1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * File: mca.c
4 * Purpose: Generic MCA handling layer
5 *
6 * Copyright (C) 2003 Hewlett-Packard Co
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 *
9 * Copyright (C) 2002 Dell Inc.
10 * Copyright (C) Matt Domsch <Matt_Domsch@dell.com>
11 *
12 * Copyright (C) 2002 Intel
13 * Copyright (C) Jenna Hall <jenna.s.hall@intel.com>
14 *
15 * Copyright (C) 2001 Intel
16 * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com>
17 *
18 * Copyright (C) 2000 Intel
19 * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com>
20 *
21 * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
22 * Copyright (C) Vijay Chander <vijay@engr.sgi.com>
23 *
24 * Copyright (C) 2006 FUJITSU LIMITED
25 * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
26 *
27 * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com>
28 * Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
29 * added min save state dump, added INIT handler.
30 *
31 * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com>
32 * Added setup of CMCI and CPEI IRQs, logging of corrected platform
33 * errors, completed code for logging of corrected & uncorrected
34 * machine check errors, and updated for conformance with Nov. 2000
35 * revision of the SAL 3.0 spec.
36 *
37 * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com>
38 * Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
39 * set SAL default return values, changed error record structure to
40 * linked list, added init call to sal_get_state_info_size().
41 *
42 * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com>
43 * GUID cleanups.
44 *
45 * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com>
46 * Added INIT backtrace support.
47 *
48 * 2003-12-08 Keith Owens <kaos@sgi.com>
49 * smp_call_function() must not be called from interrupt context
50 * (can deadlock on tasklist_lock).
51 * Use keventd to call smp_call_function().
52 *
53 * 2004-02-01 Keith Owens <kaos@sgi.com>
54 * Avoid deadlock when using printk() for MCA and INIT records.
55 * Delete all record printing code, moved to salinfo_decode in user
56 * space. Mark variables and functions static where possible.
57 * Delete dead variables and functions. Reorder to remove the need
58 * for forward declarations and to consolidate related code.
59 *
60 * 2005-08-12 Keith Owens <kaos@sgi.com>
61 * Convert MCA/INIT handlers to use per event stacks and SAL/OS
62 * state.
63 *
64 * 2005-10-07 Keith Owens <kaos@sgi.com>
65 * Add notify_die() hooks.
66 *
67 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
68 * Add printing support for MCA/INIT.
69 *
70 * 2007-04-27 Russ Anderson <rja@sgi.com>
71 * Support multiple cpus going through OS_MCA in the same event.
72 */
73 #include <linux/jiffies.h>
74 #include <linux/types.h>
75 #include <linux/init.h>
76 #include <linux/sched/signal.h>
77 #include <linux/sched/debug.h>
78 #include <linux/sched/task.h>
79 #include <linux/interrupt.h>
80 #include <linux/irq.h>
81 #include <linux/memblock.h>
82 #include <linux/acpi.h>
83 #include <linux/timer.h>
84 #include <linux/module.h>
85 #include <linux/kernel.h>
86 #include <linux/smp.h>
87 #include <linux/workqueue.h>
88 #include <linux/cpumask.h>
89 #include <linux/kdebug.h>
90 #include <linux/cpu.h>
91 #include <linux/gfp.h>
92
93 #include <asm/delay.h>
94 #include <asm/meminit.h>
95 #include <asm/page.h>
96 #include <asm/ptrace.h>
97 #include <asm/sal.h>
98 #include <asm/mca.h>
99 #include <asm/kexec.h>
100
101 #include <asm/irq.h>
102 #include <asm/hw_irq.h>
103 #include <asm/tlb.h>
104
105 #include "mca_drv.h"
106 #include "entry.h"
107 #include "irq.h"
108
109 #if defined(IA64_MCA_DEBUG_INFO)
110 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
111 #else
112 # define IA64_MCA_DEBUG(fmt...)
113 #endif
114
115 #define NOTIFY_INIT(event, regs, arg, spin) \
116 do { \
117 if ((notify_die((event), "INIT", (regs), (arg), 0, 0) \
118 == NOTIFY_STOP) && ((spin) == 1)) \
119 ia64_mca_spin(__func__); \
120 } while (0)
121
122 #define NOTIFY_MCA(event, regs, arg, spin) \
123 do { \
124 if ((notify_die((event), "MCA", (regs), (arg), 0, 0) \
125 == NOTIFY_STOP) && ((spin) == 1)) \
126 ia64_mca_spin(__func__); \
127 } while (0)
128
129 /* Used by mca_asm.S */
130 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
131 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
132 DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
133 DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
134 DEFINE_PER_CPU(u64, ia64_mca_tr_reload); /* Flag for TR reload */
135
136 unsigned long __per_cpu_mca[NR_CPUS];
137
138 /* In mca_asm.S */
139 extern void ia64_os_init_dispatch_monarch (void);
140 extern void ia64_os_init_dispatch_slave (void);
141
142 static int monarch_cpu = -1;
143
144 static ia64_mc_info_t ia64_mc_info;
145
146 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
147 #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
148 #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
149 #define CPE_HISTORY_LENGTH 5
150 #define CMC_HISTORY_LENGTH 5
151
152 static struct timer_list cpe_poll_timer;
153 static struct timer_list cmc_poll_timer;
154 /*
155 * This variable tells whether we are currently in polling mode.
156 * Start with this in the wrong state so we won't play w/ timers
157 * before the system is ready.
158 */
159 static int cmc_polling_enabled = 1;
160
161 /*
162 * Clearing this variable prevents CPE polling from getting activated
163 * in mca_late_init. Use it if your system doesn't provide a CPEI,
164 * but encounters problems retrieving CPE logs. This should only be
165 * necessary for debugging.
166 */
167 static int cpe_poll_enabled = 1;
168
169 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
170
171 static int mca_init __initdata;
172
173 /*
174 * limited & delayed printing support for MCA/INIT handler
175 */
176
177 #define mprintk(fmt...) ia64_mca_printk(fmt)
178
179 #define MLOGBUF_SIZE (512+256*NR_CPUS)
180 #define MLOGBUF_MSGMAX 256
181 static char mlogbuf[MLOGBUF_SIZE];
182 static DEFINE_SPINLOCK(mlogbuf_wlock); /* mca context only */
183 static DEFINE_SPINLOCK(mlogbuf_rlock); /* normal context only */
184 static unsigned long mlogbuf_start;
185 static unsigned long mlogbuf_end;
186 static unsigned int mlogbuf_finished = 0;
187 static unsigned long mlogbuf_timestamp = 0;
188
189 static int loglevel_save = -1;
190 #define BREAK_LOGLEVEL(__console_loglevel) \
191 oops_in_progress = 1; \
192 if (loglevel_save < 0) \
193 loglevel_save = __console_loglevel; \
194 __console_loglevel = 15;
195
196 #define RESTORE_LOGLEVEL(__console_loglevel) \
197 if (loglevel_save >= 0) { \
198 __console_loglevel = loglevel_save; \
199 loglevel_save = -1; \
200 } \
201 mlogbuf_finished = 0; \
202 oops_in_progress = 0;
203
204 /*
205 * Push messages into buffer, print them later if not urgent.
206 */
ia64_mca_printk(const char * fmt,...)207 void ia64_mca_printk(const char *fmt, ...)
208 {
209 va_list args;
210 int printed_len;
211 char temp_buf[MLOGBUF_MSGMAX];
212 char *p;
213
214 va_start(args, fmt);
215 printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
216 va_end(args);
217
218 /* Copy the output into mlogbuf */
219 if (oops_in_progress) {
220 /* mlogbuf was abandoned, use printk directly instead. */
221 printk("%s", temp_buf);
222 } else {
223 spin_lock(&mlogbuf_wlock);
224 for (p = temp_buf; *p; p++) {
225 unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
226 if (next != mlogbuf_start) {
227 mlogbuf[mlogbuf_end] = *p;
228 mlogbuf_end = next;
229 } else {
230 /* buffer full */
231 break;
232 }
233 }
234 mlogbuf[mlogbuf_end] = '\0';
235 spin_unlock(&mlogbuf_wlock);
236 }
237 }
238 EXPORT_SYMBOL(ia64_mca_printk);
239
240 /*
241 * Print buffered messages.
