• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This pass does misc. AMDGPU optimizations on IR before instruction
11 /// selection.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPU.h"
16 #include "AMDGPUSubtarget.h"
17 #include "AMDGPUTargetMachine.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
21 #include "llvm/Analysis/Loads.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/CodeGen/TargetPassConfig.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/InstVisitor.h"
32 #include "llvm/IR/InstrTypes.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/InitializePasses.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/Casting.h"
44 #include <cassert>
45 #include <iterator>
46 
47 #define DEBUG_TYPE "amdgpu-codegenprepare"
48 
49 using namespace llvm;
50 
51 namespace {
52 
53 static cl::opt<bool> WidenLoads(
54   "amdgpu-codegenprepare-widen-constant-loads",
55   cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"),
56   cl::ReallyHidden,
57   cl::init(true));
58 
59 static cl::opt<bool> UseMul24Intrin(
60   "amdgpu-codegenprepare-mul24",
61   cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"),
62   cl::ReallyHidden,
63   cl::init(true));
64 
65 class AMDGPUCodeGenPrepare : public FunctionPass,
66                              public InstVisitor<AMDGPUCodeGenPrepare, bool> {
67   const GCNSubtarget *ST = nullptr;
68   AssumptionCache *AC = nullptr;
69   LegacyDivergenceAnalysis *DA = nullptr;
70   Module *Mod = nullptr;
71   const DataLayout *DL = nullptr;
72   bool HasUnsafeFPMath = false;
73   bool HasFP32Denormals = false;
74 
75   /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to
76   /// binary operation \p V.
77   ///
78   /// \returns Binary operation \p V.
79   /// \returns \p T's base element bit width.
80   unsigned getBaseElementBitWidth(const Type *T) const;
81 
82   /// \returns Equivalent 32 bit integer type for given type \p T. For example,
83   /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32>
84   /// is returned.
85   Type *getI32Ty(IRBuilder<> &B, const Type *T) const;
86 
87   /// \returns True if binary operation \p I is a signed binary operation, false
88   /// otherwise.
89   bool isSigned(const BinaryOperator &I) const;
90 
91   /// \returns True if the condition of 'select' operation \p I comes from a
92   /// signed 'icmp' operation, false otherwise.
93   bool isSigned(const SelectInst &I) const;
94 
95   /// \returns True if type \p T needs to be promoted to 32 bit integer type,
96   /// false otherwise.
97   bool needsPromotionToI32(const Type *T) const;
98 
99   /// Promotes uniform binary operation \p I to equivalent 32 bit binary
100   /// operation.
101   ///
102   /// \details \p I's base element bit width must be greater than 1 and less
103   /// than or equal 16. Promotion is done by sign or zero extending operands to
104   /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and
105   /// truncating the result of 32 bit binary operation back to \p I's original
106   /// type. Division operation is not promoted.
107   ///
108   /// \returns True if \p I is promoted to equivalent 32 bit binary operation,
109   /// false otherwise.
110   bool promoteUniformOpToI32(BinaryOperator &I) const;
111 
112   /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation.
113   ///
114   /// \details \p I's base element bit width must be greater than 1 and less
115   /// than or equal 16. Promotion is done by sign or zero extending operands to
116   /// 32 bits, and replacing \p I with 32 bit 'icmp' operation.
117   ///
118   /// \returns True.
119   bool promoteUniformOpToI32(ICmpInst &I) const;
120 
121   /// Promotes uniform 'select' operation \p I to 32 bit 'select'
122   /// operation.
123   ///
124   /// \details \p I's base element bit width must be greater than 1 and less
125   /// than or equal 16. Promotion is done by sign or zero extending operands to
126   /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the
127   /// result of 32 bit 'select' operation back to \p I's original type.
128   ///
129   /// \returns True.
130   bool promoteUniformOpToI32(SelectInst &I) const;
131 
132   /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse'
133   /// intrinsic.
134   ///
135   /// \details \p I's base element bit width must be greater than 1 and less
136   /// than or equal 16. Promotion is done by zero extending the operand to 32
137   /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the
138   /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the
139   /// shift amount is 32 minus \p I's base element bit width), and truncating
140   /// the result of the shift operation back to \p I's original type.
141   ///
142   /// \returns True.
143   bool promoteUniformBitreverseToI32(IntrinsicInst &I) const;
144 
145 
146   unsigned numBitsUnsigned(Value *Op, unsigned ScalarSize) const;
147   unsigned numBitsSigned(Value *Op, unsigned ScalarSize) const;
148   bool isI24(Value *V, unsigned ScalarSize) const;
149   bool isU24(Value *V, unsigned ScalarSize) const;
150 
151   /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24.
152   /// SelectionDAG has an issue where an and asserting the bits are known
153   bool replaceMulWithMul24(BinaryOperator &I) const;
154 
155   /// Expands 24 bit div or rem.
156   Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I,
157                         Value *Num, Value *Den,
158                         bool IsDiv, bool IsSigned) const;
159 
160   /// Expands 32 bit div or rem.
161   Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I,
162                         Value *Num, Value *Den) const;
163 
164   /// Widen a scalar load.
