• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/fs_parser.h>
58 #include <linux/sched/cputime.h>
59 #include <linux/psi.h>
60 #include <net/sock.h>
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/cgroup.h>
64 
65 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
66 					 MAX_CFTYPE_NAME + 2)
67 /* let's not notify more than 100 times per second */
68 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
69 
70 /*
71  * cgroup_mutex is the master lock.  Any modification to cgroup or its
72  * hierarchy must be performed while holding it.
73  *
74  * css_set_lock protects task->cgroups pointer, the list of css_set
75  * objects, and the chain of tasks off each css_set.
76  *
77  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
78  * cgroup.h can use them for lockdep annotations.
79  */
80 DEFINE_MUTEX(cgroup_mutex);
81 DEFINE_SPINLOCK(css_set_lock);
82 
83 #ifdef CONFIG_PROVE_RCU
84 EXPORT_SYMBOL_GPL(cgroup_mutex);
85 EXPORT_SYMBOL_GPL(css_set_lock);
86 #endif
87 
88 DEFINE_SPINLOCK(trace_cgroup_path_lock);
89 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
90 bool cgroup_debug __read_mostly;
91 
92 /*
93  * Protects cgroup_idr and css_idr so that IDs can be released without
94  * grabbing cgroup_mutex.
95  */
96 static DEFINE_SPINLOCK(cgroup_idr_lock);
97 
98 /*
99  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
100  * against file removal/re-creation across css hiding.
101  */
102 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
103 
104 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
105 
106 #define cgroup_assert_mutex_or_rcu_locked()				\
107 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
108 			   !lockdep_is_held(&cgroup_mutex),		\
109 			   "cgroup_mutex or RCU read lock required");
110 
111 /*
112  * cgroup destruction makes heavy use of work items and there can be a lot
113  * of concurrent destructions.  Use a separate workqueue so that cgroup
114  * destruction work items don't end up filling up max_active of system_wq
115  * which may lead to deadlock.
116  */
117 static struct workqueue_struct *cgroup_destroy_wq;
118 
119 /* generate an array of cgroup subsystem pointers */
120 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
121 struct cgroup_subsys *cgroup_subsys[] = {
122 #include <linux/cgroup_subsys.h>
123 };
124 #undef SUBSYS
125 
126 /* array of cgroup subsystem names */
127 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
128 static const char *cgroup_subsys_name[] = {
129 #include <linux/cgroup_subsys.h>
130 };
131 #undef SUBSYS
132 
133 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
134 #define SUBSYS(_x)								\
135 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
136 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
137 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
138 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
139 #include <linux/cgroup_subsys.h>
140 #undef SUBSYS
141 
142 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
143 static struct static_key_true *cgroup_subsys_enabled_key[] = {
144 #include <linux/cgroup_subsys.h>
145 };
146 #undef SUBSYS
147 
148 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
149 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
150 #include <linux/cgroup_subsys.h>
151 };
152 #undef SUBSYS
153 
154 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
155 
156 /* the default hierarchy */
157 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
158 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
159 
160 /*
161  * The default hierarchy always exists but is hidden until mounted for the
162  * first time.  This is for backward compatibility.
163  */
164 static bool cgrp_dfl_visible;
165 
166 /* some controllers are not supported in the default hierarchy */
167 static u16 cgrp_dfl_inhibit_ss_mask;
168 
169 /* some controllers are implicitly enabled on the default hierarchy */
170 static u16 cgrp_dfl_implicit_ss_mask;
171 
172 /* some controllers can be threaded on the default hierarchy */
173 static u16 cgrp_dfl_threaded_ss_mask;
174 
175 /* The list of hierarchy roots */
176 LIST_HEAD(cgroup_roots);
177 static int cgroup_root_count;
178 
179 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
180 static DEFINE_IDR(cgroup_hierarchy_idr);
181 
182 /*
183  * Assign a monotonically increasing serial number to csses.  It guarantees
184  * cgroups with bigger numbers are newer than those with smaller numbers.
185  * Also, as csses are always appended to the parent's ->children list, it
186  * guarantees that sibling csses are always sorted in the ascending serial
187  * number order on the list.  Protected by cgroup_mutex.
188  */
189 static u64 css_serial_nr_next = 1;
190 
191 /*
192  * These bitmasks identify subsystems with specific features to avoid
193  * having to do iterative checks repeatedly.
194  */
195 static u16 have_fork_callback __read_mostly;
196 static u16 have_exit_callback __read_mostly;
197 static u16 have_release_callback __read_mostly;
198 static u16 have_canfork_callback __read_mostly;
199 
200 /* cgroup namespace for init task */
201 struct cgroup_namespace init_cgroup_ns = {
202 	.count		= REFCOUNT_INIT(2),
203 	.user_ns	= &init_user_ns,
204 	.ns.ops		= &cgroupns_operations,
205 	.ns.inum	= PROC_CGROUP_INIT_INO,
206 	.root_cset	= &init_css_set,
207 };
208 
209 static struct file_system_type cgroup2_fs_type;
210 static struct cftype cgroup_base_files[];
211 
212 static int cgroup_apply_control(struct cgroup *cgrp);
213 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
214 static void css_task_iter_skip(struct css_task_iter *it,
215 			       struct task_struct *task);
216 static int cgroup_destroy_locked(struct cgroup *cgrp);
217 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
218 					      struct cgroup_subsys *ss);
219 static void css_release(struct percpu_ref *ref);
220 static void kill_css(struct cgroup_subsys_state *css);
221 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
222 			      struct cgroup *cgrp, struct cftype cfts[],
223 			      bool is_add);
224 
225 /**
226  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
227  * @ssid: subsys ID of interest
228  *
229  * cgroup_subsys_enabled() can only be used with literal subsys names which
230  * is fine for individual subsystems but unsuitable for cgroup core.  This
231  * is slower static_key_enabled() based test indexed by @ssid.
232  */
cgroup_ssid_enabled(int ssid)233 bool cgroup_ssid_enabled(int ssid)
234 {
235 	if (CGROUP_SUBSYS_COUNT == 0)
236 		return false;
237 
238 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
239 }
240 
241 /**
242  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
243  * @cgrp: the cgroup of interest
244  *
245  * The default hierarchy is the v2 interface of cgroup and this function
246  * can be used to test whether a cgroup is on the default hierarchy for
247  * cases where a subsystem should behave differnetly depending on the
248  * interface version.
249  *
250  * List of changed behaviors:
251  *
252  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
253  *   and "name" are disallowed.
254  *
255  * - When mounting an existing superblock, mount options should match.
256  *
257  * - Remount is disallowed.
258  *
259  * - rename(2) is disallowed.
260  *
261  * - "tasks" is removed.  Everything should be at process granularity.  Use
262  *   "cgroup.procs" instead.
263  *
264  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
265  *   recycled inbetween reads.
266  *
267  * - "release_agent" and "notify_on_release" are removed.  Replacement
268  *   notification mechanism will be implemented.
269  *
270  * - "cgroup.clone_children" is removed.
271  *
272  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
273  *   and its descendants contain no task; otherwise, 1.  The file also
274  *   generates kernfs notification which can be monitored through poll and
275  *   [di]notify when the value of the file changes.
276  *
277  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
278  *   take masks of ancestors with non-empty cpus/mems, instead of being
279  *   moved to an ancestor.
280  *
281  * - cpuset: a task can be moved into an empty cpuset, and again it takes
282  *   masks of ancestors.
283  *
284  * - memcg: use_hierarchy is on by default and the cgroup file for the flag
285  *   is not created.
286  *
287  * - blkcg: blk-throttle becomes properly hierarchical.
288  *
289  * - debug: disallowed on the default hierarchy.
290  */
cgroup_on_dfl(const struct cgroup * cgrp)291 bool cgroup_on_dfl(const struct cgroup *cgrp)
292 {
293 	return cgrp->root == &cgrp_dfl_root;
294 }
295 
296 /* IDR wrappers which synchronize using cgroup_idr_lock */
cgroup_idr_alloc(struct idr * idr,void * ptr,int start,int end,gfp_t gfp_mask)297 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
298 			    gfp_t gfp_mask)
299 {
300 	int ret;
301 
302 	idr_preload(gfp_mask);
303 	spin_lock_bh(&cgroup_idr_lock);
304 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
305 	spin_unlock_bh(&cgroup_idr_lock);
306 	idr_preload_end();
307 	return ret;
308 }
309 
cgroup_idr_replace(struct idr * idr,void * ptr,int id)310 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
311 {
312 	void *ret;
313 
314 	spin_lock_bh(&cgroup_idr_lock);
315 	ret = idr_replace(idr, ptr, id);
316 	spin_unlock_bh(&cgroup_idr_lock);
317 	return ret;
318 }
319 
cgroup_idr_remove(struct idr * idr,int id)320 static void cgroup_idr_remove(struct idr *idr, int id)
321 {
322 	spin_lock_bh(&cgroup_idr_lock);
323 	idr_remove(idr, id);
324 	spin_unlock_bh(&cgroup_idr_lock);
325 }
326 
cgroup_has_tasks(struct cgroup * cgrp)327 static bool cgroup_has_tasks(struct cgroup *cgrp)
328 {
329 	return cgrp->nr_populated_csets;
330 }
331 
cgroup_is_threaded(struct cgroup * cgrp)332 bool cgroup_is_threaded(struct cgroup *cgrp)
333 {
334 	return cgrp->dom_cgrp != cgrp;
335 }
336 
337 /* can @cgrp host both domain and threaded children? */
cgroup_is_mixable(struct cgroup * cgrp)338 static bool cgroup_is_mixable(struct cgroup *cgrp)
339 {
340 	/*
341 	 * Root isn't under domain level resource control exempting it from
342 	 * the no-internal-process constraint, so it can serve as a thread
343 	 * root and a parent of resource domains at the same time.
344 	 */
345 	return !cgroup_parent(cgrp);
346 }
347 
348 /* can @cgrp become a thread root? should always be true for a thread root */
cgroup_can_be_thread_root(struct cgroup * cgrp)349 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
350 {
351 	/* mixables don't care */
352 	if (cgroup_is_mixable(cgrp))
353 		return true;
354 
355 	/* domain roots can't be nested under threaded */
356 	if (cgroup_is_threaded(cgrp))
357 		return false;
358 
359 	/* can only have either domain or threaded children */
360 	if (cgrp->nr_populated_domain_children)
361 		return false;
362 
363 	/* and no domain controllers can be enabled */
364 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
365 		return false;
366 
367 	return true;
368 }
369 
370 /* is @cgrp root of a threaded subtree? */
cgroup_is_thread_root(struct cgroup * cgrp)371 bool cgroup_is_thread_root(struct cgroup *cgrp)
372 {
373 	/* thread root should be a domain */
374 	if (cgroup_is_threaded(cgrp))
375 		return false;
376 
377 	/* a domain w/ threaded children is a thread root */
378 	if (cgrp->nr_threaded_children)
379 		return true;
380 
381 	/*
382 	 * A domain which has tasks and explicit threaded controllers
383 	 * enabled is a thread root.
384 	 */
385 	if (cgroup_has_tasks(cgrp) &&
386 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
387 		return true;
388 
389 	return false;
390 }
391 
392 /* a domain which isn't connected to the root w/o brekage can't be used */
cgroup_is_valid_domain(struct cgroup * cgrp)393 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
394 {
395 	/* the cgroup itself can be a thread root */
396 	if (cgroup_is_threaded(cgrp))
397 		return false;
398 
399 	/* but the ancestors can't be unless mixable */
400 	while ((cgrp = cgroup_parent(cgrp))) {
401 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
402 			return false;
403 		if (cgroup_is_threaded(cgrp))
404 			return false;
405 	}
406 
407 	return true;
408 }
409 
410 /* subsystems visibly enabled on a cgroup */
cgroup_control(struct cgroup * cgrp)411 static u16 cgroup_control(struct cgroup *cgrp)
412 {
413 	struct cgroup *parent = cgroup_parent(cgrp);
414 	u16 root_ss_mask = cgrp->root->subsys_mask;
415 
416 	if (parent) {
417 		u16 ss_mask = parent->subtree_control;
418 
419 		/* threaded cgroups can only have threaded controllers */
420 		if (cgroup_is_threaded(cgrp))
421 			ss_mask &= cgrp_dfl_threaded_ss_mask;
422 		return ss_mask;
423 	}
424 
425 	if (cgroup_on_dfl(cgrp))
426 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
427 				  cgrp_dfl_implicit_ss_mask);
428 	return root_ss_mask;
429 }
430 
431 /* subsystems enabled on a cgroup */
cgroup_ss_mask(struct cgroup * cgrp)432 static u16 cgroup_ss_mask(struct cgroup *cgrp)
433 {
434 	struct cgroup *parent = cgroup_parent(cgrp);
435 
436 	if (parent) {
437 		u16 ss_mask = parent->subtree_ss_mask;
438 
439 		/* threaded cgroups can only have threaded controllers */
440 		if (cgroup_is_threaded(cgrp))
441 			ss_mask &= cgrp_dfl_threaded_ss_mask;
442 		return ss_mask;
443 	}
444 
445 	return cgrp->root->subsys_mask;
446 }
447 
448 /**
449  * cgroup_css - obtain a cgroup's css for the specified subsystem
450  * @cgrp: the cgroup of interest
451  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
452  *
453  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
454  * function must be called either under cgroup_mutex or rcu_read_lock() and
455  * the caller is responsible for pinning the returned css if it wants to
456  * keep accessing it outside the said locks.  This function may return
457  * %NULL if @cgrp doesn't have @subsys_id enabled.
458  */
cgroup_css(struct cgroup * cgrp,struct cgroup_subsys * ss)459 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
460 					      struct cgroup_subsys *ss)
461 {
462 	if (ss)
463 		return rcu_dereference_check(cgrp->subsys[ss->id],
464 					lockdep_is_held(&cgroup_mutex));
465 	else
466 		return &cgrp->self;
467 }
468 
469 /**
470  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
471  * @cgrp: the cgroup of interest
472  * @ss: the subsystem of interest
473  *
474  * Find and get @cgrp's css assocaited with @ss.  If the css doesn't exist
475  * or is offline, %NULL is returned.
476  */
cgroup_tryget_css(struct cgroup * cgrp,struct cgroup_subsys * ss)477 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
478 						     struct cgroup_subsys *ss)
479 {
480 	struct cgroup_subsys_state *css;
481 
482 	rcu_read_lock();
483 	css = cgroup_css(cgrp, ss);
484 	if (css && !css_tryget_online(css))
485 		css = NULL;
486 	rcu_read_unlock();
487 
488 	return css;
489 }
490 
491 /**
492  * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
493  * @cgrp: the cgroup of interest
494  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
495  *
496  * Similar to cgroup_css() but returns the effective css, which is defined
497  * as the matching css of the nearest ancestor including self which has @ss
498  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
499  * function is guaranteed to return non-NULL css.
500  */
cgroup_e_css_by_mask(struct cgroup * cgrp,struct cgroup_subsys * ss)501 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
502 							struct cgroup_subsys *ss)
503 {
504 	lockdep_assert_held(&cgroup_mutex);
505 
506 	if (!ss)
507 		return &cgrp->self;
508 
509 	/*
510 	 * This function is used while updating css associations and thus
511 	 * can't test the csses directly.  Test ss_mask.
512 	 */
513 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
514 		cgrp = cgroup_parent(cgrp);
515 		if (!cgrp)
516 			return NULL;
517 	}
518 
519 	return cgroup_css(cgrp, ss);
520 }
521 
522 /**
523  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
524  * @cgrp: the cgroup of interest
525  * @ss: the subsystem of interest
526  *
527  * Find and get the effective css of @cgrp for @ss.  The effective css is
528  * defined as the matching css of the nearest ancestor including self which
529  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
530  * the root css is returned, so this function always returns a valid css.
531  *
532  * The returned css is not guaranteed to be online, and therefore it is the
533  * callers responsiblity to tryget a reference for it.
534  */
cgroup_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)535 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
536 					 struct cgroup_subsys *ss)
537 {
538 	struct cgroup_subsys_state *css;
539 
540 	do {
541 		css = cgroup_css(cgrp, ss);
542 
543 		if (css)
544 			return css;
545 		cgrp = cgroup_parent(cgrp);
546 	} while (cgrp);
547 
548 	return init_css_set.subsys[ss->id];
549 }
550 
551 /**
552  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
553  * @cgrp: the cgroup of interest
554  * @ss: the subsystem of interest
555  *
556  * Find and get the effective css of @cgrp for @ss.  The effective css is
557  * defined as the matching css of the nearest ancestor including self which
558  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
559  * the root css is returned, so this function always returns a valid css.
560  * The returned css must be put using css_put().
561  */
cgroup_get_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)562 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
563 					     struct cgroup_subsys *ss)
564 {
565 	struct cgroup_subsys_state *css;
566 
567 	rcu_read_lock();
568 
569 	do {
570 		css = cgroup_css(cgrp, ss);
571 
572 		if (css && css_tryget_online(css))
573 			goto out_unlock;
574 		cgrp = cgroup_parent(cgrp);
575 	} while (cgrp);
576 
577 	css = init_css_set.subsys[ss->id];
578 	css_get(css);
579 out_unlock:
580 	rcu_read_unlock();
581 	return css;
582 }
583 
cgroup_get_live(struct cgroup * cgrp)584 static void cgroup_get_live(struct cgroup *cgrp)
585 {
586 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
587 	css_get(&cgrp->self);
588 }
589 
590 /**
591  * __cgroup_task_count - count the number of tasks in a cgroup. The caller
592  * is responsible for taking the css_set_lock.
593  * @cgrp: the cgroup in question
594  */
__cgroup_task_count(const struct cgroup * cgrp)595 int __cgroup_task_count(const struct cgroup *cgrp)
596 {
597 	int count = 0;
598 	struct cgrp_cset_link *link;
599 
600 	lockdep_assert_held(&css_set_lock);
601 
602 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
603 		count += link->cset->nr_tasks;
604 
605 	return count;
606 }
607 
608 /**
609  * cgroup_task_count - count the number of tasks in a cgroup.
610  * @cgrp: the cgroup in question
611  */
cgroup_task_count(const struct cgroup * cgrp)612 int cgroup_task_count(const struct cgroup *cgrp)
613 {
614 	int count;
615 
616 	spin_lock_irq(&css_set_lock);
617 	count = __cgroup_task_count(cgrp);
618 	spin_unlock_irq(&css_set_lock);
619 
620 	return count;
621 }
622 
of_css(struct kernfs_open_file * of)623 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
624 {
625 	struct cgroup *cgrp = of->kn->parent->priv;
626 	struct cftype *cft = of_cft(of);
627 
628 	/*
629 	 * This is open and unprotected implementation of cgroup_css().
630 	 * seq_css() is only called from a kernfs file operation which has
631 	 * an active reference on the file.  Because all the subsystem
632 	 * files are drained before a css is disassociated with a cgroup,
633 	 * the matching css from the cgroup's subsys table is guaranteed to
634 	 * be and stay valid until the enclosing operation is complete.
635 	 */
636 	if (cft->ss)
637 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
638 	else
639 		return &cgrp->self;
640 }
641 EXPORT_SYMBOL_GPL(of_css);
642 
643 /**
644  * for_each_css - iterate all css's of a cgroup
645  * @css: the iteration cursor
646  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
647  * @cgrp: the target cgroup to iterate css's of
648  *
649  * Should be called under cgroup_[tree_]mutex.
650  */
651 #define for_each_css(css, ssid, cgrp)					\
652 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
653 		if (!((css) = rcu_dereference_check(			\
654 				(cgrp)->subsys[(ssid)],			\
655 				lockdep_is_held(&cgroup_mutex)))) { }	\
656 		else
657 
658 /**
659  * for_each_e_css - iterate all effective css's of a cgroup
660  * @css: the iteration cursor
661  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
662  * @cgrp: the target cgroup to iterate css's of
663  *
664  * Should be called under cgroup_[tree_]mutex.
665  */
666 #define for_each_e_css(css, ssid, cgrp)					    \
667 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	    \
668 		if (!((css) = cgroup_e_css_by_mask(cgrp,		    \
669 						   cgroup_subsys[(ssid)]))) \
670 			;						    \
671 		else
672 
673 /**
674  * do_each_subsys_mask - filter for_each_subsys with a bitmask
675  * @ss: the iteration cursor
676  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
677  * @ss_mask: the bitmask
678  *
679  * The block will only run for cases where the ssid-th bit (1 << ssid) of
680  * @ss_mask is set.
681  */
682 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
683 	unsigned long __ss_mask = (ss_mask);				\
684 	if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */	\
685 		(ssid) = 0;						\
686 		break;							\
687 	}								\
688 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
689 		(ss) = cgroup_subsys[ssid];				\
690 		{
691 
692 #define while_each_subsys_mask()					\
693 		}							\
694 	}								\
695 } while (false)
696 
697 /* iterate over child cgrps, lock should be held throughout iteration */
698 #define cgroup_for_each_live_child(child, cgrp)				\
699 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
700 		if (({ lockdep_assert_held(&cgroup_mutex);		\
701 		       cgroup_is_dead(child); }))			\
702 			;						\
703 		else
704 
705 /* walk live descendants in preorder */
706 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
707 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
708 		if (({ lockdep_assert_held(&cgroup_mutex);		\
709 		       (dsct) = (d_css)->cgroup;			\
710 		       cgroup_is_dead(dsct); }))			\
711 			;						\
712 		else
713 
714 /* walk live descendants in postorder */
715 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
716 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
717 		if (({ lockdep_assert_held(&cgroup_mutex);		\
718 		       (dsct) = (d_css)->cgroup;			\
719 		       cgroup_is_dead(dsct); }))			\
720 			;						\
721 		else
722 
723 /*
724  * The default css_set - used by init and its children prior to any
725  * hierarchies being mounted. It contains a pointer to the root state
726  * for each subsystem. Also used to anchor the list of css_sets. Not
727  * reference-counted, to improve performance when child cgroups
728  * haven't been created.
729  */
730 struct css_set init_css_set = {
731 	.refcount		= REFCOUNT_INIT(1),
732 	.dom_cset		= &init_css_set,
733 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
734 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
735 	.dying_tasks		= LIST_HEAD_INIT(init_css_set.dying_tasks),
736 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
737 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
738 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
739 	.mg_preload_node	= LIST_HEAD_INIT(init_css_set.mg_preload_node),
740 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
741 
742 	/*
743 	 * The following field is re-initialized when this cset gets linked
744 	 * in cgroup_init().  However, let's initialize the field
745 	 * statically too so that the default cgroup can be accessed safely
746 	 * early during boot.
747 	 */
748 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
749 };
750 
751 static int css_set_count	= 1;	/* 1 for init_css_set */
752 
css_set_threaded(struct css_set * cset)753 static bool css_set_threaded(struct css_set *cset)
754 {
755 	return cset->dom_cset != cset;
756 }
757 
758 /**
759  * css_set_populated - does a css_set contain any tasks?
760  * @cset: target css_set
761  *
762  * css_set_populated() should be the same as !!cset->nr_tasks at steady
763  * state. However, css_set_populated() can be called while a task is being
764  * added to or removed from the linked list before the nr_tasks is
765  * properly updated. Hence, we can't just look at ->nr_tasks here.
766  */
css_set_populated(struct css_set * cset)767 static bool css_set_populated(struct css_set *cset)
768 {
769 	lockdep_assert_held(&css_set_lock);
770 
771 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
772 }
773 
774 /**
775  * cgroup_update_populated - update the populated count of a cgroup
776  * @cgrp: the target cgroup
777  * @populated: inc or dec populated count
778  *
779  * One of the css_sets associated with @cgrp is either getting its first
780  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
781  * count is propagated towards root so that a given cgroup's
782  * nr_populated_children is zero iff none of its descendants contain any
783  * tasks.
784  *
785  * @cgrp's interface file "cgroup.populated" is zero if both
786  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
787  * 1 otherwise.  When the sum changes from or to zero, userland is notified
788  * that the content of the interface file has changed.  This can be used to
789  * detect when @cgrp and its descendants become populated or empty.
790  */
cgroup_update_populated(struct cgroup * cgrp,bool populated)791 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
792 {
793 	struct cgroup *child = NULL;
794 	int adj = populated ? 1 : -1;
795 
796 	lockdep_assert_held(&css_set_lock);
797 
798 	do {
799 		bool was_populated = cgroup_is_populated(cgrp);
800 
801 		if (!child) {
802 			cgrp->nr_populated_csets += adj;
803 		} else {
804 			if (cgroup_is_threaded(child))
805 				cgrp->nr_populated_threaded_children += adj;
806 			else
807 				cgrp->nr_populated_domain_children += adj;
808 		}
809 
810 		if (was_populated == cgroup_is_populated(cgrp))
811 			break;
812 
813 		cgroup1_check_for_release(cgrp);
814 		TRACE_CGROUP_PATH(notify_populated, cgrp,
815 				  cgroup_is_populated(cgrp));
816 		cgroup_file_notify(&cgrp->events_file);
817 
818 		child = cgrp;
819 		cgrp = cgroup_parent(cgrp);
820 	} while (cgrp);
821 }
822 
823 /**
824  * css_set_update_populated - update populated state of a css_set
825  * @cset: target css_set
826  * @populated: whether @cset is populated or depopulated
827  *
828  * @cset is either getting the first task or losing the last.  Update the
829  * populated counters of all associated cgroups accordingly.
830  */
css_set_update_populated(struct css_set * cset,bool populated)831 static void css_set_update_populated(struct css_set *cset, bool populated)
832 {
833 	struct cgrp_cset_link *link;
834 
835 	lockdep_assert_held(&css_set_lock);
836 
837 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
838 		cgroup_update_populated(link->cgrp, populated);
839 }
840 
841 /*
842  * @task is leaving, advance task iterators which are pointing to it so
843  * that they can resume at the next position.  Advancing an iterator might
844  * remove it from the list, use safe walk.  See css_task_iter_skip() for
845  * details.
846  */
css_set_skip_task_iters(struct css_set * cset,struct task_struct * task)847 static void css_set_skip_task_iters(struct css_set *cset,
848 				    struct task_struct *task)
849 {
850 	struct css_task_iter *it, *pos;
851 
852 	list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
853 		css_task_iter_skip(it, task);
854 }
855 
856 /**
857  * css_set_move_task - move a task from one css_set to another
858  * @task: task being moved
859  * @from_cset: css_set @task currently belongs to (may be NULL)
860  * @to_cset: new css_set @task is being moved to (may be NULL)
861  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
862  *
863  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
864  * css_set, @from_cset can be NULL.  If @task is being disassociated
865  * instead of moved, @to_cset can be NULL.
866  *
867  * This function automatically handles populated counter updates and
868  * css_task_iter adjustments but the caller is responsible for managing
869  * @from_cset and @to_cset's reference counts.
870  */
css_set_move_task(struct task_struct * task,struct css_set * from_cset,struct css_set * to_cset,bool use_mg_tasks)871 static void css_set_move_task(struct task_struct *task,
872 			      struct css_set *from_cset, struct css_set *to_cset,
873 			      bool use_mg_tasks)
874 {
875 	lockdep_assert_held(&css_set_lock);
876 
877 	if (to_cset && !css_set_populated(to_cset))
878 		css_set_update_populated(to_cset, true);
879 
880 	if (from_cset) {
881 		WARN_ON_ONCE(list_empty(&task->cg_list));
882 
883 		css_set_skip_task_iters(from_cset, task);
884 		list_del_init(&task->cg_list);
885 		if (!css_set_populated(from_cset))
886 			css_set_update_populated(from_cset, false);
887 	} else {
888 		WARN_ON_ONCE(!list_empty(&task->cg_list));
889 	}
890 
891 	if (to_cset) {
892 		/*
893 		 * We are synchronized through cgroup_threadgroup_rwsem
894 		 * against PF_EXITING setting such that we can't race
895 		 * against cgroup_exit()/cgroup_free() dropping the css_set.
