1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Hash: Hash algorithms under the crypto API
4 *
5 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
6 */
7
8 #ifndef _CRYPTO_HASH_H
9 #define _CRYPTO_HASH_H
10
11 #include <linux/crypto.h>
12 #include <linux/string.h>
13
14 struct crypto_ahash;
15
16 /**
17 * DOC: Message Digest Algorithm Definitions
18 *
19 * These data structures define modular message digest algorithm
20 * implementations, managed via crypto_register_ahash(),
21 * crypto_register_shash(), crypto_unregister_ahash() and
22 * crypto_unregister_shash().
23 */
24
25 /**
26 * struct hash_alg_common - define properties of message digest
27 * @digestsize: Size of the result of the transformation. A buffer of this size
28 * must be available to the @final and @finup calls, so they can
29 * store the resulting hash into it. For various predefined sizes,
30 * search include/crypto/ using
31 * git grep _DIGEST_SIZE include/crypto.
32 * @statesize: Size of the block for partial state of the transformation. A
33 * buffer of this size must be passed to the @export function as it
34 * will save the partial state of the transformation into it. On the
35 * other side, the @import function will load the state from a
36 * buffer of this size as well.
37 * @base: Start of data structure of cipher algorithm. The common data
38 * structure of crypto_alg contains information common to all ciphers.
39 * The hash_alg_common data structure now adds the hash-specific
40 * information.
41 */
42 struct hash_alg_common {
43 unsigned int digestsize;
44 unsigned int statesize;
45
46 struct crypto_alg base;
47 };
48
49 struct ahash_request {
50 struct crypto_async_request base;
51
52 unsigned int nbytes;
53 struct scatterlist *src;
54 u8 *result;
55
56 /* This field may only be used by the ahash API code. */
57 void *priv;
58
59 void *__ctx[] CRYPTO_MINALIGN_ATTR;
60 };
61
62 /**
63 * struct ahash_alg - asynchronous message digest definition
64 * @init: **[mandatory]** Initialize the transformation context. Intended only to initialize the
65 * state of the HASH transformation at the beginning. This shall fill in
66 * the internal structures used during the entire duration of the whole
67 * transformation. No data processing happens at this point. Driver code
68 * implementation must not use req->result.
69 * @update: **[mandatory]** Push a chunk of data into the driver for transformation. This
70 * function actually pushes blocks of data from upper layers into the
71 * driver, which then passes those to the hardware as seen fit. This
72 * function must not finalize the HASH transformation by calculating the
73 * final message digest as this only adds more data into the
74 * transformation. This function shall not modify the transformation
75 * context, as this function may be called in parallel with the same
76 * transformation object. Data processing can happen synchronously
77 * [SHASH] or asynchronously [AHASH] at this point. Driver must not use
78 * req->result.
79 * @final: **[mandatory]** Retrieve result from the driver. This function finalizes the
80 * transformation and retrieves the resulting hash from the driver and
81 * pushes it back to upper layers. No data processing happens at this
82 * point unless hardware requires it to finish the transformation
83 * (then the data buffered by the device driver is processed).
84 * @finup: **[optional]** Combination of @update and @final. This function is effectively a
85 * combination of @update and @final calls issued in sequence. As some
86 * hardware cannot do @update and @final separately, this callback was
87 * added to allow such hardware to be used at least by IPsec. Data
88 * processing can happen synchronously [SHASH] or asynchronously [AHASH]
89 * at this point.
90 * @digest: Combination of @init and @update and @final. This function
91 * effectively behaves as the entire chain of operations, @init,
92 * @update and @final issued in sequence. Just like @finup, this was
93 * added for hardware which cannot do even the @finup, but can only do
94 * the whole transformation in one run. Data processing can happen
95 * synchronously [SHASH] or asynchronously [AHASH] at this point.
96 * @setkey: Set optional key used by the hashing algorithm. Intended to push
97 * optional key used by the hashing algorithm from upper layers into
98 * the driver. This function can store the key in the transformation
99 * context or can outright program it into the hardware. In the former
100 * case, one must be careful to program the key into the hardware at
101 * appropriate time and one must be careful that .setkey() can be
102 * called multiple times during the existence of the transformation
103 * object. Not all hashing algorithms do implement this function as it
104 * is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
105 * implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
106 * this function. This function must be called before any other of the
107 * @init, @update, @final, @finup, @digest is called. No data
108 * processing happens at this point.
