int maxwin;
509 
510 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
511 		tcp_sndbuf_expand(sk);
512 
513 	tcp_mstamp_refresh(tp);
514 	tp->rcvq_space.time = tp->tcp_mstamp;
515 	tp->rcvq_space.seq = tp->copied_seq;
516 
517 	maxwin = tcp_full_space(sk);
518 
519 	if (tp->window_clamp >= maxwin) {
520 		tp->window_clamp = maxwin;
521 
522 		if (tcp_app_win && maxwin > 4 * tp->advmss)
523 			tp->window_clamp = max(maxwin -
524 					       (maxwin >> tcp_app_win),
525 					       4 * tp->advmss);
526 	}
527 
528 	/* Force reservation of one segment. */
529 	if (tcp_app_win &&
530 	    tp->window_clamp > 2 * tp->advmss &&
531 	    tp->window_clamp + tp->advmss > maxwin)
532 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
533 
534 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
535 	tp->snd_cwnd_stamp = tcp_jiffies32;
536 	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
537 				    (u32)TCP_INIT_CWND * tp->advmss);
538 }
539 
540 /* 4. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)541 static void tcp_clamp_window(struct sock *sk)
542 {
543 	struct tcp_sock *tp = tcp_sk(sk);
544 	struct inet_connection_sock *icsk = inet_csk(sk);
545 	struct net *net = sock_net(sk);
546 
547 	icsk->icsk_ack.quick = 0;
548 
549 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
550 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
551 	    !tcp_under_memory_pressure(sk) &&
552 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
553 		WRITE_ONCE(sk->sk_rcvbuf,
554 			   min(atomic_read(&sk->sk_rmem_alloc),
555 			       net->ipv4.sysctl_tcp_rmem[2]));
556 	}
557 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
558 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
559 }
560 
561 /* Initialize RCV_MSS value.
562  * RCV_MSS is an our guess about MSS used by the peer.
563  * We haven't any direct information about the MSS.
564  * It's better to underestimate the RCV_MSS rather than overestimate.
565  * Overestimations make us ACKing less frequently than needed.
566  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
567  */
tcp_initialize_rcv_mss(struct sock * sk)568 void tcp_initialize_rcv_mss(struct sock *sk)
569 {
570 	const struct tcp_sock *tp = tcp_sk(sk);
571 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
572 
573 	hint = min(hint, tp->rcv_wnd / 2);
574 	hint = min(hint, TCP_MSS_DEFAULT);
575 	hint = max(hint, TCP_MIN_MSS);
576 
577 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
578 }
579 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
580 
581 /* Receiver "autotuning" code.
582  *
583  * The algorithm for RTT estimation w/o timestamps is based on
584  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
585  * <https://public.lanl.gov/radiant/pubs.html#DRS>
586  *
587  * More detail on this code can be found at
588  * <http://staff.psc.edu/jheffner/>,
589  * though this reference is out of date.  A new paper
590  * is pending.
591  */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)592 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
593 {
594 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
595 	long m = sample;
596 
597 	if (new_sample != 0) {
598 		/* If we sample in larger samples in the non-timestamp
599 		 * case, we could grossly overestimate the RTT especially
600 		 * with chatty applications or bulk transfer apps which
601 		 * are stalled on filesystem I/O.
602 		 *
603 		 * Also, since we are only going for a minimum in the
604 		 * non-timestamp case, we do not smooth things out
605 		 * else with timestamps disabled convergence takes too
606 		 * long.
607 		 */
608 		if (!win_dep) {
609 			m -= (new_sample >> 3);
610 			new_sample += m;
611 		} else {
612 			m <<= 3;
613 			if (m < new_sample)
614 				new_sample = m;
615 		}
616 	} else {
617 		/* No previous measure. */
618 		new_sample = m << 3;
619 	}
620 
621 	tp->rcv_rtt_est.rtt_us = new_sample;
622 }
623 
tcp_rcv_rtt_measure(struct tcp_sock * tp)624 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
625 {
626 	u32 delta_us;
627 
628 	if (tp->rcv_rtt_est.time == 0)
629 		goto new_measure;
630 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
631 		return;
632 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
633 	if (!delta_us)
634 		delta_us = 1;
635 	tcp_rcv_rtt_update(tp, delta_us, 1);
636 
637 new_measure:
638 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
639 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
640 }
641 
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)642 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
643 					  const struct sk_buff *skb)
644 {
645 	struct tcp_sock *tp = tcp_sk(sk);
646 
647 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
648 		return;
649 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
650 
651 	if (TCP_SKB_CB(skb)->end_seq -
652 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
653 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
654 		u32 delta_us;
655 
656 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
657 			if (!delta)
658 				delta = 1;
659 			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
660 			tcp_rcv_rtt_update(tp, delta_us, 0);
661 		}
662 	}
663 }
664 
665 /*
666  * This function should be called every time data is copied to user space.
667  * It calculates the appropriate TCP receive buffer space.
668  */
tcp_rcv_space_adjust(struct sock * sk)669 void tcp_rcv_space_adjust(struct sock *sk)
670 {
671 	struct tcp_sock *tp = tcp_sk(sk);
672 	u32 copied;
673 	int time;
674 
675 	trace_tcp_rcv_space_adjust(sk);
676 
677 	tcp_mstamp_refresh(tp);
678 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
679 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
680 		return;
681 
682 	/* Number of bytes copied to user in last RTT */
683 	copied = tp->copied_seq - tp->rcvq_space.seq;
684 	if (copied <= tp->rcvq_space.space)
685 		goto new_measure;
686 
687 	/* A bit of theory :
688 	 * copied = bytes received in previous RTT, our base window
689 	 * To cope with packet losses, we need a 2x factor
690 	 * To cope with slow start, and sender growing its cwin by 100 %
691 	 * every RTT, we need a 4x factor, because the ACK we are sending
692 	 * now is for the next RTT, not the current one :
693 	 * <prev RTT . ><current RTT .. ><next RTT .... >
694 	 */
695 
696 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
697 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
698 		int rcvmem, rcvbuf;
699 		u64 rcvwin, grow;
700 
701 		/* minimal window to cope with packet losses, assuming
702 		 * steady state. Add some cushion because of small variations.
703 		 */
704 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
705 
706 		/* Accommodate for sender rate increase (eg. slow start) */
707 		grow = rcvwin * (copied - tp->rcvq_space.space);
708 		do_div(grow, tp->rcvq_space.space);
709 		rcvwin += (grow << 1);
710 
711 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
712 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
713 			rcvmem += 128;
714 
715 		do_div(rcvwin, tp->advmss);
716 		rcvbuf = min_t(u64, rcvwin * rcvmem,
717 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
718 		if (rcvbuf > sk->sk_rcvbuf) {
719 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
720 
721 			/* Make the window clamp follow along.  */
722 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
723 		}
724 	}
725 	tp->rcvq_space.space = copied;
726 
727 new_measure:
728 	tp->rcvq_space.seq = tp->copied_seq;
729 	tp->rcvq_space.time = tp->tcp_mstamp;
730 }
731 
732 /* There is something which you must keep in mind when you analyze the
733  * behavior of the tp->ato delayed ack timeout interval.  When a
734  * connection starts up, we want to ack as quickly as possible.  The
735  * problem is that "good" TCP's do slow start at the beginning of data
736  * transmission.  The means that until we send the first few ACK's the
737  * sender will sit on his end and only queue most of his data, because
738  * he can only send snd_cwnd unacked packets at any given time.  For
739  * each ACK we send, he increments snd_cwnd and transmits more of his
740  * queue.  -DaveM
741  */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)742 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
743 {
744 	struct tcp_sock *tp = tcp_sk(sk);
745 	struct inet_connection_sock *icsk = inet_csk(sk);
746 	u32 now;
747 
748 	inet_csk_schedule_ack(sk);
749 
750 	tcp_measure_rcv_mss(sk, skb);
751 
752 	tcp_rcv_rtt_measure(tp);
753 
754 	now = tcp_jiffies32;
755 
756 	if (!icsk->icsk_ack.ato) {
757 		/* The _first_ data packet received, initialize
758 		 * delayed ACK engine.
759 		 */
760 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
761 		icsk->icsk_ack.ato = TCP_ATO_MIN;
762 	} else {
763 		int m = now - icsk->icsk_ack.lrcvtime;
764 
765 		if (m <= TCP_ATO_MIN / 2) {
766 			/* The fastest case is the first. */
767 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
768 		} else if (m < icsk->icsk_ack.ato) {
769 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
770 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
771 				icsk->icsk_ack.ato = icsk->icsk_rto;
772 		} else if (m > icsk->icsk_rto) {
773 			/* Too long gap. Apparently sender failed to
774 			 * restart window, so that we send ACKs quickly.
775 			 */
776 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
777 			sk_mem_reclaim(sk);
778 		}
779 	}
780 	icsk->icsk_ack.lrcvtime = now;
781 
782 	tcp_ecn_check_ce(sk, skb);
783 
784 	if (skb->len >= 128)
785 		tcp_grow_window(sk, skb);
786 }
787 
788 /* Called to compute a smoothed rtt estimate. The data fed to this
789  * routine either comes from timestamps, or from segments that were
790  * known _not_ to have been retransmitted [see Karn/Partridge
791  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
792  * piece by Van Jacobson.
793  * NOTE: the next three routines used to be one big routine.
794  * To save cycles in the RFC 1323 implementation it was better to break
795  * it up into three procedures. -- erics
796  */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)797 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
798 {
799 	struct tcp_sock *tp = tcp_sk(sk);
800 	long m = mrtt_us; /* RTT */
801 	u32 srtt = tp->srtt_us;
802 
803 	/*	The following amusing code comes from Jacobson's
804 	 *	article in SIGCOMM '88.  Note that rtt and mdev
805 	 *	are scaled versions of rtt and mean deviation.
806 	 *	This is designed to be as fast as possible
807 	 *	m stands for "measurement".
808 	 *
809 	 *	On a 1990 paper the rto value is changed to:
810 	 *	RTO = rtt + 4 * mdev
811 	 *
812 	 * Funny. This algorithm seems to be very broken.
813 	 * These formulae increase RTO, when it should be decreased, increase
814 	 * too slowly, when it should be increased quickly, decrease too quickly
815 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
816 	 * does not matter how to _calculate_ it. Seems, it was trap
817 	 * that VJ failed to avoid. 8)
818 	 */
819 	if (srtt != 0) {
820 		m -= (srtt >> 3);	/* m is now error in rtt est */
821 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
822 		if (m < 0) {
823 			m = -m;		/* m is now abs(error) */
824 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
825 			/* This is similar to one of Eifel findings.
826 			 * Eifel blocks mdev updates when rtt decreases.
827 			 * This solution is a bit different: we use finer gain
828 			 * for mdev in this case (alpha*beta).
829 			 * Like Eifel it also prevents growth of rto,
830 			 * but also it limits too fast rto decreases,
831 			 * happening in pure Eifel.
832 			 */
833 			if (m > 0)
834 				m >>= 3;
835 		} else {
836 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
837 		}
838 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
839 		if (tp->mdev_us > tp->mdev_max_us) {
840 			tp->mdev_max_us = tp->mdev_us;
841 			if (tp->mdev_max_us > tp->rttvar_us)
842 				tp->rttvar_us = tp->mdev_max_us;
843 		}
844 		if (after(tp->snd_una, tp->rtt_seq)) {
845 			if (tp->mdev_max_us < tp->rttvar_us)
846 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
847 			tp->rtt_seq = tp->snd_nxt;
848 			tp->mdev_max_us = tcp_rto_min_us(sk);
849 
850 			tcp_bpf_rtt(sk);
851 		}
852 	} else {
853 		/* no previous measure. */
854 		srtt = m << 3;		/* take the measured time to be rtt */
855 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
856 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
857 		tp->mdev_max_us = tp->rttvar_us;
858 		tp->rtt_seq = tp->snd_nxt;
859 
860 		tcp_bpf_rtt(sk);
861 	}
862 	tp->srtt_us = max(1U, srtt);
863 }
864 
tcp_update_pacing_rate(struct sock * sk)865 static void tcp_update_pacing_rate(struct sock *sk)
866 {
867 	const struct tcp_sock *tp = tcp_sk(sk);
868 	u64 rate;
869 
870 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
871 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
872 
873 	/* current rate is (cwnd * mss) / srtt
874 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
875 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
876 	 *
877 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
878 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
879 	 *	 end of slow start and should slow down.
880 	 */
881 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
882 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
883 	else
884 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
885 
886 	rate *= max(tp->snd_cwnd, tp->packets_out);
887 
888 	if (likely(tp->srtt_us))
889 		do_div(rate, tp->srtt_us);
890 
891 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
892 	 * without any lock. We want to make sure compiler wont store
893 	 * intermediate values in this location.
894 	 */
895 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
896 					     sk->sk_max_pacing_rate));
897 }
898 
899 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
900  * routine referred to above.
901  */
tcp_set_rto(struct sock * sk)902 static void tcp_set_rto(struct sock *sk)
903 {
904 	const struct tcp_sock *tp = tcp_sk(sk);
905 	/* Old crap is replaced with new one. 8)
906 	 *
907 	 * More seriously:
908 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
909 	 *    It cannot be less due to utterly erratic ACK generation made
910 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
911 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
912 	 *    is invisible. Actually, Linux-2.4 also generates erratic
913 	 *    ACKs in some circumstances.
914 	 */
915 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
916 
917 	/* 2. Fixups made earlier cannot be right.
918 	 *    If we do not estimate RTO correctly without them,
919 	 *    all the algo is pure shit and should be replaced
920 	 *    with correct one. It is exactly, which we pretend to do.
921 	 */
922 
923 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
924 	 * guarantees that rto is higher.
925 	 */
926 	tcp_bound_rto(sk);
927 }
928 
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)929 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
930 {
931 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
932 
933 	if (!cwnd)
934 		cwnd = TCP_INIT_CWND;
935 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
936 }
937 
938 struct tcp_sacktag_state {
939 	/* Timestamps for earliest and latest never-retransmitted segment
940 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
941 	 * but congestion control should still get an accurate delay signal.
942 	 */
943 	u64	first_sackt;
944 	u64	last_sackt;
945 	u32	reord;
946 	u32	sack_delivered;
947 	int	flag;
948 	unsigned int mss_now;
949 	struct rate_sample *rate;
950 };
951 
952 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
953  * and spurious retransmission information if this DSACK is unlikely caused by
954  * sender's action:
955  * - DSACKed sequence range is larger than maximum receiver's window.
956  * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
957  */
tcp_dsack_seen(struct tcp_sock * tp,u32 start_seq,u32 end_seq,struct tcp_sacktag_state * state)958 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
959 			  u32 end_seq, struct tcp_sacktag_state *state)
960 {
961 	u32 seq_len, dup_segs = 1;
962 
963 	if (!before(start_seq, end_seq))
964 		return 0;
965 
966 	seq_len = end_seq - start_seq;
967 	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
968 	if (seq_len > tp->max_window)
969 		return 0;
970 	if (seq_len > tp->mss_cache)
971 		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
972 
973 	tp->dsack_dups += dup_segs;
974 	/* Skip the DSACK if dup segs weren't retransmitted by sender */
975 	if (tp->dsack_dups > tp->total_retrans)
976 		return 0;
977 
978 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
979 	tp->rack.dsack_seen = 1;
980 
981 	state->flag |= FLAG_DSACKING_ACK;
982 	/* A spurious retransmission is delivered */
983 	state->sack_delivered += dup_segs;
984 
985 	return dup_segs;
986 }
987 
988 /* It's reordering when higher sequence was delivered (i.e. sacked) before
989  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
990  * distance is approximated in full-mss packet distance ("reordering").
991  */
tcp_check_sack_reordering(struct sock * sk,const u32 low_seq,const int ts)992 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
993 				      const int ts)
994 {
995 	struct tcp_sock *tp = tcp_sk(sk);
996 	const u32 mss = tp->mss_cache;
997 	u32 fack, metric;
998 
999 	fack = tcp_highest_sack_seq(tp);
1000 	if (!before(low_seq, fack))
1001 		return;
1002 
1003 	metric = fack - low_seq;
1004 	if ((metric > tp->reordering * mss) && mss) {
1005 #if FASTRETRANS_DEBUG > 1
1006 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1007 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1008 			 tp->reordering,
1009 			 0,
1010 			 tp->sacked_out,
1011 			 tp->undo_marker ? tp->undo_retrans : 0);
1012 #endif
1013 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1014 				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1015 	}
1016 
1017 	/* This exciting event is worth to be remembered. 8) */
1018 	tp->reord_seen++;
1019 	NET_INC_STATS(sock_net(sk),
1020 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1021 }
1022 
1023  /* This must be called before lost_out or retrans_out are updated
1024   * on a new loss, because we want to know if all skbs previously
1025   * known to be lost have already been retransmitted, indicating
1026   * that this newly lost skb is our next skb to retransmit.
1027   */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)1028 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1029 {
1030 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1031 	    (tp->retransmit_skb_hint &&
1032 	     before(TCP_SKB_CB(skb)->seq,
1033 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1034 		tp->retransmit_skb_hint = skb;
1035 }
1036 
1037 /* Sum the number of packets on the wire we have marked as lost, and
1038  * notify the congestion control module that the given skb was marked lost.
1039  */
tcp_notify_skb_loss_event(struct tcp_sock * tp,const struct sk_buff * skb)1040 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1041 {
1042 	tp->lost += tcp_skb_pcount(skb);
1043 }
1044 
tcp_mark_skb_lost(struct sock * sk,struct sk_buff * skb)1045 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1046 {
1047 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1048 	struct tcp_sock *tp = tcp_sk(sk);
1049 
1050 	if (sacked & TCPCB_SACKED_ACKED)
1051 		return;
1052 
1053 	tcp_verify_retransmit_hint(tp, skb);
1054 	if (sacked & TCPCB_LOST) {
1055 		if (sacked & TCPCB_SACKED_RETRANS) {
1056 			/* Account for retransmits that are lost again */
1057 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1058 			tp->retrans_out -= tcp_skb_pcount(skb);
1059 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1060 				      tcp_skb_pcount(skb));
1061 			tcp_notify_skb_loss_event(tp, skb);
1062 		}
1063 	} else {
1064 		tp->lost_out += tcp_skb_pcount(skb);
1065 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1066 		tcp_notify_skb_loss_event(tp, skb);
1067 	}
1068 }
1069 
1070 /* Updates the delivered and delivered_ce counts */
tcp_count_delivered(struct tcp_sock * tp,u32 delivered,bool ece_ack)1071 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1072 				bool ece_ack)
1073 {
1074 	tp->delivered += delivered;
1075 	if (ece_ack)
1076 		tp->delivered_ce += delivered;
1077 }
1078 
1079 /* This procedure tags the retransmission queue when SACKs arrive.
1080  *
1081  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1082  * Packets in queue with these bits set are counted in variables
1083  * sacked_out, retrans_out and lost_out, correspondingly.
1084  *
1085  * Valid combinations are:
1086  * Tag  InFlight	Description
1087  * 0	1		- orig segment is in flight.
1088  * S	0		- nothing flies, orig reached receiver.
1089  * L	0		- nothing flies, orig lost by net.
1090  * R	2		- both orig and retransmit are in flight.
1091  * L|R	1		- orig is lost, retransmit is in flight.
1092  * S|R  1		- orig reached receiver, retrans is still in flight.
1093  * (L|S|R is logically valid, it could occur when L|R is sacked,
1094  *  but it is equivalent to plain S and code short-curcuits it to S.
1095  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1096  *
1097  * These 6 states form finite state machine, controlled by the following events:
1098  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1099  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1100  * 3. Loss detection event of two flavors:
1101  *	A. Scoreboard estimator decided the packet is lost.
1102  *	   A'. Reno "three dupacks" marks head of queue lost.
1103  *	B. SACK arrives sacking SND.NXT at the moment, when the
1104  *	   segment was retransmitted.
1105  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1106  *
1107  * It is pleasant to note, that state diagram turns out to be commutative,
1108  * so that we are allowed not to be bothered by order of our actions,
1109  * when multiple events arrive simultaneously. (see the function below).
1110  *
1111  * Reordering detection.
1112  * --------------------
1113  * Reordering metric is maximal distance, which a packet can be displaced
1114  * in packet stream. With SACKs we can estimate it:
1115  *
1116  * 1. SACK fills old hole and the corresponding segment was not
1117  *    ever retransmitted -> reordering. Alas, we cannot use it
1118  *    when segment was retransmitted.
1119  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1120  *    for retransmitted and already SACKed segment -> reordering..
1121  * Both of these heuristics are not used in Loss state, when we cannot
1122  * account for retransmits accurately.
1123  *
1124  * SACK block validation.
1125  * ----------------------
1126  *
1127  * SACK block range validation checks that the received SACK block fits to
1128  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1129  * Note that SND.UNA is not included to the range though being valid because
1130  * it means that the receiver is rather inconsistent with itself reporting
1131  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1132  * perfectly valid, however, in light of RFC2018 which explicitly states
1133  * that "SACK block MUST reflect the newest segment.  Even if the newest
1134  * segment is going to be discarded ...", not that it looks very clever
1135  * in case of head skb. Due to potentional receiver driven attacks, we
1136  * choose to avoid immediate execution of a walk in write queue due to
1137  * reneging and defer head skb's loss recovery to standard loss recovery
1138  * procedure that will eventually trigger (nothing forbids us doing this).
1139  *
1140  * Implements also blockage to start_seq wrap-around. Problem lies in the
1141  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1142  * there's no guarantee that it will be before snd_nxt (n). The problem
1143  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1144  * wrap (s_w):
1145  *
1146  *         <- outs wnd ->                          <- wrapzone ->
1147  *         u     e      n                         u_w   e_w  s n_w
1148  *         |     |      |                          |     |   |  |
1149  * |<------------+------+----- TCP seqno space --------------+---------->|
1150  * ...-- <2^31 ->|                                           |<--------...
1151  * ...---- >2^31 ------>|                                    |<--------...
1152  *
1153  * Current code wouldn't be vulnerable but it's better still to discard such
1154  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1155  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1156  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1157  * equal to the ideal case (infinite seqno space without wrap caused issues).
1158  *
1159  * With D-SACK the lower bound is extended to cover sequence space below
1160  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1161  * again, D-SACK block must not to go across snd_una (for the same reason as
1162  * for the normal SACK blocks, explained above). But there all simplicity
1163  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1164  * fully below undo_marker they do not affect behavior in anyway and can
1165  * therefore be safely ignored. In rare cases (which are more or less
1166  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1167  * fragmentation and packet reordering past skb's retransmission. To consider
1168  * them correctly, the acceptable range must be extended even more though
1169  * the exact amount is rather hard to quantify. However, tp->max_window can
1170  * be used as an exaggerated estimate.
1171  */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)1172 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1173 				   u32 start_seq, u32 end_seq)
1174 {
1175 	/* Too far in future, or reversed (interpretation is ambiguous) */
1176 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1177 		return false;
1178 
1179 	/* Nasty start_seq wrap-around check (see comments above) */
1180 	if (!before(start_seq, tp->snd_nxt))
1181 		return false;
1182 
1183 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1184 	 * start_seq == snd_una is non-sensical (see comments above)
1185 	 */
1186 	if (after(start_seq, tp->snd_una))
1187 		return true;
1188 
1189 	if (!is_dsack || !tp->undo_marker)
1190 		return false;
1191 
1192 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1193 	if (after(end_seq, tp->snd_una))
1194 		return false;
1195 
1196 	if (!before(start_seq, tp->undo_marker))
1197 		return true;
1198 
1199 	/* Too old */
1200 	if (!after(end_seq, tp->undo_marker))
1201 		return false;
1202 
1203 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1204 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1205 	 */
1206 	return !before(start_seq, end_seq - tp->max_window);
1207 }
1208 
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una,struct tcp_sacktag_state * state)1209 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1210 			    struct tcp_sack_block_wire *sp, int num_sacks,
1211 			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1212 {
1213 	struct tcp_sock *tp = tcp_sk(sk);
1214 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1215 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1216 	u32 dup_segs;
1217 
1218 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1219 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1220 	} else if (num_sacks > 1) {
1221 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1222 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1223 
1224 		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1225 			return false;
1226 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1227 	} else {
1228 		return false;
1229 	}
1230 
1231 	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1232 	if (!dup_segs) {	/* Skip dubious DSACK */
1233 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1234 		return false;
1235 	}
1236 
1237 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1238 
1239 	/* D-SACK for already forgotten data... Do dumb counting. */
1240 	if (tp->undo_marker && tp->undo_retrans > 0 &&
1241 	    !after(end_seq_0, prior_snd_una) &&
1242 	    after(end_seq_0, tp->undo_marker))
1243 		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1244 
1245 	return true;
1246 }
1247 
1248 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1249  * the incoming SACK may not exactly match but we can find smaller MSS
1250  * aligned portion of it that matches. Therefore we might need to fragment
1251  * which may fail and creates some hassle (caller must handle error case
1252  * returns).
1253  *
1254  * FIXME: this could be merged to shift decision code
1255  */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1256 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1257 				  u32 start_seq, u32 end_seq)
1258 {
1259 	int err;
1260 	bool in_sack;
1261 	unsigned int pkt_len;
1262 	unsigned int mss;
1263 
1264 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1265 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1266 
1267 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1268 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1269 		mss = tcp_skb_mss(skb);
1270 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1271 
1272 		if (!in_sack) {
1273 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1274 			if (pkt_len < mss)
1275 				pkt_len = mss;
1276 		} else {
1277 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1278 			if (pkt_len < mss)
1279 				return -EINVAL;
1280 		}
1281 
1282 		/* Round if necessary so that SACKs cover only full MSSes
1283 		 * and/or the remaining small portion (if present)
1284 		 */
1285 		if (pkt_len > mss) {
1286 			unsigned int new_len = (pkt_len / mss) * mss;
1287 			if (!in_sack && new_len < pkt_len)
1288 				new_len += mss;
1289 			pkt_len = new_len;
1290 		}
1291 
1292 		if (pkt_len >= skb->len && !in_sack)
1293 			return 0;
1294 
1295 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1296 				   pkt_len, mss, GFP_ATOMIC);
1297 		if (err < 0)
1298 			return err;
1299 	}
1300 
1301 	return in_sack;
1302 }
1303 
1304 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,u64 xmit_time)1305 static u8 tcp_sacktag_one(struct sock *sk,
1306 			  struct tcp_sacktag_state *state, u8 sacked,
1307 			  u32 start_seq, u32 end_seq,
1308 			  int dup_sack, int pcount,
1309 			  u64 xmit_time)
1310 {
1311 	struct tcp_sock *tp = tcp_sk(sk);
1312 
1313 	/* Account D-SACK for retransmitted packet. */
1314 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1315 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1316 		    after(end_seq, tp->undo_marker))
1317 			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1318 		if ((sacked & TCPCB_SACKED_ACKED) &&
1319 		    before(start_seq, state->reord))
1320 				state->reord = start_seq;
1321 	}
1322 
1323 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1324 	if (!after(end_seq, tp->snd_una))
1325 		return sacked;
1326 
1327 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1328 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1329 
1330 		if (sacked & TCPCB_SACKED_RETRANS) {
1331 			/* If the segment is not tagged as lost,
1332 			 * we do not clear RETRANS, believing
1333 			 * that retransmission is still in flight.
