1 /*
2 * Copyright © 2020 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include "aco_ir.h"
26
27 #include "util/crc32.h"
28
29 #include <algorithm>
30 #include <deque>
31 #include <set>
32 #include <vector>
33
34 namespace aco {
35
36 /* sgpr_presched/vgpr_presched */
37 void
collect_presched_stats(Program * program)38 collect_presched_stats(Program* program)
39 {
40 RegisterDemand presched_demand;
41 for (Block& block : program->blocks)
42 presched_demand.update(block.register_demand);
43 program->statistics[statistic_sgpr_presched] = presched_demand.sgpr;
44 program->statistics[statistic_vgpr_presched] = presched_demand.vgpr;
45 }
46
47 class BlockCycleEstimator {
48 public:
49 enum resource {
50 null = 0,
51 scalar,
52 branch_sendmsg,
53 valu,
54 valu_complex,
55 lds,
56 export_gds,
57 vmem,
58 resource_count,
59 };
60
BlockCycleEstimator(Program * program_)61 BlockCycleEstimator(Program* program_) : program(program_) {}
62
63 Program* program;
64
65 int32_t cur_cycle = 0;
66 int32_t res_available[(int)BlockCycleEstimator::resource_count] = {0};
67 unsigned res_usage[(int)BlockCycleEstimator::resource_count] = {0};
68 int32_t reg_available[512] = {0};
69 std::deque<int32_t> lgkm;
70 std::deque<int32_t> exp;
71 std::deque<int32_t> vm;
72 std::deque<int32_t> vs;
73
74 unsigned predict_cost(aco_ptr<Instruction>& instr);
75 void add(aco_ptr<Instruction>& instr);
76 void join(const BlockCycleEstimator& other);
77
78 private:
79 unsigned get_waitcnt_cost(wait_imm imm);
80 unsigned get_dependency_cost(aco_ptr<Instruction>& instr);
81
82 void use_resources(aco_ptr<Instruction>& instr);
83 int32_t cycles_until_res_available(aco_ptr<Instruction>& instr);
84 };
85
86 struct wait_counter_info {
wait_counter_infoaco::wait_counter_info87 wait_counter_info(unsigned vm_, unsigned exp_, unsigned lgkm_, unsigned vs_)
88 : vm(vm_), exp(exp_), lgkm(lgkm_), vs(vs_)
89 {}
90
91 unsigned vm;
92 unsigned exp;
93 unsigned lgkm;
94 unsigned vs;
95 };
96
97 struct perf_info {
98 int latency;
99
100 BlockCycleEstimator::resource rsrc0;
101 unsigned cost0;
102
103 BlockCycleEstimator::resource rsrc1;
104 unsigned cost1;
105 };
106
107 static perf_info
get_perf_info(Program * program,aco_ptr<Instruction> & instr)108 get_perf_info(Program* program, aco_ptr<Instruction>& instr)
109 {
110 instr_class cls = instr_info.classes[(int)instr->opcode];
111
112 #define WAIT(res) BlockCycleEstimator::res, 0
113 #define WAIT_USE(res, cnt) BlockCycleEstimator::res, cnt
114
115 if (program->chip_class >= GFX10) {
116 /* fp64 might be incorrect */
117 switch (cls) {
118 case instr_class::valu32:
119 case instr_class::valu_convert32:
120 case instr_class::valu_fma: return {5, WAIT_USE(valu, 1)};
121 case instr_class::valu64: return {6, WAIT_USE(valu, 2), WAIT_USE(valu_complex, 2)};
122 case instr_class::valu_quarter_rate32:
123 return {8, WAIT_USE(valu, 4), WAIT_USE(valu_complex, 4)};
124 case instr_class::valu_transcendental32:
125 return {10, WAIT_USE(valu, 1), WAIT_USE(valu_complex, 4)};
126 case instr_class::valu_double: return {22, WAIT_USE(valu, 16), WAIT_USE(valu_complex, 16)};
127 case instr_class::valu_double_add:
128 return {22, WAIT_USE(valu, 16), WAIT_USE(valu_complex, 16)};
129 case instr_class::valu_double_convert:
