1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Initialize MMU support.
4 *
5 * Copyright (C) 1998-2003 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
7 */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10
11 #include <linux/dma-map-ops.h>
12 #include <linux/dmar.h>
13 #include <linux/efi.h>
14 #include <linux/elf.h>
15 #include <linux/memblock.h>
16 #include <linux/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/mmzone.h>
19 #include <linux/module.h>
20 #include <linux/personality.h>
21 #include <linux/reboot.h>
22 #include <linux/slab.h>
23 #include <linux/swap.h>
24 #include <linux/proc_fs.h>
25 #include <linux/bitops.h>
26 #include <linux/kexec.h>
27 #include <linux/swiotlb.h>
28
29 #include <asm/dma.h>
30 #include <asm/io.h>
31 #include <asm/numa.h>
32 #include <asm/patch.h>
33 #include <asm/pgalloc.h>
34 #include <asm/sal.h>
35 #include <asm/sections.h>
36 #include <asm/tlb.h>
37 #include <linux/uaccess.h>
38 #include <asm/unistd.h>
39 #include <asm/mca.h>
40
41 extern void ia64_tlb_init (void);
42
43 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
44
45 #ifdef CONFIG_VIRTUAL_MEM_MAP
46 unsigned long VMALLOC_END = VMALLOC_END_INIT;
47 EXPORT_SYMBOL(VMALLOC_END);
48 struct page *vmem_map;
49 EXPORT_SYMBOL(vmem_map);
50 #endif
51
52 struct page *zero_page_memmap_ptr; /* map entry for zero page */
53 EXPORT_SYMBOL(zero_page_memmap_ptr);
54
55 void
__ia64_sync_icache_dcache(pte_t pte)56 __ia64_sync_icache_dcache (pte_t pte)
57 {
58 unsigned long addr;
59 struct page *page;
60
61 page = pte_page(pte);
62 addr = (unsigned long) page_address(page);
63
64 if (test_bit(PG_arch_1, &page->flags))
65 return; /* i-cache is already coherent with d-cache */
66
67 flush_icache_range(addr, addr + page_size(page));
68 set_bit(PG_arch_1, &page->flags); /* mark page as clean */
69 }
70
71 /*
72 * Since DMA is i-cache coherent, any (complete) pages that were written via
73 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
74 * flush them when they get mapped into an executable vm-area.
75 */
arch_dma_mark_clean(phys_addr_t paddr,size_t size)76 void arch_dma_mark_clean(phys_addr_t paddr, size_t size)
77 {
78 unsigned long pfn = PHYS_PFN(paddr);
79
80 do {
81 set_bit(PG_arch_1, &pfn_to_page(pfn)->flags);
82 } while (++pfn <= PHYS_PFN(paddr + size - 1));
83 }
84
85 inline void
ia64_set_rbs_bot(void)86 ia64_set_rbs_bot (void)
87 {
88 unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
89
90 if (stack_size > MAX_USER_STACK_SIZE)
91 stack_size = MAX_USER_STACK_SIZE;
92 current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
93 }
94
95 /*
96 * This performs some platform-dependent address space initialization.
97 * On IA-64, we want to setup the VM area for the register backing
98 * store (which grows upwards) and install the gateway page which is
99 * used for signal trampolines, etc.
100 */
101 void
ia64_init_addr_space(void)102 ia64_init_addr_space (void)
103 {
104 struct vm_area_struct *vma;
105
106 ia64_set_rbs_bot();
107
108 /*
109 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
110 * the problem. When the process attempts to write to the register backing store
111 * for the first time, it will get a SEGFAULT in this case.
112 */
113 vma = vm_area_alloc(current->mm);
114 if (vma) {
115 vma_set_anonymous(vma);
116 vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
117 vma->vm_end = vma->vm_start + PAGE_SIZE;
118 vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
119 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
120 mmap_write_lock(current->mm);
121 if (insert_vm_struct(current->mm, vma)) {
122 mmap_write_unlock(current->mm);
123 vm_area_free(vma);
124 return;
125 }
126 mmap_write_unlock(current->mm);
127 }
128
129 /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
130 if (!(current->personality & MMAP_PAGE_ZERO)) {
131 vma = vm_area_alloc(current->mm);
132 if (vma) {
133 vma_set_anonymous(vma);
134 vma->vm_end = PAGE_SIZE;
135 vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
136 vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO |
137 VM_DONTEXPAND | VM_DONTDUMP;
138 mmap_write_lock(current->mm);
139 if (insert_vm_struct(current->mm, vma)) {
140 mmap_write_unlock(current->mm);
141 vm_area_free(vma);
142 return;
143 }
144 mmap_write_unlock(current->mm);
145 }
146 }
147 }
148
149 void
free_initmem(void)150 free_initmem (void)
151 {
152 free_reserved_area(ia64_imva(__init_begin), ia64_imva(__init_end),
153 -1, "unused kernel");
154 }
155
156 void __init
free_initrd_mem(unsigned long start,unsigned long end)157 free_initrd_mem (unsigned long start, unsigned long end)
158 {
159 /*
160 * EFI uses 4KB pages while the kernel can use 4KB or bigger.