242 * NOTE: call this after returning normal context. (ex. from salinfod)
243 */
ia64_mlogbuf_dump(void)244 void ia64_mlogbuf_dump(void)
245 {
246 char temp_buf[MLOGBUF_MSGMAX];
247 char *p;
248 unsigned long index;
249 unsigned long flags;
250 unsigned int printed_len;
251
252 /* Get output from mlogbuf */
253 while (mlogbuf_start != mlogbuf_end) {
254 temp_buf[0] = '\0';
255 p = temp_buf;
256 printed_len = 0;
257
258 spin_lock_irqsave(&mlogbuf_rlock, flags);
259
260 index = mlogbuf_start;
261 while (index != mlogbuf_end) {
262 *p = mlogbuf[index];
263 index = (index + 1) % MLOGBUF_SIZE;
264 if (!*p)
265 break;
266 p++;
267 if (++printed_len >= MLOGBUF_MSGMAX - 1)
268 break;
269 }
270 *p = '\0';
271 if (temp_buf[0])
272 printk("%s", temp_buf);
273 mlogbuf_start = index;
274
275 mlogbuf_timestamp = 0;
276 spin_unlock_irqrestore(&mlogbuf_rlock, flags);
277 }
278 }
279 EXPORT_SYMBOL(ia64_mlogbuf_dump);
280
281 /*
282 * Call this if system is going to down or if immediate flushing messages to
283 * console is required. (ex. recovery was failed, crash dump is going to be
284 * invoked, long-wait rendezvous etc.)
285 * NOTE: this should be called from monarch.
286 */
ia64_mlogbuf_finish(int wait)287 static void ia64_mlogbuf_finish(int wait)
288 {
289 BREAK_LOGLEVEL(console_loglevel);
290
291 spin_lock_init(&mlogbuf_rlock);
292 ia64_mlogbuf_dump();
293 printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
294 "MCA/INIT might be dodgy or fail.\n");
295
296 if (!wait)
297 return;
298
299 /* wait for console */
300 printk("Delaying for 5 seconds...\n");
301 udelay(5*1000000);
302
303 mlogbuf_finished = 1;
304 }
305
306 /*
307 * Print buffered messages from INIT context.
308 */
ia64_mlogbuf_dump_from_init(void)309 static void ia64_mlogbuf_dump_from_init(void)
310 {
311 if (mlogbuf_finished)
312 return;
313
314 if (mlogbuf_timestamp &&
315 time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) {
316 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
317 " and the system seems to be messed up.\n");
318 ia64_mlogbuf_finish(0);
319 return;
320 }
321
322 if (!spin_trylock(&mlogbuf_rlock)) {
323 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
324 "Generated messages other than stack dump will be "
325 "buffered to mlogbuf and will be printed later.\n");
326 printk(KERN_ERR "INIT: If messages would not printed after "
327 "this INIT, wait 30sec and assert INIT again.\n");
328 if (!mlogbuf_timestamp)
329 mlogbuf_timestamp = jiffies;
330 return;
331 }
332 spin_unlock(&mlogbuf_rlock);
333 ia64_mlogbuf_dump();
334 }
335
336 static inline void
ia64_mca_spin(const char * func)337 ia64_mca_spin(const char *func)
338 {
339 if (monarch_cpu == smp_processor_id())
340 ia64_mlogbuf_finish(0);
341 mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
342 while (1)
343 cpu_relax();
344 }
345 /*
346 * IA64_MCA log support
347 */
348 #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
349 #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
350
351 typedef struct ia64_state_log_s
352 {
353 spinlock_t isl_lock;
354 int isl_index;
355 unsigned long isl_count;
356 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
357 } ia64_state_log_t;
358
359 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
360
361 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
362 #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
363 #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
364 #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
365 #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
366 #define IA64_LOG_INDEX_INC(it) \
367 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
368 ia64_state_log[it].isl_count++;}
369 #define IA64_LOG_INDEX_DEC(it) \
370 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
371 #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
372 #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
373 #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
374
ia64_log_allocate(int it,u64 size)375 static inline void ia64_log_allocate(int it, u64 size)
376 {
377 ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] =
378 (ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES);
379 if (!ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)])
380 panic("%s: Failed to allocate %llu bytes\n", __func__, size);
381
382 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] =
383 (ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES);
384 if (!ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)])
385 panic("%s: Failed to allocate %llu bytes\n", __func__, size);
386 }
387
388 /*
389 * ia64_log_init
390 * Reset the OS ia64 log buffer
391 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
392 * Outputs : None
393 */
394 static void __init
ia64_log_init(int sal_info_type)395 ia64_log_init(int sal_info_type)
396 {
397 u64 max_size = 0;
398
399 IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
400 IA64_LOG_LOCK_INIT(sal_info_type);
401
402 // SAL will tell us the maximum size of any error record of this type
403 max_size = ia64_sal_get_state_info_size(sal_info_type);
404 if (!max_size)
405 /* alloc_bootmem() doesn't like zero-sized allocations! */
406 return;
407
408 // set up OS data structures to hold error info
409 ia64_log_allocate(sal_info_type, max_size);
410 }
411
412 /*
413 * ia64_log_get
414 *
415 * Get the current MCA log from SAL and copy it into the OS log buffer.
416 *
417 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
418 * irq_safe whether you can use printk at this point
419 * Outputs : size (total record length)
420 * *buffer (ptr to error record)
421 *
422 */
423 static u64
ia64_log_get(int sal_info_type,u8 ** buffer,int irq_safe)424 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
425 {
426 sal_log_record_header_t *log_buffer;
427 u64 total_len = 0;
428 unsigned long s;
429
430 IA64_LOG_LOCK(sal_info_type);
431
432 /* Get the process state information */
433 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
434
435 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
436
437 if (total_len) {
438 IA64_LOG_INDEX_INC(sal_info_type);
439 IA64_LOG_UNLOCK(sal_info_type);
440 if (irq_safe) {
441 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n",
442 __func__, sal_info_type, total_len);
443 }
444 *buffer = (u8 *) log_buffer;
445 return total_len;
446 } else {
447 IA64_LOG_UNLOCK(sal_info_type);
448 return 0;
449 }
450 }
451
452 /*
453 * ia64_mca_log_sal_error_record
454 *
455 * This function retrieves a specified error record type from SAL
456 * and wakes up any processes waiting for error records.
457 *
458 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
459 * FIXME: remove MCA and irq_safe.
460 */
461 static void
ia64_mca_log_sal_error_record(int sal_info_type)462 ia64_mca_log_sal_error_record(int sal_info_type)
463 {
464 u8 *buffer;
465 sal_log_record_header_t *rh;
466 u64 size;
467 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
468 #ifdef IA64_MCA_DEBUG_INFO
469 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
470 #endif
471
472 size = ia64_log_get(sal_info_type, &buffer, irq_safe);
473 if (!size)
474 return;
475
476 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
477
478 if (irq_safe)
479 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
480 smp_processor_id(),
481 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
482
483 /* Clear logs from corrected errors in case there's no user-level logger */
484 rh = (sal_log_record_header_t *)buffer;
485 if (rh->severity == sal_log_severity_corrected)
486 ia64_sal_clear_state_info(sal_info_type);
487 }
488
489 /*
490 * search_mca_table
491 * See if the MCA surfaced in an instruction range
492 * that has been tagged as recoverable.
493 *
494 * Inputs
495 * first First address range to check
496 * last Last address range to check
497 * ip Instruction pointer, address we are looking for
498 *
499 * Return value:
500 * 1 on Success (in the table)/ 0 on Failure (not in the table)
501 */
502 int
search_mca_table(const struct mca_table_entry * first,const struct mca_table_entry * last,unsigned long ip)503 search_mca_table (const struct mca_table_entry *first,
504 const struct mca_table_entry *last,
505 unsigned long ip)
506 {
507 const struct mca_table_entry *curr;
508 u64 curr_start, curr_end;
509
510 curr = first;
511 while (curr <= last) {
512 curr_start = (u64) &curr->start_addr + curr->start_addr;
513 curr_end = (u64) &curr->end_addr + curr->end_addr;
514
515 if ((ip >= curr_start) && (ip <= curr_end)) {
516 return 1;
517 }
518 curr++;
519 }
520 return 0;
521 }
522
523 /* Given an address, look for it in the mca tables. */
mca_recover_range(unsigned long addr)524 int mca_recover_range(unsigned long addr)
525 {
526 extern struct mca_table_entry __start___mca_table[];
527 extern struct mca_table_entry __stop___mca_table[];
528
529 return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
530 }
531 EXPORT_SYMBOL_GPL(mca_recover_range);
532
533 int cpe_vector = -1;
534 int ia64_cpe_irq = -1;
535
536 static irqreturn_t
ia64_mca_cpe_int_handler(int cpe_irq,void * arg)537 ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
538 {
539 static unsigned long cpe_history[CPE_HISTORY_LENGTH];
540 static int index;
541 static DEFINE_SPINLOCK(cpe_history_lock);
542
543 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
544 __func__, cpe_irq, smp_processor_id());
545
546 /* SAL spec states this should run w/ interrupts enabled */
547 local_irq_enable();
548
549 spin_lock(&cpe_history_lock);
550 if (!cpe_poll_enabled && cpe_vector >= 0) {
551
552 int i, count = 1; /* we know 1 happened now */
553 unsigned long now = jiffies;
554
555 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
556 if (now - cpe_history[i] <= HZ)
557 count++;
558 }
559
560 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
561 if (count >= CPE_HISTORY_LENGTH) {
562
563 cpe_poll_enabled = 1;
564 spin_unlock(&cpe_history_lock);
565 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
566
567 /*
568 * Corrected errors will still be corrected, but
569 * make sure there's a log somewhere that indicates
570 * something is generating more than we can handle.