165   ///
166   /// \details \p Widen scalar load for uniform, small type loads from constant
167   //  memory / to a full 32-bits and then truncate the input to allow a scalar
168   //  load instead of a vector load.
169   //
170   /// \returns True.
171 
172   bool canWidenScalarExtLoad(LoadInst &I) const;
173 
174 public:
175   static char ID;
176 
AMDGPUCodeGenPrepare()177   AMDGPUCodeGenPrepare() : FunctionPass(ID) {}
178 
179   bool visitFDiv(BinaryOperator &I);
180 
visitInstruction(Instruction & I)181   bool visitInstruction(Instruction &I) { return false; }
182   bool visitBinaryOperator(BinaryOperator &I);
183   bool visitLoadInst(LoadInst &I);
184   bool visitICmpInst(ICmpInst &I);
185   bool visitSelectInst(SelectInst &I);
186 
187   bool visitIntrinsicInst(IntrinsicInst &I);
188   bool visitBitreverseIntrinsicInst(IntrinsicInst &I);
189 
190   bool doInitialization(Module &M) override;
191   bool runOnFunction(Function &F) override;
192 
getPassName() const193   StringRef getPassName() const override { return "AMDGPU IR optimizations"; }
194 
getAnalysisUsage(AnalysisUsage & AU) const195   void getAnalysisUsage(AnalysisUsage &AU) const override {
196     AU.addRequired<AssumptionCacheTracker>();
197     AU.addRequired<LegacyDivergenceAnalysis>();
198     AU.setPreservesAll();
199  }
200 };
201 
202 } // end anonymous namespace
203 
getBaseElementBitWidth(const Type * T) const204 unsigned AMDGPUCodeGenPrepare::getBaseElementBitWidth(const Type *T) const {
205   assert(needsPromotionToI32(T) && "T does not need promotion to i32");
206 
207   if (T->isIntegerTy())
208     return T->getIntegerBitWidth();
209   return cast<VectorType>(T)->getElementType()->getIntegerBitWidth();
210 }
211 
getI32Ty(IRBuilder<> & B,const Type * T) const212 Type *AMDGPUCodeGenPrepare::getI32Ty(IRBuilder<> &B, const Type *T) const {
213   assert(needsPromotionToI32(T) && "T does not need promotion to i32");
214 
215   if (T->isIntegerTy())
216     return B.getInt32Ty();
217   return VectorType::get(B.getInt32Ty(), cast<VectorType>(T)->getNumElements());
218 }
219 
isSigned(const BinaryOperator & I) const220 bool AMDGPUCodeGenPrepare::isSigned(const BinaryOperator &I) const {
221   return I.getOpcode() == Instruction::AShr ||
222       I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem;
223 }
224 
isSigned(const SelectInst & I) const225 bool AMDGPUCodeGenPrepare::isSigned(const SelectInst &I) const {
226   return isa<ICmpInst>(I.getOperand(0)) ?
227       cast<ICmpInst>(I.getOperand(0))->isSigned() : false;
228 }
229 
needsPromotionToI32(const Type * T) const230 bool AMDGPUCodeGenPrepare::needsPromotionToI32(const Type *T) const {
231   const IntegerType *IntTy = dyn_cast<IntegerType>(T);
232   if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16)
233     return true;
234 
235   if (const VectorType *VT = dyn_cast<VectorType>(T)) {
236     // TODO: The set of packed operations is more limited, so may want to
237     // promote some anyway.
238     if (ST->hasVOP3PInsts())
239       return false;
240 
241     return needsPromotionToI32(VT->getElementType());
242   }
243 
244   return false;
245 }
246 
247 // Return true if the op promoted to i32 should have nsw set.
promotedOpIsNSW(const Instruction & I)248 static bool promotedOpIsNSW(const Instruction &I) {
249   switch (I.getOpcode()) {
250   case Instruction::Shl:
251   case Instruction::Add:
252   case Instruction::Sub:
253     return true;
254   case Instruction::Mul:
255     return I.hasNoUnsignedWrap();
256   default:
257     return false;
258   }
259 }
260 
261 // Return true if the op promoted to i32 should have nuw set.
promotedOpIsNUW(const Instruction & I)262 static bool promotedOpIsNUW(const Instruction &I) {
263   switch (I.getOpcode()) {
264   case Instruction::Shl:
265   case Instruction::Add:
266   case Instruction::Mul:
267     return true;
268   case Instruction::Sub:
269     return I.hasNoUnsignedWrap();
270   default:
271     return false;
272   }
273 }
274 
canWidenScalarExtLoad(LoadInst & I) const275 bool AMDGPUCodeGenPrepare::canWidenScalarExtLoad(LoadInst &I) const {
276   Type *Ty = I.getType();
277   const DataLayout &DL = Mod->getDataLayout();
278   int TySize = DL.getTypeSizeInBits(Ty);
279   unsigned Align = I.getAlignment() ?
