1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include "cgroup-internal.h"
32
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/fs_parser.h>
58 #include <linux/sched/cputime.h>
59 #include <linux/psi.h>
60 #include <net/sock.h>
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/cgroup.h>
64
65 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
66 MAX_CFTYPE_NAME + 2)
67 /* let's not notify more than 100 times per second */
68 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100)
69
70 /*
71 * cgroup_mutex is the master lock. Any modification to cgroup or its
72 * hierarchy must be performed while holding it.
73 *
74 * css_set_lock protects task->cgroups pointer, the list of css_set
75 * objects, and the chain of tasks off each css_set.
76 *
77 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
78 * cgroup.h can use them for lockdep annotations.
79 */
80 DEFINE_MUTEX(cgroup_mutex);
81 DEFINE_SPINLOCK(css_set_lock);
82
83 #ifdef CONFIG_PROVE_RCU
84 EXPORT_SYMBOL_GPL(cgroup_mutex);
85 EXPORT_SYMBOL_GPL(css_set_lock);
86 #endif
87
88 DEFINE_SPINLOCK(trace_cgroup_path_lock);
89 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
90 bool cgroup_debug __read_mostly;
91
92 /*
93 * Protects cgroup_idr and css_idr so that IDs can be released without
94 * grabbing cgroup_mutex.
95 */
96 static DEFINE_SPINLOCK(cgroup_idr_lock);
97
98 /*
99 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
100 * against file removal/re-creation across css hiding.
101 */
102 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
103
104 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
105
106 #define cgroup_assert_mutex_or_rcu_locked() \
107 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
108 !lockdep_is_held(&cgroup_mutex), \
109 "cgroup_mutex or RCU read lock required");
110
111 /*
112 * cgroup destruction makes heavy use of work items and there can be a lot
113 * of concurrent destructions. Use a separate workqueue so that cgroup
114 * destruction work items don't end up filling up max_active of system_wq
115 * which may lead to deadlock.
116 */
117 static struct workqueue_struct *cgroup_destroy_wq;
118
119 /* generate an array of cgroup subsystem pointers */
120 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
121 struct cgroup_subsys *cgroup_subsys[] = {
122 #include <linux/cgroup_subsys.h>
123 };
124 #undef SUBSYS
125
126 /* array of cgroup subsystem names */
127 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
128 static const char *cgroup_subsys_name[] = {
129 #include <linux/cgroup_subsys.h>
130 };
131 #undef SUBSYS
132
133 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
134 #define SUBSYS(_x) \
135 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
136 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
137 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
138 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
139 #include <linux/cgroup_subsys.h>
140 #undef SUBSYS
141
142 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
143 static struct static_key_true *cgroup_subsys_enabled_key[] = {
144 #include <linux/cgroup_subsys.h>
145 };
146 #undef SUBSYS
147
148 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
149 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
150 #include <linux/cgroup_subsys.h>
151 };
152 #undef SUBSYS
153
154 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
155
156 /* the default hierarchy */
157 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
158 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
159
160 /*
161 * The default hierarchy always exists but is hidden until mounted for the
162 * first time. This is for backward compatibility.
163 */
164 static bool cgrp_dfl_visible;
165
166 /* some controllers are not supported in the default hierarchy */
167 static u16 cgrp_dfl_inhibit_ss_mask;
168
169 /* some controllers are implicitly enabled on the default hierarchy */
170 static u16 cgrp_dfl_implicit_ss_mask;
171
172 /* some controllers can be threaded on the default hierarchy */
173 static u16 cgrp_dfl_threaded_ss_mask;
174
175 /* The list of hierarchy roots */
176 LIST_HEAD(cgroup_roots);
177 static int cgroup_root_count;
178
179 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
180 static DEFINE_IDR(cgroup_hierarchy_idr);
181
182 /*
183 * Assign a monotonically increasing serial number to csses. It guarantees
184 * cgroups with bigger numbers are newer than those with smaller numbers.
185 * Also, as csses are always appended to the parent's ->children list, it
186 * guarantees that sibling csses are always sorted in the ascending serial
187 * number order on the list. Protected by cgroup_mutex.
188 */
189 static u64 css_serial_nr_next = 1;
190
191 /*
192 * These bitmasks identify subsystems with specific features to avoid
193 * having to do iterative checks repeatedly.
194 */
195 static u16 have_fork_callback __read_mostly;
196 static u16 have_exit_callback __read_mostly;
197 static u16 have_release_callback __read_mostly;
198 static u16 have_canfork_callback __read_mostly;
199
200 /* cgroup namespace for init task */
201 struct cgroup_namespace init_cgroup_ns = {
202 .count = REFCOUNT_INIT(2),
203 .user_ns = &init_user_ns,
204 .ns.ops = &cgroupns_operations,
205 .ns.inum = PROC_CGROUP_INIT_INO,
206 .root_cset = &init_css_set,
207 };
208
209 static struct file_system_type cgroup2_fs_type;
210 static struct cftype cgroup_base_files[];
211
212 static int cgroup_apply_control(struct cgroup *cgrp);
213 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
214 static void css_task_iter_skip(struct css_task_iter *it,
215 struct task_struct *task);
216 static int cgroup_destroy_locked(struct cgroup *cgrp);
217 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
218 struct cgroup_subsys *ss);
219 static void css_release(struct percpu_ref *ref);
220 static void kill_css(struct cgroup_subsys_state *css);
221 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
222 struct cgroup *cgrp, struct cftype cfts[],
223 bool is_add);
224
225 /**
226 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
227 * @ssid: subsys ID of interest
228 *
229 * cgroup_subsys_enabled() can only be used with literal subsys names which
230 * is fine for individual subsystems but unsuitable for cgroup core. This
231 * is slower static_key_enabled() based test indexed by @ssid.
232 */
cgroup_ssid_enabled(int ssid)233 bool cgroup_ssid_enabled(int ssid)
234 {
235 if (CGROUP_SUBSYS_COUNT == 0)
236 return false;
237
238 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
239 }
240
241 /**
242 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
243 * @cgrp: the cgroup of interest
244 *
245 * The default hierarchy is the v2 interface of cgroup and this function
246 * can be used to test whether a cgroup is on the default hierarchy for
247 * cases where a subsystem should behave differnetly depending on the
248 * interface version.
249 *
250 * List of changed behaviors:
251 *
252 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
253 * and "name" are disallowed.
254 *
255 * - When mounting an existing superblock, mount options should match.
256 *
257 * - Remount is disallowed.
258 *
259 * - rename(2) is disallowed.
260 *
261 * - "tasks" is removed. Everything should be at process granularity. Use
262 * "cgroup.procs" instead.
263 *
264 * - "cgroup.procs" is not sorted. pids will be unique unless they got
265 * recycled inbetween reads.
266 *
267 * - "release_agent" and "notify_on_release" are removed. Replacement
268 * notification mechanism will be implemented.
269 *
270 * - "cgroup.clone_children" is removed.
271 *
272 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
273 * and its descendants contain no task; otherwise, 1. The file also
274 * generates kernfs notification which can be monitored through poll and
275 * [di]notify when the value of the file changes.
276 *
277 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
278 * take masks of ancestors with non-empty cpus/mems, instead of being
279 * moved to an ancestor.
280 *
281 * - cpuset: a task can be moved into an empty cpuset, and again it takes
282 * masks of ancestors.
283 *
284 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
285 * is not created.
286 *
287 * - blkcg: blk-throttle becomes properly hierarchical.
288 *
289 * - debug: disallowed on the default hierarchy.
290 */
cgroup_on_dfl(const struct cgroup * cgrp)291 bool cgroup_on_dfl(const struct cgroup *cgrp)
292 {
293 return cgrp->root == &cgrp_dfl_root;
294 }
295
296 /* IDR wrappers which synchronize using cgroup_idr_lock */
cgroup_idr_alloc(struct idr * idr,void * ptr,int start,int end,gfp_t gfp_mask)297 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
298 gfp_t gfp_mask)
299 {
300 int ret;
301
302 idr_preload(gfp_mask);
303 spin_lock_bh(&cgroup_idr_lock);
304 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
305 spin_unlock_bh(&cgroup_idr_lock);
306 idr_preload_end();
307 return ret;
308 }
309
cgroup_idr_replace(struct idr * idr,void * ptr,int id)310 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
311 {
312 void *ret;
313
314 spin_lock_bh(&cgroup_idr_lock);
315 ret = idr_replace(idr, ptr, id);
316 spin_unlock_bh(&cgroup_idr_lock);
317 return ret;
318 }
319
cgroup_idr_remove(struct idr * idr,int id)320 static void cgroup_idr_remove(struct idr *idr, int id)
321 {
322 spin_lock_bh(&cgroup_idr_lock);
323 idr_remove(idr, id);
324 spin_unlock_bh(&cgroup_idr_lock);
325 }
326
cgroup_has_tasks(struct cgroup * cgrp)327 static bool cgroup_has_tasks(struct cgroup *cgrp)
328 {
329 return cgrp->nr_populated_csets;
330 }
331
cgroup_is_threaded(struct cgroup * cgrp)332 bool cgroup_is_threaded(struct cgroup *cgrp)
333 {
334 return cgrp->dom_cgrp != cgrp;
335 }
336
337 /* can @cgrp host both domain and threaded children? */
cgroup_is_mixable(struct cgroup * cgrp)338 static bool cgroup_is_mixable(struct cgroup *cgrp)
339 {
340 /*
341 * Root isn't under domain level resource control exempting it from
342 * the no-internal-process constraint, so it can serve as a thread
343 * root and a parent of resource domains at the same time.
344 */
345 return !cgroup_parent(cgrp);
346 }
347
348 /* can @cgrp become a thread root? should always be true for a thread root */
cgroup_can_be_thread_root(struct cgroup * cgrp)349 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
350 {
351 /* mixables don't care */
352 if (cgroup_is_mixable(cgrp))
353 return true;
354
355 /* domain roots can't be nested under threaded */
356 if (cgroup_is_threaded(cgrp))
357 return false;
358
359 /* can only have either domain or threaded children */
360 if (cgrp->nr_populated_domain_children)
361 return false;
362
363 /* and no domain controllers can be enabled */
364 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
365 return false;
366
367 return true;
368 }
369
370 /* is @cgrp root of a threaded subtree? */
cgroup_is_thread_root(struct cgroup * cgrp)371 bool cgroup_is_thread_root(struct cgroup *cgrp)
372 {
373 /* thread root should be a domain */
374 if (cgroup_is_threaded(cgrp))
375 return false;
376
377 /* a domain w/ threaded children is a thread root */
378 if (cgrp->nr_threaded_children)
379 return true;
380
381 /*
382 * A domain which has tasks and explicit threaded controllers
383 * enabled is a thread root.
384 */
385 if (cgroup_has_tasks(cgrp) &&
386 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
387 return true;
388
389 return false;
390 }
391
392 /* a domain which isn't connected to the root w/o brekage can't be used */
cgroup_is_valid_domain(struct cgroup * cgrp)393 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
394 {
395 /* the cgroup itself can be a thread root */
396 if (cgroup_is_threaded(cgrp))
397 return false;
398
399 /* but the ancestors can't be unless mixable */
400 while ((cgrp = cgroup_parent(cgrp))) {
401 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
402 return false;
403 if (cgroup_is_threaded(cgrp))
404 return false;
405 }
406
407 return true;
408 }
409
410 /* subsystems visibly enabled on a cgroup */
cgroup_control(struct cgroup * cgrp)411 static u16 cgroup_control(struct cgroup *cgrp)
412 {
413 struct cgroup *parent = cgroup_parent(cgrp);
414 u16 root_ss_mask = cgrp->root->subsys_mask;
415
416 if (parent) {
417 u16 ss_mask = parent->subtree_control;
418
419 /* threaded cgroups can only have threaded controllers */
420 if (cgroup_is_threaded(cgrp))
421 ss_mask &= cgrp_dfl_threaded_ss_mask;
422 return ss_mask;
423 }
424
425 if (cgroup_on_dfl(cgrp))
426 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
427 cgrp_dfl_implicit_ss_mask);
428 return root_ss_mask;
429 }
430
431 /* subsystems enabled on a cgroup */
cgroup_ss_mask(struct cgroup * cgrp)432 static u16 cgroup_ss_mask(struct cgroup *cgrp)
433 {
434 struct cgroup *parent = cgroup_parent(cgrp);
435
436 if (parent) {
437 u16 ss_mask = parent->subtree_ss_mask;
438
439 /* threaded cgroups can only have threaded controllers */
440 if (cgroup_is_threaded(cgrp))
441 ss_mask &= cgrp_dfl_threaded_ss_mask;
442 return ss_mask;
443 }
444
445 return cgrp->root->subsys_mask;
446 }
447
448 /**
449 * cgroup_css - obtain a cgroup's css for the specified subsystem
450 * @cgrp: the cgroup of interest
451 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
452 *
453 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
454 * function must be called either under cgroup_mutex or rcu_read_lock() and
455 * the caller is responsible for pinning the returned css if it wants to
456 * keep accessing it outside the said locks. This function may return
457 * %NULL if @cgrp doesn't have @subsys_id enabled.
458 */
cgroup_css(struct cgroup * cgrp,struct cgroup_subsys * ss)459 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
460 struct cgroup_subsys *ss)
461 {
462 if (ss)
463 return rcu_dereference_check(cgrp->subsys[ss->id],
464 lockdep_is_held(&cgroup_mutex));
465 else
466 return &cgrp->self;
467 }
468
469 /**
470 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
471 * @cgrp: the cgroup of interest
472 * @ss: the subsystem of interest
473 *
474 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist
475 * or is offline, %NULL is returned.
476 */
cgroup_tryget_css(struct cgroup * cgrp,struct cgroup_subsys * ss)477 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
478 struct cgroup_subsys *ss)
479 {
480 struct cgroup_subsys_state *css;
481
482 rcu_read_lock();
483 css = cgroup_css(cgrp, ss);
484 if (css && !css_tryget_online(css))
485 css = NULL;
486 rcu_read_unlock();
487
488 return css;
489 }
490
491 /**
492 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
493 * @cgrp: the cgroup of interest
494 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
495 *
496 * Similar to cgroup_css() but returns the effective css, which is defined
497 * as the matching css of the nearest ancestor including self which has @ss
498 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
499 * function is guaranteed to return non-NULL css.
500 */
cgroup_e_css_by_mask(struct cgroup * cgrp,struct cgroup_subsys * ss)501 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
502 struct cgroup_subsys *ss)
503 {
504 lockdep_assert_held(&cgroup_mutex);
505
506 if (!ss)
507 return &cgrp->self;
508
509 /*
510 * This function is used while updating css associations and thus
511 * can't test the csses directly. Test ss_mask.
512 */
513 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
514 cgrp = cgroup_parent(cgrp);
515 if (!cgrp)
516 return NULL;
517 }
518
519 return cgroup_css(cgrp, ss);
520 }
521
522 /**
523 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
524 * @cgrp: the cgroup of interest
525 * @ss: the subsystem of interest
526 *
527 * Find and get the effective css of @cgrp for @ss. The effective css is
528 * defined as the matching css of the nearest ancestor including self which
529 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
530 * the root css is returned, so this function always returns a valid css.
531 *
532 * The returned css is not guaranteed to be online, and therefore it is the
533 * callers responsiblity to tryget a reference for it.
534 */
cgroup_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)535 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
536 struct cgroup_subsys *ss)
537 {
538 struct cgroup_subsys_state *css;
539
540 do {
541 css = cgroup_css(cgrp, ss);
542
543 if (css)
544 return css;
545 cgrp = cgroup_parent(cgrp);
546 } while (cgrp);
547
548 return init_css_set.subsys[ss->id];
549 }
550
551 /**
552 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
553 * @cgrp: the cgroup of interest
554 * @ss: the subsystem of interest
555 *
556 * Find and get the effective css of @cgrp for @ss. The effective css is
557 * defined as the matching css of the nearest ancestor including self which
558 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
559 * the root css is returned, so this function always returns a valid css.
560 * The returned css must be put using css_put().
561 */
cgroup_get_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)562 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
563 struct cgroup_subsys *ss)
564 {
565 struct cgroup_subsys_state *css;
566
567 rcu_read_lock();
568
569 do {
570 css = cgroup_css(cgrp, ss);
571
572 if (css && css_tryget_online(css))
573 goto out_unlock;
574 cgrp = cgroup_parent(cgrp);
575 } while (cgrp);
576
577 css = init_css_set.subsys[ss->id];
578 css_get(css);
579 out_unlock:
580 rcu_read_unlock();
581 return css;
582 }
583
cgroup_get_live(struct cgroup * cgrp)584 static void cgroup_get_live(struct cgroup *cgrp)
585 {
586 WARN_ON_ONCE(cgroup_is_dead(cgrp));
587 css_get(&cgrp->self);
588 }
589
590 /**
591 * __cgroup_task_count - count the number of tasks in a cgroup. The caller
592 * is responsible for taking the css_set_lock.
593 * @cgrp: the cgroup in question
594 */
__cgroup_task_count(const struct cgroup * cgrp)595 int __cgroup_task_count(const struct cgroup *cgrp)
596 {
597 int count = 0;
598 struct cgrp_cset_link *link;
599
600 lockdep_assert_held(&css_set_lock);
601
602 list_for_each_entry(link, &cgrp->cset_links, cset_link)
603 count += link->cset->nr_tasks;
604
605 return count;
606 }
607
608 /**
609 * cgroup_task_count - count the number of tasks in a cgroup.
610 * @cgrp: the cgroup in question
611 */
cgroup_task_count(const struct cgroup * cgrp)612 int cgroup_task_count(const struct cgroup *cgrp)
613 {
614 int count;
615
616 spin_lock_irq(&css_set_lock);
617 count = __cgroup_task_count(cgrp);
618 spin_unlock_irq(&css_set_lock);
619
620 return count;
621 }
622
of_css(struct kernfs_open_file * of)623 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
624 {
625 struct cgroup *cgrp = of->kn->parent->priv;
626 struct cftype *cft = of_cft(of);
627
628 /*
629 * This is open and unprotected implementation of cgroup_css().
630 * seq_css() is only called from a kernfs file operation which has
631 * an active reference on the file. Because all the subsystem
632 * files are drained before a css is disassociated with a cgroup,
633 * the matching css from the cgroup's subsys table is guaranteed to
634 * be and stay valid until the enclosing operation is complete.
635 */
636 if (cft->ss)
637 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
638 else
639 return &cgrp->self;
640 }
641 EXPORT_SYMBOL_GPL(of_css);
642
643 /**
644 * for_each_css - iterate all css's of a cgroup
645 * @css: the iteration cursor
646 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
647 * @cgrp: the target cgroup to iterate css's of
648 *
649 * Should be called under cgroup_[tree_]mutex.
650 */
651 #define for_each_css(css, ssid, cgrp) \
652 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
653 if (!((css) = rcu_dereference_check( \
654 (cgrp)->subsys[(ssid)], \
655 lockdep_is_held(&cgroup_mutex)))) { } \
656 else
657
658 /**
659 * for_each_e_css - iterate all effective css's of a cgroup
660 * @css: the iteration cursor
661 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
662 * @cgrp: the target cgroup to iterate css's of
663 *
664 * Should be called under cgroup_[tree_]mutex.
665 */
666 #define for_each_e_css(css, ssid, cgrp) \
667 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
668 if (!((css) = cgroup_e_css_by_mask(cgrp, \
669 cgroup_subsys[(ssid)]))) \
670 ; \
671 else
672
673 /**
674 * do_each_subsys_mask - filter for_each_subsys with a bitmask
675 * @ss: the iteration cursor
676 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
677 * @ss_mask: the bitmask
678 *
679 * The block will only run for cases where the ssid-th bit (1 << ssid) of
680 * @ss_mask is set.
681 */
682 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
683 unsigned long __ss_mask = (ss_mask); \
684 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
685 (ssid) = 0; \
686 break; \
687 } \
688 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
689 (ss) = cgroup_subsys[ssid]; \
690 {
691
692 #define while_each_subsys_mask() \
693 } \
694 } \
695 } while (false)
696
697 /* iterate over child cgrps, lock should be held throughout iteration */
698 #define cgroup_for_each_live_child(child, cgrp) \
699 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
700 if (({ lockdep_assert_held(&cgroup_mutex); \
701 cgroup_is_dead(child); })) \
702 ; \
703 else
704
705 /* walk live descendants in preorder */
706 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
707 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
708 if (({ lockdep_assert_held(&cgroup_mutex); \
709 (dsct) = (d_css)->cgroup; \
710 cgroup_is_dead(dsct); })) \
711 ; \
712 else
713
714 /* walk live descendants in postorder */
715 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
716 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
717 if (({ lockdep_assert_held(&cgroup_mutex); \
718 (dsct) = (d_css)->cgroup; \
719 cgroup_is_dead(dsct); })) \
720 ; \
721 else
722
723 /*
724 * The default css_set - used by init and its children prior to any
725 * hierarchies being mounted. It contains a pointer to the root state
726 * for each subsystem. Also used to anchor the list of css_sets. Not
727 * reference-counted, to improve performance when child cgroups
728 * haven't been created.
729 */
730 struct css_set init_css_set = {
731 .refcount = REFCOUNT_INIT(1),
732 .dom_cset = &init_css_set,
733 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
734 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
735 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks),
736 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
737 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets),
738 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
739 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
740 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
741
742 /*
743 * The following field is re-initialized when this cset gets linked
744 * in cgroup_init(). However, let's initialize the field
745 * statically too so that the default cgroup can be accessed safely
746 * early during boot.
747 */
748 .dfl_cgrp = &cgrp_dfl_root.cgrp,
749 };
750
751 static int css_set_count = 1; /* 1 for init_css_set */
752
css_set_threaded(struct css_set * cset)753 static bool css_set_threaded(struct css_set *cset)
754 {
755 return cset->dom_cset != cset;
756 }
757
758 /**
759 * css_set_populated - does a css_set contain any tasks?
760 * @cset: target css_set
761 *
762 * css_set_populated() should be the same as !!cset->nr_tasks at steady
763 * state. However, css_set_populated() can be called while a task is being
764 * added to or removed from the linked list before the nr_tasks is
765 * properly updated. Hence, we can't just look at ->nr_tasks here.
766 */
css_set_populated(struct css_set * cset)767 static bool css_set_populated(struct css_set *cset)
768 {
769 lockdep_assert_held(&css_set_lock);
770
771 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
772 }
773
774 /**
775 * cgroup_update_populated - update the populated count of a cgroup
776 * @cgrp: the target cgroup
777 * @populated: inc or dec populated count
778 *
779 * One of the css_sets associated with @cgrp is either getting its first
780 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
781 * count is propagated towards root so that a given cgroup's
782 * nr_populated_children is zero iff none of its descendants contain any
783 * tasks.
784 *
785 * @cgrp's interface file "cgroup.populated" is zero if both
786 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
787 * 1 otherwise. When the sum changes from or to zero, userland is notified
788 * that the content of the interface file has changed. This can be used to
789 * detect when @cgrp and its descendants become populated or empty.
790 */
cgroup_update_populated(struct cgroup * cgrp,bool populated)791 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
792 {
793 struct cgroup *child = NULL;
794 int adj = populated ? 1 : -1;
795
796 lockdep_assert_held(&css_set_lock);
797
798 do {
799 bool was_populated = cgroup_is_populated(cgrp);
800
801 if (!child) {
802 cgrp->nr_populated_csets += adj;
803 } else {
804 if (cgroup_is_threaded(child))
805 cgrp->nr_populated_threaded_children += adj;
806 else
807 cgrp->nr_populated_domain_children += adj;
808 }
809
810 if (was_populated == cgroup_is_populated(cgrp))
811 break;
812
813 cgroup1_check_for_release(cgrp);
814 TRACE_CGROUP_PATH(notify_populated, cgrp,
815 cgroup_is_populated(cgrp));
816 cgroup_file_notify(&cgrp->events_file);
817
818 child = cgrp;
819 cgrp = cgroup_parent(cgrp);
820 } while (cgrp);
821 }
822
823 /**
824 * css_set_update_populated - update populated state of a css_set
825 * @cset: target css_set
826 * @populated: whether @cset is populated or depopulated
827 *
828 * @cset is either getting the first task or losing the last. Update the
829 * populated counters of all associated cgroups accordingly.
830 */
css_set_update_populated(struct css_set * cset,bool populated)831 static void css_set_update_populated(struct css_set *cset, bool populated)
832 {
833 struct cgrp_cset_link *link;
834
835 lockdep_assert_held(&css_set_lock);
836
837 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
838 cgroup_update_populated(link->cgrp, populated);
839 }
840
841 /*
842 * @task is leaving, advance task iterators which are pointing to it so
843 * that they can resume at the next position. Advancing an iterator might
844 * remove it from the list, use safe walk. See css_task_iter_skip() for
845 * details.
846 */
css_set_skip_task_iters(struct css_set * cset,struct task_struct * task)847 static void css_set_skip_task_iters(struct css_set *cset,
848 struct task_struct *task)
849 {
850 struct css_task_iter *it, *pos;
851
852 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
853 css_task_iter_skip(it, task);
854 }
855
856 /**
857 * css_set_move_task - move a task from one css_set to another
858 * @task: task being moved
859 * @from_cset: css_set @task currently belongs to (may be NULL)
860 * @to_cset: new css_set @task is being moved to (may be NULL)
861 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
862 *
863 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
864 * css_set, @from_cset can be NULL. If @task is being disassociated
865 * instead of moved, @to_cset can be NULL.
866 *
867 * This function automatically handles populated counter updates and
868 * css_task_iter adjustments but the caller is responsible for managing
869 * @from_cset and @to_cset's reference counts.
870 */
css_set_move_task(struct task_struct * task,struct css_set * from_cset,struct css_set * to_cset,bool use_mg_tasks)871 static void css_set_move_task(struct task_struct *task,
872 struct css_set *from_cset, struct css_set *to_cset,
873 bool use_mg_tasks)
874 {
875 lockdep_assert_held(&css_set_lock);
876
877 if (to_cset && !css_set_populated(to_cset))
878 css_set_update_populated(to_cset, true);
879
880 if (from_cset) {
881 WARN_ON_ONCE(list_empty(&task->cg_list));
882
883 css_set_skip_task_iters(from_cset, task);
884 list_del_init(&task->cg_list);
885 if (!css_set_populated(from_cset))
886 css_set_update_populated(from_cset, false);
887 } else {
888 WARN_ON_ONCE(!list_empty(&task->cg_list));
889 }
890
891 if (to_cset) {
892 /*
893 * We are synchronized through cgroup_threadgroup_rwsem
894 * against PF_EXITING setting such that we can't race
895 * against cgroup_exit()/cgroup_free() dropping the css_set.