571 */
572 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
573
574 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
575
576 /* lock already released, get out now */
577 goto out;
578 } else {
579 cpe_history[index++] = now;
580 if (index == CPE_HISTORY_LENGTH)
581 index = 0;
582 }
583 }
584 spin_unlock(&cpe_history_lock);
585 out:
586 /* Get the CPE error record and log it */
587 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
588
589 local_irq_disable();
590
591 return IRQ_HANDLED;
592 }
593
594 /*
595 * ia64_mca_register_cpev
596 *
597 * Register the corrected platform error vector with SAL.
598 *
599 * Inputs
600 * cpev Corrected Platform Error Vector number
601 *
602 * Outputs
603 * None
604 */
605 void
ia64_mca_register_cpev(int cpev)606 ia64_mca_register_cpev (int cpev)
607 {
608 /* Register the CPE interrupt vector with SAL */
609 struct ia64_sal_retval isrv;
610
611 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
612 if (isrv.status) {
613 printk(KERN_ERR "Failed to register Corrected Platform "
614 "Error interrupt vector with SAL (status %ld)\n", isrv.status);
615 return;
616 }
617
618 IA64_MCA_DEBUG("%s: corrected platform error "
619 "vector %#x registered\n", __func__, cpev);
620 }
621
622 /*
623 * ia64_mca_cmc_vector_setup
624 *
625 * Setup the corrected machine check vector register in the processor.
626 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
627 * This function is invoked on a per-processor basis.
628 *
629 * Inputs
630 * None
631 *
632 * Outputs
633 * None
634 */
635 void
ia64_mca_cmc_vector_setup(void)636 ia64_mca_cmc_vector_setup (void)
637 {
638 cmcv_reg_t cmcv;
639
640 cmcv.cmcv_regval = 0;
641 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */
642 cmcv.cmcv_vector = IA64_CMC_VECTOR;
643 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
644
645 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n",
646 __func__, smp_processor_id(), IA64_CMC_VECTOR);
647
648 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
649 __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
650 }
651
652 /*
653 * ia64_mca_cmc_vector_disable
654 *
655 * Mask the corrected machine check vector register in the processor.
656 * This function is invoked on a per-processor basis.
657 *
658 * Inputs
659 * dummy(unused)
660 *
661 * Outputs
662 * None
663 */
664 static void
ia64_mca_cmc_vector_disable(void * dummy)665 ia64_mca_cmc_vector_disable (void *dummy)
666 {
667 cmcv_reg_t cmcv;
668
669 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
670
671 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
672 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
673
674 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n",
675 __func__, smp_processor_id(), cmcv.cmcv_vector);
676 }
677
678 /*
679 * ia64_mca_cmc_vector_enable
680 *
681 * Unmask the corrected machine check vector register in the processor.
682 * This function is invoked on a per-processor basis.
683 *
684 * Inputs
685 * dummy(unused)
686 *
687 * Outputs
688 * None
689 */
690 static void
ia64_mca_cmc_vector_enable(void * dummy)691 ia64_mca_cmc_vector_enable (void *dummy)
692 {
693 cmcv_reg_t cmcv;
694
695 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
696
697 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
698 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
699
700 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n",
701 __func__, smp_processor_id(), cmcv.cmcv_vector);
702 }
703
704 /*
705 * ia64_mca_cmc_vector_disable_keventd
706 *
707 * Called via keventd (smp_call_function() is not safe in interrupt context) to
708 * disable the cmc interrupt vector.
709 */
710 static void
ia64_mca_cmc_vector_disable_keventd(struct work_struct * unused)711 ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
712 {
713 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 0);
714 }
715
716 /*
717 * ia64_mca_cmc_vector_enable_keventd
718 *
719 * Called via keventd (smp_call_function() is not safe in interrupt context) to
720 * enable the cmc interrupt vector.
721 */
722 static void
ia64_mca_cmc_vector_enable_keventd(struct work_struct * unused)723 ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
724 {
725 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 0);
726 }
727
728 /*
729 * ia64_mca_wakeup
730 *
731 * Send an inter-cpu interrupt to wake-up a particular cpu.
732 *
733 * Inputs : cpuid
734 * Outputs : None
735 */
736 static void
ia64_mca_wakeup(int cpu)737 ia64_mca_wakeup(int cpu)
738 {
739 ia64_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
740 }
741
742 /*
743 * ia64_mca_wakeup_all
744 *
745 * Wakeup all the slave cpus which have rendez'ed previously.
746 *
747 * Inputs : None
748 * Outputs : None
749 */
750 static void
ia64_mca_wakeup_all(void)751 ia64_mca_wakeup_all(void)
752 {
753 int cpu;
754
755 /* Clear the Rendez checkin flag for all cpus */
756 for_each_online_cpu(cpu) {
757 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
758 ia64_mca_wakeup(cpu);
759 }
760
761 }
762
763 /*
764 * ia64_mca_rendez_interrupt_handler
765 *
766 * This is handler used to put slave processors into spinloop
767 * while the monarch processor does the mca handling and later
768 * wake each slave up once the monarch is done. The state
769 * IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
770 * in SAL. The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
771 * the cpu has come out of OS rendezvous.
772 *
773 * Inputs : None
774 * Outputs : None
775 */
776 static irqreturn_t
ia64_mca_rendez_int_handler(int rendez_irq,void * arg)777 ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
778 {
779 unsigned long flags;
780 int cpu = smp_processor_id();
781 struct ia64_mca_notify_die nd =
782 { .sos = NULL, .monarch_cpu = &monarch_cpu };
783
784 /* Mask all interrupts */
785 local_irq_save(flags);
786
787 NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER, get_irq_regs(), (long)&nd, 1);
788
789 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
790 /* Register with the SAL monarch that the slave has
791 * reached SAL
792 */
793 ia64_sal_mc_rendez();
794
795 NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS, get_irq_regs(), (long)&nd, 1);
796
797 /* Wait for the monarch cpu to exit. */
798 while (monarch_cpu != -1)
799 cpu_relax(); /* spin until monarch leaves */
800
801 NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE, get_irq_regs(), (long)&nd, 1);
802
803 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
804 /* Enable all interrupts */
805 local_irq_restore(flags);
806 return IRQ_HANDLED;
807 }
808
809 /*
810 * ia64_mca_wakeup_int_handler
811 *
812 * The interrupt handler for processing the inter-cpu interrupt to the
813 * slave cpu which was spinning in the rendez loop.
814 * Since this spinning is done by turning off the interrupts and
815 * polling on the wakeup-interrupt bit in the IRR, there is
816 * nothing useful to be done in the handler.
817 *
818 * Inputs : wakeup_irq (Wakeup-interrupt bit)
819 * arg (Interrupt handler specific argument)
820 * Outputs : None
821 *
822 */
823 static irqreturn_t
ia64_mca_wakeup_int_handler(int wakeup_irq,void * arg)824 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
825 {
826 return IRQ_HANDLED;
827 }
828
829 /* Function pointer for extra MCA recovery */
830 int (*ia64_mca_ucmc_extension)
831 (void*,struct ia64_sal_os_state*)
832 = NULL;
833
834 int
ia64_reg_MCA_extension(int (* fn)(void *,struct ia64_sal_os_state *))835 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
836 {
837 if (ia64_mca_ucmc_extension)
838 return 1;
839
840 ia64_mca_ucmc_extension = fn;
841 return 0;
842 }
843
844 void
ia64_unreg_MCA_extension(void)845 ia64_unreg_MCA_extension(void)
846 {
847 if (ia64_mca_ucmc_extension)
848 ia64_mca_ucmc_extension = NULL;
849 }
850
851 EXPORT_SYMBOL(ia64_reg_MCA_extension);
852 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
853
854
855 static inline void
copy_reg(const u64 * fr,u64 fnat,unsigned long * tr,unsigned long * tnat)856 copy_reg(const u64 *fr, u64 fnat, unsigned long *tr, unsigned long *tnat)
857 {
858 u64 fslot, tslot, nat;
859 *tr = *fr;
860 fslot = ((unsigned long)fr >> 3) & 63;
861 tslot = ((unsigned long)tr >> 3) & 63;
862 *tnat &= ~(1UL << tslot);
863 nat = (fnat >> fslot) & 1;
864 *tnat |= (nat << tslot);
865 }
866
867 /* Change the comm field on the MCA/INT task to include the pid that
868 * was interrupted, it makes for easier debugging. If that pid was 0
869 * (swapper or nested MCA/INIT) then use the start of the previous comm
870 * field suffixed with its cpu.