109 * @export: Export partial state of the transformation. This function dumps the
110 * entire state of the ongoing transformation into a provided block of
111 * data so it can be @import 'ed back later on. This is useful in case
112 * you want to save partial result of the transformation after
113 * processing certain amount of data and reload this partial result
114 * multiple times later on for multiple re-use. No data processing
115 * happens at this point. Driver must not use req->result.
116 * @import: Import partial state of the transformation. This function loads the
117 * entire state of the ongoing transformation from a provided block of
118 * data so the transformation can continue from this point onward. No
119 * data processing happens at this point. Driver must not use
120 * req->result.
121 * @init_tfm: Initialize the cryptographic transformation object.
122 * This function is called only once at the instantiation
123 * time, right after the transformation context was
124 * allocated. In case the cryptographic hardware has
125 * some special requirements which need to be handled
126 * by software, this function shall check for the precise
127 * requirement of the transformation and put any software
128 * fallbacks in place.
129 * @exit_tfm: Deinitialize the cryptographic transformation object.
130 * This is a counterpart to @init_tfm, used to remove
131 * various changes set in @init_tfm.
132 * @halg: see struct hash_alg_common
133 */
134 struct ahash_alg {
135 int (*init)(struct ahash_request *req);
136 int (*update)(struct ahash_request *req);
137 int (*final)(struct ahash_request *req);
138 int (*finup)(struct ahash_request *req);
139 int (*digest)(struct ahash_request *req);
140 int (*export)(struct ahash_request *req, void *out);
141 int (*import)(struct ahash_request *req, const void *in);
142 int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
143 unsigned int keylen);
144 int (*init_tfm)(struct crypto_ahash *tfm);
145 void (*exit_tfm)(struct crypto_ahash *tfm);
146
147 struct hash_alg_common halg;
148 };
149
150 struct shash_desc {
151 struct crypto_shash *tfm;
152 void *__ctx[] __aligned(ARCH_SLAB_MINALIGN);
153 };
154
155 #define HASH_MAX_DIGESTSIZE 64
156
157 /*
158 * Worst case is hmac(sha3-224-generic). Its context is a nested 'shash_desc'
159 * containing a 'struct sha3_state'.
160 */
161 #define HASH_MAX_DESCSIZE (sizeof(struct shash_desc) + 360)
162
163 #define HASH_MAX_STATESIZE 512
164
165 #define SHASH_DESC_ON_STACK(shash, ctx) \
166 char __##shash##_desc[sizeof(struct shash_desc) + HASH_MAX_DESCSIZE] \
167 __aligned(__alignof__(struct shash_desc)); \
168 struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
169
170 /**
171 * struct shash_alg - synchronous message digest definition
172 * @init: see struct ahash_alg
173 * @update: see struct ahash_alg
174 * @final: see struct ahash_alg
175 * @finup: see struct ahash_alg
176 * @digest: see struct ahash_alg
177 * @export: see struct ahash_alg
178 * @import: see struct ahash_alg
179 * @setkey: see struct ahash_alg
180 * @init_tfm: Initialize the cryptographic transformation object.
181 * This function is called only once at the instantiation
182 * time, right after the transformation context was
183 * allocated. In case the cryptographic hardware has
184 * some special requirements which need to be handled
185 * by software, this function shall check for the precise
186 * requirement of the transformation and put any software
187 * fallbacks in place.
188 * @exit_tfm: Deinitialize the cryptographic transformation object.
189 * This is a counterpart to @init_tfm, used to remove
190 * various changes set in @init_tfm.