130 return {22, WAIT_USE(valu, 16), WAIT_USE(valu_complex, 16)};
131 case instr_class::valu_double_transcendental:
132 return {24, WAIT_USE(valu, 16), WAIT_USE(valu_complex, 16)};
133 case instr_class::salu: return {2, WAIT_USE(scalar, 1)};
134 case instr_class::smem: return {0, WAIT_USE(scalar, 1)};
135 case instr_class::branch:
136 case instr_class::sendmsg: return {0, WAIT_USE(branch_sendmsg, 1)};
137 case instr_class::ds:
138 return instr->ds().gds ? perf_info{0, WAIT_USE(export_gds, 1)}
139 : perf_info{0, WAIT_USE(lds, 1)};
140 case instr_class::exp: return {0, WAIT_USE(export_gds, 1)};
141 case instr_class::vmem: return {0, WAIT_USE(vmem, 1)};
142 case instr_class::barrier:
143 case instr_class::waitcnt:
144 case instr_class::other:
145 default: return {0};
146 }
147 } else {
148 switch (cls) {
149 case instr_class::valu32: return {4, WAIT_USE(valu, 4)};
150 case instr_class::valu_convert32: return {16, WAIT_USE(valu, 16)};
151 case instr_class::valu64: return {8, WAIT_USE(valu, 8)};
152 case instr_class::valu_quarter_rate32: return {16, WAIT_USE(valu, 16)};
153 case instr_class::valu_fma:
154 return program->dev.has_fast_fma32 ? perf_info{4, WAIT_USE(valu, 4)}
155 : perf_info{16, WAIT_USE(valu, 16)};
156 case instr_class::valu_transcendental32: return {16, WAIT_USE(valu, 16)};
157 case instr_class::valu_double: return {64, WAIT_USE(valu, 64)};
158 case instr_class::valu_double_add: return {32, WAIT_USE(valu, 32)};
159 case instr_class::valu_double_convert: return {16, WAIT_USE(valu, 16)};
160 case instr_class::valu_double_transcendental: return {64, WAIT_USE(valu, 64)};
161 case instr_class::salu: return {4, WAIT_USE(scalar, 4)};
162 case instr_class::smem: return {4, WAIT_USE(scalar, 4)};
163 case instr_class::branch:
164 return {8, WAIT_USE(branch_sendmsg, 8)};
165 return {4, WAIT_USE(branch_sendmsg, 4)};
166 case instr_class::ds:
167 return instr->ds().gds ? perf_info{4, WAIT_USE(export_gds, 4)}
168 : perf_info{4, WAIT_USE(lds, 4)};
169 case instr_class::exp: return {16, WAIT_USE(export_gds, 16)};
170 case instr_class::vmem: return {4, WAIT_USE(vmem, 4)};
171 case instr_class::barrier:
172 case instr_class::waitcnt:
173 case instr_class::other:
174 default: return {4};
175 }
176 }
177
178 #undef WAIT_USE
179 #undef WAIT
180 }
181
182 void
use_resources(aco_ptr<Instruction> & instr)183 BlockCycleEstimator::use_resources(aco_ptr<Instruction>& instr)
184 {
185 perf_info perf = get_perf_info(program, instr);
186
187 if (perf.rsrc0 != resource_count) {
188 res_available[(int)perf.rsrc0] = cur_cycle + perf.cost0;
189 res_usage[(int)perf.rsrc0] += perf.cost0;
190 }
191
192 if (perf.rsrc1 != resource_count) {
193 res_available[(int)perf.rsrc1] = cur_cycle + perf.cost1;
194 res_usage[(int)perf.rsrc1] += perf.cost1;
195 }
196 }
197
198 int32_t
cycles_until_res_available(aco_ptr<Instruction> & instr)199 BlockCycleEstimator::cycles_until_res_available(aco_ptr<Instruction>& instr)
200 {
201 perf_info perf = get_perf_info(program, instr);
202
203 int32_t cost = 0;
204 if (perf.rsrc0 != resource_count)
205 cost = MAX2(cost, res_available[(int)perf.rsrc0] - cur_cycle);
206 if (perf.rsrc1 != resource_count)
207 cost = MAX2(cost, res_available[(int)perf.rsrc1] - cur_cycle);