871 */
872
873 static void
ia64_mca_modify_comm(const struct task_struct * previous_current)874 ia64_mca_modify_comm(const struct task_struct *previous_current)
875 {
876 char *p, comm[sizeof(current->comm)];
877 if (previous_current->pid)
878 snprintf(comm, sizeof(comm), "%s %d",
879 current->comm, previous_current->pid);
880 else {
881 int l;
882 if ((p = strchr(previous_current->comm, ' ')))
883 l = p - previous_current->comm;
884 else
885 l = strlen(previous_current->comm);
886 snprintf(comm, sizeof(comm), "%s %*s %d",
887 current->comm, l, previous_current->comm,
888 task_thread_info(previous_current)->cpu);
889 }
890 memcpy(current->comm, comm, sizeof(current->comm));
891 }
892
893 static void
finish_pt_regs(struct pt_regs * regs,struct ia64_sal_os_state * sos,unsigned long * nat)894 finish_pt_regs(struct pt_regs *regs, struct ia64_sal_os_state *sos,
895 unsigned long *nat)
896 {
897 const pal_min_state_area_t *ms = sos->pal_min_state;
898 const u64 *bank;
899
900 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
901 * pmsa_{xip,xpsr,xfs}
902 */
903 if (ia64_psr(regs)->ic) {
904 regs->cr_iip = ms->pmsa_iip;
905 regs->cr_ipsr = ms->pmsa_ipsr;
906 regs->cr_ifs = ms->pmsa_ifs;
907 } else {
908 regs->cr_iip = ms->pmsa_xip;
909 regs->cr_ipsr = ms->pmsa_xpsr;
910 regs->cr_ifs = ms->pmsa_xfs;
911
912 sos->iip = ms->pmsa_iip;
913 sos->ipsr = ms->pmsa_ipsr;
914 sos->ifs = ms->pmsa_ifs;
915 }
916 regs->pr = ms->pmsa_pr;
917 regs->b0 = ms->pmsa_br0;
918 regs->ar_rsc = ms->pmsa_rsc;
919 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, ®s->r1, nat);
920 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, ®s->r2, nat);
921 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, ®s->r3, nat);
922 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, ®s->r8, nat);
923 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, ®s->r9, nat);
924 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, ®s->r10, nat);
925 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, ®s->r11, nat);
926 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, ®s->r12, nat);
927 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, ®s->r13, nat);
928 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, ®s->r14, nat);
929 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, ®s->r15, nat);
930 if (ia64_psr(regs)->bn)
931 bank = ms->pmsa_bank1_gr;
932 else
933 bank = ms->pmsa_bank0_gr;
934 copy_reg(&bank[16-16], ms->pmsa_nat_bits, ®s->r16, nat);
935 copy_reg(&bank[17-16], ms->pmsa_nat_bits, ®s->r17, nat);
936 copy_reg(&bank[18-16], ms->pmsa_nat_bits, ®s->r18, nat);
937 copy_reg(&bank[19-16], ms->pmsa_nat_bits, ®s->r19, nat);
938 copy_reg(&bank[20-16], ms->pmsa_nat_bits, ®s->r20, nat);
939 copy_reg(&bank[21-16], ms->pmsa_nat_bits, ®s->r21, nat);
940 copy_reg(&bank[22-16], ms->pmsa_nat_bits, ®s->r22, nat);
941 copy_reg(&bank[23-16], ms->pmsa_nat_bits, ®s->r23, nat);
942 copy_reg(&bank[24-16], ms->pmsa_nat_bits, ®s->r24, nat);
943 copy_reg(&bank[25-16], ms->pmsa_nat_bits, ®s->r25, nat);
944 copy_reg(&bank[26-16], ms->pmsa_nat_bits, ®s->r26, nat);
945 copy_reg(&bank[27-16], ms->pmsa_nat_bits, ®s->r27, nat);
946 copy_reg(&bank[28-16], ms->pmsa_nat_bits, ®s->r28, nat);
947 copy_reg(&bank[29-16], ms->pmsa_nat_bits, ®s->r29, nat);
948 copy_reg(&bank[30-16], ms->pmsa_nat_bits, ®s->r30, nat);
949 copy_reg(&bank[31-16], ms->pmsa_nat_bits, ®s->r31, nat);
950 }
951
952 /* On entry to this routine, we are running on the per cpu stack, see
953 * mca_asm.h. The original stack has not been touched by this event. Some of
954 * the original stack's registers will be in the RBS on this stack. This stack
955 * also contains a partial pt_regs and switch_stack, the rest of the data is in
956 * PAL minstate.
957 *
958 * The first thing to do is modify the original stack to look like a blocked
959 * task so we can run backtrace on the original task. Also mark the per cpu
960 * stack as current to ensure that we use the correct task state, it also means
961 * that we can do backtrace on the MCA/INIT handler code itself.
962 */
963
964 static struct task_struct *
ia64_mca_modify_original_stack(struct pt_regs * regs,const struct switch_stack * sw,struct ia64_sal_os_state * sos,const char * type)965 ia64_mca_modify_original_stack(struct pt_regs *regs,
966 const struct switch_stack *sw,
967 struct ia64_sal_os_state *sos,
968 const char *type)
969 {
970 char *p;
971 ia64_va va;
972 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */
973 const pal_min_state_area_t *ms = sos->pal_min_state;
974 struct task_struct *previous_current;
975 struct pt_regs *old_regs;
976 struct switch_stack *old_sw;
977 unsigned size = sizeof(struct pt_regs) +
978 sizeof(struct switch_stack) + 16;
979 unsigned long *old_bspstore, *old_bsp;
980 unsigned long *new_bspstore, *new_bsp;
981 unsigned long old_unat, old_rnat, new_rnat, nat;
982 u64 slots, loadrs = regs->loadrs;
983 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
984 u64 ar_bspstore = regs->ar_bspstore;
985 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
986 const char *msg;
987 int cpu = smp_processor_id();
988
989 previous_current = curr_task(cpu);
990 ia64_set_curr_task(cpu, current);
991 if ((p = strchr(current->comm, ' ')))
992 *p = '\0';
993
994 /* Best effort attempt to cope with MCA/INIT delivered while in
995 * physical mode.
996 */
997 regs->cr_ipsr = ms->pmsa_ipsr;
998 if (ia64_psr(regs)->dt == 0) {
999 va.l = r12;
1000 if (va.f.reg == 0) {
1001 va.f.reg = 7;
1002 r12 = va.l;
1003 }
1004 va.l = r13;
1005 if (va.f.reg == 0) {
1006 va.f.reg = 7;
1007 r13 = va.l;
1008 }
1009 }
1010 if (ia64_psr(regs)->rt == 0) {
1011 va.l = ar_bspstore;
1012 if (va.f.reg == 0) {
1013 va.f.reg = 7;
1014 ar_bspstore = va.l;
1015 }
1016 va.l = ar_bsp;
1017 if (va.f.reg == 0) {
1018 va.f.reg = 7;
1019 ar_bsp = va.l;
1020 }
1021 }
1022
1023 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
1024 * have been copied to the old stack, the old stack may fail the
1025 * validation tests below. So ia64_old_stack() must restore the dirty
1026 * registers from the new stack. The old and new bspstore probably
1027 * have different alignments, so loadrs calculated on the old bsp
1028 * cannot be used to restore from the new bsp. Calculate a suitable
1029 * loadrs for the new stack and save it in the new pt_regs, where
1030 * ia64_old_stack() can get it.
1031 */
1032 old_bspstore = (unsigned long *)ar_bspstore;
1033 old_bsp = (unsigned long *)ar_bsp;
1034 slots = ia64_rse_num_regs(old_bspstore, old_bsp);
1035 new_bspstore = (unsigned long *)((u64)current + IA64_RBS_OFFSET);
1036 new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
1037 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
1038
1039 /* Verify the previous stack state before we change it */
1040 if (user_mode(regs)) {
1041 msg = "occurred in user space";
1042 /* previous_current is guaranteed to be valid when the task was
1043 * in user space, so ...
1044 */
1045 ia64_mca_modify_comm(previous_current);
1046 goto no_mod;
1047 }
1048
1049 if (r13 != sos->prev_IA64_KR_CURRENT) {
1050 msg = "inconsistent previous current and r13";
1051 goto no_mod;
1052 }
1053
1054 if (!mca_recover_range(ms->pmsa_iip)) {
1055 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
1056 msg = "inconsistent r12 and r13";
1057 goto no_mod;
1058 }
1059 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
1060 msg = "inconsistent ar.bspstore and r13";
1061 goto no_mod;
1062 }
1063 va.p = old_bspstore;
1064 if (va.f.reg < 5) {
1065 msg = "old_bspstore is in the wrong region";
1066 goto no_mod;
1067 }
1068 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
1069 msg = "inconsistent ar.bsp and r13";
1070 goto no_mod;
1071 }
1072 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
1073 if (ar_bspstore + size > r12) {
1074 msg = "no room for blocked state";
1075 goto no_mod;
1076 }
1077 }
1078
1079 ia64_mca_modify_comm(previous_current);
1080
1081 /* Make the original task look blocked. First stack a struct pt_regs,
1082 * describing the state at the time of interrupt. mca_asm.S built a
1083 * partial pt_regs, copy it and fill in the blanks using minstate.