896 		 */
897 		WARN_ON_ONCE(task->flags & PF_EXITING);
898 
899 		cgroup_move_task(task, to_cset);
900 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
901 							     &to_cset->tasks);
902 	}
903 }
904 
905 /*
906  * hash table for cgroup groups. This improves the performance to find
907  * an existing css_set. This hash doesn't (currently) take into
908  * account cgroups in empty hierarchies.
909  */
910 #define CSS_SET_HASH_BITS	7
911 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
912 
css_set_hash(struct cgroup_subsys_state * css[])913 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
914 {
915 	unsigned long key = 0UL;
916 	struct cgroup_subsys *ss;
917 	int i;
918 
919 	for_each_subsys(ss, i)
920 		key += (unsigned long)css[i];
921 	key = (key >> 16) ^ key;
922 
923 	return key;
924 }
925 
put_css_set_locked(struct css_set * cset)926 void put_css_set_locked(struct css_set *cset)
927 {
928 	struct cgrp_cset_link *link, *tmp_link;
929 	struct cgroup_subsys *ss;
930 	int ssid;
931 
932 	lockdep_assert_held(&css_set_lock);
933 
934 	if (!refcount_dec_and_test(&cset->refcount))
935 		return;
936 
937 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
938 
939 	/* This css_set is dead. unlink it and release cgroup and css refs */
940 	for_each_subsys(ss, ssid) {
941 		list_del(&cset->e_cset_node[ssid]);
942 		css_put(cset->subsys[ssid]);
943 	}
944 	hash_del(&cset->hlist);
945 	css_set_count--;
946 
947 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
948 		list_del(&link->cset_link);
949 		list_del(&link->cgrp_link);
950 		if (cgroup_parent(link->cgrp))
951 			cgroup_put(link->cgrp);
952 		kfree(link);
953 	}
954 
955 	if (css_set_threaded(cset)) {
956 		list_del(&cset->threaded_csets_node);
957 		put_css_set_locked(cset->dom_cset);
958 	}
959 
960 	kfree_rcu(cset, rcu_head);
961 }
962 
963 /**
964  * compare_css_sets - helper function for find_existing_css_set().
965  * @cset: candidate css_set being tested
966  * @old_cset: existing css_set for a task
967  * @new_cgrp: cgroup that's being entered by the task
968  * @template: desired set of css pointers in css_set (pre-calculated)
969  *
970  * Returns true if "cset" matches "old_cset" except for the hierarchy
971  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
972  */
compare_css_sets(struct css_set * cset,struct css_set * old_cset,struct cgroup * new_cgrp,struct cgroup_subsys_state * template[])973 static bool compare_css_sets(struct css_set *cset,
974 			     struct css_set *old_cset,
975 			     struct cgroup *new_cgrp,
976 			     struct cgroup_subsys_state *template[])
977 {
978 	struct cgroup *new_dfl_cgrp;
979 	struct list_head *l1, *l2;
980 
981 	/*
982 	 * On the default hierarchy, there can be csets which are
983 	 * associated with the same set of cgroups but different csses.
984 	 * Let's first ensure that csses match.
985 	 */
986 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
987 		return false;
988 
989 
990 	/* @cset's domain should match the default cgroup's */
991 	if (cgroup_on_dfl(new_cgrp))
992 		new_dfl_cgrp = new_cgrp;
993 	else
994 		new_dfl_cgrp = old_cset->dfl_cgrp;
995 
996 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
997 		return false;
998 
999 	/*
1000 	 * Compare cgroup pointers in order to distinguish between
1001 	 * different cgroups in hierarchies.  As different cgroups may
1002 	 * share the same effective css, this comparison is always
1003 	 * necessary.
1004 	 */
1005 	l1 = &cset->cgrp_links;
1006 	l2 = &old_cset->cgrp_links;
1007 	while (1) {
1008 		struct cgrp_cset_link *link1, *link2;
1009 		struct cgroup *cgrp1, *cgrp2;
1010 
1011 		l1 = l1->next;
1012 		l2 = l2->next;
1013 		/* See if we reached the end - both lists are equal length. */
1014 		if (l1 == &cset->cgrp_links) {
1015 			BUG_ON(l2 != &old_cset->cgrp_links);
1016 			break;
1017 		} else {
1018 			BUG_ON(l2 == &old_cset->cgrp_links);
1019 		}
1020 		/* Locate the cgroups associated with these links. */
1021 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1022 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1023 		cgrp1 = link1->cgrp;
1024 		cgrp2 = link2->cgrp;
1025 		/* Hierarchies should be linked in the same order. */
1026 		BUG_ON(cgrp1->root != cgrp2->root);
1027 
1028 		/*
1029 		 * If this hierarchy is the hierarchy of the cgroup
1030 		 * that's changing, then we need to check that this
1031 		 * css_set points to the new cgroup; if it's any other
1032 		 * hierarchy, then this css_set should point to the
1033 		 * same cgroup as the old css_set.
1034 		 */
1035 		if (cgrp1->root == new_cgrp->root) {
1036 			if (cgrp1 != new_cgrp)
1037 				return false;
1038 		} else {
1039 			if (cgrp1 != cgrp2)
1040 				return false;
1041 		}
1042 	}
1043 	return true;
1044 }
1045 
1046 /**
1047  * find_existing_css_set - init css array and find the matching css_set
1048  * @old_cset: the css_set that we're using before the cgroup transition
1049  * @cgrp: the cgroup that we're moving into
1050  * @template: out param for the new set of csses, should be clear on entry
1051  */
find_existing_css_set(struct css_set * old_cset,struct cgroup * cgrp,struct cgroup_subsys_state * template[])1052 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1053 					struct cgroup *cgrp,
1054 					struct cgroup_subsys_state *template[])
1055 {
1056 	struct cgroup_root *root = cgrp->root;
1057 	struct cgroup_subsys *ss;
1058 	struct css_set *cset;
1059 	unsigned long key;
1060 	int i;
1061 
1062 	/*
1063 	 * Build the set of subsystem state objects that we want to see in the
1064 	 * new css_set. while subsystems can change globally, the entries here
1065 	 * won't change, so no need for locking.
1066 	 */
1067 	for_each_subsys(ss, i) {
1068 		if (root->subsys_mask & (1UL << i)) {
1069 			/*
1070 			 * @ss is in this hierarchy, so we want the
1071 			 * effective css from @cgrp.
1072 			 */
1073 			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1074 		} else {
1075 			/*
1076 			 * @ss is not in this hierarchy, so we don't want
1077 			 * to change the css.
1078 			 */
1079 			template[i] = old_cset->subsys[i];
1080 		}
1081 	}
1082 
1083 	key = css_set_hash(template);
1084 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1085 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1086 			continue;
1087 
1088 		/* This css_set matches what we need */
1089 		return cset;
1090 	}
1091 
1092 	/* No existing cgroup group matched */
1093 	return NULL;
1094 }
1095 
free_cgrp_cset_links(struct list_head * links_to_free)1096 static void free_cgrp_cset_links(struct list_head *links_to_free)
1097 {
1098 	struct cgrp_cset_link *link, *tmp_link;
1099 
1100 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1101 		list_del(&link->cset_link);
1102 		kfree(link);
1103 	}
1104 }
1105 
1106 /**
1107  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1108  * @count: the number of links to allocate
1109  * @tmp_links: list_head the allocated links are put on
1110  *
1111  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1112  * through ->cset_link.  Returns 0 on success or -errno.
1113  */
allocate_cgrp_cset_links(int count,struct list_head * tmp_links)1114 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1115 {
1116 	struct cgrp_cset_link *link;
1117 	int i;
1118 
1119 	INIT_LIST_HEAD(tmp_links);
1120 
1121 	for (i = 0; i < count; i++) {
1122 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1123 		if (!link) {
1124 			free_cgrp_cset_links(tmp_links);
1125 			return -ENOMEM;
1126 		}
1127 		list_add(&link->cset_link, tmp_links);
1128 	}
1129 	return 0;
1130 }
1131 
1132 /**
1133  * link_css_set - a helper function to link a css_set to a cgroup
1134  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1135  * @cset: the css_set to be linked
1136  * @cgrp: the destination cgroup
1137  */
link_css_set(struct list_head * tmp_links,struct css_set * cset,struct cgroup * cgrp)1138 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1139 			 struct cgroup *cgrp)
1140 {
1141 	struct cgrp_cset_link *link;
1142 
1143 	BUG_ON(list_empty(tmp_links));
1144 
1145 	if (cgroup_on_dfl(cgrp))
1146 		cset->dfl_cgrp = cgrp;
1147 
1148 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1149 	link->cset = cset;
1150 	link->cgrp = cgrp;
1151 
1152 	/*
1153 	 * Always add links to the tail of the lists so that the lists are
1154 	 * in choronological order.
1155 	 */
1156 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1157 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1158 
1159 	if (cgroup_parent(cgrp))
1160 		cgroup_get_live(cgrp);
1161 }
1162 
1163 /**
1164  * find_css_set - return a new css_set with one cgroup updated
1165  * @old_cset: the baseline css_set
1166  * @cgrp: the cgroup to be updated
1167  *
1168  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1169  * substituted into the appropriate hierarchy.
1170  */
find_css_set(struct css_set * old_cset,struct cgroup * cgrp)1171 static struct css_set *find_css_set(struct css_set *old_cset,
1172 				    struct cgroup *cgrp)
1173 {
1174 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1175 	struct css_set *cset;
1176 	struct list_head tmp_links;
1177 	struct cgrp_cset_link *link;
1178 	struct cgroup_subsys *ss;
1179 	unsigned long key;
1180 	int ssid;
1181 
1182 	lockdep_assert_held(&cgroup_mutex);
1183 
1184 	/* First see if we already have a cgroup group that matches
1185 	 * the desired set */
1186 	spin_lock_irq(&css_set_lock);
1187 	cset = find_existing_css_set(old_cset, cgrp, template);
1188 	if (cset)
1189 		get_css_set(cset);
1190 	spin_unlock_irq(&css_set_lock);
1191 
1192 	if (cset)
1193 		return cset;
1194 
1195 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1196 	if (!cset)
1197 		return NULL;
1198 
1199 	/* Allocate all the cgrp_cset_link objects that we'll need */
1200 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1201 		kfree(cset);
1202 		return NULL;
1203 	}
1204 
1205 	refcount_set(&cset->refcount, 1);
1206 	cset->dom_cset = cset;
1207 	INIT_LIST_HEAD(&cset->tasks);
1208 	INIT_LIST_HEAD(&cset->mg_tasks);
1209 	INIT_LIST_HEAD(&cset->dying_tasks);
1210 	INIT_LIST_HEAD(&cset->task_iters);
1211 	INIT_LIST_HEAD(&cset->threaded_csets);
1212 	INIT_HLIST_NODE(&cset->hlist);
1213 	INIT_LIST_HEAD(&cset->cgrp_links);
1214 	INIT_LIST_HEAD(&cset->mg_preload_node);
1215 	INIT_LIST_HEAD(&cset->mg_node);
1216 
1217 	/* Copy the set of subsystem state objects generated in
1218 	 * find_existing_css_set() */
1219 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1220 
1221 	spin_lock_irq(&css_set_lock);
1222 	/* Add reference counts and links from the new css_set. */
1223 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1224 		struct cgroup *c = link->cgrp;
1225 
1226 		if (c->root == cgrp->root)
1227 			c = cgrp;
1228 		link_css_set(&tmp_links, cset, c);
1229 	}
1230 
1231 	BUG_ON(!list_empty(&tmp_links));
1232 
1233 	css_set_count++;
1234 
1235 	/* Add @cset to the hash table */
1236 	key = css_set_hash(cset->subsys);
1237 	hash_add(css_set_table, &cset->hlist, key);
1238 
1239 	for_each_subsys(ss, ssid) {
1240 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1241 
1242 		list_add_tail(&cset->e_cset_node[ssid],
1243 			      &css->cgroup->e_csets[ssid]);
1244 		css_get(css);
1245 	}
1246 
1247 	spin_unlock_irq(&css_set_lock);
1248 
1249 	/*
1250 	 * If @cset should be threaded, look up the matching dom_cset and
1251 	 * link them up.  We first fully initialize @cset then look for the
1252 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1253 	 * to stay empty until we return.
1254 	 */
1255 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1256 		struct css_set *dcset;
1257 
1258 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1259 		if (!dcset) {
1260 			put_css_set(cset);
1261 			return NULL;
1262 		}
1263 
1264 		spin_lock_irq(&css_set_lock);
1265 		cset->dom_cset = dcset;
1266 		list_add_tail(&cset->threaded_csets_node,
1267 			      &dcset->threaded_csets);
1268 		spin_unlock_irq(&css_set_lock);
1269 	}
1270 
1271 	return cset;
1272 }
1273 
cgroup_root_from_kf(struct kernfs_root * kf_root)1274 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1275 {
1276 	struct cgroup *root_cgrp = kf_root->kn->priv;
1277 
1278 	return root_cgrp->root;
1279 }
1280 
cgroup_init_root_id(struct cgroup_root * root)1281 static int cgroup_init_root_id(struct cgroup_root *root)
1282 {
1283 	int id;
1284 
1285 	lockdep_assert_held(&cgroup_mutex);
1286 
1287 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1288 	if (id < 0)
1289 		return id;
1290 
1291 	root->hierarchy_id = id;
1292 	return 0;
1293 }
1294 
cgroup_exit_root_id(struct cgroup_root * root)1295 static void cgroup_exit_root_id(struct cgroup_root *root)
1296 {
1297 	lockdep_assert_held(&cgroup_mutex);
1298 
1299 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1300 }
1301 
cgroup_free_root(struct cgroup_root * root)1302 void cgroup_free_root(struct cgroup_root *root)
1303 {
1304 	kfree(root);
1305 }
1306 
cgroup_destroy_root(struct cgroup_root * root)1307 static void cgroup_destroy_root(struct cgroup_root *root)
1308 {
1309 	struct cgroup *cgrp = &root->cgrp;
1310 	struct cgrp_cset_link *link, *tmp_link;
1311 
1312 	trace_cgroup_destroy_root(root);
1313 
1314 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1315 
1316 	BUG_ON(atomic_read(&root->nr_cgrps));
1317 	BUG_ON(!list_empty(&cgrp->self.children));
1318 
1319 	/* Rebind all subsystems back to the default hierarchy */
1320 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1321 
1322 	/*
1323 	 * Release all the links from cset_links to this hierarchy's
1324 	 * root cgroup
1325 	 */
1326 	spin_lock_irq(&css_set_lock);
1327 
1328 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1329 		list_del(&link->cset_link);
1330 		list_del(&link->cgrp_link);
1331 		kfree(link);
1332 	}
1333 
1334 	spin_unlock_irq(&css_set_lock);
1335 
1336 	if (!list_empty(&root->root_list)) {
1337 		list_del(&root->root_list);
1338 		cgroup_root_count--;
1339 	}
1340 
1341 	cgroup_exit_root_id(root);
1342 
1343 	mutex_unlock(&cgroup_mutex);
1344 
1345 	kernfs_destroy_root(root->kf_root);
1346 	cgroup_free_root(root);
1347 }
1348 
1349 /*
1350  * look up cgroup associated with current task's cgroup namespace on the
1351  * specified hierarchy
1352  */
1353 static struct cgroup *
current_cgns_cgroup_from_root(struct cgroup_root * root)1354 current_cgns_cgroup_from_root(struct cgroup_root *root)
1355 {
1356 	struct cgroup *res = NULL;
1357 	struct css_set *cset;
1358 
1359 	lockdep_assert_held(&css_set_lock);
1360 
1361 	rcu_read_lock();
1362 
1363 	cset = current->nsproxy->cgroup_ns->root_cset;
1364 	if (cset == &init_css_set) {
1365 		res = &root->cgrp;
1366 	} else if (root == &cgrp_dfl_root) {
1367 		res = cset->dfl_cgrp;
1368 	} else {
1369 		struct cgrp_cset_link *link;
1370 
1371 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1372 			struct cgroup *c = link->cgrp;
1373 
1374 			if (c->root == root) {
1375 				res = c;
1376 				break;
1377 			}
1378 		}
1379 	}
1380 	rcu_read_unlock();
1381 
1382 	BUG_ON(!res);
1383 	return res;
1384 }
1385 
1386 /* look up cgroup associated with given css_set on the specified hierarchy */
cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1387 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1388 					    struct cgroup_root *root)
1389 {
1390 	struct cgroup *res = NULL;
1391 
1392 	lockdep_assert_held(&cgroup_mutex);
1393 	lockdep_assert_held(&css_set_lock);
1394 
1395 	if (cset == &init_css_set) {
1396 		res = &root->cgrp;
1397 	} else if (root == &cgrp_dfl_root) {
1398 		res = cset->dfl_cgrp;
1399 	} else {
1400 		struct cgrp_cset_link *link;
1401 
1402 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1403 			struct cgroup *c = link->cgrp;
1404 
1405 			if (c->root == root) {
1406 				res = c;
1407 				break;
1408 			}
1409 		}
1410 	}
1411 
1412 	BUG_ON(!res);
1413 	return res;
1414 }
1415 
1416 /*
1417  * Return the cgroup for "task" from the given hierarchy. Must be
1418  * called with cgroup_mutex and css_set_lock held.
1419  */
task_cgroup_from_root(struct task_struct * task,struct cgroup_root * root)1420 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1421 				     struct cgroup_root *root)
1422 {
1423 	/*
1424 	 * No need to lock the task - since we hold css_set_lock the
1425 	 * task can't change groups.
1426 	 */
1427 	return cset_cgroup_from_root(task_css_set(task), root);
1428 }
1429 
1430 /*
1431  * A task must hold cgroup_mutex to modify cgroups.
1432  *
1433  * Any task can increment and decrement the count field without lock.
1434  * So in general, code holding cgroup_mutex can't rely on the count
1435  * field not changing.  However, if the count goes to zero, then only
1436  * cgroup_attach_task() can increment it again.  Because a count of zero
1437  * means that no tasks are currently attached, therefore there is no
1438  * way a task attached to that cgroup can fork (the other way to
1439  * increment the count).  So code holding cgroup_mutex can safely
1440  * assume that if the count is zero, it will stay zero. Similarly, if
1441  * a task holds cgroup_mutex on a cgroup with zero count, it
1442  * knows that the cgroup won't be removed, as cgroup_rmdir()
1443  * needs that mutex.
1444  *
1445  * A cgroup can only be deleted if both its 'count' of using tasks
1446  * is zero, and its list of 'children' cgroups is empty.  Since all
1447  * tasks in the system use _some_ cgroup, and since there is always at
1448  * least one task in the system (init, pid == 1), therefore, root cgroup
1449  * always has either children cgroups and/or using tasks.  So we don't
1450  * need a special hack to ensure that root cgroup cannot be deleted.
1451  *
1452  * P.S.  One more locking exception.  RCU is used to guard the
1453  * update of a tasks cgroup pointer by cgroup_attach_task()
1454  */
1455 
1456 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1457 
cgroup_file_name(struct cgroup * cgrp,const struct cftype * cft,char * buf)1458 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1459 			      char *buf)
1460 {
1461 	struct cgroup_subsys *ss = cft->ss;
1462 
1463 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1464 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1465 		const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1466 
1467 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1468 			 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1469 			 cft->name);
1470 	} else {
1471 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1472 	}
1473 	return buf;
1474 }
1475 
1476 /**
1477  * cgroup_file_mode - deduce file mode of a control file
1478  * @cft: the control file in question
1479  *
1480  * S_IRUGO for read, S_IWUSR for write.
1481  */
cgroup_file_mode(const struct cftype * cft)1482 static umode_t cgroup_file_mode(const struct cftype *cft)
1483 {
1484 	umode_t mode = 0;
1485 
1486 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1487 		mode |= S_IRUGO;
1488 
1489 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1490 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1491 			mode |= S_IWUGO;
1492 		else
1493 			mode |= S_IWUSR;
1494 	}
1495 
1496 	return mode;
1497 }
1498 
1499 /**
1500  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1501  * @subtree_control: the new subtree_control mask to consider
1502  * @this_ss_mask: available subsystems
1503  *
1504  * On the default hierarchy, a subsystem may request other subsystems to be
1505  * enabled together through its ->depends_on mask.  In such cases, more
1506  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1507  *
1508  * This function calculates which subsystems need to be enabled if
1509  * @subtree_control is to be applied while restricted to @this_ss_mask.
1510  */
cgroup_calc_subtree_ss_mask(u16 subtree_control,u16 this_ss_mask)1511 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1512 {
1513 	u16 cur_ss_mask = subtree_control;
1514 	struct cgroup_subsys *ss;
1515 	int ssid;
1516 
1517 	lockdep_assert_held(&cgroup_mutex);
1518 
1519 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1520 
1521 	while (true) {
1522 		u16 new_ss_mask = cur_ss_mask;
1523 
1524 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1525 			new_ss_mask |= ss->depends_on;
1526 		} while_each_subsys_mask();
1527 
1528 		/*
1529 		 * Mask out subsystems which aren't available.  This can
1530 		 * happen only if some depended-upon subsystems were bound
1531 		 * to non-default hierarchies.
1532 		 */
1533 		new_ss_mask &= this_ss_mask;
1534 
1535 		if (new_ss_mask == cur_ss_mask)
1536 			break;
1537 		cur_ss_mask = new_ss_mask;
1538 	}
1539 
1540 	return cur_ss_mask;
1541 }
1542 
1543 /**
1544  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1545  * @kn: the kernfs_node being serviced
1546  *
1547  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1548  * the method finishes if locking succeeded.  Note that once this function
1549  * returns the cgroup returned by cgroup_kn_lock_live() may become
1550  * inaccessible any time.  If the caller intends to continue to access the
1551  * cgroup, it should pin it before invoking this function.
1552  */
cgroup_kn_unlock(struct kernfs_node * kn)1553 void cgroup_kn_unlock(struct kernfs_node *kn)
1554 {
1555 	struct cgroup *cgrp;
1556 
1557 	if (kernfs_type(kn) == KERNFS_DIR)
1558 		cgrp = kn->priv;
1559 	else
1560 		cgrp = kn->parent->priv;
1561 
1562 	mutex_unlock(&cgroup_mutex);
1563 
1564 	kernfs_unbreak_active_protection(kn);
1565 	cgroup_put(cgrp);
1566 }
1567 
1568 /**
1569  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1570  * @kn: the kernfs_node being serviced
1571  * @drain_offline: perform offline draining on the cgroup
1572  *
1573  * This helper is to be used by a cgroup kernfs method currently servicing
1574  * @kn.  It breaks the active protection, performs cgroup locking and
1575  * verifies that the associated cgroup is alive.  Returns the cgroup if
1576  * alive; otherwise, %NULL.  A successful return should be undone by a
1577  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1578  * cgroup is drained of offlining csses before return.
1579  *
1580  * Any cgroup kernfs method implementation which requires locking the
1581  * associated cgroup should use this helper.  It avoids nesting cgroup
1582  * locking under kernfs active protection and allows all kernfs operations
1583  * including self-removal.
1584  */
cgroup_kn_lock_live(struct kernfs_node * kn,bool drain_offline)1585 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1586 {
1587 	struct cgroup *cgrp;
1588 
1589 	if (kernfs_type(kn) == KERNFS_DIR)
1590 		cgrp = kn->priv;
1591 	else
1592 		cgrp = kn->parent->priv;
1593 
1594 	/*
1595 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1596 	 * active_ref.  cgroup liveliness check alone provides enough
1597 	 * protection against removal.  Ensure @cgrp stays accessible and
1598 	 * break the active_ref protection.
1599 	 */
1600 	if (!cgroup_tryget(cgrp))
1601 		return NULL;
1602 	kernfs_break_active_protection(kn);
1603 
1604 	if (drain_offline)
1605 		cgroup_lock_and_drain_offline(cgrp);
1606 	else
1607 		mutex_lock(&cgroup_mutex);
1608 
1609 	if (!cgroup_is_dead(cgrp))
1610 		return cgrp;
1611 
1612 	cgroup_kn_unlock(kn);
1613 	return NULL;
1614 }
1615 
cgroup_rm_file(struct cgroup * cgrp,const struct cftype * cft)1616 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1617 {
1618 	char name[CGROUP_FILE_NAME_MAX];
1619 
1620 	lockdep_assert_held(&cgroup_mutex);
1621 
1622 	if (cft->file_offset) {
1623 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1624 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1625 
1626 		spin_lock_irq(&cgroup_file_kn_lock);
1627 		cfile->kn = NULL;
1628 		spin_unlock_irq(&cgroup_file_kn_lock);
1629 
1630 		del_timer_sync(&cfile->notify_timer);
1631 	}
1632 
1633 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1634 }
1635 
1636 /**
1637  * css_clear_dir - remove subsys files in a cgroup directory
1638  * @css: taget css
1639  */
css_clear_dir(struct cgroup_subsys_state * css)1640 static void css_clear_dir(struct cgroup_subsys_state *css)
1641 {
1642 	struct cgroup *cgrp = css->cgroup;
1643 	struct cftype *cfts;
1644 
1645 	if (!(css->flags & CSS_VISIBLE))
1646 		return;
1647 
1648 	css->flags &= ~CSS_VISIBLE;
1649 
1650 	if (!css->ss) {
1651 		if (cgroup_on_dfl(cgrp))
1652 			cfts = cgroup_base_files;
1653 		else
1654 			cfts = cgroup1_base_files;
1655 
1656 		cgroup_addrm_files(css, cgrp, cfts, false);
1657 	} else {
1658 		list_for_each_entry(cfts, &css->ss->cfts, node)
1659 			cgroup_addrm_files(css, cgrp, cfts, false);
1660 	}
1661 }
1662 
1663 /**
1664  * css_populate_dir - create subsys files in a cgroup directory
1665  * @css: target css
1666  *
1667  * On failure, no file is added.
1668  */
css_populate_dir(struct cgroup_subsys_state * css)1669 static int css_populate_dir(struct cgroup_subsys_state *css)
1670 {
1671 	struct cgroup *cgrp = css->cgroup;
1672 	struct cftype *cfts, *failed_cfts;
1673 	int ret;
1674 
1675 	if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1676 		return 0;
1677 
1678 	if (!css->ss) {
1679 		if (cgroup_on_dfl(cgrp))
1680 			cfts = cgroup_base_files;
1681 		else
1682 			cfts = cgroup1_base_files;
1683 
1684 		ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1685 		if (ret < 0)
1686 			return ret;
1687 	} else {
1688 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1689 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1690 			if (ret < 0) {
1691 				failed_cfts = cfts;
1692 				goto err;
1693 			}
1694 		}
1695 	}
1696 
1697 	css->flags |= CSS_VISIBLE;
1698 
1699 	return 0;
1700 err:
1701 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1702 		if (cfts == failed_cfts)
1703 			break;
1704 		cgroup_addrm_files(css, cgrp, cfts, false);
1705 	}
1706 	return ret;
1707 }
1708 
rebind_subsystems(struct cgroup_root * dst_root,u16 ss_mask)1709 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1710 {
1711 	struct cgroup *dcgrp = &dst_root->cgrp;
1712 	struct cgroup_subsys *ss;
1713 	int ssid, i, ret;
1714 	u16 dfl_disable_ss_mask = 0;
1715 
1716 	lockdep_assert_held(&cgroup_mutex);
1717 
1718 	do_each_subsys_mask(ss, ssid, ss_mask) {
1719 		/*
1720 		 * If @ss has non-root csses attached to it, can't move.
1721 		 * If @ss is an implicit controller, it is exempt from this
1722 		 * rule and can be stolen.