208
209 return cost;
210 }
211
212 static wait_counter_info
get_wait_counter_info(aco_ptr<Instruction> & instr)213 get_wait_counter_info(aco_ptr<Instruction>& instr)
214 {
215 /* These numbers are all a bit nonsense. LDS/VMEM/SMEM/EXP performance
216 * depends a lot on the situation. */
217
218 if (instr->isEXP())
219 return wait_counter_info(0, 16, 0, 0);
220
221 if (instr->isFlatLike()) {
222 unsigned lgkm = instr->isFlat() ? 20 : 0;
223 if (!instr->definitions.empty())
224 return wait_counter_info(230, 0, lgkm, 0);
225 else
226 return wait_counter_info(0, 0, lgkm, 230);
227 }
228
229 if (instr->isSMEM()) {
230 if (instr->definitions.empty())
231 return wait_counter_info(0, 0, 200, 0);
232 if (instr->operands.empty()) /* s_memtime and s_memrealtime */
233 return wait_counter_info(0, 0, 1, 0);
234
235 bool likely_desc_load = instr->operands[0].size() == 2;
236 bool soe = instr->operands.size() >= (!instr->definitions.empty() ? 3 : 4);
237 bool const_offset =
238 instr->operands[1].isConstant() && (!soe || instr->operands.back().isConstant());
239
240 if (likely_desc_load || const_offset)
241 return wait_counter_info(0, 0, 30, 0); /* likely to hit L0 cache */
242
243 return wait_counter_info(0, 0, 200, 0);
244 }
245
246 if (instr->format == Format::DS)
247 return wait_counter_info(0, 0, 20, 0);
248
249 if (instr->isVMEM() && !instr->definitions.empty())
250 return wait_counter_info(320, 0, 0, 0);
251
252 if (instr->isVMEM() && instr->definitions.empty())
253 return wait_counter_info(0, 0, 0, 320);
254
255 return wait_counter_info(0, 0, 0, 0);
256 }
257
258 static wait_imm
get_wait_imm(Program * program,aco_ptr<Instruction> & instr)259 get_wait_imm(Program* program, aco_ptr<Instruction>& instr)
260 {
261 if (instr->opcode == aco_opcode::s_endpgm) {
262 return wait_imm(0, 0, 0, 0);
263 } else if (instr->opcode == aco_opcode::s_waitcnt) {
264 return wait_imm(GFX10_3, instr->sopp().imm);
265 } else if (instr->opcode == aco_opcode::s_waitcnt_vscnt) {
266 return wait_imm(0, 0, 0, instr->sopk().imm);
267 } else {
268 unsigned max_lgkm_cnt = program->chip_class >= GFX10 ? 62 : 14;
269 unsigned max_exp_cnt = 6;
270 unsigned max_vm_cnt = program->chip_class >= GFX9 ? 62 : 14;
271 unsigned max_vs_cnt = 62;
272
273 wait_counter_info wait_info = get_wait_counter_info(instr);
274 wait_imm imm;
275 imm.lgkm = wait_info.lgkm ? max_lgkm_cnt : wait_imm::unset_counter;
276 imm.exp = wait_info.exp ? max_exp_cnt : wait_imm::unset_counter;
277 imm.vm = wait_info.vm ? max_vm_cnt : wait_imm::unset_counter;
278 imm.vs = wait_info.vs ? max_vs_cnt : wait_imm::unset_counter;
279 return imm;
280 }
281 }
282
283 unsigned
get_dependency_cost(aco_ptr<Instruction> & instr)284 BlockCycleEstimator::get_dependency_cost(aco_ptr<Instruction>& instr)
285 {
286 int deps_available = cur_cycle;
287
288 wait_imm imm = get_wait_imm(program, instr);
289 if (imm.vm != wait_imm::unset_counter) {
290 for (int i = 0; i < (int)vm.size() - imm.vm; i++)
291 deps_available = MAX2(deps_available, vm[i]);
292 }
293 if (imm.exp != wait_imm::unset_counter) {
294 for (int i = 0; i < (int)exp.size() - imm.exp; i++)
295 deps_available = MAX2(deps_available, exp[i]);
296 }
297 if (imm.lgkm != wait_imm::unset_counter) {