280                    I.getAlignment() : DL.getABITypeAlignment(Ty);
281 
282   return I.isSimple() && TySize < 32 && Align >= 4 && DA->isUniform(&I);
283 }
284 
promoteUniformOpToI32(BinaryOperator & I) const285 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(BinaryOperator &I) const {
286   assert(needsPromotionToI32(I.getType()) &&
287          "I does not need promotion to i32");
288 
289   if (I.getOpcode() == Instruction::SDiv ||
290       I.getOpcode() == Instruction::UDiv ||
291       I.getOpcode() == Instruction::SRem ||
292       I.getOpcode() == Instruction::URem)
293     return false;
294 
295   IRBuilder<> Builder(&I);
296   Builder.SetCurrentDebugLocation(I.getDebugLoc());
297 
298   Type *I32Ty = getI32Ty(Builder, I.getType());
299   Value *ExtOp0 = nullptr;
300   Value *ExtOp1 = nullptr;
301   Value *ExtRes = nullptr;
302   Value *TruncRes = nullptr;
303 
304   if (isSigned(I)) {
305     ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
306     ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
307   } else {
308     ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
309     ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
310   }
311 
312   ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1);
313   if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) {
314     if (promotedOpIsNSW(cast<Instruction>(I)))
315       Inst->setHasNoSignedWrap();
316 
317     if (promotedOpIsNUW(cast<Instruction>(I)))
318       Inst->setHasNoUnsignedWrap();
319 
320     if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
321       Inst->setIsExact(ExactOp->isExact());
322   }
323 
324   TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
325 
326   I.replaceAllUsesWith(TruncRes);
327   I.eraseFromParent();
328 
329   return true;
330 }
331 
promoteUniformOpToI32(ICmpInst & I) const332 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(ICmpInst &I) const {
333   assert(needsPromotionToI32(I.getOperand(0)->getType()) &&
334          "I does not need promotion to i32");
335 
336   IRBuilder<> Builder(&I);
337   Builder.SetCurrentDebugLocation(I.getDebugLoc());
338 
339   Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType());
340   Value *ExtOp0 = nullptr;
341   Value *ExtOp1 = nullptr;
342   Value *NewICmp  = nullptr;
343 
344   if (I.isSigned()) {
345     ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
346     ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
347   } else {
348     ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
349     ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
350   }
351   NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1);
352 
353   I.replaceAllUsesWith(NewICmp);
354   I.eraseFromParent();
355 
356   return true;
357 }
358 
promoteUniformOpToI32(SelectInst & I) const359 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(SelectInst &I) const {
360   assert(needsPromotionToI32(I.getType()) &&
361          "I does not need promotion to i32");
362 
363   IRBuilder<> Builder(&I);
364   Builder.SetCurrentDebugLocation(I.getDebugLoc());
365 
366   Type *I32Ty = getI32Ty(Builder, I.getType());
367   Value *ExtOp1 = nullptr;
368   Value *ExtOp2 = nullptr;
369   Value *ExtRes = nullptr;
370   Value *TruncRes = nullptr;
371 
372   if (isSigned(I)) {
373     ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
374     ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty);
375   } else {
376     ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
377     ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty);
378   }
379   ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2);
380   TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
381 
382   I.replaceAllUsesWith(TruncRes);
383   I.eraseFromParent();
384 
385   return true;
386 }
387 
promoteUniformBitreverseToI32(IntrinsicInst & I) const388 bool AMDGPUCodeGenPrepare::promoteUniformBitreverseToI32(
389     IntrinsicInst &I) const {
390   assert(I.getIntrinsicID() == Intrinsic::bitreverse &&
391          "I must be bitreverse intrinsic");
392   assert(needsPromotionToI32(I.getType()) &&
393          "I does not need promotion to i32");
394 
395   IRBuilder<> Builder(&I);
396   Builder.SetCurrentDebugLocation(I.getDebugLoc());
397 
398   Type *I32Ty = getI32Ty(Builder, I.getType());
399   Function *I32 =
400       Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty });
401   Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty);
402   Value *ExtRes = Builder.CreateCall(I32, { ExtOp });
403   Value *LShrOp =
404       Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType()));
405   Value *TruncRes =
406       Builder.CreateTrunc(LShrOp, I.getType());
407 
408   I.replaceAllUsesWith(TruncRes);
409   I.eraseFromParent();
410 
411   return true;
412 }
413 
numBitsUnsigned(Value * Op,unsigned ScalarSize) const414 unsigned AMDGPUCodeGenPrepare::numBitsUnsigned(Value *Op,
415                                                unsigned ScalarSize) const {
416   KnownBits Known = computeKnownBits(Op, *DL, 0, AC);
417   return ScalarSize - Known.countMinLeadingZeros();
418 }
419 
numBitsSigned(Value * Op,unsigned ScalarSize) const420 unsigned AMDGPUCodeGenPrepare::numBitsSigned(Value *Op,
421                                              unsigned ScalarSize) const {
422   // In order for this to be a signed 24-bit value, bit 23, must
423   // be a sign bit.
424   return ScalarSize - ComputeNumSignBits(Op, *DL, 0, AC);
425 }
426 
isI24(Value * V,unsigned ScalarSize) const427 bool AMDGPUCodeGenPrepare::isI24(Value *V, unsigned ScalarSize) const {
428   return ScalarSize >= 24 && // Types less than 24-bit should be treated
429                                      // as unsigned 24-bit values.