1723 		 */
1724 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1725 		    !ss->implicit_on_dfl)
1726 			return -EBUSY;
1727 
1728 		/* can't move between two non-dummy roots either */
1729 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1730 			return -EBUSY;
1731 
1732 		/*
1733 		 * Collect ssid's that need to be disabled from default
1734 		 * hierarchy.
1735 		 */
1736 		if (ss->root == &cgrp_dfl_root)
1737 			dfl_disable_ss_mask |= 1 << ssid;
1738 
1739 	} while_each_subsys_mask();
1740 
1741 	if (dfl_disable_ss_mask) {
1742 		struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1743 
1744 		/*
1745 		 * Controllers from default hierarchy that need to be rebound
1746 		 * are all disabled together in one go.
1747 		 */
1748 		cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1749 		WARN_ON(cgroup_apply_control(scgrp));
1750 		cgroup_finalize_control(scgrp, 0);
1751 	}
1752 
1753 	do_each_subsys_mask(ss, ssid, ss_mask) {
1754 		struct cgroup_root *src_root = ss->root;
1755 		struct cgroup *scgrp = &src_root->cgrp;
1756 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1757 		struct css_set *cset;
1758 
1759 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1760 
1761 		if (src_root != &cgrp_dfl_root) {
1762 			/* disable from the source */
1763 			src_root->subsys_mask &= ~(1 << ssid);
1764 			WARN_ON(cgroup_apply_control(scgrp));
1765 			cgroup_finalize_control(scgrp, 0);
1766 		}
1767 
1768 		/* rebind */
1769 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1770 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1771 		ss->root = dst_root;
1772 		css->cgroup = dcgrp;
1773 
1774 		spin_lock_irq(&css_set_lock);
1775 		hash_for_each(css_set_table, i, cset, hlist)
1776 			list_move_tail(&cset->e_cset_node[ss->id],
1777 				       &dcgrp->e_csets[ss->id]);
1778 		spin_unlock_irq(&css_set_lock);
1779 
1780 		/* default hierarchy doesn't enable controllers by default */
1781 		dst_root->subsys_mask |= 1 << ssid;
1782 		if (dst_root == &cgrp_dfl_root) {
1783 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1784 		} else {
1785 			dcgrp->subtree_control |= 1 << ssid;
1786 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1787 		}
1788 
1789 		ret = cgroup_apply_control(dcgrp);
1790 		if (ret)
1791 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1792 				ss->name, ret);
1793 
1794 		if (ss->bind)
1795 			ss->bind(css);
1796 	} while_each_subsys_mask();
1797 
1798 	kernfs_activate(dcgrp->kn);
1799 	return 0;
1800 }
1801 
cgroup_show_path(struct seq_file * sf,struct kernfs_node * kf_node,struct kernfs_root * kf_root)1802 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1803 		     struct kernfs_root *kf_root)
1804 {
1805 	int len = 0;
1806 	char *buf = NULL;
1807 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1808 	struct cgroup *ns_cgroup;
1809 
1810 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1811 	if (!buf)
1812 		return -ENOMEM;
1813 
1814 	spin_lock_irq(&css_set_lock);
1815 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1816 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1817 	spin_unlock_irq(&css_set_lock);
1818 
1819 	if (len >= PATH_MAX)
1820 		len = -ERANGE;
1821 	else if (len > 0) {
1822 		seq_escape(sf, buf, " \t\n\\");
1823 		len = 0;
1824 	}
1825 	kfree(buf);
1826 	return len;
1827 }
1828 
1829 enum cgroup2_param {
1830 	Opt_nsdelegate,
1831 	Opt_memory_localevents,
1832 	Opt_memory_recursiveprot,
1833 	nr__cgroup2_params
1834 };
1835 
1836 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1837 	fsparam_flag("nsdelegate",		Opt_nsdelegate),
1838 	fsparam_flag("memory_localevents",	Opt_memory_localevents),
1839 	fsparam_flag("memory_recursiveprot",	Opt_memory_recursiveprot),
1840 	{}
1841 };
1842 
cgroup2_parse_param(struct fs_context * fc,struct fs_parameter * param)1843 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1844 {
1845 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1846 	struct fs_parse_result result;
1847 	int opt;
1848 
1849 	opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1850 	if (opt < 0)
1851 		return opt;
1852 
1853 	switch (opt) {
1854 	case Opt_nsdelegate:
1855 		ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1856 		return 0;
1857 	case Opt_memory_localevents:
1858 		ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1859 		return 0;
1860 	case Opt_memory_recursiveprot:
1861 		ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1862 		return 0;
1863 	}
1864 	return -EINVAL;
1865 }
1866 
apply_cgroup_root_flags(unsigned int root_flags)1867 static void apply_cgroup_root_flags(unsigned int root_flags)
1868 {
1869 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1870 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1871 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1872 		else
1873 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1874 
1875 		if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1876 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1877 		else
1878 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1879 
1880 		if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1881 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1882 		else
1883 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1884 	}
1885 }
1886 
cgroup_show_options(struct seq_file * seq,struct kernfs_root * kf_root)1887 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1888 {
1889 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1890 		seq_puts(seq, ",nsdelegate");
1891 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1892 		seq_puts(seq, ",memory_localevents");
1893 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1894 		seq_puts(seq, ",memory_recursiveprot");
1895 	return 0;
1896 }
1897 
cgroup_reconfigure(struct fs_context * fc)1898 static int cgroup_reconfigure(struct fs_context *fc)
1899 {
1900 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1901 
1902 	apply_cgroup_root_flags(ctx->flags);
1903 	return 0;
1904 }
1905 
init_cgroup_housekeeping(struct cgroup * cgrp)1906 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1907 {
1908 	struct cgroup_subsys *ss;
1909 	int ssid;
1910 
1911 	INIT_LIST_HEAD(&cgrp->self.sibling);
1912 	INIT_LIST_HEAD(&cgrp->self.children);
1913 	INIT_LIST_HEAD(&cgrp->cset_links);
1914 	INIT_LIST_HEAD(&cgrp->pidlists);
1915 	mutex_init(&cgrp->pidlist_mutex);
1916 	cgrp->self.cgroup = cgrp;
1917 	cgrp->self.flags |= CSS_ONLINE;
1918 	cgrp->dom_cgrp = cgrp;
1919 	cgrp->max_descendants = INT_MAX;
1920 	cgrp->max_depth = INT_MAX;
1921 	INIT_LIST_HEAD(&cgrp->rstat_css_list);
1922 	prev_cputime_init(&cgrp->prev_cputime);
1923 
1924 	for_each_subsys(ss, ssid)
1925 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1926 
1927 	init_waitqueue_head(&cgrp->offline_waitq);
1928 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1929 }
1930 
init_cgroup_root(struct cgroup_fs_context * ctx)1931 void init_cgroup_root(struct cgroup_fs_context *ctx)
1932 {
1933 	struct cgroup_root *root = ctx->root;
1934 	struct cgroup *cgrp = &root->cgrp;
1935 
1936 	INIT_LIST_HEAD(&root->root_list);
1937 	atomic_set(&root->nr_cgrps, 1);
1938 	cgrp->root = root;
1939 	init_cgroup_housekeeping(cgrp);
1940 	init_waitqueue_head(&root->wait);
1941 
1942 	root->flags = ctx->flags;
1943 	if (ctx->release_agent)
1944 		strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
1945 	if (ctx->name)
1946 		strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
1947 	if (ctx->cpuset_clone_children)
1948 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1949 }
1950 
cgroup_setup_root(struct cgroup_root * root,u16 ss_mask)1951 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1952 {
1953 	LIST_HEAD(tmp_links);
1954 	struct cgroup *root_cgrp = &root->cgrp;
1955 	struct kernfs_syscall_ops *kf_sops;
1956 	struct css_set *cset;
1957 	int i, ret;
1958 
1959 	lockdep_assert_held(&cgroup_mutex);
1960 
1961 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1962 			      0, GFP_KERNEL);
1963 	if (ret)
1964 		goto out;
1965 
1966 	/*
1967 	 * We're accessing css_set_count without locking css_set_lock here,
1968 	 * but that's OK - it can only be increased by someone holding
1969 	 * cgroup_lock, and that's us.  Later rebinding may disable
1970 	 * controllers on the default hierarchy and thus create new csets,
1971 	 * which can't be more than the existing ones.  Allocate 2x.
1972 	 */
1973 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1974 	if (ret)
1975 		goto cancel_ref;
1976 
1977 	ret = cgroup_init_root_id(root);
1978 	if (ret)
1979 		goto cancel_ref;
1980 
1981 	kf_sops = root == &cgrp_dfl_root ?
1982 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1983 
1984 	root->kf_root = kernfs_create_root(kf_sops,
1985 					   KERNFS_ROOT_CREATE_DEACTIVATED |
1986 					   KERNFS_ROOT_SUPPORT_EXPORTOP |
1987 					   KERNFS_ROOT_SUPPORT_USER_XATTR,
1988 					   root_cgrp);
1989 	if (IS_ERR(root->kf_root)) {
1990 		ret = PTR_ERR(root->kf_root);
1991 		goto exit_root_id;
1992 	}
1993 	root_cgrp->kn = root->kf_root->kn;
1994 	WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
1995 	root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp);
1996 
1997 	ret = css_populate_dir(&root_cgrp->self);
1998 	if (ret)
1999 		goto destroy_root;
2000 
2001 	ret = rebind_subsystems(root, ss_mask);
2002 	if (ret)
2003 		goto destroy_root;
2004 
2005 	ret = cgroup_bpf_inherit(root_cgrp);
2006 	WARN_ON_ONCE(ret);
2007 
2008 	trace_cgroup_setup_root(root);
2009 
2010 	/*
2011 	 * There must be no failure case after here, since rebinding takes
2012 	 * care of subsystems' refcounts, which are explicitly dropped in
2013 	 * the failure exit path.
2014 	 */
2015 	list_add(&root->root_list, &cgroup_roots);
2016 	cgroup_root_count++;
2017 
2018 	/*
2019 	 * Link the root cgroup in this hierarchy into all the css_set
2020 	 * objects.
2021 	 */
2022 	spin_lock_irq(&css_set_lock);
2023 	hash_for_each(css_set_table, i, cset, hlist) {
2024 		link_css_set(&tmp_links, cset, root_cgrp);
2025 		if (css_set_populated(cset))
2026 			cgroup_update_populated(root_cgrp, true);
2027 	}
2028 	spin_unlock_irq(&css_set_lock);
2029 
2030 	BUG_ON(!list_empty(&root_cgrp->self.children));
2031 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2032 
2033 	ret = 0;
2034 	goto out;
2035 
2036 destroy_root:
2037 	kernfs_destroy_root(root->kf_root);
2038 	root->kf_root = NULL;
2039 exit_root_id:
2040 	cgroup_exit_root_id(root);
2041 cancel_ref:
2042 	percpu_ref_exit(&root_cgrp->self.refcnt);
2043 out:
2044 	free_cgrp_cset_links(&tmp_links);
2045 	return ret;
2046 }
2047 
cgroup_do_get_tree(struct fs_context * fc)2048 int cgroup_do_get_tree(struct fs_context *fc)
2049 {
2050 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2051 	int ret;
2052 
2053 	ctx->kfc.root = ctx->root->kf_root;
2054 	if (fc->fs_type == &cgroup2_fs_type)
2055 		ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2056 	else
2057 		ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2058 	ret = kernfs_get_tree(fc);
2059 
2060 	/*
2061 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2062 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2063 	 */
2064 	if (!ret && ctx->ns != &init_cgroup_ns) {
2065 		struct dentry *nsdentry;
2066 		struct super_block *sb = fc->root->d_sb;
2067 		struct cgroup *cgrp;
2068 
2069 		mutex_lock(&cgroup_mutex);
2070 		spin_lock_irq(&css_set_lock);
2071 
2072 		cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2073 
2074 		spin_unlock_irq(&css_set_lock);
2075 		mutex_unlock(&cgroup_mutex);
2076 
2077 		nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2078 		dput(fc->root);
2079 		if (IS_ERR(nsdentry)) {
2080 			deactivate_locked_super(sb);
2081 			ret = PTR_ERR(nsdentry);
2082 			nsdentry = NULL;
2083 		}
2084 		fc->root = nsdentry;
2085 	}
2086 
2087 	if (!ctx->kfc.new_sb_created)
2088 		cgroup_put(&ctx->root->cgrp);
2089 
2090 	return ret;
2091 }
2092 
2093 /*
2094  * Destroy a cgroup filesystem context.
2095  */
cgroup_fs_context_free(struct fs_context * fc)2096 static void cgroup_fs_context_free(struct fs_context *fc)
2097 {
2098 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2099 
2100 	kfree(ctx->name);
2101 	kfree(ctx->release_agent);
2102 	put_cgroup_ns(ctx->ns);
2103 	kernfs_free_fs_context(fc);
2104 	kfree(ctx);
2105 }
2106 
cgroup_get_tree(struct fs_context * fc)2107 static int cgroup_get_tree(struct fs_context *fc)
2108 {
2109 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2110 	int ret;
2111 
2112 	cgrp_dfl_visible = true;
2113 	cgroup_get_live(&cgrp_dfl_root.cgrp);
2114 	ctx->root = &cgrp_dfl_root;
2115 
2116 	ret = cgroup_do_get_tree(fc);
2117 	if (!ret)
2118 		apply_cgroup_root_flags(ctx->flags);
2119 	return ret;
2120 }
2121 
2122 static const struct fs_context_operations cgroup_fs_context_ops = {
2123 	.free		= cgroup_fs_context_free,
2124 	.parse_param	= cgroup2_parse_param,
2125 	.get_tree	= cgroup_get_tree,
2126 	.reconfigure	= cgroup_reconfigure,
2127 };
2128 
2129 static const struct fs_context_operations cgroup1_fs_context_ops = {
2130 	.free		= cgroup_fs_context_free,
2131 	.parse_param	= cgroup1_parse_param,
2132 	.get_tree	= cgroup1_get_tree,
2133 	.reconfigure	= cgroup1_reconfigure,
2134 };
2135 
2136 /*
2137  * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2138  * we select the namespace we're going to use.
2139  */
cgroup_init_fs_context(struct fs_context * fc)2140 static int cgroup_init_fs_context(struct fs_context *fc)
2141 {
2142 	struct cgroup_fs_context *ctx;
2143 
2144 	ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2145 	if (!ctx)
2146 		return -ENOMEM;
2147 
2148 	ctx->ns = current->nsproxy->cgroup_ns;
2149 	get_cgroup_ns(ctx->ns);
2150 	fc->fs_private = &ctx->kfc;
2151 	if (fc->fs_type == &cgroup2_fs_type)
2152 		fc->ops = &cgroup_fs_context_ops;
2153 	else
2154 		fc->ops = &cgroup1_fs_context_ops;
2155 	put_user_ns(fc->user_ns);
2156 	fc->user_ns = get_user_ns(ctx->ns->user_ns);
2157 	fc->global = true;
2158 	return 0;
2159 }
2160 
cgroup_kill_sb(struct super_block * sb)2161 static void cgroup_kill_sb(struct super_block *sb)
2162 {
2163 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2164 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2165 
2166 	/*
2167 	 * Wait if there are cgroups being destroyed, because the destruction
2168 	 * is asynchronous. On the other hand some controllers like memcg
2169 	 * may pin cgroups for a very long time, so don't wait forever.
2170 	 */
2171 	if (root != &cgrp_dfl_root) {
2172 		wait_event_timeout(root->wait,
2173 				   list_empty(&root->cgrp.self.children),
2174 				   msecs_to_jiffies(500));
2175 	}
2176 
2177 	/*
2178 	 * If @root doesn't have any children, start killing it.
2179 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2180 	 * cgroup_mount() may wait for @root's release.
2181 	 *
2182 	 * And don't kill the default root.
2183 	 */
2184 	if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2185 	    !percpu_ref_is_dying(&root->cgrp.self.refcnt)) {
2186 		cgroup_bpf_offline(&root->cgrp);
2187 		percpu_ref_kill(&root->cgrp.self.refcnt);
2188 	}
2189 	cgroup_put(&root->cgrp);
2190 	kernfs_kill_sb(sb);
2191 }
2192 
2193 struct file_system_type cgroup_fs_type = {
2194 	.name			= "cgroup",
2195 	.init_fs_context	= cgroup_init_fs_context,
2196 	.parameters		= cgroup1_fs_parameters,
2197 	.kill_sb		= cgroup_kill_sb,
2198 	.fs_flags		= FS_USERNS_MOUNT,
2199 };
2200 
2201 static struct file_system_type cgroup2_fs_type = {
2202 	.name			= "cgroup2",
2203 	.init_fs_context	= cgroup_init_fs_context,
2204 	.parameters		= cgroup2_fs_parameters,
2205 	.kill_sb		= cgroup_kill_sb,
2206 	.fs_flags		= FS_USERNS_MOUNT,
2207 };
2208 
2209 #ifdef CONFIG_CPUSETS
2210 static const struct fs_context_operations cpuset_fs_context_ops = {
2211 	.get_tree	= cgroup1_get_tree,
2212 	.free		= cgroup_fs_context_free,
2213 };
2214 
2215 /*
2216  * This is ugly, but preserves the userspace API for existing cpuset
2217  * users. If someone tries to mount the "cpuset" filesystem, we
2218  * silently switch it to mount "cgroup" instead
2219  */
cpuset_init_fs_context(struct fs_context * fc)2220 static int cpuset_init_fs_context(struct fs_context *fc)
2221 {
2222 	char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2223 	struct cgroup_fs_context *ctx;
2224 	int err;
2225 
2226 	err = cgroup_init_fs_context(fc);
2227 	if (err) {
2228 		kfree(agent);
2229 		return err;
2230 	}
2231 
2232 	fc->ops = &cpuset_fs_context_ops;
2233 
2234 	ctx = cgroup_fc2context(fc);
2235 	ctx->subsys_mask = 1 << cpuset_cgrp_id;
2236 	ctx->flags |= CGRP_ROOT_NOPREFIX;
2237 	ctx->release_agent = agent;
2238 
2239 	get_filesystem(&cgroup_fs_type);
2240 	put_filesystem(fc->fs_type);
2241 	fc->fs_type = &cgroup_fs_type;
2242 
2243 	return 0;
2244 }
2245 
2246 static struct file_system_type cpuset_fs_type = {
2247 	.name			= "cpuset",
2248 	.init_fs_context	= cpuset_init_fs_context,
2249 	.fs_flags		= FS_USERNS_MOUNT,
2250 };
2251 #endif
2252 
cgroup_path_ns_locked(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2253 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2254 			  struct cgroup_namespace *ns)
2255 {
2256 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2257 
2258 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2259 }
2260 
cgroup_path_ns(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2261 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2262 		   struct cgroup_namespace *ns)
2263 {
2264 	int ret;
2265 
2266 	mutex_lock(&cgroup_mutex);
2267 	spin_lock_irq(&css_set_lock);
2268 
2269 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2270 
2271 	spin_unlock_irq(&css_set_lock);
2272 	mutex_unlock(&cgroup_mutex);
2273 
2274 	return ret;
2275 }
2276 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2277 
2278 /**
2279  * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2280  * @task: target task
2281  * @buf: the buffer to write the path into
2282  * @buflen: the length of the buffer
2283  *
2284  * Determine @task's cgroup on the first (the one with the lowest non-zero
2285  * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2286  * function grabs cgroup_mutex and shouldn't be used inside locks used by
2287  * cgroup controller callbacks.
2288  *
2289  * Return value is the same as kernfs_path().
2290  */
task_cgroup_path(struct task_struct * task,char * buf,size_t buflen)2291 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2292 {
2293 	struct cgroup_root *root;
2294 	struct cgroup *cgrp;
2295 	int hierarchy_id = 1;
2296 	int ret;
2297 
2298 	mutex_lock(&cgroup_mutex);
2299 	spin_lock_irq(&css_set_lock);
2300 
2301 	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2302 
2303 	if (root) {
2304 		cgrp = task_cgroup_from_root(task, root);
2305 		ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2306 	} else {
2307 		/* if no hierarchy exists, everyone is in "/" */
2308 		ret = strlcpy(buf, "/", buflen);
2309 	}
2310 
2311 	spin_unlock_irq(&css_set_lock);
2312 	mutex_unlock(&cgroup_mutex);
2313 	return ret;
2314 }
2315 EXPORT_SYMBOL_GPL(task_cgroup_path);
2316 
2317 /**
2318  * cgroup_migrate_add_task - add a migration target task to a migration context
2319  * @task: target task
2320  * @mgctx: target migration context
2321  *
2322  * Add @task, which is a migration target, to @mgctx->tset.  This function
2323  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2324  * should have been added as a migration source and @task->cg_list will be
2325  * moved from the css_set's tasks list to mg_tasks one.
2326  */
cgroup_migrate_add_task(struct task_struct * task,struct cgroup_mgctx * mgctx)2327 static void cgroup_migrate_add_task(struct task_struct *task,
2328 				    struct cgroup_mgctx *mgctx)
2329 {
2330 	struct css_set *cset;
2331 
2332 	lockdep_assert_held(&css_set_lock);
2333 
2334 	/* @task either already exited or can't exit until the end */
2335 	if (task->flags & PF_EXITING)
2336 		return;
2337 
2338 	/* cgroup_threadgroup_rwsem protects racing against forks */
2339 	WARN_ON_ONCE(list_empty(&task->cg_list));
2340 
2341 	cset = task_css_set(task);
2342 	if (!cset->mg_src_cgrp)
2343 		return;
2344 
2345 	mgctx->tset.nr_tasks++;
2346 
2347 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2348 	if (list_empty(&cset->mg_node))
2349 		list_add_tail(&cset->mg_node,
2350 			      &mgctx->tset.src_csets);
2351 	if (list_empty(&cset->mg_dst_cset->mg_node))
2352 		list_add_tail(&cset->mg_dst_cset->mg_node,
2353 			      &mgctx->tset.dst_csets);
2354 }
2355 
2356 /**
2357  * cgroup_taskset_first - reset taskset and return the first task
2358  * @tset: taskset of interest
2359  * @dst_cssp: output variable for the destination css
2360  *
2361  * @tset iteration is initialized and the first task is returned.
2362  */
cgroup_taskset_first(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2363 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2364 					 struct cgroup_subsys_state **dst_cssp)
2365 {
2366 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2367 	tset->cur_task = NULL;
2368 
2369 	return cgroup_taskset_next(tset, dst_cssp);
2370 }
2371 
2372 /**
2373  * cgroup_taskset_next - iterate to the next task in taskset
2374  * @tset: taskset of interest
2375  * @dst_cssp: output variable for the destination css
2376  *
2377  * Return the next task in @tset.  Iteration must have been initialized
2378  * with cgroup_taskset_first().
2379  */
cgroup_taskset_next(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2380 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2381 					struct cgroup_subsys_state **dst_cssp)
2382 {
2383 	struct css_set *cset = tset->cur_cset;
2384 	struct task_struct *task = tset->cur_task;
2385 
2386 	while (&cset->mg_node != tset->csets) {
2387 		if (!task)
2388 			task = list_first_entry(&cset->mg_tasks,
2389 						struct task_struct, cg_list);
2390 		else
2391 			task = list_next_entry(task, cg_list);
2392 
2393 		if (&task->cg_list != &cset->mg_tasks) {
2394 			tset->cur_cset = cset;
2395 			tset->cur_task = task;
2396 
2397 			/*
2398 			 * This function may be called both before and
2399 			 * after cgroup_taskset_migrate().  The two cases
2400 			 * can be distinguished by looking at whether @cset
2401 			 * has its ->mg_dst_cset set.
2402 			 */
2403 			if (cset->mg_dst_cset)
2404 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2405 			else
2406 				*dst_cssp = cset->subsys[tset->ssid];
2407 
2408 			return task;
2409 		}
2410 
2411 		cset = list_next_entry(cset, mg_node);
2412 		task = NULL;
2413 	}
2414 
2415 	return NULL;
2416 }
2417 
2418 /**
2419  * cgroup_taskset_migrate - migrate a taskset
2420  * @mgctx: migration context
2421  *
2422  * Migrate tasks in @mgctx as setup by migration preparation functions.
2423  * This function fails iff one of the ->can_attach callbacks fails and
2424  * guarantees that either all or none of the tasks in @mgctx are migrated.
2425  * @mgctx is consumed regardless of success.
2426  */
cgroup_migrate_execute(struct cgroup_mgctx * mgctx)2427 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2428 {
2429 	struct cgroup_taskset *tset = &mgctx->tset;
2430 	struct cgroup_subsys *ss;
2431 	struct task_struct *task, *tmp_task;
2432 	struct css_set *cset, *tmp_cset;
2433 	int ssid, failed_ssid, ret;
2434 
2435 	/* check that we can legitimately attach to the cgroup */
2436 	if (tset->nr_tasks) {
2437 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2438 			if (ss->can_attach) {
2439 				tset->ssid = ssid;
2440 				ret = ss->can_attach(tset);
2441 				if (ret) {
2442 					failed_ssid = ssid;
2443 					goto out_cancel_attach;
2444 				}
2445 			}
2446 		} while_each_subsys_mask();
2447 	}
2448 
2449 	/*
2450 	 * Now that we're guaranteed success, proceed to move all tasks to
2451 	 * the new cgroup.  There are no failure cases after here, so this
2452 	 * is the commit point.
2453 	 */
2454 	spin_lock_irq(&css_set_lock);
2455 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2456 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2457 			struct css_set *from_cset = task_css_set(task);
2458 			struct css_set *to_cset = cset->mg_dst_cset;
2459 
2460 			get_css_set(to_cset);
2461 			to_cset->nr_tasks++;
2462 			css_set_move_task(task, from_cset, to_cset, true);
2463 			from_cset->nr_tasks--;
2464 			/*
2465 			 * If the source or destination cgroup is frozen,
2466 			 * the task might require to change its state.
2467 			 */
2468 			cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2469 						    to_cset->dfl_cgrp);
2470 			put_css_set_locked(from_cset);
2471 
2472 		}
2473 	}
2474 	spin_unlock_irq(&css_set_lock);
2475 
2476 	/*
2477 	 * Migration is committed, all target tasks are now on dst_csets.
2478 	 * Nothing is sensitive to fork() after this point.  Notify
2479 	 * controllers that migration is complete.
2480 	 */
2481 	tset->csets = &tset->dst_csets;
2482 
2483 	if (tset->nr_tasks) {
2484 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2485 			if (ss->attach) {
2486 				tset->ssid = ssid;
2487 				ss->attach(tset);
2488 			}
2489 		} while_each_subsys_mask();
2490 	}
2491 
2492 	ret = 0;
2493 	goto out_release_tset;
2494 
2495 out_cancel_attach:
2496 	if (tset->nr_tasks) {
2497 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2498 			if (ssid == failed_ssid)
2499 				break;
2500 			if (ss->cancel_attach) {
2501 				tset->ssid = ssid;
2502 				ss->cancel_attach(tset);
2503 			}
2504 		} while_each_subsys_mask();
2505 	}
2506 out_release_tset:
2507 	spin_lock_irq(&css_set_lock);
2508 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2509 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2510 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2511 		list_del_init(&cset->mg_node);
2512 	}
2513 	spin_unlock_irq(&css_set_lock);
2514 
2515 	/*
2516 	 * Re-initialize the cgroup_taskset structure in case it is reused
2517 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2518 	 * iteration.
2519 	 */
2520 	tset->nr_tasks = 0;
2521 	tset->csets    = &tset->src_csets;
2522 	return ret;
2523 }
2524 
2525 /**
2526  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2527  * @dst_cgrp: destination cgroup to test
2528  *
2529  * On the default hierarchy, except for the mixable, (possible) thread root
2530  * and threaded cgroups, subtree_control must be zero for migration
2531  * destination cgroups with tasks so that child cgroups don't compete
2532  * against tasks.