1334 			 */
1335 			if (sacked & TCPCB_LOST) {
1336 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1337 				tp->lost_out -= pcount;
1338 				tp->retrans_out -= pcount;
1339 			}
1340 		} else {
1341 			if (!(sacked & TCPCB_RETRANS)) {
1342 				/* New sack for not retransmitted frame,
1343 				 * which was in hole. It is reordering.
1344 				 */
1345 				if (before(start_seq,
1346 					   tcp_highest_sack_seq(tp)) &&
1347 				    before(start_seq, state->reord))
1348 					state->reord = start_seq;
1349 
1350 				if (!after(end_seq, tp->high_seq))
1351 					state->flag |= FLAG_ORIG_SACK_ACKED;
1352 				if (state->first_sackt == 0)
1353 					state->first_sackt = xmit_time;
1354 				state->last_sackt = xmit_time;
1355 			}
1356 
1357 			if (sacked & TCPCB_LOST) {
1358 				sacked &= ~TCPCB_LOST;
1359 				tp->lost_out -= pcount;
1360 			}
1361 		}
1362 
1363 		sacked |= TCPCB_SACKED_ACKED;
1364 		state->flag |= FLAG_DATA_SACKED;
1365 		tp->sacked_out += pcount;
1366 		/* Out-of-order packets delivered */
1367 		state->sack_delivered += pcount;
1368 
1369 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1370 		if (tp->lost_skb_hint &&
1371 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1372 			tp->lost_cnt_hint += pcount;
1373 	}
1374 
1375 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1376 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1377 	 * are accounted above as well.
1378 	 */
1379 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1380 		sacked &= ~TCPCB_SACKED_RETRANS;
1381 		tp->retrans_out -= pcount;
1382 	}
1383 
1384 	return sacked;
1385 }
1386 
1387 /* Shift newly-SACKed bytes from this skb to the immediately previous
1388  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1389  */
tcp_shifted_skb(struct sock * sk,struct sk_buff * prev,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1390 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1391 			    struct sk_buff *skb,
1392 			    struct tcp_sacktag_state *state,
1393 			    unsigned int pcount, int shifted, int mss,
1394 			    bool dup_sack)
1395 {
1396 	struct tcp_sock *tp = tcp_sk(sk);
1397 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1398 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1399 
1400 	BUG_ON(!pcount);
1401 
1402 	/* Adjust counters and hints for the newly sacked sequence
1403 	 * range but discard the return value since prev is already
1404 	 * marked. We must tag the range first because the seq
1405 	 * advancement below implicitly advances
1406 	 * tcp_highest_sack_seq() when skb is highest_sack.
1407 	 */
1408 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1409 			start_seq, end_seq, dup_sack, pcount,
1410 			tcp_skb_timestamp_us(skb));
1411 	tcp_rate_skb_delivered(sk, skb, state->rate);
1412 
1413 	if (skb == tp->lost_skb_hint)
1414 		tp->lost_cnt_hint += pcount;
1415 
1416 	TCP_SKB_CB(prev)->end_seq += shifted;
1417 	TCP_SKB_CB(skb)->seq += shifted;
1418 
1419 	tcp_skb_pcount_add(prev, pcount);
1420 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1421 	tcp_skb_pcount_add(skb, -pcount);
1422 
1423 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1424 	 * in theory this shouldn't be necessary but as long as DSACK
1425 	 * code can come after this skb later on it's better to keep
1426 	 * setting gso_size to something.
1427 	 */
1428 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1429 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1430 
1431 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1432 	if (tcp_skb_pcount(skb) <= 1)
1433 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1434 
1435 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1436 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1437 
1438 	if (skb->len > 0) {
1439 		BUG_ON(!tcp_skb_pcount(skb));
1440 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1441 		return false;
1442 	}
1443 
1444 	/* Whole SKB was eaten :-) */
1445 
1446 	if (skb == tp->retransmit_skb_hint)
1447 		tp->retransmit_skb_hint = prev;
1448 	if (skb == tp->lost_skb_hint) {
1449 		tp->lost_skb_hint = prev;
1450 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1451 	}
1452 
1453 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1454 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1455 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1456 		TCP_SKB_CB(prev)->end_seq++;
1457 
1458 	if (skb == tcp_highest_sack(sk))
1459 		tcp_advance_highest_sack(sk, skb);
1460 
1461 	tcp_skb_collapse_tstamp(prev, skb);
1462 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1463 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1464 
1465 	tcp_rtx_queue_unlink_and_free(skb, sk);
1466 
1467 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1468 
1469 	return true;
1470 }
1471 
1472 /* I wish gso_size would have a bit more sane initialization than
1473  * something-or-zero which complicates things
1474  */
tcp_skb_seglen(const struct sk_buff * skb)1475 static int tcp_skb_seglen(const struct sk_buff *skb)
1476 {
1477 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1478 }
1479 
1480 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1481 static int skb_can_shift(const struct sk_buff *skb)
1482 {
1483 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1484 }
1485 
tcp_skb_shift(struct sk_buff * to,struct sk_buff * from,int pcount,int shiftlen)1486 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1487 		  int pcount, int shiftlen)
1488 {
1489 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1490 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1491 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1492 	 * even if current MSS is bigger.
1493 	 */
1494 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1495 		return 0;
1496 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1497 		return 0;
1498 	return skb_shift(to, from, shiftlen);
1499 }
1500 
1501 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1502  * skb.
1503  */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1504 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1505 					  struct tcp_sacktag_state *state,
1506 					  u32 start_seq, u32 end_seq,
1507 					  bool dup_sack)
1508 {
1509 	struct tcp_sock *tp = tcp_sk(sk);
1510 	struct sk_buff *prev;
1511 	int mss;
1512 	int pcount = 0;
1513 	int len;
1514 	int in_sack;
1515 
1516 	/* Normally R but no L won't result in plain S */
1517 	if (!dup_sack &&
1518 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1519 		goto fallback;
1520 	if (!skb_can_shift(skb))
1521 		goto fallback;
1522 	/* This frame is about to be dropped (was ACKed). */
1523 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1524 		goto fallback;
1525 
1526 	/* Can only happen with delayed DSACK + discard craziness */
1527 	prev = skb_rb_prev(skb);
1528 	if (!prev)
1529 		goto fallback;
1530 
1531 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1532 		goto fallback;
1533 
1534 	if (!tcp_skb_can_collapse(prev, skb))
1535 		goto fallback;
1536 
1537 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1538 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1539 
1540 	if (in_sack) {
1541 		len = skb->len;
1542 		pcount = tcp_skb_pcount(skb);
1543 		mss = tcp_skb_seglen(skb);
1544 
1545 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1546 		 * drop this restriction as unnecessary
1547 		 */
1548 		if (mss != tcp_skb_seglen(prev))
1549 			goto fallback;
1550 	} else {
1551 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1552 			goto noop;
1553 		/* CHECKME: This is non-MSS split case only?, this will
1554 		 * cause skipped skbs due to advancing loop btw, original
1555 		 * has that feature too
1556 		 */
1557 		if (tcp_skb_pcount(skb) <= 1)
1558 			goto noop;
1559 
1560 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1561 		if (!in_sack) {
1562 			/* TODO: head merge to next could be attempted here
1563 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1564 			 * though it might not be worth of the additional hassle
1565 			 *
1566 			 * ...we can probably just fallback to what was done
1567 			 * previously. We could try merging non-SACKed ones
1568 			 * as well but it probably isn't going to buy off
1569 			 * because later SACKs might again split them, and
1570 			 * it would make skb timestamp tracking considerably
1571 			 * harder problem.
1572 			 */
1573 			goto fallback;
1574 		}
1575 
1576 		len = end_seq - TCP_SKB_CB(skb)->seq;
1577 		BUG_ON(len < 0);
1578 		BUG_ON(len > skb->len);
1579 
1580 		/* MSS boundaries should be honoured or else pcount will
1581 		 * severely break even though it makes things bit trickier.
1582 		 * Optimize common case to avoid most of the divides
1583 		 */
1584 		mss = tcp_skb_mss(skb);
1585 
1586 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1587 		 * drop this restriction as unnecessary
1588 		 */
1589 		if (mss != tcp_skb_seglen(prev))
1590 			goto fallback;
1591 
1592 		if (len == mss) {
1593 			pcount = 1;
1594 		} else if (len < mss) {
1595 			goto noop;
1596 		} else {
1597 			pcount = len / mss;
1598 			len = pcount * mss;
1599 		}
1600 	}
1601 
1602 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1603 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1604 		goto fallback;
1605 
1606 	if (!tcp_skb_shift(prev, skb, pcount, len))
1607 		goto fallback;
1608 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1609 		goto out;
1610 
1611 	/* Hole filled allows collapsing with the next as well, this is very
1612 	 * useful when hole on every nth skb pattern happens
1613 	 */
1614 	skb = skb_rb_next(prev);
1615 	if (!skb)
1616 		goto out;
1617 
1618 	if (!skb_can_shift(skb) ||
1619 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1620 	    (mss != tcp_skb_seglen(skb)))
1621 		goto out;
1622 
1623 	if (!tcp_skb_can_collapse(prev, skb))
1624 		goto out;
1625 	len = skb->len;
1626 	pcount = tcp_skb_pcount(skb);
1627 	if (tcp_skb_shift(prev, skb, pcount, len))
1628 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1629 				len, mss, 0);
1630 
1631 out:
1632 	return prev;
1633 
1634 noop:
1635 	return skb;
1636 
1637 fallback:
1638 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1639 	return NULL;
1640 }
1641 
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1642 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1643 					struct tcp_sack_block *next_dup,
1644 					struct tcp_sacktag_state *state,
1645 					u32 start_seq, u32 end_seq,
1646 					bool dup_sack_in)
1647 {
1648 	struct tcp_sock *tp = tcp_sk(sk);
1649 	struct sk_buff *tmp;
1650 
1651 	skb_rbtree_walk_from(skb) {
1652 		int in_sack = 0;
1653 		bool dup_sack = dup_sack_in;
1654 
1655 		/* queue is in-order => we can short-circuit the walk early */
1656 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1657 			break;
1658 
1659 		if (next_dup  &&
1660 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1661 			in_sack = tcp_match_skb_to_sack(sk, skb,
1662 							next_dup->start_seq,
1663 							next_dup->end_seq);
1664 			if (in_sack > 0)
1665 				dup_sack = true;
1666 		}
1667 
1668 		/* skb reference here is a bit tricky to get right, since
1669 		 * shifting can eat and free both this skb and the next,
1670 		 * so not even _safe variant of the loop is enough.
1671 		 */
1672 		if (in_sack <= 0) {
1673 			tmp = tcp_shift_skb_data(sk, skb, state,
1674 						 start_seq, end_seq, dup_sack);
1675 			if (tmp) {
1676 				if (tmp != skb) {
1677 					skb = tmp;
1678 					continue;
1679 				}
1680 
1681 				in_sack = 0;
1682 			} else {
1683 				in_sack = tcp_match_skb_to_sack(sk, skb,
1684 								start_seq,
1685 								end_seq);
1686 			}
1687 		}
1688 
1689 		if (unlikely(in_sack < 0))
1690 			break;
1691 
1692 		if (in_sack) {
1693 			TCP_SKB_CB(skb)->sacked =
1694 				tcp_sacktag_one(sk,
1695 						state,
1696 						TCP_SKB_CB(skb)->sacked,
1697 						TCP_SKB_CB(skb)->seq,
1698 						TCP_SKB_CB(skb)->end_seq,
1699 						dup_sack,
1700 						tcp_skb_pcount(skb),
1701 						tcp_skb_timestamp_us(skb));
1702 			tcp_rate_skb_delivered(sk, skb, state->rate);
1703 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1704 				list_del_init(&skb->tcp_tsorted_anchor);
1705 
1706 			if (!before(TCP_SKB_CB(skb)->seq,
1707 				    tcp_highest_sack_seq(tp)))
1708 				tcp_advance_highest_sack(sk, skb);
1709 		}
1710 	}
1711 	return skb;
1712 }
1713 
tcp_sacktag_bsearch(struct sock * sk,u32 seq)1714 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1715 {
1716 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1717 	struct sk_buff *skb;
1718 
1719 	while (*p) {
1720 		parent = *p;
1721 		skb = rb_to_skb(parent);
1722 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1723 			p = &parent->rb_left;
1724 			continue;
1725 		}
1726 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1727 			p = &parent->rb_right;
1728 			continue;
1729 		}
1730 		return skb;
1731 	}
1732 	return NULL;
1733 }
1734 
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,u32 skip_to_seq)1735 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1736 					u32 skip_to_seq)
1737 {
1738 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1739 		return skb;
1740 
1741 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1742 }
1743 
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1744 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1745 						struct sock *sk,
1746 						struct tcp_sack_block *next_dup,
1747 						struct tcp_sacktag_state *state,
1748 						u32 skip_to_seq)
1749 {
1750 	if (!next_dup)
1751 		return skb;
1752 
1753 	if (before(next_dup->start_seq, skip_to_seq)) {
1754 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1755 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1756 				       next_dup->start_seq, next_dup->end_seq,
1757 				       1);
1758 	}
1759 
1760 	return skb;
1761 }
1762 
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1763 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1764 {
1765 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1766 }
1767 
1768 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,struct tcp_sacktag_state * state)1769 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1770 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1771 {
1772 	struct tcp_sock *tp = tcp_sk(sk);
1773 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1774 				    TCP_SKB_CB(ack_skb)->sacked);
1775 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1776 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1777 	struct tcp_sack_block *cache;
1778 	struct sk_buff *skb;
1779 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1780 	int used_sacks;
1781 	bool found_dup_sack = false;
1782 	int i, j;
1783 	int first_sack_index;
1784 
1785 	state->flag = 0;
1786 	state->reord = tp->snd_nxt;
1787 
1788 	if (!tp->sacked_out)
1789 		tcp_highest_sack_reset(sk);
1790 
1791 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1792 					 num_sacks, prior_snd_una, state);
1793 
1794 	/* Eliminate too old ACKs, but take into
1795 	 * account more or less fresh ones, they can
1796 	 * contain valid SACK info.
1797 	 */
1798 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1799 		return 0;
1800 
1801 	if (!tp->packets_out)
1802 		goto out;
1803 
1804 	used_sacks = 0;
1805 	first_sack_index = 0;
1806 	for (i = 0; i < num_sacks; i++) {
1807 		bool dup_sack = !i && found_dup_sack;
1808 
1809 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1810 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1811 
1812 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1813 					    sp[used_sacks].start_seq,
1814 					    sp[used_sacks].end_seq)) {
1815 			int mib_idx;
1816 
1817 			if (dup_sack) {
1818 				if (!tp->undo_marker)
1819 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1820 				else
1821 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1822 			} else {
1823 				/* Don't count olds caused by ACK reordering */
1824 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1825 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1826 					continue;
1827 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1828 			}
1829 
1830 			NET_INC_STATS(sock_net(sk), mib_idx);
1831 			if (i == 0)
1832 				first_sack_index = -1;
1833 			continue;
1834 		}
1835 
1836 		/* Ignore very old stuff early */
1837 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1838 			if (i == 0)
1839 				first_sack_index = -1;
1840 			continue;
1841 		}
1842 
1843 		used_sacks++;
1844 	}
1845 
1846 	/* order SACK blocks to allow in order walk of the retrans queue */
1847 	for (i = used_sacks - 1; i > 0; i--) {
1848 		for (j = 0; j < i; j++) {
1849 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1850 				swap(sp[j], sp[j + 1]);
1851 
1852 				/* Track where the first SACK block goes to */
1853 				if (j == first_sack_index)
1854 					first_sack_index = j + 1;
1855 			}
1856 		}
1857 	}
1858 
1859 	state->mss_now = tcp_current_mss(sk);
1860 	skb = NULL;
1861 	i = 0;
1862 
1863 	if (!tp->sacked_out) {
1864 		/* It's already past, so skip checking against it */
1865 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1866 	} else {
1867 		cache = tp->recv_sack_cache;
1868 		/* Skip empty blocks in at head of the cache */
1869 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1870 		       !cache->end_seq)
1871 			cache++;
1872 	}
1873 
1874 	while (i < used_sacks) {
1875 		u32 start_seq = sp[i].start_seq;
1876 		u32 end_seq = sp[i].end_seq;
1877 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1878 		struct tcp_sack_block *next_dup = NULL;
1879 
1880 		if (found_dup_sack && ((i + 1) == first_sack_index))
1881 			next_dup = &sp[i + 1];
1882 
1883 		/* Skip too early cached blocks */
1884 		while (tcp_sack_cache_ok(tp, cache) &&
1885 		       !before(start_seq, cache->end_seq))
1886 			cache++;
1887 
1888 		/* Can skip some work by looking recv_sack_cache? */
1889 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1890 		    after(end_seq, cache->start_seq)) {
1891 
1892 			/* Head todo? */
1893 			if (before(start_seq, cache->start_seq)) {
1894 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1895 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1896 						       state,
1897 						       start_seq,
1898 						       cache->start_seq,
1899 						       dup_sack);
1900 			}
1901 
1902 			/* Rest of the block already fully processed? */
1903 			if (!after(end_seq, cache->end_seq))
1904 				goto advance_sp;
1905 
1906 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1907 						       state,
1908 						       cache->end_seq);
1909 
1910 			/* ...tail remains todo... */
1911 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1912 				/* ...but better entrypoint exists! */
1913 				skb = tcp_highest_sack(sk);
1914 				if (!skb)
1915 					break;
1916 				cache++;
1917 				goto walk;
1918 			}
1919 
1920 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1921 			/* Check overlap against next cached too (past this one already) */
1922 			cache++;
1923 			continue;
1924 		}
1925 
1926 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1927 			skb = tcp_highest_sack(sk);
1928 			if (!skb)
1929 				break;
1930 		}
1931 		skb = tcp_sacktag_skip(skb, sk, start_seq);
1932 
1933 walk:
1934 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1935 				       start_seq, end_seq, dup_sack);
1936 
1937 advance_sp:
1938 		i++;
1939 	}
1940 
1941 	/* Clear the head of the cache sack blocks so we can skip it next time */
1942 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1943 		tp->recv_sack_cache[i].start_seq = 0;
1944 		tp->recv_sack_cache[i].end_seq = 0;
1945 	}
1946 	for (j = 0; j < used_sacks; j++)
1947 		tp->recv_sack_cache[i++] = sp[j];
1948 
1949 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1950 		tcp_check_sack_reordering(sk, state->reord, 0);
1951 
1952 	tcp_verify_left_out(tp);
1953 out:
1954 
1955 #if FASTRETRANS_DEBUG > 0
1956 	WARN_ON((int)tp->sacked_out < 0);
1957 	WARN_ON((int)tp->lost_out < 0);
1958 	WARN_ON((int)tp->retrans_out < 0);
1959 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1960 #endif
1961 	return state->flag;
1962 }
1963 
1964 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1965  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1966  */
tcp_limit_reno_sacked(struct tcp_sock * tp)1967 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1968 {
1969 	u32 holes;
1970 
1971 	holes = max(tp->lost_out, 1U);
1972 	holes = min(holes, tp->packets_out);
1973 
1974 	if ((tp->sacked_out + holes) > tp->packets_out) {
1975 		tp->sacked_out = tp->packets_out - holes;
1976 		return true;
1977 	}
1978 	return false;
1979 }
1980 
1981 /* If we receive more dupacks than we expected counting segments
1982  * in assumption of absent reordering, interpret this as reordering.
1983  * The only another reason could be bug in receiver TCP.
1984  */
tcp_check_reno_reordering(struct sock * sk,const int addend)1985 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1986 {
1987 	struct tcp_sock *tp = tcp_sk(sk);
1988 
1989 	if (!tcp_limit_reno_sacked(tp))
1990 		return;
1991 
1992 	tp->reordering = min_t(u32, tp->packets_out + addend,
1993 			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1994 	tp->reord_seen++;
1995 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1996 }
1997 
1998 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1999 
tcp_add_reno_sack(struct sock * sk,int num_dupack,bool ece_ack)2000 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2001 {
2002 	if (num_dupack) {
2003 		struct tcp_sock *tp = tcp_sk(sk);
2004 		u32 prior_sacked = tp->sacked_out;
2005 		s32 delivered;
2006 
2007 		tp->sacked_out += num_dupack;
2008 		tcp_check_reno_reordering(sk, 0);
2009 		delivered = tp->sacked_out - prior_sacked;
2010 		if (delivered > 0)
2011 			tcp_count_delivered(tp, delivered, ece_ack);
2012 		tcp_verify_left_out(tp);
2013 	}
2014 }
2015 
2016 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2017 
tcp_remove_reno_sacks(struct sock * sk,int acked,bool ece_ack)2018 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2019 {
2020 	struct tcp_sock *tp = tcp_sk(sk);
2021 
2022 	if (acked > 0) {
2023 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2024 		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2025 				    ece_ack);
2026 		if (acked - 1 >= tp->sacked_out)
2027 			tp->sacked_out = 0;
2028 		else
2029 			tp->sacked_out -= acked - 1;
2030 	}
2031 	tcp_check_reno_reordering(sk, acked);
2032 	tcp_verify_left_out(tp);
2033 }
2034 
tcp_reset_reno_sack(struct tcp_sock * tp)2035 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2036 {
2037 	tp->sacked_out = 0;
2038 }
2039 
tcp_clear_retrans(struct tcp_sock * tp)2040 void tcp_clear_retrans(struct tcp_sock *tp)
2041 {
2042 	tp->retrans_out = 0;
2043 	tp->lost_out = 0;
2044 	tp->undo_marker = 0;
2045 	tp->undo_retrans = -1;
2046 	tp->sacked_out = 0;
2047 }
2048 
tcp_init_undo(struct tcp_sock * tp)2049 static inline void tcp_init_undo(struct tcp_sock *tp)
2050 {
2051 	tp->undo_marker = tp->snd_una;
2052 	/* Retransmission still in flight may cause DSACKs later. */
2053 	tp->undo_retrans = tp->retrans_out ? : -1;
2054 }
2055 
tcp_is_rack(const struct sock * sk)2056 static bool tcp_is_rack(const struct sock *sk)
2057 {
2058 	return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
2059 }
2060 
2061 /* If we detect SACK reneging, forget all SACK information
2062  * and reset tags completely, otherwise preserve SACKs. If receiver
2063  * dropped its ofo queue, we will know this due to reneging detection.
2064  */
tcp_timeout_mark_lost(struct sock * sk)2065 static void tcp_timeout_mark_lost(struct sock *sk)
2066 {
2067 	struct tcp_sock *tp = tcp_sk(sk);
2068 	struct sk_buff *skb, *head;
2069 	bool is_reneg;			/* is receiver reneging on SACKs? */
2070 
2071 	head = tcp_rtx_queue_head(sk);
2072 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2073 	if (is_reneg) {
2074 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2075 		tp->sacked_out = 0;
2076 		/* Mark SACK reneging until we recover from this loss event. */
2077 		tp->is_sack_reneg = 1;
2078 	} else if (tcp_is_reno(tp)) {
2079 		tcp_reset_reno_sack(tp);
2080 	}
2081 
2082 	skb = head;
2083 	skb_rbtree_walk_from(skb) {
2084 		if (is_reneg)
2085 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2086 		else if (tcp_is_rack(sk) && skb != head &&
2087 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2088 			continue; /* Don't mark recently sent ones lost yet */
2089 		tcp_mark_skb_lost(sk, skb);
2090 	}
2091 	tcp_verify_left_out(tp);
2092 	tcp_clear_all_retrans_hints(tp);
2093 }
2094 
2095 /* Enter Loss state. */
tcp_enter_loss(struct sock * sk)2096 void tcp_enter_loss(struct sock *sk)
2097 {
2098 	const struct inet_connection_sock *icsk = inet_csk(sk);
2099 	struct tcp_sock *tp = tcp_sk(sk);
2100 	struct net *net = sock_net(sk);
2101 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2102 
2103 	tcp_timeout_mark_lost(sk);
2104 
2105 	/* Reduce ssthresh if it has not yet been made inside this window. */
2106 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2107 	    !after(tp->high_seq, tp->snd_una) ||
2108 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2109 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2110 		tp->prior_cwnd = tp->snd_cwnd;
2111 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2112 		tcp_ca_event(sk, CA_EVENT_LOSS);
2113 		tcp_init_undo(tp);
2114 	}
2115 	tp->snd_cwnd	   = tcp_packets_in_flight(tp) + 1;
2116 	tp->snd_cwnd_cnt   = 0;
2117 	tp->snd_cwnd_stamp = tcp_jiffies32;
2118 
2119 	/* Timeout in disordered state after receiving substantial DUPACKs
2120 	 * suggests that the degree of reordering is over-estimated.