191 * @digestsize: see struct ahash_alg
192 * @statesize: see struct ahash_alg
193 * @descsize: Size of the operational state for the message digest. This state
194 * size is the memory size that needs to be allocated for
195 * shash_desc.__ctx
196 * @base: internally used
197 */
198 struct shash_alg {
199 int (*init)(struct shash_desc *desc);
200 int (*update)(struct shash_desc *desc, const u8 *data,
201 unsigned int len);
202 int (*final)(struct shash_desc *desc, u8 *out);
203 int (*finup)(struct shash_desc *desc, const u8 *data,
204 unsigned int len, u8 *out);
205 int (*digest)(struct shash_desc *desc, const u8 *data,
206 unsigned int len, u8 *out);
207 int (*export)(struct shash_desc *desc, void *out);
208 int (*import)(struct shash_desc *desc, const void *in);
209 int (*setkey)(struct crypto_shash *tfm, const u8 *key,
210 unsigned int keylen);
211 int (*init_tfm)(struct crypto_shash *tfm);
212 void (*exit_tfm)(struct crypto_shash *tfm);
213
214 unsigned int descsize;
215
216 /* These fields must match hash_alg_common. */
217 unsigned int digestsize
218 __attribute__ ((aligned(__alignof__(struct hash_alg_common))));
219 unsigned int statesize;
220
221 struct crypto_alg base;
222 };
223
224 struct crypto_ahash {
225 int (*init)(struct ahash_request *req);
226 int (*update)(struct ahash_request *req);
227 int (*final)(struct ahash_request *req);
228 int (*finup)(struct ahash_request *req);
229 int (*digest)(struct ahash_request *req);
230 int (*export)(struct ahash_request *req, void *out);
231 int (*import)(struct ahash_request *req, const void *in);
232 int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
233 unsigned int keylen);
234
235 unsigned int reqsize;
236 struct crypto_tfm base;
237 };
238
239 struct crypto_shash {
240 unsigned int descsize;
241 struct crypto_tfm base;
242 };
243
244 /**
245 * DOC: Asynchronous Message Digest API
246 *
247 * The asynchronous message digest API is used with the ciphers of type
248 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
249 *
250 * The asynchronous cipher operation discussion provided for the
251 * CRYPTO_ALG_TYPE_SKCIPHER API applies here as well.
252 */
253
__crypto_ahash_cast(struct crypto_tfm * tfm)254 static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
255 {
256 return container_of(tfm, struct crypto_ahash, base);
257 }
258
259 /**
260 * crypto_alloc_ahash() - allocate ahash cipher handle
261 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
262 * ahash cipher
263 * @type: specifies the type of the cipher
264 * @mask: specifies the mask for the cipher
265 *
266 * Allocate a cipher handle for an ahash. The returned struct
267 * crypto_ahash is the cipher handle that is required for any subsequent
268 * API invocation for that ahash.
269 *
270 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
271 * of an error, PTR_ERR() returns the error code.
272 */
273 struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
274 u32 mask);
275
crypto_ahash_tfm(struct crypto_ahash * tfm)276 static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
277 {
278 return &tfm->base;
279 }
280
281 /**
282 * crypto_free_ahash() - zeroize and free the ahash handle
283 * @tfm: cipher handle to be freed
284 *
285 * If @tfm is a NULL or error pointer, this function does nothing.
286 */
crypto_free_ahash(struct crypto_ahash * tfm)287 static inline void crypto_free_ahash(struct crypto_ahash *tfm)
288 {
289 crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
290 }
291
292 /**
293 * crypto_has_ahash() - Search for the availability of an ahash.
294 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
295 * ahash
296 * @type: specifies the type of the ahash
297 * @mask: specifies the mask for the ahash
298 *
299 * Return: true when the ahash is known to the kernel crypto API; false
300 * otherwise
301 */
302 int crypto_has_ahash(const char *alg_name, u32 type, u32 mask);
303
crypto_ahash_alg_name(struct crypto_ahash * tfm)304 static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm)
305 {
306 return crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
307 }
308
crypto_ahash_driver_name(struct crypto_ahash * tfm)309 static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm)
310 {
311 return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
312 }
313
crypto_ahash_alignmask(struct crypto_ahash * tfm)314 static inline unsigned int crypto_ahash_alignmask(
315 struct crypto_ahash *tfm)
316 {
317 return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm));
318 }
319
320 /**
321 * crypto_ahash_blocksize() - obtain block size for cipher
322 * @tfm: cipher handle
323 *
324 * The block size for the message digest cipher referenced with the cipher
325 * handle is returned.
326 *
327 * Return: block size of cipher
328 */
crypto_ahash_blocksize(struct crypto_ahash * tfm)329 static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
330 {
331 return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
332 }
333
__crypto_hash_alg_common(struct crypto_alg * alg)334 static inline struct hash_alg_common *__crypto_hash_alg_common(
335 struct crypto_alg *alg)
336 {
337 return container_of(alg, struct hash_alg_common, base);
338 }
339
crypto_hash_alg_common(struct crypto_ahash * tfm)340 static inline struct hash_alg_common *crypto_hash_alg_common(
341 struct crypto_ahash *tfm)
342 {
343 return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
344 }
345
346 /**
347 * crypto_ahash_digestsize() - obtain message digest size
348 * @tfm: cipher handle
349 *
350 * The size for the message digest created by the message digest cipher
351 * referenced with the cipher handle is returned.