896 */
897 WARN_ON_ONCE(task->flags & PF_EXITING);
898
899 cgroup_move_task(task, to_cset);
900 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
901 &to_cset->tasks);
902 }
903 }
904
905 /*
906 * hash table for cgroup groups. This improves the performance to find
907 * an existing css_set. This hash doesn't (currently) take into
908 * account cgroups in empty hierarchies.
909 */
910 #define CSS_SET_HASH_BITS 7
911 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
912
css_set_hash(struct cgroup_subsys_state * css[])913 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
914 {
915 unsigned long key = 0UL;
916 struct cgroup_subsys *ss;
917 int i;
918
919 for_each_subsys(ss, i)
920 key += (unsigned long)css[i];
921 key = (key >> 16) ^ key;
922
923 return key;
924 }
925
put_css_set_locked(struct css_set * cset)926 void put_css_set_locked(struct css_set *cset)
927 {
928 struct cgrp_cset_link *link, *tmp_link;
929 struct cgroup_subsys *ss;
930 int ssid;
931
932 lockdep_assert_held(&css_set_lock);
933
934 if (!refcount_dec_and_test(&cset->refcount))
935 return;
936
937 WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
938
939 /* This css_set is dead. unlink it and release cgroup and css refs */
940 for_each_subsys(ss, ssid) {
941 list_del(&cset->e_cset_node[ssid]);
942 css_put(cset->subsys[ssid]);
943 }
944 hash_del(&cset->hlist);
945 css_set_count--;
946
947 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
948 list_del(&link->cset_link);
949 list_del(&link->cgrp_link);
950 if (cgroup_parent(link->cgrp))
951 cgroup_put(link->cgrp);
952 kfree(link);
953 }
954
955 if (css_set_threaded(cset)) {
956 list_del(&cset->threaded_csets_node);
957 put_css_set_locked(cset->dom_cset);
958 }
959
960 kfree_rcu(cset, rcu_head);
961 }
962
963 /**
964 * compare_css_sets - helper function for find_existing_css_set().
965 * @cset: candidate css_set being tested
966 * @old_cset: existing css_set for a task
967 * @new_cgrp: cgroup that's being entered by the task
968 * @template: desired set of css pointers in css_set (pre-calculated)
969 *
970 * Returns true if "cset" matches "old_cset" except for the hierarchy
971 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
972 */
compare_css_sets(struct css_set * cset,struct css_set * old_cset,struct cgroup * new_cgrp,struct cgroup_subsys_state * template[])973 static bool compare_css_sets(struct css_set *cset,
974 struct css_set *old_cset,
975 struct cgroup *new_cgrp,
976 struct cgroup_subsys_state *template[])
977 {
978 struct cgroup *new_dfl_cgrp;
979 struct list_head *l1, *l2;
980
981 /*
982 * On the default hierarchy, there can be csets which are
983 * associated with the same set of cgroups but different csses.
984 * Let's first ensure that csses match.
985 */
986 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
987 return false;
988
989
990 /* @cset's domain should match the default cgroup's */
991 if (cgroup_on_dfl(new_cgrp))
992 new_dfl_cgrp = new_cgrp;
993 else
994 new_dfl_cgrp = old_cset->dfl_cgrp;
995
996 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
997 return false;
998
999 /*
1000 * Compare cgroup pointers in order to distinguish between
1001 * different cgroups in hierarchies. As different cgroups may
1002 * share the same effective css, this comparison is always
1003 * necessary.
1004 */
1005 l1 = &cset->cgrp_links;
1006 l2 = &old_cset->cgrp_links;
1007 while (1) {
1008 struct cgrp_cset_link *link1, *link2;
1009 struct cgroup *cgrp1, *cgrp2;
1010
1011 l1 = l1->next;
1012 l2 = l2->next;
1013 /* See if we reached the end - both lists are equal length. */
1014 if (l1 == &cset->cgrp_links) {
1015 BUG_ON(l2 != &old_cset->cgrp_links);
1016 break;
1017 } else {
1018 BUG_ON(l2 == &old_cset->cgrp_links);
1019 }
1020 /* Locate the cgroups associated with these links. */
1021 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1022 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1023 cgrp1 = link1->cgrp;
1024 cgrp2 = link2->cgrp;
1025 /* Hierarchies should be linked in the same order. */
1026 BUG_ON(cgrp1->root != cgrp2->root);
1027
1028 /*
1029 * If this hierarchy is the hierarchy of the cgroup
1030 * that's changing, then we need to check that this
1031 * css_set points to the new cgroup; if it's any other
1032 * hierarchy, then this css_set should point to the
1033 * same cgroup as the old css_set.
1034 */
1035 if (cgrp1->root == new_cgrp->root) {
1036 if (cgrp1 != new_cgrp)
1037 return false;
1038 } else {
1039 if (cgrp1 != cgrp2)
1040 return false;
1041 }
1042 }
1043 return true;
1044 }
1045
1046 /**
1047 * find_existing_css_set - init css array and find the matching css_set
1048 * @old_cset: the css_set that we're using before the cgroup transition
1049 * @cgrp: the cgroup that we're moving into
1050 * @template: out param for the new set of csses, should be clear on entry
1051 */
find_existing_css_set(struct css_set * old_cset,struct cgroup * cgrp,struct cgroup_subsys_state * template[])1052 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1053 struct cgroup *cgrp,
1054 struct cgroup_subsys_state *template[])
1055 {
1056 struct cgroup_root *root = cgrp->root;
1057 struct cgroup_subsys *ss;
1058 struct css_set *cset;
1059 unsigned long key;
1060 int i;
1061
1062 /*
1063 * Build the set of subsystem state objects that we want to see in the
1064 * new css_set. while subsystems can change globally, the entries here
1065 * won't change, so no need for locking.
1066 */
1067 for_each_subsys(ss, i) {
1068 if (root->subsys_mask & (1UL << i)) {
1069 /*
1070 * @ss is in this hierarchy, so we want the
1071 * effective css from @cgrp.
1072 */
1073 template[i] = cgroup_e_css_by_mask(cgrp, ss);
1074 } else {
1075 /*
1076 * @ss is not in this hierarchy, so we don't want
1077 * to change the css.
1078 */
1079 template[i] = old_cset->subsys[i];
1080 }
1081 }
1082
1083 key = css_set_hash(template);
1084 hash_for_each_possible(css_set_table, cset, hlist, key) {
1085 if (!compare_css_sets(cset, old_cset, cgrp, template))
1086 continue;
1087
1088 /* This css_set matches what we need */
1089 return cset;
1090 }
1091
1092 /* No existing cgroup group matched */
1093 return NULL;
1094 }
1095
free_cgrp_cset_links(struct list_head * links_to_free)1096 static void free_cgrp_cset_links(struct list_head *links_to_free)
1097 {
1098 struct cgrp_cset_link *link, *tmp_link;
1099
1100 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1101 list_del(&link->cset_link);
1102 kfree(link);
1103 }
1104 }
1105
1106 /**
1107 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1108 * @count: the number of links to allocate
1109 * @tmp_links: list_head the allocated links are put on
1110 *
1111 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1112 * through ->cset_link. Returns 0 on success or -errno.
1113 */
allocate_cgrp_cset_links(int count,struct list_head * tmp_links)1114 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1115 {
1116 struct cgrp_cset_link *link;
1117 int i;
1118
1119 INIT_LIST_HEAD(tmp_links);
1120
1121 for (i = 0; i < count; i++) {
1122 link = kzalloc(sizeof(*link), GFP_KERNEL);
1123 if (!link) {
1124 free_cgrp_cset_links(tmp_links);
1125 return -ENOMEM;
1126 }
1127 list_add(&link->cset_link, tmp_links);
1128 }
1129 return 0;
1130 }
1131
1132 /**
1133 * link_css_set - a helper function to link a css_set to a cgroup
1134 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1135 * @cset: the css_set to be linked
1136 * @cgrp: the destination cgroup
1137 */
link_css_set(struct list_head * tmp_links,struct css_set * cset,struct cgroup * cgrp)1138 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1139 struct cgroup *cgrp)
1140 {
1141 struct cgrp_cset_link *link;
1142
1143 BUG_ON(list_empty(tmp_links));
1144
1145 if (cgroup_on_dfl(cgrp))
1146 cset->dfl_cgrp = cgrp;
1147
1148 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1149 link->cset = cset;
1150 link->cgrp = cgrp;
1151
1152 /*
1153 * Always add links to the tail of the lists so that the lists are
1154 * in choronological order.
1155 */
1156 list_move_tail(&link->cset_link, &cgrp->cset_links);
1157 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1158
1159 if (cgroup_parent(cgrp))
1160 cgroup_get_live(cgrp);
1161 }
1162
1163 /**
1164 * find_css_set - return a new css_set with one cgroup updated
1165 * @old_cset: the baseline css_set
1166 * @cgrp: the cgroup to be updated
1167 *
1168 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1169 * substituted into the appropriate hierarchy.
1170 */
find_css_set(struct css_set * old_cset,struct cgroup * cgrp)1171 static struct css_set *find_css_set(struct css_set *old_cset,
1172 struct cgroup *cgrp)
1173 {
1174 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1175 struct css_set *cset;
1176 struct list_head tmp_links;
1177 struct cgrp_cset_link *link;
1178 struct cgroup_subsys *ss;
1179 unsigned long key;
1180 int ssid;
1181
1182 lockdep_assert_held(&cgroup_mutex);
1183
1184 /* First see if we already have a cgroup group that matches
1185 * the desired set */
1186 spin_lock_irq(&css_set_lock);
1187 cset = find_existing_css_set(old_cset, cgrp, template);
1188 if (cset)
1189 get_css_set(cset);
1190 spin_unlock_irq(&css_set_lock);
1191
1192 if (cset)
1193 return cset;
1194
1195 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1196 if (!cset)
1197 return NULL;
1198
1199 /* Allocate all the cgrp_cset_link objects that we'll need */
1200 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1201 kfree(cset);
1202 return NULL;
1203 }
1204
1205 refcount_set(&cset->refcount, 1);
1206 cset->dom_cset = cset;
1207 INIT_LIST_HEAD(&cset->tasks);
1208 INIT_LIST_HEAD(&cset->mg_tasks);
1209 INIT_LIST_HEAD(&cset->dying_tasks);
1210 INIT_LIST_HEAD(&cset->task_iters);
1211 INIT_LIST_HEAD(&cset->threaded_csets);
1212 INIT_HLIST_NODE(&cset->hlist);
1213 INIT_LIST_HEAD(&cset->cgrp_links);
1214 INIT_LIST_HEAD(&cset->mg_preload_node);
1215 INIT_LIST_HEAD(&cset->mg_node);
1216
1217 /* Copy the set of subsystem state objects generated in
1218 * find_existing_css_set() */
1219 memcpy(cset->subsys, template, sizeof(cset->subsys));
1220
1221 spin_lock_irq(&css_set_lock);
1222 /* Add reference counts and links from the new css_set. */
1223 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1224 struct cgroup *c = link->cgrp;
1225
1226 if (c->root == cgrp->root)
1227 c = cgrp;
1228 link_css_set(&tmp_links, cset, c);
1229 }
1230
1231 BUG_ON(!list_empty(&tmp_links));
1232
1233 css_set_count++;
1234
1235 /* Add @cset to the hash table */
1236 key = css_set_hash(cset->subsys);
1237 hash_add(css_set_table, &cset->hlist, key);
1238
1239 for_each_subsys(ss, ssid) {
1240 struct cgroup_subsys_state *css = cset->subsys[ssid];
1241
1242 list_add_tail(&cset->e_cset_node[ssid],
1243 &css->cgroup->e_csets[ssid]);
1244 css_get(css);
1245 }
1246
1247 spin_unlock_irq(&css_set_lock);
1248
1249 /*
1250 * If @cset should be threaded, look up the matching dom_cset and
1251 * link them up. We first fully initialize @cset then look for the
1252 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1253 * to stay empty until we return.
1254 */
1255 if (cgroup_is_threaded(cset->dfl_cgrp)) {
1256 struct css_set *dcset;
1257
1258 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1259 if (!dcset) {
1260 put_css_set(cset);
1261 return NULL;
1262 }
1263
1264 spin_lock_irq(&css_set_lock);
1265 cset->dom_cset = dcset;
1266 list_add_tail(&cset->threaded_csets_node,
1267 &dcset->threaded_csets);
1268 spin_unlock_irq(&css_set_lock);
1269 }
1270
1271 return cset;
1272 }
1273
cgroup_root_from_kf(struct kernfs_root * kf_root)1274 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1275 {
1276 struct cgroup *root_cgrp = kf_root->kn->priv;
1277
1278 return root_cgrp->root;
1279 }
1280
cgroup_init_root_id(struct cgroup_root * root)1281 static int cgroup_init_root_id(struct cgroup_root *root)
1282 {
1283 int id;
1284
1285 lockdep_assert_held(&cgroup_mutex);
1286
1287 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1288 if (id < 0)
1289 return id;
1290
1291 root->hierarchy_id = id;
1292 return 0;
1293 }
1294
cgroup_exit_root_id(struct cgroup_root * root)1295 static void cgroup_exit_root_id(struct cgroup_root *root)
1296 {
1297 lockdep_assert_held(&cgroup_mutex);
1298
1299 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1300 }
1301
cgroup_free_root(struct cgroup_root * root)1302 void cgroup_free_root(struct cgroup_root *root)
1303 {
1304 kfree(root);
1305 }
1306
cgroup_destroy_root(struct cgroup_root * root)1307 static void cgroup_destroy_root(struct cgroup_root *root)
1308 {
1309 struct cgroup *cgrp = &root->cgrp;
1310 struct cgrp_cset_link *link, *tmp_link;
1311
1312 trace_cgroup_destroy_root(root);
1313
1314 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1315
1316 BUG_ON(atomic_read(&root->nr_cgrps));
1317 BUG_ON(!list_empty(&cgrp->self.children));
1318
1319 /* Rebind all subsystems back to the default hierarchy */
1320 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1321
1322 /*
1323 * Release all the links from cset_links to this hierarchy's
1324 * root cgroup
1325 */
1326 spin_lock_irq(&css_set_lock);
1327
1328 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1329 list_del(&link->cset_link);
1330 list_del(&link->cgrp_link);
1331 kfree(link);
1332 }
1333
1334 spin_unlock_irq(&css_set_lock);
1335
1336 if (!list_empty(&root->root_list)) {
1337 list_del(&root->root_list);
1338 cgroup_root_count--;
1339 }
1340
1341 cgroup_exit_root_id(root);
1342
1343 mutex_unlock(&cgroup_mutex);
1344
1345 kernfs_destroy_root(root->kf_root);
1346 cgroup_free_root(root);
1347 }
1348
1349 /*
1350 * look up cgroup associated with current task's cgroup namespace on the
1351 * specified hierarchy
1352 */
1353 static struct cgroup *
current_cgns_cgroup_from_root(struct cgroup_root * root)1354 current_cgns_cgroup_from_root(struct cgroup_root *root)
1355 {
1356 struct cgroup *res = NULL;
1357 struct css_set *cset;
1358
1359 lockdep_assert_held(&css_set_lock);
1360
1361 rcu_read_lock();
1362
1363 cset = current->nsproxy->cgroup_ns->root_cset;
1364 if (cset == &init_css_set) {
1365 res = &root->cgrp;
1366 } else if (root == &cgrp_dfl_root) {
1367 res = cset->dfl_cgrp;
1368 } else {
1369 struct cgrp_cset_link *link;
1370
1371 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1372 struct cgroup *c = link->cgrp;
1373
1374 if (c->root == root) {
1375 res = c;
1376 break;
1377 }
1378 }
1379 }
1380 rcu_read_unlock();
1381
1382 BUG_ON(!res);
1383 return res;
1384 }
1385
1386 /* look up cgroup associated with given css_set on the specified hierarchy */
cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1387 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1388 struct cgroup_root *root)
1389 {
1390 struct cgroup *res = NULL;
1391
1392 lockdep_assert_held(&cgroup_mutex);
1393 lockdep_assert_held(&css_set_lock);
1394
1395 if (cset == &init_css_set) {
1396 res = &root->cgrp;
1397 } else if (root == &cgrp_dfl_root) {
1398 res = cset->dfl_cgrp;
1399 } else {
1400 struct cgrp_cset_link *link;
1401
1402 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1403 struct cgroup *c = link->cgrp;
1404
1405 if (c->root == root) {
1406 res = c;
1407 break;
1408 }
1409 }
1410 }
1411
1412 BUG_ON(!res);
1413 return res;
1414 }
1415
1416 /*
1417 * Return the cgroup for "task" from the given hierarchy. Must be
1418 * called with cgroup_mutex and css_set_lock held.
1419 */
task_cgroup_from_root(struct task_struct * task,struct cgroup_root * root)1420 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1421 struct cgroup_root *root)
1422 {
1423 /*
1424 * No need to lock the task - since we hold css_set_lock the
1425 * task can't change groups.
1426 */
1427 return cset_cgroup_from_root(task_css_set(task), root);
1428 }
1429
1430 /*
1431 * A task must hold cgroup_mutex to modify cgroups.
1432 *
1433 * Any task can increment and decrement the count field without lock.
1434 * So in general, code holding cgroup_mutex can't rely on the count
1435 * field not changing. However, if the count goes to zero, then only
1436 * cgroup_attach_task() can increment it again. Because a count of zero
1437 * means that no tasks are currently attached, therefore there is no
1438 * way a task attached to that cgroup can fork (the other way to
1439 * increment the count). So code holding cgroup_mutex can safely
1440 * assume that if the count is zero, it will stay zero. Similarly, if
1441 * a task holds cgroup_mutex on a cgroup with zero count, it
1442 * knows that the cgroup won't be removed, as cgroup_rmdir()
1443 * needs that mutex.
1444 *
1445 * A cgroup can only be deleted if both its 'count' of using tasks
1446 * is zero, and its list of 'children' cgroups is empty. Since all
1447 * tasks in the system use _some_ cgroup, and since there is always at
1448 * least one task in the system (init, pid == 1), therefore, root cgroup
1449 * always has either children cgroups and/or using tasks. So we don't
1450 * need a special hack to ensure that root cgroup cannot be deleted.
1451 *
1452 * P.S. One more locking exception. RCU is used to guard the
1453 * update of a tasks cgroup pointer by cgroup_attach_task()
1454 */
1455
1456 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1457
cgroup_file_name(struct cgroup * cgrp,const struct cftype * cft,char * buf)1458 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1459 char *buf)
1460 {
1461 struct cgroup_subsys *ss = cft->ss;
1462
1463 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1464 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1465 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1466
1467 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1468 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1469 cft->name);
1470 } else {
1471 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1472 }
1473 return buf;
1474 }
1475
1476 /**
1477 * cgroup_file_mode - deduce file mode of a control file
1478 * @cft: the control file in question
1479 *
1480 * S_IRUGO for read, S_IWUSR for write.
1481 */
cgroup_file_mode(const struct cftype * cft)1482 static umode_t cgroup_file_mode(const struct cftype *cft)
1483 {
1484 umode_t mode = 0;
1485
1486 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1487 mode |= S_IRUGO;
1488
1489 if (cft->write_u64 || cft->write_s64 || cft->write) {
1490 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1491 mode |= S_IWUGO;
1492 else
1493 mode |= S_IWUSR;
1494 }
1495
1496 return mode;
1497 }
1498
1499 /**
1500 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1501 * @subtree_control: the new subtree_control mask to consider
1502 * @this_ss_mask: available subsystems
1503 *
1504 * On the default hierarchy, a subsystem may request other subsystems to be
1505 * enabled together through its ->depends_on mask. In such cases, more
1506 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1507 *
1508 * This function calculates which subsystems need to be enabled if
1509 * @subtree_control is to be applied while restricted to @this_ss_mask.
1510 */
cgroup_calc_subtree_ss_mask(u16 subtree_control,u16 this_ss_mask)1511 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1512 {
1513 u16 cur_ss_mask = subtree_control;
1514 struct cgroup_subsys *ss;
1515 int ssid;
1516
1517 lockdep_assert_held(&cgroup_mutex);
1518
1519 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1520
1521 while (true) {
1522 u16 new_ss_mask = cur_ss_mask;
1523
1524 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1525 new_ss_mask |= ss->depends_on;
1526 } while_each_subsys_mask();
1527
1528 /*
1529 * Mask out subsystems which aren't available. This can
1530 * happen only if some depended-upon subsystems were bound
1531 * to non-default hierarchies.
1532 */
1533 new_ss_mask &= this_ss_mask;
1534
1535 if (new_ss_mask == cur_ss_mask)
1536 break;
1537 cur_ss_mask = new_ss_mask;
1538 }
1539
1540 return cur_ss_mask;
1541 }
1542
1543 /**
1544 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1545 * @kn: the kernfs_node being serviced
1546 *
1547 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1548 * the method finishes if locking succeeded. Note that once this function
1549 * returns the cgroup returned by cgroup_kn_lock_live() may become
1550 * inaccessible any time. If the caller intends to continue to access the
1551 * cgroup, it should pin it before invoking this function.
1552 */
cgroup_kn_unlock(struct kernfs_node * kn)1553 void cgroup_kn_unlock(struct kernfs_node *kn)
1554 {
1555 struct cgroup *cgrp;
1556
1557 if (kernfs_type(kn) == KERNFS_DIR)
1558 cgrp = kn->priv;
1559 else
1560 cgrp = kn->parent->priv;
1561
1562 mutex_unlock(&cgroup_mutex);
1563
1564 kernfs_unbreak_active_protection(kn);
1565 cgroup_put(cgrp);
1566 }
1567
1568 /**
1569 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1570 * @kn: the kernfs_node being serviced
1571 * @drain_offline: perform offline draining on the cgroup
1572 *
1573 * This helper is to be used by a cgroup kernfs method currently servicing
1574 * @kn. It breaks the active protection, performs cgroup locking and
1575 * verifies that the associated cgroup is alive. Returns the cgroup if
1576 * alive; otherwise, %NULL. A successful return should be undone by a
1577 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1578 * cgroup is drained of offlining csses before return.
1579 *
1580 * Any cgroup kernfs method implementation which requires locking the
1581 * associated cgroup should use this helper. It avoids nesting cgroup
1582 * locking under kernfs active protection and allows all kernfs operations
1583 * including self-removal.
1584 */
cgroup_kn_lock_live(struct kernfs_node * kn,bool drain_offline)1585 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1586 {
1587 struct cgroup *cgrp;
1588
1589 if (kernfs_type(kn) == KERNFS_DIR)
1590 cgrp = kn->priv;
1591 else
1592 cgrp = kn->parent->priv;
1593
1594 /*
1595 * We're gonna grab cgroup_mutex which nests outside kernfs
1596 * active_ref. cgroup liveliness check alone provides enough
1597 * protection against removal. Ensure @cgrp stays accessible and
1598 * break the active_ref protection.
1599 */
1600 if (!cgroup_tryget(cgrp))
1601 return NULL;
1602 kernfs_break_active_protection(kn);
1603
1604 if (drain_offline)
1605 cgroup_lock_and_drain_offline(cgrp);
1606 else
1607 mutex_lock(&cgroup_mutex);
1608
1609 if (!cgroup_is_dead(cgrp))
1610 return cgrp;
1611
1612 cgroup_kn_unlock(kn);
1613 return NULL;
1614 }
1615
cgroup_rm_file(struct cgroup * cgrp,const struct cftype * cft)1616 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1617 {
1618 char name[CGROUP_FILE_NAME_MAX];
1619
1620 lockdep_assert_held(&cgroup_mutex);
1621
1622 if (cft->file_offset) {
1623 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1624 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1625
1626 spin_lock_irq(&cgroup_file_kn_lock);
1627 cfile->kn = NULL;
1628 spin_unlock_irq(&cgroup_file_kn_lock);
1629
1630 del_timer_sync(&cfile->notify_timer);
1631 }
1632
1633 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1634 }
1635
1636 /**
1637 * css_clear_dir - remove subsys files in a cgroup directory
1638 * @css: taget css
1639 */
css_clear_dir(struct cgroup_subsys_state * css)1640 static void css_clear_dir(struct cgroup_subsys_state *css)
1641 {
1642 struct cgroup *cgrp = css->cgroup;
1643 struct cftype *cfts;
1644
1645 if (!(css->flags & CSS_VISIBLE))
1646 return;
1647
1648 css->flags &= ~CSS_VISIBLE;
1649
1650 if (!css->ss) {
1651 if (cgroup_on_dfl(cgrp))
1652 cfts = cgroup_base_files;
1653 else
1654 cfts = cgroup1_base_files;
1655
1656 cgroup_addrm_files(css, cgrp, cfts, false);
1657 } else {
1658 list_for_each_entry(cfts, &css->ss->cfts, node)
1659 cgroup_addrm_files(css, cgrp, cfts, false);
1660 }
1661 }
1662
1663 /**
1664 * css_populate_dir - create subsys files in a cgroup directory
1665 * @css: target css
1666 *
1667 * On failure, no file is added.
1668 */
css_populate_dir(struct cgroup_subsys_state * css)1669 static int css_populate_dir(struct cgroup_subsys_state *css)
1670 {
1671 struct cgroup *cgrp = css->cgroup;
1672 struct cftype *cfts, *failed_cfts;
1673 int ret;
1674
1675 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1676 return 0;
1677
1678 if (!css->ss) {
1679 if (cgroup_on_dfl(cgrp))
1680 cfts = cgroup_base_files;
1681 else
1682 cfts = cgroup1_base_files;
1683
1684 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1685 if (ret < 0)
1686 return ret;
1687 } else {
1688 list_for_each_entry(cfts, &css->ss->cfts, node) {
1689 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1690 if (ret < 0) {
1691 failed_cfts = cfts;
1692 goto err;
1693 }
1694 }
1695 }
1696
1697 css->flags |= CSS_VISIBLE;
1698
1699 return 0;
1700 err:
1701 list_for_each_entry(cfts, &css->ss->cfts, node) {
1702 if (cfts == failed_cfts)
1703 break;
1704 cgroup_addrm_files(css, cgrp, cfts, false);
1705 }
1706 return ret;
1707 }
1708
rebind_subsystems(struct cgroup_root * dst_root,u16 ss_mask)1709 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1710 {
1711 struct cgroup *dcgrp = &dst_root->cgrp;
1712 struct cgroup_subsys *ss;
1713 int ssid, i, ret;
1714 u16 dfl_disable_ss_mask = 0;
1715
1716 lockdep_assert_held(&cgroup_mutex);
1717
1718 do_each_subsys_mask(ss, ssid, ss_mask) {
1719 /*
1720 * If @ss has non-root csses attached to it, can't move.