1084 */
1085 p = (char *)r12 - sizeof(*regs);
1086 old_regs = (struct pt_regs *)p;
1087 memcpy(old_regs, regs, sizeof(*regs));
1088 old_regs->loadrs = loadrs;
1089 old_unat = old_regs->ar_unat;
1090 finish_pt_regs(old_regs, sos, &old_unat);
1091
1092 /* Next stack a struct switch_stack. mca_asm.S built a partial
1093 * switch_stack, copy it and fill in the blanks using pt_regs and
1094 * minstate.
1095 *
1096 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1097 * ar.pfs is set to 0.
1098 *
1099 * unwind.c::unw_unwind() does special processing for interrupt frames.
1100 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1101 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
1102 * that this is documented, of course. Set PRED_NON_SYSCALL in the
1103 * switch_stack on the original stack so it will unwind correctly when
1104 * unwind.c reads pt_regs.
1105 *
1106 * thread.ksp is updated to point to the synthesized switch_stack.
1107 */
1108 p -= sizeof(struct switch_stack);
1109 old_sw = (struct switch_stack *)p;
1110 memcpy(old_sw, sw, sizeof(*sw));
1111 old_sw->caller_unat = old_unat;
1112 old_sw->ar_fpsr = old_regs->ar_fpsr;
1113 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1114 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1115 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1116 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1117 old_sw->b0 = (u64)ia64_leave_kernel;
1118 old_sw->b1 = ms->pmsa_br1;
1119 old_sw->ar_pfs = 0;
1120 old_sw->ar_unat = old_unat;
1121 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1122 previous_current->thread.ksp = (u64)p - 16;
1123
1124 /* Finally copy the original stack's registers back to its RBS.
1125 * Registers from ar.bspstore through ar.bsp at the time of the event
1126 * are in the current RBS, copy them back to the original stack. The
1127 * copy must be done register by register because the original bspstore
1128 * and the current one have different alignments, so the saved RNAT
1129 * data occurs at different places.
1130 *
1131 * mca_asm does cover, so the old_bsp already includes all registers at
1132 * the time of MCA/INIT. It also does flushrs, so all registers before
1133 * this function have been written to backing store on the MCA/INIT
1134 * stack.
1135 */
1136 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1137 old_rnat = regs->ar_rnat;
1138 while (slots--) {
1139 if (ia64_rse_is_rnat_slot(new_bspstore)) {
1140 new_rnat = ia64_get_rnat(new_bspstore++);
1141 }
1142 if (ia64_rse_is_rnat_slot(old_bspstore)) {
1143 *old_bspstore++ = old_rnat;
1144 old_rnat = 0;
1145 }
1146 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1147 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1148 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1149 *old_bspstore++ = *new_bspstore++;
1150 }
1151 old_sw->ar_bspstore = (unsigned long)old_bspstore;
1152 old_sw->ar_rnat = old_rnat;
1153
1154 sos->prev_task = previous_current;
1155 return previous_current;
1156
1157 no_mod:
1158 mprintk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1159 smp_processor_id(), type, msg);
1160 old_unat = regs->ar_unat;
1161 finish_pt_regs(regs, sos, &old_unat);
1162 return previous_current;
1163 }
1164
1165 /* The monarch/slave interaction is based on monarch_cpu and requires that all
1166 * slaves have entered rendezvous before the monarch leaves. If any cpu has
1167 * not entered rendezvous yet then wait a bit. The assumption is that any
1168 * slave that has not rendezvoused after a reasonable time is never going to do
1169 * so. In this context, slave includes cpus that respond to the MCA rendezvous
1170 * interrupt, as well as cpus that receive the INIT slave event.
1171 */
1172
1173 static void
ia64_wait_for_slaves(int monarch,const char * type)1174 ia64_wait_for_slaves(int monarch, const char *type)
1175 {
1176 int c, i , wait;
1177
1178 /*
1179 * wait 5 seconds total for slaves (arbitrary)
1180 */
1181 for (i = 0; i < 5000; i++) {
1182 wait = 0;
1183 for_each_online_cpu(c) {
1184 if (c == monarch)
1185 continue;
1186 if (ia64_mc_info.imi_rendez_checkin[c]
1187 == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1188 udelay(1000); /* short wait */
1189 wait = 1;
1190 break;
1191 }
1192 }
1193 if (!wait)
1194 goto all_in;
1195 }
1196
1197 /*
1198 * Maybe slave(s) dead. Print buffered messages immediately.
1199 */
1200 ia64_mlogbuf_finish(0);
1201 mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1202 for_each_online_cpu(c) {
1203 if (c == monarch)
1204 continue;
1205 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1206 mprintk(" %d", c);
1207 }
1208 mprintk("\n");
1209 return;
1210
1211 all_in:
1212 mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1213 return;
1214 }
1215
1216 /* mca_insert_tr
1217 *
1218 * Switch rid when TR reload and needed!
1219 * iord: 1: itr, 2: itr;
1220 *
1221 */
mca_insert_tr(u64 iord)1222 static void mca_insert_tr(u64 iord)
1223 {
1224
1225 int i;
1226 u64 old_rr;
1227 struct ia64_tr_entry *p;
1228 unsigned long psr;
1229 int cpu = smp_processor_id();
1230
1231 if (!ia64_idtrs[cpu])
1232 return;
1233
1234 psr = ia64_clear_ic();
1235 for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) {
1236 p = ia64_idtrs[cpu] + (iord - 1) * IA64_TR_ALLOC_MAX;
1237 if (p->pte & 0x1) {
1238 old_rr = ia64_get_rr(p->ifa);
1239 if (old_rr != p->rr) {
1240 ia64_set_rr(p->ifa, p->rr);
1241 ia64_srlz_d();
1242 }
1243 ia64_ptr(iord, p->ifa, p->itir >> 2);
1244 ia64_srlz_i();
1245 if (iord & 0x1) {
1246 ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2);
1247 ia64_srlz_i();
1248 }
1249 if (iord & 0x2) {
1250 ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2);
1251 ia64_srlz_i();
1252 }
1253 if (old_rr != p->rr) {
1254 ia64_set_rr(p->ifa, old_rr);
1255 ia64_srlz_d();
1256 }
1257 }
1258 }
1259 ia64_set_psr(psr);
1260 }
1261
1262 /*
1263 * ia64_mca_handler
1264 *
1265 * This is uncorrectable machine check handler called from OS_MCA
1266 * dispatch code which is in turn called from SAL_CHECK().
1267 * This is the place where the core of OS MCA handling is done.
1268 * Right now the logs are extracted and displayed in a well-defined
1269 * format. This handler code is supposed to be run only on the
1270 * monarch processor. Once the monarch is done with MCA handling
1271 * further MCA logging is enabled by clearing logs.
1272 * Monarch also has the duty of sending wakeup-IPIs to pull the
1273 * slave processors out of rendezvous spinloop.
1274 *
1275 * If multiple processors call into OS_MCA, the first will become
1276 * the monarch. Subsequent cpus will be recorded in the mca_cpu
1277 * bitmask. After the first monarch has processed its MCA, it
1278 * will wake up the next cpu in the mca_cpu bitmask and then go
1279 * into the rendezvous loop. When all processors have serviced
1280 * their MCA, the last monarch frees up the rest of the processors.
1281 */
1282 void
ia64_mca_handler(struct pt_regs * regs,struct switch_stack * sw,struct ia64_sal_os_state * sos)1283 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1284 struct ia64_sal_os_state *sos)
1285 {
1286 int recover, cpu = smp_processor_id();
1287 struct task_struct *previous_current;
1288 struct ia64_mca_notify_die nd =
1289 { .sos = sos, .monarch_cpu = &monarch_cpu, .data = &recover };
1290 static atomic_t mca_count;
1291 static cpumask_t mca_cpu;
1292
1293 if (atomic_add_return(1, &mca_count) == 1) {
1294 monarch_cpu = cpu;
1295 sos->monarch = 1;
1296 } else {
1297 cpumask_set_cpu(cpu, &mca_cpu);
1298 sos->monarch = 0;
1299 }
1300 mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1301 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1302
1303 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1304
1305 NOTIFY_MCA(DIE_MCA_MONARCH_ENTER, regs, (long)&nd, 1);
1306
1307 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1308 if (sos->monarch) {
1309 ia64_wait_for_slaves(cpu, "MCA");
1310
1311 /* Wakeup all the processors which are spinning in the
1312 * rendezvous loop. They will leave SAL, then spin in the OS
1313 * with interrupts disabled until this monarch cpu leaves the
1314 * MCA handler. That gets control back to the OS so we can
1315 * backtrace the other cpus, backtrace when spinning in SAL
1316 * does not work.