352 *
353 *
354 * Return: message digest size of cipher
355 */
crypto_ahash_digestsize(struct crypto_ahash * tfm)356 static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
357 {
358 return crypto_hash_alg_common(tfm)->digestsize;
359 }
360
361 /**
362 * crypto_ahash_statesize() - obtain size of the ahash state
363 * @tfm: cipher handle
364 *
365 * Return the size of the ahash state. With the crypto_ahash_export()
366 * function, the caller can export the state into a buffer whose size is
367 * defined with this function.
368 *
369 * Return: size of the ahash state
370 */
crypto_ahash_statesize(struct crypto_ahash * tfm)371 static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
372 {
373 return crypto_hash_alg_common(tfm)->statesize;
374 }
375
crypto_ahash_get_flags(struct crypto_ahash * tfm)376 static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
377 {
378 return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
379 }
380
crypto_ahash_set_flags(struct crypto_ahash * tfm,u32 flags)381 static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
382 {
383 crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
384 }
385
crypto_ahash_clear_flags(struct crypto_ahash * tfm,u32 flags)386 static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
387 {
388 crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
389 }
390
391 /**
392 * crypto_ahash_reqtfm() - obtain cipher handle from request
393 * @req: asynchronous request handle that contains the reference to the ahash
394 * cipher handle
395 *
396 * Return the ahash cipher handle that is registered with the asynchronous
397 * request handle ahash_request.
398 *
399 * Return: ahash cipher handle
400 */
crypto_ahash_reqtfm(struct ahash_request * req)401 static inline struct crypto_ahash *crypto_ahash_reqtfm(
402 struct ahash_request *req)
403 {
404 return __crypto_ahash_cast(req->base.tfm);
405 }
406
407 /**
408 * crypto_ahash_reqsize() - obtain size of the request data structure
409 * @tfm: cipher handle
410 *
411 * Return: size of the request data
412 */
crypto_ahash_reqsize(struct crypto_ahash * tfm)413 static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
414 {
415 return tfm->reqsize;
416 }
417
ahash_request_ctx(struct ahash_request * req)418 static inline void *ahash_request_ctx(struct ahash_request *req)
419 {
420 return req->__ctx;
421 }
422
423 /**
424 * crypto_ahash_setkey - set key for cipher handle
425 * @tfm: cipher handle
426 * @key: buffer holding the key
427 * @keylen: length of the key in bytes
428 *
429 * The caller provided key is set for the ahash cipher. The cipher
430 * handle must point to a keyed hash in order for this function to succeed.
431 *
432 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
433 */
434 int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
435 unsigned int keylen);
436
437 /**
438 * crypto_ahash_finup() - update and finalize message digest
439 * @req: reference to the ahash_request handle that holds all information
440 * needed to perform the cipher operation
441 *
442 * This function is a "short-hand" for the function calls of
443 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
444 * meaning as discussed for those separate functions.
445 *
446 * Return: see crypto_ahash_final()
447 */
448 int crypto_ahash_finup(struct ahash_request *req);
449
450 /**
451 * crypto_ahash_final() - calculate message digest
452 * @req: reference to the ahash_request handle that holds all information
453 * needed to perform the cipher operation
454 *
455 * Finalize the message digest operation and create the message digest
456 * based on all data added to the cipher handle. The message digest is placed
457 * into the output buffer registered with the ahash_request handle.
458 *
459 * Return:
460 * 0 if the message digest was successfully calculated;
461 * -EINPROGRESS if data is feeded into hardware (DMA) or queued for later;
462 * -EBUSY if queue is full and request should be resubmitted later;
463 * other < 0 if an error occurred
464 */
465 int crypto_ahash_final(struct ahash_request *req);
466
467 /**
468 * crypto_ahash_digest() - calculate message digest for a buffer
469 * @req: reference to the ahash_request handle that holds all information
470 * needed to perform the cipher operation
471 *
472 * This function is a "short-hand" for the function calls of crypto_ahash_init,
473 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
474 * meaning as discussed for those separate three functions.
475 *
476 * Return: see crypto_ahash_final()
477 */
478 int crypto_ahash_digest(struct ahash_request *req);
479
480 /**
481 * crypto_ahash_export() - extract current message digest state
482 * @req: reference to the ahash_request handle whose state is exported
483 * @out: output buffer of sufficient size that can hold the hash state
484 *
485 * This function exports the hash state of the ahash_request handle into the
486 * caller-allocated output buffer out which must have sufficient size (e.g. by
487 * calling crypto_ahash_statesize()).