2533  */
cgroup_migrate_vet_dst(struct cgroup * dst_cgrp)2534 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2535 {
2536 	/* v1 doesn't have any restriction */
2537 	if (!cgroup_on_dfl(dst_cgrp))
2538 		return 0;
2539 
2540 	/* verify @dst_cgrp can host resources */
2541 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2542 		return -EOPNOTSUPP;
2543 
2544 	/* mixables don't care */
2545 	if (cgroup_is_mixable(dst_cgrp))
2546 		return 0;
2547 
2548 	/*
2549 	 * If @dst_cgrp is already or can become a thread root or is
2550 	 * threaded, it doesn't matter.
2551 	 */
2552 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2553 		return 0;
2554 
2555 	/* apply no-internal-process constraint */
2556 	if (dst_cgrp->subtree_control)
2557 		return -EBUSY;
2558 
2559 	return 0;
2560 }
2561 
2562 /**
2563  * cgroup_migrate_finish - cleanup after attach
2564  * @mgctx: migration context
2565  *
2566  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2567  * those functions for details.
2568  */
cgroup_migrate_finish(struct cgroup_mgctx * mgctx)2569 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2570 {
2571 	LIST_HEAD(preloaded);
2572 	struct css_set *cset, *tmp_cset;
2573 
2574 	lockdep_assert_held(&cgroup_mutex);
2575 
2576 	spin_lock_irq(&css_set_lock);
2577 
2578 	list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2579 	list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2580 
2581 	list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2582 		cset->mg_src_cgrp = NULL;
2583 		cset->mg_dst_cgrp = NULL;
2584 		cset->mg_dst_cset = NULL;
2585 		list_del_init(&cset->mg_preload_node);
2586 		put_css_set_locked(cset);
2587 	}
2588 
2589 	spin_unlock_irq(&css_set_lock);
2590 }
2591 
2592 /**
2593  * cgroup_migrate_add_src - add a migration source css_set
2594  * @src_cset: the source css_set to add
2595  * @dst_cgrp: the destination cgroup
2596  * @mgctx: migration context
2597  *
2598  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2599  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2600  * up by cgroup_migrate_finish().
2601  *
2602  * This function may be called without holding cgroup_threadgroup_rwsem
2603  * even if the target is a process.  Threads may be created and destroyed
2604  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2605  * into play and the preloaded css_sets are guaranteed to cover all
2606  * migrations.
2607  */
cgroup_migrate_add_src(struct css_set * src_cset,struct cgroup * dst_cgrp,struct cgroup_mgctx * mgctx)2608 void cgroup_migrate_add_src(struct css_set *src_cset,
2609 			    struct cgroup *dst_cgrp,
2610 			    struct cgroup_mgctx *mgctx)
2611 {
2612 	struct cgroup *src_cgrp;
2613 
2614 	lockdep_assert_held(&cgroup_mutex);
2615 	lockdep_assert_held(&css_set_lock);
2616 
2617 	/*
2618 	 * If ->dead, @src_set is associated with one or more dead cgroups
2619 	 * and doesn't contain any migratable tasks.  Ignore it early so
2620 	 * that the rest of migration path doesn't get confused by it.
2621 	 */
2622 	if (src_cset->dead)
2623 		return;
2624 
2625 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2626 
2627 	if (!list_empty(&src_cset->mg_preload_node))
2628 		return;
2629 
2630 	WARN_ON(src_cset->mg_src_cgrp);
2631 	WARN_ON(src_cset->mg_dst_cgrp);
2632 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2633 	WARN_ON(!list_empty(&src_cset->mg_node));
2634 
2635 	src_cset->mg_src_cgrp = src_cgrp;
2636 	src_cset->mg_dst_cgrp = dst_cgrp;
2637 	get_css_set(src_cset);
2638 	list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2639 }
2640 
2641 /**
2642  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2643  * @mgctx: migration context
2644  *
2645  * Tasks are about to be moved and all the source css_sets have been
2646  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2647  * pins all destination css_sets, links each to its source, and append them
2648  * to @mgctx->preloaded_dst_csets.
2649  *
2650  * This function must be called after cgroup_migrate_add_src() has been
2651  * called on each migration source css_set.  After migration is performed
2652  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2653  * @mgctx.
2654  */
cgroup_migrate_prepare_dst(struct cgroup_mgctx * mgctx)2655 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2656 {
2657 	struct css_set *src_cset, *tmp_cset;
2658 
2659 	lockdep_assert_held(&cgroup_mutex);
2660 
2661 	/* look up the dst cset for each src cset and link it to src */
2662 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2663 				 mg_preload_node) {
2664 		struct css_set *dst_cset;
2665 		struct cgroup_subsys *ss;
2666 		int ssid;
2667 
2668 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2669 		if (!dst_cset)
2670 			return -ENOMEM;
2671 
2672 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2673 
2674 		/*
2675 		 * If src cset equals dst, it's noop.  Drop the src.
2676 		 * cgroup_migrate() will skip the cset too.  Note that we
2677 		 * can't handle src == dst as some nodes are used by both.
2678 		 */
2679 		if (src_cset == dst_cset) {
2680 			src_cset->mg_src_cgrp = NULL;
2681 			src_cset->mg_dst_cgrp = NULL;
2682 			list_del_init(&src_cset->mg_preload_node);
2683 			put_css_set(src_cset);
2684 			put_css_set(dst_cset);
2685 			continue;
2686 		}
2687 
2688 		src_cset->mg_dst_cset = dst_cset;
2689 
2690 		if (list_empty(&dst_cset->mg_preload_node))
2691 			list_add_tail(&dst_cset->mg_preload_node,
2692 				      &mgctx->preloaded_dst_csets);
2693 		else
2694 			put_css_set(dst_cset);
2695 
2696 		for_each_subsys(ss, ssid)
2697 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2698 				mgctx->ss_mask |= 1 << ssid;
2699 	}
2700 
2701 	return 0;
2702 }
2703 
2704 /**
2705  * cgroup_migrate - migrate a process or task to a cgroup
2706  * @leader: the leader of the process or the task to migrate
2707  * @threadgroup: whether @leader points to the whole process or a single task
2708  * @mgctx: migration context
2709  *
2710  * Migrate a process or task denoted by @leader.  If migrating a process,
2711  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2712  * responsible for invoking cgroup_migrate_add_src() and
2713  * cgroup_migrate_prepare_dst() on the targets before invoking this
2714  * function and following up with cgroup_migrate_finish().
2715  *
2716  * As long as a controller's ->can_attach() doesn't fail, this function is
2717  * guaranteed to succeed.  This means that, excluding ->can_attach()
2718  * failure, when migrating multiple targets, the success or failure can be
2719  * decided for all targets by invoking group_migrate_prepare_dst() before
2720  * actually starting migrating.
2721  */
cgroup_migrate(struct task_struct * leader,bool threadgroup,struct cgroup_mgctx * mgctx)2722 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2723 		   struct cgroup_mgctx *mgctx)
2724 {
2725 	int err = 0;
2726 	struct task_struct *task;
2727 
2728 	/*
2729 	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2730 	 * already PF_EXITING could be freed from underneath us unless we
2731 	 * take an rcu_read_lock.
2732 	 */
2733 	spin_lock_irq(&css_set_lock);
2734 	rcu_read_lock();
2735 	task = leader;
2736 	do {
2737 		cgroup_migrate_add_task(task, mgctx);
2738 		if (!threadgroup) {
2739 			if (task->flags & PF_EXITING)
2740 				err = -ESRCH;
2741 			break;
2742 		}
2743 	} while_each_thread(leader, task);
2744 	rcu_read_unlock();
2745 	spin_unlock_irq(&css_set_lock);
2746 
2747 	return err ? err : cgroup_migrate_execute(mgctx);
2748 }
2749 
2750 /**
2751  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2752  * @dst_cgrp: the cgroup to attach to
2753  * @leader: the task or the leader of the threadgroup to be attached
2754  * @threadgroup: attach the whole threadgroup?
2755  *
2756  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2757  */
cgroup_attach_task(struct cgroup * dst_cgrp,struct task_struct * leader,bool threadgroup)2758 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2759 		       bool threadgroup)
2760 {
2761 	DEFINE_CGROUP_MGCTX(mgctx);
2762 	struct task_struct *task;
2763 	int ret = 0;
2764 
2765 	/* look up all src csets */
2766 	spin_lock_irq(&css_set_lock);
2767 	rcu_read_lock();
2768 	task = leader;
2769 	do {
2770 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2771 		if (!threadgroup)
2772 			break;
2773 	} while_each_thread(leader, task);
2774 	rcu_read_unlock();
2775 	spin_unlock_irq(&css_set_lock);
2776 
2777 	/* prepare dst csets and commit */
2778 	ret = cgroup_migrate_prepare_dst(&mgctx);
2779 	if (!ret)
2780 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2781 
2782 	cgroup_migrate_finish(&mgctx);
2783 
2784 	if (!ret)
2785 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2786 
2787 	return ret;
2788 }
2789 
cgroup_procs_write_start(char * buf,bool threadgroup,bool * locked)2790 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2791 					     bool *locked)
2792 	__acquires(&cgroup_threadgroup_rwsem)
2793 {
2794 	struct task_struct *tsk;
2795 	pid_t pid;
2796 
2797 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2798 		return ERR_PTR(-EINVAL);
2799 
2800 	/*
2801 	 * If we migrate a single thread, we don't care about threadgroup
2802 	 * stability. If the thread is `current`, it won't exit(2) under our
2803 	 * hands or change PID through exec(2). We exclude
2804 	 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2805 	 * callers by cgroup_mutex.
2806 	 * Therefore, we can skip the global lock.
2807 	 */
2808 	lockdep_assert_held(&cgroup_mutex);
2809 	if (pid || threadgroup) {
2810 		percpu_down_write(&cgroup_threadgroup_rwsem);
2811 		*locked = true;
2812 	} else {
2813 		*locked = false;
2814 	}
2815 
2816 	rcu_read_lock();
2817 	if (pid) {
2818 		tsk = find_task_by_vpid(pid);
2819 		if (!tsk) {
2820 			tsk = ERR_PTR(-ESRCH);
2821 			goto out_unlock_threadgroup;
2822 		}
2823 	} else {
2824 		tsk = current;
2825 	}
2826 
2827 	if (threadgroup)
2828 		tsk = tsk->group_leader;
2829 
2830 	/*
2831 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2832 	 * If userland migrates such a kthread to a non-root cgroup, it can
2833 	 * become trapped in a cpuset, or RT kthread may be born in a
2834 	 * cgroup with no rt_runtime allocated.  Just say no.
2835 	 */
2836 	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2837 		tsk = ERR_PTR(-EINVAL);
2838 		goto out_unlock_threadgroup;
2839 	}
2840 
2841 	get_task_struct(tsk);
2842 	goto out_unlock_rcu;
2843 
2844 out_unlock_threadgroup:
2845 	if (*locked) {
2846 		percpu_up_write(&cgroup_threadgroup_rwsem);
2847 		*locked = false;
2848 	}
2849 out_unlock_rcu:
2850 	rcu_read_unlock();
2851 	return tsk;
2852 }
2853 
cgroup_procs_write_finish(struct task_struct * task,bool locked)2854 void cgroup_procs_write_finish(struct task_struct *task, bool locked)
2855 	__releases(&cgroup_threadgroup_rwsem)
2856 {
2857 	struct cgroup_subsys *ss;
2858 	int ssid;
2859 
2860 	/* release reference from cgroup_procs_write_start() */
2861 	put_task_struct(task);
2862 
2863 	if (locked)
2864 		percpu_up_write(&cgroup_threadgroup_rwsem);
2865 	for_each_subsys(ss, ssid)
2866 		if (ss->post_attach)
2867 			ss->post_attach();
2868 }
2869 
cgroup_print_ss_mask(struct seq_file * seq,u16 ss_mask)2870 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2871 {
2872 	struct cgroup_subsys *ss;
2873 	bool printed = false;
2874 	int ssid;
2875 
2876 	do_each_subsys_mask(ss, ssid, ss_mask) {
2877 		if (printed)
2878 			seq_putc(seq, ' ');
2879 		seq_puts(seq, ss->name);
2880 		printed = true;
2881 	} while_each_subsys_mask();
2882 	if (printed)
2883 		seq_putc(seq, '\n');
2884 }
2885 
2886 /* show controllers which are enabled from the parent */
cgroup_controllers_show(struct seq_file * seq,void * v)2887 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2888 {
2889 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2890 
2891 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2892 	return 0;
2893 }
2894 
2895 /* show controllers which are enabled for a given cgroup's children */
cgroup_subtree_control_show(struct seq_file * seq,void * v)2896 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2897 {
2898 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2899 
2900 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
2901 	return 0;
2902 }
2903 
2904 /**
2905  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2906  * @cgrp: root of the subtree to update csses for
2907  *
2908  * @cgrp's control masks have changed and its subtree's css associations
2909  * need to be updated accordingly.  This function looks up all css_sets
2910  * which are attached to the subtree, creates the matching updated css_sets
2911  * and migrates the tasks to the new ones.
2912  */
cgroup_update_dfl_csses(struct cgroup * cgrp)2913 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2914 {
2915 	DEFINE_CGROUP_MGCTX(mgctx);
2916 	struct cgroup_subsys_state *d_css;
2917 	struct cgroup *dsct;
2918 	struct css_set *src_cset;
2919 	int ret;
2920 
2921 	lockdep_assert_held(&cgroup_mutex);
2922 
2923 	percpu_down_write(&cgroup_threadgroup_rwsem);
2924 
2925 	/* look up all csses currently attached to @cgrp's subtree */
2926 	spin_lock_irq(&css_set_lock);
2927 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2928 		struct cgrp_cset_link *link;
2929 
2930 		list_for_each_entry(link, &dsct->cset_links, cset_link)
2931 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2932 	}
2933 	spin_unlock_irq(&css_set_lock);
2934 
2935 	/* NULL dst indicates self on default hierarchy */
2936 	ret = cgroup_migrate_prepare_dst(&mgctx);
2937 	if (ret)
2938 		goto out_finish;
2939 
2940 	spin_lock_irq(&css_set_lock);
2941 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2942 		struct task_struct *task, *ntask;
2943 
2944 		/* all tasks in src_csets need to be migrated */
2945 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2946 			cgroup_migrate_add_task(task, &mgctx);
2947 	}
2948 	spin_unlock_irq(&css_set_lock);
2949 
2950 	ret = cgroup_migrate_execute(&mgctx);
2951 out_finish:
2952 	cgroup_migrate_finish(&mgctx);
2953 	percpu_up_write(&cgroup_threadgroup_rwsem);
2954 	return ret;
2955 }
2956 
2957 /**
2958  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2959  * @cgrp: root of the target subtree
2960  *
2961  * Because css offlining is asynchronous, userland may try to re-enable a
2962  * controller while the previous css is still around.  This function grabs
2963  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2964  */
cgroup_lock_and_drain_offline(struct cgroup * cgrp)2965 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2966 	__acquires(&cgroup_mutex)
2967 {
2968 	struct cgroup *dsct;
2969 	struct cgroup_subsys_state *d_css;
2970 	struct cgroup_subsys *ss;
2971 	int ssid;
2972 
2973 restart:
2974 	mutex_lock(&cgroup_mutex);
2975 
2976 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2977 		for_each_subsys(ss, ssid) {
2978 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2979 			DEFINE_WAIT(wait);
2980 
2981 			if (!css || !percpu_ref_is_dying(&css->refcnt))
2982 				continue;
2983 
2984 			cgroup_get_live(dsct);
2985 			prepare_to_wait(&dsct->offline_waitq, &wait,
2986 					TASK_UNINTERRUPTIBLE);
2987 
2988 			mutex_unlock(&cgroup_mutex);
2989 			schedule();
2990 			finish_wait(&dsct->offline_waitq, &wait);
2991 
2992 			cgroup_put(dsct);
2993 			goto restart;
2994 		}
2995 	}
2996 }
2997 
2998 /**
2999  * cgroup_save_control - save control masks and dom_cgrp of a subtree
3000  * @cgrp: root of the target subtree
3001  *
3002  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3003  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3004  * itself.
3005  */
cgroup_save_control(struct cgroup * cgrp)3006 static void cgroup_save_control(struct cgroup *cgrp)
3007 {
3008 	struct cgroup *dsct;
3009 	struct cgroup_subsys_state *d_css;
3010 
3011 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3012 		dsct->old_subtree_control = dsct->subtree_control;
3013 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3014 		dsct->old_dom_cgrp = dsct->dom_cgrp;
3015 	}
3016 }
3017 
3018 /**
3019  * cgroup_propagate_control - refresh control masks of a subtree
3020  * @cgrp: root of the target subtree
3021  *
3022  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3023  * ->subtree_control and propagate controller availability through the
3024  * subtree so that descendants don't have unavailable controllers enabled.
3025  */
cgroup_propagate_control(struct cgroup * cgrp)3026 static void cgroup_propagate_control(struct cgroup *cgrp)
3027 {
3028 	struct cgroup *dsct;
3029 	struct cgroup_subsys_state *d_css;
3030 
3031 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3032 		dsct->subtree_control &= cgroup_control(dsct);
3033 		dsct->subtree_ss_mask =
3034 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3035 						    cgroup_ss_mask(dsct));
3036 	}
3037 }
3038 
3039 /**
3040  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3041  * @cgrp: root of the target subtree
3042  *
3043  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3044  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3045  * itself.
3046  */
cgroup_restore_control(struct cgroup * cgrp)3047 static void cgroup_restore_control(struct cgroup *cgrp)
3048 {
3049 	struct cgroup *dsct;
3050 	struct cgroup_subsys_state *d_css;
3051 
3052 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3053 		dsct->subtree_control = dsct->old_subtree_control;
3054 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3055 		dsct->dom_cgrp = dsct->old_dom_cgrp;
3056 	}
3057 }
3058 
css_visible(struct cgroup_subsys_state * css)3059 static bool css_visible(struct cgroup_subsys_state *css)
3060 {
3061 	struct cgroup_subsys *ss = css->ss;
3062 	struct cgroup *cgrp = css->cgroup;
3063 
3064 	if (cgroup_control(cgrp) & (1 << ss->id))
3065 		return true;
3066 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3067 		return false;
3068 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3069 }
3070 
3071 /**
3072  * cgroup_apply_control_enable - enable or show csses according to control
3073  * @cgrp: root of the target subtree
3074  *
3075  * Walk @cgrp's subtree and create new csses or make the existing ones
3076  * visible.  A css is created invisible if it's being implicitly enabled
3077  * through dependency.  An invisible css is made visible when the userland
3078  * explicitly enables it.
3079  *
3080  * Returns 0 on success, -errno on failure.  On failure, csses which have
3081  * been processed already aren't cleaned up.  The caller is responsible for
3082  * cleaning up with cgroup_apply_control_disable().
3083  */
cgroup_apply_control_enable(struct cgroup * cgrp)3084 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3085 {
3086 	struct cgroup *dsct;
3087 	struct cgroup_subsys_state *d_css;
3088 	struct cgroup_subsys *ss;
3089 	int ssid, ret;
3090 
3091 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3092 		for_each_subsys(ss, ssid) {
3093 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3094 
3095 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3096 				continue;
3097 
3098 			if (!css) {
3099 				css = css_create(dsct, ss);
3100 				if (IS_ERR(css))
3101 					return PTR_ERR(css);
3102 			}
3103 
3104 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3105 
3106 			if (css_visible(css)) {
3107 				ret = css_populate_dir(css);
3108 				if (ret)
3109 					return ret;
3110 			}
3111 		}
3112 	}
3113 
3114 	return 0;
3115 }
3116 
3117 /**
3118  * cgroup_apply_control_disable - kill or hide csses according to control
3119  * @cgrp: root of the target subtree
3120  *
3121  * Walk @cgrp's subtree and kill and hide csses so that they match
3122  * cgroup_ss_mask() and cgroup_visible_mask().
3123  *
3124  * A css is hidden when the userland requests it to be disabled while other
3125  * subsystems are still depending on it.  The css must not actively control
3126  * resources and be in the vanilla state if it's made visible again later.
3127  * Controllers which may be depended upon should provide ->css_reset() for
3128  * this purpose.
3129  */
cgroup_apply_control_disable(struct cgroup * cgrp)3130 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3131 {
3132 	struct cgroup *dsct;
3133 	struct cgroup_subsys_state *d_css;
3134 	struct cgroup_subsys *ss;
3135 	int ssid;
3136 
3137 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3138 		for_each_subsys(ss, ssid) {
3139 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3140 
3141 			if (!css)
3142 				continue;
3143 
3144 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3145 
3146 			if (css->parent &&
3147 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3148 				kill_css(css);
3149 			} else if (!css_visible(css)) {
3150 				css_clear_dir(css);
3151 				if (ss->css_reset)
3152 					ss->css_reset(css);
3153 			}
3154 		}
3155 	}
3156 }
3157 
3158 /**
3159  * cgroup_apply_control - apply control mask updates to the subtree
3160  * @cgrp: root of the target subtree
3161  *
3162  * subsystems can be enabled and disabled in a subtree using the following
3163  * steps.
3164  *
3165  * 1. Call cgroup_save_control() to stash the current state.
3166  * 2. Update ->subtree_control masks in the subtree as desired.
3167  * 3. Call cgroup_apply_control() to apply the changes.
3168  * 4. Optionally perform other related operations.
3169  * 5. Call cgroup_finalize_control() to finish up.
3170  *
3171  * This function implements step 3 and propagates the mask changes
3172  * throughout @cgrp's subtree, updates csses accordingly and perform
3173  * process migrations.
3174  */
cgroup_apply_control(struct cgroup * cgrp)3175 static int cgroup_apply_control(struct cgroup *cgrp)
3176 {
3177 	int ret;
3178 
3179 	cgroup_propagate_control(cgrp);
3180 
3181 	ret = cgroup_apply_control_enable(cgrp);
3182 	if (ret)
3183 		return ret;
3184 
3185 	/*
3186 	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3187 	 * making the following cgroup_update_dfl_csses() properly update
3188 	 * css associations of all tasks in the subtree.
3189 	 */
3190 	ret = cgroup_update_dfl_csses(cgrp);
3191 	if (ret)
3192 		return ret;
3193 
3194 	return 0;
3195 }
3196 
3197 /**
3198  * cgroup_finalize_control - finalize control mask update
3199  * @cgrp: root of the target subtree
3200  * @ret: the result of the update
3201  *
3202  * Finalize control mask update.  See cgroup_apply_control() for more info.
3203  */
cgroup_finalize_control(struct cgroup * cgrp,int ret)3204 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3205 {
3206 	if (ret) {
3207 		cgroup_restore_control(cgrp);
3208 		cgroup_propagate_control(cgrp);
3209 	}
3210 
3211 	cgroup_apply_control_disable(cgrp);
3212 }
3213 
cgroup_vet_subtree_control_enable(struct cgroup * cgrp,u16 enable)3214 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3215 {
3216 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3217 
3218 	/* if nothing is getting enabled, nothing to worry about */
3219 	if (!enable)
3220 		return 0;
3221 
3222 	/* can @cgrp host any resources? */
3223 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3224 		return -EOPNOTSUPP;
3225 
3226 	/* mixables don't care */
3227 	if (cgroup_is_mixable(cgrp))
3228 		return 0;
3229 
3230 	if (domain_enable) {
3231 		/* can't enable domain controllers inside a thread subtree */
3232 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3233 			return -EOPNOTSUPP;
3234 	} else {
3235 		/*
3236 		 * Threaded controllers can handle internal competitions
3237 		 * and are always allowed inside a (prospective) thread
3238 		 * subtree.
3239 		 */
3240 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3241 			return 0;
3242 	}
3243 
3244 	/*
3245 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3246 	 * child cgroups competing against tasks.
3247 	 */
3248 	if (cgroup_has_tasks(cgrp))
3249 		return -EBUSY;
3250 
3251 	return 0;
3252 }
3253 
3254 /* change the enabled child controllers for a cgroup in the default hierarchy */
cgroup_subtree_control_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3255 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3256 					    char *buf, size_t nbytes,
3257 					    loff_t off)
3258 {
3259 	u16 enable = 0, disable = 0;
3260 	struct cgroup *cgrp, *child;
3261 	struct cgroup_subsys *ss;
3262 	char *tok;
3263 	int ssid, ret;
3264 
3265 	/*
3266 	 * Parse input - space separated list of subsystem names prefixed
3267 	 * with either + or -.
3268 	 */
3269 	buf = strstrip(buf);
3270 	while ((tok = strsep(&buf, " "))) {
3271 		if (tok[0] == '\0')
3272 			continue;
3273 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3274 			if (!cgroup_ssid_enabled(ssid) ||
3275 			    strcmp(tok + 1, ss->name))
3276 				continue;
3277 
3278 			if (*tok == '+') {
3279 				enable |= 1 << ssid;
3280 				disable &= ~(1 << ssid);
3281 			} else if (*tok == '-') {
3282 				disable |= 1 << ssid;
3283 				enable &= ~(1 << ssid);
3284 			} else {
3285 				return -EINVAL;
3286 			}
3287 			break;
3288 		} while_each_subsys_mask();
3289 		if (ssid == CGROUP_SUBSYS_COUNT)
3290 			return -EINVAL;
3291 	}
3292 
3293 	cgrp = cgroup_kn_lock_live(of->kn, true);
3294 	if (!cgrp)
3295 		return -ENODEV;
3296 
3297 	for_each_subsys(ss, ssid) {
3298 		if (enable & (1 << ssid)) {
3299 			if (cgrp->subtree_control & (1 << ssid)) {
3300 				enable &= ~(1 << ssid);
3301 				continue;
3302 			}
3303 
3304 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3305 				ret = -ENOENT;
3306 				goto out_unlock;
3307 			}
3308 		} else if (disable & (1 << ssid)) {
3309 			if (!(cgrp->subtree_control & (1 << ssid))) {
3310 				disable &= ~(1 << ssid);
3311 				continue;
3312 			}
3313 
3314 			/* a child has it enabled? */
3315 			cgroup_for_each_live_child(child, cgrp) {
3316 				if (child->subtree_control & (1 << ssid)) {
3317 					ret = -EBUSY;
3318 					goto out_unlock;
3319 				}
3320 			}
3321 		}
3322 	}
3323 
3324 	if (!enable && !disable) {
3325 		ret = 0;
3326 		goto out_unlock;
3327 	}
3328 
3329 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3330 	if (ret)
3331 		goto out_unlock;
3332 
3333 	/* save and update control masks and prepare csses */
3334 	cgroup_save_control(cgrp);
3335 
3336 	cgrp->subtree_control |= enable;
3337 	cgrp->subtree_control &= ~disable;
3338 
3339 	ret = cgroup_apply_control(cgrp);
3340 	cgroup_finalize_control(cgrp, ret);
3341 	if (ret)
3342 		goto out_unlock;
3343 
3344 	kernfs_activate(cgrp->kn);
3345 out_unlock:
3346 	cgroup_kn_unlock(of->kn);
3347 	return ret ?: nbytes;
3348 }
3349 
3350 /**
3351  * cgroup_enable_threaded - make @cgrp threaded
3352  * @cgrp: the target cgroup
3353  *
3354  * Called when "threaded" is written to the cgroup.type interface file and
3355  * tries to make @cgrp threaded and join the parent's resource domain.
3356  * This function is never called on the root cgroup as cgroup.type doesn't
3357  * exist on it.
3358  */
cgroup_enable_threaded(struct cgroup * cgrp)3359 static int cgroup_enable_threaded(struct cgroup *cgrp)
3360 {
3361 	struct cgroup *parent = cgroup_parent(cgrp);
3362 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3363 	struct cgroup *dsct;
3364 	struct cgroup_subsys_state *d_css;
3365 	int ret;
3366 
3367 	lockdep_assert_held(&cgroup_mutex);
3368 
3369 	/* noop if already threaded */
3370 	if (cgroup_is_threaded(cgrp))
3371 		return 0;
3372 
3373 	/*
3374 	 * If @cgroup is populated or has domain controllers enabled, it
3375 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3376 	 * test can catch the same conditions, that's only when @parent is
3377 	 * not mixable, so let's check it explicitly.