2121 	 */
2122 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2123 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2124 		tp->reordering = min_t(unsigned int, tp->reordering,
2125 				       net->ipv4.sysctl_tcp_reordering);
2126 	tcp_set_ca_state(sk, TCP_CA_Loss);
2127 	tp->high_seq = tp->snd_nxt;
2128 	tcp_ecn_queue_cwr(tp);
2129 
2130 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2131 	 * loss recovery is underway except recurring timeout(s) on
2132 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2133 	 */
2134 	tp->frto = net->ipv4.sysctl_tcp_frto &&
2135 		   (new_recovery || icsk->icsk_retransmits) &&
2136 		   !inet_csk(sk)->icsk_mtup.probe_size;
2137 }
2138 
2139 /* If ACK arrived pointing to a remembered SACK, it means that our
2140  * remembered SACKs do not reflect real state of receiver i.e.
2141  * receiver _host_ is heavily congested (or buggy).
2142  *
2143  * To avoid big spurious retransmission bursts due to transient SACK
2144  * scoreboard oddities that look like reneging, we give the receiver a
2145  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2146  * restore sanity to the SACK scoreboard. If the apparent reneging
2147  * persists until this RTO then we'll clear the SACK scoreboard.
2148  */
tcp_check_sack_reneging(struct sock * sk,int flag)2149 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2150 {
2151 	if (flag & FLAG_SACK_RENEGING) {
2152 		struct tcp_sock *tp = tcp_sk(sk);
2153 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2154 					  msecs_to_jiffies(10));
2155 
2156 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2157 					  delay, TCP_RTO_MAX);
2158 		return true;
2159 	}
2160 	return false;
2161 }
2162 
2163 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2164  * counter when SACK is enabled (without SACK, sacked_out is used for
2165  * that purpose).
2166  *
2167  * With reordering, holes may still be in flight, so RFC3517 recovery
2168  * uses pure sacked_out (total number of SACKed segments) even though
2169  * it violates the RFC that uses duplicate ACKs, often these are equal
2170  * but when e.g. out-of-window ACKs or packet duplication occurs,
2171  * they differ. Since neither occurs due to loss, TCP should really
2172  * ignore them.
2173  */
tcp_dupack_heuristics(const struct tcp_sock * tp)2174 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2175 {
2176 	return tp->sacked_out + 1;
2177 }
2178 
2179 /* Linux NewReno/SACK/ECN state machine.
2180  * --------------------------------------
2181  *
2182  * "Open"	Normal state, no dubious events, fast path.
2183  * "Disorder"   In all the respects it is "Open",
2184  *		but requires a bit more attention. It is entered when
2185  *		we see some SACKs or dupacks. It is split of "Open"
2186  *		mainly to move some processing from fast path to slow one.
2187  * "CWR"	CWND was reduced due to some Congestion Notification event.
2188  *		It can be ECN, ICMP source quench, local device congestion.
2189  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2190  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2191  *
2192  * tcp_fastretrans_alert() is entered:
2193  * - each incoming ACK, if state is not "Open"
2194  * - when arrived ACK is unusual, namely:
2195  *	* SACK
2196  *	* Duplicate ACK.
2197  *	* ECN ECE.
2198  *
2199  * Counting packets in flight is pretty simple.
2200  *
2201  *	in_flight = packets_out - left_out + retrans_out
2202  *
2203  *	packets_out is SND.NXT-SND.UNA counted in packets.
2204  *
2205  *	retrans_out is number of retransmitted segments.
2206  *
2207  *	left_out is number of segments left network, but not ACKed yet.
2208  *
2209  *		left_out = sacked_out + lost_out
2210  *
2211  *     sacked_out: Packets, which arrived to receiver out of order
2212  *		   and hence not ACKed. With SACKs this number is simply
2213  *		   amount of SACKed data. Even without SACKs
2214  *		   it is easy to give pretty reliable estimate of this number,
2215  *		   counting duplicate ACKs.
2216  *
2217  *       lost_out: Packets lost by network. TCP has no explicit
2218  *		   "loss notification" feedback from network (for now).
2219  *		   It means that this number can be only _guessed_.
2220  *		   Actually, it is the heuristics to predict lossage that
2221  *		   distinguishes different algorithms.
2222  *
2223  *	F.e. after RTO, when all the queue is considered as lost,
2224  *	lost_out = packets_out and in_flight = retrans_out.
2225  *
2226  *		Essentially, we have now a few algorithms detecting
2227  *		lost packets.
2228  *
2229  *		If the receiver supports SACK:
2230  *
2231  *		RFC6675/3517: It is the conventional algorithm. A packet is
2232  *		considered lost if the number of higher sequence packets
2233  *		SACKed is greater than or equal the DUPACK thoreshold
2234  *		(reordering). This is implemented in tcp_mark_head_lost and
2235  *		tcp_update_scoreboard.
2236  *
2237  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2238  *		(2017-) that checks timing instead of counting DUPACKs.
2239  *		Essentially a packet is considered lost if it's not S/ACKed
2240  *		after RTT + reordering_window, where both metrics are
2241  *		dynamically measured and adjusted. This is implemented in
2242  *		tcp_rack_mark_lost.
2243  *
2244  *		If the receiver does not support SACK:
2245  *
2246  *		NewReno (RFC6582): in Recovery we assume that one segment
2247  *		is lost (classic Reno). While we are in Recovery and
2248  *		a partial ACK arrives, we assume that one more packet
2249  *		is lost (NewReno). This heuristics are the same in NewReno
2250  *		and SACK.
2251  *
2252  * Really tricky (and requiring careful tuning) part of algorithm
2253  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2254  * The first determines the moment _when_ we should reduce CWND and,
2255  * hence, slow down forward transmission. In fact, it determines the moment
2256  * when we decide that hole is caused by loss, rather than by a reorder.
2257  *
2258  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2259  * holes, caused by lost packets.
2260  *
2261  * And the most logically complicated part of algorithm is undo
2262  * heuristics. We detect false retransmits due to both too early
2263  * fast retransmit (reordering) and underestimated RTO, analyzing
2264  * timestamps and D-SACKs. When we detect that some segments were
2265  * retransmitted by mistake and CWND reduction was wrong, we undo
2266  * window reduction and abort recovery phase. This logic is hidden
2267  * inside several functions named tcp_try_undo_<something>.
2268  */
2269 
2270 /* This function decides, when we should leave Disordered state
2271  * and enter Recovery phase, reducing congestion window.
2272  *
2273  * Main question: may we further continue forward transmission
2274  * with the same cwnd?
2275  */
tcp_time_to_recover(struct sock * sk,int flag)2276 static bool tcp_time_to_recover(struct sock *sk, int flag)
2277 {
2278 	struct tcp_sock *tp = tcp_sk(sk);
2279 
2280 	/* Trick#1: The loss is proven. */
2281 	if (tp->lost_out)
2282 		return true;
2283 
2284 	/* Not-A-Trick#2 : Classic rule... */
2285 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2286 		return true;
2287 
2288 	return false;
2289 }
2290 
2291 /* Detect loss in event "A" above by marking head of queue up as lost.
2292  * For RFC3517 SACK, a segment is considered lost if it
2293  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2294  * the maximum SACKed segments to pass before reaching this limit.
2295  */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2296 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2297 {
2298 	struct tcp_sock *tp = tcp_sk(sk);
2299 	struct sk_buff *skb;
2300 	int cnt;
2301 	/* Use SACK to deduce losses of new sequences sent during recovery */
2302 	const u32 loss_high = tp->snd_nxt;
2303 
2304 	WARN_ON(packets > tp->packets_out);
2305 	skb = tp->lost_skb_hint;
2306 	if (skb) {
2307 		/* Head already handled? */
2308 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2309 			return;
2310 		cnt = tp->lost_cnt_hint;
2311 	} else {
2312 		skb = tcp_rtx_queue_head(sk);
2313 		cnt = 0;
2314 	}
2315 
2316 	skb_rbtree_walk_from(skb) {
2317 		/* TODO: do this better */
2318 		/* this is not the most efficient way to do this... */
2319 		tp->lost_skb_hint = skb;
2320 		tp->lost_cnt_hint = cnt;
2321 
2322 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2323 			break;
2324 
2325 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2326 			cnt += tcp_skb_pcount(skb);
2327 
2328 		if (cnt > packets)
2329 			break;
2330 
2331 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2332 			tcp_mark_skb_lost(sk, skb);
2333 
2334 		if (mark_head)
2335 			break;
2336 	}
2337 	tcp_verify_left_out(tp);
2338 }
2339 
2340 /* Account newly detected lost packet(s) */
2341 
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2342 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2343 {
2344 	struct tcp_sock *tp = tcp_sk(sk);
2345 
2346 	if (tcp_is_sack(tp)) {
2347 		int sacked_upto = tp->sacked_out - tp->reordering;
2348 		if (sacked_upto >= 0)
2349 			tcp_mark_head_lost(sk, sacked_upto, 0);
2350 		else if (fast_rexmit)
2351 			tcp_mark_head_lost(sk, 1, 1);
2352 	}
2353 }
2354 
tcp_tsopt_ecr_before(const struct tcp_sock * tp,u32 when)2355 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2356 {
2357 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2358 	       before(tp->rx_opt.rcv_tsecr, when);
2359 }
2360 
2361 /* skb is spurious retransmitted if the returned timestamp echo
2362  * reply is prior to the skb transmission time
2363  */
tcp_skb_spurious_retrans(const struct tcp_sock * tp,const struct sk_buff * skb)2364 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2365 				     const struct sk_buff *skb)
2366 {
2367 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2368 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2369 }
2370 
2371 /* Nothing was retransmitted or returned timestamp is less
2372  * than timestamp of the first retransmission.
2373  */
tcp_packet_delayed(const struct tcp_sock * tp)2374 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2375 {
2376 	return tp->retrans_stamp &&
2377 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2378 }
2379 
2380 /* Undo procedures. */
2381 
2382 /* We can clear retrans_stamp when there are no retransmissions in the
2383  * window. It would seem that it is trivially available for us in
2384  * tp->retrans_out, however, that kind of assumptions doesn't consider
2385  * what will happen if errors occur when sending retransmission for the
2386  * second time. ...It could the that such segment has only
2387  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2388  * the head skb is enough except for some reneging corner cases that
2389  * are not worth the effort.
2390  *
2391  * Main reason for all this complexity is the fact that connection dying
2392  * time now depends on the validity of the retrans_stamp, in particular,
2393  * that successive retransmissions of a segment must not advance
2394  * retrans_stamp under any conditions.
2395  */
tcp_any_retrans_done(const struct sock * sk)2396 static bool tcp_any_retrans_done(const struct sock *sk)
2397 {
2398 	const struct tcp_sock *tp = tcp_sk(sk);
2399 	struct sk_buff *skb;
2400 
2401 	if (tp->retrans_out)
2402 		return true;
2403 
2404 	skb = tcp_rtx_queue_head(sk);
2405 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2406 		return true;
2407 
2408 	return false;
2409 }
2410 
DBGUNDO(struct sock * sk,const char * msg)2411 static void DBGUNDO(struct sock *sk, const char *msg)
2412 {
2413 #if FASTRETRANS_DEBUG > 1
2414 	struct tcp_sock *tp = tcp_sk(sk);
2415 	struct inet_sock *inet = inet_sk(sk);
2416 
2417 	if (sk->sk_family == AF_INET) {
2418 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2419 			 msg,
2420 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2421 			 tp->snd_cwnd, tcp_left_out(tp),
2422 			 tp->snd_ssthresh, tp->prior_ssthresh,
2423 			 tp->packets_out);
2424 	}
2425 #if IS_ENABLED(CONFIG_IPV6)
2426 	else if (sk->sk_family == AF_INET6) {
2427 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2428 			 msg,
2429 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2430 			 tp->snd_cwnd, tcp_left_out(tp),
2431 			 tp->snd_ssthresh, tp->prior_ssthresh,
2432 			 tp->packets_out);
2433 	}
2434 #endif
2435 #endif
2436 }
2437 
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2438 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2439 {
2440 	struct tcp_sock *tp = tcp_sk(sk);
2441 
2442 	if (unmark_loss) {
2443 		struct sk_buff *skb;
2444 
2445 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2446 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2447 		}
2448 		tp->lost_out = 0;
2449 		tcp_clear_all_retrans_hints(tp);
2450 	}
2451 
2452 	if (tp->prior_ssthresh) {
2453 		const struct inet_connection_sock *icsk = inet_csk(sk);
2454 
2455 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2456 
2457 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2458 			tp->snd_ssthresh = tp->prior_ssthresh;
2459 			tcp_ecn_withdraw_cwr(tp);
2460 		}
2461 	}
2462 	tp->snd_cwnd_stamp = tcp_jiffies32;
2463 	tp->undo_marker = 0;
2464 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2465 }
2466 
tcp_may_undo(const struct tcp_sock * tp)2467 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2468 {
2469 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2470 }
2471 
2472 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2473 static bool tcp_try_undo_recovery(struct sock *sk)
2474 {
2475 	struct tcp_sock *tp = tcp_sk(sk);
2476 
2477 	if (tcp_may_undo(tp)) {
2478 		int mib_idx;
2479 
2480 		/* Happy end! We did not retransmit anything
2481 		 * or our original transmission succeeded.
2482 		 */
2483 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2484 		tcp_undo_cwnd_reduction(sk, false);
2485 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2486 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2487 		else
2488 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2489 
2490 		NET_INC_STATS(sock_net(sk), mib_idx);
2491 	} else if (tp->rack.reo_wnd_persist) {
2492 		tp->rack.reo_wnd_persist--;
2493 	}
2494 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2495 		/* Hold old state until something *above* high_seq
2496 		 * is ACKed. For Reno it is MUST to prevent false
2497 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2498 		if (!tcp_any_retrans_done(sk))
2499 			tp->retrans_stamp = 0;
2500 		return true;
2501 	}
2502 	tcp_set_ca_state(sk, TCP_CA_Open);
2503 	tp->is_sack_reneg = 0;
2504 	return false;
2505 }
2506 
2507 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2508 static bool tcp_try_undo_dsack(struct sock *sk)
2509 {
2510 	struct tcp_sock *tp = tcp_sk(sk);
2511 
2512 	if (tp->undo_marker && !tp->undo_retrans) {
2513 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2514 					       tp->rack.reo_wnd_persist + 1);
2515 		DBGUNDO(sk, "D-SACK");
2516 		tcp_undo_cwnd_reduction(sk, false);
2517 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2518 		return true;
2519 	}
2520 	return false;
2521 }
2522 
2523 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2524 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2525 {
2526 	struct tcp_sock *tp = tcp_sk(sk);
2527 
2528 	if (frto_undo || tcp_may_undo(tp)) {
2529 		tcp_undo_cwnd_reduction(sk, true);
2530 
2531 		DBGUNDO(sk, "partial loss");
2532 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2533 		if (frto_undo)
2534 			NET_INC_STATS(sock_net(sk),
2535 					LINUX_MIB_TCPSPURIOUSRTOS);
2536 		inet_csk(sk)->icsk_retransmits = 0;
2537 		if (frto_undo || tcp_is_sack(tp)) {
2538 			tcp_set_ca_state(sk, TCP_CA_Open);
2539 			tp->is_sack_reneg = 0;
2540 		}
2541 		return true;
2542 	}
2543 	return false;
2544 }
2545 
2546 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2547  * It computes the number of packets to send (sndcnt) based on packets newly
2548  * delivered:
2549  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2550  *	cwnd reductions across a full RTT.
2551  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2552  *      But when the retransmits are acked without further losses, PRR
2553  *      slow starts cwnd up to ssthresh to speed up the recovery.
2554  */
tcp_init_cwnd_reduction(struct sock * sk)2555 static void tcp_init_cwnd_reduction(struct sock *sk)
2556 {
2557 	struct tcp_sock *tp = tcp_sk(sk);
2558 
2559 	tp->high_seq = tp->snd_nxt;
2560 	tp->tlp_high_seq = 0;
2561 	tp->snd_cwnd_cnt = 0;
2562 	tp->prior_cwnd = tp->snd_cwnd;
2563 	tp->prr_delivered = 0;
2564 	tp->prr_out = 0;
2565 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2566 	tcp_ecn_queue_cwr(tp);
2567 }
2568 
tcp_cwnd_reduction(struct sock * sk,int newly_acked_sacked,int flag)2569 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2570 {
2571 	struct tcp_sock *tp = tcp_sk(sk);
2572 	int sndcnt = 0;
2573 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2574 
2575 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2576 		return;
2577 
2578 	tp->prr_delivered += newly_acked_sacked;
2579 	if (delta < 0) {
2580 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2581 			       tp->prior_cwnd - 1;
2582 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2583 	} else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) ==
2584 		   FLAG_RETRANS_DATA_ACKED) {
2585 		sndcnt = min_t(int, delta,
2586 			       max_t(int, tp->prr_delivered - tp->prr_out,
2587 				     newly_acked_sacked) + 1);
2588 	} else {
2589 		sndcnt = min(delta, newly_acked_sacked);
2590 	}
2591 	/* Force a fast retransmit upon entering fast recovery */
2592 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2593 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2594 }
2595 
tcp_end_cwnd_reduction(struct sock * sk)2596 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2597 {
2598 	struct tcp_sock *tp = tcp_sk(sk);
2599 
2600 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2601 		return;
2602 
2603 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2604 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2605 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2606 		tp->snd_cwnd = tp->snd_ssthresh;
2607 		tp->snd_cwnd_stamp = tcp_jiffies32;
2608 	}
2609 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2610 }
2611 
2612 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2613 void tcp_enter_cwr(struct sock *sk)
2614 {
2615 	struct tcp_sock *tp = tcp_sk(sk);
2616 
2617 	tp->prior_ssthresh = 0;
2618 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2619 		tp->undo_marker = 0;
2620 		tcp_init_cwnd_reduction(sk);
2621 		tcp_set_ca_state(sk, TCP_CA_CWR);
2622 	}
2623 }
2624 EXPORT_SYMBOL(tcp_enter_cwr);
2625 
tcp_try_keep_open(struct sock * sk)2626 static void tcp_try_keep_open(struct sock *sk)
2627 {
2628 	struct tcp_sock *tp = tcp_sk(sk);
2629 	int state = TCP_CA_Open;
2630 
2631 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2632 		state = TCP_CA_Disorder;
2633 
2634 	if (inet_csk(sk)->icsk_ca_state != state) {
2635 		tcp_set_ca_state(sk, state);
2636 		tp->high_seq = tp->snd_nxt;
2637 	}
2638 }
2639 
tcp_try_to_open(struct sock * sk,int flag)2640 static void tcp_try_to_open(struct sock *sk, int flag)
2641 {
2642 	struct tcp_sock *tp = tcp_sk(sk);
2643 
2644 	tcp_verify_left_out(tp);
2645 
2646 	if (!tcp_any_retrans_done(sk))
2647 		tp->retrans_stamp = 0;
2648 
2649 	if (flag & FLAG_ECE)
2650 		tcp_enter_cwr(sk);
2651 
2652 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2653 		tcp_try_keep_open(sk);
2654 	}
2655 }
2656 
tcp_mtup_probe_failed(struct sock * sk)2657 static void tcp_mtup_probe_failed(struct sock *sk)
2658 {
2659 	struct inet_connection_sock *icsk = inet_csk(sk);
2660 
2661 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2662 	icsk->icsk_mtup.probe_size = 0;
2663 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2664 }
2665 
tcp_mtup_probe_success(struct sock * sk)2666 static void tcp_mtup_probe_success(struct sock *sk)
2667 {
2668 	struct tcp_sock *tp = tcp_sk(sk);
2669 	struct inet_connection_sock *icsk = inet_csk(sk);
2670 
2671 	/* FIXME: breaks with very large cwnd */
2672 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2673 	tp->snd_cwnd = tp->snd_cwnd *
2674 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2675 		       icsk->icsk_mtup.probe_size;
2676 	tp->snd_cwnd_cnt = 0;
2677 	tp->snd_cwnd_stamp = tcp_jiffies32;
2678 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2679 
2680 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2681 	icsk->icsk_mtup.probe_size = 0;
2682 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2683 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2684 }
2685 
2686 /* Do a simple retransmit without using the backoff mechanisms in
2687  * tcp_timer. This is used for path mtu discovery.
2688  * The socket is already locked here.
2689  */
tcp_simple_retransmit(struct sock * sk)2690 void tcp_simple_retransmit(struct sock *sk)
2691 {
2692 	const struct inet_connection_sock *icsk = inet_csk(sk);
2693 	struct tcp_sock *tp = tcp_sk(sk);
2694 	struct sk_buff *skb;
2695 	unsigned int mss = tcp_current_mss(sk);
2696 
2697 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2698 		if (tcp_skb_seglen(skb) > mss)
2699 			tcp_mark_skb_lost(sk, skb);
2700 	}
2701 
2702 	tcp_clear_retrans_hints_partial(tp);
2703 
2704 	if (!tp->lost_out)
2705 		return;
2706 
2707 	if (tcp_is_reno(tp))
2708 		tcp_limit_reno_sacked(tp);
2709 
2710 	tcp_verify_left_out(tp);
2711 
2712 	/* Don't muck with the congestion window here.
2713 	 * Reason is that we do not increase amount of _data_
2714 	 * in network, but units changed and effective
2715 	 * cwnd/ssthresh really reduced now.
2716 	 */
2717 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2718 		tp->high_seq = tp->snd_nxt;
2719 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2720 		tp->prior_ssthresh = 0;
2721 		tp->undo_marker = 0;
2722 		tcp_set_ca_state(sk, TCP_CA_Loss);
2723 	}
2724 	tcp_xmit_retransmit_queue(sk);
2725 }
2726 EXPORT_SYMBOL(tcp_simple_retransmit);
2727 
tcp_enter_recovery(struct sock * sk,bool ece_ack)2728 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2729 {
2730 	struct tcp_sock *tp = tcp_sk(sk);
2731 	int mib_idx;
2732 
2733 	if (tcp_is_reno(tp))
2734 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2735 	else
2736 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2737 
2738 	NET_INC_STATS(sock_net(sk), mib_idx);
2739 
2740 	tp->prior_ssthresh = 0;
2741 	tcp_init_undo(tp);
2742 
2743 	if (!tcp_in_cwnd_reduction(sk)) {
2744 		if (!ece_ack)
2745 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2746 		tcp_init_cwnd_reduction(sk);
2747 	}
2748 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2749 }
2750 
2751 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2752  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2753  */
tcp_process_loss(struct sock * sk,int flag,int num_dupack,int * rexmit)2754 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2755 			     int *rexmit)
2756 {
2757 	struct tcp_sock *tp = tcp_sk(sk);
2758 	bool recovered = !before(tp->snd_una, tp->high_seq);
2759 
2760 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2761 	    tcp_try_undo_loss(sk, false))
2762 		return;
2763 
2764 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2765 		/* Step 3.b. A timeout is spurious if not all data are
2766 		 * lost, i.e., never-retransmitted data are (s)acked.
2767 		 */
2768 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2769 		    tcp_try_undo_loss(sk, true))
2770 			return;
2771 
2772 		if (after(tp->snd_nxt, tp->high_seq)) {
2773 			if (flag & FLAG_DATA_SACKED || num_dupack)
2774 				tp->frto = 0; /* Step 3.a. loss was real */
2775 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2776 			tp->high_seq = tp->snd_nxt;
2777 			/* Step 2.b. Try send new data (but deferred until cwnd
2778 			 * is updated in tcp_ack()). Otherwise fall back to
2779 			 * the conventional recovery.
2780 			 */
2781 			if (!tcp_write_queue_empty(sk) &&
2782 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2783 				*rexmit = REXMIT_NEW;
2784 				return;
2785 			}
2786 			tp->frto = 0;
2787 		}
2788 	}
2789 
2790 	if (recovered) {
2791 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2792 		tcp_try_undo_recovery(sk);
2793 		return;
2794 	}
2795 	if (tcp_is_reno(tp)) {
2796 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2797 		 * delivered. Lower inflight to clock out (re)tranmissions.
2798 		 */
2799 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2800 			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2801 		else if (flag & FLAG_SND_UNA_ADVANCED)
2802 			tcp_reset_reno_sack(tp);
2803 	}
2804 	*rexmit = REXMIT_LOST;
2805 }
2806 
tcp_force_fast_retransmit(struct sock * sk)2807 static bool tcp_force_fast_retransmit(struct sock *sk)
2808 {
2809 	struct tcp_sock *tp = tcp_sk(sk);
2810 
2811 	return after(tcp_highest_sack_seq(tp),
2812 		     tp->snd_una + tp->reordering * tp->mss_cache);
2813 }
2814 
2815 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,u32 prior_snd_una,bool * do_lost)2816 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2817 				 bool *do_lost)
2818 {
2819 	struct tcp_sock *tp = tcp_sk(sk);
2820 
2821 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2822 		/* Plain luck! Hole if filled with delayed
2823 		 * packet, rather than with a retransmit. Check reordering.
2824 		 */
2825 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2826 
2827 		/* We are getting evidence that the reordering degree is higher
2828 		 * than we realized. If there are no retransmits out then we
2829 		 * can undo. Otherwise we clock out new packets but do not
2830 		 * mark more packets lost or retransmit more.
2831 		 */
2832 		if (tp->retrans_out)
2833 			return true;
2834 
2835 		if (!tcp_any_retrans_done(sk))
2836 			tp->retrans_stamp = 0;
2837 
2838 		DBGUNDO(sk, "partial recovery");
2839 		tcp_undo_cwnd_reduction(sk, true);
2840 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2841 		tcp_try_keep_open(sk);
2842 	} else {
2843 		/* Partial ACK arrived. Force fast retransmit. */
2844 		*do_lost = tcp_force_fast_retransmit(sk);
2845 	}
2846 	return false;
2847 }
2848 
tcp_identify_packet_loss(struct sock * sk,int * ack_flag)2849 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2850 {
2851 	struct tcp_sock *tp = tcp_sk(sk);
2852 
2853 	if (tcp_rtx_queue_empty(sk))
2854 		return;
2855 
2856 	if (unlikely(tcp_is_reno(tp))) {
2857 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2858 	} else if (tcp_is_rack(sk)) {
2859 		u32 prior_retrans = tp->retrans_out;
2860 
2861 		if (tcp_rack_mark_lost(sk))
2862 			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2863 		if (prior_retrans > tp->retrans_out)
2864 			*ack_flag |= FLAG_LOST_RETRANS;
2865 	}
2866 }
2867 
2868 /* Process an event, which can update packets-in-flight not trivially.