1317 */
1318 ia64_mca_wakeup_all();
1319 } else {
1320 while (cpumask_test_cpu(cpu, &mca_cpu))
1321 cpu_relax(); /* spin until monarch wakes us */
1322 }
1323
1324 NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS, regs, (long)&nd, 1);
1325
1326 /* Get the MCA error record and log it */
1327 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1328
1329 /* MCA error recovery */
1330 recover = (ia64_mca_ucmc_extension
1331 && ia64_mca_ucmc_extension(
1332 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1333 sos));
1334
1335 if (recover) {
1336 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1337 rh->severity = sal_log_severity_corrected;
1338 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1339 sos->os_status = IA64_MCA_CORRECTED;
1340 } else {
1341 /* Dump buffered message to console */
1342 ia64_mlogbuf_finish(1);
1343 }
1344
1345 if (__this_cpu_read(ia64_mca_tr_reload)) {
1346 mca_insert_tr(0x1); /*Reload dynamic itrs*/
1347 mca_insert_tr(0x2); /*Reload dynamic itrs*/
1348 }
1349
1350 NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE, regs, (long)&nd, 1);
1351
1352 if (atomic_dec_return(&mca_count) > 0) {
1353 int i;
1354
1355 /* wake up the next monarch cpu,
1356 * and put this cpu in the rendez loop.
1357 */
1358 for_each_online_cpu(i) {
1359 if (cpumask_test_cpu(i, &mca_cpu)) {
1360 monarch_cpu = i;
1361 cpumask_clear_cpu(i, &mca_cpu); /* wake next cpu */
1362 while (monarch_cpu != -1)
1363 cpu_relax(); /* spin until last cpu leaves */
1364 ia64_set_curr_task(cpu, previous_current);
1365 ia64_mc_info.imi_rendez_checkin[cpu]
1366 = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1367 return;
1368 }
1369 }
1370 }
1371 ia64_set_curr_task(cpu, previous_current);
1372 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1373 monarch_cpu = -1; /* This frees the slaves and previous monarchs */
1374 }
1375
1376 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1377 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1378
1379 /*
1380 * ia64_mca_cmc_int_handler
1381 *
1382 * This is corrected machine check interrupt handler.
1383 * Right now the logs are extracted and displayed in a well-defined
1384 * format.
1385 *
1386 * Inputs
1387 * interrupt number
1388 * client data arg ptr
1389 *
1390 * Outputs
1391 * None
1392 */
1393 static irqreturn_t
ia64_mca_cmc_int_handler(int cmc_irq,void * arg)1394 ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1395 {
1396 static unsigned long cmc_history[CMC_HISTORY_LENGTH];
1397 static int index;
1398 static DEFINE_SPINLOCK(cmc_history_lock);
1399
1400 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1401 __func__, cmc_irq, smp_processor_id());
1402
1403 /* SAL spec states this should run w/ interrupts enabled */
1404 local_irq_enable();
1405
1406 spin_lock(&cmc_history_lock);
1407 if (!cmc_polling_enabled) {
1408 int i, count = 1; /* we know 1 happened now */
1409 unsigned long now = jiffies;
1410
1411 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1412 if (now - cmc_history[i] <= HZ)
1413 count++;
1414 }
1415
1416 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1417 if (count >= CMC_HISTORY_LENGTH) {
1418
1419 cmc_polling_enabled = 1;
1420 spin_unlock(&cmc_history_lock);
1421 /* If we're being hit with CMC interrupts, we won't
1422 * ever execute the schedule_work() below. Need to
1423 * disable CMC interrupts on this processor now.
1424 */
1425 ia64_mca_cmc_vector_disable(NULL);
1426 schedule_work(&cmc_disable_work);
1427
1428 /*
1429 * Corrected errors will still be corrected, but
1430 * make sure there's a log somewhere that indicates
1431 * something is generating more than we can handle.
1432 */
1433 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1434
1435 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1436
1437 /* lock already released, get out now */
1438 goto out;
1439 } else {
1440 cmc_history[index++] = now;
1441 if (index == CMC_HISTORY_LENGTH)
1442 index = 0;
1443 }
1444 }
1445 spin_unlock(&cmc_history_lock);
1446 out:
1447 /* Get the CMC error record and log it */
1448 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1449
1450 local_irq_disable();
1451
1452 return IRQ_HANDLED;
1453 }
1454
1455 /*
1456 * ia64_mca_cmc_int_caller
1457 *
1458 * Triggered by sw interrupt from CMC polling routine. Calls
1459 * real interrupt handler and either triggers a sw interrupt
1460 * on the next cpu or does cleanup at the end.
1461 *
1462 * Inputs
1463 * interrupt number
1464 * client data arg ptr
1465 * Outputs
1466 * handled
1467 */
1468 static irqreturn_t
ia64_mca_cmc_int_caller(int cmc_irq,void * arg)1469 ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1470 {
1471 static int start_count = -1;
1472 unsigned int cpuid;
1473
1474 cpuid = smp_processor_id();
1475
1476 /* If first cpu, update count */
1477 if (start_count == -1)
1478 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1479
1480 ia64_mca_cmc_int_handler(cmc_irq, arg);
1481
1482 cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1483
1484 if (cpuid < nr_cpu_ids) {
1485 ia64_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1486 } else {
1487 /* If no log record, switch out of polling mode */
1488 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1489
1490 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1491 schedule_work(&cmc_enable_work);
1492 cmc_polling_enabled = 0;
1493
1494 } else {
1495
1496 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1497 }
1498
1499 start_count = -1;
1500 }
1501
1502 return IRQ_HANDLED;
1503 }
1504
1505 /*
1506 * ia64_mca_cmc_poll
1507 *
1508 * Poll for Corrected Machine Checks (CMCs)
1509 *
1510 * Inputs : dummy(unused)
1511 * Outputs : None
1512 *
1513 */
1514 static void
ia64_mca_cmc_poll(struct timer_list * unused)1515 ia64_mca_cmc_poll (struct timer_list *unused)
1516 {
1517 /* Trigger a CMC interrupt cascade */
1518 ia64_send_ipi(cpumask_first(cpu_online_mask), IA64_CMCP_VECTOR,
1519 IA64_IPI_DM_INT, 0);
1520 }
1521
1522 /*
1523 * ia64_mca_cpe_int_caller
1524 *
1525 * Triggered by sw interrupt from CPE polling routine. Calls
1526 * real interrupt handler and either triggers a sw interrupt
1527 * on the next cpu or does cleanup at the end.
1528 *
1529 * Inputs
1530 * interrupt number
1531 * client data arg ptr
1532 * Outputs
1533 * handled
1534 */
1535 static irqreturn_t
ia64_mca_cpe_int_caller(int cpe_irq,void * arg)1536 ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1537 {
1538 static int start_count = -1;
1539 static int poll_time = MIN_CPE_POLL_INTERVAL;
1540 unsigned int cpuid;
1541
1542 cpuid = smp_processor_id();
1543
1544 /* If first cpu, update count */
1545 if (start_count == -1)
1546 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1547
1548 ia64_mca_cpe_int_handler(cpe_irq, arg);
1549
1550 cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1551
1552 if (cpuid < NR_CPUS) {
1553 ia64_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1554 } else {
1555 /*
1556 * If a log was recorded, increase our polling frequency,
1557 * otherwise, backoff or return to interrupt mode.
1558 */
1559 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1560 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1561 } else if (cpe_vector < 0) {
1562 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1563 } else {
1564 poll_time = MIN_CPE_POLL_INTERVAL;
1565
1566 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1567 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1568 cpe_poll_enabled = 0;
1569 }
1570
1571 if (cpe_poll_enabled)
1572 mod_timer(&cpe_poll_timer, jiffies + poll_time);
1573 start_count = -1;
1574 }
1575
1576 return IRQ_HANDLED;
1577 }
1578
1579 /*
1580 * ia64_mca_cpe_poll
1581 *
1582 * Poll for Corrected Platform Errors (CPEs), trigger interrupt
1583 * on first cpu, from there it will trickle through all the cpus.
1584 *
1585 * Inputs : dummy(unused)
1586 * Outputs : None
1587 *
1588 */
1589 static void
ia64_mca_cpe_poll(struct timer_list * unused)1590 ia64_mca_cpe_poll (struct timer_list *unused)
1591 {
1592 /* Trigger a CPE interrupt cascade */
1593 ia64_send_ipi(cpumask_first(cpu_online_mask), IA64_CPEP_VECTOR,
1594 IA64_IPI_DM_INT, 0);
1595 }
1596
1597 static int
default_monarch_init_process(struct notifier_block * self,unsigned long val,void * data)1598 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1599 {
1600 int c;
1601 struct task_struct *g, *t;
1602 if (val != DIE_INIT_MONARCH_PROCESS)
1603 return NOTIFY_DONE;
1604 #ifdef CONFIG_KEXEC
1605 if (atomic_read(&kdump_in_progress))
1606 return NOTIFY_DONE;
1607 #endif
1608
1609 /*
1610 * FIXME: mlogbuf will brim over with INIT stack dumps.