161 * Thus EFI and the kernel may have different page sizes. It is
162 * therefore possible to have the initrd share the same page as
163 * the end of the kernel (given current setup).
164 *
165 * To avoid freeing/using the wrong page (kernel sized) we:
166 * - align up the beginning of initrd
167 * - align down the end of initrd
168 *
169 * | |
170 * |=============| a000
171 * | |
172 * | |
173 * | | 9000
174 * |/////////////|
175 * |/////////////|
176 * |=============| 8000
177 * |///INITRD////|
178 * |/////////////|
179 * |/////////////| 7000
180 * | |
181 * |KKKKKKKKKKKKK|
182 * |=============| 6000
183 * |KKKKKKKKKKKKK|
184 * |KKKKKKKKKKKKK|
185 * K=kernel using 8KB pages
186 *
187 * In this example, we must free page 8000 ONLY. So we must align up
188 * initrd_start and keep initrd_end as is.
189 */
190 start = PAGE_ALIGN(start);
191 end = end & PAGE_MASK;
192
193 if (start < end)
194 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
195
196 for (; start < end; start += PAGE_SIZE) {
197 if (!virt_addr_valid(start))
198 continue;
199 free_reserved_page(virt_to_page(start));
200 }
201 }
202
203 /*
204 * This installs a clean page in the kernel's page table.
205 */
206 static struct page * __init
put_kernel_page(struct page * page,unsigned long address,pgprot_t pgprot)207 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
208 {
209 pgd_t *pgd;
210 p4d_t *p4d;
211 pud_t *pud;
212 pmd_t *pmd;
213 pte_t *pte;
214
215 pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */
216
217 {
218 p4d = p4d_alloc(&init_mm, pgd, address);
219 if (!p4d)
220 goto out;
221 pud = pud_alloc(&init_mm, p4d, address);
222 if (!pud)
223 goto out;
224 pmd = pmd_alloc(&init_mm, pud, address);
225 if (!pmd)
226 goto out;
227 pte = pte_alloc_kernel(pmd, address);
228 if (!pte)
229 goto out;
230 if (!pte_none(*pte))
231 goto out;
232 set_pte(pte, mk_pte(page, pgprot));
233 }
234 out:
235 /* no need for flush_tlb */
236 return page;
237 }
238
239 static void __init
setup_gate(void)240 setup_gate (void)
241 {
242 struct page *page;
243
244 /*
245 * Map the gate page twice: once read-only to export the ELF
246 * headers etc. and once execute-only page to enable
247 * privilege-promotion via "epc":
248 */
249 page = virt_to_page(ia64_imva(__start_gate_section));
250 put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
251 #ifdef HAVE_BUGGY_SEGREL
252 page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
253 put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
254 #else
255 put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
256 /* Fill in the holes (if any) with read-only zero pages: */
257 {
258 unsigned long addr;
259
260 for (addr = GATE_ADDR + PAGE_SIZE;
261 addr < GATE_ADDR + PERCPU_PAGE_SIZE;
262 addr += PAGE_SIZE)
263 {
264 put_kernel_page(ZERO_PAGE(0), addr,
265 PAGE_READONLY);
266 put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
267 PAGE_READONLY);
268 }
269 }
270 #endif
271 ia64_patch_gate();
272 }
273
274 static struct vm_area_struct gate_vma;
275
gate_vma_init(void)276 static int __init gate_vma_init(void)
277 {
278 vma_init(&gate_vma, NULL);
279 gate_vma.vm_start = FIXADDR_USER_START;
280 gate_vma.vm_end = FIXADDR_USER_END;
281 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
282 gate_vma.vm_page_prot = __P101;
283
284 return 0;
285 }
286 __initcall(gate_vma_init);
287
get_gate_vma(struct mm_struct * mm)288 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
289 {
290 return &gate_vma;
291 }
292
in_gate_area_no_mm(unsigned long addr)293 int in_gate_area_no_mm(unsigned long addr)
294 {
295 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
296 return 1;
297 return 0;
298 }
299
in_gate_area(struct mm_struct * mm,unsigned long addr)300 int in_gate_area(struct mm_struct *mm, unsigned long addr)
301 {
302 return in_gate_area_no_mm(addr);
303 }
304
ia64_mmu_init(void * my_cpu_data)305 void ia64_mmu_init(void *my_cpu_data)
306 {
307 unsigned long pta, impl_va_bits;
308 extern void tlb_init(void);
309
310 #ifdef CONFIG_DISABLE_VHPT
311 # define VHPT_ENABLE_BIT 0
312 #else
313 # define VHPT_ENABLE_BIT 1
314 #endif
315
316 /*
317 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
318 * address space. The IA-64 architecture guarantees that at least 50 bits of
319 * virtual address space are implemented but if we pick a large enough page size
320 * (e.g., 64KB), the mapped address space is big enough that it will overlap with
321 * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages,
322 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
323 * problem in practice. Alternatively, we could truncate the top of the mapped
324 * address space to not permit mappings that would overlap with the VMLPT.