1721 * If @ss is an implicit controller, it is exempt from this
1722 * rule and can be stolen.
1723 */
1724 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1725 !ss->implicit_on_dfl)
1726 return -EBUSY;
1727
1728 /* can't move between two non-dummy roots either */
1729 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1730 return -EBUSY;
1731
1732 /*
1733 * Collect ssid's that need to be disabled from default
1734 * hierarchy.
1735 */
1736 if (ss->root == &cgrp_dfl_root)
1737 dfl_disable_ss_mask |= 1 << ssid;
1738
1739 } while_each_subsys_mask();
1740
1741 if (dfl_disable_ss_mask) {
1742 struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1743
1744 /*
1745 * Controllers from default hierarchy that need to be rebound
1746 * are all disabled together in one go.
1747 */
1748 cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1749 WARN_ON(cgroup_apply_control(scgrp));
1750 cgroup_finalize_control(scgrp, 0);
1751 }
1752
1753 do_each_subsys_mask(ss, ssid, ss_mask) {
1754 struct cgroup_root *src_root = ss->root;
1755 struct cgroup *scgrp = &src_root->cgrp;
1756 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1757 struct css_set *cset;
1758
1759 WARN_ON(!css || cgroup_css(dcgrp, ss));
1760
1761 if (src_root != &cgrp_dfl_root) {
1762 /* disable from the source */
1763 src_root->subsys_mask &= ~(1 << ssid);
1764 WARN_ON(cgroup_apply_control(scgrp));
1765 cgroup_finalize_control(scgrp, 0);
1766 }
1767
1768 /* rebind */
1769 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1770 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1771 ss->root = dst_root;
1772 css->cgroup = dcgrp;
1773
1774 spin_lock_irq(&css_set_lock);
1775 hash_for_each(css_set_table, i, cset, hlist)
1776 list_move_tail(&cset->e_cset_node[ss->id],
1777 &dcgrp->e_csets[ss->id]);
1778 spin_unlock_irq(&css_set_lock);
1779
1780 /* default hierarchy doesn't enable controllers by default */
1781 dst_root->subsys_mask |= 1 << ssid;
1782 if (dst_root == &cgrp_dfl_root) {
1783 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1784 } else {
1785 dcgrp->subtree_control |= 1 << ssid;
1786 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1787 }
1788
1789 ret = cgroup_apply_control(dcgrp);
1790 if (ret)
1791 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1792 ss->name, ret);
1793
1794 if (ss->bind)
1795 ss->bind(css);
1796 } while_each_subsys_mask();
1797
1798 kernfs_activate(dcgrp->kn);
1799 return 0;
1800 }
1801
cgroup_show_path(struct seq_file * sf,struct kernfs_node * kf_node,struct kernfs_root * kf_root)1802 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1803 struct kernfs_root *kf_root)
1804 {
1805 int len = 0;
1806 char *buf = NULL;
1807 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1808 struct cgroup *ns_cgroup;
1809
1810 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1811 if (!buf)
1812 return -ENOMEM;
1813
1814 spin_lock_irq(&css_set_lock);
1815 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1816 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1817 spin_unlock_irq(&css_set_lock);
1818
1819 if (len >= PATH_MAX)
1820 len = -ERANGE;
1821 else if (len > 0) {
1822 seq_escape(sf, buf, " \t\n\\");
1823 len = 0;
1824 }
1825 kfree(buf);
1826 return len;
1827 }
1828
1829 enum cgroup2_param {
1830 Opt_nsdelegate,
1831 Opt_memory_localevents,
1832 Opt_memory_recursiveprot,
1833 nr__cgroup2_params
1834 };
1835
1836 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1837 fsparam_flag("nsdelegate", Opt_nsdelegate),
1838 fsparam_flag("memory_localevents", Opt_memory_localevents),
1839 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot),
1840 {}
1841 };
1842
cgroup2_parse_param(struct fs_context * fc,struct fs_parameter * param)1843 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1844 {
1845 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1846 struct fs_parse_result result;
1847 int opt;
1848
1849 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1850 if (opt < 0)
1851 return opt;
1852
1853 switch (opt) {
1854 case Opt_nsdelegate:
1855 ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1856 return 0;
1857 case Opt_memory_localevents:
1858 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1859 return 0;
1860 case Opt_memory_recursiveprot:
1861 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1862 return 0;
1863 }
1864 return -EINVAL;
1865 }
1866
apply_cgroup_root_flags(unsigned int root_flags)1867 static void apply_cgroup_root_flags(unsigned int root_flags)
1868 {
1869 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1870 if (root_flags & CGRP_ROOT_NS_DELEGATE)
1871 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1872 else
1873 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1874
1875 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1876 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1877 else
1878 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1879
1880 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1881 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1882 else
1883 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1884 }
1885 }
1886
cgroup_show_options(struct seq_file * seq,struct kernfs_root * kf_root)1887 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1888 {
1889 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1890 seq_puts(seq, ",nsdelegate");
1891 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1892 seq_puts(seq, ",memory_localevents");
1893 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1894 seq_puts(seq, ",memory_recursiveprot");
1895 return 0;
1896 }
1897
cgroup_reconfigure(struct fs_context * fc)1898 static int cgroup_reconfigure(struct fs_context *fc)
1899 {
1900 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1901
1902 apply_cgroup_root_flags(ctx->flags);
1903 return 0;
1904 }
1905
init_cgroup_housekeeping(struct cgroup * cgrp)1906 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1907 {
1908 struct cgroup_subsys *ss;
1909 int ssid;
1910
1911 INIT_LIST_HEAD(&cgrp->self.sibling);
1912 INIT_LIST_HEAD(&cgrp->self.children);
1913 INIT_LIST_HEAD(&cgrp->cset_links);
1914 INIT_LIST_HEAD(&cgrp->pidlists);
1915 mutex_init(&cgrp->pidlist_mutex);
1916 cgrp->self.cgroup = cgrp;
1917 cgrp->self.flags |= CSS_ONLINE;
1918 cgrp->dom_cgrp = cgrp;
1919 cgrp->max_descendants = INT_MAX;
1920 cgrp->max_depth = INT_MAX;
1921 INIT_LIST_HEAD(&cgrp->rstat_css_list);
1922 prev_cputime_init(&cgrp->prev_cputime);
1923
1924 for_each_subsys(ss, ssid)
1925 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1926
1927 init_waitqueue_head(&cgrp->offline_waitq);
1928 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1929 }
1930
init_cgroup_root(struct cgroup_fs_context * ctx)1931 void init_cgroup_root(struct cgroup_fs_context *ctx)
1932 {
1933 struct cgroup_root *root = ctx->root;
1934 struct cgroup *cgrp = &root->cgrp;
1935
1936 INIT_LIST_HEAD(&root->root_list);
1937 atomic_set(&root->nr_cgrps, 1);
1938 cgrp->root = root;
1939 init_cgroup_housekeeping(cgrp);
1940 init_waitqueue_head(&root->wait);
1941
1942 root->flags = ctx->flags;
1943 if (ctx->release_agent)
1944 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
1945 if (ctx->name)
1946 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
1947 if (ctx->cpuset_clone_children)
1948 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1949 }
1950
cgroup_setup_root(struct cgroup_root * root,u16 ss_mask)1951 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1952 {
1953 LIST_HEAD(tmp_links);
1954 struct cgroup *root_cgrp = &root->cgrp;
1955 struct kernfs_syscall_ops *kf_sops;
1956 struct css_set *cset;
1957 int i, ret;
1958
1959 lockdep_assert_held(&cgroup_mutex);
1960
1961 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1962 0, GFP_KERNEL);
1963 if (ret)
1964 goto out;
1965
1966 /*
1967 * We're accessing css_set_count without locking css_set_lock here,
1968 * but that's OK - it can only be increased by someone holding
1969 * cgroup_lock, and that's us. Later rebinding may disable
1970 * controllers on the default hierarchy and thus create new csets,
1971 * which can't be more than the existing ones. Allocate 2x.
1972 */
1973 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1974 if (ret)
1975 goto cancel_ref;
1976
1977 ret = cgroup_init_root_id(root);
1978 if (ret)
1979 goto cancel_ref;
1980
1981 kf_sops = root == &cgrp_dfl_root ?
1982 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1983
1984 root->kf_root = kernfs_create_root(kf_sops,
1985 KERNFS_ROOT_CREATE_DEACTIVATED |
1986 KERNFS_ROOT_SUPPORT_EXPORTOP |
1987 KERNFS_ROOT_SUPPORT_USER_XATTR,
1988 root_cgrp);
1989 if (IS_ERR(root->kf_root)) {
1990 ret = PTR_ERR(root->kf_root);
1991 goto exit_root_id;
1992 }
1993 root_cgrp->kn = root->kf_root->kn;
1994 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
1995 root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp);
1996
1997 ret = css_populate_dir(&root_cgrp->self);
1998 if (ret)
1999 goto destroy_root;
2000
2001 ret = rebind_subsystems(root, ss_mask);
2002 if (ret)
2003 goto destroy_root;
2004
2005 ret = cgroup_bpf_inherit(root_cgrp);
2006 WARN_ON_ONCE(ret);
2007
2008 trace_cgroup_setup_root(root);
2009
2010 /*
2011 * There must be no failure case after here, since rebinding takes
2012 * care of subsystems' refcounts, which are explicitly dropped in
2013 * the failure exit path.
2014 */
2015 list_add(&root->root_list, &cgroup_roots);
2016 cgroup_root_count++;
2017
2018 /*
2019 * Link the root cgroup in this hierarchy into all the css_set
2020 * objects.
2021 */
2022 spin_lock_irq(&css_set_lock);
2023 hash_for_each(css_set_table, i, cset, hlist) {
2024 link_css_set(&tmp_links, cset, root_cgrp);
2025 if (css_set_populated(cset))
2026 cgroup_update_populated(root_cgrp, true);
2027 }
2028 spin_unlock_irq(&css_set_lock);
2029
2030 BUG_ON(!list_empty(&root_cgrp->self.children));
2031 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2032
2033 ret = 0;
2034 goto out;
2035
2036 destroy_root:
2037 kernfs_destroy_root(root->kf_root);
2038 root->kf_root = NULL;
2039 exit_root_id:
2040 cgroup_exit_root_id(root);
2041 cancel_ref:
2042 percpu_ref_exit(&root_cgrp->self.refcnt);
2043 out:
2044 free_cgrp_cset_links(&tmp_links);
2045 return ret;
2046 }
2047
cgroup_do_get_tree(struct fs_context * fc)2048 int cgroup_do_get_tree(struct fs_context *fc)
2049 {
2050 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2051 int ret;
2052
2053 ctx->kfc.root = ctx->root->kf_root;
2054 if (fc->fs_type == &cgroup2_fs_type)
2055 ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2056 else
2057 ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2058 ret = kernfs_get_tree(fc);
2059
2060 /*
2061 * In non-init cgroup namespace, instead of root cgroup's dentry,
2062 * we return the dentry corresponding to the cgroupns->root_cgrp.
2063 */
2064 if (!ret && ctx->ns != &init_cgroup_ns) {
2065 struct dentry *nsdentry;
2066 struct super_block *sb = fc->root->d_sb;
2067 struct cgroup *cgrp;
2068
2069 mutex_lock(&cgroup_mutex);
2070 spin_lock_irq(&css_set_lock);
2071
2072 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2073
2074 spin_unlock_irq(&css_set_lock);
2075 mutex_unlock(&cgroup_mutex);
2076
2077 nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2078 dput(fc->root);
2079 if (IS_ERR(nsdentry)) {
2080 deactivate_locked_super(sb);
2081 ret = PTR_ERR(nsdentry);
2082 nsdentry = NULL;
2083 }
2084 fc->root = nsdentry;
2085 }
2086
2087 if (!ctx->kfc.new_sb_created)
2088 cgroup_put(&ctx->root->cgrp);
2089
2090 return ret;
2091 }
2092
2093 /*
2094 * Destroy a cgroup filesystem context.
2095 */
cgroup_fs_context_free(struct fs_context * fc)2096 static void cgroup_fs_context_free(struct fs_context *fc)
2097 {
2098 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2099
2100 kfree(ctx->name);
2101 kfree(ctx->release_agent);
2102 put_cgroup_ns(ctx->ns);
2103 kernfs_free_fs_context(fc);
2104 kfree(ctx);
2105 }
2106
cgroup_get_tree(struct fs_context * fc)2107 static int cgroup_get_tree(struct fs_context *fc)
2108 {
2109 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2110 int ret;
2111
2112 cgrp_dfl_visible = true;
2113 cgroup_get_live(&cgrp_dfl_root.cgrp);
2114 ctx->root = &cgrp_dfl_root;
2115
2116 ret = cgroup_do_get_tree(fc);
2117 if (!ret)
2118 apply_cgroup_root_flags(ctx->flags);
2119 return ret;
2120 }
2121
2122 static const struct fs_context_operations cgroup_fs_context_ops = {
2123 .free = cgroup_fs_context_free,
2124 .parse_param = cgroup2_parse_param,
2125 .get_tree = cgroup_get_tree,
2126 .reconfigure = cgroup_reconfigure,
2127 };
2128
2129 static const struct fs_context_operations cgroup1_fs_context_ops = {
2130 .free = cgroup_fs_context_free,
2131 .parse_param = cgroup1_parse_param,
2132 .get_tree = cgroup1_get_tree,
2133 .reconfigure = cgroup1_reconfigure,
2134 };
2135
2136 /*
2137 * Initialise the cgroup filesystem creation/reconfiguration context. Notably,
2138 * we select the namespace we're going to use.
2139 */
cgroup_init_fs_context(struct fs_context * fc)2140 static int cgroup_init_fs_context(struct fs_context *fc)
2141 {
2142 struct cgroup_fs_context *ctx;
2143
2144 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2145 if (!ctx)
2146 return -ENOMEM;
2147
2148 ctx->ns = current->nsproxy->cgroup_ns;
2149 get_cgroup_ns(ctx->ns);
2150 fc->fs_private = &ctx->kfc;
2151 if (fc->fs_type == &cgroup2_fs_type)
2152 fc->ops = &cgroup_fs_context_ops;
2153 else
2154 fc->ops = &cgroup1_fs_context_ops;
2155 put_user_ns(fc->user_ns);
2156 fc->user_ns = get_user_ns(ctx->ns->user_ns);
2157 fc->global = true;
2158 return 0;
2159 }
2160
cgroup_kill_sb(struct super_block * sb)2161 static void cgroup_kill_sb(struct super_block *sb)
2162 {
2163 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2164 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2165
2166 /*
2167 * Wait if there are cgroups being destroyed, because the destruction
2168 * is asynchronous. On the other hand some controllers like memcg
2169 * may pin cgroups for a very long time, so don't wait forever.
2170 */
2171 if (root != &cgrp_dfl_root) {
2172 wait_event_timeout(root->wait,
2173 list_empty(&root->cgrp.self.children),
2174 msecs_to_jiffies(500));
2175 }
2176
2177 /*
2178 * If @root doesn't have any children, start killing it.
2179 * This prevents new mounts by disabling percpu_ref_tryget_live().
2180 * cgroup_mount() may wait for @root's release.
2181 *
2182 * And don't kill the default root.
2183 */
2184 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2185 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) {
2186 cgroup_bpf_offline(&root->cgrp);
2187 percpu_ref_kill(&root->cgrp.self.refcnt);
2188 }
2189 cgroup_put(&root->cgrp);
2190 kernfs_kill_sb(sb);
2191 }
2192
2193 struct file_system_type cgroup_fs_type = {
2194 .name = "cgroup",
2195 .init_fs_context = cgroup_init_fs_context,
2196 .parameters = cgroup1_fs_parameters,
2197 .kill_sb = cgroup_kill_sb,
2198 .fs_flags = FS_USERNS_MOUNT,
2199 };
2200
2201 static struct file_system_type cgroup2_fs_type = {
2202 .name = "cgroup2",
2203 .init_fs_context = cgroup_init_fs_context,
2204 .parameters = cgroup2_fs_parameters,
2205 .kill_sb = cgroup_kill_sb,
2206 .fs_flags = FS_USERNS_MOUNT,
2207 };
2208
2209 #ifdef CONFIG_CPUSETS
2210 static const struct fs_context_operations cpuset_fs_context_ops = {
2211 .get_tree = cgroup1_get_tree,
2212 .free = cgroup_fs_context_free,
2213 };
2214
2215 /*
2216 * This is ugly, but preserves the userspace API for existing cpuset
2217 * users. If someone tries to mount the "cpuset" filesystem, we
2218 * silently switch it to mount "cgroup" instead
2219 */
cpuset_init_fs_context(struct fs_context * fc)2220 static int cpuset_init_fs_context(struct fs_context *fc)
2221 {
2222 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2223 struct cgroup_fs_context *ctx;
2224 int err;
2225
2226 err = cgroup_init_fs_context(fc);
2227 if (err) {
2228 kfree(agent);
2229 return err;
2230 }
2231
2232 fc->ops = &cpuset_fs_context_ops;
2233
2234 ctx = cgroup_fc2context(fc);
2235 ctx->subsys_mask = 1 << cpuset_cgrp_id;
2236 ctx->flags |= CGRP_ROOT_NOPREFIX;
2237 ctx->release_agent = agent;
2238
2239 get_filesystem(&cgroup_fs_type);
2240 put_filesystem(fc->fs_type);
2241 fc->fs_type = &cgroup_fs_type;
2242
2243 return 0;
2244 }
2245
2246 static struct file_system_type cpuset_fs_type = {
2247 .name = "cpuset",
2248 .init_fs_context = cpuset_init_fs_context,
2249 .fs_flags = FS_USERNS_MOUNT,
2250 };
2251 #endif
2252
cgroup_path_ns_locked(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2253 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2254 struct cgroup_namespace *ns)
2255 {
2256 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2257
2258 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2259 }
2260
cgroup_path_ns(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2261 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2262 struct cgroup_namespace *ns)
2263 {
2264 int ret;
2265
2266 mutex_lock(&cgroup_mutex);
2267 spin_lock_irq(&css_set_lock);
2268
2269 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2270
2271 spin_unlock_irq(&css_set_lock);
2272 mutex_unlock(&cgroup_mutex);
2273
2274 return ret;
2275 }
2276 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2277
2278 /**
2279 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2280 * @task: target task
2281 * @buf: the buffer to write the path into
2282 * @buflen: the length of the buffer
2283 *
2284 * Determine @task's cgroup on the first (the one with the lowest non-zero
2285 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2286 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2287 * cgroup controller callbacks.
2288 *
2289 * Return value is the same as kernfs_path().
2290 */
task_cgroup_path(struct task_struct * task,char * buf,size_t buflen)2291 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2292 {
2293 struct cgroup_root *root;
2294 struct cgroup *cgrp;
2295 int hierarchy_id = 1;
2296 int ret;
2297
2298 mutex_lock(&cgroup_mutex);
2299 spin_lock_irq(&css_set_lock);
2300
2301 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2302
2303 if (root) {
2304 cgrp = task_cgroup_from_root(task, root);
2305 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2306 } else {
2307 /* if no hierarchy exists, everyone is in "/" */
2308 ret = strlcpy(buf, "/", buflen);
2309 }
2310
2311 spin_unlock_irq(&css_set_lock);
2312 mutex_unlock(&cgroup_mutex);
2313 return ret;
2314 }
2315 EXPORT_SYMBOL_GPL(task_cgroup_path);
2316
2317 /**
2318 * cgroup_migrate_add_task - add a migration target task to a migration context
2319 * @task: target task
2320 * @mgctx: target migration context
2321 *
2322 * Add @task, which is a migration target, to @mgctx->tset. This function
2323 * becomes noop if @task doesn't need to be migrated. @task's css_set
2324 * should have been added as a migration source and @task->cg_list will be
2325 * moved from the css_set's tasks list to mg_tasks one.
2326 */
cgroup_migrate_add_task(struct task_struct * task,struct cgroup_mgctx * mgctx)2327 static void cgroup_migrate_add_task(struct task_struct *task,
2328 struct cgroup_mgctx *mgctx)
2329 {
2330 struct css_set *cset;
2331
2332 lockdep_assert_held(&css_set_lock);
2333
2334 /* @task either already exited or can't exit until the end */
2335 if (task->flags & PF_EXITING)
2336 return;
2337
2338 /* cgroup_threadgroup_rwsem protects racing against forks */
2339 WARN_ON_ONCE(list_empty(&task->cg_list));
2340
2341 cset = task_css_set(task);
2342 if (!cset->mg_src_cgrp)
2343 return;
2344
2345 mgctx->tset.nr_tasks++;
2346
2347 list_move_tail(&task->cg_list, &cset->mg_tasks);
2348 if (list_empty(&cset->mg_node))
2349 list_add_tail(&cset->mg_node,
2350 &mgctx->tset.src_csets);
2351 if (list_empty(&cset->mg_dst_cset->mg_node))
2352 list_add_tail(&cset->mg_dst_cset->mg_node,
2353 &mgctx->tset.dst_csets);
2354 }
2355
2356 /**
2357 * cgroup_taskset_first - reset taskset and return the first task
2358 * @tset: taskset of interest
2359 * @dst_cssp: output variable for the destination css
2360 *
2361 * @tset iteration is initialized and the first task is returned.
2362 */
cgroup_taskset_first(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2363 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2364 struct cgroup_subsys_state **dst_cssp)
2365 {
2366 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2367 tset->cur_task = NULL;
2368
2369 return cgroup_taskset_next(tset, dst_cssp);
2370 }
2371
2372 /**
2373 * cgroup_taskset_next - iterate to the next task in taskset
2374 * @tset: taskset of interest
2375 * @dst_cssp: output variable for the destination css
2376 *
2377 * Return the next task in @tset. Iteration must have been initialized
2378 * with cgroup_taskset_first().
2379 */
cgroup_taskset_next(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2380 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2381 struct cgroup_subsys_state **dst_cssp)
2382 {
2383 struct css_set *cset = tset->cur_cset;
2384 struct task_struct *task = tset->cur_task;
2385
2386 while (&cset->mg_node != tset->csets) {
2387 if (!task)
2388 task = list_first_entry(&cset->mg_tasks,
2389 struct task_struct, cg_list);
2390 else
2391 task = list_next_entry(task, cg_list);
2392
2393 if (&task->cg_list != &cset->mg_tasks) {
2394 tset->cur_cset = cset;
2395 tset->cur_task = task;
2396
2397 /*
2398 * This function may be called both before and
2399 * after cgroup_taskset_migrate(). The two cases
2400 * can be distinguished by looking at whether @cset
2401 * has its ->mg_dst_cset set.
2402 */
2403 if (cset->mg_dst_cset)
2404 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2405 else
2406 *dst_cssp = cset->subsys[tset->ssid];
2407
2408 return task;
2409 }
2410
2411 cset = list_next_entry(cset, mg_node);
2412 task = NULL;
2413 }
2414
2415 return NULL;
2416 }
2417
2418 /**
2419 * cgroup_taskset_migrate - migrate a taskset
2420 * @mgctx: migration context
2421 *
2422 * Migrate tasks in @mgctx as setup by migration preparation functions.
2423 * This function fails iff one of the ->can_attach callbacks fails and
2424 * guarantees that either all or none of the tasks in @mgctx are migrated.
2425 * @mgctx is consumed regardless of success.
2426 */
cgroup_migrate_execute(struct cgroup_mgctx * mgctx)2427 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2428 {
2429 struct cgroup_taskset *tset = &mgctx->tset;
2430 struct cgroup_subsys *ss;
2431 struct task_struct *task, *tmp_task;
2432 struct css_set *cset, *tmp_cset;
2433 int ssid, failed_ssid, ret;
2434
2435 /* check that we can legitimately attach to the cgroup */
2436 if (tset->nr_tasks) {
2437 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2438 if (ss->can_attach) {
2439 tset->ssid = ssid;
2440 ret = ss->can_attach(tset);
2441 if (ret) {
2442 failed_ssid = ssid;
2443 goto out_cancel_attach;
2444 }
2445 }
2446 } while_each_subsys_mask();
2447 }
2448
2449 /*
2450 * Now that we're guaranteed success, proceed to move all tasks to
2451 * the new cgroup. There are no failure cases after here, so this
2452 * is the commit point.
2453 */
2454 spin_lock_irq(&css_set_lock);
2455 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2456 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2457 struct css_set *from_cset = task_css_set(task);
2458 struct css_set *to_cset = cset->mg_dst_cset;
2459
2460 get_css_set(to_cset);
2461 to_cset->nr_tasks++;
2462 css_set_move_task(task, from_cset, to_cset, true);
2463 from_cset->nr_tasks--;
2464 /*
2465 * If the source or destination cgroup is frozen,
2466 * the task might require to change its state.
2467 */
2468 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2469 to_cset->dfl_cgrp);
2470 put_css_set_locked(from_cset);
2471
2472 }
2473 }
2474 spin_unlock_irq(&css_set_lock);
2475
2476 /*
2477 * Migration is committed, all target tasks are now on dst_csets.
2478 * Nothing is sensitive to fork() after this point. Notify
2479 * controllers that migration is complete.
2480 */
2481 tset->csets = &tset->dst_csets;
2482
2483 if (tset->nr_tasks) {
2484 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2485 if (ss->attach) {
2486 tset->ssid = ssid;
2487 ss->attach(tset);
2488 }
2489 } while_each_subsys_mask();
2490 }
2491
2492 ret = 0;
2493 goto out_release_tset;
2494
2495 out_cancel_attach:
2496 if (tset->nr_tasks) {
2497 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2498 if (ssid == failed_ssid)
2499 break;
2500 if (ss->cancel_attach) {
2501 tset->ssid = ssid;
2502 ss->cancel_attach(tset);
2503 }
2504 } while_each_subsys_mask();
2505 }
2506 out_release_tset:
2507 spin_lock_irq(&css_set_lock);
2508 list_splice_init(&tset->dst_csets, &tset->src_csets);
2509 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2510 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2511 list_del_init(&cset->mg_node);
2512 }
2513 spin_unlock_irq(&css_set_lock);
2514
2515 /*
2516 * Re-initialize the cgroup_taskset structure in case it is reused
2517 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2518 * iteration.
2519 */
2520 tset->nr_tasks = 0;
2521 tset->csets = &tset->src_csets;
2522 return ret;
2523 }
2524
2525 /**
2526 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2527 * @dst_cgrp: destination cgroup to test
2528 *
2529 * On the default hierarchy, except for the mixable, (possible) thread root
2530 * and threaded cgroups, subtree_control must be zero for migration
2531 * destination cgroups with tasks so that child cgroups don't compete
2532 * against tasks.