298 for (int i = 0; i < (int)lgkm.size() - imm.lgkm; i++)
299 deps_available = MAX2(deps_available, lgkm[i]);
300 }
301 if (imm.vs != wait_imm::unset_counter) {
302 for (int i = 0; i < (int)vs.size() - imm.vs; i++)
303 deps_available = MAX2(deps_available, vs[i]);
304 }
305
306 if (instr->opcode == aco_opcode::s_endpgm) {
307 for (unsigned i = 0; i < 512; i++)
308 deps_available = MAX2(deps_available, reg_available[i]);
309 } else if (program->chip_class >= GFX10) {
310 for (Operand& op : instr->operands) {
311 if (op.isConstant() || op.isUndefined())
312 continue;
313 for (unsigned i = 0; i < op.size(); i++)
314 deps_available = MAX2(deps_available, reg_available[op.physReg().reg() + i]);
315 }
316 }
317
318 if (program->chip_class < GFX10)
319 deps_available = align(deps_available, 4);
320
321 return deps_available - cur_cycle;
322 }
323
324 unsigned
predict_cost(aco_ptr<Instruction> & instr)325 BlockCycleEstimator::predict_cost(aco_ptr<Instruction>& instr)
326 {
327 int32_t dep = get_dependency_cost(instr);
328 return dep + std::max(cycles_until_res_available(instr) - dep, 0);
329 }
330
331 static bool
is_vector(aco_opcode op)332 is_vector(aco_opcode op)
333 {
334 switch (instr_info.classes[(int)op]) {
335 case instr_class::valu32:
336 case instr_class::valu_convert32:
337 case instr_class::valu_fma:
338 case instr_class::valu_double:
339 case instr_class::valu_double_add:
340 case instr_class::valu_double_convert:
341 case instr_class::valu_double_transcendental:
342 case instr_class::vmem:
343 case instr_class::ds:
344 case instr_class::exp:
345 case instr_class::valu64:
346 case instr_class::valu_quarter_rate32:
347 case instr_class::valu_transcendental32: return true;
348 default: return false;
349 }
350 }
351
352 void
add(aco_ptr<Instruction> & instr)353 BlockCycleEstimator::add(aco_ptr<Instruction>& instr)
354 {
355 perf_info perf = get_perf_info(program, instr);
356
357 cur_cycle += get_dependency_cost(instr);
358
359 unsigned start;
360 bool dual_issue = program->chip_class >= GFX10 && program->wave_size == 64 &&
361 is_vector(instr->opcode) && program->workgroup_size > 32;
362 for (unsigned i = 0; i < (dual_issue ? 2 : 1); i++) {
363 cur_cycle += cycles_until_res_available(instr);
364
365 start = cur_cycle;
366 use_resources(instr);
367
368 /* GCN is in-order and doesn't begin the next instruction until the current one finishes */
369 cur_cycle += program->chip_class >= GFX10 ? 1 : perf.latency;
370 }
371
372 wait_imm imm = get_wait_imm(program, instr);
373 while (lgkm.size() > imm.lgkm)
374 lgkm.pop_front();
375 while (exp.size() > imm.exp)
376 exp.pop_front();
377 while (vm.size() > imm.vm)
378 vm.pop_front();
379 while (vs.size() > imm.vs)
380 vs.pop_front();
381
382 wait_counter_info wait_info = get_wait_counter_info(instr);
383 if (wait_info.exp)
384 exp.push_back(cur_cycle + wait_info.exp);
385 if (wait_info.lgkm)
386 lgkm.push_back(cur_cycle + wait_info.lgkm);
387 if (wait_info.vm)
388 vm.push_back(cur_cycle + wait_info.vm);
389 if (wait_info.vs)
390 vs.push_back(cur_cycle + wait_info.vs);
391
392 /* This is inaccurate but shouldn't affect anything after waitcnt insertion.
393 * Before waitcnt insertion, this is necessary to consider memory operations.