430     numBitsSigned(V, ScalarSize) < 24;
431 }
432 
isU24(Value * V,unsigned ScalarSize) const433 bool AMDGPUCodeGenPrepare::isU24(Value *V, unsigned ScalarSize) const {
434   return numBitsUnsigned(V, ScalarSize) <= 24;
435 }
436 
extractValues(IRBuilder<> & Builder,SmallVectorImpl<Value * > & Values,Value * V)437 static void extractValues(IRBuilder<> &Builder,
438                           SmallVectorImpl<Value *> &Values, Value *V) {
439   VectorType *VT = dyn_cast<VectorType>(V->getType());
440   if (!VT) {
441     Values.push_back(V);
442     return;
443   }
444 
445   for (int I = 0, E = VT->getNumElements(); I != E; ++I)
446     Values.push_back(Builder.CreateExtractElement(V, I));
447 }
448 
insertValues(IRBuilder<> & Builder,Type * Ty,SmallVectorImpl<Value * > & Values)449 static Value *insertValues(IRBuilder<> &Builder,
450                            Type *Ty,
451                            SmallVectorImpl<Value *> &Values) {
452   if (Values.size() == 1)
453     return Values[0];
454 
455   Value *NewVal = UndefValue::get(Ty);
456   for (int I = 0, E = Values.size(); I != E; ++I)
457     NewVal = Builder.CreateInsertElement(NewVal, Values[I], I);
458 
459   return NewVal;
460 }
461 
replaceMulWithMul24(BinaryOperator & I) const462 bool AMDGPUCodeGenPrepare::replaceMulWithMul24(BinaryOperator &I) const {
463   if (I.getOpcode() != Instruction::Mul)
464     return false;
465 
466   Type *Ty = I.getType();
467   unsigned Size = Ty->getScalarSizeInBits();
468   if (Size <= 16 && ST->has16BitInsts())
469     return false;
470 
471   // Prefer scalar if this could be s_mul_i32
472   if (DA->isUniform(&I))
473     return false;
474 
475   Value *LHS = I.getOperand(0);
476   Value *RHS = I.getOperand(1);
477   IRBuilder<> Builder(&I);
478   Builder.SetCurrentDebugLocation(I.getDebugLoc());
479 
480   Intrinsic::ID IntrID = Intrinsic::not_intrinsic;
481 
482   // TODO: Should this try to match mulhi24?
483   if (ST->hasMulU24() && isU24(LHS, Size) && isU24(RHS, Size)) {
484     IntrID = Intrinsic::amdgcn_mul_u24;
485   } else if (ST->hasMulI24() && isI24(LHS, Size) && isI24(RHS, Size)) {
486     IntrID = Intrinsic::amdgcn_mul_i24;
487   } else
488     return false;
489 
490   SmallVector<Value *, 4> LHSVals;
491   SmallVector<Value *, 4> RHSVals;
492   SmallVector<Value *, 4> ResultVals;
493   extractValues(Builder, LHSVals, LHS);
494   extractValues(Builder, RHSVals, RHS);
495 
496 
497   IntegerType *I32Ty = Builder.getInt32Ty();
498   FunctionCallee Intrin = Intrinsic::getDeclaration(Mod, IntrID);
499   for (int I = 0, E = LHSVals.size(); I != E; ++I) {
500     Value *LHS, *RHS;
501     if (IntrID == Intrinsic::amdgcn_mul_u24) {
502       LHS = Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty);
503       RHS = Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty);
504     } else {
505       LHS = Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty);
506       RHS = Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty);
507     }
508 
509     Value *Result = Builder.CreateCall(Intrin, {LHS, RHS});
510 
511     if (IntrID == Intrinsic::amdgcn_mul_u24) {
512       ResultVals.push_back(Builder.CreateZExtOrTrunc(Result,
513                                                      LHSVals[I]->getType()));
514     } else {
515       ResultVals.push_back(Builder.CreateSExtOrTrunc(Result,
516                                                      LHSVals[I]->getType()));
517     }
518   }
519 
520   Value *NewVal = insertValues(Builder, Ty, ResultVals);
521   NewVal->takeName(&I);
522   I.replaceAllUsesWith(NewVal);
523   I.eraseFromParent();
524 
525   return true;
526 }
527 
shouldKeepFDivF32(Value * Num,bool UnsafeDiv,bool HasDenormals)528 static bool shouldKeepFDivF32(Value *Num, bool UnsafeDiv, bool HasDenormals) {
529   const ConstantFP *CNum = dyn_cast<ConstantFP>(Num);
530   if (!CNum)
531     return HasDenormals;
532 
533   if (UnsafeDiv)
534     return true;
535 
536   bool IsOne = CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0);
537 
538   // Reciprocal f32 is handled separately without denormals.