2533 */
cgroup_migrate_vet_dst(struct cgroup * dst_cgrp)2534 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2535 {
2536 /* v1 doesn't have any restriction */
2537 if (!cgroup_on_dfl(dst_cgrp))
2538 return 0;
2539
2540 /* verify @dst_cgrp can host resources */
2541 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2542 return -EOPNOTSUPP;
2543
2544 /* mixables don't care */
2545 if (cgroup_is_mixable(dst_cgrp))
2546 return 0;
2547
2548 /*
2549 * If @dst_cgrp is already or can become a thread root or is
2550 * threaded, it doesn't matter.
2551 */
2552 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2553 return 0;
2554
2555 /* apply no-internal-process constraint */
2556 if (dst_cgrp->subtree_control)
2557 return -EBUSY;
2558
2559 return 0;
2560 }
2561
2562 /**
2563 * cgroup_migrate_finish - cleanup after attach
2564 * @mgctx: migration context
2565 *
2566 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2567 * those functions for details.
2568 */
cgroup_migrate_finish(struct cgroup_mgctx * mgctx)2569 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2570 {
2571 LIST_HEAD(preloaded);
2572 struct css_set *cset, *tmp_cset;
2573
2574 lockdep_assert_held(&cgroup_mutex);
2575
2576 spin_lock_irq(&css_set_lock);
2577
2578 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2579 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2580
2581 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2582 cset->mg_src_cgrp = NULL;
2583 cset->mg_dst_cgrp = NULL;
2584 cset->mg_dst_cset = NULL;
2585 list_del_init(&cset->mg_preload_node);
2586 put_css_set_locked(cset);
2587 }
2588
2589 spin_unlock_irq(&css_set_lock);
2590 }
2591
2592 /**
2593 * cgroup_migrate_add_src - add a migration source css_set
2594 * @src_cset: the source css_set to add
2595 * @dst_cgrp: the destination cgroup
2596 * @mgctx: migration context
2597 *
2598 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2599 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2600 * up by cgroup_migrate_finish().
2601 *
2602 * This function may be called without holding cgroup_threadgroup_rwsem
2603 * even if the target is a process. Threads may be created and destroyed
2604 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2605 * into play and the preloaded css_sets are guaranteed to cover all
2606 * migrations.
2607 */
cgroup_migrate_add_src(struct css_set * src_cset,struct cgroup * dst_cgrp,struct cgroup_mgctx * mgctx)2608 void cgroup_migrate_add_src(struct css_set *src_cset,
2609 struct cgroup *dst_cgrp,
2610 struct cgroup_mgctx *mgctx)
2611 {
2612 struct cgroup *src_cgrp;
2613
2614 lockdep_assert_held(&cgroup_mutex);
2615 lockdep_assert_held(&css_set_lock);
2616
2617 /*
2618 * If ->dead, @src_set is associated with one or more dead cgroups
2619 * and doesn't contain any migratable tasks. Ignore it early so
2620 * that the rest of migration path doesn't get confused by it.
2621 */
2622 if (src_cset->dead)
2623 return;
2624
2625 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2626
2627 if (!list_empty(&src_cset->mg_preload_node))
2628 return;
2629
2630 WARN_ON(src_cset->mg_src_cgrp);
2631 WARN_ON(src_cset->mg_dst_cgrp);
2632 WARN_ON(!list_empty(&src_cset->mg_tasks));
2633 WARN_ON(!list_empty(&src_cset->mg_node));
2634
2635 src_cset->mg_src_cgrp = src_cgrp;
2636 src_cset->mg_dst_cgrp = dst_cgrp;
2637 get_css_set(src_cset);
2638 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2639 }
2640
2641 /**
2642 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2643 * @mgctx: migration context
2644 *
2645 * Tasks are about to be moved and all the source css_sets have been
2646 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2647 * pins all destination css_sets, links each to its source, and append them
2648 * to @mgctx->preloaded_dst_csets.
2649 *
2650 * This function must be called after cgroup_migrate_add_src() has been
2651 * called on each migration source css_set. After migration is performed
2652 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2653 * @mgctx.
2654 */
cgroup_migrate_prepare_dst(struct cgroup_mgctx * mgctx)2655 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2656 {
2657 struct css_set *src_cset, *tmp_cset;
2658
2659 lockdep_assert_held(&cgroup_mutex);
2660
2661 /* look up the dst cset for each src cset and link it to src */
2662 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2663 mg_preload_node) {
2664 struct css_set *dst_cset;
2665 struct cgroup_subsys *ss;
2666 int ssid;
2667
2668 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2669 if (!dst_cset)
2670 return -ENOMEM;
2671
2672 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2673
2674 /*
2675 * If src cset equals dst, it's noop. Drop the src.
2676 * cgroup_migrate() will skip the cset too. Note that we
2677 * can't handle src == dst as some nodes are used by both.
2678 */
2679 if (src_cset == dst_cset) {
2680 src_cset->mg_src_cgrp = NULL;
2681 src_cset->mg_dst_cgrp = NULL;
2682 list_del_init(&src_cset->mg_preload_node);
2683 put_css_set(src_cset);
2684 put_css_set(dst_cset);
2685 continue;
2686 }
2687
2688 src_cset->mg_dst_cset = dst_cset;
2689
2690 if (list_empty(&dst_cset->mg_preload_node))
2691 list_add_tail(&dst_cset->mg_preload_node,
2692 &mgctx->preloaded_dst_csets);
2693 else
2694 put_css_set(dst_cset);
2695
2696 for_each_subsys(ss, ssid)
2697 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2698 mgctx->ss_mask |= 1 << ssid;
2699 }
2700
2701 return 0;
2702 }
2703
2704 /**
2705 * cgroup_migrate - migrate a process or task to a cgroup
2706 * @leader: the leader of the process or the task to migrate
2707 * @threadgroup: whether @leader points to the whole process or a single task
2708 * @mgctx: migration context
2709 *
2710 * Migrate a process or task denoted by @leader. If migrating a process,
2711 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2712 * responsible for invoking cgroup_migrate_add_src() and
2713 * cgroup_migrate_prepare_dst() on the targets before invoking this
2714 * function and following up with cgroup_migrate_finish().
2715 *
2716 * As long as a controller's ->can_attach() doesn't fail, this function is
2717 * guaranteed to succeed. This means that, excluding ->can_attach()
2718 * failure, when migrating multiple targets, the success or failure can be
2719 * decided for all targets by invoking group_migrate_prepare_dst() before
2720 * actually starting migrating.
2721 */
cgroup_migrate(struct task_struct * leader,bool threadgroup,struct cgroup_mgctx * mgctx)2722 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2723 struct cgroup_mgctx *mgctx)
2724 {
2725 int err = 0;
2726 struct task_struct *task;
2727
2728 /*
2729 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2730 * already PF_EXITING could be freed from underneath us unless we
2731 * take an rcu_read_lock.
2732 */
2733 spin_lock_irq(&css_set_lock);
2734 rcu_read_lock();
2735 task = leader;
2736 do {
2737 cgroup_migrate_add_task(task, mgctx);
2738 if (!threadgroup) {
2739 if (task->flags & PF_EXITING)
2740 err = -ESRCH;
2741 break;
2742 }
2743 } while_each_thread(leader, task);
2744 rcu_read_unlock();
2745 spin_unlock_irq(&css_set_lock);
2746
2747 return err ? err : cgroup_migrate_execute(mgctx);
2748 }
2749
2750 /**
2751 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2752 * @dst_cgrp: the cgroup to attach to
2753 * @leader: the task or the leader of the threadgroup to be attached
2754 * @threadgroup: attach the whole threadgroup?
2755 *
2756 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2757 */
cgroup_attach_task(struct cgroup * dst_cgrp,struct task_struct * leader,bool threadgroup)2758 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2759 bool threadgroup)
2760 {
2761 DEFINE_CGROUP_MGCTX(mgctx);
2762 struct task_struct *task;
2763 int ret = 0;
2764
2765 /* look up all src csets */
2766 spin_lock_irq(&css_set_lock);
2767 rcu_read_lock();
2768 task = leader;
2769 do {
2770 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2771 if (!threadgroup)
2772 break;
2773 } while_each_thread(leader, task);
2774 rcu_read_unlock();
2775 spin_unlock_irq(&css_set_lock);
2776
2777 /* prepare dst csets and commit */
2778 ret = cgroup_migrate_prepare_dst(&mgctx);
2779 if (!ret)
2780 ret = cgroup_migrate(leader, threadgroup, &mgctx);
2781
2782 cgroup_migrate_finish(&mgctx);
2783
2784 if (!ret)
2785 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2786
2787 return ret;
2788 }
2789
cgroup_procs_write_start(char * buf,bool threadgroup,bool * locked)2790 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2791 bool *locked)
2792 __acquires(&cgroup_threadgroup_rwsem)
2793 {
2794 struct task_struct *tsk;
2795 pid_t pid;
2796
2797 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2798 return ERR_PTR(-EINVAL);
2799
2800 /*
2801 * If we migrate a single thread, we don't care about threadgroup
2802 * stability. If the thread is `current`, it won't exit(2) under our
2803 * hands or change PID through exec(2). We exclude
2804 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2805 * callers by cgroup_mutex.
2806 * Therefore, we can skip the global lock.
2807 */
2808 lockdep_assert_held(&cgroup_mutex);
2809 if (pid || threadgroup) {
2810 percpu_down_write(&cgroup_threadgroup_rwsem);
2811 *locked = true;
2812 } else {
2813 *locked = false;
2814 }
2815
2816 rcu_read_lock();
2817 if (pid) {
2818 tsk = find_task_by_vpid(pid);
2819 if (!tsk) {
2820 tsk = ERR_PTR(-ESRCH);
2821 goto out_unlock_threadgroup;
2822 }
2823 } else {
2824 tsk = current;
2825 }
2826
2827 if (threadgroup)
2828 tsk = tsk->group_leader;
2829
2830 /*
2831 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2832 * If userland migrates such a kthread to a non-root cgroup, it can
2833 * become trapped in a cpuset, or RT kthread may be born in a
2834 * cgroup with no rt_runtime allocated. Just say no.
2835 */
2836 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2837 tsk = ERR_PTR(-EINVAL);
2838 goto out_unlock_threadgroup;
2839 }
2840
2841 get_task_struct(tsk);
2842 goto out_unlock_rcu;
2843
2844 out_unlock_threadgroup:
2845 if (*locked) {
2846 percpu_up_write(&cgroup_threadgroup_rwsem);
2847 *locked = false;
2848 }
2849 out_unlock_rcu:
2850 rcu_read_unlock();
2851 return tsk;
2852 }
2853
cgroup_procs_write_finish(struct task_struct * task,bool locked)2854 void cgroup_procs_write_finish(struct task_struct *task, bool locked)
2855 __releases(&cgroup_threadgroup_rwsem)
2856 {
2857 struct cgroup_subsys *ss;
2858 int ssid;
2859
2860 /* release reference from cgroup_procs_write_start() */
2861 put_task_struct(task);
2862
2863 if (locked)
2864 percpu_up_write(&cgroup_threadgroup_rwsem);
2865 for_each_subsys(ss, ssid)
2866 if (ss->post_attach)
2867 ss->post_attach();
2868 }
2869
cgroup_print_ss_mask(struct seq_file * seq,u16 ss_mask)2870 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2871 {
2872 struct cgroup_subsys *ss;
2873 bool printed = false;
2874 int ssid;
2875
2876 do_each_subsys_mask(ss, ssid, ss_mask) {
2877 if (printed)
2878 seq_putc(seq, ' ');
2879 seq_puts(seq, ss->name);
2880 printed = true;
2881 } while_each_subsys_mask();
2882 if (printed)
2883 seq_putc(seq, '\n');
2884 }
2885
2886 /* show controllers which are enabled from the parent */
cgroup_controllers_show(struct seq_file * seq,void * v)2887 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2888 {
2889 struct cgroup *cgrp = seq_css(seq)->cgroup;
2890
2891 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2892 return 0;
2893 }
2894
2895 /* show controllers which are enabled for a given cgroup's children */
cgroup_subtree_control_show(struct seq_file * seq,void * v)2896 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2897 {
2898 struct cgroup *cgrp = seq_css(seq)->cgroup;
2899
2900 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2901 return 0;
2902 }
2903
2904 /**
2905 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2906 * @cgrp: root of the subtree to update csses for
2907 *
2908 * @cgrp's control masks have changed and its subtree's css associations
2909 * need to be updated accordingly. This function looks up all css_sets
2910 * which are attached to the subtree, creates the matching updated css_sets
2911 * and migrates the tasks to the new ones.
2912 */
cgroup_update_dfl_csses(struct cgroup * cgrp)2913 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2914 {
2915 DEFINE_CGROUP_MGCTX(mgctx);
2916 struct cgroup_subsys_state *d_css;
2917 struct cgroup *dsct;
2918 struct css_set *src_cset;
2919 int ret;
2920
2921 lockdep_assert_held(&cgroup_mutex);
2922
2923 percpu_down_write(&cgroup_threadgroup_rwsem);
2924
2925 /* look up all csses currently attached to @cgrp's subtree */
2926 spin_lock_irq(&css_set_lock);
2927 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2928 struct cgrp_cset_link *link;
2929
2930 list_for_each_entry(link, &dsct->cset_links, cset_link)
2931 cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2932 }
2933 spin_unlock_irq(&css_set_lock);
2934
2935 /* NULL dst indicates self on default hierarchy */
2936 ret = cgroup_migrate_prepare_dst(&mgctx);
2937 if (ret)
2938 goto out_finish;
2939
2940 spin_lock_irq(&css_set_lock);
2941 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2942 struct task_struct *task, *ntask;
2943
2944 /* all tasks in src_csets need to be migrated */
2945 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2946 cgroup_migrate_add_task(task, &mgctx);
2947 }
2948 spin_unlock_irq(&css_set_lock);
2949
2950 ret = cgroup_migrate_execute(&mgctx);
2951 out_finish:
2952 cgroup_migrate_finish(&mgctx);
2953 percpu_up_write(&cgroup_threadgroup_rwsem);
2954 return ret;
2955 }
2956
2957 /**
2958 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2959 * @cgrp: root of the target subtree
2960 *
2961 * Because css offlining is asynchronous, userland may try to re-enable a
2962 * controller while the previous css is still around. This function grabs
2963 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2964 */
cgroup_lock_and_drain_offline(struct cgroup * cgrp)2965 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2966 __acquires(&cgroup_mutex)
2967 {
2968 struct cgroup *dsct;
2969 struct cgroup_subsys_state *d_css;
2970 struct cgroup_subsys *ss;
2971 int ssid;
2972
2973 restart:
2974 mutex_lock(&cgroup_mutex);
2975
2976 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2977 for_each_subsys(ss, ssid) {
2978 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2979 DEFINE_WAIT(wait);
2980
2981 if (!css || !percpu_ref_is_dying(&css->refcnt))
2982 continue;
2983
2984 cgroup_get_live(dsct);
2985 prepare_to_wait(&dsct->offline_waitq, &wait,
2986 TASK_UNINTERRUPTIBLE);
2987
2988 mutex_unlock(&cgroup_mutex);
2989 schedule();
2990 finish_wait(&dsct->offline_waitq, &wait);
2991
2992 cgroup_put(dsct);
2993 goto restart;
2994 }
2995 }
2996 }
2997
2998 /**
2999 * cgroup_save_control - save control masks and dom_cgrp of a subtree
3000 * @cgrp: root of the target subtree
3001 *
3002 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3003 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3004 * itself.
3005 */
cgroup_save_control(struct cgroup * cgrp)3006 static void cgroup_save_control(struct cgroup *cgrp)
3007 {
3008 struct cgroup *dsct;
3009 struct cgroup_subsys_state *d_css;
3010
3011 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3012 dsct->old_subtree_control = dsct->subtree_control;
3013 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3014 dsct->old_dom_cgrp = dsct->dom_cgrp;
3015 }
3016 }
3017
3018 /**
3019 * cgroup_propagate_control - refresh control masks of a subtree
3020 * @cgrp: root of the target subtree
3021 *
3022 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3023 * ->subtree_control and propagate controller availability through the
3024 * subtree so that descendants don't have unavailable controllers enabled.
3025 */
cgroup_propagate_control(struct cgroup * cgrp)3026 static void cgroup_propagate_control(struct cgroup *cgrp)
3027 {
3028 struct cgroup *dsct;
3029 struct cgroup_subsys_state *d_css;
3030
3031 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3032 dsct->subtree_control &= cgroup_control(dsct);
3033 dsct->subtree_ss_mask =
3034 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3035 cgroup_ss_mask(dsct));
3036 }
3037 }
3038
3039 /**
3040 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3041 * @cgrp: root of the target subtree
3042 *
3043 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3044 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3045 * itself.
3046 */
cgroup_restore_control(struct cgroup * cgrp)3047 static void cgroup_restore_control(struct cgroup *cgrp)
3048 {
3049 struct cgroup *dsct;
3050 struct cgroup_subsys_state *d_css;
3051
3052 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3053 dsct->subtree_control = dsct->old_subtree_control;
3054 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3055 dsct->dom_cgrp = dsct->old_dom_cgrp;
3056 }
3057 }
3058
css_visible(struct cgroup_subsys_state * css)3059 static bool css_visible(struct cgroup_subsys_state *css)
3060 {
3061 struct cgroup_subsys *ss = css->ss;
3062 struct cgroup *cgrp = css->cgroup;
3063
3064 if (cgroup_control(cgrp) & (1 << ss->id))
3065 return true;
3066 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3067 return false;
3068 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3069 }
3070
3071 /**
3072 * cgroup_apply_control_enable - enable or show csses according to control
3073 * @cgrp: root of the target subtree
3074 *
3075 * Walk @cgrp's subtree and create new csses or make the existing ones
3076 * visible. A css is created invisible if it's being implicitly enabled
3077 * through dependency. An invisible css is made visible when the userland
3078 * explicitly enables it.
3079 *
3080 * Returns 0 on success, -errno on failure. On failure, csses which have
3081 * been processed already aren't cleaned up. The caller is responsible for
3082 * cleaning up with cgroup_apply_control_disable().
3083 */
cgroup_apply_control_enable(struct cgroup * cgrp)3084 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3085 {
3086 struct cgroup *dsct;
3087 struct cgroup_subsys_state *d_css;
3088 struct cgroup_subsys *ss;
3089 int ssid, ret;
3090
3091 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3092 for_each_subsys(ss, ssid) {
3093 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3094
3095 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3096 continue;
3097
3098 if (!css) {
3099 css = css_create(dsct, ss);
3100 if (IS_ERR(css))
3101 return PTR_ERR(css);
3102 }
3103
3104 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3105
3106 if (css_visible(css)) {
3107 ret = css_populate_dir(css);
3108 if (ret)
3109 return ret;
3110 }
3111 }
3112 }
3113
3114 return 0;
3115 }
3116
3117 /**
3118 * cgroup_apply_control_disable - kill or hide csses according to control
3119 * @cgrp: root of the target subtree
3120 *
3121 * Walk @cgrp's subtree and kill and hide csses so that they match
3122 * cgroup_ss_mask() and cgroup_visible_mask().
3123 *
3124 * A css is hidden when the userland requests it to be disabled while other
3125 * subsystems are still depending on it. The css must not actively control
3126 * resources and be in the vanilla state if it's made visible again later.
3127 * Controllers which may be depended upon should provide ->css_reset() for
3128 * this purpose.
3129 */
cgroup_apply_control_disable(struct cgroup * cgrp)3130 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3131 {
3132 struct cgroup *dsct;
3133 struct cgroup_subsys_state *d_css;
3134 struct cgroup_subsys *ss;
3135 int ssid;
3136
3137 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3138 for_each_subsys(ss, ssid) {
3139 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3140
3141 if (!css)
3142 continue;
3143
3144 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3145
3146 if (css->parent &&
3147 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3148 kill_css(css);
3149 } else if (!css_visible(css)) {
3150 css_clear_dir(css);
3151 if (ss->css_reset)
3152 ss->css_reset(css);
3153 }
3154 }
3155 }
3156 }
3157
3158 /**
3159 * cgroup_apply_control - apply control mask updates to the subtree
3160 * @cgrp: root of the target subtree
3161 *
3162 * subsystems can be enabled and disabled in a subtree using the following
3163 * steps.
3164 *
3165 * 1. Call cgroup_save_control() to stash the current state.
3166 * 2. Update ->subtree_control masks in the subtree as desired.
3167 * 3. Call cgroup_apply_control() to apply the changes.
3168 * 4. Optionally perform other related operations.
3169 * 5. Call cgroup_finalize_control() to finish up.
3170 *
3171 * This function implements step 3 and propagates the mask changes
3172 * throughout @cgrp's subtree, updates csses accordingly and perform
3173 * process migrations.
3174 */
cgroup_apply_control(struct cgroup * cgrp)3175 static int cgroup_apply_control(struct cgroup *cgrp)
3176 {
3177 int ret;
3178
3179 cgroup_propagate_control(cgrp);
3180
3181 ret = cgroup_apply_control_enable(cgrp);
3182 if (ret)
3183 return ret;
3184
3185 /*
3186 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3187 * making the following cgroup_update_dfl_csses() properly update
3188 * css associations of all tasks in the subtree.
3189 */
3190 ret = cgroup_update_dfl_csses(cgrp);
3191 if (ret)
3192 return ret;
3193
3194 return 0;
3195 }
3196
3197 /**
3198 * cgroup_finalize_control - finalize control mask update
3199 * @cgrp: root of the target subtree
3200 * @ret: the result of the update
3201 *
3202 * Finalize control mask update. See cgroup_apply_control() for more info.
3203 */
cgroup_finalize_control(struct cgroup * cgrp,int ret)3204 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3205 {
3206 if (ret) {
3207 cgroup_restore_control(cgrp);
3208 cgroup_propagate_control(cgrp);
3209 }
3210
3211 cgroup_apply_control_disable(cgrp);
3212 }
3213
cgroup_vet_subtree_control_enable(struct cgroup * cgrp,u16 enable)3214 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3215 {
3216 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3217
3218 /* if nothing is getting enabled, nothing to worry about */
3219 if (!enable)
3220 return 0;
3221
3222 /* can @cgrp host any resources? */
3223 if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3224 return -EOPNOTSUPP;
3225
3226 /* mixables don't care */
3227 if (cgroup_is_mixable(cgrp))
3228 return 0;
3229
3230 if (domain_enable) {
3231 /* can't enable domain controllers inside a thread subtree */
3232 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3233 return -EOPNOTSUPP;
3234 } else {
3235 /*
3236 * Threaded controllers can handle internal competitions
3237 * and are always allowed inside a (prospective) thread
3238 * subtree.
3239 */
3240 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3241 return 0;
3242 }
3243
3244 /*
3245 * Controllers can't be enabled for a cgroup with tasks to avoid
3246 * child cgroups competing against tasks.
3247 */
3248 if (cgroup_has_tasks(cgrp))
3249 return -EBUSY;
3250
3251 return 0;
3252 }
3253
3254 /* change the enabled child controllers for a cgroup in the default hierarchy */
cgroup_subtree_control_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3255 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3256 char *buf, size_t nbytes,
3257 loff_t off)
3258 {
3259 u16 enable = 0, disable = 0;
3260 struct cgroup *cgrp, *child;
3261 struct cgroup_subsys *ss;
3262 char *tok;
3263 int ssid, ret;
3264
3265 /*
3266 * Parse input - space separated list of subsystem names prefixed
3267 * with either + or -.
3268 */
3269 buf = strstrip(buf);
3270 while ((tok = strsep(&buf, " "))) {
3271 if (tok[0] == '\0')
3272 continue;
3273 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3274 if (!cgroup_ssid_enabled(ssid) ||
3275 strcmp(tok + 1, ss->name))
3276 continue;
3277
3278 if (*tok == '+') {
3279 enable |= 1 << ssid;
3280 disable &= ~(1 << ssid);
3281 } else if (*tok == '-') {
3282 disable |= 1 << ssid;
3283 enable &= ~(1 << ssid);
3284 } else {
3285 return -EINVAL;
3286 }
3287 break;
3288 } while_each_subsys_mask();
3289 if (ssid == CGROUP_SUBSYS_COUNT)
3290 return -EINVAL;
3291 }
3292
3293 cgrp = cgroup_kn_lock_live(of->kn, true);
3294 if (!cgrp)
3295 return -ENODEV;
3296
3297 for_each_subsys(ss, ssid) {
3298 if (enable & (1 << ssid)) {
3299 if (cgrp->subtree_control & (1 << ssid)) {
3300 enable &= ~(1 << ssid);
3301 continue;
3302 }
3303
3304 if (!(cgroup_control(cgrp) & (1 << ssid))) {
3305 ret = -ENOENT;
3306 goto out_unlock;
3307 }
3308 } else if (disable & (1 << ssid)) {
3309 if (!(cgrp->subtree_control & (1 << ssid))) {
3310 disable &= ~(1 << ssid);
3311 continue;
3312 }
3313
3314 /* a child has it enabled? */
3315 cgroup_for_each_live_child(child, cgrp) {
3316 if (child->subtree_control & (1 << ssid)) {
3317 ret = -EBUSY;
3318 goto out_unlock;
3319 }
3320 }
3321 }
3322 }
3323
3324 if (!enable && !disable) {
3325 ret = 0;
3326 goto out_unlock;
3327 }
3328
3329 ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3330 if (ret)
3331 goto out_unlock;
3332
3333 /* save and update control masks and prepare csses */
3334 cgroup_save_control(cgrp);
3335
3336 cgrp->subtree_control |= enable;
3337 cgrp->subtree_control &= ~disable;
3338
3339 ret = cgroup_apply_control(cgrp);
3340 cgroup_finalize_control(cgrp, ret);
3341 if (ret)
3342 goto out_unlock;
3343
3344 kernfs_activate(cgrp->kn);
3345 out_unlock:
3346 cgroup_kn_unlock(of->kn);
3347 return ret ?: nbytes;
3348 }
3349
3350 /**
3351 * cgroup_enable_threaded - make @cgrp threaded
3352 * @cgrp: the target cgroup
3353 *
3354 * Called when "threaded" is written to the cgroup.type interface file and
3355 * tries to make @cgrp threaded and join the parent's resource domain.
3356 * This function is never called on the root cgroup as cgroup.type doesn't
3357 * exist on it.