2869  * Main goal of this function is to calculate new estimate for left_out,
2870  * taking into account both packets sitting in receiver's buffer and
2871  * packets lost by network.
2872  *
2873  * Besides that it updates the congestion state when packet loss or ECN
2874  * is detected. But it does not reduce the cwnd, it is done by the
2875  * congestion control later.
2876  *
2877  * It does _not_ decide what to send, it is made in function
2878  * tcp_xmit_retransmit_queue().
2879  */
tcp_fastretrans_alert(struct sock * sk,const u32 prior_snd_una,int num_dupack,int * ack_flag,int * rexmit)2880 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2881 				  int num_dupack, int *ack_flag, int *rexmit)
2882 {
2883 	struct inet_connection_sock *icsk = inet_csk(sk);
2884 	struct tcp_sock *tp = tcp_sk(sk);
2885 	int fast_rexmit = 0, flag = *ack_flag;
2886 	bool ece_ack = flag & FLAG_ECE;
2887 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2888 				      tcp_force_fast_retransmit(sk));
2889 
2890 	if (!tp->packets_out && tp->sacked_out)
2891 		tp->sacked_out = 0;
2892 
2893 	/* Now state machine starts.
2894 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2895 	if (ece_ack)
2896 		tp->prior_ssthresh = 0;
2897 
2898 	/* B. In all the states check for reneging SACKs. */
2899 	if (tcp_check_sack_reneging(sk, flag))
2900 		return;
2901 
2902 	/* C. Check consistency of the current state. */
2903 	tcp_verify_left_out(tp);
2904 
2905 	/* D. Check state exit conditions. State can be terminated
2906 	 *    when high_seq is ACKed. */
2907 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2908 		WARN_ON(tp->retrans_out != 0);
2909 		tp->retrans_stamp = 0;
2910 	} else if (!before(tp->snd_una, tp->high_seq)) {
2911 		switch (icsk->icsk_ca_state) {
2912 		case TCP_CA_CWR:
2913 			/* CWR is to be held something *above* high_seq
2914 			 * is ACKed for CWR bit to reach receiver. */
2915 			if (tp->snd_una != tp->high_seq) {
2916 				tcp_end_cwnd_reduction(sk);
2917 				tcp_set_ca_state(sk, TCP_CA_Open);
2918 			}
2919 			break;
2920 
2921 		case TCP_CA_Recovery:
2922 			if (tcp_is_reno(tp))
2923 				tcp_reset_reno_sack(tp);
2924 			if (tcp_try_undo_recovery(sk))
2925 				return;
2926 			tcp_end_cwnd_reduction(sk);
2927 			break;
2928 		}
2929 	}
2930 
2931 	/* E. Process state. */
2932 	switch (icsk->icsk_ca_state) {
2933 	case TCP_CA_Recovery:
2934 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2935 			if (tcp_is_reno(tp))
2936 				tcp_add_reno_sack(sk, num_dupack, ece_ack);
2937 		} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
2938 			return;
2939 
2940 		if (tcp_try_undo_dsack(sk))
2941 			tcp_try_keep_open(sk);
2942 
2943 		tcp_identify_packet_loss(sk, ack_flag);
2944 		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
2945 			if (!tcp_time_to_recover(sk, flag))
2946 				return;
2947 			/* Undo reverts the recovery state. If loss is evident,
2948 			 * starts a new recovery (e.g. reordering then loss);
2949 			 */
2950 			tcp_enter_recovery(sk, ece_ack);
2951 		}
2952 		break;
2953 	case TCP_CA_Loss:
2954 		tcp_process_loss(sk, flag, num_dupack, rexmit);
2955 		tcp_identify_packet_loss(sk, ack_flag);
2956 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2957 		      (*ack_flag & FLAG_LOST_RETRANS)))
2958 			return;
2959 		/* Change state if cwnd is undone or retransmits are lost */
2960 		fallthrough;
2961 	default:
2962 		if (tcp_is_reno(tp)) {
2963 			if (flag & FLAG_SND_UNA_ADVANCED)
2964 				tcp_reset_reno_sack(tp);
2965 			tcp_add_reno_sack(sk, num_dupack, ece_ack);
2966 		}
2967 
2968 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2969 			tcp_try_undo_dsack(sk);
2970 
2971 		tcp_identify_packet_loss(sk, ack_flag);
2972 		if (!tcp_time_to_recover(sk, flag)) {
2973 			tcp_try_to_open(sk, flag);
2974 			return;
2975 		}
2976 
2977 		/* MTU probe failure: don't reduce cwnd */
2978 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2979 		    icsk->icsk_mtup.probe_size &&
2980 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2981 			tcp_mtup_probe_failed(sk);
2982 			/* Restores the reduction we did in tcp_mtup_probe() */
2983 			tp->snd_cwnd++;
2984 			tcp_simple_retransmit(sk);
2985 			return;
2986 		}
2987 
2988 		/* Otherwise enter Recovery state */
2989 		tcp_enter_recovery(sk, ece_ack);
2990 		fast_rexmit = 1;
2991 	}
2992 
2993 	if (!tcp_is_rack(sk) && do_lost)
2994 		tcp_update_scoreboard(sk, fast_rexmit);
2995 	*rexmit = REXMIT_LOST;
2996 }
2997 
tcp_update_rtt_min(struct sock * sk,u32 rtt_us,const int flag)2998 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2999 {
3000 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
3001 	struct tcp_sock *tp = tcp_sk(sk);
3002 
3003 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3004 		/* If the remote keeps returning delayed ACKs, eventually
3005 		 * the min filter would pick it up and overestimate the
3006 		 * prop. delay when it expires. Skip suspected delayed ACKs.
3007 		 */
3008 		return;
3009 	}
3010 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3011 			   rtt_us ? : jiffies_to_usecs(1));
3012 }
3013 
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us,long ca_rtt_us,struct rate_sample * rs)3014 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3015 			       long seq_rtt_us, long sack_rtt_us,
3016 			       long ca_rtt_us, struct rate_sample *rs)
3017 {
3018 	const struct tcp_sock *tp = tcp_sk(sk);
3019 
3020 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3021 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3022 	 * Karn's algorithm forbids taking RTT if some retransmitted data
3023 	 * is acked (RFC6298).
3024 	 */
3025 	if (seq_rtt_us < 0)
3026 		seq_rtt_us = sack_rtt_us;
3027 
3028 	/* RTTM Rule: A TSecr value received in a segment is used to
3029 	 * update the averaged RTT measurement only if the segment
3030 	 * acknowledges some new data, i.e., only if it advances the
3031 	 * left edge of the send window.
3032 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3033 	 */
3034 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3035 	    flag & FLAG_ACKED) {
3036 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3037 
3038 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3039 			if (!delta)
3040 				delta = 1;
3041 			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3042 			ca_rtt_us = seq_rtt_us;
3043 		}
3044 	}
3045 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3046 	if (seq_rtt_us < 0)
3047 		return false;
3048 
3049 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3050 	 * always taken together with ACK, SACK, or TS-opts. Any negative
3051 	 * values will be skipped with the seq_rtt_us < 0 check above.
3052 	 */
3053 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3054 	tcp_rtt_estimator(sk, seq_rtt_us);
3055 	tcp_set_rto(sk);
3056 
3057 	/* RFC6298: only reset backoff on valid RTT measurement. */
3058 	inet_csk(sk)->icsk_backoff = 0;
3059 	return true;
3060 }
3061 
3062 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,struct request_sock * req)3063 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3064 {
3065 	struct rate_sample rs;
3066 	long rtt_us = -1L;
3067 
3068 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3069 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3070 
3071 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3072 }
3073 
3074 
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)3075 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3076 {
3077 	const struct inet_connection_sock *icsk = inet_csk(sk);
3078 
3079 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3080 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3081 }
3082 
3083 /* Restart timer after forward progress on connection.
3084  * RFC2988 recommends to restart timer to now+rto.
3085  */
tcp_rearm_rto(struct sock * sk)3086 void tcp_rearm_rto(struct sock *sk)
3087 {
3088 	const struct inet_connection_sock *icsk = inet_csk(sk);
3089 	struct tcp_sock *tp = tcp_sk(sk);
3090 
3091 	/* If the retrans timer is currently being used by Fast Open
3092 	 * for SYN-ACK retrans purpose, stay put.
3093 	 */
3094 	if (rcu_access_pointer(tp->fastopen_rsk))
3095 		return;
3096 
3097 	if (!tp->packets_out) {
3098 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3099 	} else {
3100 		u32 rto = inet_csk(sk)->icsk_rto;
3101 		/* Offset the time elapsed after installing regular RTO */
3102 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3103 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3104 			s64 delta_us = tcp_rto_delta_us(sk);
3105 			/* delta_us may not be positive if the socket is locked
3106 			 * when the retrans timer fires and is rescheduled.
3107 			 */
3108 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3109 		}
3110 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3111 				     TCP_RTO_MAX);
3112 	}
3113 }
3114 
3115 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
tcp_set_xmit_timer(struct sock * sk)3116 static void tcp_set_xmit_timer(struct sock *sk)
3117 {
3118 	if (!tcp_schedule_loss_probe(sk, true))
3119 		tcp_rearm_rto(sk);
3120 }
3121 
3122 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3123 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3124 {
3125 	struct tcp_sock *tp = tcp_sk(sk);
3126 	u32 packets_acked;
3127 
3128 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3129 
3130 	packets_acked = tcp_skb_pcount(skb);
3131 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3132 		return 0;
3133 	packets_acked -= tcp_skb_pcount(skb);
3134 
3135 	if (packets_acked) {
3136 		BUG_ON(tcp_skb_pcount(skb) == 0);
3137 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3138 	}
3139 
3140 	return packets_acked;
3141 }
3142 
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,u32 prior_snd_una)3143 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3144 			   u32 prior_snd_una)
3145 {
3146 	const struct skb_shared_info *shinfo;
3147 
3148 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3149 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3150 		return;
3151 
3152 	shinfo = skb_shinfo(skb);
3153 	if (!before(shinfo->tskey, prior_snd_una) &&
3154 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3155 		tcp_skb_tsorted_save(skb) {
3156 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3157 		} tcp_skb_tsorted_restore(skb);
3158 	}
3159 }
3160 
3161 /* Remove acknowledged frames from the retransmission queue. If our packet
3162  * is before the ack sequence we can discard it as it's confirmed to have
3163  * arrived at the other end.
3164  */
tcp_clean_rtx_queue(struct sock * sk,u32 prior_fack,u32 prior_snd_una,struct tcp_sacktag_state * sack,bool ece_ack)3165 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3166 			       u32 prior_snd_una,
3167 			       struct tcp_sacktag_state *sack, bool ece_ack)
3168 {
3169 	const struct inet_connection_sock *icsk = inet_csk(sk);
3170 	u64 first_ackt, last_ackt;
3171 	struct tcp_sock *tp = tcp_sk(sk);
3172 	u32 prior_sacked = tp->sacked_out;
3173 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3174 	struct sk_buff *skb, *next;
3175 	bool fully_acked = true;
3176 	long sack_rtt_us = -1L;
3177 	long seq_rtt_us = -1L;
3178 	long ca_rtt_us = -1L;
3179 	u32 pkts_acked = 0;
3180 	u32 last_in_flight = 0;
3181 	bool rtt_update;
3182 	int flag = 0;
3183 
3184 	first_ackt = 0;
3185 
3186 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3187 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3188 		const u32 start_seq = scb->seq;
3189 		u8 sacked = scb->sacked;
3190 		u32 acked_pcount;
3191 
3192 		/* Determine how many packets and what bytes were acked, tso and else */
3193 		if (after(scb->end_seq, tp->snd_una)) {
3194 			if (tcp_skb_pcount(skb) == 1 ||
3195 			    !after(tp->snd_una, scb->seq))
3196 				break;
3197 
3198 			acked_pcount = tcp_tso_acked(sk, skb);
3199 			if (!acked_pcount)
3200 				break;
3201 			fully_acked = false;
3202 		} else {
3203 			acked_pcount = tcp_skb_pcount(skb);
3204 		}
3205 
3206 		if (unlikely(sacked & TCPCB_RETRANS)) {
3207 			if (sacked & TCPCB_SACKED_RETRANS)
3208 				tp->retrans_out -= acked_pcount;
3209 			flag |= FLAG_RETRANS_DATA_ACKED;
3210 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3211 			last_ackt = tcp_skb_timestamp_us(skb);
3212 			WARN_ON_ONCE(last_ackt == 0);
3213 			if (!first_ackt)
3214 				first_ackt = last_ackt;
3215 
3216 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3217 			if (before(start_seq, reord))
3218 				reord = start_seq;
3219 			if (!after(scb->end_seq, tp->high_seq))
3220 				flag |= FLAG_ORIG_SACK_ACKED;
3221 		}
3222 
3223 		if (sacked & TCPCB_SACKED_ACKED) {
3224 			tp->sacked_out -= acked_pcount;
3225 		} else if (tcp_is_sack(tp)) {
3226 			tcp_count_delivered(tp, acked_pcount, ece_ack);
3227 			if (!tcp_skb_spurious_retrans(tp, skb))
3228 				tcp_rack_advance(tp, sacked, scb->end_seq,
3229 						 tcp_skb_timestamp_us(skb));
3230 		}
3231 		if (sacked & TCPCB_LOST)
3232 			tp->lost_out -= acked_pcount;
3233 
3234 		tp->packets_out -= acked_pcount;
3235 		pkts_acked += acked_pcount;
3236 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3237 
3238 		/* Initial outgoing SYN's get put onto the write_queue
3239 		 * just like anything else we transmit.  It is not
3240 		 * true data, and if we misinform our callers that
3241 		 * this ACK acks real data, we will erroneously exit
3242 		 * connection startup slow start one packet too
3243 		 * quickly.  This is severely frowned upon behavior.
3244 		 */
3245 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3246 			flag |= FLAG_DATA_ACKED;
3247 		} else {
3248 			flag |= FLAG_SYN_ACKED;
3249 			tp->retrans_stamp = 0;
3250 		}
3251 
3252 		if (!fully_acked)
3253 			break;
3254 
3255 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3256 
3257 		next = skb_rb_next(skb);
3258 		if (unlikely(skb == tp->retransmit_skb_hint))
3259 			tp->retransmit_skb_hint = NULL;
3260 		if (unlikely(skb == tp->lost_skb_hint))
3261 			tp->lost_skb_hint = NULL;
3262 		tcp_highest_sack_replace(sk, skb, next);
3263 		tcp_rtx_queue_unlink_and_free(skb, sk);
3264 	}
3265 
3266 	if (!skb)
3267 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3268 
3269 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3270 		tp->snd_up = tp->snd_una;
3271 
3272 	if (skb) {
3273 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3274 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3275 			flag |= FLAG_SACK_RENEGING;
3276 	}
3277 
3278 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3279 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3280 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3281 
3282 		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3283 		    last_in_flight && !prior_sacked && fully_acked &&
3284 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3285 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3286 			/* Conservatively mark a delayed ACK. It's typically
3287 			 * from a lone runt packet over the round trip to
3288 			 * a receiver w/o out-of-order or CE events.
3289 			 */
3290 			flag |= FLAG_ACK_MAYBE_DELAYED;
3291 		}
3292 	}
3293 	if (sack->first_sackt) {
3294 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3295 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3296 	}
3297 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3298 					ca_rtt_us, sack->rate);
3299 
3300 	if (flag & FLAG_ACKED) {
3301 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3302 		if (unlikely(icsk->icsk_mtup.probe_size &&
3303 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3304 			tcp_mtup_probe_success(sk);
3305 		}
3306 
3307 		if (tcp_is_reno(tp)) {
3308 			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3309 
3310 			/* If any of the cumulatively ACKed segments was
3311 			 * retransmitted, non-SACK case cannot confirm that
3312 			 * progress was due to original transmission due to
3313 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3314 			 * the packets may have been never retransmitted.
3315 			 */
3316 			if (flag & FLAG_RETRANS_DATA_ACKED)
3317 				flag &= ~FLAG_ORIG_SACK_ACKED;
3318 		} else {
3319 			int delta;
3320 
3321 			/* Non-retransmitted hole got filled? That's reordering */
3322 			if (before(reord, prior_fack))
3323 				tcp_check_sack_reordering(sk, reord, 0);
3324 
3325 			delta = prior_sacked - tp->sacked_out;
3326 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3327 		}
3328 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3329 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3330 						    tcp_skb_timestamp_us(skb))) {
3331 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3332 		 * after when the head was last (re)transmitted. Otherwise the
3333 		 * timeout may continue to extend in loss recovery.
3334 		 */
3335 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3336 	}
3337 
3338 	if (icsk->icsk_ca_ops->pkts_acked) {
3339 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3340 					     .rtt_us = sack->rate->rtt_us,
3341 					     .in_flight = last_in_flight };
3342 
3343 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3344 	}
3345 
3346 #if FASTRETRANS_DEBUG > 0
3347 	WARN_ON((int)tp->sacked_out < 0);
3348 	WARN_ON((int)tp->lost_out < 0);
3349 	WARN_ON((int)tp->retrans_out < 0);
3350 	if (!tp->packets_out && tcp_is_sack(tp)) {
3351 		icsk = inet_csk(sk);
3352 		if (tp->lost_out) {
3353 			pr_debug("Leak l=%u %d\n",
3354 				 tp->lost_out, icsk->icsk_ca_state);
3355 			tp->lost_out = 0;
3356 		}
3357 		if (tp->sacked_out) {
3358 			pr_debug("Leak s=%u %d\n",
3359 				 tp->sacked_out, icsk->icsk_ca_state);
3360 			tp->sacked_out = 0;
3361 		}
3362 		if (tp->retrans_out) {
3363 			pr_debug("Leak r=%u %d\n",
3364 				 tp->retrans_out, icsk->icsk_ca_state);
3365 			tp->retrans_out = 0;
3366 		}
3367 	}
3368 #endif
3369 	return flag;
3370 }
3371 
tcp_ack_probe(struct sock * sk)3372 static void tcp_ack_probe(struct sock *sk)
3373 {
3374 	struct inet_connection_sock *icsk = inet_csk(sk);
3375 	struct sk_buff *head = tcp_send_head(sk);
3376 	const struct tcp_sock *tp = tcp_sk(sk);
3377 
3378 	/* Was it a usable window open? */
3379 	if (!head)
3380 		return;
3381 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3382 		icsk->icsk_backoff = 0;
3383 		icsk->icsk_probes_tstamp = 0;
3384 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3385 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3386 		 * This function is not for random using!
3387 		 */
3388 	} else {
3389 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3390 
3391 		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3392 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3393 	}
3394 }
3395 
tcp_ack_is_dubious(const struct sock * sk,const int flag)3396 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3397 {
3398 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3399 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3400 }
3401 
3402 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3403 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3404 {
3405 	/* If reordering is high then always grow cwnd whenever data is
3406 	 * delivered regardless of its ordering. Otherwise stay conservative
3407 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3408 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3409 	 * cwnd in tcp_fastretrans_alert() based on more states.
3410 	 */
3411 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3412 		return flag & FLAG_FORWARD_PROGRESS;
3413 
3414 	return flag & FLAG_DATA_ACKED;
3415 }
3416 
3417 /* The "ultimate" congestion control function that aims to replace the rigid
3418  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3419  * It's called toward the end of processing an ACK with precise rate
3420  * information. All transmission or retransmission are delayed afterwards.
3421  */
tcp_cong_control(struct sock * sk,u32 ack,u32 acked_sacked,int flag,const struct rate_sample * rs)3422 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3423 			     int flag, const struct rate_sample *rs)
3424 {
3425 	const struct inet_connection_sock *icsk = inet_csk(sk);
3426 
3427 	if (icsk->icsk_ca_ops->cong_control) {
3428 		icsk->icsk_ca_ops->cong_control(sk, rs);
3429 		return;
3430 	}
3431 
3432 	if (tcp_in_cwnd_reduction(sk)) {
3433 		/* Reduce cwnd if state mandates */
3434 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3435 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3436 		/* Advance cwnd if state allows */
3437 		tcp_cong_avoid(sk, ack, acked_sacked);
3438 	}
3439 	tcp_update_pacing_rate(sk);
3440 }
3441 
3442 /* Check that window update is acceptable.
3443  * The function assumes that snd_una<=ack<=snd_next.
3444  */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3445 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3446 					const u32 ack, const u32 ack_seq,
3447 					const u32 nwin)
3448 {
3449 	return	after(ack, tp->snd_una) ||
3450 		after(ack_seq, tp->snd_wl1) ||
3451 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3452 }
3453 
3454 /* If we update tp->snd_una, also update tp->bytes_acked */
tcp_snd_una_update(struct tcp_sock * tp,u32 ack)3455 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3456 {
3457 	u32 delta = ack - tp->snd_una;
3458 
3459 	sock_owned_by_me((struct sock *)tp);
3460 	tp->bytes_acked += delta;
3461 	tp->snd_una = ack;
3462 }
3463 
3464 /* If we update tp->rcv_nxt, also update tp->bytes_received */
tcp_rcv_nxt_update(struct tcp_sock * tp,u32 seq)3465 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3466 {
3467 	u32 delta = seq - tp->rcv_nxt;
3468 
3469 	sock_owned_by_me((struct sock *)tp);
3470 	tp->bytes_received += delta;
3471 	WRITE_ONCE(tp->rcv_nxt, seq);
3472 }
3473 
3474 /* Update our send window.
3475  *
3476  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3477  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3478  */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3479 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3480 				 u32 ack_seq)
3481 {
3482 	struct tcp_sock *tp = tcp_sk(sk);
3483 	int flag = 0;
3484 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3485 
3486 	if (likely(!tcp_hdr(skb)->syn))
3487 		nwin <<= tp->rx_opt.snd_wscale;
3488 
3489 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3490 		flag |= FLAG_WIN_UPDATE;
3491 		tcp_update_wl(tp, ack_seq);
3492 
3493 		if (tp->snd_wnd != nwin) {
3494 			tp->snd_wnd = nwin;
3495 
3496 			/* Note, it is the only place, where
3497 			 * fast path is recovered for sending TCP.
3498 			 */
3499 			tp->pred_flags = 0;
3500 			tcp_fast_path_check(sk);
3501 
3502 			if (!tcp_write_queue_empty(sk))
3503 				tcp_slow_start_after_idle_check(sk);
3504 
3505 			if (nwin > tp->max_window) {
3506 				tp->max_window = nwin;
3507 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3508 			}
3509 		}
3510 	}
3511 
3512 	tcp_snd_una_update(tp, ack);
3513 
3514 	return flag;
3515 }
3516 
__tcp_oow_rate_limited(struct net * net,int mib_idx,u32 * last_oow_ack_time)3517 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3518 				   u32 *last_oow_ack_time)
3519 {
3520 	if (*last_oow_ack_time) {
3521 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3522 
3523 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3524 			NET_INC_STATS(net, mib_idx);
3525 			return true;	/* rate-limited: don't send yet! */
3526 		}
3527 	}
3528 
3529 	*last_oow_ack_time = tcp_jiffies32;
3530 
3531 	return false;	/* not rate-limited: go ahead, send dupack now! */
3532 }
3533 
3534 /* Return true if we're currently rate-limiting out-of-window ACKs and
3535  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3536  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3537  * attacks that send repeated SYNs or ACKs for the same connection. To
3538  * do this, we do not send a duplicate SYNACK or ACK if the remote
3539  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3540  */
tcp_oow_rate_limited(struct net * net,const struct sk_buff * skb,int mib_idx,u32 * last_oow_ack_time)3541 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3542 			  int mib_idx, u32 *last_oow_ack_time)
3543 {
3544 	/* Data packets without SYNs are not likely part of an ACK loop. */
3545 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3546 	    !tcp_hdr(skb)->syn)
3547 		return false;
3548 
3549 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3550 }
3551 
3552 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk,const struct sk_buff * skb)3553 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3554 {
3555 	/* unprotected vars, we dont care of overwrites */
3556 	static u32 challenge_timestamp;
3557 	static unsigned int challenge_count;
3558 	struct tcp_sock *tp = tcp_sk(sk);
3559 	struct net *net = sock_net(sk);
3560 	u32 count, now;
3561 
3562 	/* First check our per-socket dupack rate limit. */
3563 	if (__tcp_oow_rate_limited(net,
3564 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3565 				   &tp->last_oow_ack_time))
3566 		return;
3567 
3568 	/* Then check host-wide RFC 5961 rate limit. */
3569 	now = jiffies / HZ;
3570 	if (now != challenge_timestamp) {
3571 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3572 		u32 half = (ack_limit + 1) >> 1;
3573 
3574 		challenge_timestamp = now;
3575 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3576 	}
3577 	count = READ_ONCE(challenge_count);
3578 	if (count > 0) {
3579 		WRITE_ONCE(challenge_count, count - 1);
3580 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3581 		tcp_send_ack(sk);
3582 	}
3583 }
3584 
tcp_store_ts_recent(struct tcp_sock * tp)3585 static void tcp_store_ts_recent(struct tcp_sock *tp)
3586 {
3587 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3588 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3589 }
3590 
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3591 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3592 {
3593 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3594 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3595 		 * extra check below makes sure this can only happen
3596 		 * for pure ACK frames.  -DaveM
3597 		 *
3598 		 * Not only, also it occurs for expired timestamps.
3599 		 */
3600 
3601 		if (tcp_paws_check(&tp->rx_opt, 0))
3602 			tcp_store_ts_recent(tp);
3603 	}
3604 }
3605 
3606 /* This routine deals with acks during a TLP episode and ends an episode by
3607  * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3608  */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3609 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3610 {
3611 	struct tcp_sock *tp = tcp_sk(sk);
3612 
3613 	if (before(ack, tp->tlp_high_seq))
3614 		return;
3615 
3616 	if (!tp->tlp_retrans) {
3617 		/* TLP of new data has been acknowledged */
3618 		tp->tlp_high_seq = 0;
3619 	} else if (flag & FLAG_DSACKING_ACK) {
3620 		/* This DSACK means original and TLP probe arrived; no loss */
3621 		tp->tlp_high_seq = 0;
3622 	} else if (after(ack, tp->tlp_high_seq)) {
3623 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3624 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3625 		 */
3626 		tcp_init_cwnd_reduction(sk);
3627 		tcp_set_ca_state(sk, TCP_CA_CWR);
3628 		tcp_end_cwnd_reduction(sk);
3629 		tcp_try_keep_open(sk);
3630 		NET_INC_STATS(sock_net(sk),
3631 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3632 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3633 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3634 		/* Pure dupack: original and TLP probe arrived; no loss */
3635 		tp->tlp_high_seq = 0;
3636 	}
3637 }
3638 
tcp_in_ack_event(struct sock * sk,u32 flags)3639 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3640 {
3641 	const struct inet_connection_sock *icsk = inet_csk(sk);
3642 
3643 	if (icsk->icsk_ca_ops->in_ack_event)
3644 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3645 }
3646 
3647 /* Congestion control has updated the cwnd already. So if we're in
3648  * loss recovery then now we do any new sends (for FRTO) or
3649  * retransmits (for CA_Loss or CA_recovery) that make sense.