539   return HasDenormals ^ IsOne;
540 }
541 
542 // Insert an intrinsic for fast fdiv for safe math situations where we can
543 // reduce precision. Leave fdiv for situations where the generic node is
544 // expected to be optimized.
visitFDiv(BinaryOperator & FDiv)545 bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) {
546   Type *Ty = FDiv.getType();
547 
548   if (!Ty->getScalarType()->isFloatTy())
549     return false;
550 
551   MDNode *FPMath = FDiv.getMetadata(LLVMContext::MD_fpmath);
552   if (!FPMath)
553     return false;
554 
555   const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv);
556   float ULP = FPOp->getFPAccuracy();
557   if (ULP < 2.5f)
558     return false;
559 
560   FastMathFlags FMF = FPOp->getFastMathFlags();
561   bool UnsafeDiv = HasUnsafeFPMath || FMF.isFast() ||
562                                       FMF.allowReciprocal();
563 
564   // With UnsafeDiv node will be optimized to just rcp and mul.
565   if (UnsafeDiv)
566     return false;
567 
568   IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator()), FPMath);
569   Builder.setFastMathFlags(FMF);
570   Builder.SetCurrentDebugLocation(FDiv.getDebugLoc());
571 
572   Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast);
573 
574   Value *Num = FDiv.getOperand(0);
575   Value *Den = FDiv.getOperand(1);
576 
577   Value *NewFDiv = nullptr;
578 
579   if (VectorType *VT = dyn_cast<VectorType>(Ty)) {
580     NewFDiv = UndefValue::get(VT);
581 
582     // FIXME: Doesn't do the right thing for cases where the vector is partially
583     // constant. This works when the scalarizer pass is run first.
584     for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) {
585       Value *NumEltI = Builder.CreateExtractElement(Num, I);
586       Value *DenEltI = Builder.CreateExtractElement(Den, I);
587       Value *NewElt;
588 
589       if (shouldKeepFDivF32(NumEltI, UnsafeDiv, HasFP32Denormals)) {
590         NewElt = Builder.CreateFDiv(NumEltI, DenEltI);
591       } else {
592         NewElt = Builder.CreateCall(Decl, { NumEltI, DenEltI });
593       }
594 
595       NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I);
596     }
597   } else {
598     if (!shouldKeepFDivF32(Num, UnsafeDiv, HasFP32Denormals))
599       NewFDiv = Builder.CreateCall(Decl, { Num, Den });
600   }
601 
602   if (NewFDiv) {
603     FDiv.replaceAllUsesWith(NewFDiv);
604     NewFDiv->takeName(&FDiv);
605     FDiv.eraseFromParent();
606   }
607 
608   return !!NewFDiv;
609 }
610 
hasUnsafeFPMath(const Function & F)611 static bool hasUnsafeFPMath(const Function &F) {
612   Attribute Attr = F.getFnAttribute("unsafe-fp-math");
613   return Attr.getValueAsString() == "true";
614 }
615 
getMul64(IRBuilder<> & Builder,Value * LHS,Value * RHS)616 static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder,
617                                           Value *LHS, Value *RHS) {
618   Type *I32Ty = Builder.getInt32Ty();
619   Type *I64Ty = Builder.getInt64Ty();
620 
621   Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty);
622   Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty);
623   Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64);
624   Value *Lo = Builder.CreateTrunc(MUL64, I32Ty);
625   Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32));
626   Hi = Builder.CreateTrunc(Hi, I32Ty);
627   return std::make_pair(Lo, Hi);
628 }
629 
getMulHu(IRBuilder<> & Builder,Value * LHS,Value * RHS)630 static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) {
631   return getMul64(Builder, LHS, RHS).second;
632 }
633 
634 // The fractional part of a float is enough to accurately represent up to
635 // a 24-bit signed integer.
expandDivRem24(IRBuilder<> & Builder,BinaryOperator & I,Value * Num,Value * Den,bool IsDiv,bool IsSigned) const636 Value* AMDGPUCodeGenPrepare::expandDivRem24(IRBuilder<> &Builder,
637                                             BinaryOperator &I,
638                                             Value *Num, Value *Den,
639                                             bool IsDiv, bool IsSigned) const {
640   assert(Num->getType()->isIntegerTy(32));
641 
642   const DataLayout &DL = Mod->getDataLayout();
643   unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I);
644   if (LHSSignBits < 9)
645     return nullptr;
646 
647   unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I);
648   if (RHSSignBits < 9)
649     return nullptr;
650 
651 
652   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
653   unsigned DivBits = 32 - SignBits;
654   if (IsSigned)
655     ++DivBits;
656 
657   Type *Ty = Num->getType();
658   Type *I32Ty = Builder.getInt32Ty();
659   Type *F32Ty = Builder.getFloatTy();