3358 */
cgroup_enable_threaded(struct cgroup * cgrp)3359 static int cgroup_enable_threaded(struct cgroup *cgrp)
3360 {
3361 struct cgroup *parent = cgroup_parent(cgrp);
3362 struct cgroup *dom_cgrp = parent->dom_cgrp;
3363 struct cgroup *dsct;
3364 struct cgroup_subsys_state *d_css;
3365 int ret;
3366
3367 lockdep_assert_held(&cgroup_mutex);
3368
3369 /* noop if already threaded */
3370 if (cgroup_is_threaded(cgrp))
3371 return 0;
3372
3373 /*
3374 * If @cgroup is populated or has domain controllers enabled, it
3375 * can't be switched. While the below cgroup_can_be_thread_root()
3376 * test can catch the same conditions, that's only when @parent is
3377 * not mixable, so let's check it explicitly.
3378 */
3379 if (cgroup_is_populated(cgrp) ||
3380 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3381 return -EOPNOTSUPP;
3382
3383 /* we're joining the parent's domain, ensure its validity */
3384 if (!cgroup_is_valid_domain(dom_cgrp) ||
3385 !cgroup_can_be_thread_root(dom_cgrp))
3386 return -EOPNOTSUPP;
3387
3388 /*
3389 * The following shouldn't cause actual migrations and should
3390 * always succeed.
3391 */
3392 cgroup_save_control(cgrp);
3393
3394 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3395 if (dsct == cgrp || cgroup_is_threaded(dsct))
3396 dsct->dom_cgrp = dom_cgrp;
3397
3398 ret = cgroup_apply_control(cgrp);
3399 if (!ret)
3400 parent->nr_threaded_children++;
3401
3402 cgroup_finalize_control(cgrp, ret);
3403 return ret;
3404 }
3405
cgroup_type_show(struct seq_file * seq,void * v)3406 static int cgroup_type_show(struct seq_file *seq, void *v)
3407 {
3408 struct cgroup *cgrp = seq_css(seq)->cgroup;
3409
3410 if (cgroup_is_threaded(cgrp))
3411 seq_puts(seq, "threaded\n");
3412 else if (!cgroup_is_valid_domain(cgrp))
3413 seq_puts(seq, "domain invalid\n");
3414 else if (cgroup_is_thread_root(cgrp))
3415 seq_puts(seq, "domain threaded\n");
3416 else
3417 seq_puts(seq, "domain\n");
3418
3419 return 0;
3420 }
3421
cgroup_type_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3422 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3423 size_t nbytes, loff_t off)
3424 {
3425 struct cgroup *cgrp;
3426 int ret;
3427
3428 /* only switching to threaded mode is supported */
3429 if (strcmp(strstrip(buf), "threaded"))
3430 return -EINVAL;
3431
3432 /* drain dying csses before we re-apply (threaded) subtree control */
3433 cgrp = cgroup_kn_lock_live(of->kn, true);
3434 if (!cgrp)
3435 return -ENOENT;
3436
3437 /* threaded can only be enabled */
3438 ret = cgroup_enable_threaded(cgrp);
3439
3440 cgroup_kn_unlock(of->kn);
3441 return ret ?: nbytes;
3442 }
3443
cgroup_max_descendants_show(struct seq_file * seq,void * v)3444 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3445 {
3446 struct cgroup *cgrp = seq_css(seq)->cgroup;
3447 int descendants = READ_ONCE(cgrp->max_descendants);
3448
3449 if (descendants == INT_MAX)
3450 seq_puts(seq, "max\n");
3451 else
3452 seq_printf(seq, "%d\n", descendants);
3453
3454 return 0;
3455 }
3456
cgroup_max_descendants_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3457 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3458 char *buf, size_t nbytes, loff_t off)
3459 {
3460 struct cgroup *cgrp;
3461 int descendants;
3462 ssize_t ret;
3463
3464 buf = strstrip(buf);
3465 if (!strcmp(buf, "max")) {
3466 descendants = INT_MAX;
3467 } else {
3468 ret = kstrtoint(buf, 0, &descendants);
3469 if (ret)
3470 return ret;
3471 }
3472
3473 if (descendants < 0)
3474 return -ERANGE;
3475
3476 cgrp = cgroup_kn_lock_live(of->kn, false);
3477 if (!cgrp)
3478 return -ENOENT;
3479
3480 cgrp->max_descendants = descendants;
3481
3482 cgroup_kn_unlock(of->kn);
3483
3484 return nbytes;
3485 }
3486
cgroup_max_depth_show(struct seq_file * seq,void * v)3487 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3488 {
3489 struct cgroup *cgrp = seq_css(seq)->cgroup;
3490 int depth = READ_ONCE(cgrp->max_depth);
3491
3492 if (depth == INT_MAX)
3493 seq_puts(seq, "max\n");
3494 else
3495 seq_printf(seq, "%d\n", depth);
3496
3497 return 0;
3498 }
3499
cgroup_max_depth_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3500 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3501 char *buf, size_t nbytes, loff_t off)
3502 {
3503 struct cgroup *cgrp;
3504 ssize_t ret;
3505 int depth;
3506
3507 buf = strstrip(buf);
3508 if (!strcmp(buf, "max")) {
3509 depth = INT_MAX;
3510 } else {
3511 ret = kstrtoint(buf, 0, &depth);
3512 if (ret)
3513 return ret;
3514 }
3515
3516 if (depth < 0)
3517 return -ERANGE;
3518
3519 cgrp = cgroup_kn_lock_live(of->kn, false);
3520 if (!cgrp)
3521 return -ENOENT;
3522
3523 cgrp->max_depth = depth;
3524
3525 cgroup_kn_unlock(of->kn);
3526
3527 return nbytes;
3528 }
3529
cgroup_events_show(struct seq_file * seq,void * v)3530 static int cgroup_events_show(struct seq_file *seq, void *v)
3531 {
3532 struct cgroup *cgrp = seq_css(seq)->cgroup;
3533
3534 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3535 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3536
3537 return 0;
3538 }
3539
cgroup_stat_show(struct seq_file * seq,void * v)3540 static int cgroup_stat_show(struct seq_file *seq, void *v)
3541 {
3542 struct cgroup *cgroup = seq_css(seq)->cgroup;
3543
3544 seq_printf(seq, "nr_descendants %d\n",
3545 cgroup->nr_descendants);
3546 seq_printf(seq, "nr_dying_descendants %d\n",
3547 cgroup->nr_dying_descendants);
3548
3549 return 0;
3550 }
3551
cgroup_extra_stat_show(struct seq_file * seq,struct cgroup * cgrp,int ssid)3552 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3553 struct cgroup *cgrp, int ssid)
3554 {
3555 struct cgroup_subsys *ss = cgroup_subsys[ssid];
3556 struct cgroup_subsys_state *css;
3557 int ret;
3558
3559 if (!ss->css_extra_stat_show)
3560 return 0;
3561
3562 css = cgroup_tryget_css(cgrp, ss);
3563 if (!css)
3564 return 0;
3565
3566 ret = ss->css_extra_stat_show(seq, css);
3567 css_put(css);
3568 return ret;
3569 }
3570
cpu_stat_show(struct seq_file * seq,void * v)3571 static int cpu_stat_show(struct seq_file *seq, void *v)
3572 {
3573 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3574 int ret = 0;
3575
3576 cgroup_base_stat_cputime_show(seq);
3577 #ifdef CONFIG_CGROUP_SCHED
3578 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3579 #endif
3580 return ret;
3581 }
3582
3583 #ifdef CONFIG_PSI
cgroup_io_pressure_show(struct seq_file * seq,void * v)3584 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3585 {
3586 struct cgroup *cgrp = seq_css(seq)->cgroup;
3587 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3588
3589 return psi_show(seq, psi, PSI_IO);
3590 }
cgroup_memory_pressure_show(struct seq_file * seq,void * v)3591 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3592 {
3593 struct cgroup *cgrp = seq_css(seq)->cgroup;
3594 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3595
3596 return psi_show(seq, psi, PSI_MEM);
3597 }
cgroup_cpu_pressure_show(struct seq_file * seq,void * v)3598 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3599 {
3600 struct cgroup *cgrp = seq_css(seq)->cgroup;
3601 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3602
3603 return psi_show(seq, psi, PSI_CPU);
3604 }
3605
cgroup_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,enum psi_res res)3606 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3607 size_t nbytes, enum psi_res res)
3608 {
3609 struct cgroup_file_ctx *ctx = of->priv;
3610 struct psi_trigger *new;
3611 struct cgroup *cgrp;
3612 struct psi_group *psi;
3613
3614 cgrp = cgroup_kn_lock_live(of->kn, false);
3615 if (!cgrp)
3616 return -ENODEV;
3617
3618 cgroup_get(cgrp);
3619 cgroup_kn_unlock(of->kn);
3620
3621 /* Allow only one trigger per file descriptor */
3622 if (of->priv) {
3623 cgroup_put(cgrp);
3624 return -EBUSY;
3625 }
3626
3627 psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3628 new = psi_trigger_create(psi, buf, nbytes, res);
3629 if (IS_ERR(new)) {
3630 cgroup_put(cgrp);
3631 return PTR_ERR(new);
3632 }
3633
3634 smp_store_release(&ctx->psi.trigger, new);
3635 cgroup_put(cgrp);
3636
3637 return nbytes;
3638 }
3639
cgroup_io_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3640 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3641 char *buf, size_t nbytes,
3642 loff_t off)
3643 {
3644 return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3645 }
3646
cgroup_memory_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3647 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3648 char *buf, size_t nbytes,
3649 loff_t off)
3650 {
3651 return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3652 }
3653
cgroup_cpu_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3654 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3655 char *buf, size_t nbytes,
3656 loff_t off)
3657 {
3658 return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3659 }
3660
cgroup_pressure_poll(struct kernfs_open_file * of,poll_table * pt)3661 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3662 poll_table *pt)
3663 {
3664 struct cgroup_file_ctx *ctx = of->priv;
3665
3666 return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
3667 }
3668
cgroup_pressure_release(struct kernfs_open_file * of)3669 static void cgroup_pressure_release(struct kernfs_open_file *of)
3670 {
3671 struct cgroup_file_ctx *ctx = of->priv;
3672
3673 psi_trigger_destroy(ctx->psi.trigger);
3674 }
3675 #endif /* CONFIG_PSI */
3676
cgroup_freeze_show(struct seq_file * seq,void * v)3677 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3678 {
3679 struct cgroup *cgrp = seq_css(seq)->cgroup;
3680
3681 seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3682
3683 return 0;
3684 }
3685
cgroup_freeze_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3686 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3687 char *buf, size_t nbytes, loff_t off)
3688 {
3689 struct cgroup *cgrp;
3690 ssize_t ret;
3691 int freeze;
3692
3693 ret = kstrtoint(strstrip(buf), 0, &freeze);
3694 if (ret)
3695 return ret;
3696
3697 if (freeze < 0 || freeze > 1)
3698 return -ERANGE;
3699
3700 cgrp = cgroup_kn_lock_live(of->kn, false);
3701 if (!cgrp)
3702 return -ENOENT;
3703
3704 cgroup_freeze(cgrp, freeze);
3705
3706 cgroup_kn_unlock(of->kn);
3707
3708 return nbytes;
3709 }
3710
cgroup_file_open(struct kernfs_open_file * of)3711 static int cgroup_file_open(struct kernfs_open_file *of)
3712 {
3713 struct cftype *cft = of_cft(of);
3714 struct cgroup_file_ctx *ctx;
3715 int ret;
3716
3717 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3718 if (!ctx)
3719 return -ENOMEM;
3720
3721 ctx->ns = current->nsproxy->cgroup_ns;
3722 get_cgroup_ns(ctx->ns);
3723 of->priv = ctx;
3724
3725 if (!cft->open)
3726 return 0;
3727
3728 ret = cft->open(of);
3729 if (ret) {
3730 put_cgroup_ns(ctx->ns);
3731 kfree(ctx);
3732 }
3733 return ret;
3734 }
3735
cgroup_file_release(struct kernfs_open_file * of)3736 static void cgroup_file_release(struct kernfs_open_file *of)
3737 {
3738 struct cftype *cft = of_cft(of);
3739 struct cgroup_file_ctx *ctx = of->priv;
3740
3741 if (cft->release)
3742 cft->release(of);
3743 put_cgroup_ns(ctx->ns);
3744 kfree(ctx);
3745 }
3746
cgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3747 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3748 size_t nbytes, loff_t off)
3749 {
3750 struct cgroup_file_ctx *ctx = of->priv;
3751 struct cgroup *cgrp = of->kn->parent->priv;
3752 struct cftype *cft = of_cft(of);
3753 struct cgroup_subsys_state *css;
3754 int ret;
3755
3756 if (!nbytes)
3757 return 0;
3758
3759 /*
3760 * If namespaces are delegation boundaries, disallow writes to
3761 * files in an non-init namespace root from inside the namespace
3762 * except for the files explicitly marked delegatable -
3763 * cgroup.procs and cgroup.subtree_control.
3764 */
3765 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3766 !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3767 ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
3768 return -EPERM;
3769
3770 if (cft->write)
3771 return cft->write(of, buf, nbytes, off);
3772
3773 /*
3774 * kernfs guarantees that a file isn't deleted with operations in
3775 * flight, which means that the matching css is and stays alive and
3776 * doesn't need to be pinned. The RCU locking is not necessary
3777 * either. It's just for the convenience of using cgroup_css().
3778 */
3779 rcu_read_lock();
3780 css = cgroup_css(cgrp, cft->ss);
3781 rcu_read_unlock();
3782
3783 if (cft->write_u64) {
3784 unsigned long long v;
3785 ret = kstrtoull(buf, 0, &v);
3786 if (!ret)
3787 ret = cft->write_u64(css, cft, v);
3788 } else if (cft->write_s64) {
3789 long long v;
3790 ret = kstrtoll(buf, 0, &v);
3791 if (!ret)
3792 ret = cft->write_s64(css, cft, v);
3793 } else {
3794 ret = -EINVAL;
3795 }
3796
3797 return ret ?: nbytes;
3798 }
3799
cgroup_file_poll(struct kernfs_open_file * of,poll_table * pt)3800 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3801 {
3802 struct cftype *cft = of_cft(of);
3803
3804 if (cft->poll)
3805 return cft->poll(of, pt);
3806
3807 return kernfs_generic_poll(of, pt);
3808 }
3809
cgroup_seqfile_start(struct seq_file * seq,loff_t * ppos)3810 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3811 {
3812 return seq_cft(seq)->seq_start(seq, ppos);
3813 }
3814
cgroup_seqfile_next(struct seq_file * seq,void * v,loff_t * ppos)3815 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3816 {
3817 return seq_cft(seq)->seq_next(seq, v, ppos);
3818 }
3819
cgroup_seqfile_stop(struct seq_file * seq,void * v)3820 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3821 {
3822 if (seq_cft(seq)->seq_stop)
3823 seq_cft(seq)->seq_stop(seq, v);
3824 }
3825
cgroup_seqfile_show(struct seq_file * m,void * arg)3826 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3827 {
3828 struct cftype *cft = seq_cft(m);
3829 struct cgroup_subsys_state *css = seq_css(m);
3830
3831 if (cft->seq_show)
3832 return cft->seq_show(m, arg);
3833
3834 if (cft->read_u64)
3835 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3836 else if (cft->read_s64)
3837 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3838 else
3839 return -EINVAL;
3840 return 0;
3841 }
3842
3843 static struct kernfs_ops cgroup_kf_single_ops = {
3844 .atomic_write_len = PAGE_SIZE,
3845 .open = cgroup_file_open,
3846 .release = cgroup_file_release,
3847 .write = cgroup_file_write,
3848 .poll = cgroup_file_poll,
3849 .seq_show = cgroup_seqfile_show,
3850 };
3851
3852 static struct kernfs_ops cgroup_kf_ops = {
3853 .atomic_write_len = PAGE_SIZE,
3854 .open = cgroup_file_open,
3855 .release = cgroup_file_release,
3856 .write = cgroup_file_write,
3857 .poll = cgroup_file_poll,
3858 .seq_start = cgroup_seqfile_start,
3859 .seq_next = cgroup_seqfile_next,
3860 .seq_stop = cgroup_seqfile_stop,
3861 .seq_show = cgroup_seqfile_show,
3862 };
3863
3864 /* set uid and gid of cgroup dirs and files to that of the creator */
cgroup_kn_set_ugid(struct kernfs_node * kn)3865 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3866 {
3867 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3868 .ia_uid = current_fsuid(),
3869 .ia_gid = current_fsgid(), };
3870
3871 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3872 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3873 return 0;
3874
3875 return kernfs_setattr(kn, &iattr);
3876 }
3877
cgroup_file_notify_timer(struct timer_list * timer)3878 static void cgroup_file_notify_timer(struct timer_list *timer)
3879 {
3880 cgroup_file_notify(container_of(timer, struct cgroup_file,
3881 notify_timer));
3882 }
3883
cgroup_add_file(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype * cft)3884 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3885 struct cftype *cft)
3886 {
3887 char name[CGROUP_FILE_NAME_MAX];
3888 struct kernfs_node *kn;
3889 struct lock_class_key *key = NULL;
3890 int ret;
3891
3892 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3893 key = &cft->lockdep_key;
3894 #endif
3895 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3896 cgroup_file_mode(cft),
3897 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3898 0, cft->kf_ops, cft,
3899 NULL, key);
3900 if (IS_ERR(kn))
3901 return PTR_ERR(kn);
3902
3903 ret = cgroup_kn_set_ugid(kn);
3904 if (ret) {
3905 kernfs_remove(kn);
3906 return ret;
3907 }
3908
3909 if (cft->file_offset) {
3910 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3911
3912 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3913
3914 spin_lock_irq(&cgroup_file_kn_lock);
3915 cfile->kn = kn;
3916 spin_unlock_irq(&cgroup_file_kn_lock);
3917 }
3918
3919 return 0;
3920 }
3921
3922 /**
3923 * cgroup_addrm_files - add or remove files to a cgroup directory
3924 * @css: the target css
3925 * @cgrp: the target cgroup (usually css->cgroup)
3926 * @cfts: array of cftypes to be added
3927 * @is_add: whether to add or remove
3928 *
3929 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3930 * For removals, this function never fails.
3931 */
cgroup_addrm_files(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype cfts[],bool is_add)3932 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3933 struct cgroup *cgrp, struct cftype cfts[],
3934 bool is_add)
3935 {
3936 struct cftype *cft, *cft_end = NULL;
3937 int ret = 0;
3938
3939 lockdep_assert_held(&cgroup_mutex);
3940
3941 restart:
3942 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3943 /* does cft->flags tell us to skip this file on @cgrp? */
3944 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3945 continue;
3946 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3947 continue;
3948 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3949 continue;
3950 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3951 continue;
3952 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
3953 continue;
3954 if (is_add) {
3955 ret = cgroup_add_file(css, cgrp, cft);
3956 if (ret) {
3957 pr_warn("%s: failed to add %s, err=%d\n",
3958 __func__, cft->name, ret);
3959 cft_end = cft;
3960 is_add = false;
3961 goto restart;
3962 }
3963 } else {
3964 cgroup_rm_file(cgrp, cft);
3965 }
3966 }
3967 return ret;
3968 }
3969
cgroup_apply_cftypes(struct cftype * cfts,bool is_add)3970 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3971 {
3972 struct cgroup_subsys *ss = cfts[0].ss;
3973 struct cgroup *root = &ss->root->cgrp;
3974 struct cgroup_subsys_state *css;
3975 int ret = 0;
3976
3977 lockdep_assert_held(&cgroup_mutex);
3978
3979 /* add/rm files for all cgroups created before */
3980 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3981 struct cgroup *cgrp = css->cgroup;
3982
3983 if (!(css->flags & CSS_VISIBLE))
3984 continue;
3985
3986 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3987 if (ret)
3988 break;
3989 }
3990
3991 if (is_add && !ret)
3992 kernfs_activate(root->kn);
3993 return ret;
3994 }
3995
cgroup_exit_cftypes(struct cftype * cfts)3996 static void cgroup_exit_cftypes(struct cftype *cfts)
3997 {
3998 struct cftype *cft;
3999
4000 for (cft = cfts; cft->name[0] != '\0'; cft++) {
4001 /* free copy for custom atomic_write_len, see init_cftypes() */
4002 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4003 kfree(cft->kf_ops);
4004 cft->kf_ops = NULL;
4005 cft->ss = NULL;
4006
4007 /* revert flags set by cgroup core while adding @cfts */
4008 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
4009 }
4010 }
4011
cgroup_init_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4012 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4013 {
4014 struct cftype *cft;
4015
4016 for (cft = cfts; cft->name[0] != '\0'; cft++) {
4017 struct kernfs_ops *kf_ops;
4018
4019 WARN_ON(cft->ss || cft->kf_ops);
4020
4021 if (cft->seq_start)
4022 kf_ops = &cgroup_kf_ops;
4023 else
4024 kf_ops = &cgroup_kf_single_ops;
4025
4026 /*
4027 * Ugh... if @cft wants a custom max_write_len, we need to
4028 * make a copy of kf_ops to set its atomic_write_len.
4029 */
4030 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4031 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4032 if (!kf_ops) {
4033 cgroup_exit_cftypes(cfts);
4034 return -ENOMEM;
4035 }
4036 kf_ops->atomic_write_len = cft->max_write_len;
4037 }
4038
4039 cft->kf_ops = kf_ops;
4040 cft->ss = ss;
4041 }
4042
4043 return 0;
4044 }
4045
cgroup_rm_cftypes_locked(struct cftype * cfts)4046 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
4047 {
4048 lockdep_assert_held(&cgroup_mutex);
4049
4050 if (!cfts || !cfts[0].ss)
4051 return -ENOENT;
4052
4053 list_del(&cfts->node);
4054 cgroup_apply_cftypes(cfts, false);
4055 cgroup_exit_cftypes(cfts);
4056 return 0;
4057 }
4058
4059 /**
4060 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4061 * @cfts: zero-length name terminated array of cftypes
4062 *
4063 * Unregister @cfts. Files described by @cfts are removed from all
4064 * existing cgroups and all future cgroups won't have them either. This
4065 * function can be called anytime whether @cfts' subsys is attached or not.
4066 *
4067 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4068 * registered.
4069 */
cgroup_rm_cftypes(struct cftype * cfts)4070 int cgroup_rm_cftypes(struct cftype *cfts)
4071 {
4072 int ret;
4073
4074 mutex_lock(&cgroup_mutex);
4075 ret = cgroup_rm_cftypes_locked(cfts);
4076 mutex_unlock(&cgroup_mutex);
4077 return ret;
4078 }
4079
4080 /**
4081 * cgroup_add_cftypes - add an array of cftypes to a subsystem
4082 * @ss: target cgroup subsystem
4083 * @cfts: zero-length name terminated array of cftypes
4084 *
4085 * Register @cfts to @ss. Files described by @cfts are created for all
4086 * existing cgroups to which @ss is attached and all future cgroups will
4087 * have them too. This function can be called anytime whether @ss is
4088 * attached or not.
4089 *
4090 * Returns 0 on successful registration, -errno on failure. Note that this
4091 * function currently returns 0 as long as @cfts registration is successful
4092 * even if some file creation attempts on existing cgroups fail.
4093 */
cgroup_add_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4094 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4095 {
4096 int ret;
4097
4098 if (!cgroup_ssid_enabled(ss->id))
4099 return 0;
4100
4101 if (!cfts || cfts[0].name[0] == '\0')
4102 return 0;
4103
4104 ret = cgroup_init_cftypes(ss, cfts);
4105 if (ret)
4106 return ret;
4107
4108 mutex_lock(&cgroup_mutex);
4109
4110 list_add_tail(&cfts->node, &ss->cfts);
4111 ret = cgroup_apply_cftypes(cfts, true);
4112 if (ret)
4113 cgroup_rm_cftypes_locked(cfts);
4114
4115 mutex_unlock(&cgroup_mutex);
4116 return ret;
4117 }
4118
4119 /**
4120 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4121 * @ss: target cgroup subsystem
4122 * @cfts: zero-length name terminated array of cftypes
4123 *
4124 * Similar to cgroup_add_cftypes() but the added files are only used for
4125 * the default hierarchy.
4126 */
cgroup_add_dfl_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4127 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4128 {
4129 struct cftype *cft;
4130
4131 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4132 cft->flags |= __CFTYPE_ONLY_ON_DFL;
4133 return cgroup_add_cftypes(ss, cfts);
4134 }
4135
4136 /**
4137 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4138 * @ss: target cgroup subsystem
4139 * @cfts: zero-length name terminated array of cftypes
4140 *
4141 * Similar to cgroup_add_cftypes() but the added files are only used for
4142 * the legacy hierarchies.
4143 */
cgroup_add_legacy_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4144 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4145 {
4146 struct cftype *cft;
4147
4148 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4149 cft->flags |= __CFTYPE_NOT_ON_DFL;
4150 return cgroup_add_cftypes(ss, cfts);
4151 }
4152
4153 /**
4154 * cgroup_file_notify - generate a file modified event for a cgroup_file
4155 * @cfile: target cgroup_file
4156 *
4157 * @cfile must have been obtained by setting cftype->file_offset.
4158 */
cgroup_file_notify(struct cgroup_file * cfile)4159 void cgroup_file_notify(struct cgroup_file *cfile)
4160 {
4161 unsigned long flags;
4162
4163 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4164 if (cfile->kn) {
4165 unsigned long last = cfile->notified_at;
4166 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4167
4168 if (time_in_range(jiffies, last, next)) {
4169 timer_reduce(&cfile->notify_timer, next);
4170 } else {
4171 kernfs_notify(cfile->kn);
4172 cfile->notified_at = jiffies;
4173 }
4174 }
4175 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4176 }
4177
4178 /**
4179 * css_next_child - find the next child of a given css
4180 * @pos: the current position (%NULL to initiate traversal)
4181 * @parent: css whose children to walk
4182 *
4183 * This function returns the next child of @parent and should be called
4184 * under either cgroup_mutex or RCU read lock. The only requirement is
4185 * that @parent and @pos are accessible. The next sibling is guaranteed to
4186 * be returned regardless of their states.
4187 *
4188 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4189 * css which finished ->css_online() is guaranteed to be visible in the
4190 * future iterations and will stay visible until the last reference is put.
4191 * A css which hasn't finished ->css_online() or already finished
4192 * ->css_offline() may show up during traversal. It's each subsystem's
4193 * responsibility to synchronize against on/offlining.
4194 */
css_next_child(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * parent)4195 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4196 struct cgroup_subsys_state *parent)
4197 {
4198 struct cgroup_subsys_state *next;
4199
4200 cgroup_assert_mutex_or_rcu_locked();
4201
4202 /*
4203 * @pos could already have been unlinked from the sibling list.