1611 * To enable show_stack from INIT, we use oops_in_progress which should
1612 * be used in real oops. This would cause something wrong after INIT.
1613 */
1614 BREAK_LOGLEVEL(console_loglevel);
1615 ia64_mlogbuf_dump_from_init();
1616
1617 printk(KERN_ERR "Processes interrupted by INIT -");
1618 for_each_online_cpu(c) {
1619 struct ia64_sal_os_state *s;
1620 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1621 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1622 g = s->prev_task;
1623 if (g) {
1624 if (g->pid)
1625 printk(" %d", g->pid);
1626 else
1627 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1628 }
1629 }
1630 printk("\n\n");
1631 if (read_trylock(&tasklist_lock)) {
1632 do_each_thread (g, t) {
1633 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1634 show_stack(t, NULL, KERN_DEFAULT);
1635 } while_each_thread (g, t);
1636 read_unlock(&tasklist_lock);
1637 }
1638 /* FIXME: This will not restore zapped printk locks. */
1639 RESTORE_LOGLEVEL(console_loglevel);
1640 return NOTIFY_DONE;
1641 }
1642
1643 /*
1644 * C portion of the OS INIT handler
1645 *
1646 * Called from ia64_os_init_dispatch
1647 *
1648 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
1649 * this event. This code is used for both monarch and slave INIT events, see
1650 * sos->monarch.
1651 *
1652 * All INIT events switch to the INIT stack and change the previous process to
1653 * blocked status. If one of the INIT events is the monarch then we are
1654 * probably processing the nmi button/command. Use the monarch cpu to dump all
1655 * the processes. The slave INIT events all spin until the monarch cpu
1656 * returns. We can also get INIT slave events for MCA, in which case the MCA
1657 * process is the monarch.
1658 */
1659
1660 void
ia64_init_handler(struct pt_regs * regs,struct switch_stack * sw,struct ia64_sal_os_state * sos)1661 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1662 struct ia64_sal_os_state *sos)
1663 {
1664 static atomic_t slaves;
1665 static atomic_t monarchs;
1666 struct task_struct *previous_current;
1667 int cpu = smp_processor_id();
1668 struct ia64_mca_notify_die nd =
1669 { .sos = sos, .monarch_cpu = &monarch_cpu };
1670
1671 NOTIFY_INIT(DIE_INIT_ENTER, regs, (long)&nd, 0);
1672
1673 mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1674 sos->proc_state_param, cpu, sos->monarch);
1675 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1676
1677 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1678 sos->os_status = IA64_INIT_RESUME;
1679
1680 /* FIXME: Workaround for broken proms that drive all INIT events as
1681 * slaves. The last slave that enters is promoted to be a monarch.
1682 * Remove this code in September 2006, that gives platforms a year to
1683 * fix their proms and get their customers updated.
1684 */
1685 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1686 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1687 __func__, cpu);
1688 atomic_dec(&slaves);
1689 sos->monarch = 1;
1690 }
1691
1692 /* FIXME: Workaround for broken proms that drive all INIT events as
1693 * monarchs. Second and subsequent monarchs are demoted to slaves.
1694 * Remove this code in September 2006, that gives platforms a year to
1695 * fix their proms and get their customers updated.
1696 */
1697 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1698 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1699 __func__, cpu);
1700 atomic_dec(&monarchs);
1701 sos->monarch = 0;
1702 }
1703
1704 if (!sos->monarch) {
1705 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1706
1707 #ifdef CONFIG_KEXEC
1708 while (monarch_cpu == -1 && !atomic_read(&kdump_in_progress))
1709 udelay(1000);
1710 #else
1711 while (monarch_cpu == -1)
1712 cpu_relax(); /* spin until monarch enters */
1713 #endif
1714
1715 NOTIFY_INIT(DIE_INIT_SLAVE_ENTER, regs, (long)&nd, 1);
1716 NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS, regs, (long)&nd, 1);
1717
1718 #ifdef CONFIG_KEXEC
1719 while (monarch_cpu != -1 && !atomic_read(&kdump_in_progress))
1720 udelay(1000);
1721 #else
1722 while (monarch_cpu != -1)
1723 cpu_relax(); /* spin until monarch leaves */
1724 #endif
1725
1726 NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1);
1727
1728 mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1729 ia64_set_curr_task(cpu, previous_current);
1730 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1731 atomic_dec(&slaves);
1732 return;
1733 }
1734
1735 monarch_cpu = cpu;
1736 NOTIFY_INIT(DIE_INIT_MONARCH_ENTER, regs, (long)&nd, 1);
1737
1738 /*
1739 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1740 * generated via the BMC's command-line interface, but since the console is on the
1741 * same serial line, the user will need some time to switch out of the BMC before
1742 * the dump begins.
1743 */
1744 mprintk("Delaying for 5 seconds...\n");
1745 udelay(5*1000000);
1746 ia64_wait_for_slaves(cpu, "INIT");
1747 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1748 * to default_monarch_init_process() above and just print all the
1749 * tasks.
1750 */
1751 NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS, regs, (long)&nd, 1);
1752 NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE, regs, (long)&nd, 1);
1753
1754 mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu);
1755 atomic_dec(&monarchs);
1756 ia64_set_curr_task(cpu, previous_current);
1757 monarch_cpu = -1;
1758 return;
1759 }
1760
1761 static int __init
ia64_mca_disable_cpe_polling(char * str)1762 ia64_mca_disable_cpe_polling(char *str)
1763 {
1764 cpe_poll_enabled = 0;
1765 return 1;
1766 }
1767
1768 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1769
1770 /* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
1771 * these stacks can never sleep, they cannot return from the kernel to user
1772 * space, they do not appear in a normal ps listing. So there is no need to
1773 * format most of the fields.
1774 */
1775
1776 static void
format_mca_init_stack(void * mca_data,unsigned long offset,const char * type,int cpu)1777 format_mca_init_stack(void *mca_data, unsigned long offset,
1778 const char *type, int cpu)
1779 {
1780 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1781 struct thread_info *ti;
1782 memset(p, 0, KERNEL_STACK_SIZE);
1783 ti = task_thread_info(p);
1784 ti->flags = _TIF_MCA_INIT;
1785 ti->preempt_count = 1;
1786 ti->task = p;
1787 ti->cpu = cpu;
1788 p->stack = ti;
1789 p->state = TASK_UNINTERRUPTIBLE;
1790 cpumask_set_cpu(cpu, &p->cpus_mask);
1791 INIT_LIST_HEAD(&p->tasks);
1792 p->parent = p->real_parent = p->group_leader = p;
1793 INIT_LIST_HEAD(&p->children);
1794 INIT_LIST_HEAD(&p->sibling);
1795 strncpy(p->comm, type, sizeof(p->comm)-1);
1796 }
1797
1798 /* Caller prevents this from being called after init */
mca_bootmem(void)1799 static void * __ref mca_bootmem(void)
1800 {
1801 return memblock_alloc(sizeof(struct ia64_mca_cpu), KERNEL_STACK_SIZE);
1802 }
1803
1804 /* Do per-CPU MCA-related initialization. */
1805 void
ia64_mca_cpu_init(void * cpu_data)1806 ia64_mca_cpu_init(void *cpu_data)
1807 {
1808 void *pal_vaddr;
1809 void *data;
1810 long sz = sizeof(struct ia64_mca_cpu);
1811 int cpu = smp_processor_id();
1812 static int first_time = 1;
1813
1814 /*
1815 * Structure will already be allocated if cpu has been online,
1816 * then offlined.
1817 */
1818 if (__per_cpu_mca[cpu]) {
1819 data = __va(__per_cpu_mca[cpu]);
1820 } else {
1821 if (first_time) {
1822 data = mca_bootmem();
1823 first_time = 0;
1824 } else
1825 data = (void *)__get_free_pages(GFP_ATOMIC,
1826 get_order(sz));
1827 if (!data)
1828 panic("Could not allocate MCA memory for cpu %d\n",
1829 cpu);
1830 }
1831 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack),
1832 "MCA", cpu);
1833 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack),
1834 "INIT", cpu);
1835 __this_cpu_write(ia64_mca_data, (__per_cpu_mca[cpu] = __pa(data)));
1836
1837 /*
1838 * Stash away a copy of the PTE needed to map the per-CPU page.
1839 * We may need it during MCA recovery.
1840 */
1841 __this_cpu_write(ia64_mca_per_cpu_pte,
1842 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL)));
1843
1844 /*
1845 * Also, stash away a copy of the PAL address and the PTE
1846 * needed to map it.