3650  */
tcp_xmit_recovery(struct sock * sk,int rexmit)3651 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3652 {
3653 	struct tcp_sock *tp = tcp_sk(sk);
3654 
3655 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3656 		return;
3657 
3658 	if (unlikely(rexmit == REXMIT_NEW)) {
3659 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3660 					  TCP_NAGLE_OFF);
3661 		if (after(tp->snd_nxt, tp->high_seq))
3662 			return;
3663 		tp->frto = 0;
3664 	}
3665 	tcp_xmit_retransmit_queue(sk);
3666 }
3667 
3668 /* Returns the number of packets newly acked or sacked by the current ACK */
tcp_newly_delivered(struct sock * sk,u32 prior_delivered,int flag)3669 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3670 {
3671 	const struct net *net = sock_net(sk);
3672 	struct tcp_sock *tp = tcp_sk(sk);
3673 	u32 delivered;
3674 
3675 	delivered = tp->delivered - prior_delivered;
3676 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3677 	if (flag & FLAG_ECE)
3678 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3679 
3680 	return delivered;
3681 }
3682 
3683 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3684 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3685 {
3686 	struct inet_connection_sock *icsk = inet_csk(sk);
3687 	struct tcp_sock *tp = tcp_sk(sk);
3688 	struct tcp_sacktag_state sack_state;
3689 	struct rate_sample rs = { .prior_delivered = 0 };
3690 	u32 prior_snd_una = tp->snd_una;
3691 	bool is_sack_reneg = tp->is_sack_reneg;
3692 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3693 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3694 	int num_dupack = 0;
3695 	int prior_packets = tp->packets_out;
3696 	u32 delivered = tp->delivered;
3697 	u32 lost = tp->lost;
3698 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3699 	u32 prior_fack;
3700 
3701 	sack_state.first_sackt = 0;
3702 	sack_state.rate = &rs;
3703 	sack_state.sack_delivered = 0;
3704 
3705 	/* We very likely will need to access rtx queue. */
3706 	prefetch(sk->tcp_rtx_queue.rb_node);
3707 
3708 	/* If the ack is older than previous acks
3709 	 * then we can probably ignore it.
3710 	 */
3711 	if (before(ack, prior_snd_una)) {
3712 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3713 		if (before(ack, prior_snd_una - tp->max_window)) {
3714 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3715 				tcp_send_challenge_ack(sk, skb);
3716 			return -1;
3717 		}
3718 		goto old_ack;
3719 	}
3720 
3721 	/* If the ack includes data we haven't sent yet, discard
3722 	 * this segment (RFC793 Section 3.9).
3723 	 */
3724 	if (after(ack, tp->snd_nxt))
3725 		return -1;
3726 
3727 	if (after(ack, prior_snd_una)) {
3728 		flag |= FLAG_SND_UNA_ADVANCED;
3729 		icsk->icsk_retransmits = 0;
3730 
3731 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3732 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3733 			if (icsk->icsk_clean_acked)
3734 				icsk->icsk_clean_acked(sk, ack);
3735 #endif
3736 	}
3737 
3738 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3739 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3740 
3741 	/* ts_recent update must be made after we are sure that the packet
3742 	 * is in window.
3743 	 */
3744 	if (flag & FLAG_UPDATE_TS_RECENT)
3745 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3746 
3747 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3748 	    FLAG_SND_UNA_ADVANCED) {
3749 		/* Window is constant, pure forward advance.
3750 		 * No more checks are required.
3751 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3752 		 */
3753 		tcp_update_wl(tp, ack_seq);
3754 		tcp_snd_una_update(tp, ack);
3755 		flag |= FLAG_WIN_UPDATE;
3756 
3757 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3758 
3759 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3760 	} else {
3761 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3762 
3763 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3764 			flag |= FLAG_DATA;
3765 		else
3766 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3767 
3768 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3769 
3770 		if (TCP_SKB_CB(skb)->sacked)
3771 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3772 							&sack_state);
3773 
3774 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3775 			flag |= FLAG_ECE;
3776 			ack_ev_flags |= CA_ACK_ECE;
3777 		}
3778 
3779 		if (sack_state.sack_delivered)
3780 			tcp_count_delivered(tp, sack_state.sack_delivered,
3781 					    flag & FLAG_ECE);
3782 
3783 		if (flag & FLAG_WIN_UPDATE)
3784 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3785 
3786 		tcp_in_ack_event(sk, ack_ev_flags);
3787 	}
3788 
3789 	/* This is a deviation from RFC3168 since it states that:
3790 	 * "When the TCP data sender is ready to set the CWR bit after reducing
3791 	 * the congestion window, it SHOULD set the CWR bit only on the first
3792 	 * new data packet that it transmits."
3793 	 * We accept CWR on pure ACKs to be more robust
3794 	 * with widely-deployed TCP implementations that do this.
3795 	 */
3796 	tcp_ecn_accept_cwr(sk, skb);
3797 
3798 	/* We passed data and got it acked, remove any soft error
3799 	 * log. Something worked...
3800 	 */
3801 	sk->sk_err_soft = 0;
3802 	icsk->icsk_probes_out = 0;
3803 	tp->rcv_tstamp = tcp_jiffies32;
3804 	if (!prior_packets)
3805 		goto no_queue;
3806 
3807 	/* See if we can take anything off of the retransmit queue. */
3808 	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state,
3809 				    flag & FLAG_ECE);
3810 
3811 	tcp_rack_update_reo_wnd(sk, &rs);
3812 
3813 	if (tp->tlp_high_seq)
3814 		tcp_process_tlp_ack(sk, ack, flag);
3815 
3816 	if (tcp_ack_is_dubious(sk, flag)) {
3817 		if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) {
3818 			num_dupack = 1;
3819 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3820 			if (!(flag & FLAG_DATA))
3821 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3822 		}
3823 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3824 				      &rexmit);
3825 	}
3826 
3827 	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
3828 	if (flag & FLAG_SET_XMIT_TIMER)
3829 		tcp_set_xmit_timer(sk);
3830 
3831 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3832 		sk_dst_confirm(sk);
3833 
3834 	delivered = tcp_newly_delivered(sk, delivered, flag);
3835 	lost = tp->lost - lost;			/* freshly marked lost */
3836 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3837 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3838 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3839 	tcp_xmit_recovery(sk, rexmit);
3840 	return 1;
3841 
3842 no_queue:
3843 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3844 	if (flag & FLAG_DSACKING_ACK) {
3845 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3846 				      &rexmit);
3847 		tcp_newly_delivered(sk, delivered, flag);
3848 	}
3849 	/* If this ack opens up a zero window, clear backoff.  It was
3850 	 * being used to time the probes, and is probably far higher than
3851 	 * it needs to be for normal retransmission.
3852 	 */
3853 	tcp_ack_probe(sk);
3854 
3855 	if (tp->tlp_high_seq)
3856 		tcp_process_tlp_ack(sk, ack, flag);
3857 	return 1;
3858 
3859 old_ack:
3860 	/* If data was SACKed, tag it and see if we should send more data.
3861 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3862 	 */
3863 	if (TCP_SKB_CB(skb)->sacked) {
3864 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3865 						&sack_state);
3866 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3867 				      &rexmit);
3868 		tcp_newly_delivered(sk, delivered, flag);
3869 		tcp_xmit_recovery(sk, rexmit);
3870 	}
3871 
3872 	return 0;
3873 }
3874 
tcp_parse_fastopen_option(int len,const unsigned char * cookie,bool syn,struct tcp_fastopen_cookie * foc,bool exp_opt)3875 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3876 				      bool syn, struct tcp_fastopen_cookie *foc,
3877 				      bool exp_opt)
3878 {
3879 	/* Valid only in SYN or SYN-ACK with an even length.  */
3880 	if (!foc || !syn || len < 0 || (len & 1))
3881 		return;
3882 
3883 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3884 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3885 		memcpy(foc->val, cookie, len);
3886 	else if (len != 0)
3887 		len = -1;
3888 	foc->len = len;
3889 	foc->exp = exp_opt;
3890 }
3891 
smc_parse_options(const struct tcphdr * th,struct tcp_options_received * opt_rx,const unsigned char * ptr,int opsize)3892 static bool smc_parse_options(const struct tcphdr *th,
3893 			      struct tcp_options_received *opt_rx,
3894 			      const unsigned char *ptr,
3895 			      int opsize)
3896 {
3897 #if IS_ENABLED(CONFIG_SMC)
3898 	if (static_branch_unlikely(&tcp_have_smc)) {
3899 		if (th->syn && !(opsize & 1) &&
3900 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3901 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
3902 			opt_rx->smc_ok = 1;
3903 			return true;
3904 		}
3905 	}
3906 #endif
3907 	return false;
3908 }
3909 
3910 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3911  * value on success.
3912  */
tcp_parse_mss_option(const struct tcphdr * th,u16 user_mss)3913 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3914 {
3915 	const unsigned char *ptr = (const unsigned char *)(th + 1);
3916 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3917 	u16 mss = 0;
3918 
3919 	while (length > 0) {
3920 		int opcode = *ptr++;
3921 		int opsize;
3922 
3923 		switch (opcode) {
3924 		case TCPOPT_EOL:
3925 			return mss;
3926 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3927 			length--;
3928 			continue;
3929 		default:
3930 			if (length < 2)
3931 				return mss;
3932 			opsize = *ptr++;
3933 			if (opsize < 2) /* "silly options" */
3934 				return mss;
3935 			if (opsize > length)
3936 				return mss;	/* fail on partial options */
3937 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3938 				u16 in_mss = get_unaligned_be16(ptr);
3939 
3940 				if (in_mss) {
3941 					if (user_mss && user_mss < in_mss)
3942 						in_mss = user_mss;
3943 					mss = in_mss;
3944 				}
3945 			}
3946 			ptr += opsize - 2;
3947 			length -= opsize;
3948 		}
3949 	}
3950 	return mss;
3951 }
3952 
3953 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3954  * But, this can also be called on packets in the established flow when
3955  * the fast version below fails.
3956  */
tcp_parse_options(const struct net * net,const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)3957 void tcp_parse_options(const struct net *net,
3958 		       const struct sk_buff *skb,
3959 		       struct tcp_options_received *opt_rx, int estab,
3960 		       struct tcp_fastopen_cookie *foc)
3961 {
3962 	const unsigned char *ptr;
3963 	const struct tcphdr *th = tcp_hdr(skb);
3964 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3965 
3966 	ptr = (const unsigned char *)(th + 1);
3967 	opt_rx->saw_tstamp = 0;
3968 	opt_rx->saw_unknown = 0;
3969 
3970 	while (length > 0) {
3971 		int opcode = *ptr++;
3972 		int opsize;
3973 
3974 		switch (opcode) {
3975 		case TCPOPT_EOL:
3976 			return;
3977 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3978 			length--;
3979 			continue;
3980 		default:
3981 			if (length < 2)
3982 				return;
3983 			opsize = *ptr++;
3984 			if (opsize < 2) /* "silly options" */
3985 				return;
3986 			if (opsize > length)
3987 				return;	/* don't parse partial options */
3988 			switch (opcode) {
3989 			case TCPOPT_MSS:
3990 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3991 					u16 in_mss = get_unaligned_be16(ptr);
3992 					if (in_mss) {
3993 						if (opt_rx->user_mss &&
3994 						    opt_rx->user_mss < in_mss)
3995 							in_mss = opt_rx->user_mss;
3996 						opt_rx->mss_clamp = in_mss;
3997 					}
3998 				}
3999 				break;
4000 			case TCPOPT_WINDOW:
4001 				if (opsize == TCPOLEN_WINDOW && th->syn &&
4002 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
4003 					__u8 snd_wscale = *(__u8 *)ptr;
4004 					opt_rx->wscale_ok = 1;
4005 					if (snd_wscale > TCP_MAX_WSCALE) {
4006 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4007 								     __func__,
4008 								     snd_wscale,
4009 								     TCP_MAX_WSCALE);
4010 						snd_wscale = TCP_MAX_WSCALE;
4011 					}
4012 					opt_rx->snd_wscale = snd_wscale;
4013 				}
4014 				break;
4015 			case TCPOPT_TIMESTAMP:
4016 				if ((opsize == TCPOLEN_TIMESTAMP) &&
4017 				    ((estab && opt_rx->tstamp_ok) ||
4018 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
4019 					opt_rx->saw_tstamp = 1;
4020 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4021 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4022 				}
4023 				break;
4024 			case TCPOPT_SACK_PERM:
4025 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4026 				    !estab && net->ipv4.sysctl_tcp_sack) {
4027 					opt_rx->sack_ok = TCP_SACK_SEEN;
4028 					tcp_sack_reset(opt_rx);
4029 				}
4030 				break;
4031 
4032 			case TCPOPT_SACK:
4033 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4034 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4035 				   opt_rx->sack_ok) {
4036 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4037 				}
4038 				break;
4039 #ifdef CONFIG_TCP_MD5SIG
4040 			case TCPOPT_MD5SIG:
4041 				/*
4042 				 * The MD5 Hash has already been
4043 				 * checked (see tcp_v{4,6}_do_rcv()).
4044 				 */
4045 				break;
4046 #endif
4047 			case TCPOPT_FASTOPEN:
4048 				tcp_parse_fastopen_option(
4049 					opsize - TCPOLEN_FASTOPEN_BASE,
4050 					ptr, th->syn, foc, false);
4051 				break;
4052 
4053 			case TCPOPT_EXP:
4054 				/* Fast Open option shares code 254 using a
4055 				 * 16 bits magic number.
4056 				 */
4057 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4058 				    get_unaligned_be16(ptr) ==
4059 				    TCPOPT_FASTOPEN_MAGIC) {
4060 					tcp_parse_fastopen_option(opsize -
4061 						TCPOLEN_EXP_FASTOPEN_BASE,
4062 						ptr + 2, th->syn, foc, true);
4063 					break;
4064 				}
4065 
4066 				if (smc_parse_options(th, opt_rx, ptr, opsize))
4067 					break;
4068 
4069 				opt_rx->saw_unknown = 1;
4070 				break;
4071 
4072 			default:
4073 				opt_rx->saw_unknown = 1;
4074 			}
4075 			ptr += opsize-2;
4076 			length -= opsize;
4077 		}
4078 	}
4079 }
4080 EXPORT_SYMBOL(tcp_parse_options);
4081 
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)4082 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4083 {
4084 	const __be32 *ptr = (const __be32 *)(th + 1);
4085 
4086 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4087 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4088 		tp->rx_opt.saw_tstamp = 1;
4089 		++ptr;
4090 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4091 		++ptr;
4092 		if (*ptr)
4093 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4094 		else
4095 			tp->rx_opt.rcv_tsecr = 0;
4096 		return true;
4097 	}
4098 	return false;
4099 }
4100 
4101 /* Fast parse options. This hopes to only see timestamps.
4102  * If it is wrong it falls back on tcp_parse_options().
4103  */
tcp_fast_parse_options(const struct net * net,const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)4104 static bool tcp_fast_parse_options(const struct net *net,
4105 				   const struct sk_buff *skb,
4106 				   const struct tcphdr *th, struct tcp_sock *tp)
4107 {
4108 	/* In the spirit of fast parsing, compare doff directly to constant
4109 	 * values.  Because equality is used, short doff can be ignored here.
4110 	 */
4111 	if (th->doff == (sizeof(*th) / 4)) {
4112 		tp->rx_opt.saw_tstamp = 0;
4113 		return false;
4114 	} else if (tp->rx_opt.tstamp_ok &&
4115 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4116 		if (tcp_parse_aligned_timestamp(tp, th))
4117 			return true;
4118 	}
4119 
4120 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4121 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4122 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4123 
4124 	return true;
4125 }
4126 
4127 #ifdef CONFIG_TCP_MD5SIG
4128 /*
4129  * Parse MD5 Signature option
4130  */
tcp_parse_md5sig_option(const struct tcphdr * th)4131 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4132 {
4133 	int length = (th->doff << 2) - sizeof(*th);
4134 	const u8 *ptr = (const u8 *)(th + 1);
4135 
4136 	/* If not enough data remaining, we can short cut */
4137 	while (length >= TCPOLEN_MD5SIG) {
4138 		int opcode = *ptr++;
4139 		int opsize;
4140 
4141 		switch (opcode) {
4142 		case TCPOPT_EOL:
4143 			return NULL;
4144 		case TCPOPT_NOP:
4145 			length--;
4146 			continue;
4147 		default:
4148 			opsize = *ptr++;
4149 			if (opsize < 2 || opsize > length)
4150 				return NULL;
4151 			if (opcode == TCPOPT_MD5SIG)
4152 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4153 		}
4154 		ptr += opsize - 2;
4155 		length -= opsize;
4156 	}
4157 	return NULL;
4158 }
4159 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4160 #endif
4161 
4162 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4163  *
4164  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4165  * it can pass through stack. So, the following predicate verifies that
4166  * this segment is not used for anything but congestion avoidance or
4167  * fast retransmit. Moreover, we even are able to eliminate most of such
4168  * second order effects, if we apply some small "replay" window (~RTO)
4169  * to timestamp space.
4170  *
4171  * All these measures still do not guarantee that we reject wrapped ACKs
4172  * on networks with high bandwidth, when sequence space is recycled fastly,
4173  * but it guarantees that such events will be very rare and do not affect
4174  * connection seriously. This doesn't look nice, but alas, PAWS is really
4175  * buggy extension.
4176  *
4177  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4178  * states that events when retransmit arrives after original data are rare.
4179  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4180  * the biggest problem on large power networks even with minor reordering.
4181  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4182  * up to bandwidth of 18Gigabit/sec. 8) ]
4183  */
4184 
tcp_disordered_ack(const struct sock * sk,const struct sk_buff * skb)4185 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4186 {
4187 	const struct tcp_sock *tp = tcp_sk(sk);
4188 	const struct tcphdr *th = tcp_hdr(skb);
4189 	u32 seq = TCP_SKB_CB(skb)->seq;
4190 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4191 
4192 	return (/* 1. Pure ACK with correct sequence number. */
4193 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4194 
4195 		/* 2. ... and duplicate ACK. */
4196 		ack == tp->snd_una &&
4197 
4198 		/* 3. ... and does not update window. */
4199 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4200 
4201 		/* 4. ... and sits in replay window. */
4202 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4203 }
4204 
tcp_paws_discard(const struct sock * sk,const struct sk_buff * skb)4205 static inline bool tcp_paws_discard(const struct sock *sk,
4206 				   const struct sk_buff *skb)
4207 {
4208 	const struct tcp_sock *tp = tcp_sk(sk);
4209 
4210 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4211 	       !tcp_disordered_ack(sk, skb);
4212 }
4213 
4214 /* Check segment sequence number for validity.
4215  *
4216  * Segment controls are considered valid, if the segment
4217  * fits to the window after truncation to the window. Acceptability
4218  * of data (and SYN, FIN, of course) is checked separately.
4219  * See tcp_data_queue(), for example.
4220  *
4221  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4222  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4223  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4224  * (borrowed from freebsd)
4225  */
4226 
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)4227 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4228 {
4229 	return	!before(end_seq, tp->rcv_wup) &&
4230 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4231 }
4232 
4233 /* When we get a reset we do this. */
tcp_reset(struct sock * sk)4234 void tcp_reset(struct sock *sk)
4235 {
4236 	trace_tcp_receive_reset(sk);
4237 
4238 	/* We want the right error as BSD sees it (and indeed as we do). */
4239 	switch (sk->sk_state) {
4240 	case TCP_SYN_SENT:
4241 		sk->sk_err = ECONNREFUSED;
4242 		break;
4243 	case TCP_CLOSE_WAIT:
4244 		sk->sk_err = EPIPE;
4245 		break;
4246 	case TCP_CLOSE:
4247 		return;
4248 	default:
4249 		sk->sk_err = ECONNRESET;
4250 	}
4251 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4252 	smp_wmb();
4253 
4254 	tcp_write_queue_purge(sk);
4255 	tcp_done(sk);
4256 
4257 	if (!sock_flag(sk, SOCK_DEAD))
4258 		sk->sk_error_report(sk);
4259 }
4260 
4261 /*
4262  * 	Process the FIN bit. This now behaves as it is supposed to work
4263  *	and the FIN takes effect when it is validly part of sequence
4264  *	space. Not before when we get holes.
4265  *
4266  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4267  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4268  *	TIME-WAIT)
4269  *
4270  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4271  *	close and we go into CLOSING (and later onto TIME-WAIT)
4272  *
4273  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4274  */
tcp_fin(struct sock * sk)4275 void tcp_fin(struct sock *sk)
4276 {
4277 	struct tcp_sock *tp = tcp_sk(sk);
4278 
4279 	inet_csk_schedule_ack(sk);
4280 
4281 	sk->sk_shutdown |= RCV_SHUTDOWN;
4282 	sock_set_flag(sk, SOCK_DONE);
4283 
4284 	switch (sk->sk_state) {
4285 	case TCP_SYN_RECV:
4286 	case TCP_ESTABLISHED:
4287 		/* Move to CLOSE_WAIT */
4288 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4289 		inet_csk_enter_pingpong_mode(sk);
4290 		break;
4291 
4292 	case TCP_CLOSE_WAIT:
4293 	case TCP_CLOSING:
4294 		/* Received a retransmission of the FIN, do
4295 		 * nothing.
4296 		 */
4297 		break;
4298 	case TCP_LAST_ACK:
4299 		/* RFC793: Remain in the LAST-ACK state. */
4300 		break;
4301 
4302 	case TCP_FIN_WAIT1:
4303 		/* This case occurs when a simultaneous close
4304 		 * happens, we must ack the received FIN and
4305 		 * enter the CLOSING state.
4306 		 */
4307 		tcp_send_ack(sk);
4308 		tcp_set_state(sk, TCP_CLOSING);
4309 		break;
4310 	case TCP_FIN_WAIT2:
4311 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4312 		tcp_send_ack(sk);
4313 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4314 		break;
4315 	default:
4316 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4317 		 * cases we should never reach this piece of code.
4318 		 */
4319 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4320 		       __func__, sk->sk_state);
4321 		break;
4322 	}
4323 
4324 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4325 	 * Probably, we should reset in this case. For now drop them.
4326 	 */
4327 	skb_rbtree_purge(&tp->out_of_order_queue);
4328 	if (tcp_is_sack(tp))
4329 		tcp_sack_reset(&tp->rx_opt);
4330 	sk_mem_reclaim(sk);
4331 
4332 	if (!sock_flag(sk, SOCK_DEAD)) {
4333 		sk->sk_state_change(sk);
4334 
4335 		/* Do not send POLL_HUP for half duplex close. */
4336 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4337 		    sk->sk_state == TCP_CLOSE)
4338 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4339 		else
4340 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4341 	}
4342 }
4343 
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4344 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4345 				  u32 end_seq)
4346 {
4347 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4348 		if (before(seq, sp->start_seq))
4349 			sp->start_seq = seq;
4350 		if (after(end_seq, sp->end_seq))
4351 			sp->end_seq = end_seq;
4352 		return true;
4353 	}
4354 	return false;
4355 }
4356 
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4357 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4358 {
4359 	struct tcp_sock *tp = tcp_sk(sk);
4360 
4361 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4362 		int mib_idx;
4363 
4364 		if (before(seq, tp->rcv_nxt))
4365 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4366 		else
4367 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4368 
4369 		NET_INC_STATS(sock_net(sk), mib_idx);
4370 
4371 		tp->rx_opt.dsack = 1;
4372 		tp->duplicate_sack[0].start_seq = seq;
4373 		tp->duplicate_sack[0].end_seq = end_seq;
4374 	}
4375 }
4376 
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4377 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4378 {
4379 	struct tcp_sock *tp = tcp_sk(sk);
4380 
4381 	if (!tp->rx_opt.dsack)
4382 		tcp_dsack_set(sk, seq, end_seq);
4383 	else
4384 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4385 }
4386 
tcp_rcv_spurious_retrans(struct sock * sk,const struct sk_buff * skb)4387 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4388 {
4389 	/* When the ACK path fails or drops most ACKs, the sender would
4390 	 * timeout and spuriously retransmit the same segment repeatedly.
4391 	 * The receiver remembers and reflects via DSACKs. Leverage the
4392 	 * DSACK state and change the txhash to re-route speculatively.
4393 	 */
4394 	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4395 	    sk_rethink_txhash(sk))
4396 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4397 }
4398 
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4399 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4400 {
4401 	struct tcp_sock *tp = tcp_sk(sk);
4402 
4403 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4404 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4405 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4406 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4407 
4408 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4409 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4410 
4411 			tcp_rcv_spurious_retrans(sk, skb);
4412 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4413 				end_seq = tp->rcv_nxt;
4414 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4415 		}
4416 	}
4417 
4418 	tcp_send_ack(sk);
4419 }
4420 
4421 /* These routines update the SACK block as out-of-order packets arrive or
4422  * in-order packets close up the sequence space.
4423  */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4424 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4425 {
4426 	int this_sack;
4427 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4428 	struct tcp_sack_block *swalk = sp + 1;
4429 
4430 	/* See if the recent change to the first SACK eats into
4431 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4432 	 */
4433 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4434 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4435 			int i;
4436 
4437 			/* Zap SWALK, by moving every further SACK up by one slot.
4438 			 * Decrease num_sacks.