4204 * Once a cgroup is removed, its ->sibling.next is no longer
4205 * updated when its next sibling changes. CSS_RELEASED is set when
4206 * @pos is taken off list, at which time its next pointer is valid,
4207 * and, as releases are serialized, the one pointed to by the next
4208 * pointer is guaranteed to not have started release yet. This
4209 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4210 * critical section, the one pointed to by its next pointer is
4211 * guaranteed to not have finished its RCU grace period even if we
4212 * have dropped rcu_read_lock() inbetween iterations.
4213 *
4214 * If @pos has CSS_RELEASED set, its next pointer can't be
4215 * dereferenced; however, as each css is given a monotonically
4216 * increasing unique serial number and always appended to the
4217 * sibling list, the next one can be found by walking the parent's
4218 * children until the first css with higher serial number than
4219 * @pos's. While this path can be slower, it happens iff iteration
4220 * races against release and the race window is very small.
4221 */
4222 if (!pos) {
4223 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4224 } else if (likely(!(pos->flags & CSS_RELEASED))) {
4225 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4226 } else {
4227 list_for_each_entry_rcu(next, &parent->children, sibling,
4228 lockdep_is_held(&cgroup_mutex))
4229 if (next->serial_nr > pos->serial_nr)
4230 break;
4231 }
4232
4233 /*
4234 * @next, if not pointing to the head, can be dereferenced and is
4235 * the next sibling.
4236 */
4237 if (&next->sibling != &parent->children)
4238 return next;
4239 return NULL;
4240 }
4241
4242 /**
4243 * css_next_descendant_pre - find the next descendant for pre-order walk
4244 * @pos: the current position (%NULL to initiate traversal)
4245 * @root: css whose descendants to walk
4246 *
4247 * To be used by css_for_each_descendant_pre(). Find the next descendant
4248 * to visit for pre-order traversal of @root's descendants. @root is
4249 * included in the iteration and the first node to be visited.
4250 *
4251 * While this function requires cgroup_mutex or RCU read locking, it
4252 * doesn't require the whole traversal to be contained in a single critical
4253 * section. This function will return the correct next descendant as long
4254 * as both @pos and @root are accessible and @pos is a descendant of @root.
4255 *
4256 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4257 * css which finished ->css_online() is guaranteed to be visible in the
4258 * future iterations and will stay visible until the last reference is put.
4259 * A css which hasn't finished ->css_online() or already finished
4260 * ->css_offline() may show up during traversal. It's each subsystem's
4261 * responsibility to synchronize against on/offlining.
4262 */
4263 struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4264 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4265 struct cgroup_subsys_state *root)
4266 {
4267 struct cgroup_subsys_state *next;
4268
4269 cgroup_assert_mutex_or_rcu_locked();
4270
4271 /* if first iteration, visit @root */
4272 if (!pos)
4273 return root;
4274
4275 /* visit the first child if exists */
4276 next = css_next_child(NULL, pos);
4277 if (next)
4278 return next;
4279
4280 /* no child, visit my or the closest ancestor's next sibling */
4281 while (pos != root) {
4282 next = css_next_child(pos, pos->parent);
4283 if (next)
4284 return next;
4285 pos = pos->parent;
4286 }
4287
4288 return NULL;
4289 }
4290 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4291
4292 /**
4293 * css_rightmost_descendant - return the rightmost descendant of a css
4294 * @pos: css of interest
4295 *
4296 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4297 * is returned. This can be used during pre-order traversal to skip
4298 * subtree of @pos.
4299 *
4300 * While this function requires cgroup_mutex or RCU read locking, it
4301 * doesn't require the whole traversal to be contained in a single critical
4302 * section. This function will return the correct rightmost descendant as
4303 * long as @pos is accessible.
4304 */
4305 struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state * pos)4306 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4307 {
4308 struct cgroup_subsys_state *last, *tmp;
4309
4310 cgroup_assert_mutex_or_rcu_locked();
4311
4312 do {
4313 last = pos;
4314 /* ->prev isn't RCU safe, walk ->next till the end */
4315 pos = NULL;
4316 css_for_each_child(tmp, last)
4317 pos = tmp;
4318 } while (pos);
4319
4320 return last;
4321 }
4322
4323 static struct cgroup_subsys_state *
css_leftmost_descendant(struct cgroup_subsys_state * pos)4324 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4325 {
4326 struct cgroup_subsys_state *last;
4327
4328 do {
4329 last = pos;
4330 pos = css_next_child(NULL, pos);
4331 } while (pos);
4332
4333 return last;
4334 }
4335
4336 /**
4337 * css_next_descendant_post - find the next descendant for post-order walk
4338 * @pos: the current position (%NULL to initiate traversal)
4339 * @root: css whose descendants to walk
4340 *
4341 * To be used by css_for_each_descendant_post(). Find the next descendant
4342 * to visit for post-order traversal of @root's descendants. @root is
4343 * included in the iteration and the last node to be visited.
4344 *
4345 * While this function requires cgroup_mutex or RCU read locking, it
4346 * doesn't require the whole traversal to be contained in a single critical
4347 * section. This function will return the correct next descendant as long
4348 * as both @pos and @cgroup are accessible and @pos is a descendant of
4349 * @cgroup.
4350 *
4351 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4352 * css which finished ->css_online() is guaranteed to be visible in the
4353 * future iterations and will stay visible until the last reference is put.
4354 * A css which hasn't finished ->css_online() or already finished
4355 * ->css_offline() may show up during traversal. It's each subsystem's
4356 * responsibility to synchronize against on/offlining.
4357 */
4358 struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4359 css_next_descendant_post(struct cgroup_subsys_state *pos,
4360 struct cgroup_subsys_state *root)
4361 {
4362 struct cgroup_subsys_state *next;
4363
4364 cgroup_assert_mutex_or_rcu_locked();
4365
4366 /* if first iteration, visit leftmost descendant which may be @root */
4367 if (!pos)
4368 return css_leftmost_descendant(root);
4369
4370 /* if we visited @root, we're done */
4371 if (pos == root)
4372 return NULL;
4373
4374 /* if there's an unvisited sibling, visit its leftmost descendant */
4375 next = css_next_child(pos, pos->parent);
4376 if (next)
4377 return css_leftmost_descendant(next);
4378
4379 /* no sibling left, visit parent */
4380 return pos->parent;
4381 }
4382
4383 /**
4384 * css_has_online_children - does a css have online children
4385 * @css: the target css
4386 *
4387 * Returns %true if @css has any online children; otherwise, %false. This
4388 * function can be called from any context but the caller is responsible
4389 * for synchronizing against on/offlining as necessary.
4390 */
css_has_online_children(struct cgroup_subsys_state * css)4391 bool css_has_online_children(struct cgroup_subsys_state *css)
4392 {
4393 struct cgroup_subsys_state *child;
4394 bool ret = false;
4395
4396 rcu_read_lock();
4397 css_for_each_child(child, css) {
4398 if (child->flags & CSS_ONLINE) {
4399 ret = true;
4400 break;
4401 }
4402 }
4403 rcu_read_unlock();
4404 return ret;
4405 }
4406
css_task_iter_next_css_set(struct css_task_iter * it)4407 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4408 {
4409 struct list_head *l;
4410 struct cgrp_cset_link *link;
4411 struct css_set *cset;
4412
4413 lockdep_assert_held(&css_set_lock);
4414
4415 /* find the next threaded cset */
4416 if (it->tcset_pos) {
4417 l = it->tcset_pos->next;
4418
4419 if (l != it->tcset_head) {
4420 it->tcset_pos = l;
4421 return container_of(l, struct css_set,
4422 threaded_csets_node);
4423 }
4424
4425 it->tcset_pos = NULL;
4426 }
4427
4428 /* find the next cset */
4429 l = it->cset_pos;
4430 l = l->next;
4431 if (l == it->cset_head) {
4432 it->cset_pos = NULL;
4433 return NULL;
4434 }
4435
4436 if (it->ss) {
4437 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4438 } else {
4439 link = list_entry(l, struct cgrp_cset_link, cset_link);
4440 cset = link->cset;
4441 }
4442
4443 it->cset_pos = l;
4444
4445 /* initialize threaded css_set walking */
4446 if (it->flags & CSS_TASK_ITER_THREADED) {
4447 if (it->cur_dcset)
4448 put_css_set_locked(it->cur_dcset);
4449 it->cur_dcset = cset;
4450 get_css_set(cset);
4451
4452 it->tcset_head = &cset->threaded_csets;
4453 it->tcset_pos = &cset->threaded_csets;
4454 }
4455
4456 return cset;
4457 }
4458
4459 /**
4460 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4461 * @it: the iterator to advance
4462 *
4463 * Advance @it to the next css_set to walk.
4464 */
css_task_iter_advance_css_set(struct css_task_iter * it)4465 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4466 {
4467 struct css_set *cset;
4468
4469 lockdep_assert_held(&css_set_lock);
4470
4471 /* Advance to the next non-empty css_set and find first non-empty tasks list*/
4472 while ((cset = css_task_iter_next_css_set(it))) {
4473 if (!list_empty(&cset->tasks)) {
4474 it->cur_tasks_head = &cset->tasks;
4475 break;
4476 } else if (!list_empty(&cset->mg_tasks)) {
4477 it->cur_tasks_head = &cset->mg_tasks;
4478 break;
4479 } else if (!list_empty(&cset->dying_tasks)) {
4480 it->cur_tasks_head = &cset->dying_tasks;
4481 break;
4482 }
4483 }
4484 if (!cset) {
4485 it->task_pos = NULL;
4486 return;
4487 }
4488 it->task_pos = it->cur_tasks_head->next;
4489
4490 /*
4491 * We don't keep css_sets locked across iteration steps and thus
4492 * need to take steps to ensure that iteration can be resumed after
4493 * the lock is re-acquired. Iteration is performed at two levels -
4494 * css_sets and tasks in them.
4495 *
4496 * Once created, a css_set never leaves its cgroup lists, so a
4497 * pinned css_set is guaranteed to stay put and we can resume
4498 * iteration afterwards.
4499 *
4500 * Tasks may leave @cset across iteration steps. This is resolved
4501 * by registering each iterator with the css_set currently being
4502 * walked and making css_set_move_task() advance iterators whose
4503 * next task is leaving.
4504 */
4505 if (it->cur_cset) {
4506 list_del(&it->iters_node);
4507 put_css_set_locked(it->cur_cset);
4508 }
4509 get_css_set(cset);
4510 it->cur_cset = cset;
4511 list_add(&it->iters_node, &cset->task_iters);
4512 }
4513
css_task_iter_skip(struct css_task_iter * it,struct task_struct * task)4514 static void css_task_iter_skip(struct css_task_iter *it,
4515 struct task_struct *task)
4516 {
4517 lockdep_assert_held(&css_set_lock);
4518
4519 if (it->task_pos == &task->cg_list) {
4520 it->task_pos = it->task_pos->next;
4521 it->flags |= CSS_TASK_ITER_SKIPPED;
4522 }
4523 }
4524
css_task_iter_advance(struct css_task_iter * it)4525 static void css_task_iter_advance(struct css_task_iter *it)
4526 {
4527 struct task_struct *task;
4528
4529 lockdep_assert_held(&css_set_lock);
4530 repeat:
4531 if (it->task_pos) {
4532 /*
4533 * Advance iterator to find next entry. We go through cset
4534 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4535 * the next cset.
4536 */
4537 if (it->flags & CSS_TASK_ITER_SKIPPED)
4538 it->flags &= ~CSS_TASK_ITER_SKIPPED;
4539 else
4540 it->task_pos = it->task_pos->next;
4541
4542 if (it->task_pos == &it->cur_cset->tasks) {
4543 it->cur_tasks_head = &it->cur_cset->mg_tasks;
4544 it->task_pos = it->cur_tasks_head->next;
4545 }
4546 if (it->task_pos == &it->cur_cset->mg_tasks) {
4547 it->cur_tasks_head = &it->cur_cset->dying_tasks;
4548 it->task_pos = it->cur_tasks_head->next;
4549 }
4550 if (it->task_pos == &it->cur_cset->dying_tasks)
4551 css_task_iter_advance_css_set(it);
4552 } else {
4553 /* called from start, proceed to the first cset */
4554 css_task_iter_advance_css_set(it);
4555 }
4556
4557 if (!it->task_pos)
4558 return;
4559
4560 task = list_entry(it->task_pos, struct task_struct, cg_list);
4561
4562 if (it->flags & CSS_TASK_ITER_PROCS) {
4563 /* if PROCS, skip over tasks which aren't group leaders */
4564 if (!thread_group_leader(task))
4565 goto repeat;
4566
4567 /* and dying leaders w/o live member threads */
4568 if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4569 !atomic_read(&task->signal->live))
4570 goto repeat;
4571 } else {
4572 /* skip all dying ones */
4573 if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4574 goto repeat;
4575 }
4576 }
4577
4578 /**
4579 * css_task_iter_start - initiate task iteration
4580 * @css: the css to walk tasks of
4581 * @flags: CSS_TASK_ITER_* flags
4582 * @it: the task iterator to use
4583 *
4584 * Initiate iteration through the tasks of @css. The caller can call
4585 * css_task_iter_next() to walk through the tasks until the function
4586 * returns NULL. On completion of iteration, css_task_iter_end() must be
4587 * called.
4588 */
css_task_iter_start(struct cgroup_subsys_state * css,unsigned int flags,struct css_task_iter * it)4589 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4590 struct css_task_iter *it)
4591 {
4592 memset(it, 0, sizeof(*it));
4593
4594 spin_lock_irq(&css_set_lock);
4595
4596 it->ss = css->ss;
4597 it->flags = flags;
4598
4599 if (it->ss)
4600 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4601 else
4602 it->cset_pos = &css->cgroup->cset_links;
4603
4604 it->cset_head = it->cset_pos;
4605
4606 css_task_iter_advance(it);
4607
4608 spin_unlock_irq(&css_set_lock);
4609 }
4610
4611 /**
4612 * css_task_iter_next - return the next task for the iterator
4613 * @it: the task iterator being iterated
4614 *
4615 * The "next" function for task iteration. @it should have been
4616 * initialized via css_task_iter_start(). Returns NULL when the iteration
4617 * reaches the end.
4618 */
css_task_iter_next(struct css_task_iter * it)4619 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4620 {
4621 if (it->cur_task) {
4622 put_task_struct(it->cur_task);
4623 it->cur_task = NULL;
4624 }
4625
4626 spin_lock_irq(&css_set_lock);
4627
4628 /* @it may be half-advanced by skips, finish advancing */
4629 if (it->flags & CSS_TASK_ITER_SKIPPED)
4630 css_task_iter_advance(it);
4631
4632 if (it->task_pos) {
4633 it->cur_task = list_entry(it->task_pos, struct task_struct,
4634 cg_list);
4635 get_task_struct(it->cur_task);
4636 css_task_iter_advance(it);
4637 }
4638
4639 spin_unlock_irq(&css_set_lock);
4640
4641 return it->cur_task;
4642 }
4643
4644 /**
4645 * css_task_iter_end - finish task iteration
4646 * @it: the task iterator to finish
4647 *
4648 * Finish task iteration started by css_task_iter_start().
4649 */
css_task_iter_end(struct css_task_iter * it)4650 void css_task_iter_end(struct css_task_iter *it)
4651 {
4652 if (it->cur_cset) {
4653 spin_lock_irq(&css_set_lock);
4654 list_del(&it->iters_node);
4655 put_css_set_locked(it->cur_cset);
4656 spin_unlock_irq(&css_set_lock);
4657 }
4658
4659 if (it->cur_dcset)
4660 put_css_set(it->cur_dcset);
4661
4662 if (it->cur_task)
4663 put_task_struct(it->cur_task);
4664 }
4665
cgroup_procs_release(struct kernfs_open_file * of)4666 static void cgroup_procs_release(struct kernfs_open_file *of)
4667 {
4668 struct cgroup_file_ctx *ctx = of->priv;
4669
4670 if (ctx->procs.started)
4671 css_task_iter_end(&ctx->procs.iter);
4672 }
4673
cgroup_procs_next(struct seq_file * s,void * v,loff_t * pos)4674 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4675 {
4676 struct kernfs_open_file *of = s->private;
4677 struct cgroup_file_ctx *ctx = of->priv;
4678
4679 if (pos)
4680 (*pos)++;
4681
4682 return css_task_iter_next(&ctx->procs.iter);
4683 }
4684
__cgroup_procs_start(struct seq_file * s,loff_t * pos,unsigned int iter_flags)4685 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4686 unsigned int iter_flags)
4687 {
4688 struct kernfs_open_file *of = s->private;
4689 struct cgroup *cgrp = seq_css(s)->cgroup;
4690 struct cgroup_file_ctx *ctx = of->priv;
4691 struct css_task_iter *it = &ctx->procs.iter;
4692
4693 /*
4694 * When a seq_file is seeked, it's always traversed sequentially
4695 * from position 0, so we can simply keep iterating on !0 *pos.
4696 */
4697 if (!ctx->procs.started) {
4698 if (WARN_ON_ONCE((*pos)))
4699 return ERR_PTR(-EINVAL);
4700 css_task_iter_start(&cgrp->self, iter_flags, it);
4701 ctx->procs.started = true;
4702 } else if (!(*pos)) {
4703 css_task_iter_end(it);
4704 css_task_iter_start(&cgrp->self, iter_flags, it);
4705 } else
4706 return it->cur_task;
4707
4708 return cgroup_procs_next(s, NULL, NULL);
4709 }
4710
cgroup_procs_start(struct seq_file * s,loff_t * pos)4711 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4712 {
4713 struct cgroup *cgrp = seq_css(s)->cgroup;
4714
4715 /*
4716 * All processes of a threaded subtree belong to the domain cgroup
4717 * of the subtree. Only threads can be distributed across the
4718 * subtree. Reject reads on cgroup.procs in the subtree proper.
4719 * They're always empty anyway.
4720 */
4721 if (cgroup_is_threaded(cgrp))
4722 return ERR_PTR(-EOPNOTSUPP);
4723
4724 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4725 CSS_TASK_ITER_THREADED);
4726 }
4727
cgroup_procs_show(struct seq_file * s,void * v)4728 static int cgroup_procs_show(struct seq_file *s, void *v)
4729 {
4730 seq_printf(s, "%d\n", task_pid_vnr(v));
4731 return 0;
4732 }
4733
cgroup_may_write(const struct cgroup * cgrp,struct super_block * sb)4734 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
4735 {
4736 int ret;
4737 struct inode *inode;
4738
4739 lockdep_assert_held(&cgroup_mutex);
4740
4741 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
4742 if (!inode)
4743 return -ENOMEM;
4744
4745 ret = inode_permission(inode, MAY_WRITE);
4746 iput(inode);
4747 return ret;
4748 }
4749
cgroup_procs_write_permission(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,struct cgroup_namespace * ns)4750 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4751 struct cgroup *dst_cgrp,
4752 struct super_block *sb,
4753 struct cgroup_namespace *ns)
4754 {
4755 struct cgroup *com_cgrp = src_cgrp;
4756 int ret;
4757
4758 lockdep_assert_held(&cgroup_mutex);
4759
4760 /* find the common ancestor */
4761 while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4762 com_cgrp = cgroup_parent(com_cgrp);
4763
4764 /* %current should be authorized to migrate to the common ancestor */
4765 ret = cgroup_may_write(com_cgrp, sb);
4766 if (ret)
4767 return ret;
4768
4769 /*
4770 * If namespaces are delegation boundaries, %current must be able
4771 * to see both source and destination cgroups from its namespace.
4772 */
4773 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4774 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4775 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4776 return -ENOENT;
4777
4778 return 0;
4779 }
4780
cgroup_attach_permissions(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,bool threadgroup,struct cgroup_namespace * ns)4781 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
4782 struct cgroup *dst_cgrp,
4783 struct super_block *sb, bool threadgroup,
4784 struct cgroup_namespace *ns)
4785 {
4786 int ret = 0;
4787
4788 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
4789 if (ret)
4790 return ret;
4791
4792 ret = cgroup_migrate_vet_dst(dst_cgrp);
4793 if (ret)
4794 return ret;
4795
4796 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
4797 ret = -EOPNOTSUPP;
4798
4799 return ret;
4800 }
4801
__cgroup_procs_write(struct kernfs_open_file * of,char * buf,bool threadgroup)4802 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
4803 bool threadgroup)
4804 {
4805 struct cgroup_file_ctx *ctx = of->priv;
4806 struct cgroup *src_cgrp, *dst_cgrp;
4807 struct task_struct *task;
4808 const struct cred *saved_cred;
4809 ssize_t ret;
4810 bool locked;
4811
4812 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4813 if (!dst_cgrp)
4814 return -ENODEV;
4815
4816 task = cgroup_procs_write_start(buf, threadgroup, &locked);
4817 ret = PTR_ERR_OR_ZERO(task);
4818 if (ret)
4819 goto out_unlock;
4820
4821 /* find the source cgroup */
4822 spin_lock_irq(&css_set_lock);
4823 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4824 spin_unlock_irq(&css_set_lock);
4825
4826 /*
4827 * Process and thread migrations follow same delegation rule. Check
4828 * permissions using the credentials from file open to protect against
4829 * inherited fd attacks.
4830 */
4831 saved_cred = override_creds(of->file->f_cred);
4832 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
4833 of->file->f_path.dentry->d_sb,
4834 threadgroup, ctx->ns);
4835 revert_creds(saved_cred);
4836 if (ret)
4837 goto out_finish;
4838
4839 ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
4840
4841 out_finish:
4842 cgroup_procs_write_finish(task, locked);
4843 out_unlock:
4844 cgroup_kn_unlock(of->kn);
4845
4846 return ret;
4847 }
4848
cgroup_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4849 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4850 char *buf, size_t nbytes, loff_t off)
4851 {
4852 return __cgroup_procs_write(of, buf, true) ?: nbytes;
4853 }
4854
cgroup_threads_start(struct seq_file * s,loff_t * pos)4855 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4856 {
4857 return __cgroup_procs_start(s, pos, 0);
4858 }
4859
cgroup_threads_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4860 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4861 char *buf, size_t nbytes, loff_t off)
4862 {
4863 return __cgroup_procs_write(of, buf, false) ?: nbytes;
4864 }
4865
4866 /* cgroup core interface files for the default hierarchy */
4867 static struct cftype cgroup_base_files[] = {
4868 {
4869 .name = "cgroup.type",
4870 .flags = CFTYPE_NOT_ON_ROOT,
4871 .seq_show = cgroup_type_show,
4872 .write = cgroup_type_write,
4873 },
4874 {
4875 .name = "cgroup.procs",
4876 .flags = CFTYPE_NS_DELEGATABLE,
4877 .file_offset = offsetof(struct cgroup, procs_file),
4878 .release = cgroup_procs_release,
4879 .seq_start = cgroup_procs_start,
4880 .seq_next = cgroup_procs_next,
4881 .seq_show = cgroup_procs_show,
4882 .write = cgroup_procs_write,
4883 },
4884 {
4885 .name = "cgroup.threads",
4886 .flags = CFTYPE_NS_DELEGATABLE,
4887 .release = cgroup_procs_release,
4888 .seq_start = cgroup_threads_start,
4889 .seq_next = cgroup_procs_next,
4890 .seq_show = cgroup_procs_show,
4891 .write = cgroup_threads_write,
4892 },
4893 {
4894 .name = "cgroup.controllers",
4895 .seq_show = cgroup_controllers_show,
4896 },
4897 {
4898 .name = "cgroup.subtree_control",
4899 .flags = CFTYPE_NS_DELEGATABLE,
4900 .seq_show = cgroup_subtree_control_show,
4901 .write = cgroup_subtree_control_write,
4902 },
4903 {
4904 .name = "cgroup.events",
4905 .flags = CFTYPE_NOT_ON_ROOT,
4906 .file_offset = offsetof(struct cgroup, events_file),
4907 .seq_show = cgroup_events_show,
4908 },
4909 {
4910 .name = "cgroup.max.descendants",
4911 .seq_show = cgroup_max_descendants_show,
4912 .write = cgroup_max_descendants_write,
4913 },
4914 {
4915 .name = "cgroup.max.depth",
4916 .seq_show = cgroup_max_depth_show,
4917 .write = cgroup_max_depth_write,
4918 },
4919 {
4920 .name = "cgroup.stat",
4921 .seq_show = cgroup_stat_show,
4922 },
4923 {
4924 .name = "cgroup.freeze",
4925 .flags = CFTYPE_NOT_ON_ROOT,
4926 .seq_show = cgroup_freeze_show,
4927 .write = cgroup_freeze_write,
4928 },
4929 {
4930 .name = "cpu.stat",
4931 .seq_show = cpu_stat_show,
4932 },
4933 #ifdef CONFIG_PSI
4934 {
4935 .name = "io.pressure",
4936 .seq_show = cgroup_io_pressure_show,
4937 .write = cgroup_io_pressure_write,
4938 .poll = cgroup_pressure_poll,
4939 .release = cgroup_pressure_release,
4940 },
4941 {
4942 .name = "memory.pressure",
4943 .seq_show = cgroup_memory_pressure_show,
4944 .write = cgroup_memory_pressure_write,
4945 .poll = cgroup_pressure_poll,
4946 .release = cgroup_pressure_release,
4947 },
4948 {
4949 .name = "cpu.pressure",
4950 .seq_show = cgroup_cpu_pressure_show,
4951 .write = cgroup_cpu_pressure_write,
4952 .poll = cgroup_pressure_poll,
4953 .release = cgroup_pressure_release,
4954 },
4955 #endif /* CONFIG_PSI */
4956 { } /* terminate */
4957 };
4958
4959 /*
4960 * css destruction is four-stage process.
4961 *
4962 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4963 * Implemented in kill_css().
4964 *
4965 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4966 * and thus css_tryget_online() is guaranteed to fail, the css can be
4967 * offlined by invoking offline_css(). After offlining, the base ref is
4968 * put. Implemented in css_killed_work_fn().
4969 *
4970 * 3. When the percpu_ref reaches zero, the only possible remaining
4971 * accessors are inside RCU read sections. css_release() schedules the
4972 * RCU callback.
4973 *
4974 * 4. After the grace period, the css can be freed. Implemented in
4975 * css_free_work_fn().
4976 *
4977 * It is actually hairier because both step 2 and 4 require process context
4978 * and thus involve punting to css->destroy_work adding two additional
4979 * steps to the already complex sequence.