488 *
489 * Return: 0 if the export was successful; < 0 if an error occurred
490 */
crypto_ahash_export(struct ahash_request * req,void * out)491 static inline int crypto_ahash_export(struct ahash_request *req, void *out)
492 {
493 return crypto_ahash_reqtfm(req)->export(req, out);
494 }
495
496 /**
497 * crypto_ahash_import() - import message digest state
498 * @req: reference to ahash_request handle the state is imported into
499 * @in: buffer holding the state
500 *
501 * This function imports the hash state into the ahash_request handle from the
502 * input buffer. That buffer should have been generated with the
503 * crypto_ahash_export function.
504 *
505 * Return: 0 if the import was successful; < 0 if an error occurred
506 */
crypto_ahash_import(struct ahash_request * req,const void * in)507 static inline int crypto_ahash_import(struct ahash_request *req, const void *in)
508 {
509 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
510
511 if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
512 return -ENOKEY;
513
514 return tfm->import(req, in);
515 }
516
517 /**
518 * crypto_ahash_init() - (re)initialize message digest handle
519 * @req: ahash_request handle that already is initialized with all necessary
520 * data using the ahash_request_* API functions
521 *
522 * The call (re-)initializes the message digest referenced by the ahash_request
523 * handle. Any potentially existing state created by previous operations is
524 * discarded.
525 *
526 * Return: see crypto_ahash_final()
527 */
crypto_ahash_init(struct ahash_request * req)528 static inline int crypto_ahash_init(struct ahash_request *req)
529 {
530 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
531
532 if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
533 return -ENOKEY;
534
535 return tfm->init(req);
536 }
537
538 /**
539 * crypto_ahash_update() - add data to message digest for processing
540 * @req: ahash_request handle that was previously initialized with the
541 * crypto_ahash_init call.
542 *
543 * Updates the message digest state of the &ahash_request handle. The input data
544 * is pointed to by the scatter/gather list registered in the &ahash_request
545 * handle
546 *
547 * Return: see crypto_ahash_final()
548 */
crypto_ahash_update(struct ahash_request * req)549 static inline int crypto_ahash_update(struct ahash_request *req)
550 {
551 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
552 struct crypto_alg *alg = tfm->base.__crt_alg;
553 unsigned int nbytes = req->nbytes;
554 int ret;
555
556 crypto_stats_get(alg);
557 ret = crypto_ahash_reqtfm(req)->update(req);
558 crypto_stats_ahash_update(nbytes, ret, alg);
559 return ret;
560 }
561
562 /**
563 * DOC: Asynchronous Hash Request Handle
564 *
565 * The &ahash_request data structure contains all pointers to data
566 * required for the asynchronous cipher operation. This includes the cipher
567 * handle (which can be used by multiple &ahash_request instances), pointer
568 * to plaintext and the message digest output buffer, asynchronous callback
569 * function, etc. It acts as a handle to the ahash_request_* API calls in a
570 * similar way as ahash handle to the crypto_ahash_* API calls.
571 */
572
573 /**
574 * ahash_request_set_tfm() - update cipher handle reference in request
575 * @req: request handle to be modified
576 * @tfm: cipher handle that shall be added to the request handle
577 *
578 * Allow the caller to replace the existing ahash handle in the request
579 * data structure with a different one.
580 */
ahash_request_set_tfm(struct ahash_request * req,struct crypto_ahash * tfm)581 static inline void ahash_request_set_tfm(struct ahash_request *req,
582 struct crypto_ahash *tfm)
583 {
584 req->base.tfm = crypto_ahash_tfm(tfm);
585 }
586
587 /**
588 * ahash_request_alloc() - allocate request data structure
589 * @tfm: cipher handle to be registered with the request
590 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
591 *
592 * Allocate the request data structure that must be used with the ahash
593 * message digest API calls. During
594 * the allocation, the provided ahash handle
595 * is registered in the request data structure.