660   ConstantInt *One = Builder.getInt32(1);
661   Value *JQ = One;
662 
663   if (IsSigned) {
664     // char|short jq = ia ^ ib;
665     JQ = Builder.CreateXor(Num, Den);
666 
667     // jq = jq >> (bitsize - 2)
668     JQ = Builder.CreateAShr(JQ, Builder.getInt32(30));
669 
670     // jq = jq | 0x1
671     JQ = Builder.CreateOr(JQ, One);
672   }
673 
674   // int ia = (int)LHS;
675   Value *IA = Num;
676 
677   // int ib, (int)RHS;
678   Value *IB = Den;
679 
680   // float fa = (float)ia;
681   Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty)
682                        : Builder.CreateUIToFP(IA, F32Ty);
683 
684   // float fb = (float)ib;
685   Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty)
686                        : Builder.CreateUIToFP(IB,F32Ty);
687 
688   Value *RCP = Builder.CreateFDiv(ConstantFP::get(F32Ty, 1.0), FB);
689   Value *FQM = Builder.CreateFMul(FA, RCP);
690 
691   // fq = trunc(fqm);
692   CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM);
693   FQ->copyFastMathFlags(Builder.getFastMathFlags());
694 
695   // float fqneg = -fq;
696   Value *FQNeg = Builder.CreateFNeg(FQ);
697 
698   // float fr = mad(fqneg, fb, fa);
699   Value *FR = Builder.CreateIntrinsic(Intrinsic::amdgcn_fmad_ftz,
700                                       {FQNeg->getType()}, {FQNeg, FB, FA}, FQ);
701 
702   // int iq = (int)fq;
703   Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty)
704                        : Builder.CreateFPToUI(FQ, I32Ty);
705 
706   // fr = fabs(fr);
707   FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ);
708 
709   // fb = fabs(fb);
710   FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ);
711 
712   // int cv = fr >= fb;
713   Value *CV = Builder.CreateFCmpOGE(FR, FB);
714 
715   // jq = (cv ? jq : 0);
716   JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0));
717 
718   // dst = iq + jq;
719   Value *Div = Builder.CreateAdd(IQ, JQ);
720 
721   Value *Res = Div;
722   if (!IsDiv) {
723     // Rem needs compensation, it's easier to recompute it
724     Value *Rem = Builder.CreateMul(Div, Den);
725     Res = Builder.CreateSub(Num, Rem);
726   }
727 
728   // Truncate to number of bits this divide really is.
729   if (IsSigned) {
730     Res = Builder.CreateTrunc(Res, Builder.getIntNTy(DivBits));
731     Res = Builder.CreateSExt(Res, Ty);
732   } else {
733     ConstantInt *TruncMask = Builder.getInt32((UINT64_C(1) << DivBits) - 1);
734     Res = Builder.CreateAnd(Res, TruncMask);
735   }
736 
737   return Res;
738 }
739 
expandDivRem32(IRBuilder<> & Builder,BinaryOperator & I,Value * Num,Value * Den) const740 Value* AMDGPUCodeGenPrepare::expandDivRem32(IRBuilder<> &Builder,
741                                             BinaryOperator &I,
742                                             Value *Num, Value *Den) const {
743   Instruction::BinaryOps Opc = I.getOpcode();
744   assert(Opc == Instruction::URem || Opc == Instruction::UDiv ||
745          Opc == Instruction::SRem || Opc == Instruction::SDiv);
746 
747   FastMathFlags FMF;
748   FMF.setFast();
749   Builder.setFastMathFlags(FMF);
750 
751   if (isa<Constant>(Den))
752     return nullptr; // Keep it for optimization
753 
754   bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv;
755   bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv;
756 
757   Type *Ty = Num->getType();
758   Type *I32Ty = Builder.getInt32Ty();
759   Type *F32Ty = Builder.getFloatTy();
760 
761   if (Ty->getScalarSizeInBits() < 32) {
762     if (IsSigned) {
763       Num = Builder.CreateSExt(Num, I32Ty);
764       Den = Builder.CreateSExt(Den, I32Ty);
765     } else {
766       Num = Builder.CreateZExt(Num, I32Ty);
767       Den = Builder.CreateZExt(Den, I32Ty);
768     }
769   }
770 
771   if (Value *Res = expandDivRem24(Builder, I, Num, Den, IsDiv, IsSigned)) {
772     Res = Builder.CreateTrunc(Res, Ty);
773     return Res;
774   }
775 
776   ConstantInt *Zero = Builder.getInt32(0);
777   ConstantInt *One = Builder.getInt32(1);
778   ConstantInt *MinusOne = Builder.getInt32(~0);
779 
780   Value *Sign = nullptr;
781   if (IsSigned) {
782     ConstantInt *K31 = Builder.getInt32(31);
783     Value *LHSign = Builder.CreateAShr(Num, K31);
784     Value *RHSign = Builder.CreateAShr(Den, K31);
785     // Remainder sign is the same as LHS
786     Sign = IsDiv ? Builder.CreateXor(LHSign, RHSign) : LHSign;
787 
788     Num = Builder.CreateAdd(Num, LHSign);
789     Den = Builder.CreateAdd(Den, RHSign);
790 
791     Num = Builder.CreateXor(Num, LHSign);
792     Den = Builder.CreateXor(Den, RHSign);
793   }
794 
795   // RCP =  URECIP(Den) = 2^32 / Den + e
796   // e is rounding error.