3378 	 */
3379 	if (cgroup_is_populated(cgrp) ||
3380 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3381 		return -EOPNOTSUPP;
3382 
3383 	/* we're joining the parent's domain, ensure its validity */
3384 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3385 	    !cgroup_can_be_thread_root(dom_cgrp))
3386 		return -EOPNOTSUPP;
3387 
3388 	/*
3389 	 * The following shouldn't cause actual migrations and should
3390 	 * always succeed.
3391 	 */
3392 	cgroup_save_control(cgrp);
3393 
3394 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3395 		if (dsct == cgrp || cgroup_is_threaded(dsct))
3396 			dsct->dom_cgrp = dom_cgrp;
3397 
3398 	ret = cgroup_apply_control(cgrp);
3399 	if (!ret)
3400 		parent->nr_threaded_children++;
3401 
3402 	cgroup_finalize_control(cgrp, ret);
3403 	return ret;
3404 }
3405 
cgroup_type_show(struct seq_file * seq,void * v)3406 static int cgroup_type_show(struct seq_file *seq, void *v)
3407 {
3408 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3409 
3410 	if (cgroup_is_threaded(cgrp))
3411 		seq_puts(seq, "threaded\n");
3412 	else if (!cgroup_is_valid_domain(cgrp))
3413 		seq_puts(seq, "domain invalid\n");
3414 	else if (cgroup_is_thread_root(cgrp))
3415 		seq_puts(seq, "domain threaded\n");
3416 	else
3417 		seq_puts(seq, "domain\n");
3418 
3419 	return 0;
3420 }
3421 
cgroup_type_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3422 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3423 				 size_t nbytes, loff_t off)
3424 {
3425 	struct cgroup *cgrp;
3426 	int ret;
3427 
3428 	/* only switching to threaded mode is supported */
3429 	if (strcmp(strstrip(buf), "threaded"))
3430 		return -EINVAL;
3431 
3432 	/* drain dying csses before we re-apply (threaded) subtree control */
3433 	cgrp = cgroup_kn_lock_live(of->kn, true);
3434 	if (!cgrp)
3435 		return -ENOENT;
3436 
3437 	/* threaded can only be enabled */
3438 	ret = cgroup_enable_threaded(cgrp);
3439 
3440 	cgroup_kn_unlock(of->kn);
3441 	return ret ?: nbytes;
3442 }
3443 
cgroup_max_descendants_show(struct seq_file * seq,void * v)3444 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3445 {
3446 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3447 	int descendants = READ_ONCE(cgrp->max_descendants);
3448 
3449 	if (descendants == INT_MAX)
3450 		seq_puts(seq, "max\n");
3451 	else
3452 		seq_printf(seq, "%d\n", descendants);
3453 
3454 	return 0;
3455 }
3456 
cgroup_max_descendants_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3457 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3458 					   char *buf, size_t nbytes, loff_t off)
3459 {
3460 	struct cgroup *cgrp;
3461 	int descendants;
3462 	ssize_t ret;
3463 
3464 	buf = strstrip(buf);
3465 	if (!strcmp(buf, "max")) {
3466 		descendants = INT_MAX;
3467 	} else {
3468 		ret = kstrtoint(buf, 0, &descendants);
3469 		if (ret)
3470 			return ret;
3471 	}
3472 
3473 	if (descendants < 0)
3474 		return -ERANGE;
3475 
3476 	cgrp = cgroup_kn_lock_live(of->kn, false);
3477 	if (!cgrp)
3478 		return -ENOENT;
3479 
3480 	cgrp->max_descendants = descendants;
3481 
3482 	cgroup_kn_unlock(of->kn);
3483 
3484 	return nbytes;
3485 }
3486 
cgroup_max_depth_show(struct seq_file * seq,void * v)3487 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3488 {
3489 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3490 	int depth = READ_ONCE(cgrp->max_depth);
3491 
3492 	if (depth == INT_MAX)
3493 		seq_puts(seq, "max\n");
3494 	else
3495 		seq_printf(seq, "%d\n", depth);
3496 
3497 	return 0;
3498 }
3499 
cgroup_max_depth_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3500 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3501 				      char *buf, size_t nbytes, loff_t off)
3502 {
3503 	struct cgroup *cgrp;
3504 	ssize_t ret;
3505 	int depth;
3506 
3507 	buf = strstrip(buf);
3508 	if (!strcmp(buf, "max")) {
3509 		depth = INT_MAX;
3510 	} else {
3511 		ret = kstrtoint(buf, 0, &depth);
3512 		if (ret)
3513 			return ret;
3514 	}
3515 
3516 	if (depth < 0)
3517 		return -ERANGE;
3518 
3519 	cgrp = cgroup_kn_lock_live(of->kn, false);
3520 	if (!cgrp)
3521 		return -ENOENT;
3522 
3523 	cgrp->max_depth = depth;
3524 
3525 	cgroup_kn_unlock(of->kn);
3526 
3527 	return nbytes;
3528 }
3529 
cgroup_events_show(struct seq_file * seq,void * v)3530 static int cgroup_events_show(struct seq_file *seq, void *v)
3531 {
3532 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3533 
3534 	seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3535 	seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3536 
3537 	return 0;
3538 }
3539 
cgroup_stat_show(struct seq_file * seq,void * v)3540 static int cgroup_stat_show(struct seq_file *seq, void *v)
3541 {
3542 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3543 
3544 	seq_printf(seq, "nr_descendants %d\n",
3545 		   cgroup->nr_descendants);
3546 	seq_printf(seq, "nr_dying_descendants %d\n",
3547 		   cgroup->nr_dying_descendants);
3548 
3549 	return 0;
3550 }
3551 
cgroup_extra_stat_show(struct seq_file * seq,struct cgroup * cgrp,int ssid)3552 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3553 						 struct cgroup *cgrp, int ssid)
3554 {
3555 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3556 	struct cgroup_subsys_state *css;
3557 	int ret;
3558 
3559 	if (!ss->css_extra_stat_show)
3560 		return 0;
3561 
3562 	css = cgroup_tryget_css(cgrp, ss);
3563 	if (!css)
3564 		return 0;
3565 
3566 	ret = ss->css_extra_stat_show(seq, css);
3567 	css_put(css);
3568 	return ret;
3569 }
3570 
cpu_stat_show(struct seq_file * seq,void * v)3571 static int cpu_stat_show(struct seq_file *seq, void *v)
3572 {
3573 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3574 	int ret = 0;
3575 
3576 	cgroup_base_stat_cputime_show(seq);
3577 #ifdef CONFIG_CGROUP_SCHED
3578 	ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3579 #endif
3580 	return ret;
3581 }
3582 
3583 #ifdef CONFIG_PSI
cgroup_io_pressure_show(struct seq_file * seq,void * v)3584 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3585 {
3586 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3587 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3588 
3589 	return psi_show(seq, psi, PSI_IO);
3590 }
cgroup_memory_pressure_show(struct seq_file * seq,void * v)3591 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3592 {
3593 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3594 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3595 
3596 	return psi_show(seq, psi, PSI_MEM);
3597 }
cgroup_cpu_pressure_show(struct seq_file * seq,void * v)3598 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3599 {
3600 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3601 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3602 
3603 	return psi_show(seq, psi, PSI_CPU);
3604 }
3605 
cgroup_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,enum psi_res res)3606 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3607 					  size_t nbytes, enum psi_res res)
3608 {
3609 	struct cgroup_file_ctx *ctx = of->priv;
3610 	struct psi_trigger *new;
3611 	struct cgroup *cgrp;
3612 	struct psi_group *psi;
3613 
3614 	cgrp = cgroup_kn_lock_live(of->kn, false);
3615 	if (!cgrp)
3616 		return -ENODEV;
3617 
3618 	cgroup_get(cgrp);
3619 	cgroup_kn_unlock(of->kn);
3620 
3621 	/* Allow only one trigger per file descriptor */
3622 	if (of->priv) {
3623 		cgroup_put(cgrp);
3624 		return -EBUSY;
3625 	}
3626 
3627 	psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3628 	new = psi_trigger_create(psi, buf, nbytes, res);
3629 	if (IS_ERR(new)) {
3630 		cgroup_put(cgrp);
3631 		return PTR_ERR(new);
3632 	}
3633 
3634 	smp_store_release(&ctx->psi.trigger, new);
3635 	cgroup_put(cgrp);
3636 
3637 	return nbytes;
3638 }
3639 
cgroup_io_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3640 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3641 					  char *buf, size_t nbytes,
3642 					  loff_t off)
3643 {
3644 	return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3645 }
3646 
cgroup_memory_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3647 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3648 					  char *buf, size_t nbytes,
3649 					  loff_t off)
3650 {
3651 	return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3652 }
3653 
cgroup_cpu_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3654 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3655 					  char *buf, size_t nbytes,
3656 					  loff_t off)
3657 {
3658 	return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3659 }
3660 
cgroup_pressure_poll(struct kernfs_open_file * of,poll_table * pt)3661 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3662 					  poll_table *pt)
3663 {
3664 	struct cgroup_file_ctx *ctx = of->priv;
3665 
3666 	return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
3667 }
3668 
cgroup_pressure_release(struct kernfs_open_file * of)3669 static void cgroup_pressure_release(struct kernfs_open_file *of)
3670 {
3671 	struct cgroup_file_ctx *ctx = of->priv;
3672 
3673 	psi_trigger_destroy(ctx->psi.trigger);
3674 }
3675 #endif /* CONFIG_PSI */
3676 
cgroup_freeze_show(struct seq_file * seq,void * v)3677 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3678 {
3679 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3680 
3681 	seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3682 
3683 	return 0;
3684 }
3685 
cgroup_freeze_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3686 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3687 				   char *buf, size_t nbytes, loff_t off)
3688 {
3689 	struct cgroup *cgrp;
3690 	ssize_t ret;
3691 	int freeze;
3692 
3693 	ret = kstrtoint(strstrip(buf), 0, &freeze);
3694 	if (ret)
3695 		return ret;
3696 
3697 	if (freeze < 0 || freeze > 1)
3698 		return -ERANGE;
3699 
3700 	cgrp = cgroup_kn_lock_live(of->kn, false);
3701 	if (!cgrp)
3702 		return -ENOENT;
3703 
3704 	cgroup_freeze(cgrp, freeze);
3705 
3706 	cgroup_kn_unlock(of->kn);
3707 
3708 	return nbytes;
3709 }
3710 
cgroup_file_open(struct kernfs_open_file * of)3711 static int cgroup_file_open(struct kernfs_open_file *of)
3712 {
3713 	struct cftype *cft = of_cft(of);
3714 	struct cgroup_file_ctx *ctx;
3715 	int ret;
3716 
3717 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3718 	if (!ctx)
3719 		return -ENOMEM;
3720 
3721 	ctx->ns = current->nsproxy->cgroup_ns;
3722 	get_cgroup_ns(ctx->ns);
3723 	of->priv = ctx;
3724 
3725 	if (!cft->open)
3726 		return 0;
3727 
3728 	ret = cft->open(of);
3729 	if (ret) {
3730 		put_cgroup_ns(ctx->ns);
3731 		kfree(ctx);
3732 	}
3733 	return ret;
3734 }
3735 
cgroup_file_release(struct kernfs_open_file * of)3736 static void cgroup_file_release(struct kernfs_open_file *of)
3737 {
3738 	struct cftype *cft = of_cft(of);
3739 	struct cgroup_file_ctx *ctx = of->priv;
3740 
3741 	if (cft->release)
3742 		cft->release(of);
3743 	put_cgroup_ns(ctx->ns);
3744 	kfree(ctx);
3745 }
3746 
cgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3747 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3748 				 size_t nbytes, loff_t off)
3749 {
3750 	struct cgroup_file_ctx *ctx = of->priv;
3751 	struct cgroup *cgrp = of->kn->parent->priv;
3752 	struct cftype *cft = of_cft(of);
3753 	struct cgroup_subsys_state *css;
3754 	int ret;
3755 
3756 	if (!nbytes)
3757 		return 0;
3758 
3759 	/*
3760 	 * If namespaces are delegation boundaries, disallow writes to
3761 	 * files in an non-init namespace root from inside the namespace
3762 	 * except for the files explicitly marked delegatable -
3763 	 * cgroup.procs and cgroup.subtree_control.
3764 	 */
3765 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3766 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3767 	    ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
3768 		return -EPERM;
3769 
3770 	if (cft->write)
3771 		return cft->write(of, buf, nbytes, off);
3772 
3773 	/*
3774 	 * kernfs guarantees that a file isn't deleted with operations in
3775 	 * flight, which means that the matching css is and stays alive and
3776 	 * doesn't need to be pinned.  The RCU locking is not necessary
3777 	 * either.  It's just for the convenience of using cgroup_css().
3778 	 */
3779 	rcu_read_lock();
3780 	css = cgroup_css(cgrp, cft->ss);
3781 	rcu_read_unlock();
3782 
3783 	if (cft->write_u64) {
3784 		unsigned long long v;
3785 		ret = kstrtoull(buf, 0, &v);
3786 		if (!ret)
3787 			ret = cft->write_u64(css, cft, v);
3788 	} else if (cft->write_s64) {
3789 		long long v;
3790 		ret = kstrtoll(buf, 0, &v);
3791 		if (!ret)
3792 			ret = cft->write_s64(css, cft, v);
3793 	} else {
3794 		ret = -EINVAL;
3795 	}
3796 
3797 	return ret ?: nbytes;
3798 }
3799 
cgroup_file_poll(struct kernfs_open_file * of,poll_table * pt)3800 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3801 {
3802 	struct cftype *cft = of_cft(of);
3803 
3804 	if (cft->poll)
3805 		return cft->poll(of, pt);
3806 
3807 	return kernfs_generic_poll(of, pt);
3808 }
3809 
cgroup_seqfile_start(struct seq_file * seq,loff_t * ppos)3810 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3811 {
3812 	return seq_cft(seq)->seq_start(seq, ppos);
3813 }
3814 
cgroup_seqfile_next(struct seq_file * seq,void * v,loff_t * ppos)3815 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3816 {
3817 	return seq_cft(seq)->seq_next(seq, v, ppos);
3818 }
3819 
cgroup_seqfile_stop(struct seq_file * seq,void * v)3820 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3821 {
3822 	if (seq_cft(seq)->seq_stop)
3823 		seq_cft(seq)->seq_stop(seq, v);
3824 }
3825 
cgroup_seqfile_show(struct seq_file * m,void * arg)3826 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3827 {
3828 	struct cftype *cft = seq_cft(m);
3829 	struct cgroup_subsys_state *css = seq_css(m);
3830 
3831 	if (cft->seq_show)
3832 		return cft->seq_show(m, arg);
3833 
3834 	if (cft->read_u64)
3835 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3836 	else if (cft->read_s64)
3837 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3838 	else
3839 		return -EINVAL;
3840 	return 0;
3841 }
3842 
3843 static struct kernfs_ops cgroup_kf_single_ops = {
3844 	.atomic_write_len	= PAGE_SIZE,
3845 	.open			= cgroup_file_open,
3846 	.release		= cgroup_file_release,
3847 	.write			= cgroup_file_write,
3848 	.poll			= cgroup_file_poll,
3849 	.seq_show		= cgroup_seqfile_show,
3850 };
3851 
3852 static struct kernfs_ops cgroup_kf_ops = {
3853 	.atomic_write_len	= PAGE_SIZE,
3854 	.open			= cgroup_file_open,
3855 	.release		= cgroup_file_release,
3856 	.write			= cgroup_file_write,
3857 	.poll			= cgroup_file_poll,
3858 	.seq_start		= cgroup_seqfile_start,
3859 	.seq_next		= cgroup_seqfile_next,
3860 	.seq_stop		= cgroup_seqfile_stop,
3861 	.seq_show		= cgroup_seqfile_show,
3862 };
3863 
3864 /* set uid and gid of cgroup dirs and files to that of the creator */
cgroup_kn_set_ugid(struct kernfs_node * kn)3865 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3866 {
3867 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3868 			       .ia_uid = current_fsuid(),
3869 			       .ia_gid = current_fsgid(), };
3870 
3871 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3872 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3873 		return 0;
3874 
3875 	return kernfs_setattr(kn, &iattr);
3876 }
3877 
cgroup_file_notify_timer(struct timer_list * timer)3878 static void cgroup_file_notify_timer(struct timer_list *timer)
3879 {
3880 	cgroup_file_notify(container_of(timer, struct cgroup_file,
3881 					notify_timer));
3882 }
3883 
cgroup_add_file(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype * cft)3884 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3885 			   struct cftype *cft)
3886 {
3887 	char name[CGROUP_FILE_NAME_MAX];
3888 	struct kernfs_node *kn;
3889 	struct lock_class_key *key = NULL;
3890 	int ret;
3891 
3892 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3893 	key = &cft->lockdep_key;
3894 #endif
3895 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3896 				  cgroup_file_mode(cft),
3897 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3898 				  0, cft->kf_ops, cft,
3899 				  NULL, key);
3900 	if (IS_ERR(kn))
3901 		return PTR_ERR(kn);
3902 
3903 	ret = cgroup_kn_set_ugid(kn);
3904 	if (ret) {
3905 		kernfs_remove(kn);
3906 		return ret;
3907 	}
3908 
3909 	if (cft->file_offset) {
3910 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
3911 
3912 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3913 
3914 		spin_lock_irq(&cgroup_file_kn_lock);
3915 		cfile->kn = kn;
3916 		spin_unlock_irq(&cgroup_file_kn_lock);
3917 	}
3918 
3919 	return 0;
3920 }
3921 
3922 /**
3923  * cgroup_addrm_files - add or remove files to a cgroup directory
3924  * @css: the target css
3925  * @cgrp: the target cgroup (usually css->cgroup)
3926  * @cfts: array of cftypes to be added
3927  * @is_add: whether to add or remove
3928  *
3929  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3930  * For removals, this function never fails.
3931  */
cgroup_addrm_files(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype cfts[],bool is_add)3932 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3933 			      struct cgroup *cgrp, struct cftype cfts[],
3934 			      bool is_add)
3935 {
3936 	struct cftype *cft, *cft_end = NULL;
3937 	int ret = 0;
3938 
3939 	lockdep_assert_held(&cgroup_mutex);
3940 
3941 restart:
3942 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3943 		/* does cft->flags tell us to skip this file on @cgrp? */
3944 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3945 			continue;
3946 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3947 			continue;
3948 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3949 			continue;
3950 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3951 			continue;
3952 		if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
3953 			continue;
3954 		if (is_add) {
3955 			ret = cgroup_add_file(css, cgrp, cft);
3956 			if (ret) {
3957 				pr_warn("%s: failed to add %s, err=%d\n",
3958 					__func__, cft->name, ret);
3959 				cft_end = cft;
3960 				is_add = false;
3961 				goto restart;
3962 			}
3963 		} else {
3964 			cgroup_rm_file(cgrp, cft);
3965 		}
3966 	}
3967 	return ret;
3968 }
3969 
cgroup_apply_cftypes(struct cftype * cfts,bool is_add)3970 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3971 {
3972 	struct cgroup_subsys *ss = cfts[0].ss;
3973 	struct cgroup *root = &ss->root->cgrp;
3974 	struct cgroup_subsys_state *css;
3975 	int ret = 0;
3976 
3977 	lockdep_assert_held(&cgroup_mutex);
3978 
3979 	/* add/rm files for all cgroups created before */
3980 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3981 		struct cgroup *cgrp = css->cgroup;
3982 
3983 		if (!(css->flags & CSS_VISIBLE))
3984 			continue;
3985 
3986 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3987 		if (ret)
3988 			break;
3989 	}
3990 
3991 	if (is_add && !ret)
3992 		kernfs_activate(root->kn);
3993 	return ret;
3994 }
3995 
cgroup_exit_cftypes(struct cftype * cfts)3996 static void cgroup_exit_cftypes(struct cftype *cfts)
3997 {
3998 	struct cftype *cft;
3999 
4000 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4001 		/* free copy for custom atomic_write_len, see init_cftypes() */
4002 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4003 			kfree(cft->kf_ops);
4004 		cft->kf_ops = NULL;
4005 		cft->ss = NULL;
4006 
4007 		/* revert flags set by cgroup core while adding @cfts */
4008 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
4009 	}
4010 }
4011 
cgroup_init_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4012 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4013 {
4014 	struct cftype *cft;
4015 
4016 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4017 		struct kernfs_ops *kf_ops;
4018 
4019 		WARN_ON(cft->ss || cft->kf_ops);
4020 
4021 		if (cft->seq_start)
4022 			kf_ops = &cgroup_kf_ops;
4023 		else
4024 			kf_ops = &cgroup_kf_single_ops;
4025 
4026 		/*
4027 		 * Ugh... if @cft wants a custom max_write_len, we need to
4028 		 * make a copy of kf_ops to set its atomic_write_len.
4029 		 */
4030 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4031 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4032 			if (!kf_ops) {
4033 				cgroup_exit_cftypes(cfts);
4034 				return -ENOMEM;
4035 			}
4036 			kf_ops->atomic_write_len = cft->max_write_len;
4037 		}
4038 
4039 		cft->kf_ops = kf_ops;
4040 		cft->ss = ss;
4041 	}
4042 
4043 	return 0;
4044 }
4045 
cgroup_rm_cftypes_locked(struct cftype * cfts)4046 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
4047 {
4048 	lockdep_assert_held(&cgroup_mutex);
4049 
4050 	if (!cfts || !cfts[0].ss)
4051 		return -ENOENT;
4052 
4053 	list_del(&cfts->node);
4054 	cgroup_apply_cftypes(cfts, false);
4055 	cgroup_exit_cftypes(cfts);
4056 	return 0;
4057 }
4058 
4059 /**
4060  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4061  * @cfts: zero-length name terminated array of cftypes
4062  *
4063  * Unregister @cfts.  Files described by @cfts are removed from all
4064  * existing cgroups and all future cgroups won't have them either.  This
4065  * function can be called anytime whether @cfts' subsys is attached or not.
4066  *
4067  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4068  * registered.
4069  */
cgroup_rm_cftypes(struct cftype * cfts)4070 int cgroup_rm_cftypes(struct cftype *cfts)
4071 {
4072 	int ret;
4073 
4074 	mutex_lock(&cgroup_mutex);
4075 	ret = cgroup_rm_cftypes_locked(cfts);
4076 	mutex_unlock(&cgroup_mutex);
4077 	return ret;
4078 }
4079 
4080 /**
4081  * cgroup_add_cftypes - add an array of cftypes to a subsystem
4082  * @ss: target cgroup subsystem
4083  * @cfts: zero-length name terminated array of cftypes
4084  *
4085  * Register @cfts to @ss.  Files described by @cfts are created for all
4086  * existing cgroups to which @ss is attached and all future cgroups will
4087  * have them too.  This function can be called anytime whether @ss is
4088  * attached or not.
4089  *
4090  * Returns 0 on successful registration, -errno on failure.  Note that this
4091  * function currently returns 0 as long as @cfts registration is successful
4092  * even if some file creation attempts on existing cgroups fail.
4093  */
cgroup_add_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4094 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4095 {
4096 	int ret;
4097 
4098 	if (!cgroup_ssid_enabled(ss->id))
4099 		return 0;
4100 
4101 	if (!cfts || cfts[0].name[0] == '\0')
4102 		return 0;
4103 
4104 	ret = cgroup_init_cftypes(ss, cfts);
4105 	if (ret)
4106 		return ret;
4107 
4108 	mutex_lock(&cgroup_mutex);
4109 
4110 	list_add_tail(&cfts->node, &ss->cfts);
4111 	ret = cgroup_apply_cftypes(cfts, true);
4112 	if (ret)
4113 		cgroup_rm_cftypes_locked(cfts);
4114 
4115 	mutex_unlock(&cgroup_mutex);
4116 	return ret;
4117 }
4118 
4119 /**
4120  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4121  * @ss: target cgroup subsystem
4122  * @cfts: zero-length name terminated array of cftypes
4123  *
4124  * Similar to cgroup_add_cftypes() but the added files are only used for
4125  * the default hierarchy.
4126  */
cgroup_add_dfl_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4127 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4128 {
4129 	struct cftype *cft;
4130 
4131 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4132 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
4133 	return cgroup_add_cftypes(ss, cfts);
4134 }
4135 
4136 /**
4137  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4138  * @ss: target cgroup subsystem
4139  * @cfts: zero-length name terminated array of cftypes
4140  *
4141  * Similar to cgroup_add_cftypes() but the added files are only used for
4142  * the legacy hierarchies.
4143  */
cgroup_add_legacy_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4144 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4145 {
4146 	struct cftype *cft;
4147 
4148 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4149 		cft->flags |= __CFTYPE_NOT_ON_DFL;
4150 	return cgroup_add_cftypes(ss, cfts);
4151 }
4152 
4153 /**
4154  * cgroup_file_notify - generate a file modified event for a cgroup_file
4155  * @cfile: target cgroup_file
4156  *
4157  * @cfile must have been obtained by setting cftype->file_offset.
4158  */
cgroup_file_notify(struct cgroup_file * cfile)4159 void cgroup_file_notify(struct cgroup_file *cfile)
4160 {
4161 	unsigned long flags;
4162 
4163 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4164 	if (cfile->kn) {
4165 		unsigned long last = cfile->notified_at;
4166 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4167 
4168 		if (time_in_range(jiffies, last, next)) {
4169 			timer_reduce(&cfile->notify_timer, next);
4170 		} else {
4171 			kernfs_notify(cfile->kn);
4172 			cfile->notified_at = jiffies;
4173 		}
4174 	}
4175 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4176 }
4177 
4178 /**
4179  * css_next_child - find the next child of a given css
4180  * @pos: the current position (%NULL to initiate traversal)
4181  * @parent: css whose children to walk
4182  *
4183  * This function returns the next child of @parent and should be called
4184  * under either cgroup_mutex or RCU read lock.  The only requirement is
4185  * that @parent and @pos are accessible.  The next sibling is guaranteed to
4186  * be returned regardless of their states.
4187  *
4188  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4189  * css which finished ->css_online() is guaranteed to be visible in the
4190  * future iterations and will stay visible until the last reference is put.
4191  * A css which hasn't finished ->css_online() or already finished
4192  * ->css_offline() may show up during traversal.  It's each subsystem's
4193  * responsibility to synchronize against on/offlining.
4194  */
css_next_child(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * parent)4195 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4196 					   struct cgroup_subsys_state *parent)
4197 {
4198 	struct cgroup_subsys_state *next;
4199 
4200 	cgroup_assert_mutex_or_rcu_locked();
4201 
4202 	/*
4203 	 * @pos could already have been unlinked from the sibling list.
4204 	 * Once a cgroup is removed, its ->sibling.next is no longer
4205 	 * updated when its next sibling changes.  CSS_RELEASED is set when
4206 	 * @pos is taken off list, at which time its next pointer is valid,
4207 	 * and, as releases are serialized, the one pointed to by the next
4208 	 * pointer is guaranteed to not have started release yet.  This
4209 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4210 	 * critical section, the one pointed to by its next pointer is
4211 	 * guaranteed to not have finished its RCU grace period even if we
4212 	 * have dropped rcu_read_lock() inbetween iterations.
4213 	 *
4214 	 * If @pos has CSS_RELEASED set, its next pointer can't be
4215 	 * dereferenced; however, as each css is given a monotonically
4216 	 * increasing unique serial number and always appended to the
4217 	 * sibling list, the next one can be found by walking the parent's
4218 	 * children until the first css with higher serial number than
4219 	 * @pos's.  While this path can be slower, it happens iff iteration
4220 	 * races against release and the race window is very small.