325 * --davidm 00/12/06
326 */
327 # define pte_bits 3
328 # define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
329 /*
330 * The virtual page table has to cover the entire implemented address space within
331 * a region even though not all of this space may be mappable. The reason for
332 * this is that the Access bit and Dirty bit fault handlers perform
333 * non-speculative accesses to the virtual page table, so the address range of the
334 * virtual page table itself needs to be covered by virtual page table.
335 */
336 # define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits)
337 # define POW2(n) (1ULL << (n))
338
339 impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
340
341 if (impl_va_bits < 51 || impl_va_bits > 61)
342 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
343 /*
344 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
345 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
346 * the test makes sure that our mapped space doesn't overlap the
347 * unimplemented hole in the middle of the region.
348 */
349 if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
350 (mapped_space_bits > impl_va_bits - 1))
351 panic("Cannot build a big enough virtual-linear page table"
352 " to cover mapped address space.\n"
353 " Try using a smaller page size.\n");
354
355
356 /* place the VMLPT at the end of each page-table mapped region: */
357 pta = POW2(61) - POW2(vmlpt_bits);
358
359 /*
360 * Set the (virtually mapped linear) page table address. Bit
361 * 8 selects between the short and long format, bits 2-7 the
362 * size of the table, and bit 0 whether the VHPT walker is
363 * enabled.
364 */
365 ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
366
367 ia64_tlb_init();
368
369 #ifdef CONFIG_HUGETLB_PAGE
370 ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
371 ia64_srlz_d();
372 #endif
373 }
374
375 #ifdef CONFIG_VIRTUAL_MEM_MAP
vmemmap_find_next_valid_pfn(int node,int i)376 int vmemmap_find_next_valid_pfn(int node, int i)
377 {
378 unsigned long end_address, hole_next_pfn;
379 unsigned long stop_address;
380 pg_data_t *pgdat = NODE_DATA(node);
381
382 end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
383 end_address = PAGE_ALIGN(end_address);
384 stop_address = (unsigned long) &vmem_map[pgdat_end_pfn(pgdat)];
385
386 do {
387 pgd_t *pgd;
388 p4d_t *p4d;
389 pud_t *pud;
390 pmd_t *pmd;
391 pte_t *pte;
392
393 pgd = pgd_offset_k(end_address);
394 if (pgd_none(*pgd)) {
395 end_address += PGDIR_SIZE;
396 continue;
397 }
398
399 p4d = p4d_offset(pgd, end_address);
400 if (p4d_none(*p4d)) {
401 end_address += P4D_SIZE;
402 continue;
403 }
404
405 pud = pud_offset(p4d, end_address);
406 if (pud_none(*pud)) {
407 end_address += PUD_SIZE;
408 continue;
409 }
410
411 pmd = pmd_offset(pud, end_address);
412 if (pmd_none(*pmd)) {
413 end_address += PMD_SIZE;
414 continue;
415 }
416
417 pte = pte_offset_kernel(pmd, end_address);
418 retry_pte:
419 if (pte_none(*pte)) {
420 end_address += PAGE_SIZE;
421 pte++;
422 if ((end_address < stop_address) &&
423 (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
424 goto retry_pte;
425 continue;
426 }
427 /* Found next valid vmem_map page */
428 break;
429 } while (end_address < stop_address);
430
431 end_address = min(end_address, stop_address);
432 end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
433 hole_next_pfn = end_address / sizeof(struct page);
434 return hole_next_pfn - pgdat->node_start_pfn;
435 }
436
create_mem_map_page_table(u64 start,u64 end,void * arg)437 int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
438 {
439 unsigned long address, start_page, end_page;
440 struct page *map_start, *map_end;
441 int node;
442 pgd_t *pgd;
443 p4d_t *p4d;
444 pud_t *pud;
445 pmd_t *pmd;
446 pte_t *pte;
447
448 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
449 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
450
451 start_page = (unsigned long) map_start & PAGE_MASK;
452 end_page = PAGE_ALIGN((unsigned long) map_end);