394 */
395 int latency = MAX3(wait_info.exp, wait_info.lgkm, wait_info.vm);
396 int32_t result_available = start + MAX2(perf.latency, latency);
397
398 for (Definition& def : instr->definitions) {
399 int32_t* available = ®_available[def.physReg().reg()];
400 for (unsigned i = 0; i < def.size(); i++)
401 available[i] = MAX2(available[i], result_available);
402 }
403 }
404
405 static void
join_queue(std::deque<int32_t> & queue,const std::deque<int32_t> & pred,int cycle_diff)406 join_queue(std::deque<int32_t>& queue, const std::deque<int32_t>& pred, int cycle_diff)
407 {
408 for (unsigned i = 0; i < MIN2(queue.size(), pred.size()); i++)
409 queue.rbegin()[i] = MAX2(queue.rbegin()[i], pred.rbegin()[i] + cycle_diff);
410 for (int i = pred.size() - queue.size() - 1; i >= 0; i--)
411 queue.push_front(pred[i] + cycle_diff);
412 }
413
414 void
join(const BlockCycleEstimator & pred)415 BlockCycleEstimator::join(const BlockCycleEstimator& pred)
416 {
417 assert(cur_cycle == 0);
418
419 for (unsigned i = 0; i < (unsigned)resource_count; i++) {
420 assert(res_usage[i] == 0);
421 res_available[i] = MAX2(res_available[i], pred.res_available[i] - pred.cur_cycle);
422 }
423
424 for (unsigned i = 0; i < 512; i++)
425 reg_available[i] = MAX2(reg_available[i], pred.reg_available[i] - pred.cur_cycle + cur_cycle);
426
427 join_queue(lgkm, pred.lgkm, -pred.cur_cycle);
428 join_queue(exp, pred.exp, -pred.cur_cycle);
429 join_queue(vm, pred.vm, -pred.cur_cycle);
430 join_queue(vs, pred.vs, -pred.cur_cycle);
431 }
432
433 /* instructions/branches/vmem_clauses/smem_clauses/cycles */
434 void
collect_preasm_stats(Program * program)435 collect_preasm_stats(Program* program)
436 {
437 for (Block& block : program->blocks) {
438 std::set<Instruction*> vmem_clause;
439 std::set<Instruction*> smem_clause;
440
441 program->statistics[statistic_instructions] += block.instructions.size();
442
443 for (aco_ptr<Instruction>& instr : block.instructions) {
444 if (instr->isSOPP() && instr->sopp().block != -1)
445 program->statistics[statistic_branches]++;
446
447 if (instr->opcode == aco_opcode::p_constaddr)
448 program->statistics[statistic_instructions] += 2;
449
450 if (instr->isVMEM() && !instr->operands.empty()) {
451 if (std::none_of(vmem_clause.begin(), vmem_clause.end(),
452 [&](Instruction* other)
453 { return should_form_clause(instr.get(), other); }))
454 program->statistics[statistic_vmem_clauses]++;
455 vmem_clause.insert(instr.get());
456 } else {
457 vmem_clause.clear();
458 }
459
460 if (instr->isSMEM() && !instr->operands.empty()) {
461 if (std::none_of(smem_clause.begin(), smem_clause.end(),
462 [&](Instruction* other)
463 { return should_form_clause(instr.get(), other); }))
464 program->statistics[statistic_smem_clauses]++;
465 smem_clause.insert(instr.get());
466 } else {
467 smem_clause.clear();
468 }
469 }
470 }
471
472 double latency = 0;
473 double usage[(int)BlockCycleEstimator::resource_count] = {0};
474 std::vector<BlockCycleEstimator> blocks(program->blocks.size(), program);
475
476 if (program->stage.has(SWStage::VS) && program->info->vs.has_prolog) {
477 unsigned vs_input_latency = 320;
478 for (Definition def : program->vs_inputs) {
479 blocks[0].vm.push_back(vs_input_latency);
480 for (unsigned i = 0; i < def.size(); i++)
481 blocks[0].reg_available[def.physReg().reg() + i] = vs_input_latency;
482 }
483 }
484
485 for (Block& block : program->blocks) {
486 BlockCycleEstimator& block_est = blocks[block.index];
487 for (unsigned pred : block.linear_preds)
488 block_est.join(blocks[pred]);
489
490 for (aco_ptr<Instruction>& instr : block.instructions) {
491 unsigned before = block_est.cur_cycle;
492 block_est.add(instr);
493 instr->pass_flags = block_est.cur_cycle - before;
494 }
495
496 /* TODO: it would be nice to be able to consider estimated loop trip
497 * counts used for loop unrolling.