596 *
597 * Return: allocated request handle in case of success, or NULL if out of memory
598 */
ahash_request_alloc(struct crypto_ahash * tfm,gfp_t gfp)599 static inline struct ahash_request *ahash_request_alloc(
600 struct crypto_ahash *tfm, gfp_t gfp)
601 {
602 struct ahash_request *req;
603
604 req = kmalloc(sizeof(struct ahash_request) +
605 crypto_ahash_reqsize(tfm), gfp);
606
607 if (likely(req))
608 ahash_request_set_tfm(req, tfm);
609
610 return req;
611 }
612
613 /**
614 * ahash_request_free() - zeroize and free the request data structure
615 * @req: request data structure cipher handle to be freed
616 */
ahash_request_free(struct ahash_request * req)617 static inline void ahash_request_free(struct ahash_request *req)
618 {
619 kfree_sensitive(req);
620 }
621
ahash_request_zero(struct ahash_request * req)622 static inline void ahash_request_zero(struct ahash_request *req)
623 {
624 memzero_explicit(req, sizeof(*req) +
625 crypto_ahash_reqsize(crypto_ahash_reqtfm(req)));
626 }
627
ahash_request_cast(struct crypto_async_request * req)628 static inline struct ahash_request *ahash_request_cast(
629 struct crypto_async_request *req)
630 {
631 return container_of(req, struct ahash_request, base);
632 }
633
634 /**
635 * ahash_request_set_callback() - set asynchronous callback function
636 * @req: request handle
637 * @flags: specify zero or an ORing of the flags
638 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
639 * increase the wait queue beyond the initial maximum size;
640 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
641 * @compl: callback function pointer to be registered with the request handle
642 * @data: The data pointer refers to memory that is not used by the kernel
643 * crypto API, but provided to the callback function for it to use. Here,
644 * the caller can provide a reference to memory the callback function can
645 * operate on. As the callback function is invoked asynchronously to the
646 * related functionality, it may need to access data structures of the
647 * related functionality which can be referenced using this pointer. The
648 * callback function can access the memory via the "data" field in the
649 * &crypto_async_request data structure provided to the callback function.
650 *
651 * This function allows setting the callback function that is triggered once
652 * the cipher operation completes.
653 *
654 * The callback function is registered with the &ahash_request handle and
655 * must comply with the following template::
656 *
657 * void callback_function(struct crypto_async_request *req, int error)
658 */
ahash_request_set_callback(struct ahash_request * req,u32 flags,crypto_completion_t compl,void * data)659 static inline void ahash_request_set_callback(struct ahash_request *req,
660 u32 flags,
661 crypto_completion_t compl,
662 void *data)
663 {
664 req->base.complete = compl;
665 req->base.data = data;
666 req->base.flags = flags;
667 }
668
669 /**
670 * ahash_request_set_crypt() - set data buffers
671 * @req: ahash_request handle to be updated
672 * @src: source scatter/gather list
673 * @result: buffer that is filled with the message digest -- the caller must
674 * ensure that the buffer has sufficient space by, for example, calling
675 * crypto_ahash_digestsize()
676 * @nbytes: number of bytes to process from the source scatter/gather list
677 *
678 * By using this call, the caller references the source scatter/gather list.
679 * The source scatter/gather list points to the data the message digest is to
680 * be calculated for.
681 */
ahash_request_set_crypt(struct ahash_request * req,struct scatterlist * src,u8 * result,unsigned int nbytes)682 static inline void ahash_request_set_crypt(struct ahash_request *req,
683 struct scatterlist *src, u8 *result,
684 unsigned int nbytes)
685 {
686 req->src = src;
687 req->nbytes = nbytes;
688 req->result = result;
689 }
690
691 /**
692 * DOC: Synchronous Message Digest API
693 *
694 * The synchronous message digest API is used with the ciphers of type
695 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
696 *
697 * The message digest API is able to maintain state information for the
698 * caller.
699 *
700 * The synchronous message digest API can store user-related context in its
701 * shash_desc request data structure.
702 */
703
704 /**
705 * crypto_alloc_shash() - allocate message digest handle
706 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
707 * message digest cipher
708 * @type: specifies the type of the cipher
709 * @mask: specifies the mask for the cipher
710 *
711 * Allocate a cipher handle for a message digest. The returned &struct
712 * crypto_shash is the cipher handle that is required for any subsequent
713 * API invocation for that message digest.
714 *
715 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
716 * of an error, PTR_ERR() returns the error code.
717 */
718 struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
719 u32 mask);
720
crypto_shash_tfm(struct crypto_shash * tfm)721 static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
722 {
723 return &tfm->base;
724 }
725
726 /**
727 * crypto_free_shash() - zeroize and free the message digest handle
728 * @tfm: cipher handle to be freed
729 *
730 * If @tfm is a NULL or error pointer, this function does nothing.