797   Value *DEN_F32 = Builder.CreateUIToFP(Den, F32Ty);
798   Value *RCP_F32 = Builder.CreateFDiv(ConstantFP::get(F32Ty, 1.0), DEN_F32);
799   Constant *UINT_MAX_PLUS_1 = ConstantFP::get(F32Ty, BitsToFloat(0x4f800000));
800   Value *RCP_SCALE = Builder.CreateFMul(RCP_F32, UINT_MAX_PLUS_1);
801   Value *RCP = Builder.CreateFPToUI(RCP_SCALE, I32Ty);
802 
803   // RCP_LO, RCP_HI = mul(RCP, Den) */
804   Value *RCP_LO, *RCP_HI;
805   std::tie(RCP_LO, RCP_HI) = getMul64(Builder, RCP, Den);
806 
807   // NEG_RCP_LO = -RCP_LO
808   Value *NEG_RCP_LO = Builder.CreateNeg(RCP_LO);
809 
810   // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
811   Value *RCP_HI_0_CC = Builder.CreateICmpEQ(RCP_HI, Zero);
812   Value *ABS_RCP_LO = Builder.CreateSelect(RCP_HI_0_CC, NEG_RCP_LO, RCP_LO);
813 
814   // Calculate the rounding error from the URECIP instruction
815   // E = mulhu(ABS_RCP_LO, RCP)
816   Value *E = getMulHu(Builder, ABS_RCP_LO, RCP);
817 
818   // RCP_A_E = RCP + E
819   Value *RCP_A_E = Builder.CreateAdd(RCP, E);
820 
821   // RCP_S_E = RCP - E
822   Value *RCP_S_E = Builder.CreateSub(RCP, E);
823 
824   // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
825   Value *Tmp0 = Builder.CreateSelect(RCP_HI_0_CC, RCP_A_E, RCP_S_E);
826 
827   // Quotient = mulhu(Tmp0, Num)
828   Value *Quotient = getMulHu(Builder, Tmp0, Num);
829 
830   // Num_S_Remainder = Quotient * Den
831   Value *Num_S_Remainder = Builder.CreateMul(Quotient, Den);
832 
833   // Remainder = Num - Num_S_Remainder
834   Value *Remainder = Builder.CreateSub(Num, Num_S_Remainder);
835 
836   // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
837   Value *Rem_GE_Den_CC = Builder.CreateICmpUGE(Remainder, Den);
838   Value *Remainder_GE_Den = Builder.CreateSelect(Rem_GE_Den_CC, MinusOne, Zero);
839 
840   // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
841   Value *Num_GE_Num_S_Rem_CC = Builder.CreateICmpUGE(Num, Num_S_Remainder);
842   Value *Remainder_GE_Zero = Builder.CreateSelect(Num_GE_Num_S_Rem_CC,
843                                                   MinusOne, Zero);
844 
845   // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
846   Value *Tmp1 = Builder.CreateAnd(Remainder_GE_Den, Remainder_GE_Zero);
847   Value *Tmp1_0_CC = Builder.CreateICmpEQ(Tmp1, Zero);
848 
849   Value *Res;
850   if (IsDiv) {
851     // Quotient_A_One = Quotient + 1
852     Value *Quotient_A_One = Builder.CreateAdd(Quotient, One);
853 
854     // Quotient_S_One = Quotient - 1
855     Value *Quotient_S_One = Builder.CreateSub(Quotient, One);
856 
857     // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
858     Value *Div = Builder.CreateSelect(Tmp1_0_CC, Quotient, Quotient_A_One);
859 
860     // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
861     Res = Builder.CreateSelect(Num_GE_Num_S_Rem_CC, Div, Quotient_S_One);
862   } else {
863     // Remainder_S_Den = Remainder - Den
864     Value *Remainder_S_Den = Builder.CreateSub(Remainder, Den);
865 
866     // Remainder_A_Den = Remainder + Den
867     Value *Remainder_A_Den = Builder.CreateAdd(Remainder, Den);
868 
869     // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
870     Value *Rem = Builder.CreateSelect(Tmp1_0_CC, Remainder, Remainder_S_Den);
871 
872     // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
873     Res = Builder.CreateSelect(Num_GE_Num_S_Rem_CC, Rem, Remainder_A_Den);
874   }
875 
876   if (IsSigned) {
877     Res = Builder.CreateXor(Res, Sign);
878     Res = Builder.CreateSub(Res, Sign);
879   }
880 
881   Res = Builder.CreateTrunc(Res, Ty);
882 
883   return Res;
884 }
885 
visitBinaryOperator(BinaryOperator & I)886 bool AMDGPUCodeGenPrepare::visitBinaryOperator(BinaryOperator &I) {
887   if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
888       DA->isUniform(&I) && promoteUniformOpToI32(I))
889     return true;
890 
891   if (UseMul24Intrin && replaceMulWithMul24(I))
892     return true;
893 
894   bool Changed = false;
895   Instruction::BinaryOps Opc = I.getOpcode();
896   Type *Ty = I.getType();
897   Value *NewDiv = nullptr;
898   if ((Opc == Instruction::URem || Opc == Instruction::UDiv ||
899        Opc == Instruction::SRem || Opc == Instruction::SDiv) &&
900       Ty->getScalarSizeInBits() <= 32) {
901     Value *Num = I.getOperand(0);
902     Value *Den = I.getOperand(1);
903     IRBuilder<> Builder(&I);
904     Builder.SetCurrentDebugLocation(I.getDebugLoc());
905 
906     if (VectorType *VT = dyn_cast<VectorType>(Ty)) {
907       NewDiv = UndefValue::get(VT);
908 
909       for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) {
910         Value *NumEltN = Builder.CreateExtractElement(Num, N);
911         Value *DenEltN = Builder.CreateExtractElement(Den, N);
912         Value *NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN);
913         if (!NewElt)
914           NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
915         NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N);
916       }
917     } else {
918       NewDiv = expandDivRem32(Builder, I, Num, Den);
919     }
920 
921     if (NewDiv) {
922       I.replaceAllUsesWith(NewDiv);
923       I.eraseFromParent();
924       Changed = true;
925     }
926   }
927 
928   return Changed;
929 }
930 
visitLoadInst(LoadInst & I)931 bool AMDGPUCodeGenPrepare::visitLoadInst(LoadInst &I) {
932   if (!WidenLoads)
933     return false;
934 
935   if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
936        I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
937       canWidenScalarExtLoad(I)) {
938     IRBuilder<> Builder(&I);
939     Builder.SetCurrentDebugLocation(I.getDebugLoc());
940 
941     Type *I32Ty = Builder.getInt32Ty();
942     Type *PT = PointerType::get(I32Ty, I.getPointerAddressSpace());
943     Value *BitCast= Builder.CreateBitCast(I.getPointerOperand(), PT);
944     LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, BitCast);
945     WidenLoad->copyMetadata(I);
946 
947     // If we have range metadata, we need to convert the type, and not make
948     // assumptions about the high bits.