1847 */
1848 pal_vaddr = efi_get_pal_addr();
1849 if (!pal_vaddr)
1850 return;
1851 __this_cpu_write(ia64_mca_pal_base,
1852 GRANULEROUNDDOWN((unsigned long) pal_vaddr));
1853 __this_cpu_write(ia64_mca_pal_pte, pte_val(mk_pte_phys(__pa(pal_vaddr),
1854 PAGE_KERNEL)));
1855 }
1856
ia64_mca_cpu_online(unsigned int cpu)1857 static int ia64_mca_cpu_online(unsigned int cpu)
1858 {
1859 unsigned long flags;
1860
1861 local_irq_save(flags);
1862 if (!cmc_polling_enabled)
1863 ia64_mca_cmc_vector_enable(NULL);
1864 local_irq_restore(flags);
1865 return 0;
1866 }
1867
1868 /*
1869 * ia64_mca_init
1870 *
1871 * Do all the system level mca specific initialization.
1872 *
1873 * 1. Register spinloop and wakeup request interrupt vectors
1874 *
1875 * 2. Register OS_MCA handler entry point
1876 *
1877 * 3. Register OS_INIT handler entry point
1878 *
1879 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1880 *
1881 * Note that this initialization is done very early before some kernel
1882 * services are available.
1883 *
1884 * Inputs : None
1885 *
1886 * Outputs : None
1887 */
1888 void __init
ia64_mca_init(void)1889 ia64_mca_init(void)
1890 {
1891 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1892 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1893 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1894 int i;
1895 long rc;
1896 struct ia64_sal_retval isrv;
1897 unsigned long timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1898 static struct notifier_block default_init_monarch_nb = {
1899 .notifier_call = default_monarch_init_process,
1900 .priority = 0/* we need to notified last */
1901 };
1902
1903 IA64_MCA_DEBUG("%s: begin\n", __func__);
1904
1905 /* Clear the Rendez checkin flag for all cpus */
1906 for(i = 0 ; i < NR_CPUS; i++)
1907 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1908
1909 /*
1910 * Register the rendezvous spinloop and wakeup mechanism with SAL
1911 */
1912
1913 /* Register the rendezvous interrupt vector with SAL */
1914 while (1) {
1915 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1916 SAL_MC_PARAM_MECHANISM_INT,
1917 IA64_MCA_RENDEZ_VECTOR,
1918 timeout,
1919 SAL_MC_PARAM_RZ_ALWAYS);
1920 rc = isrv.status;
1921 if (rc == 0)
1922 break;
1923 if (rc == -2) {
1924 printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1925 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1926 timeout = isrv.v0;
1927 NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT, NULL, timeout, 0);
1928 continue;
1929 }
1930 printk(KERN_ERR "Failed to register rendezvous interrupt "
1931 "with SAL (status %ld)\n", rc);
1932 return;
1933 }
1934
1935 /* Register the wakeup interrupt vector with SAL */
1936 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1937 SAL_MC_PARAM_MECHANISM_INT,
1938 IA64_MCA_WAKEUP_VECTOR,
1939 0, 0);
1940 rc = isrv.status;
1941 if (rc) {
1942 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1943 "(status %ld)\n", rc);
1944 return;
1945 }
1946
1947 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__);
1948
1949 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
1950 /*
1951 * XXX - disable SAL checksum by setting size to 0; should be
1952 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1953 */
1954 ia64_mc_info.imi_mca_handler_size = 0;
1955
1956 /* Register the os mca handler with SAL */
1957 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1958 ia64_mc_info.imi_mca_handler,
1959 ia64_tpa(mca_hldlr_ptr->gp),
1960 ia64_mc_info.imi_mca_handler_size,
1961 0, 0, 0)))
1962 {
1963 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1964 "(status %ld)\n", rc);
1965 return;
1966 }
1967
1968 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__,
1969 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1970
1971 /*
1972 * XXX - disable SAL checksum by setting size to 0, should be
1973 * size of the actual init handler in mca_asm.S.
1974 */
1975 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp);
1976 ia64_mc_info.imi_monarch_init_handler_size = 0;
1977 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp);
1978 ia64_mc_info.imi_slave_init_handler_size = 0;
1979
1980 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__,
1981 ia64_mc_info.imi_monarch_init_handler);
1982
1983 /* Register the os init handler with SAL */
1984 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1985 ia64_mc_info.imi_monarch_init_handler,
1986 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1987 ia64_mc_info.imi_monarch_init_handler_size,
1988 ia64_mc_info.imi_slave_init_handler,
1989 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1990 ia64_mc_info.imi_slave_init_handler_size)))
1991 {
1992 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1993 "(status %ld)\n", rc);
1994 return;
1995 }
1996 if (register_die_notifier(&default_init_monarch_nb)) {
1997 printk(KERN_ERR "Failed to register default monarch INIT process\n");
1998 return;
1999 }
2000
2001 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__);
2002
2003 /* Initialize the areas set aside by the OS to buffer the
2004 * platform/processor error states for MCA/INIT/CMC
2005 * handling.
2006 */
2007 ia64_log_init(SAL_INFO_TYPE_MCA);
2008 ia64_log_init(SAL_INFO_TYPE_INIT);
2009 ia64_log_init(SAL_INFO_TYPE_CMC);
2010 ia64_log_init(SAL_INFO_TYPE_CPE);
2011
2012 mca_init = 1;
2013 printk(KERN_INFO "MCA related initialization done\n");
2014 }
2015
2016
2017 /*
2018 * These pieces cannot be done in ia64_mca_init() because it is called before
2019 * early_irq_init() which would wipe out our percpu irq registrations. But we
2020 * cannot leave them until ia64_mca_late_init() because by then all the other
2021 * processors have been brought online and have set their own CMC vectors to
2022 * point at a non-existant action. Called from arch_early_irq_init().
2023 */
ia64_mca_irq_init(void)2024 void __init ia64_mca_irq_init(void)
2025 {
2026 /*
2027 * Configure the CMCI/P vector and handler. Interrupts for CMC are
2028 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
2029 */
2030 register_percpu_irq(IA64_CMC_VECTOR, ia64_mca_cmc_int_handler, 0,
2031 "cmc_hndlr");
2032 register_percpu_irq(IA64_CMCP_VECTOR, ia64_mca_cmc_int_caller, 0,
2033 "cmc_poll");
2034 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
2035
2036 /* Setup the MCA rendezvous interrupt vector */
2037 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, ia64_mca_rendez_int_handler,
2038 0, "mca_rdzv");
2039
2040 /* Setup the MCA wakeup interrupt vector */
2041 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, ia64_mca_wakeup_int_handler,
2042 0, "mca_wkup");
2043
2044 /* Setup the CPEI/P handler */
2045 register_percpu_irq(IA64_CPEP_VECTOR, ia64_mca_cpe_int_caller, 0,
2046 "cpe_poll");
2047 }
2048
2049 /*
2050 * ia64_mca_late_init
2051 *
2052 * Opportunity to setup things that require initialization later
2053 * than ia64_mca_init. Setup a timer to poll for CPEs if the
2054 * platform doesn't support an interrupt driven mechanism.
2055 *
2056 * Inputs : None
2057 * Outputs : Status
2058 */
2059 static int __init
ia64_mca_late_init(void)2060 ia64_mca_late_init(void)
2061 {
2062 if (!mca_init)
2063 return 0;
2064
2065 /* Setup the CMCI/P vector and handler */
2066 timer_setup(&cmc_poll_timer, ia64_mca_cmc_poll, 0);
2067
2068 /* Unmask/enable the vector */
2069 cmc_polling_enabled = 0;
2070 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/mca:online",
2071 ia64_mca_cpu_online, NULL);
2072 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__);
2073
2074 /* Setup the CPEI/P vector and handler */
2075 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
2076 timer_setup(&cpe_poll_timer, ia64_mca_cpe_poll, 0);
2077
2078 {
2079 unsigned int irq;
2080
2081 if (cpe_vector >= 0) {
2082 /* If platform supports CPEI, enable the irq. */
2083 irq = local_vector_to_irq(cpe_vector);
2084 if (irq > 0) {
2085 cpe_poll_enabled = 0;
2086 irq_set_status_flags(irq, IRQ_PER_CPU);
2087 if (request_irq(irq, ia64_mca_cpe_int_handler,
2088 0, "cpe_hndlr", NULL))
2089 pr_err("Failed to register cpe_hndlr interrupt\n");
2090 ia64_cpe_irq = irq;
2091 ia64_mca_register_cpev(cpe_vector);
2092 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2093 __func__);
2094 return 0;
2095 }
2096 printk(KERN_ERR "%s: Failed to find irq for CPE "
2097 "interrupt handler, vector %d\n",
2098 __func__, cpe_vector);
2099 }
2100 /* If platform doesn't support CPEI, get the timer going. */
2101 if (cpe_poll_enabled) {
2102 ia64_mca_cpe_poll(0UL);
2103 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__);
2104 }
2105 }
2106
2107 return 0;
2108 }
2109
2110 device_initcall(ia64_mca_late_init);
2111