731 */
crypto_free_shash(struct crypto_shash * tfm)732 static inline void crypto_free_shash(struct crypto_shash *tfm)
733 {
734 crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
735 }
736
crypto_shash_alg_name(struct crypto_shash * tfm)737 static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm)
738 {
739 return crypto_tfm_alg_name(crypto_shash_tfm(tfm));
740 }
741
crypto_shash_driver_name(struct crypto_shash * tfm)742 static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm)
743 {
744 return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm));
745 }
746
crypto_shash_alignmask(struct crypto_shash * tfm)747 static inline unsigned int crypto_shash_alignmask(
748 struct crypto_shash *tfm)
749 {
750 return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm));
751 }
752
753 /**
754 * crypto_shash_blocksize() - obtain block size for cipher
755 * @tfm: cipher handle
756 *
757 * The block size for the message digest cipher referenced with the cipher
758 * handle is returned.
759 *
760 * Return: block size of cipher
761 */
crypto_shash_blocksize(struct crypto_shash * tfm)762 static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
763 {
764 return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
765 }
766
__crypto_shash_alg(struct crypto_alg * alg)767 static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
768 {
769 return container_of(alg, struct shash_alg, base);
770 }
771
crypto_shash_alg(struct crypto_shash * tfm)772 static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
773 {
774 return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
775 }
776
777 /**
778 * crypto_shash_digestsize() - obtain message digest size
779 * @tfm: cipher handle
780 *
781 * The size for the message digest created by the message digest cipher
782 * referenced with the cipher handle is returned.
783 *
784 * Return: digest size of cipher
785 */
crypto_shash_digestsize(struct crypto_shash * tfm)786 static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
787 {
788 return crypto_shash_alg(tfm)->digestsize;
789 }
790
crypto_shash_statesize(struct crypto_shash * tfm)791 static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
792 {
793 return crypto_shash_alg(tfm)->statesize;
794 }
795
crypto_shash_get_flags(struct crypto_shash * tfm)796 static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
797 {
798 return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
799 }
800
crypto_shash_set_flags(struct crypto_shash * tfm,u32 flags)801 static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
802 {
803 crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
804 }
805
crypto_shash_clear_flags(struct crypto_shash * tfm,u32 flags)806 static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
807 {
808 crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
809 }
810
811 /**
812 * crypto_shash_descsize() - obtain the operational state size
813 * @tfm: cipher handle
814 *
815 * The size of the operational state the cipher needs during operation is
816 * returned for the hash referenced with the cipher handle. This size is
817 * required to calculate the memory requirements to allow the caller allocating
818 * sufficient memory for operational state.
819 *
820 * The operational state is defined with struct shash_desc where the size of
821 * that data structure is to be calculated as
822 * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
823 *
824 * Return: size of the operational state
825 */
crypto_shash_descsize(struct crypto_shash * tfm)826 static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
827 {
828 return tfm->descsize;
829 }
830
shash_desc_ctx(struct shash_desc * desc)831 static inline void *shash_desc_ctx(struct shash_desc *desc)
832 {
833 return desc->__ctx;
834 }
835
836 /**
837 * crypto_shash_setkey() - set key for message digest
838 * @tfm: cipher handle
839 * @key: buffer holding the key
840 * @keylen: length of the key in bytes
841 *
842 * The caller provided key is set for the keyed message digest cipher. The
843 * cipher handle must point to a keyed message digest cipher in order for this
844 * function to succeed.
845 *
846 * Context: Any context.
847 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
848 */
849 int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
850 unsigned int keylen);
851
852 /**
853 * crypto_shash_digest() - calculate message digest for buffer
854 * @desc: see crypto_shash_final()
855 * @data: see crypto_shash_update()
856 * @len: see crypto_shash_update()
857 * @out: see crypto_shash_final()
858 *
859 * This function is a "short-hand" for the function calls of crypto_shash_init,
860 * crypto_shash_update and crypto_shash_final. The parameters have the same
861 * meaning as discussed for those separate three functions.
862 *
863 * Context: Any context.
864 * Return: 0 if the message digest creation was successful; < 0 if an error
865 * occurred
866 */
867 int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
868 unsigned int len, u8 *out);
869
870 /**
871 * crypto_shash_tfm_digest() - calculate message digest for buffer
872 * @tfm: hash transformation object
873 * @data: see crypto_shash_update()
874 * @len: see crypto_shash_update()
875 * @out: see crypto_shash_final()
876 *
877 * This is a simplified version of crypto_shash_digest() for users who don't
878 * want to allocate their own hash descriptor (shash_desc). Instead,
879 * crypto_shash_tfm_digest() takes a hash transformation object (crypto_shash)
880 * directly, and it allocates a hash descriptor on the stack internally.
881 * Note that this stack allocation may be fairly large.