949     if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) {
950       ConstantInt *Lower =
951         mdconst::extract<ConstantInt>(Range->getOperand(0));
952 
953       if (Lower->getValue().isNullValue()) {
954         WidenLoad->setMetadata(LLVMContext::MD_range, nullptr);
955       } else {
956         Metadata *LowAndHigh[] = {
957           ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))),
958           // Don't make assumptions about the high bits.
959           ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0))
960         };
961 
962         WidenLoad->setMetadata(LLVMContext::MD_range,
963                                MDNode::get(Mod->getContext(), LowAndHigh));
964       }
965     }
966 
967     int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType());
968     Type *IntNTy = Builder.getIntNTy(TySize);
969     Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy);
970     Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType());
971     I.replaceAllUsesWith(ValOrig);
972     I.eraseFromParent();
973     return true;
974   }
975 
976   return false;
977 }
978 
visitICmpInst(ICmpInst & I)979 bool AMDGPUCodeGenPrepare::visitICmpInst(ICmpInst &I) {
980   bool Changed = false;
981 
982   if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) &&
983       DA->isUniform(&I))
984     Changed |= promoteUniformOpToI32(I);
985 
986   return Changed;
987 }
988 
visitSelectInst(SelectInst & I)989 bool AMDGPUCodeGenPrepare::visitSelectInst(SelectInst &I) {
990   bool Changed = false;
991 
992   if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
993       DA->isUniform(&I))
994     Changed |= promoteUniformOpToI32(I);
995 
996   return Changed;
997 }
998 
visitIntrinsicInst(IntrinsicInst & I)999 bool AMDGPUCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) {
1000   switch (I.getIntrinsicID()) {
1001   case Intrinsic::bitreverse:
1002     return visitBitreverseIntrinsicInst(I);
1003   default:
1004     return false;
1005   }
1006 }
1007 
visitBitreverseIntrinsicInst(IntrinsicInst & I)1008 bool AMDGPUCodeGenPrepare::visitBitreverseIntrinsicInst(IntrinsicInst &I) {
1009   bool Changed = false;
1010 
1011   if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
1012       DA->isUniform(&I))
1013     Changed |= promoteUniformBitreverseToI32(I);
1014 
1015   return Changed;
1016 }
1017 
doInitialization(Module & M)1018 bool AMDGPUCodeGenPrepare::doInitialization(Module &M) {
1019   Mod = &M;
1020   DL = &Mod->getDataLayout();
1021   return false;
1022 }
1023 
runOnFunction(Function & F)1024 bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) {
1025   if (skipFunction(F))
1026     return false;
1027 
1028   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
1029   if (!TPC)
1030     return false;
1031 
1032   const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>();
1033   ST = &TM.getSubtarget<GCNSubtarget>(F);
1034   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1035   DA = &getAnalysis<LegacyDivergenceAnalysis>();
1036   HasUnsafeFPMath = hasUnsafeFPMath(F);
1037   HasFP32Denormals = ST->hasFP32Denormals(F);
1038 
1039   bool MadeChange = false;
1040 
1041   for (BasicBlock &BB : F) {
1042     BasicBlock::iterator Next;
1043     for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; I = Next) {
1044       Next = std::next(I);
1045       MadeChange |= visit(*I);
1046     }
1047   }
1048 
1049   return MadeChange;
1050 }
1051 
1052 INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE,
1053                       "AMDGPU IR optimizations", false, false)
1054 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1055 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
1056 INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations",
1057                     false, false)
1058 
1059 char AMDGPUCodeGenPrepare::ID = 0;
1060 
createAMDGPUCodeGenPreparePass()1061 FunctionPass *llvm::createAMDGPUCodeGenPreparePass() {
1062   return new AMDGPUCodeGenPrepare();
1063 }
1064