4439 			 */
4440 			tp->rx_opt.num_sacks--;
4441 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4442 				sp[i] = sp[i + 1];
4443 			continue;
4444 		}
4445 		this_sack++;
4446 		swalk++;
4447 	}
4448 }
4449 
tcp_sack_compress_send_ack(struct sock * sk)4450 static void tcp_sack_compress_send_ack(struct sock *sk)
4451 {
4452 	struct tcp_sock *tp = tcp_sk(sk);
4453 
4454 	if (!tp->compressed_ack)
4455 		return;
4456 
4457 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4458 		__sock_put(sk);
4459 
4460 	/* Since we have to send one ack finally,
4461 	 * substract one from tp->compressed_ack to keep
4462 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4463 	 */
4464 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4465 		      tp->compressed_ack - 1);
4466 
4467 	tp->compressed_ack = 0;
4468 	tcp_send_ack(sk);
4469 }
4470 
4471 /* Reasonable amount of sack blocks included in TCP SACK option
4472  * The max is 4, but this becomes 3 if TCP timestamps are there.
4473  * Given that SACK packets might be lost, be conservative and use 2.
4474  */
4475 #define TCP_SACK_BLOCKS_EXPECTED 2
4476 
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4477 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4478 {
4479 	struct tcp_sock *tp = tcp_sk(sk);
4480 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4481 	int cur_sacks = tp->rx_opt.num_sacks;
4482 	int this_sack;
4483 
4484 	if (!cur_sacks)
4485 		goto new_sack;
4486 
4487 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4488 		if (tcp_sack_extend(sp, seq, end_seq)) {
4489 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4490 				tcp_sack_compress_send_ack(sk);
4491 			/* Rotate this_sack to the first one. */
4492 			for (; this_sack > 0; this_sack--, sp--)
4493 				swap(*sp, *(sp - 1));
4494 			if (cur_sacks > 1)
4495 				tcp_sack_maybe_coalesce(tp);
4496 			return;
4497 		}
4498 	}
4499 
4500 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4501 		tcp_sack_compress_send_ack(sk);
4502 
4503 	/* Could not find an adjacent existing SACK, build a new one,
4504 	 * put it at the front, and shift everyone else down.  We
4505 	 * always know there is at least one SACK present already here.
4506 	 *
4507 	 * If the sack array is full, forget about the last one.
4508 	 */
4509 	if (this_sack >= TCP_NUM_SACKS) {
4510 		this_sack--;
4511 		tp->rx_opt.num_sacks--;
4512 		sp--;
4513 	}
4514 	for (; this_sack > 0; this_sack--, sp--)
4515 		*sp = *(sp - 1);
4516 
4517 new_sack:
4518 	/* Build the new head SACK, and we're done. */
4519 	sp->start_seq = seq;
4520 	sp->end_seq = end_seq;
4521 	tp->rx_opt.num_sacks++;
4522 }
4523 
4524 /* RCV.NXT advances, some SACKs should be eaten. */
4525 
tcp_sack_remove(struct tcp_sock * tp)4526 static void tcp_sack_remove(struct tcp_sock *tp)
4527 {
4528 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4529 	int num_sacks = tp->rx_opt.num_sacks;
4530 	int this_sack;
4531 
4532 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4533 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4534 		tp->rx_opt.num_sacks = 0;
4535 		return;
4536 	}
4537 
4538 	for (this_sack = 0; this_sack < num_sacks;) {
4539 		/* Check if the start of the sack is covered by RCV.NXT. */
4540 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4541 			int i;
4542 
4543 			/* RCV.NXT must cover all the block! */
4544 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4545 
4546 			/* Zap this SACK, by moving forward any other SACKS. */
4547 			for (i = this_sack+1; i < num_sacks; i++)
4548 				tp->selective_acks[i-1] = tp->selective_acks[i];
4549 			num_sacks--;
4550 			continue;
4551 		}
4552 		this_sack++;
4553 		sp++;
4554 	}
4555 	tp->rx_opt.num_sacks = num_sacks;
4556 }
4557 
4558 /**
4559  * tcp_try_coalesce - try to merge skb to prior one
4560  * @sk: socket
4561  * @to: prior buffer
4562  * @from: buffer to add in queue
4563  * @fragstolen: pointer to boolean
4564  *
4565  * Before queueing skb @from after @to, try to merge them
4566  * to reduce overall memory use and queue lengths, if cost is small.
4567  * Packets in ofo or receive queues can stay a long time.
4568  * Better try to coalesce them right now to avoid future collapses.
4569  * Returns true if caller should free @from instead of queueing it
4570  */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4571 static bool tcp_try_coalesce(struct sock *sk,
4572 			     struct sk_buff *to,
4573 			     struct sk_buff *from,
4574 			     bool *fragstolen)
4575 {
4576 	int delta;
4577 
4578 	*fragstolen = false;
4579 
4580 	/* Its possible this segment overlaps with prior segment in queue */
4581 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4582 		return false;
4583 
4584 	if (!mptcp_skb_can_collapse(to, from))
4585 		return false;
4586 
4587 #ifdef CONFIG_TLS_DEVICE
4588 	if (from->decrypted != to->decrypted)
4589 		return false;
4590 #endif
4591 
4592 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4593 		return false;
4594 
4595 	atomic_add(delta, &sk->sk_rmem_alloc);
4596 	sk_mem_charge(sk, delta);
4597 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4598 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4599 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4600 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4601 
4602 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4603 		TCP_SKB_CB(to)->has_rxtstamp = true;
4604 		to->tstamp = from->tstamp;
4605 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4606 	}
4607 
4608 	return true;
4609 }
4610 
tcp_ooo_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4611 static bool tcp_ooo_try_coalesce(struct sock *sk,
4612 			     struct sk_buff *to,
4613 			     struct sk_buff *from,
4614 			     bool *fragstolen)
4615 {
4616 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4617 
4618 	/* In case tcp_drop() is called later, update to->gso_segs */
4619 	if (res) {
4620 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4621 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4622 
4623 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4624 	}
4625 	return res;
4626 }
4627 
tcp_drop(struct sock * sk,struct sk_buff * skb)4628 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4629 {
4630 	sk_drops_add(sk, skb);
4631 	__kfree_skb(skb);
4632 }
4633 
4634 /* This one checks to see if we can put data from the
4635  * out_of_order queue into the receive_queue.
4636  */
tcp_ofo_queue(struct sock * sk)4637 static void tcp_ofo_queue(struct sock *sk)
4638 {
4639 	struct tcp_sock *tp = tcp_sk(sk);
4640 	__u32 dsack_high = tp->rcv_nxt;
4641 	bool fin, fragstolen, eaten;
4642 	struct sk_buff *skb, *tail;
4643 	struct rb_node *p;
4644 
4645 	p = rb_first(&tp->out_of_order_queue);
4646 	while (p) {
4647 		skb = rb_to_skb(p);
4648 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4649 			break;
4650 
4651 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4652 			__u32 dsack = dsack_high;
4653 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4654 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4655 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4656 		}
4657 		p = rb_next(p);
4658 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4659 
4660 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4661 			tcp_drop(sk, skb);
4662 			continue;
4663 		}
4664 
4665 		tail = skb_peek_tail(&sk->sk_receive_queue);
4666 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4667 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4668 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4669 		if (!eaten)
4670 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4671 		else
4672 			kfree_skb_partial(skb, fragstolen);
4673 
4674 		if (unlikely(fin)) {
4675 			tcp_fin(sk);
4676 			/* tcp_fin() purges tp->out_of_order_queue,
4677 			 * so we must end this loop right now.
4678 			 */
4679 			break;
4680 		}
4681 	}
4682 }
4683 
4684 static bool tcp_prune_ofo_queue(struct sock *sk);
4685 static int tcp_prune_queue(struct sock *sk);
4686 
tcp_try_rmem_schedule(struct sock * sk,struct sk_buff * skb,unsigned int size)4687 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4688 				 unsigned int size)
4689 {
4690 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4691 	    !sk_rmem_schedule(sk, skb, size)) {
4692 
4693 		if (tcp_prune_queue(sk) < 0)
4694 			return -1;
4695 
4696 		while (!sk_rmem_schedule(sk, skb, size)) {
4697 			if (!tcp_prune_ofo_queue(sk))
4698 				return -1;
4699 		}
4700 	}
4701 	return 0;
4702 }
4703 
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)4704 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4705 {
4706 	struct tcp_sock *tp = tcp_sk(sk);
4707 	struct rb_node **p, *parent;
4708 	struct sk_buff *skb1;
4709 	u32 seq, end_seq;
4710 	bool fragstolen;
4711 
4712 	tcp_ecn_check_ce(sk, skb);
4713 
4714 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4715 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4716 		sk->sk_data_ready(sk);
4717 		tcp_drop(sk, skb);
4718 		return;
4719 	}
4720 
4721 	/* Disable header prediction. */
4722 	tp->pred_flags = 0;
4723 	inet_csk_schedule_ack(sk);
4724 
4725 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4726 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4727 	seq = TCP_SKB_CB(skb)->seq;
4728 	end_seq = TCP_SKB_CB(skb)->end_seq;
4729 
4730 	p = &tp->out_of_order_queue.rb_node;
4731 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4732 		/* Initial out of order segment, build 1 SACK. */
4733 		if (tcp_is_sack(tp)) {
4734 			tp->rx_opt.num_sacks = 1;
4735 			tp->selective_acks[0].start_seq = seq;
4736 			tp->selective_acks[0].end_seq = end_seq;
4737 		}
4738 		rb_link_node(&skb->rbnode, NULL, p);
4739 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4740 		tp->ooo_last_skb = skb;
4741 		goto end;
4742 	}
4743 
4744 	/* In the typical case, we are adding an skb to the end of the list.
4745 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4746 	 */
4747 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4748 				 skb, &fragstolen)) {
4749 coalesce_done:
4750 		/* For non sack flows, do not grow window to force DUPACK
4751 		 * and trigger fast retransmit.
4752 		 */
4753 		if (tcp_is_sack(tp))
4754 			tcp_grow_window(sk, skb);
4755 		kfree_skb_partial(skb, fragstolen);
4756 		skb = NULL;
4757 		goto add_sack;
4758 	}
4759 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4760 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4761 		parent = &tp->ooo_last_skb->rbnode;
4762 		p = &parent->rb_right;
4763 		goto insert;
4764 	}
4765 
4766 	/* Find place to insert this segment. Handle overlaps on the way. */
4767 	parent = NULL;
4768 	while (*p) {
4769 		parent = *p;
4770 		skb1 = rb_to_skb(parent);
4771 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4772 			p = &parent->rb_left;
4773 			continue;
4774 		}
4775 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4776 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4777 				/* All the bits are present. Drop. */
4778 				NET_INC_STATS(sock_net(sk),
4779 					      LINUX_MIB_TCPOFOMERGE);
4780 				tcp_drop(sk, skb);
4781 				skb = NULL;
4782 				tcp_dsack_set(sk, seq, end_seq);
4783 				goto add_sack;
4784 			}
4785 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4786 				/* Partial overlap. */
4787 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4788 			} else {
4789 				/* skb's seq == skb1's seq and skb covers skb1.
4790 				 * Replace skb1 with skb.
4791 				 */
4792 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4793 						&tp->out_of_order_queue);
4794 				tcp_dsack_extend(sk,
4795 						 TCP_SKB_CB(skb1)->seq,
4796 						 TCP_SKB_CB(skb1)->end_seq);
4797 				NET_INC_STATS(sock_net(sk),
4798 					      LINUX_MIB_TCPOFOMERGE);
4799 				tcp_drop(sk, skb1);
4800 				goto merge_right;
4801 			}
4802 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4803 						skb, &fragstolen)) {
4804 			goto coalesce_done;
4805 		}
4806 		p = &parent->rb_right;
4807 	}
4808 insert:
4809 	/* Insert segment into RB tree. */
4810 	rb_link_node(&skb->rbnode, parent, p);
4811 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4812 
4813 merge_right:
4814 	/* Remove other segments covered by skb. */
4815 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4816 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4817 			break;
4818 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4819 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4820 					 end_seq);
4821 			break;
4822 		}
4823 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4824 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4825 				 TCP_SKB_CB(skb1)->end_seq);
4826 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4827 		tcp_drop(sk, skb1);
4828 	}
4829 	/* If there is no skb after us, we are the last_skb ! */
4830 	if (!skb1)
4831 		tp->ooo_last_skb = skb;
4832 
4833 add_sack:
4834 	if (tcp_is_sack(tp))
4835 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4836 end:
4837 	if (skb) {
4838 		/* For non sack flows, do not grow window to force DUPACK
4839 		 * and trigger fast retransmit.
4840 		 */
4841 		if (tcp_is_sack(tp))
4842 			tcp_grow_window(sk, skb);
4843 		skb_condense(skb);
4844 		skb_set_owner_r(skb, sk);
4845 	}
4846 }
4847 
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,bool * fragstolen)4848 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4849 				      bool *fragstolen)
4850 {
4851 	int eaten;
4852 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4853 
4854 	eaten = (tail &&
4855 		 tcp_try_coalesce(sk, tail,
4856 				  skb, fragstolen)) ? 1 : 0;
4857 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4858 	if (!eaten) {
4859 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4860 		skb_set_owner_r(skb, sk);
4861 	}
4862 	return eaten;
4863 }
4864 
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)4865 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4866 {
4867 	struct sk_buff *skb;
4868 	int err = -ENOMEM;
4869 	int data_len = 0;
4870 	bool fragstolen;
4871 
4872 	if (size == 0)
4873 		return 0;
4874 
4875 	if (size > PAGE_SIZE) {
4876 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4877 
4878 		data_len = npages << PAGE_SHIFT;
4879 		size = data_len + (size & ~PAGE_MASK);
4880 	}
4881 	skb = alloc_skb_with_frags(size - data_len, data_len,
4882 				   PAGE_ALLOC_COSTLY_ORDER,
4883 				   &err, sk->sk_allocation);
4884 	if (!skb)
4885 		goto err;
4886 
4887 	skb_put(skb, size - data_len);
4888 	skb->data_len = data_len;
4889 	skb->len = size;
4890 
4891 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4892 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4893 		goto err_free;
4894 	}
4895 
4896 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4897 	if (err)
4898 		goto err_free;
4899 
4900 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4901 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4902 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4903 
4904 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4905 		WARN_ON_ONCE(fragstolen); /* should not happen */
4906 		__kfree_skb(skb);
4907 	}
4908 	return size;
4909 
4910 err_free:
4911 	kfree_skb(skb);
4912 err:
4913 	return err;
4914 
4915 }
4916 
tcp_data_ready(struct sock * sk)4917 void tcp_data_ready(struct sock *sk)
4918 {
4919 	const struct tcp_sock *tp = tcp_sk(sk);
4920 	int avail = tp->rcv_nxt - tp->copied_seq;
4921 
4922 	if (avail < sk->sk_rcvlowat && !tcp_rmem_pressure(sk) &&
4923 	    !sock_flag(sk, SOCK_DONE) &&
4924 	    tcp_receive_window(tp) > inet_csk(sk)->icsk_ack.rcv_mss)
4925 		return;
4926 
4927 	sk->sk_data_ready(sk);
4928 }
4929 
tcp_data_queue(struct sock * sk,struct sk_buff * skb)4930 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4931 {
4932 	struct tcp_sock *tp = tcp_sk(sk);
4933 	bool fragstolen;
4934 	int eaten;
4935 
4936 	if (sk_is_mptcp(sk))
4937 		mptcp_incoming_options(sk, skb);
4938 
4939 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4940 		__kfree_skb(skb);
4941 		return;
4942 	}
4943 	skb_dst_drop(skb);
4944 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4945 
4946 	tp->rx_opt.dsack = 0;
4947 
4948 	/*  Queue data for delivery to the user.
4949 	 *  Packets in sequence go to the receive queue.
4950 	 *  Out of sequence packets to the out_of_order_queue.
4951 	 */
4952 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4953 		if (tcp_receive_window(tp) == 0) {
4954 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4955 			goto out_of_window;
4956 		}
4957 
4958 		/* Ok. In sequence. In window. */
4959 queue_and_out:
4960 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4961 			sk_forced_mem_schedule(sk, skb->truesize);
4962 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4963 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4964 			sk->sk_data_ready(sk);
4965 			goto drop;
4966 		}
4967 
4968 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
4969 		if (skb->len)
4970 			tcp_event_data_recv(sk, skb);
4971 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4972 			tcp_fin(sk);
4973 
4974 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4975 			tcp_ofo_queue(sk);
4976 
4977 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
4978 			 * gap in queue is filled.
4979 			 */
4980 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4981 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4982 		}
4983 
4984 		if (tp->rx_opt.num_sacks)
4985 			tcp_sack_remove(tp);
4986 
4987 		tcp_fast_path_check(sk);
4988 
4989 		if (eaten > 0)
4990 			kfree_skb_partial(skb, fragstolen);
4991 		if (!sock_flag(sk, SOCK_DEAD))
4992 			tcp_data_ready(sk);
4993 		return;
4994 	}
4995 
4996 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4997 		tcp_rcv_spurious_retrans(sk, skb);
4998 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4999 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5000 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5001 
5002 out_of_window:
5003 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5004 		inet_csk_schedule_ack(sk);
5005 drop:
5006 		tcp_drop(sk, skb);
5007 		return;
5008 	}
5009 
5010 	/* Out of window. F.e. zero window probe. */
5011 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
5012 		goto out_of_window;
5013 
5014 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5015 		/* Partial packet, seq < rcv_next < end_seq */
5016 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5017 
5018 		/* If window is closed, drop tail of packet. But after
5019 		 * remembering D-SACK for its head made in previous line.
5020 		 */
5021 		if (!tcp_receive_window(tp)) {
5022 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5023 			goto out_of_window;
5024 		}
5025 		goto queue_and_out;
5026 	}
5027 
5028 	tcp_data_queue_ofo(sk, skb);
5029 }
5030 
tcp_skb_next(struct sk_buff * skb,struct sk_buff_head * list)5031 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5032 {
5033 	if (list)
5034 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5035 
5036 	return skb_rb_next(skb);
5037 }
5038 
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list,struct rb_root * root)5039 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5040 					struct sk_buff_head *list,
5041 					struct rb_root *root)
5042 {
5043 	struct sk_buff *next = tcp_skb_next(skb, list);
5044 
5045 	if (list)
5046 		__skb_unlink(skb, list);
5047 	else
5048 		rb_erase(&skb->rbnode, root);
5049 
5050 	__kfree_skb(skb);
5051 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5052 
5053 	return next;
5054 }
5055 
5056 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp_rbtree_insert(struct rb_root * root,struct sk_buff * skb)5057 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5058 {
5059 	struct rb_node **p = &root->rb_node;
5060 	struct rb_node *parent = NULL;
5061 	struct sk_buff *skb1;
5062 
5063 	while (*p) {
5064 		parent = *p;
5065 		skb1 = rb_to_skb(parent);
5066 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5067 			p = &parent->rb_left;
5068 		else
5069 			p = &parent->rb_right;
5070 	}
5071 	rb_link_node(&skb->rbnode, parent, p);
5072 	rb_insert_color(&skb->rbnode, root);
5073 }
5074 
5075 /* Collapse contiguous sequence of skbs head..tail with
5076  * sequence numbers start..end.
5077  *
5078  * If tail is NULL, this means until the end of the queue.
5079  *
5080  * Segments with FIN/SYN are not collapsed (only because this
5081  * simplifies code)
5082  */
5083 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct rb_root * root,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)5084 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5085 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5086 {
5087 	struct sk_buff *skb = head, *n;
5088 	struct sk_buff_head tmp;
5089 	bool end_of_skbs;
5090 
5091 	/* First, check that queue is collapsible and find
5092 	 * the point where collapsing can be useful.
5093 	 */
5094 restart:
5095 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5096 		n = tcp_skb_next(skb, list);
5097 
5098 		/* No new bits? It is possible on ofo queue. */
5099 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5100 			skb = tcp_collapse_one(sk, skb, list, root);
5101 			if (!skb)
5102 				break;
5103 			goto restart;
5104 		}
5105 
5106 		/* The first skb to collapse is:
5107 		 * - not SYN/FIN and
5108 		 * - bloated or contains data before "start" or
5109 		 *   overlaps to the next one and mptcp allow collapsing.
5110 		 */
5111 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5112 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5113 		     before(TCP_SKB_CB(skb)->seq, start))) {
5114 			end_of_skbs = false;
5115 			break;
5116 		}
5117 
5118 		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5119 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5120 			end_of_skbs = false;
5121 			break;
5122 		}
5123 
5124 		/* Decided to skip this, advance start seq. */
5125 		start = TCP_SKB_CB(skb)->end_seq;
5126 	}
5127 	if (end_of_skbs ||
5128 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5129 		return;
5130 
5131 	__skb_queue_head_init(&tmp);
5132 
5133 	while (before(start, end)) {
5134 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5135 		struct sk_buff *nskb;
5136 
5137 		nskb = alloc_skb(copy, GFP_ATOMIC);
5138 		if (!nskb)
5139 			break;
5140 
5141 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5142 #ifdef CONFIG_TLS_DEVICE
5143 		nskb->decrypted = skb->decrypted;
5144 #endif
5145 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5146 		if (list)
5147 			__skb_queue_before(list, skb, nskb);
5148 		else
5149 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5150 		skb_set_owner_r(nskb, sk);
5151 		mptcp_skb_ext_move(nskb, skb);
5152 
5153 		/* Copy data, releasing collapsed skbs. */
5154 		while (copy > 0) {
5155 			int offset = start - TCP_SKB_CB(skb)->seq;
5156 			int size = TCP_SKB_CB(skb)->end_seq - start;
5157 
5158 			BUG_ON(offset < 0);
5159 			if (size > 0) {
5160 				size = min(copy, size);
5161 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5162 					BUG();
5163 				TCP_SKB_CB(nskb)->end_seq += size;
5164 				copy -= size;
5165 				start += size;
5166 			}
5167 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5168 				skb = tcp_collapse_one(sk, skb, list, root);
5169 				if (!skb ||
5170 				    skb == tail ||
5171 				    !mptcp_skb_can_collapse(nskb, skb) ||
5172 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5173 					goto end;
5174 #ifdef CONFIG_TLS_DEVICE
5175 				if (skb->decrypted != nskb->decrypted)
5176 					goto end;
5177 #endif
5178 			}
5179 		}
5180 	}
5181 end:
5182 	skb_queue_walk_safe(&tmp, skb, n)
5183 		tcp_rbtree_insert(root, skb);
5184 }
5185 
5186 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5187  * and tcp_collapse() them until all the queue is collapsed.
5188  */
tcp_collapse_ofo_queue(struct sock * sk)5189 static void tcp_collapse_ofo_queue(struct sock *sk)
5190 {
5191 	struct tcp_sock *tp = tcp_sk(sk);
5192 	u32 range_truesize, sum_tiny = 0;
5193 	struct sk_buff *skb, *head;
5194 	u32 start, end;
5195 
5196 	skb = skb_rb_first(&tp->out_of_order_queue);
5197 new_range:
5198 	if (!skb) {
5199 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5200 		return;
5201 	}
5202 	start = TCP_SKB_CB(skb)->seq;
5203 	end = TCP_SKB_CB(skb)->end_seq;
5204 	range_truesize = skb->truesize;
5205 
5206 	for (head = skb;;) {
5207 		skb = skb_rb_next(skb);
5208 
5209 		/* Range is terminated when we see a gap or when
5210 		 * we are at the queue end.
5211 		 */
5212 		if (!skb ||
5213 		    after(TCP_SKB_CB(skb)->seq, end) ||
5214 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5215 			/* Do not attempt collapsing tiny skbs */
5216 			if (range_truesize != head->truesize ||
5217 			    end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5218 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5219 					     head, skb, start, end);
5220 			} else {
5221 				sum_tiny += range_truesize;
5222 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5223 					return;
5224 			}
5225 			goto new_range;
5226 		}
5227 
5228 		range_truesize += skb->truesize;
5229 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5230 			start = TCP_SKB_CB(skb)->seq;
5231 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5232 			end = TCP_SKB_CB(skb)->end_seq;
5233 	}
5234 }
5235 
5236 /*
5237  * Clean the out-of-order queue to make room.
5238  * We drop high sequences packets to :
5239  * 1) Let a chance for holes to be filled.
5240  * 2) not add too big latencies if thousands of packets sit there.
5241  *    (But if application shrinks SO_RCVBUF, we could still end up
5242  *     freeing whole queue here)
5243  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5244  *
5245  * Return true if queue has shrunk.
5246  */
tcp_prune_ofo_queue(struct sock * sk)5247 static bool tcp_prune_ofo_queue(struct sock *sk)
5248 {
5249 	struct tcp_sock *tp = tcp_sk(sk);
5250 	struct rb_node *node, *prev;
5251 	int goal;
5252 
5253 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5254 		return false;
5255 
5256 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5257 	goal = sk->sk_rcvbuf >> 3;
5258 	node = &tp->ooo_last_skb->rbnode;
5259 	do {
5260 		prev = rb_prev(node);
5261 		rb_erase(node, &tp->out_of_order_queue);
5262 		goal -= rb_to_skb(node)->truesize;
5263 		tcp_drop(sk, rb_to_skb(node));
5264 		if (!prev || goal <= 0) {
5265 			sk_mem_reclaim(sk);
5266 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5267 			    !tcp_under_memory_pressure(sk))
5268 				break;
5269 			goal = sk->sk_rcvbuf >> 3;
5270 		}
5271 		node = prev;
5272 	} while (node);
5273 	tp->ooo_last_skb = rb_to_skb(prev);
5274 
5275 	/* Reset SACK state.  A conforming SACK implementation will
5276 	 * do the same at a timeout based retransmit.  When a connection
5277 	 * is in a sad state like this, we care only about integrity
5278 	 * of the connection not performance.
5279 	 */
5280 	if (tp->rx_opt.sack_ok)
5281 		tcp_sack_reset(&tp->rx_opt);
5282 	return true;
5283 }
5284 
5285 /* Reduce allocated memory if we can, trying to get
5286  * the socket within its memory limits again.
5287  *
5288  * Return less than zero if we should start dropping frames
5289  * until the socket owning process reads some of the data
5290  * to stabilize the situation.