4221 	 */
4222 	if (!pos) {
4223 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4224 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
4225 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4226 	} else {
4227 		list_for_each_entry_rcu(next, &parent->children, sibling,
4228 					lockdep_is_held(&cgroup_mutex))
4229 			if (next->serial_nr > pos->serial_nr)
4230 				break;
4231 	}
4232 
4233 	/*
4234 	 * @next, if not pointing to the head, can be dereferenced and is
4235 	 * the next sibling.
4236 	 */
4237 	if (&next->sibling != &parent->children)
4238 		return next;
4239 	return NULL;
4240 }
4241 
4242 /**
4243  * css_next_descendant_pre - find the next descendant for pre-order walk
4244  * @pos: the current position (%NULL to initiate traversal)
4245  * @root: css whose descendants to walk
4246  *
4247  * To be used by css_for_each_descendant_pre().  Find the next descendant
4248  * to visit for pre-order traversal of @root's descendants.  @root is
4249  * included in the iteration and the first node to be visited.
4250  *
4251  * While this function requires cgroup_mutex or RCU read locking, it
4252  * doesn't require the whole traversal to be contained in a single critical
4253  * section.  This function will return the correct next descendant as long
4254  * as both @pos and @root are accessible and @pos is a descendant of @root.
4255  *
4256  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4257  * css which finished ->css_online() is guaranteed to be visible in the
4258  * future iterations and will stay visible until the last reference is put.
4259  * A css which hasn't finished ->css_online() or already finished
4260  * ->css_offline() may show up during traversal.  It's each subsystem's
4261  * responsibility to synchronize against on/offlining.
4262  */
4263 struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4264 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4265 			struct cgroup_subsys_state *root)
4266 {
4267 	struct cgroup_subsys_state *next;
4268 
4269 	cgroup_assert_mutex_or_rcu_locked();
4270 
4271 	/* if first iteration, visit @root */
4272 	if (!pos)
4273 		return root;
4274 
4275 	/* visit the first child if exists */
4276 	next = css_next_child(NULL, pos);
4277 	if (next)
4278 		return next;
4279 
4280 	/* no child, visit my or the closest ancestor's next sibling */
4281 	while (pos != root) {
4282 		next = css_next_child(pos, pos->parent);
4283 		if (next)
4284 			return next;
4285 		pos = pos->parent;
4286 	}
4287 
4288 	return NULL;
4289 }
4290 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4291 
4292 /**
4293  * css_rightmost_descendant - return the rightmost descendant of a css
4294  * @pos: css of interest
4295  *
4296  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4297  * is returned.  This can be used during pre-order traversal to skip
4298  * subtree of @pos.
4299  *
4300  * While this function requires cgroup_mutex or RCU read locking, it
4301  * doesn't require the whole traversal to be contained in a single critical
4302  * section.  This function will return the correct rightmost descendant as
4303  * long as @pos is accessible.
4304  */
4305 struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state * pos)4306 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4307 {
4308 	struct cgroup_subsys_state *last, *tmp;
4309 
4310 	cgroup_assert_mutex_or_rcu_locked();
4311 
4312 	do {
4313 		last = pos;
4314 		/* ->prev isn't RCU safe, walk ->next till the end */
4315 		pos = NULL;
4316 		css_for_each_child(tmp, last)
4317 			pos = tmp;
4318 	} while (pos);
4319 
4320 	return last;
4321 }
4322 
4323 static struct cgroup_subsys_state *
css_leftmost_descendant(struct cgroup_subsys_state * pos)4324 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4325 {
4326 	struct cgroup_subsys_state *last;
4327 
4328 	do {
4329 		last = pos;
4330 		pos = css_next_child(NULL, pos);
4331 	} while (pos);
4332 
4333 	return last;
4334 }
4335 
4336 /**
4337  * css_next_descendant_post - find the next descendant for post-order walk
4338  * @pos: the current position (%NULL to initiate traversal)
4339  * @root: css whose descendants to walk
4340  *
4341  * To be used by css_for_each_descendant_post().  Find the next descendant
4342  * to visit for post-order traversal of @root's descendants.  @root is
4343  * included in the iteration and the last node to be visited.
4344  *
4345  * While this function requires cgroup_mutex or RCU read locking, it
4346  * doesn't require the whole traversal to be contained in a single critical
4347  * section.  This function will return the correct next descendant as long
4348  * as both @pos and @cgroup are accessible and @pos is a descendant of
4349  * @cgroup.
4350  *
4351  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4352  * css which finished ->css_online() is guaranteed to be visible in the
4353  * future iterations and will stay visible until the last reference is put.
4354  * A css which hasn't finished ->css_online() or already finished
4355  * ->css_offline() may show up during traversal.  It's each subsystem's
4356  * responsibility to synchronize against on/offlining.
4357  */
4358 struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4359 css_next_descendant_post(struct cgroup_subsys_state *pos,
4360 			 struct cgroup_subsys_state *root)
4361 {
4362 	struct cgroup_subsys_state *next;
4363 
4364 	cgroup_assert_mutex_or_rcu_locked();
4365 
4366 	/* if first iteration, visit leftmost descendant which may be @root */
4367 	if (!pos)
4368 		return css_leftmost_descendant(root);
4369 
4370 	/* if we visited @root, we're done */
4371 	if (pos == root)
4372 		return NULL;
4373 
4374 	/* if there's an unvisited sibling, visit its leftmost descendant */
4375 	next = css_next_child(pos, pos->parent);
4376 	if (next)
4377 		return css_leftmost_descendant(next);
4378 
4379 	/* no sibling left, visit parent */
4380 	return pos->parent;
4381 }
4382 
4383 /**
4384  * css_has_online_children - does a css have online children
4385  * @css: the target css
4386  *
4387  * Returns %true if @css has any online children; otherwise, %false.  This
4388  * function can be called from any context but the caller is responsible
4389  * for synchronizing against on/offlining as necessary.
4390  */
css_has_online_children(struct cgroup_subsys_state * css)4391 bool css_has_online_children(struct cgroup_subsys_state *css)
4392 {
4393 	struct cgroup_subsys_state *child;
4394 	bool ret = false;
4395 
4396 	rcu_read_lock();
4397 	css_for_each_child(child, css) {
4398 		if (child->flags & CSS_ONLINE) {
4399 			ret = true;
4400 			break;
4401 		}
4402 	}
4403 	rcu_read_unlock();
4404 	return ret;
4405 }
4406 
css_task_iter_next_css_set(struct css_task_iter * it)4407 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4408 {
4409 	struct list_head *l;
4410 	struct cgrp_cset_link *link;
4411 	struct css_set *cset;
4412 
4413 	lockdep_assert_held(&css_set_lock);
4414 
4415 	/* find the next threaded cset */
4416 	if (it->tcset_pos) {
4417 		l = it->tcset_pos->next;
4418 
4419 		if (l != it->tcset_head) {
4420 			it->tcset_pos = l;
4421 			return container_of(l, struct css_set,
4422 					    threaded_csets_node);
4423 		}
4424 
4425 		it->tcset_pos = NULL;
4426 	}
4427 
4428 	/* find the next cset */
4429 	l = it->cset_pos;
4430 	l = l->next;
4431 	if (l == it->cset_head) {
4432 		it->cset_pos = NULL;
4433 		return NULL;
4434 	}
4435 
4436 	if (it->ss) {
4437 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4438 	} else {
4439 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4440 		cset = link->cset;
4441 	}
4442 
4443 	it->cset_pos = l;
4444 
4445 	/* initialize threaded css_set walking */
4446 	if (it->flags & CSS_TASK_ITER_THREADED) {
4447 		if (it->cur_dcset)
4448 			put_css_set_locked(it->cur_dcset);
4449 		it->cur_dcset = cset;
4450 		get_css_set(cset);
4451 
4452 		it->tcset_head = &cset->threaded_csets;
4453 		it->tcset_pos = &cset->threaded_csets;
4454 	}
4455 
4456 	return cset;
4457 }
4458 
4459 /**
4460  * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4461  * @it: the iterator to advance
4462  *
4463  * Advance @it to the next css_set to walk.
4464  */
css_task_iter_advance_css_set(struct css_task_iter * it)4465 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4466 {
4467 	struct css_set *cset;
4468 
4469 	lockdep_assert_held(&css_set_lock);
4470 
4471 	/* Advance to the next non-empty css_set and find first non-empty tasks list*/
4472 	while ((cset = css_task_iter_next_css_set(it))) {
4473 		if (!list_empty(&cset->tasks)) {
4474 			it->cur_tasks_head = &cset->tasks;
4475 			break;
4476 		} else if (!list_empty(&cset->mg_tasks)) {
4477 			it->cur_tasks_head = &cset->mg_tasks;
4478 			break;
4479 		} else if (!list_empty(&cset->dying_tasks)) {
4480 			it->cur_tasks_head = &cset->dying_tasks;
4481 			break;
4482 		}
4483 	}
4484 	if (!cset) {
4485 		it->task_pos = NULL;
4486 		return;
4487 	}
4488 	it->task_pos = it->cur_tasks_head->next;
4489 
4490 	/*
4491 	 * We don't keep css_sets locked across iteration steps and thus
4492 	 * need to take steps to ensure that iteration can be resumed after
4493 	 * the lock is re-acquired.  Iteration is performed at two levels -
4494 	 * css_sets and tasks in them.
4495 	 *
4496 	 * Once created, a css_set never leaves its cgroup lists, so a
4497 	 * pinned css_set is guaranteed to stay put and we can resume
4498 	 * iteration afterwards.
4499 	 *
4500 	 * Tasks may leave @cset across iteration steps.  This is resolved
4501 	 * by registering each iterator with the css_set currently being
4502 	 * walked and making css_set_move_task() advance iterators whose
4503 	 * next task is leaving.
4504 	 */
4505 	if (it->cur_cset) {
4506 		list_del(&it->iters_node);
4507 		put_css_set_locked(it->cur_cset);
4508 	}
4509 	get_css_set(cset);
4510 	it->cur_cset = cset;
4511 	list_add(&it->iters_node, &cset->task_iters);
4512 }
4513 
css_task_iter_skip(struct css_task_iter * it,struct task_struct * task)4514 static void css_task_iter_skip(struct css_task_iter *it,
4515 			       struct task_struct *task)
4516 {
4517 	lockdep_assert_held(&css_set_lock);
4518 
4519 	if (it->task_pos == &task->cg_list) {
4520 		it->task_pos = it->task_pos->next;
4521 		it->flags |= CSS_TASK_ITER_SKIPPED;
4522 	}
4523 }
4524 
css_task_iter_advance(struct css_task_iter * it)4525 static void css_task_iter_advance(struct css_task_iter *it)
4526 {
4527 	struct task_struct *task;
4528 
4529 	lockdep_assert_held(&css_set_lock);
4530 repeat:
4531 	if (it->task_pos) {
4532 		/*
4533 		 * Advance iterator to find next entry. We go through cset
4534 		 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4535 		 * the next cset.
4536 		 */
4537 		if (it->flags & CSS_TASK_ITER_SKIPPED)
4538 			it->flags &= ~CSS_TASK_ITER_SKIPPED;
4539 		else
4540 			it->task_pos = it->task_pos->next;
4541 
4542 		if (it->task_pos == &it->cur_cset->tasks) {
4543 			it->cur_tasks_head = &it->cur_cset->mg_tasks;
4544 			it->task_pos = it->cur_tasks_head->next;
4545 		}
4546 		if (it->task_pos == &it->cur_cset->mg_tasks) {
4547 			it->cur_tasks_head = &it->cur_cset->dying_tasks;
4548 			it->task_pos = it->cur_tasks_head->next;
4549 		}
4550 		if (it->task_pos == &it->cur_cset->dying_tasks)
4551 			css_task_iter_advance_css_set(it);
4552 	} else {
4553 		/* called from start, proceed to the first cset */
4554 		css_task_iter_advance_css_set(it);
4555 	}
4556 
4557 	if (!it->task_pos)
4558 		return;
4559 
4560 	task = list_entry(it->task_pos, struct task_struct, cg_list);
4561 
4562 	if (it->flags & CSS_TASK_ITER_PROCS) {
4563 		/* if PROCS, skip over tasks which aren't group leaders */
4564 		if (!thread_group_leader(task))
4565 			goto repeat;
4566 
4567 		/* and dying leaders w/o live member threads */
4568 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4569 		    !atomic_read(&task->signal->live))
4570 			goto repeat;
4571 	} else {
4572 		/* skip all dying ones */
4573 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4574 			goto repeat;
4575 	}
4576 }
4577 
4578 /**
4579  * css_task_iter_start - initiate task iteration
4580  * @css: the css to walk tasks of
4581  * @flags: CSS_TASK_ITER_* flags
4582  * @it: the task iterator to use
4583  *
4584  * Initiate iteration through the tasks of @css.  The caller can call
4585  * css_task_iter_next() to walk through the tasks until the function
4586  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4587  * called.
4588  */
css_task_iter_start(struct cgroup_subsys_state * css,unsigned int flags,struct css_task_iter * it)4589 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4590 			 struct css_task_iter *it)
4591 {
4592 	memset(it, 0, sizeof(*it));
4593 
4594 	spin_lock_irq(&css_set_lock);
4595 
4596 	it->ss = css->ss;
4597 	it->flags = flags;
4598 
4599 	if (it->ss)
4600 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4601 	else
4602 		it->cset_pos = &css->cgroup->cset_links;
4603 
4604 	it->cset_head = it->cset_pos;
4605 
4606 	css_task_iter_advance(it);
4607 
4608 	spin_unlock_irq(&css_set_lock);
4609 }
4610 
4611 /**
4612  * css_task_iter_next - return the next task for the iterator
4613  * @it: the task iterator being iterated
4614  *
4615  * The "next" function for task iteration.  @it should have been
4616  * initialized via css_task_iter_start().  Returns NULL when the iteration
4617  * reaches the end.
4618  */
css_task_iter_next(struct css_task_iter * it)4619 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4620 {
4621 	if (it->cur_task) {
4622 		put_task_struct(it->cur_task);
4623 		it->cur_task = NULL;
4624 	}
4625 
4626 	spin_lock_irq(&css_set_lock);
4627 
4628 	/* @it may be half-advanced by skips, finish advancing */
4629 	if (it->flags & CSS_TASK_ITER_SKIPPED)
4630 		css_task_iter_advance(it);
4631 
4632 	if (it->task_pos) {
4633 		it->cur_task = list_entry(it->task_pos, struct task_struct,
4634 					  cg_list);
4635 		get_task_struct(it->cur_task);
4636 		css_task_iter_advance(it);
4637 	}
4638 
4639 	spin_unlock_irq(&css_set_lock);
4640 
4641 	return it->cur_task;
4642 }
4643 
4644 /**
4645  * css_task_iter_end - finish task iteration
4646  * @it: the task iterator to finish
4647  *
4648  * Finish task iteration started by css_task_iter_start().
4649  */
css_task_iter_end(struct css_task_iter * it)4650 void css_task_iter_end(struct css_task_iter *it)
4651 {
4652 	if (it->cur_cset) {
4653 		spin_lock_irq(&css_set_lock);
4654 		list_del(&it->iters_node);
4655 		put_css_set_locked(it->cur_cset);
4656 		spin_unlock_irq(&css_set_lock);
4657 	}
4658 
4659 	if (it->cur_dcset)
4660 		put_css_set(it->cur_dcset);
4661 
4662 	if (it->cur_task)
4663 		put_task_struct(it->cur_task);
4664 }
4665 
cgroup_procs_release(struct kernfs_open_file * of)4666 static void cgroup_procs_release(struct kernfs_open_file *of)
4667 {
4668 	struct cgroup_file_ctx *ctx = of->priv;
4669 
4670 	if (ctx->procs.started)
4671 		css_task_iter_end(&ctx->procs.iter);
4672 }
4673 
cgroup_procs_next(struct seq_file * s,void * v,loff_t * pos)4674 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4675 {
4676 	struct kernfs_open_file *of = s->private;
4677 	struct cgroup_file_ctx *ctx = of->priv;
4678 
4679 	if (pos)
4680 		(*pos)++;
4681 
4682 	return css_task_iter_next(&ctx->procs.iter);
4683 }
4684 
__cgroup_procs_start(struct seq_file * s,loff_t * pos,unsigned int iter_flags)4685 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4686 				  unsigned int iter_flags)
4687 {
4688 	struct kernfs_open_file *of = s->private;
4689 	struct cgroup *cgrp = seq_css(s)->cgroup;
4690 	struct cgroup_file_ctx *ctx = of->priv;
4691 	struct css_task_iter *it = &ctx->procs.iter;
4692 
4693 	/*
4694 	 * When a seq_file is seeked, it's always traversed sequentially
4695 	 * from position 0, so we can simply keep iterating on !0 *pos.
4696 	 */
4697 	if (!ctx->procs.started) {
4698 		if (WARN_ON_ONCE((*pos)))
4699 			return ERR_PTR(-EINVAL);
4700 		css_task_iter_start(&cgrp->self, iter_flags, it);
4701 		ctx->procs.started = true;
4702 	} else if (!(*pos)) {
4703 		css_task_iter_end(it);
4704 		css_task_iter_start(&cgrp->self, iter_flags, it);
4705 	} else
4706 		return it->cur_task;
4707 
4708 	return cgroup_procs_next(s, NULL, NULL);
4709 }
4710 
cgroup_procs_start(struct seq_file * s,loff_t * pos)4711 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4712 {
4713 	struct cgroup *cgrp = seq_css(s)->cgroup;
4714 
4715 	/*
4716 	 * All processes of a threaded subtree belong to the domain cgroup
4717 	 * of the subtree.  Only threads can be distributed across the
4718 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
4719 	 * They're always empty anyway.
4720 	 */
4721 	if (cgroup_is_threaded(cgrp))
4722 		return ERR_PTR(-EOPNOTSUPP);
4723 
4724 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4725 					    CSS_TASK_ITER_THREADED);
4726 }
4727 
cgroup_procs_show(struct seq_file * s,void * v)4728 static int cgroup_procs_show(struct seq_file *s, void *v)
4729 {
4730 	seq_printf(s, "%d\n", task_pid_vnr(v));
4731 	return 0;
4732 }
4733 
cgroup_may_write(const struct cgroup * cgrp,struct super_block * sb)4734 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
4735 {
4736 	int ret;
4737 	struct inode *inode;
4738 
4739 	lockdep_assert_held(&cgroup_mutex);
4740 
4741 	inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
4742 	if (!inode)
4743 		return -ENOMEM;
4744 
4745 	ret = inode_permission(inode, MAY_WRITE);
4746 	iput(inode);
4747 	return ret;
4748 }
4749 
cgroup_procs_write_permission(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,struct cgroup_namespace * ns)4750 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4751 					 struct cgroup *dst_cgrp,
4752 					 struct super_block *sb,
4753 					 struct cgroup_namespace *ns)
4754 {
4755 	struct cgroup *com_cgrp = src_cgrp;
4756 	int ret;
4757 
4758 	lockdep_assert_held(&cgroup_mutex);
4759 
4760 	/* find the common ancestor */
4761 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4762 		com_cgrp = cgroup_parent(com_cgrp);
4763 
4764 	/* %current should be authorized to migrate to the common ancestor */
4765 	ret = cgroup_may_write(com_cgrp, sb);
4766 	if (ret)
4767 		return ret;
4768 
4769 	/*
4770 	 * If namespaces are delegation boundaries, %current must be able
4771 	 * to see both source and destination cgroups from its namespace.
4772 	 */
4773 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4774 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4775 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4776 		return -ENOENT;
4777 
4778 	return 0;
4779 }
4780 
cgroup_attach_permissions(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,bool threadgroup,struct cgroup_namespace * ns)4781 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
4782 				     struct cgroup *dst_cgrp,
4783 				     struct super_block *sb, bool threadgroup,
4784 				     struct cgroup_namespace *ns)
4785 {
4786 	int ret = 0;
4787 
4788 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
4789 	if (ret)
4790 		return ret;
4791 
4792 	ret = cgroup_migrate_vet_dst(dst_cgrp);
4793 	if (ret)
4794 		return ret;
4795 
4796 	if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
4797 		ret = -EOPNOTSUPP;
4798 
4799 	return ret;
4800 }
4801 
__cgroup_procs_write(struct kernfs_open_file * of,char * buf,bool threadgroup)4802 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
4803 				    bool threadgroup)
4804 {
4805 	struct cgroup_file_ctx *ctx = of->priv;
4806 	struct cgroup *src_cgrp, *dst_cgrp;
4807 	struct task_struct *task;
4808 	const struct cred *saved_cred;
4809 	ssize_t ret;
4810 	bool locked;
4811 
4812 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4813 	if (!dst_cgrp)
4814 		return -ENODEV;
4815 
4816 	task = cgroup_procs_write_start(buf, threadgroup, &locked);
4817 	ret = PTR_ERR_OR_ZERO(task);
4818 	if (ret)
4819 		goto out_unlock;
4820 
4821 	/* find the source cgroup */
4822 	spin_lock_irq(&css_set_lock);
4823 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4824 	spin_unlock_irq(&css_set_lock);
4825 
4826 	/*
4827 	 * Process and thread migrations follow same delegation rule. Check
4828 	 * permissions using the credentials from file open to protect against
4829 	 * inherited fd attacks.
4830 	 */
4831 	saved_cred = override_creds(of->file->f_cred);
4832 	ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
4833 					of->file->f_path.dentry->d_sb,
4834 					threadgroup, ctx->ns);
4835 	revert_creds(saved_cred);
4836 	if (ret)
4837 		goto out_finish;
4838 
4839 	ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
4840 
4841 out_finish:
4842 	cgroup_procs_write_finish(task, locked);
4843 out_unlock:
4844 	cgroup_kn_unlock(of->kn);
4845 
4846 	return ret;
4847 }
4848 
cgroup_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4849 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4850 				  char *buf, size_t nbytes, loff_t off)
4851 {
4852 	return __cgroup_procs_write(of, buf, true) ?: nbytes;
4853 }
4854 
cgroup_threads_start(struct seq_file * s,loff_t * pos)4855 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4856 {
4857 	return __cgroup_procs_start(s, pos, 0);
4858 }
4859 
cgroup_threads_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4860 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4861 				    char *buf, size_t nbytes, loff_t off)
4862 {
4863 	return __cgroup_procs_write(of, buf, false) ?: nbytes;
4864 }
4865 
4866 /* cgroup core interface files for the default hierarchy */
4867 static struct cftype cgroup_base_files[] = {
4868 	{
4869 		.name = "cgroup.type",
4870 		.flags = CFTYPE_NOT_ON_ROOT,
4871 		.seq_show = cgroup_type_show,
4872 		.write = cgroup_type_write,
4873 	},
4874 	{
4875 		.name = "cgroup.procs",
4876 		.flags = CFTYPE_NS_DELEGATABLE,
4877 		.file_offset = offsetof(struct cgroup, procs_file),
4878 		.release = cgroup_procs_release,
4879 		.seq_start = cgroup_procs_start,
4880 		.seq_next = cgroup_procs_next,
4881 		.seq_show = cgroup_procs_show,
4882 		.write = cgroup_procs_write,
4883 	},
4884 	{
4885 		.name = "cgroup.threads",
4886 		.flags = CFTYPE_NS_DELEGATABLE,
4887 		.release = cgroup_procs_release,
4888 		.seq_start = cgroup_threads_start,
4889 		.seq_next = cgroup_procs_next,
4890 		.seq_show = cgroup_procs_show,
4891 		.write = cgroup_threads_write,
4892 	},
4893 	{
4894 		.name = "cgroup.controllers",
4895 		.seq_show = cgroup_controllers_show,
4896 	},
4897 	{
4898 		.name = "cgroup.subtree_control",
4899 		.flags = CFTYPE_NS_DELEGATABLE,
4900 		.seq_show = cgroup_subtree_control_show,
4901 		.write = cgroup_subtree_control_write,
4902 	},
4903 	{
4904 		.name = "cgroup.events",
4905 		.flags = CFTYPE_NOT_ON_ROOT,
4906 		.file_offset = offsetof(struct cgroup, events_file),
4907 		.seq_show = cgroup_events_show,
4908 	},
4909 	{
4910 		.name = "cgroup.max.descendants",
4911 		.seq_show = cgroup_max_descendants_show,
4912 		.write = cgroup_max_descendants_write,
4913 	},
4914 	{
4915 		.name = "cgroup.max.depth",
4916 		.seq_show = cgroup_max_depth_show,
4917 		.write = cgroup_max_depth_write,
4918 	},
4919 	{
4920 		.name = "cgroup.stat",
4921 		.seq_show = cgroup_stat_show,
4922 	},
4923 	{
4924 		.name = "cgroup.freeze",
4925 		.flags = CFTYPE_NOT_ON_ROOT,
4926 		.seq_show = cgroup_freeze_show,
4927 		.write = cgroup_freeze_write,
4928 	},
4929 	{
4930 		.name = "cpu.stat",
4931 		.seq_show = cpu_stat_show,
4932 	},
4933 #ifdef CONFIG_PSI
4934 	{
4935 		.name = "io.pressure",
4936 		.seq_show = cgroup_io_pressure_show,
4937 		.write = cgroup_io_pressure_write,
4938 		.poll = cgroup_pressure_poll,
4939 		.release = cgroup_pressure_release,
4940 	},
4941 	{
4942 		.name = "memory.pressure",
4943 		.seq_show = cgroup_memory_pressure_show,
4944 		.write = cgroup_memory_pressure_write,
4945 		.poll = cgroup_pressure_poll,
4946 		.release = cgroup_pressure_release,
4947 	},
4948 	{
4949 		.name = "cpu.pressure",
4950 		.seq_show = cgroup_cpu_pressure_show,
4951 		.write = cgroup_cpu_pressure_write,
4952 		.poll = cgroup_pressure_poll,
4953 		.release = cgroup_pressure_release,
4954 	},
4955 #endif /* CONFIG_PSI */
4956 	{ }	/* terminate */
4957 };
4958 
4959 /*
4960  * css destruction is four-stage process.
4961  *
4962  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
4963  *    Implemented in kill_css().
4964  *
4965  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4966  *    and thus css_tryget_online() is guaranteed to fail, the css can be
4967  *    offlined by invoking offline_css().  After offlining, the base ref is
4968  *    put.  Implemented in css_killed_work_fn().
4969  *
4970  * 3. When the percpu_ref reaches zero, the only possible remaining
4971  *    accessors are inside RCU read sections.  css_release() schedules the
4972  *    RCU callback.
4973  *
4974  * 4. After the grace period, the css can be freed.  Implemented in
4975  *    css_free_work_fn().
4976  *
4977  * It is actually hairier because both step 2 and 4 require process context
4978  * and thus involve punting to css->destroy_work adding two additional
4979  * steps to the already complex sequence.
4980  */
css_free_rwork_fn(struct work_struct * work)4981 static void css_free_rwork_fn(struct work_struct *work)
4982 {
4983 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4984 				struct cgroup_subsys_state, destroy_rwork);
4985 	struct cgroup_subsys *ss = css->ss;
4986 	struct cgroup *cgrp = css->cgroup;
4987 
4988 	percpu_ref_exit(&css->refcnt);
4989 
4990 	if (ss) {
4991 		/* css free path */
4992 		struct cgroup_subsys_state *parent = css->parent;
4993 		int id = css->id;
4994 
4995 		ss->css_free(css);
4996 		cgroup_idr_remove(&ss->css_idr, id);
4997 		cgroup_put(cgrp);
4998 
4999 		if (parent)
5000 			css_put(parent);
5001 	} else {
5002 		/* cgroup free path */
5003 		atomic_dec(&cgrp->root->nr_cgrps);
5004 		cgroup1_pidlist_destroy_all(cgrp);
5005 		cancel_work_sync(&cgrp->release_agent_work);
5006 
5007 		if (cgroup_parent(cgrp)) {
5008 			/*
5009 			 * We get a ref to the parent, and put the ref when
5010 			 * this cgroup is being freed, so it's guaranteed
5011 			 * that the parent won't be destroyed before its
5012 			 * children.