453 node = paddr_to_nid(__pa(start));
454
455 for (address = start_page; address < end_page; address += PAGE_SIZE) {
456 pgd = pgd_offset_k(address);
457 if (pgd_none(*pgd)) {
458 p4d = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node);
459 if (!p4d)
460 goto err_alloc;
461 pgd_populate(&init_mm, pgd, p4d);
462 }
463 p4d = p4d_offset(pgd, address);
464
465 if (p4d_none(*p4d)) {
466 pud = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node);
467 if (!pud)
468 goto err_alloc;
469 p4d_populate(&init_mm, p4d, pud);
470 }
471 pud = pud_offset(p4d, address);
472
473 if (pud_none(*pud)) {
474 pmd = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node);
475 if (!pmd)
476 goto err_alloc;
477 pud_populate(&init_mm, pud, pmd);
478 }
479 pmd = pmd_offset(pud, address);
480
481 if (pmd_none(*pmd)) {
482 pte = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node);
483 if (!pte)
484 goto err_alloc;
485 pmd_populate_kernel(&init_mm, pmd, pte);
486 }
487 pte = pte_offset_kernel(pmd, address);
488
489 if (pte_none(*pte)) {
490 void *page = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE,
491 node);
492 if (!page)
493 goto err_alloc;
494 set_pte(pte, pfn_pte(__pa(page) >> PAGE_SHIFT,
495 PAGE_KERNEL));
496 }
497 }
498 return 0;
499
500 err_alloc:
501 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d\n",
502 __func__, PAGE_SIZE, PAGE_SIZE, node);
503 return -ENOMEM;
504 }
505
506 struct memmap_init_callback_data {
507 struct page *start;
508 struct page *end;
509 int nid;
510 unsigned long zone;
511 };
512
513 static int __meminit
virtual_memmap_init(u64 start,u64 end,void * arg)514 virtual_memmap_init(u64 start, u64 end, void *arg)
515 {
516 struct memmap_init_callback_data *args;
517 struct page *map_start, *map_end;
518
519 args = (struct memmap_init_callback_data *) arg;
520 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
521 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
522
523 if (map_start < args->start)
524 map_start = args->start;
525 if (map_end > args->end)
526 map_end = args->end;
527
528 /*
529 * We have to initialize "out of bounds" struct page elements that fit completely
530 * on the same pages that were allocated for the "in bounds" elements because they
531 * may be referenced later (and found to be "reserved").
532 */
533 map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
534 map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
535 / sizeof(struct page));
536
537 if (map_start < map_end)
538 memmap_init_zone((unsigned long)(map_end - map_start),
539 args->nid, args->zone, page_to_pfn(map_start), page_to_pfn(map_end),
540 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
541 return 0;
542 }
543
544 void __meminit
arch_memmap_init(unsigned long size,int nid,unsigned long zone,unsigned long start_pfn)545 arch_memmap_init (unsigned long size, int nid, unsigned long zone,
546 unsigned long start_pfn)
547 {
548 if (!vmem_map) {
549 memmap_init_zone(size, nid, zone, start_pfn, start_pfn + size,
550 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
551 } else {
552 struct page *start;
553 struct memmap_init_callback_data args;
554
555 start = pfn_to_page(start_pfn);
556 args.start = start;
557 args.end = start + size;
558 args.nid = nid;
559 args.zone = zone;
560
561 efi_memmap_walk(virtual_memmap_init, &args);
562 }
563 }
564
memmap_init(void)565 void __init memmap_init(void)
566 {
567 }
568
569 int
ia64_pfn_valid(unsigned long pfn)570 ia64_pfn_valid (unsigned long pfn)
571 {
572 char byte;
573 struct page *pg = pfn_to_page(pfn);
574
575 return (__get_user(byte, (char __user *) pg) == 0)
576 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
577 || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
578 }
579 EXPORT_SYMBOL(ia64_pfn_valid);
580
find_largest_hole(u64 start,u64 end,void * arg)581 int __init find_largest_hole(u64 start, u64 end, void *arg)
582 {
583 u64 *max_gap = arg;
584
585 static u64 last_end = PAGE_OFFSET;
586