5291  */
tcp_prune_queue(struct sock * sk)5292 static int tcp_prune_queue(struct sock *sk)
5293 {
5294 	struct tcp_sock *tp = tcp_sk(sk);
5295 
5296 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5297 
5298 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5299 		tcp_clamp_window(sk);
5300 	else if (tcp_under_memory_pressure(sk))
5301 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5302 
5303 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5304 		return 0;
5305 
5306 	tcp_collapse_ofo_queue(sk);
5307 	if (!skb_queue_empty(&sk->sk_receive_queue))
5308 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5309 			     skb_peek(&sk->sk_receive_queue),
5310 			     NULL,
5311 			     tp->copied_seq, tp->rcv_nxt);
5312 	sk_mem_reclaim(sk);
5313 
5314 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5315 		return 0;
5316 
5317 	/* Collapsing did not help, destructive actions follow.
5318 	 * This must not ever occur. */
5319 
5320 	tcp_prune_ofo_queue(sk);
5321 
5322 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5323 		return 0;
5324 
5325 	/* If we are really being abused, tell the caller to silently
5326 	 * drop receive data on the floor.  It will get retransmitted
5327 	 * and hopefully then we'll have sufficient space.
5328 	 */
5329 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5330 
5331 	/* Massive buffer overcommit. */
5332 	tp->pred_flags = 0;
5333 	return -1;
5334 }
5335 
tcp_should_expand_sndbuf(const struct sock * sk)5336 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5337 {
5338 	const struct tcp_sock *tp = tcp_sk(sk);
5339 
5340 	/* If the user specified a specific send buffer setting, do
5341 	 * not modify it.
5342 	 */
5343 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5344 		return false;
5345 
5346 	/* If we are under global TCP memory pressure, do not expand.  */
5347 	if (tcp_under_memory_pressure(sk))
5348 		return false;
5349 
5350 	/* If we are under soft global TCP memory pressure, do not expand.  */
5351 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5352 		return false;
5353 
5354 	/* If we filled the congestion window, do not expand.  */
5355 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5356 		return false;
5357 
5358 	return true;
5359 }
5360 
tcp_new_space(struct sock * sk)5361 static void tcp_new_space(struct sock *sk)
5362 {
5363 	struct tcp_sock *tp = tcp_sk(sk);
5364 
5365 	if (tcp_should_expand_sndbuf(sk)) {
5366 		tcp_sndbuf_expand(sk);
5367 		tp->snd_cwnd_stamp = tcp_jiffies32;
5368 	}
5369 
5370 	sk->sk_write_space(sk);
5371 }
5372 
tcp_check_space(struct sock * sk)5373 static void tcp_check_space(struct sock *sk)
5374 {
5375 	/* pairs with tcp_poll() */
5376 	smp_mb();
5377 	if (sk->sk_socket &&
5378 	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5379 		tcp_new_space(sk);
5380 		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5381 			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5382 	}
5383 }
5384 
tcp_data_snd_check(struct sock * sk)5385 static inline void tcp_data_snd_check(struct sock *sk)
5386 {
5387 	tcp_push_pending_frames(sk);
5388 	tcp_check_space(sk);
5389 }
5390 
5391 /*
5392  * Check if sending an ack is needed.
5393  */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5394 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5395 {
5396 	struct tcp_sock *tp = tcp_sk(sk);
5397 	unsigned long rtt, delay;
5398 
5399 	    /* More than one full frame received... */
5400 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5401 	     /* ... and right edge of window advances far enough.
5402 	      * (tcp_recvmsg() will send ACK otherwise).
5403 	      * If application uses SO_RCVLOWAT, we want send ack now if
5404 	      * we have not received enough bytes to satisfy the condition.
5405 	      */
5406 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5407 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5408 	    /* We ACK each frame or... */
5409 	    tcp_in_quickack_mode(sk) ||
5410 	    /* Protocol state mandates a one-time immediate ACK */
5411 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5412 send_now:
5413 		tcp_send_ack(sk);
5414 		return;
5415 	}
5416 
5417 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5418 		tcp_send_delayed_ack(sk);
5419 		return;
5420 	}
5421 
5422 	if (!tcp_is_sack(tp) ||
5423 	    tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5424 		goto send_now;
5425 
5426 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5427 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5428 		tp->dup_ack_counter = 0;
5429 	}
5430 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5431 		tp->dup_ack_counter++;
5432 		goto send_now;
5433 	}
5434 	tp->compressed_ack++;
5435 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5436 		return;
5437 
5438 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5439 
5440 	rtt = tp->rcv_rtt_est.rtt_us;
5441 	if (tp->srtt_us && tp->srtt_us < rtt)
5442 		rtt = tp->srtt_us;
5443 
5444 	delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5445 		      rtt * (NSEC_PER_USEC >> 3)/20);
5446 	sock_hold(sk);
5447 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5448 			       sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns,
5449 			       HRTIMER_MODE_REL_PINNED_SOFT);
5450 }
5451 
tcp_ack_snd_check(struct sock * sk)5452 static inline void tcp_ack_snd_check(struct sock *sk)
5453 {
5454 	if (!inet_csk_ack_scheduled(sk)) {
5455 		/* We sent a data segment already. */
5456 		return;
5457 	}
5458 	__tcp_ack_snd_check(sk, 1);
5459 }
5460 
5461 /*
5462  *	This routine is only called when we have urgent data
5463  *	signaled. Its the 'slow' part of tcp_urg. It could be
5464  *	moved inline now as tcp_urg is only called from one
5465  *	place. We handle URGent data wrong. We have to - as
5466  *	BSD still doesn't use the correction from RFC961.
5467  *	For 1003.1g we should support a new option TCP_STDURG to permit
5468  *	either form (or just set the sysctl tcp_stdurg).
5469  */
5470 
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5471 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5472 {
5473 	struct tcp_sock *tp = tcp_sk(sk);
5474 	u32 ptr = ntohs(th->urg_ptr);
5475 
5476 	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5477 		ptr--;
5478 	ptr += ntohl(th->seq);
5479 
5480 	/* Ignore urgent data that we've already seen and read. */
5481 	if (after(tp->copied_seq, ptr))
5482 		return;
5483 
5484 	/* Do not replay urg ptr.
5485 	 *
5486 	 * NOTE: interesting situation not covered by specs.
5487 	 * Misbehaving sender may send urg ptr, pointing to segment,
5488 	 * which we already have in ofo queue. We are not able to fetch
5489 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5490 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5491 	 * situations. But it is worth to think about possibility of some
5492 	 * DoSes using some hypothetical application level deadlock.
5493 	 */
5494 	if (before(ptr, tp->rcv_nxt))
5495 		return;
5496 
5497 	/* Do we already have a newer (or duplicate) urgent pointer? */
5498 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5499 		return;
5500 
5501 	/* Tell the world about our new urgent pointer. */
5502 	sk_send_sigurg(sk);
5503 
5504 	/* We may be adding urgent data when the last byte read was
5505 	 * urgent. To do this requires some care. We cannot just ignore
5506 	 * tp->copied_seq since we would read the last urgent byte again
5507 	 * as data, nor can we alter copied_seq until this data arrives
5508 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5509 	 *
5510 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5511 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5512 	 * and expect that both A and B disappear from stream. This is _wrong_.
5513 	 * Though this happens in BSD with high probability, this is occasional.
5514 	 * Any application relying on this is buggy. Note also, that fix "works"
5515 	 * only in this artificial test. Insert some normal data between A and B and we will
5516 	 * decline of BSD again. Verdict: it is better to remove to trap
5517 	 * buggy users.
5518 	 */
5519 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5520 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5521 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5522 		tp->copied_seq++;
5523 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5524 			__skb_unlink(skb, &sk->sk_receive_queue);
5525 			__kfree_skb(skb);
5526 		}
5527 	}
5528 
5529 	tp->urg_data = TCP_URG_NOTYET;
5530 	WRITE_ONCE(tp->urg_seq, ptr);
5531 
5532 	/* Disable header prediction. */
5533 	tp->pred_flags = 0;
5534 }
5535 
5536 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5537 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5538 {
5539 	struct tcp_sock *tp = tcp_sk(sk);
5540 
5541 	/* Check if we get a new urgent pointer - normally not. */
5542 	if (th->urg)
5543 		tcp_check_urg(sk, th);
5544 
5545 	/* Do we wait for any urgent data? - normally not... */
5546 	if (tp->urg_data == TCP_URG_NOTYET) {
5547 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5548 			  th->syn;
5549 
5550 		/* Is the urgent pointer pointing into this packet? */
5551 		if (ptr < skb->len) {
5552 			u8 tmp;
5553 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5554 				BUG();
5555 			tp->urg_data = TCP_URG_VALID | tmp;
5556 			if (!sock_flag(sk, SOCK_DEAD))
5557 				sk->sk_data_ready(sk);
5558 		}
5559 	}
5560 }
5561 
5562 /* Accept RST for rcv_nxt - 1 after a FIN.
5563  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5564  * FIN is sent followed by a RST packet. The RST is sent with the same
5565  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5566  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5567  * ACKs on the closed socket. In addition middleboxes can drop either the
5568  * challenge ACK or a subsequent RST.
5569  */
tcp_reset_check(const struct sock * sk,const struct sk_buff * skb)5570 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5571 {
5572 	struct tcp_sock *tp = tcp_sk(sk);
5573 
5574 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5575 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5576 					       TCPF_CLOSING));
5577 }
5578 
5579 /* Does PAWS and seqno based validation of an incoming segment, flags will
5580  * play significant role here.
5581  */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5582 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5583 				  const struct tcphdr *th, int syn_inerr)
5584 {
5585 	struct tcp_sock *tp = tcp_sk(sk);
5586 	bool rst_seq_match = false;
5587 
5588 	/* RFC1323: H1. Apply PAWS check first. */
5589 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5590 	    tp->rx_opt.saw_tstamp &&
5591 	    tcp_paws_discard(sk, skb)) {
5592 		if (!th->rst) {
5593 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5594 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5595 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5596 						  &tp->last_oow_ack_time))
5597 				tcp_send_dupack(sk, skb);
5598 			goto discard;
5599 		}
5600 		/* Reset is accepted even if it did not pass PAWS. */
5601 	}
5602 
5603 	/* Step 1: check sequence number */
5604 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5605 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5606 		 * (RST) segments are validated by checking their SEQ-fields."
5607 		 * And page 69: "If an incoming segment is not acceptable,
5608 		 * an acknowledgment should be sent in reply (unless the RST
5609 		 * bit is set, if so drop the segment and return)".
5610 		 */
5611 		if (!th->rst) {
5612 			if (th->syn)
5613 				goto syn_challenge;
5614 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5615 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5616 						  &tp->last_oow_ack_time))
5617 				tcp_send_dupack(sk, skb);
5618 		} else if (tcp_reset_check(sk, skb)) {
5619 			tcp_reset(sk);
5620 		}
5621 		goto discard;
5622 	}
5623 
5624 	/* Step 2: check RST bit */
5625 	if (th->rst) {
5626 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5627 		 * FIN and SACK too if available):
5628 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5629 		 * the right-most SACK block,
5630 		 * then
5631 		 *     RESET the connection
5632 		 * else
5633 		 *     Send a challenge ACK
5634 		 */
5635 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5636 		    tcp_reset_check(sk, skb)) {
5637 			rst_seq_match = true;
5638 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5639 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5640 			int max_sack = sp[0].end_seq;
5641 			int this_sack;
5642 
5643 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5644 			     ++this_sack) {
5645 				max_sack = after(sp[this_sack].end_seq,
5646 						 max_sack) ?
5647 					sp[this_sack].end_seq : max_sack;
5648 			}
5649 
5650 			if (TCP_SKB_CB(skb)->seq == max_sack)
5651 				rst_seq_match = true;
5652 		}
5653 
5654 		if (rst_seq_match)
5655 			tcp_reset(sk);
5656 		else {
5657 			/* Disable TFO if RST is out-of-order
5658 			 * and no data has been received
5659 			 * for current active TFO socket
5660 			 */
5661 			if (tp->syn_fastopen && !tp->data_segs_in &&
5662 			    sk->sk_state == TCP_ESTABLISHED)
5663 				tcp_fastopen_active_disable(sk);
5664 			tcp_send_challenge_ack(sk, skb);
5665 		}
5666 		goto discard;
5667 	}
5668 
5669 	/* step 3: check security and precedence [ignored] */
5670 
5671 	/* step 4: Check for a SYN
5672 	 * RFC 5961 4.2 : Send a challenge ack
5673 	 */
5674 	if (th->syn) {
5675 syn_challenge:
5676 		if (syn_inerr)
5677 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5678 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5679 		tcp_send_challenge_ack(sk, skb);
5680 		goto discard;
5681 	}
5682 
5683 	bpf_skops_parse_hdr(sk, skb);
5684 
5685 	return true;
5686 
5687 discard:
5688 	tcp_drop(sk, skb);
5689 	return false;
5690 }
5691 
5692 /*
5693  *	TCP receive function for the ESTABLISHED state.
5694  *
5695  *	It is split into a fast path and a slow path. The fast path is
5696  * 	disabled when:
5697  *	- A zero window was announced from us - zero window probing
5698  *        is only handled properly in the slow path.
5699  *	- Out of order segments arrived.
5700  *	- Urgent data is expected.
5701  *	- There is no buffer space left
5702  *	- Unexpected TCP flags/window values/header lengths are received
5703  *	  (detected by checking the TCP header against pred_flags)
5704  *	- Data is sent in both directions. Fast path only supports pure senders
5705  *	  or pure receivers (this means either the sequence number or the ack
5706  *	  value must stay constant)
5707  *	- Unexpected TCP option.
5708  *
5709  *	When these conditions are not satisfied it drops into a standard
5710  *	receive procedure patterned after RFC793 to handle all cases.
5711  *	The first three cases are guaranteed by proper pred_flags setting,
5712  *	the rest is checked inline. Fast processing is turned on in
5713  *	tcp_data_queue when everything is OK.
5714  */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb)5715 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5716 {
5717 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5718 	struct tcp_sock *tp = tcp_sk(sk);
5719 	unsigned int len = skb->len;
5720 
5721 	/* TCP congestion window tracking */
5722 	trace_tcp_probe(sk, skb);
5723 
5724 	tcp_mstamp_refresh(tp);
5725 	if (unlikely(!sk->sk_rx_dst))
5726 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5727 	/*
5728 	 *	Header prediction.
5729 	 *	The code loosely follows the one in the famous
5730 	 *	"30 instruction TCP receive" Van Jacobson mail.
5731 	 *
5732 	 *	Van's trick is to deposit buffers into socket queue
5733 	 *	on a device interrupt, to call tcp_recv function
5734 	 *	on the receive process context and checksum and copy
5735 	 *	the buffer to user space. smart...
5736 	 *
5737 	 *	Our current scheme is not silly either but we take the
5738 	 *	extra cost of the net_bh soft interrupt processing...
5739 	 *	We do checksum and copy also but from device to kernel.
5740 	 */
5741 
5742 	tp->rx_opt.saw_tstamp = 0;
5743 
5744 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5745 	 *	if header_prediction is to be made
5746 	 *	'S' will always be tp->tcp_header_len >> 2
5747 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5748 	 *  turn it off	(when there are holes in the receive
5749 	 *	 space for instance)
5750 	 *	PSH flag is ignored.
5751 	 */
5752 
5753 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5754 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5755 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5756 		int tcp_header_len = tp->tcp_header_len;
5757 
5758 		/* Timestamp header prediction: tcp_header_len
5759 		 * is automatically equal to th->doff*4 due to pred_flags
5760 		 * match.
5761 		 */
5762 
5763 		/* Check timestamp */
5764 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5765 			/* No? Slow path! */
5766 			if (!tcp_parse_aligned_timestamp(tp, th))
5767 				goto slow_path;
5768 
5769 			/* If PAWS failed, check it more carefully in slow path */
5770 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5771 				goto slow_path;
5772 
5773 			/* DO NOT update ts_recent here, if checksum fails
5774 			 * and timestamp was corrupted part, it will result
5775 			 * in a hung connection since we will drop all
5776 			 * future packets due to the PAWS test.
5777 			 */
5778 		}
5779 
5780 		if (len <= tcp_header_len) {
5781 			/* Bulk data transfer: sender */
5782 			if (len == tcp_header_len) {
5783 				/* Predicted packet is in window by definition.
5784 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5785 				 * Hence, check seq<=rcv_wup reduces to:
5786 				 */
5787 				if (tcp_header_len ==
5788 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5789 				    tp->rcv_nxt == tp->rcv_wup)
5790 					tcp_store_ts_recent(tp);
5791 
5792 				/* We know that such packets are checksummed
5793 				 * on entry.
5794 				 */
5795 				tcp_ack(sk, skb, 0);
5796 				__kfree_skb(skb);
5797 				tcp_data_snd_check(sk);
5798 				/* When receiving pure ack in fast path, update
5799 				 * last ts ecr directly instead of calling
5800 				 * tcp_rcv_rtt_measure_ts()
5801 				 */
5802 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5803 				return;
5804 			} else { /* Header too small */
5805 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5806 				goto discard;
5807 			}
5808 		} else {
5809 			int eaten = 0;
5810 			bool fragstolen = false;
5811 
5812 			if (tcp_checksum_complete(skb))
5813 				goto csum_error;
5814 
5815 			if ((int)skb->truesize > sk->sk_forward_alloc)
5816 				goto step5;
5817 
5818 			/* Predicted packet is in window by definition.
5819 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5820 			 * Hence, check seq<=rcv_wup reduces to:
5821 			 */
5822 			if (tcp_header_len ==
5823 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5824 			    tp->rcv_nxt == tp->rcv_wup)
5825 				tcp_store_ts_recent(tp);
5826 
5827 			tcp_rcv_rtt_measure_ts(sk, skb);
5828 
5829 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5830 
5831 			/* Bulk data transfer: receiver */
5832 			__skb_pull(skb, tcp_header_len);
5833 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5834 
5835 			tcp_event_data_recv(sk, skb);
5836 
5837 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5838 				/* Well, only one small jumplet in fast path... */
5839 				tcp_ack(sk, skb, FLAG_DATA);
5840 				tcp_data_snd_check(sk);
5841 				if (!inet_csk_ack_scheduled(sk))
5842 					goto no_ack;
5843 			} else {
5844 				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5845 			}
5846 
5847 			__tcp_ack_snd_check(sk, 0);
5848 no_ack:
5849 			if (eaten)
5850 				kfree_skb_partial(skb, fragstolen);
5851 			tcp_data_ready(sk);
5852 			return;
5853 		}
5854 	}
5855 
5856 slow_path:
5857 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5858 		goto csum_error;
5859 
5860 	if (!th->ack && !th->rst && !th->syn)
5861 		goto discard;
5862 
5863 	/*
5864 	 *	Standard slow path.
5865 	 */
5866 
5867 	if (!tcp_validate_incoming(sk, skb, th, 1))
5868 		return;
5869 
5870 step5:
5871 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5872 		goto discard;
5873 
5874 	tcp_rcv_rtt_measure_ts(sk, skb);
5875 
5876 	/* Process urgent data. */
5877 	tcp_urg(sk, skb, th);
5878 
5879 	/* step 7: process the segment text */
5880 	tcp_data_queue(sk, skb);
5881 
5882 	tcp_data_snd_check(sk);
5883 	tcp_ack_snd_check(sk);
5884 	return;
5885 
5886 csum_error:
5887 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5888 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5889 
5890 discard:
5891 	tcp_drop(sk, skb);
5892 }
5893 EXPORT_SYMBOL(tcp_rcv_established);
5894 
tcp_init_transfer(struct sock * sk,int bpf_op,struct sk_buff * skb)5895 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
5896 {
5897 	struct inet_connection_sock *icsk = inet_csk(sk);
5898 	struct tcp_sock *tp = tcp_sk(sk);
5899 
5900 	tcp_mtup_init(sk);
5901 	icsk->icsk_af_ops->rebuild_header(sk);
5902 	tcp_init_metrics(sk);
5903 
5904 	/* Initialize the congestion window to start the transfer.
5905 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5906 	 * retransmitted. In light of RFC6298 more aggressive 1sec
5907 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5908 	 * retransmission has occurred.
5909 	 */
5910 	if (tp->total_retrans > 1 && tp->undo_marker)
5911 		tp->snd_cwnd = 1;
5912 	else
5913 		tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5914 	tp->snd_cwnd_stamp = tcp_jiffies32;
5915 
5916 	bpf_skops_established(sk, bpf_op, skb);
5917 	/* Initialize congestion control unless BPF initialized it already: */
5918 	if (!icsk->icsk_ca_initialized)
5919 		tcp_init_congestion_control(sk);
5920 	tcp_init_buffer_space(sk);
5921 }
5922 
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)5923 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5924 {
5925 	struct tcp_sock *tp = tcp_sk(sk);
5926 	struct inet_connection_sock *icsk = inet_csk(sk);
5927 
5928 	tcp_set_state(sk, TCP_ESTABLISHED);
5929 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5930 
5931 	if (skb) {
5932 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5933 		security_inet_conn_established(sk, skb);
5934 		sk_mark_napi_id(sk, skb);
5935 	}
5936 
5937 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
5938 
5939 	/* Prevent spurious tcp_cwnd_restart() on first data
5940 	 * packet.
5941 	 */
5942 	tp->lsndtime = tcp_jiffies32;
5943 
5944 	if (sock_flag(sk, SOCK_KEEPOPEN))
5945 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5946 
5947 	if (!tp->rx_opt.snd_wscale)
5948 		__tcp_fast_path_on(tp, tp->snd_wnd);
5949 	else
5950 		tp->pred_flags = 0;
5951 }
5952 
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)5953 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5954 				    struct tcp_fastopen_cookie *cookie)
5955 {
5956 	struct tcp_sock *tp = tcp_sk(sk);
5957 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5958 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5959 	bool syn_drop = false;
5960 
5961 	if (mss == tp->rx_opt.user_mss) {
5962 		struct tcp_options_received opt;
5963 
5964 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5965 		tcp_clear_options(&opt);
5966 		opt.user_mss = opt.mss_clamp = 0;
5967 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5968 		mss = opt.mss_clamp;
5969 	}
5970 
5971 	if (!tp->syn_fastopen) {
5972 		/* Ignore an unsolicited cookie */
5973 		cookie->len = -1;
5974 	} else if (tp->total_retrans) {
5975 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5976 		 * acknowledges data. Presumably the remote received only
5977 		 * the retransmitted (regular) SYNs: either the original
5978 		 * SYN-data or the corresponding SYN-ACK was dropped.
5979 		 */
5980 		syn_drop = (cookie->len < 0 && data);
5981 	} else if (cookie->len < 0 && !tp->syn_data) {
5982 		/* We requested a cookie but didn't get it. If we did not use
5983 		 * the (old) exp opt format then try so next time (try_exp=1).
5984 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5985 		 */
5986 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5987 	}
5988 
5989 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5990 
5991 	if (data) { /* Retransmit unacked data in SYN */
5992 		if (tp->total_retrans)
5993 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
5994 		else
5995 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
5996 		skb_rbtree_walk_from(data) {
5997 			if (__tcp_retransmit_skb(sk, data, 1))
5998 				break;
5999 		}
6000 		tcp_rearm_rto(sk);
6001 		NET_INC_STATS(sock_net(sk),
6002 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6003 		return true;
6004 	}
6005 	tp->syn_data_acked = tp->syn_data;
6006 	if (tp->syn_data_acked) {
6007 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6008 		/* SYN-data is counted as two separate packets in tcp_ack() */
6009 		if (tp->delivered > 1)
6010 			--tp->delivered;
6011 	}
6012 
6013 	tcp_fastopen_add_skb(sk, synack);
6014 
6015 	return false;
6016 }
6017 
smc_check_reset_syn(struct tcp_sock * tp)6018 static void smc_check_reset_syn(struct tcp_sock *tp)
6019 {
6020 #if IS_ENABLED(CONFIG_SMC)
6021 	if (static_branch_unlikely(&tcp_have_smc)) {
6022 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6023 			tp->syn_smc = 0;
6024 	}
6025 #endif
6026 }
6027 
tcp_try_undo_spurious_syn(struct sock * sk)6028 static void tcp_try_undo_spurious_syn(struct sock *sk)
6029 {
6030 	struct tcp_sock *tp = tcp_sk(sk);
6031 	u32 syn_stamp;
6032 
6033 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6034 	 * spurious if the ACK's timestamp option echo value matches the
6035 	 * original SYN timestamp.
6036 	 */
6037 	syn_stamp = tp->retrans_stamp;
6038 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6039 	    syn_stamp == tp->rx_opt.rcv_tsecr)
6040 		tp->undo_marker = 0;
6041 }
6042 
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)6043 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6044 					 const struct tcphdr *th)
6045 {
6046 	struct inet_connection_sock *icsk = inet_csk(sk);
6047 	struct tcp_sock *tp = tcp_sk(sk);
6048 	struct tcp_fastopen_cookie foc = { .len = -1 };
6049 	int saved_clamp = tp->rx_opt.mss_clamp;
6050 	bool fastopen_fail;
6051 
6052 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6053 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6054 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6055 
6056 	if (th->ack) {
6057 		/* rfc793:
6058 		 * "If the state is SYN-SENT then
6059 		 *    first check the ACK bit
6060 		 *      If the ACK bit is set
6061 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6062 		 *        a reset (unless the RST bit is set, if so drop
6063 		 *        the segment and return)"
6064 		 */
6065 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6066 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6067 			/* Previous FIN/ACK or RST/ACK might be ignored. */
6068 			if (icsk->icsk_retransmits == 0)
6069 				inet_csk_reset_xmit_timer(sk,
6070 						ICSK_TIME_RETRANS,
6071 						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6072 			goto reset_and_undo;
6073 		}
6074 
6075 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6076 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6077 			     tcp_time_stamp(tp))) {
6078 			NET_INC_STATS(sock_net(sk),
6079 					LINUX_MIB_PAWSACTIVEREJECTED);
6080 			goto reset_and_undo;
6081 		}
6082 
6083 		/* Now ACK is acceptable.
6084 		 *
6085 		 * "If the RST bit is set
6086 		 *    If the ACK was acceptable then signal the user "error:
6087 		 *    connection reset", drop the segment, enter CLOSED state,
6088 		 *    delete TCB, and return."