5013 			 */
5014 			cgroup_put(cgroup_parent(cgrp));
5015 			kernfs_put(cgrp->kn);
5016 			psi_cgroup_free(cgrp);
5017 			if (cgroup_on_dfl(cgrp))
5018 				cgroup_rstat_exit(cgrp);
5019 			kfree(cgrp);
5020 		} else {
5021 			/*
5022 			 * This is root cgroup's refcnt reaching zero,
5023 			 * which indicates that the root should be
5024 			 * released.
5025 			 */
5026 			cgroup_destroy_root(cgrp->root);
5027 		}
5028 	}
5029 }
5030 
css_release_work_fn(struct work_struct * work)5031 static void css_release_work_fn(struct work_struct *work)
5032 {
5033 	struct cgroup_subsys_state *css =
5034 		container_of(work, struct cgroup_subsys_state, destroy_work);
5035 	struct cgroup_subsys *ss = css->ss;
5036 	struct cgroup *cgrp = css->cgroup;
5037 
5038 	mutex_lock(&cgroup_mutex);
5039 
5040 	css->flags |= CSS_RELEASED;
5041 	list_del_rcu(&css->sibling);
5042 
5043 	if (ss) {
5044 		/* css release path */
5045 		if (!list_empty(&css->rstat_css_node)) {
5046 			cgroup_rstat_flush(cgrp);
5047 			list_del_rcu(&css->rstat_css_node);
5048 		}
5049 
5050 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5051 		if (ss->css_released)
5052 			ss->css_released(css);
5053 	} else {
5054 		struct cgroup *tcgrp;
5055 
5056 		/* cgroup release path */
5057 		TRACE_CGROUP_PATH(release, cgrp);
5058 
5059 		if (cgroup_on_dfl(cgrp))
5060 			cgroup_rstat_flush(cgrp);
5061 
5062 		spin_lock_irq(&css_set_lock);
5063 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
5064 		     tcgrp = cgroup_parent(tcgrp))
5065 			tcgrp->nr_dying_descendants--;
5066 		spin_unlock_irq(&css_set_lock);
5067 
5068 		/*
5069 		 * There are two control paths which try to determine
5070 		 * cgroup from dentry without going through kernfs -
5071 		 * cgroupstats_build() and css_tryget_online_from_dir().
5072 		 * Those are supported by RCU protecting clearing of
5073 		 * cgrp->kn->priv backpointer.
5074 		 */
5075 		if (cgrp->kn)
5076 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5077 					 NULL);
5078 		if (css->parent && !css->parent->parent &&
5079 		    list_empty(&css->parent->children))
5080 			wake_up(&cgrp->root->wait);
5081 	}
5082 	mutex_unlock(&cgroup_mutex);
5083 
5084 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5085 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5086 }
5087 
css_release(struct percpu_ref * ref)5088 static void css_release(struct percpu_ref *ref)
5089 {
5090 	struct cgroup_subsys_state *css =
5091 		container_of(ref, struct cgroup_subsys_state, refcnt);
5092 
5093 	INIT_WORK(&css->destroy_work, css_release_work_fn);
5094 	queue_work(cgroup_destroy_wq, &css->destroy_work);
5095 }
5096 
init_and_link_css(struct cgroup_subsys_state * css,struct cgroup_subsys * ss,struct cgroup * cgrp)5097 static void init_and_link_css(struct cgroup_subsys_state *css,
5098 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
5099 {
5100 	lockdep_assert_held(&cgroup_mutex);
5101 
5102 	cgroup_get_live(cgrp);
5103 
5104 	memset(css, 0, sizeof(*css));
5105 	css->cgroup = cgrp;
5106 	css->ss = ss;
5107 	css->id = -1;
5108 	INIT_LIST_HEAD(&css->sibling);
5109 	INIT_LIST_HEAD(&css->children);
5110 	INIT_LIST_HEAD(&css->rstat_css_node);
5111 	css->serial_nr = css_serial_nr_next++;
5112 	atomic_set(&css->online_cnt, 0);
5113 
5114 	if (cgroup_parent(cgrp)) {
5115 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5116 		css_get(css->parent);
5117 	}
5118 
5119 	if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
5120 		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5121 
5122 	BUG_ON(cgroup_css(cgrp, ss));
5123 }
5124 
5125 /* invoke ->css_online() on a new CSS and mark it online if successful */
online_css(struct cgroup_subsys_state * css)5126 static int online_css(struct cgroup_subsys_state *css)
5127 {
5128 	struct cgroup_subsys *ss = css->ss;
5129 	int ret = 0;
5130 
5131 	lockdep_assert_held(&cgroup_mutex);
5132 
5133 	if (ss->css_online)
5134 		ret = ss->css_online(css);
5135 	if (!ret) {
5136 		css->flags |= CSS_ONLINE;
5137 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5138 
5139 		atomic_inc(&css->online_cnt);
5140 		if (css->parent)
5141 			atomic_inc(&css->parent->online_cnt);
5142 	}
5143 	return ret;
5144 }
5145 
5146 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
offline_css(struct cgroup_subsys_state * css)5147 static void offline_css(struct cgroup_subsys_state *css)
5148 {
5149 	struct cgroup_subsys *ss = css->ss;
5150 
5151 	lockdep_assert_held(&cgroup_mutex);
5152 
5153 	if (!(css->flags & CSS_ONLINE))
5154 		return;
5155 
5156 	if (ss->css_offline)
5157 		ss->css_offline(css);
5158 
5159 	css->flags &= ~CSS_ONLINE;
5160 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5161 
5162 	wake_up_all(&css->cgroup->offline_waitq);
5163 }
5164 
5165 /**
5166  * css_create - create a cgroup_subsys_state
5167  * @cgrp: the cgroup new css will be associated with
5168  * @ss: the subsys of new css
5169  *
5170  * Create a new css associated with @cgrp - @ss pair.  On success, the new
5171  * css is online and installed in @cgrp.  This function doesn't create the
5172  * interface files.  Returns 0 on success, -errno on failure.
5173  */
css_create(struct cgroup * cgrp,struct cgroup_subsys * ss)5174 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5175 					      struct cgroup_subsys *ss)
5176 {
5177 	struct cgroup *parent = cgroup_parent(cgrp);
5178 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5179 	struct cgroup_subsys_state *css;
5180 	int err;
5181 
5182 	lockdep_assert_held(&cgroup_mutex);
5183 
5184 	css = ss->css_alloc(parent_css);
5185 	if (!css)
5186 		css = ERR_PTR(-ENOMEM);
5187 	if (IS_ERR(css))
5188 		return css;
5189 
5190 	init_and_link_css(css, ss, cgrp);
5191 
5192 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5193 	if (err)
5194 		goto err_free_css;
5195 
5196 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5197 	if (err < 0)
5198 		goto err_free_css;
5199 	css->id = err;
5200 
5201 	/* @css is ready to be brought online now, make it visible */
5202 	list_add_tail_rcu(&css->sibling, &parent_css->children);
5203 	cgroup_idr_replace(&ss->css_idr, css, css->id);
5204 
5205 	err = online_css(css);
5206 	if (err)
5207 		goto err_list_del;
5208 
5209 	if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
5210 	    cgroup_parent(parent)) {
5211 		pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5212 			current->comm, current->pid, ss->name);
5213 		if (!strcmp(ss->name, "memory"))
5214 			pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5215 		ss->warned_broken_hierarchy = true;
5216 	}
5217 
5218 	return css;
5219 
5220 err_list_del:
5221 	list_del_rcu(&css->sibling);
5222 err_free_css:
5223 	list_del_rcu(&css->rstat_css_node);
5224 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5225 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5226 	return ERR_PTR(err);
5227 }
5228 
5229 /*
5230  * The returned cgroup is fully initialized including its control mask, but
5231  * it isn't associated with its kernfs_node and doesn't have the control
5232  * mask applied.
5233  */
cgroup_create(struct cgroup * parent,const char * name,umode_t mode)5234 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5235 				    umode_t mode)
5236 {
5237 	struct cgroup_root *root = parent->root;
5238 	struct cgroup *cgrp, *tcgrp;
5239 	struct kernfs_node *kn;
5240 	int level = parent->level + 1;
5241 	int ret;
5242 
5243 	/* allocate the cgroup and its ID, 0 is reserved for the root */
5244 	cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5245 		       GFP_KERNEL);
5246 	if (!cgrp)
5247 		return ERR_PTR(-ENOMEM);
5248 
5249 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5250 	if (ret)
5251 		goto out_free_cgrp;
5252 
5253 	if (cgroup_on_dfl(parent)) {
5254 		ret = cgroup_rstat_init(cgrp);
5255 		if (ret)
5256 			goto out_cancel_ref;
5257 	}
5258 
5259 	/* create the directory */
5260 	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5261 	if (IS_ERR(kn)) {
5262 		ret = PTR_ERR(kn);
5263 		goto out_stat_exit;
5264 	}
5265 	cgrp->kn = kn;
5266 
5267 	init_cgroup_housekeeping(cgrp);
5268 
5269 	cgrp->self.parent = &parent->self;
5270 	cgrp->root = root;
5271 	cgrp->level = level;
5272 
5273 	ret = psi_cgroup_alloc(cgrp);
5274 	if (ret)
5275 		goto out_kernfs_remove;
5276 
5277 	ret = cgroup_bpf_inherit(cgrp);
5278 	if (ret)
5279 		goto out_psi_free;
5280 
5281 	/*
5282 	 * New cgroup inherits effective freeze counter, and
5283 	 * if the parent has to be frozen, the child has too.
5284 	 */
5285 	cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5286 	if (cgrp->freezer.e_freeze) {
5287 		/*
5288 		 * Set the CGRP_FREEZE flag, so when a process will be
5289 		 * attached to the child cgroup, it will become frozen.
5290 		 * At this point the new cgroup is unpopulated, so we can
5291 		 * consider it frozen immediately.
5292 		 */
5293 		set_bit(CGRP_FREEZE, &cgrp->flags);
5294 		set_bit(CGRP_FROZEN, &cgrp->flags);
5295 	}
5296 
5297 	spin_lock_irq(&css_set_lock);
5298 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5299 		cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp);
5300 
5301 		if (tcgrp != cgrp) {
5302 			tcgrp->nr_descendants++;
5303 
5304 			/*
5305 			 * If the new cgroup is frozen, all ancestor cgroups
5306 			 * get a new frozen descendant, but their state can't
5307 			 * change because of this.
5308 			 */
5309 			if (cgrp->freezer.e_freeze)
5310 				tcgrp->freezer.nr_frozen_descendants++;
5311 		}
5312 	}
5313 	spin_unlock_irq(&css_set_lock);
5314 
5315 	if (notify_on_release(parent))
5316 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5317 
5318 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5319 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5320 
5321 	cgrp->self.serial_nr = css_serial_nr_next++;
5322 
5323 	/* allocation complete, commit to creation */
5324 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5325 	atomic_inc(&root->nr_cgrps);
5326 	cgroup_get_live(parent);
5327 
5328 	/*
5329 	 * On the default hierarchy, a child doesn't automatically inherit
5330 	 * subtree_control from the parent.  Each is configured manually.
5331 	 */
5332 	if (!cgroup_on_dfl(cgrp))
5333 		cgrp->subtree_control = cgroup_control(cgrp);
5334 
5335 	cgroup_propagate_control(cgrp);
5336 
5337 	return cgrp;
5338 
5339 out_psi_free:
5340 	psi_cgroup_free(cgrp);
5341 out_kernfs_remove:
5342 	kernfs_remove(cgrp->kn);
5343 out_stat_exit:
5344 	if (cgroup_on_dfl(parent))
5345 		cgroup_rstat_exit(cgrp);
5346 out_cancel_ref:
5347 	percpu_ref_exit(&cgrp->self.refcnt);
5348 out_free_cgrp:
5349 	kfree(cgrp);
5350 	return ERR_PTR(ret);
5351 }
5352 
cgroup_check_hierarchy_limits(struct cgroup * parent)5353 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5354 {
5355 	struct cgroup *cgroup;
5356 	int ret = false;
5357 	int level = 1;
5358 
5359 	lockdep_assert_held(&cgroup_mutex);
5360 
5361 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5362 		if (cgroup->nr_descendants >= cgroup->max_descendants)
5363 			goto fail;
5364 
5365 		if (level > cgroup->max_depth)
5366 			goto fail;
5367 
5368 		level++;
5369 	}
5370 
5371 	ret = true;
5372 fail:
5373 	return ret;
5374 }
5375 
cgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)5376 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5377 {
5378 	struct cgroup *parent, *cgrp;
5379 	int ret;
5380 
5381 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5382 	if (strchr(name, '\n'))
5383 		return -EINVAL;
5384 
5385 	parent = cgroup_kn_lock_live(parent_kn, false);
5386 	if (!parent)
5387 		return -ENODEV;
5388 
5389 	if (!cgroup_check_hierarchy_limits(parent)) {
5390 		ret = -EAGAIN;
5391 		goto out_unlock;
5392 	}
5393 
5394 	cgrp = cgroup_create(parent, name, mode);
5395 	if (IS_ERR(cgrp)) {
5396 		ret = PTR_ERR(cgrp);
5397 		goto out_unlock;
5398 	}
5399 
5400 	/*
5401 	 * This extra ref will be put in cgroup_free_fn() and guarantees
5402 	 * that @cgrp->kn is always accessible.
5403 	 */
5404 	kernfs_get(cgrp->kn);
5405 
5406 	ret = cgroup_kn_set_ugid(cgrp->kn);
5407 	if (ret)
5408 		goto out_destroy;
5409 
5410 	ret = css_populate_dir(&cgrp->self);
5411 	if (ret)
5412 		goto out_destroy;
5413 
5414 	ret = cgroup_apply_control_enable(cgrp);
5415 	if (ret)
5416 		goto out_destroy;
5417 
5418 	TRACE_CGROUP_PATH(mkdir, cgrp);
5419 
5420 	/* let's create and online css's */
5421 	kernfs_activate(cgrp->kn);
5422 
5423 	ret = 0;
5424 	goto out_unlock;
5425 
5426 out_destroy:
5427 	cgroup_destroy_locked(cgrp);
5428 out_unlock:
5429 	cgroup_kn_unlock(parent_kn);
5430 	return ret;
5431 }
5432 
5433 /*
5434  * This is called when the refcnt of a css is confirmed to be killed.
5435  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5436  * initate destruction and put the css ref from kill_css().
5437  */
css_killed_work_fn(struct work_struct * work)5438 static void css_killed_work_fn(struct work_struct *work)
5439 {
5440 	struct cgroup_subsys_state *css =
5441 		container_of(work, struct cgroup_subsys_state, destroy_work);
5442 
5443 	mutex_lock(&cgroup_mutex);
5444 
5445 	do {
5446 		offline_css(css);
5447 		css_put(css);
5448 		/* @css can't go away while we're holding cgroup_mutex */
5449 		css = css->parent;
5450 	} while (css && atomic_dec_and_test(&css->online_cnt));
5451 
5452 	mutex_unlock(&cgroup_mutex);
5453 }
5454 
5455 /* css kill confirmation processing requires process context, bounce */
css_killed_ref_fn(struct percpu_ref * ref)5456 static void css_killed_ref_fn(struct percpu_ref *ref)
5457 {
5458 	struct cgroup_subsys_state *css =
5459 		container_of(ref, struct cgroup_subsys_state, refcnt);
5460 
5461 	if (atomic_dec_and_test(&css->online_cnt)) {
5462 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5463 		queue_work(cgroup_destroy_wq, &css->destroy_work);
5464 	}
5465 }
5466 
5467 /**
5468  * kill_css - destroy a css
5469  * @css: css to destroy
5470  *
5471  * This function initiates destruction of @css by removing cgroup interface
5472  * files and putting its base reference.  ->css_offline() will be invoked
5473  * asynchronously once css_tryget_online() is guaranteed to fail and when
5474  * the reference count reaches zero, @css will be released.
5475  */
kill_css(struct cgroup_subsys_state * css)5476 static void kill_css(struct cgroup_subsys_state *css)
5477 {
5478 	lockdep_assert_held(&cgroup_mutex);
5479 
5480 	if (css->flags & CSS_DYING)
5481 		return;
5482 
5483 	css->flags |= CSS_DYING;
5484 
5485 	/*
5486 	 * This must happen before css is disassociated with its cgroup.
5487 	 * See seq_css() for details.
5488 	 */
5489 	css_clear_dir(css);
5490 
5491 	/*
5492 	 * Killing would put the base ref, but we need to keep it alive
5493 	 * until after ->css_offline().
5494 	 */
5495 	css_get(css);
5496 
5497 	/*
5498 	 * cgroup core guarantees that, by the time ->css_offline() is
5499 	 * invoked, no new css reference will be given out via
5500 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5501 	 * proceed to offlining css's because percpu_ref_kill() doesn't
5502 	 * guarantee that the ref is seen as killed on all CPUs on return.
5503 	 *
5504 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5505 	 * css is confirmed to be seen as killed on all CPUs.
5506 	 */
5507 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5508 }
5509 
5510 /**
5511  * cgroup_destroy_locked - the first stage of cgroup destruction
5512  * @cgrp: cgroup to be destroyed
5513  *
5514  * css's make use of percpu refcnts whose killing latency shouldn't be
5515  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5516  * guarantee that css_tryget_online() won't succeed by the time
5517  * ->css_offline() is invoked.  To satisfy all the requirements,
5518  * destruction is implemented in the following two steps.
5519  *
5520  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5521  *     userland visible parts and start killing the percpu refcnts of
5522  *     css's.  Set up so that the next stage will be kicked off once all
5523  *     the percpu refcnts are confirmed to be killed.
5524  *
5525  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5526  *     rest of destruction.  Once all cgroup references are gone, the
5527  *     cgroup is RCU-freed.
5528  *
5529  * This function implements s1.  After this step, @cgrp is gone as far as
5530  * the userland is concerned and a new cgroup with the same name may be
5531  * created.  As cgroup doesn't care about the names internally, this
5532  * doesn't cause any problem.
5533  */
cgroup_destroy_locked(struct cgroup * cgrp)5534 static int cgroup_destroy_locked(struct cgroup *cgrp)
5535 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5536 {
5537 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5538 	struct cgroup_subsys_state *css;
5539 	struct cgrp_cset_link *link;
5540 	int ssid;
5541 
5542 	lockdep_assert_held(&cgroup_mutex);
5543 
5544 	/*
5545 	 * Only migration can raise populated from zero and we're already
5546 	 * holding cgroup_mutex.
5547 	 */
5548 	if (cgroup_is_populated(cgrp))
5549 		return -EBUSY;
5550 
5551 	/*
5552 	 * Make sure there's no live children.  We can't test emptiness of
5553 	 * ->self.children as dead children linger on it while being
5554 	 * drained; otherwise, "rmdir parent/child parent" may fail.
5555 	 */
5556 	if (css_has_online_children(&cgrp->self))
5557 		return -EBUSY;
5558 
5559 	/*
5560 	 * Mark @cgrp and the associated csets dead.  The former prevents
5561 	 * further task migration and child creation by disabling
5562 	 * cgroup_lock_live_group().  The latter makes the csets ignored by
5563 	 * the migration path.
5564 	 */
5565 	cgrp->self.flags &= ~CSS_ONLINE;
5566 
5567 	spin_lock_irq(&css_set_lock);
5568 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5569 		link->cset->dead = true;
5570 	spin_unlock_irq(&css_set_lock);
5571 
5572 	/* initiate massacre of all css's */
5573 	for_each_css(css, ssid, cgrp)
5574 		kill_css(css);
5575 
5576 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5577 	css_clear_dir(&cgrp->self);
5578 	kernfs_remove(cgrp->kn);
5579 
5580 	if (parent && cgroup_is_threaded(cgrp))
5581 		parent->nr_threaded_children--;
5582 
5583 	spin_lock_irq(&css_set_lock);
5584 	for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5585 		tcgrp->nr_descendants--;
5586 		tcgrp->nr_dying_descendants++;
5587 		/*
5588 		 * If the dying cgroup is frozen, decrease frozen descendants
5589 		 * counters of ancestor cgroups.
5590 		 */
5591 		if (test_bit(CGRP_FROZEN, &cgrp->flags))
5592 			tcgrp->freezer.nr_frozen_descendants--;
5593 	}
5594 	spin_unlock_irq(&css_set_lock);
5595 
5596 	cgroup1_check_for_release(parent);
5597 
5598 	cgroup_bpf_offline(cgrp);
5599 
5600 	/* put the base reference */
5601 	percpu_ref_kill(&cgrp->self.refcnt);
5602 
5603 	return 0;
5604 };
5605 
cgroup_rmdir(struct kernfs_node * kn)5606 int cgroup_rmdir(struct kernfs_node *kn)
5607 {
5608 	struct cgroup *cgrp;
5609 	int ret = 0;
5610 
5611 	cgrp = cgroup_kn_lock_live(kn, false);
5612 	if (!cgrp)
5613 		return 0;
5614 
5615 	ret = cgroup_destroy_locked(cgrp);
5616 	if (!ret)
5617 		TRACE_CGROUP_PATH(rmdir, cgrp);
5618 
5619 	cgroup_kn_unlock(kn);
5620 	return ret;
5621 }
5622 
5623 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5624 	.show_options		= cgroup_show_options,
5625 	.mkdir			= cgroup_mkdir,
5626 	.rmdir			= cgroup_rmdir,
5627 	.show_path		= cgroup_show_path,
5628 };
5629 
cgroup_init_subsys(struct cgroup_subsys * ss,bool early)5630 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5631 {
5632 	struct cgroup_subsys_state *css;
5633 
5634 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
5635 
5636 	mutex_lock(&cgroup_mutex);
5637 
5638 	idr_init(&ss->css_idr);
5639 	INIT_LIST_HEAD(&ss->cfts);
5640 
5641 	/* Create the root cgroup state for this subsystem */
5642 	ss->root = &cgrp_dfl_root;
5643 	css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5644 	/* We don't handle early failures gracefully */
5645 	BUG_ON(IS_ERR(css));
5646 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5647 
5648 	/*
5649 	 * Root csses are never destroyed and we can't initialize
5650 	 * percpu_ref during early init.  Disable refcnting.
5651 	 */
5652 	css->flags |= CSS_NO_REF;
5653 
5654 	if (early) {
5655 		/* allocation can't be done safely during early init */
5656 		css->id = 1;
5657 	} else {
5658 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5659 		BUG_ON(css->id < 0);
5660 	}
5661 
5662 	/* Update the init_css_set to contain a subsys
5663 	 * pointer to this state - since the subsystem is
5664 	 * newly registered, all tasks and hence the
5665 	 * init_css_set is in the subsystem's root cgroup. */
5666 	init_css_set.subsys[ss->id] = css;
5667 
5668 	have_fork_callback |= (bool)ss->fork << ss->id;
5669 	have_exit_callback |= (bool)ss->exit << ss->id;
5670 	have_release_callback |= (bool)ss->release << ss->id;
5671 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
5672 
5673 	/* At system boot, before all subsystems have been
5674 	 * registered, no tasks have been forked, so we don't
5675 	 * need to invoke fork callbacks here. */
5676 	BUG_ON(!list_empty(&init_task.tasks));
5677 
5678 	BUG_ON(online_css(css));
5679 
5680 	mutex_unlock(&cgroup_mutex);
5681 }
5682 
5683 /**
5684  * cgroup_init_early - cgroup initialization at system boot
5685  *
5686  * Initialize cgroups at system boot, and initialize any
5687  * subsystems that request early init.
5688  */
cgroup_init_early(void)5689 int __init cgroup_init_early(void)
5690 {
5691 	static struct cgroup_fs_context __initdata ctx;
5692 	struct cgroup_subsys *ss;
5693 	int i;
5694 
5695 	ctx.root = &cgrp_dfl_root;
5696 	init_cgroup_root(&ctx);
5697 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5698 
5699 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5700 
5701 	for_each_subsys(ss, i) {
5702 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5703 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5704 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5705 		     ss->id, ss->name);
5706 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5707 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5708 
5709 		ss->id = i;
5710 		ss->name = cgroup_subsys_name[i];
5711 		if (!ss->legacy_name)
5712 			ss->legacy_name = cgroup_subsys_name[i];
5713 
5714 		if (ss->early_init)
5715 			cgroup_init_subsys(ss, true);
5716 	}
5717 	return 0;
5718 }
5719 
5720 /**
5721  * cgroup_init - cgroup initialization
5722  *
5723  * Register cgroup filesystem and /proc file, and initialize
5724  * any subsystems that didn't request early init.
5725  */
cgroup_init(void)5726 int __init cgroup_init(void)
5727 {
5728 	struct cgroup_subsys *ss;
5729 	int ssid;
5730 
5731 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5732 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5733 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5734 
5735 	cgroup_rstat_boot();
5736 
5737 	/*
5738 	 * The latency of the synchronize_rcu() is too high for cgroups,
5739 	 * avoid it at the cost of forcing all readers into the slow path.
5740 	 */
5741 	rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5742 
5743 	get_user_ns(init_cgroup_ns.user_ns);
5744 
5745 	mutex_lock(&cgroup_mutex);
5746 
5747 	/*
5748 	 * Add init_css_set to the hash table so that dfl_root can link to
5749 	 * it during init.
5750 	 */
5751 	hash_add(css_set_table, &init_css_set.hlist,
5752 		 css_set_hash(init_css_set.subsys));
5753 
5754 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5755 
5756 	mutex_unlock(&cgroup_mutex);
5757 
5758 	for_each_subsys(ss, ssid) {
5759 		if (ss->early_init) {
5760 			struct cgroup_subsys_state *css =
5761 				init_css_set.subsys[ss->id];
5762 
5763 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5764 						   GFP_KERNEL);
5765 			BUG_ON(css->id < 0);
5766 		} else {
5767 			cgroup_init_subsys(ss, false);
5768 		}
5769 
5770 		list_add_tail(&init_css_set.e_cset_node[ssid],
5771 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
5772 
5773 		/*
5774 		 * Setting dfl_root subsys_mask needs to consider the
5775 		 * disabled flag and cftype registration needs kmalloc,
5776 		 * both of which aren't available during early_init.
5777 		 */
5778 		if (!cgroup_ssid_enabled(ssid))
5779 			continue;
5780 
5781 		if (cgroup1_ssid_disabled(ssid))
5782 			printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5783 			       ss->name);
5784 
5785 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5786 
5787 		/* implicit controllers must be threaded too */
5788 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5789 
5790 		if (ss->implicit_on_dfl)
5791 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5792 		else if (!ss->dfl_cftypes)
5793 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5794 
5795 		if (ss->threaded)
5796 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5797 
5798 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
5799 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5800 		} else {
5801 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5802 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5803 		}
5804 
5805 		if (ss->bind)
5806 			ss->bind(init_css_set.subsys[ssid]);
5807 
5808 		mutex_lock(&cgroup_mutex);
5809 		css_populate_dir(init_css_set.subsys[ssid]);
5810 		mutex_unlock(&cgroup_mutex);
5811 	}
5812 
5813 	/* init_css_set.subsys[] has been updated, re-hash */
5814 	hash_del(&init_css_set.hlist);
5815 	hash_add(css_set_table, &init_css_set.hlist,
5816 		 css_set_hash(init_css_set.subsys));
5817 
5818 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5819 	WARN_ON(register_filesystem(&cgroup_fs_type));
5820 	WARN_ON(register_filesystem(&cgroup2_fs_type));
5821 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5822 #ifdef CONFIG_CPUSETS
5823 	WARN_ON(register_filesystem(&cpuset_fs_type));
5824 #endif
5825 
5826 	return 0;
5827 }
5828 
cgroup_wq_init(void)5829 static int __init cgroup_wq_init(void)
5830 {
5831 	/*
5832 	 * There isn't much point in executing destruction path in
5833 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5834 	 * Use 1 for @max_active.