498 */
499
500 /* TODO: estimate the trip_count of divergent loops (those which break
501 * divergent) higher than of uniform loops
502 */
503
504 /* Assume loops execute 8-2 times, uniform branches are taken 50% the time,
505 * and any lane in the wave takes a side of a divergent branch 75% of the
506 * time.
507 */
508 double iter = 1.0;
509 iter *= block.loop_nest_depth > 0 ? 8.0 : 1.0;
510 iter *= block.loop_nest_depth > 1 ? 4.0 : 1.0;
511 iter *= block.loop_nest_depth > 2 ? pow(2.0, block.loop_nest_depth - 2) : 1.0;
512 iter *= pow(0.5, block.uniform_if_depth);
513 iter *= pow(0.75, block.divergent_if_logical_depth);
514
515 bool divergent_if_linear_else =
516 block.logical_preds.empty() && block.linear_preds.size() == 1 &&
517 block.linear_succs.size() == 1 &&
518 program->blocks[block.linear_preds[0]].kind & (block_kind_branch | block_kind_invert);
519 if (divergent_if_linear_else)
520 iter *= 0.25;
521
522 latency += block_est.cur_cycle * iter;
523 for (unsigned i = 0; i < (unsigned)BlockCycleEstimator::resource_count; i++)
524 usage[i] += block_est.res_usage[i] * iter;
525 }
526
527 /* This likely exaggerates the effectiveness of parallelism because it
528 * ignores instruction ordering. It can assume there might be SALU/VALU/etc
529 * work to from other waves while one is idle but that might not be the case
530 * because those other waves have not reached such a point yet.
531 */
532
533 double parallelism = program->num_waves;
534 for (unsigned i = 0; i < (unsigned)BlockCycleEstimator::resource_count; i++) {
535 if (usage[i] > 0.0)
536 parallelism = MIN2(parallelism, latency / usage[i]);
537 }
538 double waves_per_cycle = 1.0 / latency * parallelism;
539 double wave64_per_cycle = waves_per_cycle * (program->wave_size / 64.0);
540
541 double max_utilization = 1.0;
542 if (program->workgroup_size != UINT_MAX)
543 max_utilization =
544 program->workgroup_size / (double)align(program->workgroup_size, program->wave_size);
545 wave64_per_cycle *= max_utilization;
546
547 program->statistics[statistic_latency] = round(latency);
548 program->statistics[statistic_inv_throughput] = round(1.0 / wave64_per_cycle);
549
550 if (debug_flags & DEBUG_PERF_INFO) {
551 aco_print_program(program, stderr, print_no_ssa | print_perf_info);
552
553 fprintf(stderr, "num_waves: %u\n", program->num_waves);
554 fprintf(stderr, "salu_smem_usage: %f\n", usage[(int)BlockCycleEstimator::scalar]);
555 fprintf(stderr, "branch_sendmsg_usage: %f\n",
556 usage[(int)BlockCycleEstimator::branch_sendmsg]);
557 fprintf(stderr, "valu_usage: %f\n", usage[(int)BlockCycleEstimator::valu]);
558 fprintf(stderr, "valu_complex_usage: %f\n", usage[(int)BlockCycleEstimator::valu_complex]);
559 fprintf(stderr, "lds_usage: %f\n", usage[(int)BlockCycleEstimator::lds]);
560 fprintf(stderr, "export_gds_usage: %f\n", usage[(int)BlockCycleEstimator::export_gds]);
561 fprintf(stderr, "vmem_usage: %f\n", usage[(int)BlockCycleEstimator::vmem]);
562 fprintf(stderr, "latency: %f\n", latency);
563 fprintf(stderr, "parallelism: %f\n", parallelism);
564 fprintf(stderr, "max_utilization: %f\n", max_utilization);
565 fprintf(stderr, "wave64_per_cycle: %f\n", wave64_per_cycle);
566 fprintf(stderr, "\n");
567 }
568 }
569
570 void
collect_postasm_stats(Program * program,const std::vector<uint32_t> & code)571 collect_postasm_stats(Program* program, const std::vector<uint32_t>& code)
572 {
573 program->statistics[aco::statistic_hash] = util_hash_crc32(code.data(), code.size() * 4);
574 }
575
576 } // namespace aco
577