882 *
883 * Context: Any context.
884 * Return: 0 on success; < 0 if an error occurred.
885 */
886 int crypto_shash_tfm_digest(struct crypto_shash *tfm, const u8 *data,
887 unsigned int len, u8 *out);
888
889 /**
890 * crypto_shash_export() - extract operational state for message digest
891 * @desc: reference to the operational state handle whose state is exported
892 * @out: output buffer of sufficient size that can hold the hash state
893 *
894 * This function exports the hash state of the operational state handle into the
895 * caller-allocated output buffer out which must have sufficient size (e.g. by
896 * calling crypto_shash_descsize).
897 *
898 * Context: Any context.
899 * Return: 0 if the export creation was successful; < 0 if an error occurred
900 */
crypto_shash_export(struct shash_desc * desc,void * out)901 static inline int crypto_shash_export(struct shash_desc *desc, void *out)
902 {
903 return crypto_shash_alg(desc->tfm)->export(desc, out);
904 }
905
906 /**
907 * crypto_shash_import() - import operational state
908 * @desc: reference to the operational state handle the state imported into
909 * @in: buffer holding the state
910 *
911 * This function imports the hash state into the operational state handle from
912 * the input buffer. That buffer should have been generated with the
913 * crypto_ahash_export function.
914 *
915 * Context: Any context.
916 * Return: 0 if the import was successful; < 0 if an error occurred
917 */
crypto_shash_import(struct shash_desc * desc,const void * in)918 static inline int crypto_shash_import(struct shash_desc *desc, const void *in)
919 {
920 struct crypto_shash *tfm = desc->tfm;
921
922 if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
923 return -ENOKEY;
924
925 return crypto_shash_alg(tfm)->import(desc, in);
926 }
927
928 /**
929 * crypto_shash_init() - (re)initialize message digest
930 * @desc: operational state handle that is already filled
931 *
932 * The call (re-)initializes the message digest referenced by the
933 * operational state handle. Any potentially existing state created by
934 * previous operations is discarded.
935 *
936 * Context: Any context.
937 * Return: 0 if the message digest initialization was successful; < 0 if an
938 * error occurred
939 */
crypto_shash_init(struct shash_desc * desc)940 static inline int crypto_shash_init(struct shash_desc *desc)
941 {
942 struct crypto_shash *tfm = desc->tfm;
943
944 if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
945 return -ENOKEY;
946
947 return crypto_shash_alg(tfm)->init(desc);
948 }
949
950 /**
951 * crypto_shash_update() - add data to message digest for processing
952 * @desc: operational state handle that is already initialized
953 * @data: input data to be added to the message digest
954 * @len: length of the input data
955 *
956 * Updates the message digest state of the operational state handle.
957 *
958 * Context: Any context.
959 * Return: 0 if the message digest update was successful; < 0 if an error
960 * occurred
961 */
962 int crypto_shash_update(struct shash_desc *desc, const u8 *data,
963 unsigned int len);
964
965 /**
966 * crypto_shash_final() - calculate message digest
967 * @desc: operational state handle that is already filled with data
968 * @out: output buffer filled with the message digest
969 *
970 * Finalize the message digest operation and create the message digest
971 * based on all data added to the cipher handle. The message digest is placed
972 * into the output buffer. The caller must ensure that the output buffer is
973 * large enough by using crypto_shash_digestsize.
974 *
975 * Context: Any context.
976 * Return: 0 if the message digest creation was successful; < 0 if an error
977 * occurred
978 */
979 int crypto_shash_final(struct shash_desc *desc, u8 *out);
980
981 /**
982 * crypto_shash_finup() - calculate message digest of buffer
983 * @desc: see crypto_shash_final()
984 * @data: see crypto_shash_update()
985 * @len: see crypto_shash_update()
986 * @out: see crypto_shash_final()
987 *
988 * This function is a "short-hand" for the function calls of
989 * crypto_shash_update and crypto_shash_final. The parameters have the same
990 * meaning as discussed for those separate functions.
991 *
992 * Context: Any context.
993 * Return: 0 if the message digest creation was successful; < 0 if an error
994 * occurred
995 */
996 int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
997 unsigned int len, u8 *out);
998
shash_desc_zero(struct shash_desc * desc)999 static inline void shash_desc_zero(struct shash_desc *desc)
1000 {
1001 memzero_explicit(desc,
1002 sizeof(*desc) + crypto_shash_descsize(desc->tfm));
1003 }
1004
1005 #endif /* _CRYPTO_HASH_H */
1006