5835 	 *
5836 	 * We would prefer to do this in cgroup_init() above, but that
5837 	 * is called before init_workqueues(): so leave this until after.
5838 	 */
5839 	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5840 	BUG_ON(!cgroup_destroy_wq);
5841 	return 0;
5842 }
5843 core_initcall(cgroup_wq_init);
5844 
cgroup_path_from_kernfs_id(u64 id,char * buf,size_t buflen)5845 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
5846 {
5847 	struct kernfs_node *kn;
5848 
5849 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
5850 	if (!kn)
5851 		return;
5852 	kernfs_path(kn, buf, buflen);
5853 	kernfs_put(kn);
5854 }
5855 
5856 /*
5857  * proc_cgroup_show()
5858  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5859  *  - Used for /proc/<pid>/cgroup.
5860  */
proc_cgroup_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)5861 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5862 		     struct pid *pid, struct task_struct *tsk)
5863 {
5864 	char *buf;
5865 	int retval;
5866 	struct cgroup_root *root;
5867 
5868 	retval = -ENOMEM;
5869 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
5870 	if (!buf)
5871 		goto out;
5872 
5873 	mutex_lock(&cgroup_mutex);
5874 	spin_lock_irq(&css_set_lock);
5875 
5876 	for_each_root(root) {
5877 		struct cgroup_subsys *ss;
5878 		struct cgroup *cgrp;
5879 		int ssid, count = 0;
5880 
5881 		if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5882 			continue;
5883 
5884 		seq_printf(m, "%d:", root->hierarchy_id);
5885 		if (root != &cgrp_dfl_root)
5886 			for_each_subsys(ss, ssid)
5887 				if (root->subsys_mask & (1 << ssid))
5888 					seq_printf(m, "%s%s", count++ ? "," : "",
5889 						   ss->legacy_name);
5890 		if (strlen(root->name))
5891 			seq_printf(m, "%sname=%s", count ? "," : "",
5892 				   root->name);
5893 		seq_putc(m, ':');
5894 
5895 		cgrp = task_cgroup_from_root(tsk, root);
5896 
5897 		/*
5898 		 * On traditional hierarchies, all zombie tasks show up as
5899 		 * belonging to the root cgroup.  On the default hierarchy,
5900 		 * while a zombie doesn't show up in "cgroup.procs" and
5901 		 * thus can't be migrated, its /proc/PID/cgroup keeps
5902 		 * reporting the cgroup it belonged to before exiting.  If
5903 		 * the cgroup is removed before the zombie is reaped,
5904 		 * " (deleted)" is appended to the cgroup path.
5905 		 */
5906 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5907 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5908 						current->nsproxy->cgroup_ns);
5909 			if (retval >= PATH_MAX)
5910 				retval = -ENAMETOOLONG;
5911 			if (retval < 0)
5912 				goto out_unlock;
5913 
5914 			seq_puts(m, buf);
5915 		} else {
5916 			seq_puts(m, "/");
5917 		}
5918 
5919 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5920 			seq_puts(m, " (deleted)\n");
5921 		else
5922 			seq_putc(m, '\n');
5923 	}
5924 
5925 	retval = 0;
5926 out_unlock:
5927 	spin_unlock_irq(&css_set_lock);
5928 	mutex_unlock(&cgroup_mutex);
5929 	kfree(buf);
5930 out:
5931 	return retval;
5932 }
5933 
5934 /**
5935  * cgroup_fork - initialize cgroup related fields during copy_process()
5936  * @child: pointer to task_struct of forking parent process.
5937  *
5938  * A task is associated with the init_css_set until cgroup_post_fork()
5939  * attaches it to the target css_set.
5940  */
cgroup_fork(struct task_struct * child)5941 void cgroup_fork(struct task_struct *child)
5942 {
5943 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
5944 	INIT_LIST_HEAD(&child->cg_list);
5945 }
5946 
cgroup_get_from_file(struct file * f)5947 static struct cgroup *cgroup_get_from_file(struct file *f)
5948 {
5949 	struct cgroup_subsys_state *css;
5950 	struct cgroup *cgrp;
5951 
5952 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
5953 	if (IS_ERR(css))
5954 		return ERR_CAST(css);
5955 
5956 	cgrp = css->cgroup;
5957 	if (!cgroup_on_dfl(cgrp)) {
5958 		cgroup_put(cgrp);
5959 		return ERR_PTR(-EBADF);
5960 	}
5961 
5962 	return cgrp;
5963 }
5964 
5965 /**
5966  * cgroup_css_set_fork - find or create a css_set for a child process
5967  * @kargs: the arguments passed to create the child process
5968  *
5969  * This functions finds or creates a new css_set which the child
5970  * process will be attached to in cgroup_post_fork(). By default,
5971  * the child process will be given the same css_set as its parent.
5972  *
5973  * If CLONE_INTO_CGROUP is specified this function will try to find an
5974  * existing css_set which includes the requested cgroup and if not create
5975  * a new css_set that the child will be attached to later. If this function
5976  * succeeds it will hold cgroup_threadgroup_rwsem on return. If
5977  * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
5978  * before grabbing cgroup_threadgroup_rwsem and will hold a reference
5979  * to the target cgroup.
5980  */
cgroup_css_set_fork(struct kernel_clone_args * kargs)5981 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
5982 	__acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
5983 {
5984 	int ret;
5985 	struct cgroup *dst_cgrp = NULL;
5986 	struct css_set *cset;
5987 	struct super_block *sb;
5988 	struct file *f;
5989 
5990 	if (kargs->flags & CLONE_INTO_CGROUP)
5991 		mutex_lock(&cgroup_mutex);
5992 
5993 	cgroup_threadgroup_change_begin(current);
5994 
5995 	spin_lock_irq(&css_set_lock);
5996 	cset = task_css_set(current);
5997 	get_css_set(cset);
5998 	spin_unlock_irq(&css_set_lock);
5999 
6000 	if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6001 		kargs->cset = cset;
6002 		return 0;
6003 	}
6004 
6005 	f = fget_raw(kargs->cgroup);
6006 	if (!f) {
6007 		ret = -EBADF;
6008 		goto err;
6009 	}
6010 	sb = f->f_path.dentry->d_sb;
6011 
6012 	dst_cgrp = cgroup_get_from_file(f);
6013 	if (IS_ERR(dst_cgrp)) {
6014 		ret = PTR_ERR(dst_cgrp);
6015 		dst_cgrp = NULL;
6016 		goto err;
6017 	}
6018 
6019 	if (cgroup_is_dead(dst_cgrp)) {
6020 		ret = -ENODEV;
6021 		goto err;
6022 	}
6023 
6024 	/*
6025 	 * Verify that we the target cgroup is writable for us. This is
6026 	 * usually done by the vfs layer but since we're not going through
6027 	 * the vfs layer here we need to do it "manually".
6028 	 */
6029 	ret = cgroup_may_write(dst_cgrp, sb);
6030 	if (ret)
6031 		goto err;
6032 
6033 	ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6034 					!(kargs->flags & CLONE_THREAD),
6035 					current->nsproxy->cgroup_ns);
6036 	if (ret)
6037 		goto err;
6038 
6039 	kargs->cset = find_css_set(cset, dst_cgrp);
6040 	if (!kargs->cset) {
6041 		ret = -ENOMEM;
6042 		goto err;
6043 	}
6044 
6045 	put_css_set(cset);
6046 	fput(f);
6047 	kargs->cgrp = dst_cgrp;
6048 	return ret;
6049 
6050 err:
6051 	cgroup_threadgroup_change_end(current);
6052 	mutex_unlock(&cgroup_mutex);
6053 	if (f)
6054 		fput(f);
6055 	if (dst_cgrp)
6056 		cgroup_put(dst_cgrp);
6057 	put_css_set(cset);
6058 	if (kargs->cset)
6059 		put_css_set(kargs->cset);
6060 	return ret;
6061 }
6062 
6063 /**
6064  * cgroup_css_set_put_fork - drop references we took during fork
6065  * @kargs: the arguments passed to create the child process
6066  *
6067  * Drop references to the prepared css_set and target cgroup if
6068  * CLONE_INTO_CGROUP was requested.
6069  */
cgroup_css_set_put_fork(struct kernel_clone_args * kargs)6070 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6071 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6072 {
6073 	cgroup_threadgroup_change_end(current);
6074 
6075 	if (kargs->flags & CLONE_INTO_CGROUP) {
6076 		struct cgroup *cgrp = kargs->cgrp;
6077 		struct css_set *cset = kargs->cset;
6078 
6079 		mutex_unlock(&cgroup_mutex);
6080 
6081 		if (cset) {
6082 			put_css_set(cset);
6083 			kargs->cset = NULL;
6084 		}
6085 
6086 		if (cgrp) {
6087 			cgroup_put(cgrp);
6088 			kargs->cgrp = NULL;
6089 		}
6090 	}
6091 }
6092 
6093 /**
6094  * cgroup_can_fork - called on a new task before the process is exposed
6095  * @child: the child process
6096  *
6097  * This prepares a new css_set for the child process which the child will
6098  * be attached to in cgroup_post_fork().
6099  * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6100  * callback returns an error, the fork aborts with that error code. This
6101  * allows for a cgroup subsystem to conditionally allow or deny new forks.
6102  */
cgroup_can_fork(struct task_struct * child,struct kernel_clone_args * kargs)6103 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6104 {
6105 	struct cgroup_subsys *ss;
6106 	int i, j, ret;
6107 
6108 	ret = cgroup_css_set_fork(kargs);
6109 	if (ret)
6110 		return ret;
6111 
6112 	do_each_subsys_mask(ss, i, have_canfork_callback) {
6113 		ret = ss->can_fork(child, kargs->cset);
6114 		if (ret)
6115 			goto out_revert;
6116 	} while_each_subsys_mask();
6117 
6118 	return 0;
6119 
6120 out_revert:
6121 	for_each_subsys(ss, j) {
6122 		if (j >= i)
6123 			break;
6124 		if (ss->cancel_fork)
6125 			ss->cancel_fork(child, kargs->cset);
6126 	}
6127 
6128 	cgroup_css_set_put_fork(kargs);
6129 
6130 	return ret;
6131 }
6132 
6133 /**
6134  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6135  * @child: the child process
6136  * @kargs: the arguments passed to create the child process
6137  *
6138  * This calls the cancel_fork() callbacks if a fork failed *after*
6139  * cgroup_can_fork() succeded and cleans up references we took to
6140  * prepare a new css_set for the child process in cgroup_can_fork().
6141  */
cgroup_cancel_fork(struct task_struct * child,struct kernel_clone_args * kargs)6142 void cgroup_cancel_fork(struct task_struct *child,
6143 			struct kernel_clone_args *kargs)
6144 {
6145 	struct cgroup_subsys *ss;
6146 	int i;
6147 
6148 	for_each_subsys(ss, i)
6149 		if (ss->cancel_fork)
6150 			ss->cancel_fork(child, kargs->cset);
6151 
6152 	cgroup_css_set_put_fork(kargs);
6153 }
6154 
6155 /**
6156  * cgroup_post_fork - finalize cgroup setup for the child process
6157  * @child: the child process
6158  *
6159  * Attach the child process to its css_set calling the subsystem fork()
6160  * callbacks.
6161  */
cgroup_post_fork(struct task_struct * child,struct kernel_clone_args * kargs)6162 void cgroup_post_fork(struct task_struct *child,
6163 		      struct kernel_clone_args *kargs)
6164 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6165 {
6166 	struct cgroup_subsys *ss;
6167 	struct css_set *cset;
6168 	int i;
6169 
6170 	cset = kargs->cset;
6171 	kargs->cset = NULL;
6172 
6173 	spin_lock_irq(&css_set_lock);
6174 
6175 	/* init tasks are special, only link regular threads */
6176 	if (likely(child->pid)) {
6177 		WARN_ON_ONCE(!list_empty(&child->cg_list));
6178 		cset->nr_tasks++;
6179 		css_set_move_task(child, NULL, cset, false);
6180 	} else {
6181 		put_css_set(cset);
6182 		cset = NULL;
6183 	}
6184 
6185 	/*
6186 	 * If the cgroup has to be frozen, the new task has too.  Let's set
6187 	 * the JOBCTL_TRAP_FREEZE jobctl bit to get the task into the
6188 	 * frozen state.
6189 	 */
6190 	if (unlikely(cgroup_task_freeze(child))) {
6191 		spin_lock(&child->sighand->siglock);
6192 		WARN_ON_ONCE(child->frozen);
6193 		child->jobctl |= JOBCTL_TRAP_FREEZE;
6194 		spin_unlock(&child->sighand->siglock);
6195 
6196 		/*
6197 		 * Calling cgroup_update_frozen() isn't required here,
6198 		 * because it will be called anyway a bit later from
6199 		 * do_freezer_trap(). So we avoid cgroup's transient switch
6200 		 * from the frozen state and back.
6201 		 */
6202 	}
6203 
6204 	spin_unlock_irq(&css_set_lock);
6205 
6206 	/*
6207 	 * Call ss->fork().  This must happen after @child is linked on
6208 	 * css_set; otherwise, @child might change state between ->fork()
6209 	 * and addition to css_set.
6210 	 */
6211 	do_each_subsys_mask(ss, i, have_fork_callback) {
6212 		ss->fork(child);
6213 	} while_each_subsys_mask();
6214 
6215 	/* Make the new cset the root_cset of the new cgroup namespace. */
6216 	if (kargs->flags & CLONE_NEWCGROUP) {
6217 		struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6218 
6219 		get_css_set(cset);
6220 		child->nsproxy->cgroup_ns->root_cset = cset;
6221 		put_css_set(rcset);
6222 	}
6223 
6224 	cgroup_css_set_put_fork(kargs);
6225 }
6226 
6227 /**
6228  * cgroup_exit - detach cgroup from exiting task
6229  * @tsk: pointer to task_struct of exiting process
6230  *
6231  * Description: Detach cgroup from @tsk.
6232  *
6233  */
cgroup_exit(struct task_struct * tsk)6234 void cgroup_exit(struct task_struct *tsk)
6235 {
6236 	struct cgroup_subsys *ss;
6237 	struct css_set *cset;
6238 	int i;
6239 
6240 	spin_lock_irq(&css_set_lock);
6241 
6242 	WARN_ON_ONCE(list_empty(&tsk->cg_list));
6243 	cset = task_css_set(tsk);
6244 	css_set_move_task(tsk, cset, NULL, false);
6245 	list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6246 	cset->nr_tasks--;
6247 
6248 	WARN_ON_ONCE(cgroup_task_frozen(tsk));
6249 	if (unlikely(cgroup_task_freeze(tsk)))
6250 		cgroup_update_frozen(task_dfl_cgroup(tsk));
6251 
6252 	spin_unlock_irq(&css_set_lock);
6253 
6254 	/* see cgroup_post_fork() for details */
6255 	do_each_subsys_mask(ss, i, have_exit_callback) {
6256 		ss->exit(tsk);
6257 	} while_each_subsys_mask();
6258 }
6259 
cgroup_release(struct task_struct * task)6260 void cgroup_release(struct task_struct *task)
6261 {
6262 	struct cgroup_subsys *ss;
6263 	int ssid;
6264 
6265 	do_each_subsys_mask(ss, ssid, have_release_callback) {
6266 		ss->release(task);
6267 	} while_each_subsys_mask();
6268 
6269 	spin_lock_irq(&css_set_lock);
6270 	css_set_skip_task_iters(task_css_set(task), task);
6271 	list_del_init(&task->cg_list);
6272 	spin_unlock_irq(&css_set_lock);
6273 }
6274 
cgroup_free(struct task_struct * task)6275 void cgroup_free(struct task_struct *task)
6276 {
6277 	struct css_set *cset = task_css_set(task);
6278 	put_css_set(cset);
6279 }
6280 
cgroup_disable(char * str)6281 static int __init cgroup_disable(char *str)
6282 {
6283 	struct cgroup_subsys *ss;
6284 	char *token;
6285 	int i;
6286 
6287 	while ((token = strsep(&str, ",")) != NULL) {
6288 		if (!*token)
6289 			continue;
6290 
6291 		for_each_subsys(ss, i) {
6292 			if (strcmp(token, ss->name) &&
6293 			    strcmp(token, ss->legacy_name))
6294 				continue;
6295 
6296 			static_branch_disable(cgroup_subsys_enabled_key[i]);
6297 			pr_info("Disabling %s control group subsystem\n",
6298 				ss->name);
6299 		}
6300 	}
6301 	return 1;
6302 }
6303 __setup("cgroup_disable=", cgroup_disable);
6304 
enable_debug_cgroup(void)6305 void __init __weak enable_debug_cgroup(void) { }
6306 
enable_cgroup_debug(char * str)6307 static int __init enable_cgroup_debug(char *str)
6308 {
6309 	cgroup_debug = true;
6310 	enable_debug_cgroup();
6311 	return 1;
6312 }
6313 __setup("cgroup_debug", enable_cgroup_debug);
6314 
6315 /**
6316  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6317  * @dentry: directory dentry of interest
6318  * @ss: subsystem of interest
6319  *
6320  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6321  * to get the corresponding css and return it.  If such css doesn't exist
6322  * or can't be pinned, an ERR_PTR value is returned.
6323  */
css_tryget_online_from_dir(struct dentry * dentry,struct cgroup_subsys * ss)6324 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6325 						       struct cgroup_subsys *ss)
6326 {
6327 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6328 	struct file_system_type *s_type = dentry->d_sb->s_type;
6329 	struct cgroup_subsys_state *css = NULL;
6330 	struct cgroup *cgrp;
6331 
6332 	/* is @dentry a cgroup dir? */
6333 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6334 	    !kn || kernfs_type(kn) != KERNFS_DIR)
6335 		return ERR_PTR(-EBADF);
6336 
6337 	rcu_read_lock();
6338 
6339 	/*
6340 	 * This path doesn't originate from kernfs and @kn could already
6341 	 * have been or be removed at any point.  @kn->priv is RCU
6342 	 * protected for this access.  See css_release_work_fn() for details.
6343 	 */
6344 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6345 	if (cgrp)
6346 		css = cgroup_css(cgrp, ss);
6347 
6348 	if (!css || !css_tryget_online(css))
6349 		css = ERR_PTR(-ENOENT);
6350 
6351 	rcu_read_unlock();
6352 	return css;
6353 }
6354 
6355 /**
6356  * css_from_id - lookup css by id
6357  * @id: the cgroup id
6358  * @ss: cgroup subsys to be looked into
6359  *
6360  * Returns the css if there's valid one with @id, otherwise returns NULL.
6361  * Should be called under rcu_read_lock().
6362  */
css_from_id(int id,struct cgroup_subsys * ss)6363 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6364 {
6365 	WARN_ON_ONCE(!rcu_read_lock_held());
6366 	return idr_find(&ss->css_idr, id);
6367 }
6368 
6369 /**
6370  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6371  * @path: path on the default hierarchy
6372  *
6373  * Find the cgroup at @path on the default hierarchy, increment its
6374  * reference count and return it.  Returns pointer to the found cgroup on
6375  * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6376  * if @path points to a non-directory.
6377  */
cgroup_get_from_path(const char * path)6378 struct cgroup *cgroup_get_from_path(const char *path)
6379 {
6380 	struct kernfs_node *kn;
6381 	struct cgroup *cgrp;
6382 
6383 	mutex_lock(&cgroup_mutex);
6384 
6385 	kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6386 	if (kn) {
6387 		if (kernfs_type(kn) == KERNFS_DIR) {
6388 			cgrp = kn->priv;
6389 			cgroup_get_live(cgrp);
6390 		} else {
6391 			cgrp = ERR_PTR(-ENOTDIR);
6392 		}
6393 		kernfs_put(kn);
6394 	} else {
6395 		cgrp = ERR_PTR(-ENOENT);
6396 	}
6397 
6398 	mutex_unlock(&cgroup_mutex);
6399 	return cgrp;
6400 }
6401 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6402 
6403 /**
6404  * cgroup_get_from_fd - get a cgroup pointer from a fd
6405  * @fd: fd obtained by open(cgroup2_dir)
6406  *
6407  * Find the cgroup from a fd which should be obtained
6408  * by opening a cgroup directory.  Returns a pointer to the
6409  * cgroup on success. ERR_PTR is returned if the cgroup
6410  * cannot be found.
6411  */
cgroup_get_from_fd(int fd)6412 struct cgroup *cgroup_get_from_fd(int fd)
6413 {
6414 	struct cgroup *cgrp;
6415 	struct file *f;
6416 
6417 	f = fget_raw(fd);
6418 	if (!f)
6419 		return ERR_PTR(-EBADF);
6420 
6421 	cgrp = cgroup_get_from_file(f);
6422 	fput(f);
6423 	return cgrp;
6424 }
6425 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6426 
power_of_ten(int power)6427 static u64 power_of_ten(int power)
6428 {
6429 	u64 v = 1;
6430 	while (power--)
6431 		v *= 10;
6432 	return v;
6433 }
6434 
6435 /**
6436  * cgroup_parse_float - parse a floating number
6437  * @input: input string
6438  * @dec_shift: number of decimal digits to shift
6439  * @v: output
6440  *
6441  * Parse a decimal floating point number in @input and store the result in
6442  * @v with decimal point right shifted @dec_shift times.  For example, if
6443  * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6444  * Returns 0 on success, -errno otherwise.
6445  *
6446  * There's nothing cgroup specific about this function except that it's
6447  * currently the only user.
6448  */
cgroup_parse_float(const char * input,unsigned dec_shift,s64 * v)6449 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6450 {
6451 	s64 whole, frac = 0;
6452 	int fstart = 0, fend = 0, flen;
6453 
6454 	if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6455 		return -EINVAL;
6456 	if (frac < 0)
6457 		return -EINVAL;
6458 
6459 	flen = fend > fstart ? fend - fstart : 0;
6460 	if (flen < dec_shift)
6461 		frac *= power_of_ten(dec_shift - flen);
6462 	else
6463 		frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6464 
6465 	*v = whole * power_of_ten(dec_shift) + frac;
6466 	return 0;
6467 }
6468 
6469 /*
6470  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6471  * definition in cgroup-defs.h.
6472  */
6473 #ifdef CONFIG_SOCK_CGROUP_DATA
6474 
cgroup_sk_alloc(struct sock_cgroup_data * skcd)6475 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6476 {
6477 	struct cgroup *cgroup;
6478 
6479 	rcu_read_lock();
6480 	/* Don't associate the sock with unrelated interrupted task's cgroup. */
6481 	if (in_interrupt()) {
6482 		cgroup = &cgrp_dfl_root.cgrp;
6483 		cgroup_get(cgroup);
6484 		goto out;
6485 	}
6486 
6487 	while (true) {
6488 		struct css_set *cset;
6489 
6490 		cset = task_css_set(current);
6491 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6492 			cgroup = cset->dfl_cgrp;
6493 			break;
6494 		}
6495 		cpu_relax();
6496 	}
6497 out:
6498 	skcd->cgroup = cgroup;
6499 	cgroup_bpf_get(cgroup);
6500 	rcu_read_unlock();
6501 }
6502 
cgroup_sk_clone(struct sock_cgroup_data * skcd)6503 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6504 {
6505 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6506 
6507 	/*
6508 	 * We might be cloning a socket which is left in an empty
6509 	 * cgroup and the cgroup might have already been rmdir'd.
6510 	 * Don't use cgroup_get_live().
6511 	 */
6512 	cgroup_get(cgrp);
6513 	cgroup_bpf_get(cgrp);
6514 }
6515 
cgroup_sk_free(struct sock_cgroup_data * skcd)6516 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6517 {
6518 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6519 
6520 	cgroup_bpf_put(cgrp);
6521 	cgroup_put(cgrp);
6522 }
6523 
6524 #endif	/* CONFIG_SOCK_CGROUP_DATA */
6525 
6526 #ifdef CONFIG_CGROUP_BPF
cgroup_bpf_attach(struct cgroup * cgrp,struct bpf_prog * prog,struct bpf_prog * replace_prog,struct bpf_cgroup_link * link,enum bpf_attach_type type,u32 flags)6527 int cgroup_bpf_attach(struct cgroup *cgrp,
6528 		      struct bpf_prog *prog, struct bpf_prog *replace_prog,
6529 		      struct bpf_cgroup_link *link,
6530 		      enum bpf_attach_type type,
6531 		      u32 flags)
6532 {
6533 	int ret;
6534 
6535 	mutex_lock(&cgroup_mutex);
6536 	ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags);
6537 	mutex_unlock(&cgroup_mutex);
6538 	return ret;
6539 }
6540 
cgroup_bpf_detach(struct cgroup * cgrp,struct bpf_prog * prog,enum bpf_attach_type type)6541 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
6542 		      enum bpf_attach_type type)
6543 {
6544 	int ret;
6545 
6546 	mutex_lock(&cgroup_mutex);
6547 	ret = __cgroup_bpf_detach(cgrp, prog, NULL, type);
6548 	mutex_unlock(&cgroup_mutex);
6549 	return ret;
6550 }
6551 
cgroup_bpf_query(struct cgroup * cgrp,const union bpf_attr * attr,union bpf_attr __user * uattr)6552 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6553 		     union bpf_attr __user *uattr)
6554 {
6555 	int ret;
6556 
6557 	mutex_lock(&cgroup_mutex);
6558 	ret = __cgroup_bpf_query(cgrp, attr, uattr);
6559 	mutex_unlock(&cgroup_mutex);
6560 	return ret;
6561 }
6562 #endif /* CONFIG_CGROUP_BPF */
6563 
6564 #ifdef CONFIG_SYSFS
show_delegatable_files(struct cftype * files,char * buf,ssize_t size,const char * prefix)6565 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6566 				      ssize_t size, const char *prefix)
6567 {
6568 	struct cftype *cft;
6569 	ssize_t ret = 0;
6570 
6571 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6572 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6573 			continue;
6574 
6575 		if (prefix)
6576 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6577 
6578 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6579 
6580 		if (WARN_ON(ret >= size))
6581 			break;
6582 	}
6583 
6584 	return ret;
6585 }
6586 
delegate_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)6587 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6588 			      char *buf)
6589 {
6590 	struct cgroup_subsys *ss;
6591 	int ssid;
6592 	ssize_t ret = 0;
6593 
6594 	ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6595 				     NULL);
6596 
6597 	for_each_subsys(ss, ssid)
6598 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6599 					      PAGE_SIZE - ret,
6600 					      cgroup_subsys_name[ssid]);
6601 
6602 	return ret;
6603 }
6604 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6605 
features_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)6606 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6607 			     char *buf)
6608 {
6609 	return snprintf(buf, PAGE_SIZE,
6610 			"nsdelegate\n"
6611 			"memory_localevents\n"
6612 			"memory_recursiveprot\n");
6613 }
6614 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6615 
6616 static struct attribute *cgroup_sysfs_attrs[] = {
6617 	&cgroup_delegate_attr.attr,
6618 	&cgroup_features_attr.attr,
6619 	NULL,
6620 };
6621 
6622 static const struct attribute_group cgroup_sysfs_attr_group = {
6623 	.attrs = cgroup_sysfs_attrs,
6624 	.name = "cgroup",
6625 };
6626 
cgroup_sysfs_init(void)6627 static int __init cgroup_sysfs_init(void)
6628 {
6629 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6630 }
6631 subsys_initcall(cgroup_sysfs_init);
6632 
6633 #endif /* CONFIG_SYSFS */
6634