4980 */
css_free_rwork_fn(struct work_struct * work)4981 static void css_free_rwork_fn(struct work_struct *work)
4982 {
4983 struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4984 struct cgroup_subsys_state, destroy_rwork);
4985 struct cgroup_subsys *ss = css->ss;
4986 struct cgroup *cgrp = css->cgroup;
4987
4988 percpu_ref_exit(&css->refcnt);
4989
4990 if (ss) {
4991 /* css free path */
4992 struct cgroup_subsys_state *parent = css->parent;
4993 int id = css->id;
4994
4995 ss->css_free(css);
4996 cgroup_idr_remove(&ss->css_idr, id);
4997 cgroup_put(cgrp);
4998
4999 if (parent)
5000 css_put(parent);
5001 } else {
5002 /* cgroup free path */
5003 atomic_dec(&cgrp->root->nr_cgrps);
5004 cgroup1_pidlist_destroy_all(cgrp);
5005 cancel_work_sync(&cgrp->release_agent_work);
5006
5007 if (cgroup_parent(cgrp)) {
5008 /*
5009 * We get a ref to the parent, and put the ref when
5010 * this cgroup is being freed, so it's guaranteed
5011 * that the parent won't be destroyed before its
5012 * children.
5013 */
5014 cgroup_put(cgroup_parent(cgrp));
5015 kernfs_put(cgrp->kn);
5016 psi_cgroup_free(cgrp);
5017 if (cgroup_on_dfl(cgrp))
5018 cgroup_rstat_exit(cgrp);
5019 kfree(cgrp);
5020 } else {
5021 /*
5022 * This is root cgroup's refcnt reaching zero,
5023 * which indicates that the root should be
5024 * released.
5025 */
5026 cgroup_destroy_root(cgrp->root);
5027 }
5028 }
5029 }
5030
css_release_work_fn(struct work_struct * work)5031 static void css_release_work_fn(struct work_struct *work)
5032 {
5033 struct cgroup_subsys_state *css =
5034 container_of(work, struct cgroup_subsys_state, destroy_work);
5035 struct cgroup_subsys *ss = css->ss;
5036 struct cgroup *cgrp = css->cgroup;
5037
5038 mutex_lock(&cgroup_mutex);
5039
5040 css->flags |= CSS_RELEASED;
5041 list_del_rcu(&css->sibling);
5042
5043 if (ss) {
5044 /* css release path */
5045 if (!list_empty(&css->rstat_css_node)) {
5046 cgroup_rstat_flush(cgrp);
5047 list_del_rcu(&css->rstat_css_node);
5048 }
5049
5050 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5051 if (ss->css_released)
5052 ss->css_released(css);
5053 } else {
5054 struct cgroup *tcgrp;
5055
5056 /* cgroup release path */
5057 TRACE_CGROUP_PATH(release, cgrp);
5058
5059 if (cgroup_on_dfl(cgrp))
5060 cgroup_rstat_flush(cgrp);
5061
5062 spin_lock_irq(&css_set_lock);
5063 for (tcgrp = cgroup_parent(cgrp); tcgrp;
5064 tcgrp = cgroup_parent(tcgrp))
5065 tcgrp->nr_dying_descendants--;
5066 spin_unlock_irq(&css_set_lock);
5067
5068 /*
5069 * There are two control paths which try to determine
5070 * cgroup from dentry without going through kernfs -
5071 * cgroupstats_build() and css_tryget_online_from_dir().
5072 * Those are supported by RCU protecting clearing of
5073 * cgrp->kn->priv backpointer.
5074 */
5075 if (cgrp->kn)
5076 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5077 NULL);
5078 if (css->parent && !css->parent->parent &&
5079 list_empty(&css->parent->children))
5080 wake_up(&cgrp->root->wait);
5081 }
5082 mutex_unlock(&cgroup_mutex);
5083
5084 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5085 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5086 }
5087
css_release(struct percpu_ref * ref)5088 static void css_release(struct percpu_ref *ref)
5089 {
5090 struct cgroup_subsys_state *css =
5091 container_of(ref, struct cgroup_subsys_state, refcnt);
5092
5093 INIT_WORK(&css->destroy_work, css_release_work_fn);
5094 queue_work(cgroup_destroy_wq, &css->destroy_work);
5095 }
5096
init_and_link_css(struct cgroup_subsys_state * css,struct cgroup_subsys * ss,struct cgroup * cgrp)5097 static void init_and_link_css(struct cgroup_subsys_state *css,
5098 struct cgroup_subsys *ss, struct cgroup *cgrp)
5099 {
5100 lockdep_assert_held(&cgroup_mutex);
5101
5102 cgroup_get_live(cgrp);
5103
5104 memset(css, 0, sizeof(*css));
5105 css->cgroup = cgrp;
5106 css->ss = ss;
5107 css->id = -1;
5108 INIT_LIST_HEAD(&css->sibling);
5109 INIT_LIST_HEAD(&css->children);
5110 INIT_LIST_HEAD(&css->rstat_css_node);
5111 css->serial_nr = css_serial_nr_next++;
5112 atomic_set(&css->online_cnt, 0);
5113
5114 if (cgroup_parent(cgrp)) {
5115 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5116 css_get(css->parent);
5117 }
5118
5119 if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
5120 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5121
5122 BUG_ON(cgroup_css(cgrp, ss));
5123 }
5124
5125 /* invoke ->css_online() on a new CSS and mark it online if successful */
online_css(struct cgroup_subsys_state * css)5126 static int online_css(struct cgroup_subsys_state *css)
5127 {
5128 struct cgroup_subsys *ss = css->ss;
5129 int ret = 0;
5130
5131 lockdep_assert_held(&cgroup_mutex);
5132
5133 if (ss->css_online)
5134 ret = ss->css_online(css);
5135 if (!ret) {
5136 css->flags |= CSS_ONLINE;
5137 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5138
5139 atomic_inc(&css->online_cnt);
5140 if (css->parent)
5141 atomic_inc(&css->parent->online_cnt);
5142 }
5143 return ret;
5144 }
5145
5146 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
offline_css(struct cgroup_subsys_state * css)5147 static void offline_css(struct cgroup_subsys_state *css)
5148 {
5149 struct cgroup_subsys *ss = css->ss;
5150
5151 lockdep_assert_held(&cgroup_mutex);
5152
5153 if (!(css->flags & CSS_ONLINE))
5154 return;
5155
5156 if (ss->css_offline)
5157 ss->css_offline(css);
5158
5159 css->flags &= ~CSS_ONLINE;
5160 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5161
5162 wake_up_all(&css->cgroup->offline_waitq);
5163 }
5164
5165 /**
5166 * css_create - create a cgroup_subsys_state
5167 * @cgrp: the cgroup new css will be associated with
5168 * @ss: the subsys of new css
5169 *
5170 * Create a new css associated with @cgrp - @ss pair. On success, the new
5171 * css is online and installed in @cgrp. This function doesn't create the
5172 * interface files. Returns 0 on success, -errno on failure.
5173 */
css_create(struct cgroup * cgrp,struct cgroup_subsys * ss)5174 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5175 struct cgroup_subsys *ss)
5176 {
5177 struct cgroup *parent = cgroup_parent(cgrp);
5178 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5179 struct cgroup_subsys_state *css;
5180 int err;
5181
5182 lockdep_assert_held(&cgroup_mutex);
5183
5184 css = ss->css_alloc(parent_css);
5185 if (!css)
5186 css = ERR_PTR(-ENOMEM);
5187 if (IS_ERR(css))
5188 return css;
5189
5190 init_and_link_css(css, ss, cgrp);
5191
5192 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5193 if (err)
5194 goto err_free_css;
5195
5196 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5197 if (err < 0)
5198 goto err_free_css;
5199 css->id = err;
5200
5201 /* @css is ready to be brought online now, make it visible */
5202 list_add_tail_rcu(&css->sibling, &parent_css->children);
5203 cgroup_idr_replace(&ss->css_idr, css, css->id);
5204
5205 err = online_css(css);
5206 if (err)
5207 goto err_list_del;
5208
5209 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
5210 cgroup_parent(parent)) {
5211 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5212 current->comm, current->pid, ss->name);
5213 if (!strcmp(ss->name, "memory"))
5214 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5215 ss->warned_broken_hierarchy = true;
5216 }
5217
5218 return css;
5219
5220 err_list_del:
5221 list_del_rcu(&css->sibling);
5222 err_free_css:
5223 list_del_rcu(&css->rstat_css_node);
5224 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5225 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5226 return ERR_PTR(err);
5227 }
5228
5229 /*
5230 * The returned cgroup is fully initialized including its control mask, but
5231 * it isn't associated with its kernfs_node and doesn't have the control
5232 * mask applied.
5233 */
cgroup_create(struct cgroup * parent,const char * name,umode_t mode)5234 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5235 umode_t mode)
5236 {
5237 struct cgroup_root *root = parent->root;
5238 struct cgroup *cgrp, *tcgrp;
5239 struct kernfs_node *kn;
5240 int level = parent->level + 1;
5241 int ret;
5242
5243 /* allocate the cgroup and its ID, 0 is reserved for the root */
5244 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5245 GFP_KERNEL);
5246 if (!cgrp)
5247 return ERR_PTR(-ENOMEM);
5248
5249 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5250 if (ret)
5251 goto out_free_cgrp;
5252
5253 if (cgroup_on_dfl(parent)) {
5254 ret = cgroup_rstat_init(cgrp);
5255 if (ret)
5256 goto out_cancel_ref;
5257 }
5258
5259 /* create the directory */
5260 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5261 if (IS_ERR(kn)) {
5262 ret = PTR_ERR(kn);
5263 goto out_stat_exit;
5264 }
5265 cgrp->kn = kn;
5266
5267 init_cgroup_housekeeping(cgrp);
5268
5269 cgrp->self.parent = &parent->self;
5270 cgrp->root = root;
5271 cgrp->level = level;
5272
5273 ret = psi_cgroup_alloc(cgrp);
5274 if (ret)
5275 goto out_kernfs_remove;
5276
5277 ret = cgroup_bpf_inherit(cgrp);
5278 if (ret)
5279 goto out_psi_free;
5280
5281 /*
5282 * New cgroup inherits effective freeze counter, and
5283 * if the parent has to be frozen, the child has too.
5284 */
5285 cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5286 if (cgrp->freezer.e_freeze) {
5287 /*
5288 * Set the CGRP_FREEZE flag, so when a process will be
5289 * attached to the child cgroup, it will become frozen.
5290 * At this point the new cgroup is unpopulated, so we can
5291 * consider it frozen immediately.
5292 */
5293 set_bit(CGRP_FREEZE, &cgrp->flags);
5294 set_bit(CGRP_FROZEN, &cgrp->flags);
5295 }
5296
5297 spin_lock_irq(&css_set_lock);
5298 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5299 cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp);
5300
5301 if (tcgrp != cgrp) {
5302 tcgrp->nr_descendants++;
5303
5304 /*
5305 * If the new cgroup is frozen, all ancestor cgroups
5306 * get a new frozen descendant, but their state can't
5307 * change because of this.
5308 */
5309 if (cgrp->freezer.e_freeze)
5310 tcgrp->freezer.nr_frozen_descendants++;
5311 }
5312 }
5313 spin_unlock_irq(&css_set_lock);
5314
5315 if (notify_on_release(parent))
5316 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5317
5318 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5319 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5320
5321 cgrp->self.serial_nr = css_serial_nr_next++;
5322
5323 /* allocation complete, commit to creation */
5324 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5325 atomic_inc(&root->nr_cgrps);
5326 cgroup_get_live(parent);
5327
5328 /*
5329 * On the default hierarchy, a child doesn't automatically inherit
5330 * subtree_control from the parent. Each is configured manually.
5331 */
5332 if (!cgroup_on_dfl(cgrp))
5333 cgrp->subtree_control = cgroup_control(cgrp);
5334
5335 cgroup_propagate_control(cgrp);
5336
5337 return cgrp;
5338
5339 out_psi_free:
5340 psi_cgroup_free(cgrp);
5341 out_kernfs_remove:
5342 kernfs_remove(cgrp->kn);
5343 out_stat_exit:
5344 if (cgroup_on_dfl(parent))
5345 cgroup_rstat_exit(cgrp);
5346 out_cancel_ref:
5347 percpu_ref_exit(&cgrp->self.refcnt);
5348 out_free_cgrp:
5349 kfree(cgrp);
5350 return ERR_PTR(ret);
5351 }
5352
cgroup_check_hierarchy_limits(struct cgroup * parent)5353 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5354 {
5355 struct cgroup *cgroup;
5356 int ret = false;
5357 int level = 1;
5358
5359 lockdep_assert_held(&cgroup_mutex);
5360
5361 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5362 if (cgroup->nr_descendants >= cgroup->max_descendants)
5363 goto fail;
5364
5365 if (level > cgroup->max_depth)
5366 goto fail;
5367
5368 level++;
5369 }
5370
5371 ret = true;
5372 fail:
5373 return ret;
5374 }
5375
cgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)5376 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5377 {
5378 struct cgroup *parent, *cgrp;
5379 int ret;
5380
5381 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5382 if (strchr(name, '\n'))
5383 return -EINVAL;
5384
5385 parent = cgroup_kn_lock_live(parent_kn, false);
5386 if (!parent)
5387 return -ENODEV;
5388
5389 if (!cgroup_check_hierarchy_limits(parent)) {
5390 ret = -EAGAIN;
5391 goto out_unlock;
5392 }
5393
5394 cgrp = cgroup_create(parent, name, mode);
5395 if (IS_ERR(cgrp)) {
5396 ret = PTR_ERR(cgrp);
5397 goto out_unlock;
5398 }
5399
5400 /*
5401 * This extra ref will be put in cgroup_free_fn() and guarantees
5402 * that @cgrp->kn is always accessible.
5403 */
5404 kernfs_get(cgrp->kn);
5405
5406 ret = cgroup_kn_set_ugid(cgrp->kn);
5407 if (ret)
5408 goto out_destroy;
5409
5410 ret = css_populate_dir(&cgrp->self);
5411 if (ret)
5412 goto out_destroy;
5413
5414 ret = cgroup_apply_control_enable(cgrp);
5415 if (ret)
5416 goto out_destroy;
5417
5418 TRACE_CGROUP_PATH(mkdir, cgrp);
5419
5420 /* let's create and online css's */
5421 kernfs_activate(cgrp->kn);
5422
5423 ret = 0;
5424 goto out_unlock;
5425
5426 out_destroy:
5427 cgroup_destroy_locked(cgrp);
5428 out_unlock:
5429 cgroup_kn_unlock(parent_kn);
5430 return ret;
5431 }
5432
5433 /*
5434 * This is called when the refcnt of a css is confirmed to be killed.
5435 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5436 * initate destruction and put the css ref from kill_css().
5437 */
css_killed_work_fn(struct work_struct * work)5438 static void css_killed_work_fn(struct work_struct *work)
5439 {
5440 struct cgroup_subsys_state *css =
5441 container_of(work, struct cgroup_subsys_state, destroy_work);
5442
5443 mutex_lock(&cgroup_mutex);
5444
5445 do {
5446 offline_css(css);
5447 css_put(css);
5448 /* @css can't go away while we're holding cgroup_mutex */
5449 css = css->parent;
5450 } while (css && atomic_dec_and_test(&css->online_cnt));
5451
5452 mutex_unlock(&cgroup_mutex);
5453 }
5454
5455 /* css kill confirmation processing requires process context, bounce */
css_killed_ref_fn(struct percpu_ref * ref)5456 static void css_killed_ref_fn(struct percpu_ref *ref)
5457 {
5458 struct cgroup_subsys_state *css =
5459 container_of(ref, struct cgroup_subsys_state, refcnt);
5460
5461 if (atomic_dec_and_test(&css->online_cnt)) {
5462 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5463 queue_work(cgroup_destroy_wq, &css->destroy_work);
5464 }
5465 }
5466
5467 /**
5468 * kill_css - destroy a css
5469 * @css: css to destroy
5470 *
5471 * This function initiates destruction of @css by removing cgroup interface
5472 * files and putting its base reference. ->css_offline() will be invoked
5473 * asynchronously once css_tryget_online() is guaranteed to fail and when
5474 * the reference count reaches zero, @css will be released.
5475 */
kill_css(struct cgroup_subsys_state * css)5476 static void kill_css(struct cgroup_subsys_state *css)
5477 {
5478 lockdep_assert_held(&cgroup_mutex);
5479
5480 if (css->flags & CSS_DYING)
5481 return;
5482
5483 css->flags |= CSS_DYING;
5484
5485 /*
5486 * This must happen before css is disassociated with its cgroup.
5487 * See seq_css() for details.
5488 */
5489 css_clear_dir(css);
5490
5491 /*
5492 * Killing would put the base ref, but we need to keep it alive
5493 * until after ->css_offline().
5494 */
5495 css_get(css);
5496
5497 /*
5498 * cgroup core guarantees that, by the time ->css_offline() is
5499 * invoked, no new css reference will be given out via
5500 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5501 * proceed to offlining css's because percpu_ref_kill() doesn't
5502 * guarantee that the ref is seen as killed on all CPUs on return.
5503 *
5504 * Use percpu_ref_kill_and_confirm() to get notifications as each
5505 * css is confirmed to be seen as killed on all CPUs.
5506 */
5507 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5508 }
5509
5510 /**
5511 * cgroup_destroy_locked - the first stage of cgroup destruction
5512 * @cgrp: cgroup to be destroyed
5513 *
5514 * css's make use of percpu refcnts whose killing latency shouldn't be
5515 * exposed to userland and are RCU protected. Also, cgroup core needs to
5516 * guarantee that css_tryget_online() won't succeed by the time
5517 * ->css_offline() is invoked. To satisfy all the requirements,
5518 * destruction is implemented in the following two steps.
5519 *
5520 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5521 * userland visible parts and start killing the percpu refcnts of
5522 * css's. Set up so that the next stage will be kicked off once all
5523 * the percpu refcnts are confirmed to be killed.
5524 *
5525 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5526 * rest of destruction. Once all cgroup references are gone, the
5527 * cgroup is RCU-freed.
5528 *
5529 * This function implements s1. After this step, @cgrp is gone as far as
5530 * the userland is concerned and a new cgroup with the same name may be
5531 * created. As cgroup doesn't care about the names internally, this
5532 * doesn't cause any problem.
5533 */
cgroup_destroy_locked(struct cgroup * cgrp)5534 static int cgroup_destroy_locked(struct cgroup *cgrp)
5535 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5536 {
5537 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5538 struct cgroup_subsys_state *css;
5539 struct cgrp_cset_link *link;
5540 int ssid;
5541
5542 lockdep_assert_held(&cgroup_mutex);
5543
5544 /*
5545 * Only migration can raise populated from zero and we're already
5546 * holding cgroup_mutex.
5547 */
5548 if (cgroup_is_populated(cgrp))
5549 return -EBUSY;
5550
5551 /*
5552 * Make sure there's no live children. We can't test emptiness of
5553 * ->self.children as dead children linger on it while being
5554 * drained; otherwise, "rmdir parent/child parent" may fail.
5555 */
5556 if (css_has_online_children(&cgrp->self))
5557 return -EBUSY;
5558
5559 /*
5560 * Mark @cgrp and the associated csets dead. The former prevents
5561 * further task migration and child creation by disabling
5562 * cgroup_lock_live_group(). The latter makes the csets ignored by
5563 * the migration path.
5564 */
5565 cgrp->self.flags &= ~CSS_ONLINE;
5566
5567 spin_lock_irq(&css_set_lock);
5568 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5569 link->cset->dead = true;
5570 spin_unlock_irq(&css_set_lock);
5571
5572 /* initiate massacre of all css's */
5573 for_each_css(css, ssid, cgrp)
5574 kill_css(css);
5575
5576 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5577 css_clear_dir(&cgrp->self);
5578 kernfs_remove(cgrp->kn);
5579
5580 if (parent && cgroup_is_threaded(cgrp))
5581 parent->nr_threaded_children--;
5582
5583 spin_lock_irq(&css_set_lock);
5584 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5585 tcgrp->nr_descendants--;
5586 tcgrp->nr_dying_descendants++;
5587 /*
5588 * If the dying cgroup is frozen, decrease frozen descendants
5589 * counters of ancestor cgroups.
5590 */
5591 if (test_bit(CGRP_FROZEN, &cgrp->flags))
5592 tcgrp->freezer.nr_frozen_descendants--;
5593 }
5594 spin_unlock_irq(&css_set_lock);
5595
5596 cgroup1_check_for_release(parent);
5597
5598 cgroup_bpf_offline(cgrp);
5599
5600 /* put the base reference */
5601 percpu_ref_kill(&cgrp->self.refcnt);
5602
5603 return 0;
5604 };
5605
cgroup_rmdir(struct kernfs_node * kn)5606 int cgroup_rmdir(struct kernfs_node *kn)
5607 {
5608 struct cgroup *cgrp;
5609 int ret = 0;
5610
5611 cgrp = cgroup_kn_lock_live(kn, false);
5612 if (!cgrp)
5613 return 0;
5614
5615 ret = cgroup_destroy_locked(cgrp);
5616 if (!ret)
5617 TRACE_CGROUP_PATH(rmdir, cgrp);
5618
5619 cgroup_kn_unlock(kn);
5620 return ret;
5621 }
5622
5623 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5624 .show_options = cgroup_show_options,
5625 .mkdir = cgroup_mkdir,
5626 .rmdir = cgroup_rmdir,
5627 .show_path = cgroup_show_path,
5628 };
5629
cgroup_init_subsys(struct cgroup_subsys * ss,bool early)5630 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5631 {
5632 struct cgroup_subsys_state *css;
5633
5634 pr_debug("Initializing cgroup subsys %s\n", ss->name);
5635
5636 mutex_lock(&cgroup_mutex);
5637
5638 idr_init(&ss->css_idr);
5639 INIT_LIST_HEAD(&ss->cfts);
5640
5641 /* Create the root cgroup state for this subsystem */
5642 ss->root = &cgrp_dfl_root;
5643 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5644 /* We don't handle early failures gracefully */
5645 BUG_ON(IS_ERR(css));
5646 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5647
5648 /*
5649 * Root csses are never destroyed and we can't initialize
5650 * percpu_ref during early init. Disable refcnting.
5651 */
5652 css->flags |= CSS_NO_REF;
5653
5654 if (early) {
5655 /* allocation can't be done safely during early init */
5656 css->id = 1;
5657 } else {
5658 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5659 BUG_ON(css->id < 0);
5660 }
5661
5662 /* Update the init_css_set to contain a subsys
5663 * pointer to this state - since the subsystem is
5664 * newly registered, all tasks and hence the
5665 * init_css_set is in the subsystem's root cgroup. */
5666 init_css_set.subsys[ss->id] = css;
5667
5668 have_fork_callback |= (bool)ss->fork << ss->id;
5669 have_exit_callback |= (bool)ss->exit << ss->id;
5670 have_release_callback |= (bool)ss->release << ss->id;
5671 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5672
5673 /* At system boot, before all subsystems have been
5674 * registered, no tasks have been forked, so we don't
5675 * need to invoke fork callbacks here. */
5676 BUG_ON(!list_empty(&init_task.tasks));
5677
5678 BUG_ON(online_css(css));
5679
5680 mutex_unlock(&cgroup_mutex);
5681 }
5682
5683 /**
5684 * cgroup_init_early - cgroup initialization at system boot
5685 *
5686 * Initialize cgroups at system boot, and initialize any
5687 * subsystems that request early init.
5688 */
cgroup_init_early(void)5689 int __init cgroup_init_early(void)
5690 {
5691 static struct cgroup_fs_context __initdata ctx;
5692 struct cgroup_subsys *ss;
5693 int i;
5694
5695 ctx.root = &cgrp_dfl_root;
5696 init_cgroup_root(&ctx);
5697 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5698
5699 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5700
5701 for_each_subsys(ss, i) {
5702 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5703 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5704 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5705 ss->id, ss->name);
5706 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5707 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5708
5709 ss->id = i;
5710 ss->name = cgroup_subsys_name[i];
5711 if (!ss->legacy_name)
5712 ss->legacy_name = cgroup_subsys_name[i];
5713
5714 if (ss->early_init)
5715 cgroup_init_subsys(ss, true);
5716 }
5717 return 0;
5718 }
5719
5720 /**
5721 * cgroup_init - cgroup initialization
5722 *
5723 * Register cgroup filesystem and /proc file, and initialize
5724 * any subsystems that didn't request early init.
5725 */
cgroup_init(void)5726 int __init cgroup_init(void)
5727 {
5728 struct cgroup_subsys *ss;
5729 int ssid;
5730
5731 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5732 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5733 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5734
5735 cgroup_rstat_boot();
5736
5737 /*
5738 * The latency of the synchronize_rcu() is too high for cgroups,
5739 * avoid it at the cost of forcing all readers into the slow path.
5740 */
5741 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5742
5743 get_user_ns(init_cgroup_ns.user_ns);
5744
5745 mutex_lock(&cgroup_mutex);
5746
5747 /*
5748 * Add init_css_set to the hash table so that dfl_root can link to
5749 * it during init.
5750 */
5751 hash_add(css_set_table, &init_css_set.hlist,
5752 css_set_hash(init_css_set.subsys));
5753
5754 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5755
5756 mutex_unlock(&cgroup_mutex);
5757
5758 for_each_subsys(ss, ssid) {
5759 if (ss->early_init) {
5760 struct cgroup_subsys_state *css =
5761 init_css_set.subsys[ss->id];
5762
5763 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5764 GFP_KERNEL);
5765 BUG_ON(css->id < 0);
5766 } else {
5767 cgroup_init_subsys(ss, false);
5768 }
5769
5770 list_add_tail(&init_css_set.e_cset_node[ssid],
5771 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5772
5773 /*
5774 * Setting dfl_root subsys_mask needs to consider the
5775 * disabled flag and cftype registration needs kmalloc,
5776 * both of which aren't available during early_init.
5777 */
5778 if (!cgroup_ssid_enabled(ssid))
5779 continue;
5780
5781 if (cgroup1_ssid_disabled(ssid))
5782 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5783 ss->name);
5784
5785 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5786
5787 /* implicit controllers must be threaded too */
5788 WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5789
5790 if (ss->implicit_on_dfl)
5791 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5792 else if (!ss->dfl_cftypes)
5793 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5794
5795 if (ss->threaded)
5796 cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5797
5798 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5799 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5800 } else {
5801 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5802 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5803 }
5804
5805 if (ss->bind)
5806 ss->bind(init_css_set.subsys[ssid]);
5807
5808 mutex_lock(&cgroup_mutex);
5809 css_populate_dir(init_css_set.subsys[ssid]);
5810 mutex_unlock(&cgroup_mutex);
5811 }
5812
5813 /* init_css_set.subsys[] has been updated, re-hash */
5814 hash_del(&init_css_set.hlist);
5815 hash_add(css_set_table, &init_css_set.hlist,
5816 css_set_hash(init_css_set.subsys));
5817
5818 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5819 WARN_ON(register_filesystem(&cgroup_fs_type));
5820 WARN_ON(register_filesystem(&cgroup2_fs_type));
5821 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5822 #ifdef CONFIG_CPUSETS
5823 WARN_ON(register_filesystem(&cpuset_fs_type));
5824 #endif
5825
5826 return 0;
5827 }
5828
cgroup_wq_init(void)5829 static int __init cgroup_wq_init(void)
5830 {
5831 /*
5832 * There isn't much point in executing destruction path in
5833 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5834 * Use 1 for @max_active.