6089 		 */
6090 
6091 		if (th->rst) {
6092 			tcp_reset(sk);
6093 			goto discard;
6094 		}
6095 
6096 		/* rfc793:
6097 		 *   "fifth, if neither of the SYN or RST bits is set then
6098 		 *    drop the segment and return."
6099 		 *
6100 		 *    See note below!
6101 		 *                                        --ANK(990513)
6102 		 */
6103 		if (!th->syn)
6104 			goto discard_and_undo;
6105 
6106 		/* rfc793:
6107 		 *   "If the SYN bit is on ...
6108 		 *    are acceptable then ...
6109 		 *    (our SYN has been ACKed), change the connection
6110 		 *    state to ESTABLISHED..."
6111 		 */
6112 
6113 		tcp_ecn_rcv_synack(tp, th);
6114 
6115 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6116 		tcp_try_undo_spurious_syn(sk);
6117 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6118 
6119 		/* Ok.. it's good. Set up sequence numbers and
6120 		 * move to established.
6121 		 */
6122 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6123 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6124 
6125 		/* RFC1323: The window in SYN & SYN/ACK segments is
6126 		 * never scaled.
6127 		 */
6128 		tp->snd_wnd = ntohs(th->window);
6129 
6130 		if (!tp->rx_opt.wscale_ok) {
6131 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6132 			tp->window_clamp = min(tp->window_clamp, 65535U);
6133 		}
6134 
6135 		if (tp->rx_opt.saw_tstamp) {
6136 			tp->rx_opt.tstamp_ok	   = 1;
6137 			tp->tcp_header_len =
6138 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6139 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6140 			tcp_store_ts_recent(tp);
6141 		} else {
6142 			tp->tcp_header_len = sizeof(struct tcphdr);
6143 		}
6144 
6145 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6146 		tcp_initialize_rcv_mss(sk);
6147 
6148 		/* Remember, tcp_poll() does not lock socket!
6149 		 * Change state from SYN-SENT only after copied_seq
6150 		 * is initialized. */
6151 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6152 
6153 		smc_check_reset_syn(tp);
6154 
6155 		smp_mb();
6156 
6157 		tcp_finish_connect(sk, skb);
6158 
6159 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6160 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6161 
6162 		if (!sock_flag(sk, SOCK_DEAD)) {
6163 			sk->sk_state_change(sk);
6164 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6165 		}
6166 		if (fastopen_fail)
6167 			return -1;
6168 		if (sk->sk_write_pending ||
6169 		    icsk->icsk_accept_queue.rskq_defer_accept ||
6170 		    inet_csk_in_pingpong_mode(sk)) {
6171 			/* Save one ACK. Data will be ready after
6172 			 * several ticks, if write_pending is set.
6173 			 *
6174 			 * It may be deleted, but with this feature tcpdumps
6175 			 * look so _wonderfully_ clever, that I was not able
6176 			 * to stand against the temptation 8)     --ANK
6177 			 */
6178 			inet_csk_schedule_ack(sk);
6179 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6180 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6181 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6182 
6183 discard:
6184 			tcp_drop(sk, skb);
6185 			return 0;
6186 		} else {
6187 			tcp_send_ack(sk);
6188 		}
6189 		return -1;
6190 	}
6191 
6192 	/* No ACK in the segment */
6193 
6194 	if (th->rst) {
6195 		/* rfc793:
6196 		 * "If the RST bit is set
6197 		 *
6198 		 *      Otherwise (no ACK) drop the segment and return."
6199 		 */
6200 
6201 		goto discard_and_undo;
6202 	}
6203 
6204 	/* PAWS check. */
6205 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6206 	    tcp_paws_reject(&tp->rx_opt, 0))
6207 		goto discard_and_undo;
6208 
6209 	if (th->syn) {
6210 		/* We see SYN without ACK. It is attempt of
6211 		 * simultaneous connect with crossed SYNs.
6212 		 * Particularly, it can be connect to self.
6213 		 */
6214 		tcp_set_state(sk, TCP_SYN_RECV);
6215 
6216 		if (tp->rx_opt.saw_tstamp) {
6217 			tp->rx_opt.tstamp_ok = 1;
6218 			tcp_store_ts_recent(tp);
6219 			tp->tcp_header_len =
6220 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6221 		} else {
6222 			tp->tcp_header_len = sizeof(struct tcphdr);
6223 		}
6224 
6225 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6226 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6227 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6228 
6229 		/* RFC1323: The window in SYN & SYN/ACK segments is
6230 		 * never scaled.
6231 		 */
6232 		tp->snd_wnd    = ntohs(th->window);
6233 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6234 		tp->max_window = tp->snd_wnd;
6235 
6236 		tcp_ecn_rcv_syn(tp, th);
6237 
6238 		tcp_mtup_init(sk);
6239 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6240 		tcp_initialize_rcv_mss(sk);
6241 
6242 		tcp_send_synack(sk);
6243 #if 0
6244 		/* Note, we could accept data and URG from this segment.
6245 		 * There are no obstacles to make this (except that we must
6246 		 * either change tcp_recvmsg() to prevent it from returning data
6247 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6248 		 *
6249 		 * However, if we ignore data in ACKless segments sometimes,
6250 		 * we have no reasons to accept it sometimes.
6251 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6252 		 * is not flawless. So, discard packet for sanity.
6253 		 * Uncomment this return to process the data.
6254 		 */
6255 		return -1;
6256 #else
6257 		goto discard;
6258 #endif
6259 	}
6260 	/* "fifth, if neither of the SYN or RST bits is set then
6261 	 * drop the segment and return."
6262 	 */
6263 
6264 discard_and_undo:
6265 	tcp_clear_options(&tp->rx_opt);
6266 	tp->rx_opt.mss_clamp = saved_clamp;
6267 	goto discard;
6268 
6269 reset_and_undo:
6270 	tcp_clear_options(&tp->rx_opt);
6271 	tp->rx_opt.mss_clamp = saved_clamp;
6272 	return 1;
6273 }
6274 
tcp_rcv_synrecv_state_fastopen(struct sock * sk)6275 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6276 {
6277 	struct request_sock *req;
6278 
6279 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6280 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6281 	 */
6282 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
6283 		tcp_try_undo_loss(sk, false);
6284 
6285 	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6286 	tcp_sk(sk)->retrans_stamp = 0;
6287 	inet_csk(sk)->icsk_retransmits = 0;
6288 
6289 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6290 	 * we no longer need req so release it.
6291 	 */
6292 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6293 					lockdep_sock_is_held(sk));
6294 	reqsk_fastopen_remove(sk, req, false);
6295 
6296 	/* Re-arm the timer because data may have been sent out.
6297 	 * This is similar to the regular data transmission case
6298 	 * when new data has just been ack'ed.
6299 	 *
6300 	 * (TFO) - we could try to be more aggressive and
6301 	 * retransmitting any data sooner based on when they
6302 	 * are sent out.
6303 	 */
6304 	tcp_rearm_rto(sk);
6305 }
6306 
6307 /*
6308  *	This function implements the receiving procedure of RFC 793 for
6309  *	all states except ESTABLISHED and TIME_WAIT.
6310  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6311  *	address independent.
6312  */
6313 
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb)6314 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6315 {
6316 	struct tcp_sock *tp = tcp_sk(sk);
6317 	struct inet_connection_sock *icsk = inet_csk(sk);
6318 	const struct tcphdr *th = tcp_hdr(skb);
6319 	struct request_sock *req;
6320 	int queued = 0;
6321 	bool acceptable;
6322 
6323 	switch (sk->sk_state) {
6324 	case TCP_CLOSE:
6325 		goto discard;
6326 
6327 	case TCP_LISTEN:
6328 		if (th->ack)
6329 			return 1;
6330 
6331 		if (th->rst)
6332 			goto discard;
6333 
6334 		if (th->syn) {
6335 			if (th->fin)
6336 				goto discard;
6337 			/* It is possible that we process SYN packets from backlog,
6338 			 * so we need to make sure to disable BH and RCU right there.
6339 			 */
6340 			rcu_read_lock();
6341 			local_bh_disable();
6342 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6343 			local_bh_enable();
6344 			rcu_read_unlock();
6345 
6346 			if (!acceptable)
6347 				return 1;
6348 			consume_skb(skb);
6349 			return 0;
6350 		}
6351 		goto discard;
6352 
6353 	case TCP_SYN_SENT:
6354 		tp->rx_opt.saw_tstamp = 0;
6355 		tcp_mstamp_refresh(tp);
6356 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6357 		if (queued >= 0)
6358 			return queued;
6359 
6360 		/* Do step6 onward by hand. */
6361 		tcp_urg(sk, skb, th);
6362 		__kfree_skb(skb);
6363 		tcp_data_snd_check(sk);
6364 		return 0;
6365 	}
6366 
6367 	tcp_mstamp_refresh(tp);
6368 	tp->rx_opt.saw_tstamp = 0;
6369 	req = rcu_dereference_protected(tp->fastopen_rsk,
6370 					lockdep_sock_is_held(sk));
6371 	if (req) {
6372 		bool req_stolen;
6373 
6374 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6375 		    sk->sk_state != TCP_FIN_WAIT1);
6376 
6377 		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6378 			goto discard;
6379 	}
6380 
6381 	if (!th->ack && !th->rst && !th->syn)
6382 		goto discard;
6383 
6384 	if (!tcp_validate_incoming(sk, skb, th, 0))
6385 		return 0;
6386 
6387 	/* step 5: check the ACK field */
6388 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6389 				      FLAG_UPDATE_TS_RECENT |
6390 				      FLAG_NO_CHALLENGE_ACK) > 0;
6391 
6392 	if (!acceptable) {
6393 		if (sk->sk_state == TCP_SYN_RECV)
6394 			return 1;	/* send one RST */
6395 		tcp_send_challenge_ack(sk, skb);
6396 		goto discard;
6397 	}
6398 	switch (sk->sk_state) {
6399 	case TCP_SYN_RECV:
6400 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6401 		if (!tp->srtt_us)
6402 			tcp_synack_rtt_meas(sk, req);
6403 
6404 		if (req) {
6405 			tcp_rcv_synrecv_state_fastopen(sk);
6406 		} else {
6407 			tcp_try_undo_spurious_syn(sk);
6408 			tp->retrans_stamp = 0;
6409 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6410 					  skb);
6411 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6412 		}
6413 		smp_mb();
6414 		tcp_set_state(sk, TCP_ESTABLISHED);
6415 		sk->sk_state_change(sk);
6416 
6417 		/* Note, that this wakeup is only for marginal crossed SYN case.
6418 		 * Passively open sockets are not waked up, because
6419 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6420 		 */
6421 		if (sk->sk_socket)
6422 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6423 
6424 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6425 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6426 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6427 
6428 		if (tp->rx_opt.tstamp_ok)
6429 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6430 
6431 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6432 			tcp_update_pacing_rate(sk);
6433 
6434 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6435 		tp->lsndtime = tcp_jiffies32;
6436 
6437 		tcp_initialize_rcv_mss(sk);
6438 		tcp_fast_path_on(tp);
6439 		break;
6440 
6441 	case TCP_FIN_WAIT1: {
6442 		int tmo;
6443 
6444 		if (req)
6445 			tcp_rcv_synrecv_state_fastopen(sk);
6446 
6447 		if (tp->snd_una != tp->write_seq)
6448 			break;
6449 
6450 		tcp_set_state(sk, TCP_FIN_WAIT2);
6451 		sk->sk_shutdown |= SEND_SHUTDOWN;
6452 
6453 		sk_dst_confirm(sk);
6454 
6455 		if (!sock_flag(sk, SOCK_DEAD)) {
6456 			/* Wake up lingering close() */
6457 			sk->sk_state_change(sk);
6458 			break;
6459 		}
6460 
6461 		if (tp->linger2 < 0) {
6462 			tcp_done(sk);
6463 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6464 			return 1;
6465 		}
6466 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6467 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6468 			/* Receive out of order FIN after close() */
6469 			if (tp->syn_fastopen && th->fin)
6470 				tcp_fastopen_active_disable(sk);
6471 			tcp_done(sk);
6472 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6473 			return 1;
6474 		}
6475 
6476 		tmo = tcp_fin_time(sk);
6477 		if (tmo > TCP_TIMEWAIT_LEN) {
6478 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6479 		} else if (th->fin || sock_owned_by_user(sk)) {
6480 			/* Bad case. We could lose such FIN otherwise.
6481 			 * It is not a big problem, but it looks confusing
6482 			 * and not so rare event. We still can lose it now,
6483 			 * if it spins in bh_lock_sock(), but it is really
6484 			 * marginal case.
6485 			 */
6486 			inet_csk_reset_keepalive_timer(sk, tmo);
6487 		} else {
6488 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6489 			goto discard;
6490 		}
6491 		break;
6492 	}
6493 
6494 	case TCP_CLOSING:
6495 		if (tp->snd_una == tp->write_seq) {
6496 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6497 			goto discard;
6498 		}
6499 		break;
6500 
6501 	case TCP_LAST_ACK:
6502 		if (tp->snd_una == tp->write_seq) {
6503 			tcp_update_metrics(sk);
6504 			tcp_done(sk);
6505 			goto discard;
6506 		}
6507 		break;
6508 	}
6509 
6510 	/* step 6: check the URG bit */
6511 	tcp_urg(sk, skb, th);
6512 
6513 	/* step 7: process the segment text */
6514 	switch (sk->sk_state) {
6515 	case TCP_CLOSE_WAIT:
6516 	case TCP_CLOSING:
6517 	case TCP_LAST_ACK:
6518 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6519 			if (sk_is_mptcp(sk))
6520 				mptcp_incoming_options(sk, skb);
6521 			break;
6522 		}
6523 		fallthrough;
6524 	case TCP_FIN_WAIT1:
6525 	case TCP_FIN_WAIT2:
6526 		/* RFC 793 says to queue data in these states,
6527 		 * RFC 1122 says we MUST send a reset.
6528 		 * BSD 4.4 also does reset.
6529 		 */
6530 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6531 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6532 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6533 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6534 				tcp_reset(sk);
6535 				return 1;
6536 			}
6537 		}
6538 		fallthrough;
6539 	case TCP_ESTABLISHED:
6540 		tcp_data_queue(sk, skb);
6541 		queued = 1;
6542 		break;
6543 	}
6544 
6545 	/* tcp_data could move socket to TIME-WAIT */
6546 	if (sk->sk_state != TCP_CLOSE) {
6547 		tcp_data_snd_check(sk);
6548 		tcp_ack_snd_check(sk);
6549 	}
6550 
6551 	if (!queued) {
6552 discard:
6553 		tcp_drop(sk, skb);
6554 	}
6555 	return 0;
6556 }
6557 EXPORT_SYMBOL(tcp_rcv_state_process);
6558 
pr_drop_req(struct request_sock * req,__u16 port,int family)6559 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6560 {
6561 	struct inet_request_sock *ireq = inet_rsk(req);
6562 
6563 	if (family == AF_INET)
6564 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6565 				    &ireq->ir_rmt_addr, port);
6566 #if IS_ENABLED(CONFIG_IPV6)
6567 	else if (family == AF_INET6)
6568 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6569 				    &ireq->ir_v6_rmt_addr, port);
6570 #endif
6571 }
6572 
6573 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6574  *
6575  * If we receive a SYN packet with these bits set, it means a
6576  * network is playing bad games with TOS bits. In order to
6577  * avoid possible false congestion notifications, we disable
6578  * TCP ECN negotiation.
6579  *
6580  * Exception: tcp_ca wants ECN. This is required for DCTCP
6581  * congestion control: Linux DCTCP asserts ECT on all packets,
6582  * including SYN, which is most optimal solution; however,
6583  * others, such as FreeBSD do not.
6584  *
6585  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6586  * set, indicating the use of a future TCP extension (such as AccECN). See
6587  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6588  * extensions.
6589  */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk,const struct dst_entry * dst)6590 static void tcp_ecn_create_request(struct request_sock *req,
6591 				   const struct sk_buff *skb,
6592 				   const struct sock *listen_sk,
6593 				   const struct dst_entry *dst)
6594 {
6595 	const struct tcphdr *th = tcp_hdr(skb);
6596 	const struct net *net = sock_net(listen_sk);
6597 	bool th_ecn = th->ece && th->cwr;
6598 	bool ect, ecn_ok;
6599 	u32 ecn_ok_dst;
6600 
6601 	if (!th_ecn)
6602 		return;
6603 
6604 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6605 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6606 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6607 
6608 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6609 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6610 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6611 		inet_rsk(req)->ecn_ok = 1;
6612 }
6613 
tcp_openreq_init(struct request_sock * req,const struct tcp_options_received * rx_opt,struct sk_buff * skb,const struct sock * sk)6614 static void tcp_openreq_init(struct request_sock *req,
6615 			     const struct tcp_options_received *rx_opt,
6616 			     struct sk_buff *skb, const struct sock *sk)
6617 {
6618 	struct inet_request_sock *ireq = inet_rsk(req);
6619 
6620 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6621 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6622 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6623 	tcp_rsk(req)->snt_synack = 0;
6624 	tcp_rsk(req)->last_oow_ack_time = 0;
6625 	req->mss = rx_opt->mss_clamp;
6626 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6627 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6628 	ireq->sack_ok = rx_opt->sack_ok;
6629 	ireq->snd_wscale = rx_opt->snd_wscale;
6630 	ireq->wscale_ok = rx_opt->wscale_ok;
6631 	ireq->acked = 0;
6632 	ireq->ecn_ok = 0;
6633 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6634 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6635 	ireq->ir_mark = inet_request_mark(sk, skb);
6636 #if IS_ENABLED(CONFIG_SMC)
6637 	ireq->smc_ok = rx_opt->smc_ok;
6638 #endif
6639 }
6640 
inet_reqsk_alloc(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)6641 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6642 				      struct sock *sk_listener,
6643 				      bool attach_listener)
6644 {
6645 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6646 					       attach_listener);
6647 
6648 	if (req) {
6649 		struct inet_request_sock *ireq = inet_rsk(req);
6650 
6651 		ireq->ireq_opt = NULL;
6652 #if IS_ENABLED(CONFIG_IPV6)
6653 		ireq->pktopts = NULL;
6654 #endif
6655 		atomic64_set(&ireq->ir_cookie, 0);
6656 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6657 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6658 		ireq->ireq_family = sk_listener->sk_family;
6659 	}
6660 
6661 	return req;
6662 }
6663 EXPORT_SYMBOL(inet_reqsk_alloc);
6664 
6665 /*
6666  * Return true if a syncookie should be sent
6667  */
tcp_syn_flood_action(const struct sock * sk,const char * proto)6668 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6669 {
6670 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6671 	const char *msg = "Dropping request";
6672 	bool want_cookie = false;
6673 	struct net *net = sock_net(sk);
6674 
6675 #ifdef CONFIG_SYN_COOKIES
6676 	if (net->ipv4.sysctl_tcp_syncookies) {
6677 		msg = "Sending cookies";
6678 		want_cookie = true;
6679 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6680 	} else
6681 #endif
6682 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6683 
6684 	if (!queue->synflood_warned &&
6685 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6686 	    xchg(&queue->synflood_warned, 1) == 0)
6687 		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6688 				     proto, sk->sk_num, msg);
6689 
6690 	return want_cookie;
6691 }
6692 
tcp_reqsk_record_syn(const struct sock * sk,struct request_sock * req,const struct sk_buff * skb)6693 static void tcp_reqsk_record_syn(const struct sock *sk,
6694 				 struct request_sock *req,
6695 				 const struct sk_buff *skb)
6696 {
6697 	if (tcp_sk(sk)->save_syn) {
6698 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6699 		struct saved_syn *saved_syn;
6700 		u32 mac_hdrlen;
6701 		void *base;
6702 
6703 		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
6704 			base = skb_mac_header(skb);
6705 			mac_hdrlen = skb_mac_header_len(skb);
6706 			len += mac_hdrlen;
6707 		} else {
6708 			base = skb_network_header(skb);
6709 			mac_hdrlen = 0;
6710 		}
6711 
6712 		saved_syn = kmalloc(struct_size(saved_syn, data, len),
6713 				    GFP_ATOMIC);
6714 		if (saved_syn) {
6715 			saved_syn->mac_hdrlen = mac_hdrlen;
6716 			saved_syn->network_hdrlen = skb_network_header_len(skb);
6717 			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6718 			memcpy(saved_syn->data, base, len);
6719 			req->saved_syn = saved_syn;
6720 		}
6721 	}
6722 }
6723 
6724 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6725  * used for SYN cookie generation.
6726  */
tcp_get_syncookie_mss(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct tcphdr * th)6727 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6728 			  const struct tcp_request_sock_ops *af_ops,
6729 			  struct sock *sk, struct tcphdr *th)
6730 {
6731 	struct tcp_sock *tp = tcp_sk(sk);
6732 	u16 mss;
6733 
6734 	if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 &&
6735 	    !inet_csk_reqsk_queue_is_full(sk))
6736 		return 0;
6737 
6738 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6739 		return 0;
6740 
6741 	if (sk_acceptq_is_full(sk)) {
6742 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6743 		return 0;
6744 	}
6745 
6746 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6747 	if (!mss)
6748 		mss = af_ops->mss_clamp;
6749 
6750 	return mss;
6751 }
6752 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6753 
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)6754 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6755 		     const struct tcp_request_sock_ops *af_ops,
6756 		     struct sock *sk, struct sk_buff *skb)
6757 {
6758 	struct tcp_fastopen_cookie foc = { .len = -1 };
6759 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6760 	struct tcp_options_received tmp_opt;
6761 	struct tcp_sock *tp = tcp_sk(sk);
6762 	struct net *net = sock_net(sk);
6763 	struct sock *fastopen_sk = NULL;
6764 	struct request_sock *req;
6765 	bool want_cookie = false;
6766 	struct dst_entry *dst;
6767 	struct flowi fl;
6768 
6769 	/* TW buckets are converted to open requests without
6770 	 * limitations, they conserve resources and peer is
6771 	 * evidently real one.
6772 	 */
6773 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6774 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6775 		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6776 		if (!want_cookie)
6777 			goto drop;
6778 	}
6779 
6780 	if (sk_acceptq_is_full(sk)) {
6781 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6782 		goto drop;
6783 	}
6784 
6785 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6786 	if (!req)
6787 		goto drop;
6788 
6789 	req->syncookie = want_cookie;
6790 	tcp_rsk(req)->af_specific = af_ops;
6791 	tcp_rsk(req)->ts_off = 0;
6792 #if IS_ENABLED(CONFIG_MPTCP)
6793 	tcp_rsk(req)->is_mptcp = 0;
6794 #endif
6795 
6796 	tcp_clear_options(&tmp_opt);
6797 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6798 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6799 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6800 			  want_cookie ? NULL : &foc);
6801 
6802 	if (want_cookie && !tmp_opt.saw_tstamp)
6803 		tcp_clear_options(&tmp_opt);
6804 
6805 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6806 		tmp_opt.smc_ok = 0;
6807 
6808 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6809 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6810 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6811 
6812 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6813 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6814 
6815 	af_ops->init_req(req, sk, skb);
6816 
6817 	if (security_inet_conn_request(sk, skb, req))
6818 		goto drop_and_free;
6819 
6820 	if (tmp_opt.tstamp_ok)
6821 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6822 
6823 	dst = af_ops->route_req(sk, &fl, req);
6824 	if (!dst)
6825 		goto drop_and_free;
6826 
6827 	if (!want_cookie && !isn) {
6828 		/* Kill the following clause, if you dislike this way. */
6829 		if (!net->ipv4.sysctl_tcp_syncookies &&
6830 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6831 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6832 		    !tcp_peer_is_proven(req, dst)) {
6833 			/* Without syncookies last quarter of
6834 			 * backlog is filled with destinations,
6835 			 * proven to be alive.
6836 			 * It means that we continue to communicate
6837 			 * to destinations, already remembered
6838 			 * to the moment of synflood.
6839 			 */
6840 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6841 				    rsk_ops->family);
6842 			goto drop_and_release;
6843 		}
6844 
6845 		isn = af_ops->init_seq(skb);
6846 	}
6847 
6848 	tcp_ecn_create_request(req, skb, sk, dst);
6849 
6850 	if (want_cookie) {
6851 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6852 		if (!tmp_opt.tstamp_ok)
6853 			inet_rsk(req)->ecn_ok = 0;
6854 	}
6855 
6856 	tcp_rsk(req)->snt_isn = isn;
6857 	tcp_rsk(req)->txhash = net_tx_rndhash();
6858 	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
6859 	tcp_openreq_init_rwin(req, sk, dst);
6860 	sk_rx_queue_set(req_to_sk(req), skb);
6861 	if (!want_cookie) {
6862 		tcp_reqsk_record_syn(sk, req, skb);
6863 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6864 	}
6865 	if (fastopen_sk) {
6866 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6867 				    &foc, TCP_SYNACK_FASTOPEN, skb);
6868 		/* Add the child socket directly into the accept queue */
6869 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6870 			reqsk_fastopen_remove(fastopen_sk, req, false);
6871 			bh_unlock_sock(fastopen_sk);
6872 			sock_put(fastopen_sk);
6873 			goto drop_and_free;
6874 		}
6875 		sk->sk_data_ready(sk);
6876 		bh_unlock_sock(fastopen_sk);
6877 		sock_put(fastopen_sk);
6878 	} else {
6879 		tcp_rsk(req)->tfo_listener = false;
6880 		if (!want_cookie)
6881 			inet_csk_reqsk_queue_hash_add(sk, req,
6882 				tcp_timeout_init((struct sock *)req));
6883 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6884 				    !want_cookie ? TCP_SYNACK_NORMAL :
6885 						   TCP_SYNACK_COOKIE,
6886 				    skb);
6887 		if (want_cookie) {
6888 			reqsk_free(req);
6889 			return 0;
6890 		}
6891 	}
6892 	reqsk_put(req);
6893 	return 0;
6894 
6895 drop_and_release:
6896 	dst_release(dst);
6897 drop_and_free:
6898 	__reqsk_free(req);
6899 drop:
6900 	tcp_listendrop(sk);
6901 	return 0;
6902 }
6903 EXPORT_SYMBOL(tcp_conn_request);
6904