587 /* NOTE: this algorithm assumes efi memmap table is ordered */
588
589 if (*max_gap < (start - last_end))
590 *max_gap = start - last_end;
591 last_end = end;
592 return 0;
593 }
594
595 #endif /* CONFIG_VIRTUAL_MEM_MAP */
596
register_active_ranges(u64 start,u64 len,int nid)597 int __init register_active_ranges(u64 start, u64 len, int nid)
598 {
599 u64 end = start + len;
600
601 #ifdef CONFIG_KEXEC
602 if (start > crashk_res.start && start < crashk_res.end)
603 start = crashk_res.end;
604 if (end > crashk_res.start && end < crashk_res.end)
605 end = crashk_res.start;
606 #endif
607
608 if (start < end)
609 memblock_add_node(__pa(start), end - start, nid);
610 return 0;
611 }
612
613 int
find_max_min_low_pfn(u64 start,u64 end,void * arg)614 find_max_min_low_pfn (u64 start, u64 end, void *arg)
615 {
616 unsigned long pfn_start, pfn_end;
617 #ifdef CONFIG_FLATMEM
618 pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
619 pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
620 #else
621 pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
622 pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
623 #endif
624 min_low_pfn = min(min_low_pfn, pfn_start);
625 max_low_pfn = max(max_low_pfn, pfn_end);
626 return 0;
627 }
628
629 /*
630 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
631 * system call handler. When this option is in effect, all fsyscalls will end up bubbling
632 * down into the kernel and calling the normal (heavy-weight) syscall handler. This is
633 * useful for performance testing, but conceivably could also come in handy for debugging
634 * purposes.
635 */
636
637 static int nolwsys __initdata;
638
639 static int __init
nolwsys_setup(char * s)640 nolwsys_setup (char *s)
641 {
642 nolwsys = 1;
643 return 1;
644 }
645
646 __setup("nolwsys", nolwsys_setup);
647
648 void __init
mem_init(void)649 mem_init (void)
650 {
651 int i;
652
653 BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
654 BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
655 BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
656
657 /*
658 * This needs to be called _after_ the command line has been parsed but
659 * _before_ any drivers that may need the PCI DMA interface are
660 * initialized or bootmem has been freed.
661 */
662 #ifdef CONFIG_INTEL_IOMMU
663 detect_intel_iommu();
664 if (!iommu_detected)
665 #endif
666 #ifdef CONFIG_SWIOTLB
667 swiotlb_init(1);
668 #endif
669
670 #ifdef CONFIG_FLATMEM
671 BUG_ON(!mem_map);
672 #endif
673
674 set_max_mapnr(max_low_pfn);
675 high_memory = __va(max_low_pfn * PAGE_SIZE);
676 memblock_free_all();
677 mem_init_print_info(NULL);
678
679 /*
680 * For fsyscall entrpoints with no light-weight handler, use the ordinary
681 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
682 * code can tell them apart.
683 */
684 for (i = 0; i < NR_syscalls; ++i) {
685 extern unsigned long fsyscall_table[NR_syscalls];
686 extern unsigned long sys_call_table[NR_syscalls];
687
688 if (!fsyscall_table[i] || nolwsys)
689 fsyscall_table[i] = sys_call_table[i] | 1;
690 }
691 setup_gate();
692 }
693
694 #ifdef CONFIG_MEMORY_HOTPLUG
arch_add_memory(int nid,u64 start,u64 size,struct mhp_params * params)695 int arch_add_memory(int nid, u64 start, u64 size,
696 struct mhp_params *params)
697 {
698 unsigned long start_pfn = start >> PAGE_SHIFT;
699 unsigned long nr_pages = size >> PAGE_SHIFT;
700 int ret;
701
702 if (WARN_ON_ONCE(params->pgprot.pgprot != PAGE_KERNEL.pgprot))
703 return -EINVAL;
704
705 ret = __add_pages(nid, start_pfn, nr_pages, params);
706 if (ret)
707 printk("%s: Problem encountered in __add_pages() as ret=%d\n",
708 __func__, ret);
709
710 return ret;
711 }
712
arch_remove_memory(int nid,u64 start,u64 size,struct vmem_altmap * altmap)713 void arch_remove_memory(int nid, u64 start, u64 size,
714 struct vmem_altmap *altmap)
715 {
716 unsigned long start_pfn = start >> PAGE_SHIFT;
717 unsigned long nr_pages = size >> PAGE_SHIFT;
718
719 __remove_pages(start_pfn, nr_pages, altmap);
720 }
721 #endif
722