5835 *
5836 * We would prefer to do this in cgroup_init() above, but that
5837 * is called before init_workqueues(): so leave this until after.
5838 */
5839 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5840 BUG_ON(!cgroup_destroy_wq);
5841 return 0;
5842 }
5843 core_initcall(cgroup_wq_init);
5844
cgroup_path_from_kernfs_id(u64 id,char * buf,size_t buflen)5845 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
5846 {
5847 struct kernfs_node *kn;
5848
5849 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
5850 if (!kn)
5851 return;
5852 kernfs_path(kn, buf, buflen);
5853 kernfs_put(kn);
5854 }
5855
5856 /*
5857 * proc_cgroup_show()
5858 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5859 * - Used for /proc/<pid>/cgroup.
5860 */
proc_cgroup_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)5861 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5862 struct pid *pid, struct task_struct *tsk)
5863 {
5864 char *buf;
5865 int retval;
5866 struct cgroup_root *root;
5867
5868 retval = -ENOMEM;
5869 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5870 if (!buf)
5871 goto out;
5872
5873 mutex_lock(&cgroup_mutex);
5874 spin_lock_irq(&css_set_lock);
5875
5876 for_each_root(root) {
5877 struct cgroup_subsys *ss;
5878 struct cgroup *cgrp;
5879 int ssid, count = 0;
5880
5881 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5882 continue;
5883
5884 seq_printf(m, "%d:", root->hierarchy_id);
5885 if (root != &cgrp_dfl_root)
5886 for_each_subsys(ss, ssid)
5887 if (root->subsys_mask & (1 << ssid))
5888 seq_printf(m, "%s%s", count++ ? "," : "",
5889 ss->legacy_name);
5890 if (strlen(root->name))
5891 seq_printf(m, "%sname=%s", count ? "," : "",
5892 root->name);
5893 seq_putc(m, ':');
5894
5895 cgrp = task_cgroup_from_root(tsk, root);
5896
5897 /*
5898 * On traditional hierarchies, all zombie tasks show up as
5899 * belonging to the root cgroup. On the default hierarchy,
5900 * while a zombie doesn't show up in "cgroup.procs" and
5901 * thus can't be migrated, its /proc/PID/cgroup keeps
5902 * reporting the cgroup it belonged to before exiting. If
5903 * the cgroup is removed before the zombie is reaped,
5904 * " (deleted)" is appended to the cgroup path.
5905 */
5906 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5907 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5908 current->nsproxy->cgroup_ns);
5909 if (retval >= PATH_MAX)
5910 retval = -ENAMETOOLONG;
5911 if (retval < 0)
5912 goto out_unlock;
5913
5914 seq_puts(m, buf);
5915 } else {
5916 seq_puts(m, "/");
5917 }
5918
5919 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5920 seq_puts(m, " (deleted)\n");
5921 else
5922 seq_putc(m, '\n');
5923 }
5924
5925 retval = 0;
5926 out_unlock:
5927 spin_unlock_irq(&css_set_lock);
5928 mutex_unlock(&cgroup_mutex);
5929 kfree(buf);
5930 out:
5931 return retval;
5932 }
5933
5934 /**
5935 * cgroup_fork - initialize cgroup related fields during copy_process()
5936 * @child: pointer to task_struct of forking parent process.
5937 *
5938 * A task is associated with the init_css_set until cgroup_post_fork()
5939 * attaches it to the target css_set.
5940 */
cgroup_fork(struct task_struct * child)5941 void cgroup_fork(struct task_struct *child)
5942 {
5943 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5944 INIT_LIST_HEAD(&child->cg_list);
5945 }
5946
cgroup_get_from_file(struct file * f)5947 static struct cgroup *cgroup_get_from_file(struct file *f)
5948 {
5949 struct cgroup_subsys_state *css;
5950 struct cgroup *cgrp;
5951
5952 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
5953 if (IS_ERR(css))
5954 return ERR_CAST(css);
5955
5956 cgrp = css->cgroup;
5957 if (!cgroup_on_dfl(cgrp)) {
5958 cgroup_put(cgrp);
5959 return ERR_PTR(-EBADF);
5960 }
5961
5962 return cgrp;
5963 }
5964
5965 /**
5966 * cgroup_css_set_fork - find or create a css_set for a child process
5967 * @kargs: the arguments passed to create the child process
5968 *
5969 * This functions finds or creates a new css_set which the child
5970 * process will be attached to in cgroup_post_fork(). By default,
5971 * the child process will be given the same css_set as its parent.
5972 *
5973 * If CLONE_INTO_CGROUP is specified this function will try to find an
5974 * existing css_set which includes the requested cgroup and if not create
5975 * a new css_set that the child will be attached to later. If this function
5976 * succeeds it will hold cgroup_threadgroup_rwsem on return. If
5977 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
5978 * before grabbing cgroup_threadgroup_rwsem and will hold a reference
5979 * to the target cgroup.
5980 */
cgroup_css_set_fork(struct kernel_clone_args * kargs)5981 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
5982 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
5983 {
5984 int ret;
5985 struct cgroup *dst_cgrp = NULL;
5986 struct css_set *cset;
5987 struct super_block *sb;
5988 struct file *f;
5989
5990 if (kargs->flags & CLONE_INTO_CGROUP)
5991 mutex_lock(&cgroup_mutex);
5992
5993 cgroup_threadgroup_change_begin(current);
5994
5995 spin_lock_irq(&css_set_lock);
5996 cset = task_css_set(current);
5997 get_css_set(cset);
5998 spin_unlock_irq(&css_set_lock);
5999
6000 if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6001 kargs->cset = cset;
6002 return 0;
6003 }
6004
6005 f = fget_raw(kargs->cgroup);
6006 if (!f) {
6007 ret = -EBADF;
6008 goto err;
6009 }
6010 sb = f->f_path.dentry->d_sb;
6011
6012 dst_cgrp = cgroup_get_from_file(f);
6013 if (IS_ERR(dst_cgrp)) {
6014 ret = PTR_ERR(dst_cgrp);
6015 dst_cgrp = NULL;
6016 goto err;
6017 }
6018
6019 if (cgroup_is_dead(dst_cgrp)) {
6020 ret = -ENODEV;
6021 goto err;
6022 }
6023
6024 /*
6025 * Verify that we the target cgroup is writable for us. This is
6026 * usually done by the vfs layer but since we're not going through
6027 * the vfs layer here we need to do it "manually".
6028 */
6029 ret = cgroup_may_write(dst_cgrp, sb);
6030 if (ret)
6031 goto err;
6032
6033 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6034 !(kargs->flags & CLONE_THREAD),
6035 current->nsproxy->cgroup_ns);
6036 if (ret)
6037 goto err;
6038
6039 kargs->cset = find_css_set(cset, dst_cgrp);
6040 if (!kargs->cset) {
6041 ret = -ENOMEM;
6042 goto err;
6043 }
6044
6045 put_css_set(cset);
6046 fput(f);
6047 kargs->cgrp = dst_cgrp;
6048 return ret;
6049
6050 err:
6051 cgroup_threadgroup_change_end(current);
6052 mutex_unlock(&cgroup_mutex);
6053 if (f)
6054 fput(f);
6055 if (dst_cgrp)
6056 cgroup_put(dst_cgrp);
6057 put_css_set(cset);
6058 if (kargs->cset)
6059 put_css_set(kargs->cset);
6060 return ret;
6061 }
6062
6063 /**
6064 * cgroup_css_set_put_fork - drop references we took during fork
6065 * @kargs: the arguments passed to create the child process
6066 *
6067 * Drop references to the prepared css_set and target cgroup if
6068 * CLONE_INTO_CGROUP was requested.
6069 */
cgroup_css_set_put_fork(struct kernel_clone_args * kargs)6070 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6071 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6072 {
6073 cgroup_threadgroup_change_end(current);
6074
6075 if (kargs->flags & CLONE_INTO_CGROUP) {
6076 struct cgroup *cgrp = kargs->cgrp;
6077 struct css_set *cset = kargs->cset;
6078
6079 mutex_unlock(&cgroup_mutex);
6080
6081 if (cset) {
6082 put_css_set(cset);
6083 kargs->cset = NULL;
6084 }
6085
6086 if (cgrp) {
6087 cgroup_put(cgrp);
6088 kargs->cgrp = NULL;
6089 }
6090 }
6091 }
6092
6093 /**
6094 * cgroup_can_fork - called on a new task before the process is exposed
6095 * @child: the child process
6096 *
6097 * This prepares a new css_set for the child process which the child will
6098 * be attached to in cgroup_post_fork().
6099 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6100 * callback returns an error, the fork aborts with that error code. This
6101 * allows for a cgroup subsystem to conditionally allow or deny new forks.
6102 */
cgroup_can_fork(struct task_struct * child,struct kernel_clone_args * kargs)6103 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6104 {
6105 struct cgroup_subsys *ss;
6106 int i, j, ret;
6107
6108 ret = cgroup_css_set_fork(kargs);
6109 if (ret)
6110 return ret;
6111
6112 do_each_subsys_mask(ss, i, have_canfork_callback) {
6113 ret = ss->can_fork(child, kargs->cset);
6114 if (ret)
6115 goto out_revert;
6116 } while_each_subsys_mask();
6117
6118 return 0;
6119
6120 out_revert:
6121 for_each_subsys(ss, j) {
6122 if (j >= i)
6123 break;
6124 if (ss->cancel_fork)
6125 ss->cancel_fork(child, kargs->cset);
6126 }
6127
6128 cgroup_css_set_put_fork(kargs);
6129
6130 return ret;
6131 }
6132
6133 /**
6134 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6135 * @child: the child process
6136 * @kargs: the arguments passed to create the child process
6137 *
6138 * This calls the cancel_fork() callbacks if a fork failed *after*
6139 * cgroup_can_fork() succeded and cleans up references we took to
6140 * prepare a new css_set for the child process in cgroup_can_fork().
6141 */
cgroup_cancel_fork(struct task_struct * child,struct kernel_clone_args * kargs)6142 void cgroup_cancel_fork(struct task_struct *child,
6143 struct kernel_clone_args *kargs)
6144 {
6145 struct cgroup_subsys *ss;
6146 int i;
6147
6148 for_each_subsys(ss, i)
6149 if (ss->cancel_fork)
6150 ss->cancel_fork(child, kargs->cset);
6151
6152 cgroup_css_set_put_fork(kargs);
6153 }
6154
6155 /**
6156 * cgroup_post_fork - finalize cgroup setup for the child process
6157 * @child: the child process
6158 *
6159 * Attach the child process to its css_set calling the subsystem fork()
6160 * callbacks.
6161 */
cgroup_post_fork(struct task_struct * child,struct kernel_clone_args * kargs)6162 void cgroup_post_fork(struct task_struct *child,
6163 struct kernel_clone_args *kargs)
6164 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6165 {
6166 struct cgroup_subsys *ss;
6167 struct css_set *cset;
6168 int i;
6169
6170 cset = kargs->cset;
6171 kargs->cset = NULL;
6172
6173 spin_lock_irq(&css_set_lock);
6174
6175 /* init tasks are special, only link regular threads */
6176 if (likely(child->pid)) {
6177 WARN_ON_ONCE(!list_empty(&child->cg_list));
6178 cset->nr_tasks++;
6179 css_set_move_task(child, NULL, cset, false);
6180 } else {
6181 put_css_set(cset);
6182 cset = NULL;
6183 }
6184
6185 /*
6186 * If the cgroup has to be frozen, the new task has too. Let's set
6187 * the JOBCTL_TRAP_FREEZE jobctl bit to get the task into the
6188 * frozen state.
6189 */
6190 if (unlikely(cgroup_task_freeze(child))) {
6191 spin_lock(&child->sighand->siglock);
6192 WARN_ON_ONCE(child->frozen);
6193 child->jobctl |= JOBCTL_TRAP_FREEZE;
6194 spin_unlock(&child->sighand->siglock);
6195
6196 /*
6197 * Calling cgroup_update_frozen() isn't required here,
6198 * because it will be called anyway a bit later from
6199 * do_freezer_trap(). So we avoid cgroup's transient switch
6200 * from the frozen state and back.
6201 */
6202 }
6203
6204 spin_unlock_irq(&css_set_lock);
6205
6206 /*
6207 * Call ss->fork(). This must happen after @child is linked on
6208 * css_set; otherwise, @child might change state between ->fork()
6209 * and addition to css_set.
6210 */
6211 do_each_subsys_mask(ss, i, have_fork_callback) {
6212 ss->fork(child);
6213 } while_each_subsys_mask();
6214
6215 /* Make the new cset the root_cset of the new cgroup namespace. */
6216 if (kargs->flags & CLONE_NEWCGROUP) {
6217 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6218
6219 get_css_set(cset);
6220 child->nsproxy->cgroup_ns->root_cset = cset;
6221 put_css_set(rcset);
6222 }
6223
6224 cgroup_css_set_put_fork(kargs);
6225 }
6226
6227 /**
6228 * cgroup_exit - detach cgroup from exiting task
6229 * @tsk: pointer to task_struct of exiting process
6230 *
6231 * Description: Detach cgroup from @tsk.
6232 *
6233 */
cgroup_exit(struct task_struct * tsk)6234 void cgroup_exit(struct task_struct *tsk)
6235 {
6236 struct cgroup_subsys *ss;
6237 struct css_set *cset;
6238 int i;
6239
6240 spin_lock_irq(&css_set_lock);
6241
6242 WARN_ON_ONCE(list_empty(&tsk->cg_list));
6243 cset = task_css_set(tsk);
6244 css_set_move_task(tsk, cset, NULL, false);
6245 list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6246 cset->nr_tasks--;
6247
6248 WARN_ON_ONCE(cgroup_task_frozen(tsk));
6249 if (unlikely(cgroup_task_freeze(tsk)))
6250 cgroup_update_frozen(task_dfl_cgroup(tsk));
6251
6252 spin_unlock_irq(&css_set_lock);
6253
6254 /* see cgroup_post_fork() for details */
6255 do_each_subsys_mask(ss, i, have_exit_callback) {
6256 ss->exit(tsk);
6257 } while_each_subsys_mask();
6258 }
6259
cgroup_release(struct task_struct * task)6260 void cgroup_release(struct task_struct *task)
6261 {
6262 struct cgroup_subsys *ss;
6263 int ssid;
6264
6265 do_each_subsys_mask(ss, ssid, have_release_callback) {
6266 ss->release(task);
6267 } while_each_subsys_mask();
6268
6269 spin_lock_irq(&css_set_lock);
6270 css_set_skip_task_iters(task_css_set(task), task);
6271 list_del_init(&task->cg_list);
6272 spin_unlock_irq(&css_set_lock);
6273 }
6274
cgroup_free(struct task_struct * task)6275 void cgroup_free(struct task_struct *task)
6276 {
6277 struct css_set *cset = task_css_set(task);
6278 put_css_set(cset);
6279 }
6280
cgroup_disable(char * str)6281 static int __init cgroup_disable(char *str)
6282 {
6283 struct cgroup_subsys *ss;
6284 char *token;
6285 int i;
6286
6287 while ((token = strsep(&str, ",")) != NULL) {
6288 if (!*token)
6289 continue;
6290
6291 for_each_subsys(ss, i) {
6292 if (strcmp(token, ss->name) &&
6293 strcmp(token, ss->legacy_name))
6294 continue;
6295
6296 static_branch_disable(cgroup_subsys_enabled_key[i]);
6297 pr_info("Disabling %s control group subsystem\n",
6298 ss->name);
6299 }
6300 }
6301 return 1;
6302 }
6303 __setup("cgroup_disable=", cgroup_disable);
6304
enable_debug_cgroup(void)6305 void __init __weak enable_debug_cgroup(void) { }
6306
enable_cgroup_debug(char * str)6307 static int __init enable_cgroup_debug(char *str)
6308 {
6309 cgroup_debug = true;
6310 enable_debug_cgroup();
6311 return 1;
6312 }
6313 __setup("cgroup_debug", enable_cgroup_debug);
6314
6315 /**
6316 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6317 * @dentry: directory dentry of interest
6318 * @ss: subsystem of interest
6319 *
6320 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6321 * to get the corresponding css and return it. If such css doesn't exist
6322 * or can't be pinned, an ERR_PTR value is returned.
6323 */
css_tryget_online_from_dir(struct dentry * dentry,struct cgroup_subsys * ss)6324 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6325 struct cgroup_subsys *ss)
6326 {
6327 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6328 struct file_system_type *s_type = dentry->d_sb->s_type;
6329 struct cgroup_subsys_state *css = NULL;
6330 struct cgroup *cgrp;
6331
6332 /* is @dentry a cgroup dir? */
6333 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6334 !kn || kernfs_type(kn) != KERNFS_DIR)
6335 return ERR_PTR(-EBADF);
6336
6337 rcu_read_lock();
6338
6339 /*
6340 * This path doesn't originate from kernfs and @kn could already
6341 * have been or be removed at any point. @kn->priv is RCU
6342 * protected for this access. See css_release_work_fn() for details.
6343 */
6344 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6345 if (cgrp)
6346 css = cgroup_css(cgrp, ss);
6347
6348 if (!css || !css_tryget_online(css))
6349 css = ERR_PTR(-ENOENT);
6350
6351 rcu_read_unlock();
6352 return css;
6353 }
6354
6355 /**
6356 * css_from_id - lookup css by id
6357 * @id: the cgroup id
6358 * @ss: cgroup subsys to be looked into
6359 *
6360 * Returns the css if there's valid one with @id, otherwise returns NULL.
6361 * Should be called under rcu_read_lock().
6362 */
css_from_id(int id,struct cgroup_subsys * ss)6363 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6364 {
6365 WARN_ON_ONCE(!rcu_read_lock_held());
6366 return idr_find(&ss->css_idr, id);
6367 }
6368
6369 /**
6370 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6371 * @path: path on the default hierarchy
6372 *
6373 * Find the cgroup at @path on the default hierarchy, increment its
6374 * reference count and return it. Returns pointer to the found cgroup on
6375 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6376 * if @path points to a non-directory.
6377 */
cgroup_get_from_path(const char * path)6378 struct cgroup *cgroup_get_from_path(const char *path)
6379 {
6380 struct kernfs_node *kn;
6381 struct cgroup *cgrp;
6382
6383 mutex_lock(&cgroup_mutex);
6384
6385 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6386 if (kn) {
6387 if (kernfs_type(kn) == KERNFS_DIR) {
6388 cgrp = kn->priv;
6389 cgroup_get_live(cgrp);
6390 } else {
6391 cgrp = ERR_PTR(-ENOTDIR);
6392 }
6393 kernfs_put(kn);
6394 } else {
6395 cgrp = ERR_PTR(-ENOENT);
6396 }
6397
6398 mutex_unlock(&cgroup_mutex);
6399 return cgrp;
6400 }
6401 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6402
6403 /**
6404 * cgroup_get_from_fd - get a cgroup pointer from a fd
6405 * @fd: fd obtained by open(cgroup2_dir)
6406 *
6407 * Find the cgroup from a fd which should be obtained
6408 * by opening a cgroup directory. Returns a pointer to the
6409 * cgroup on success. ERR_PTR is returned if the cgroup
6410 * cannot be found.
6411 */
cgroup_get_from_fd(int fd)6412 struct cgroup *cgroup_get_from_fd(int fd)
6413 {
6414 struct cgroup *cgrp;
6415 struct file *f;
6416
6417 f = fget_raw(fd);
6418 if (!f)
6419 return ERR_PTR(-EBADF);
6420
6421 cgrp = cgroup_get_from_file(f);
6422 fput(f);
6423 return cgrp;
6424 }
6425 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6426
power_of_ten(int power)6427 static u64 power_of_ten(int power)
6428 {
6429 u64 v = 1;
6430 while (power--)
6431 v *= 10;
6432 return v;
6433 }
6434
6435 /**
6436 * cgroup_parse_float - parse a floating number
6437 * @input: input string
6438 * @dec_shift: number of decimal digits to shift
6439 * @v: output
6440 *
6441 * Parse a decimal floating point number in @input and store the result in
6442 * @v with decimal point right shifted @dec_shift times. For example, if
6443 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6444 * Returns 0 on success, -errno otherwise.
6445 *
6446 * There's nothing cgroup specific about this function except that it's
6447 * currently the only user.
6448 */
cgroup_parse_float(const char * input,unsigned dec_shift,s64 * v)6449 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6450 {
6451 s64 whole, frac = 0;
6452 int fstart = 0, fend = 0, flen;
6453
6454 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6455 return -EINVAL;
6456 if (frac < 0)
6457 return -EINVAL;
6458
6459 flen = fend > fstart ? fend - fstart : 0;
6460 if (flen < dec_shift)
6461 frac *= power_of_ten(dec_shift - flen);
6462 else
6463 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6464
6465 *v = whole * power_of_ten(dec_shift) + frac;
6466 return 0;
6467 }
6468
6469 /*
6470 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6471 * definition in cgroup-defs.h.
6472 */
6473 #ifdef CONFIG_SOCK_CGROUP_DATA
6474
cgroup_sk_alloc(struct sock_cgroup_data * skcd)6475 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6476 {
6477 struct cgroup *cgroup;
6478
6479 rcu_read_lock();
6480 /* Don't associate the sock with unrelated interrupted task's cgroup. */
6481 if (in_interrupt()) {
6482 cgroup = &cgrp_dfl_root.cgrp;
6483 cgroup_get(cgroup);
6484 goto out;
6485 }
6486
6487 while (true) {
6488 struct css_set *cset;
6489
6490 cset = task_css_set(current);
6491 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6492 cgroup = cset->dfl_cgrp;
6493 break;
6494 }
6495 cpu_relax();
6496 }
6497 out:
6498 skcd->cgroup = cgroup;
6499 cgroup_bpf_get(cgroup);
6500 rcu_read_unlock();
6501 }
6502
cgroup_sk_clone(struct sock_cgroup_data * skcd)6503 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6504 {
6505 struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6506
6507 /*
6508 * We might be cloning a socket which is left in an empty
6509 * cgroup and the cgroup might have already been rmdir'd.
6510 * Don't use cgroup_get_live().
6511 */
6512 cgroup_get(cgrp);
6513 cgroup_bpf_get(cgrp);
6514 }
6515
cgroup_sk_free(struct sock_cgroup_data * skcd)6516 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6517 {
6518 struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6519
6520 cgroup_bpf_put(cgrp);
6521 cgroup_put(cgrp);
6522 }
6523
6524 #endif /* CONFIG_SOCK_CGROUP_DATA */
6525
6526 #ifdef CONFIG_CGROUP_BPF
cgroup_bpf_attach(struct cgroup * cgrp,struct bpf_prog * prog,struct bpf_prog * replace_prog,struct bpf_cgroup_link * link,enum bpf_attach_type type,u32 flags)6527 int cgroup_bpf_attach(struct cgroup *cgrp,
6528 struct bpf_prog *prog, struct bpf_prog *replace_prog,
6529 struct bpf_cgroup_link *link,
6530 enum bpf_attach_type type,
6531 u32 flags)
6532 {
6533 int ret;
6534
6535 mutex_lock(&cgroup_mutex);
6536 ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags);
6537 mutex_unlock(&cgroup_mutex);
6538 return ret;
6539 }
6540
cgroup_bpf_detach(struct cgroup * cgrp,struct bpf_prog * prog,enum bpf_attach_type type)6541 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
6542 enum bpf_attach_type type)
6543 {
6544 int ret;
6545
6546 mutex_lock(&cgroup_mutex);
6547 ret = __cgroup_bpf_detach(cgrp, prog, NULL, type);
6548 mutex_unlock(&cgroup_mutex);
6549 return ret;
6550 }
6551
cgroup_bpf_query(struct cgroup * cgrp,const union bpf_attr * attr,union bpf_attr __user * uattr)6552 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6553 union bpf_attr __user *uattr)
6554 {
6555 int ret;
6556
6557 mutex_lock(&cgroup_mutex);
6558 ret = __cgroup_bpf_query(cgrp, attr, uattr);
6559 mutex_unlock(&cgroup_mutex);
6560 return ret;
6561 }
6562 #endif /* CONFIG_CGROUP_BPF */
6563
6564 #ifdef CONFIG_SYSFS
show_delegatable_files(struct cftype * files,char * buf,ssize_t size,const char * prefix)6565 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6566 ssize_t size, const char *prefix)
6567 {
6568 struct cftype *cft;
6569 ssize_t ret = 0;
6570
6571 for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6572 if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6573 continue;
6574
6575 if (prefix)
6576 ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6577
6578 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6579
6580 if (WARN_ON(ret >= size))
6581 break;
6582 }
6583
6584 return ret;
6585 }
6586
delegate_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)6587 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6588 char *buf)
6589 {
6590 struct cgroup_subsys *ss;
6591 int ssid;
6592 ssize_t ret = 0;
6593
6594 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6595 NULL);
6596
6597 for_each_subsys(ss, ssid)
6598 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6599 PAGE_SIZE - ret,
6600 cgroup_subsys_name[ssid]);
6601
6602 return ret;
6603 }
6604 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6605
features_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)6606 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6607 char *buf)
6608 {
6609 return snprintf(buf, PAGE_SIZE,
6610 "nsdelegate\n"
6611 "memory_localevents\n"
6612 "memory_recursiveprot\n");
6613 }
6614 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6615
6616 static struct attribute *cgroup_sysfs_attrs[] = {
6617 &cgroup_delegate_attr.attr,
6618 &cgroup_features_attr.attr,
6619 NULL,
6620 };
6621
6622 static const struct attribute_group cgroup_sysfs_attr_group = {
6623 .attrs = cgroup_sysfs_attrs,
6624 .name = "cgroup",
6625 };
6626
cgroup_sysfs_init(void)6627 static int __init cgroup_sysfs_init(void)
6628 {
6629 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6630 }
6631 subsys_initcall(cgroup_sysfs_init);
6632
6633 #endif /* CONFIG_SYSFS */
6634