1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/base/core.c - core driver model code (device registration, etc)
4 *
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8 * Copyright (c) 2006 Novell, Inc.
9 */
10
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sched/mm.h>
30 #include <linux/sysfs.h>
31
32 #include "base.h"
33 #include "power/power.h"
34
35 #ifdef CONFIG_SYSFS_DEPRECATED
36 #ifdef CONFIG_SYSFS_DEPRECATED_V2
37 long sysfs_deprecated = 1;
38 #else
39 long sysfs_deprecated = 0;
40 #endif
sysfs_deprecated_setup(char * arg)41 static int __init sysfs_deprecated_setup(char *arg)
42 {
43 return kstrtol(arg, 10, &sysfs_deprecated);
44 }
45 early_param("sysfs.deprecated", sysfs_deprecated_setup);
46 #endif
47
48 /* Device links support. */
49 static LIST_HEAD(wait_for_suppliers);
50 static DEFINE_MUTEX(wfs_lock);
51 static LIST_HEAD(deferred_sync);
52 static unsigned int defer_sync_state_count = 1;
53 static unsigned int defer_fw_devlink_count;
54 static LIST_HEAD(deferred_fw_devlink);
55 static DEFINE_MUTEX(defer_fw_devlink_lock);
56 static bool fw_devlink_is_permissive(void);
57
58 #ifdef CONFIG_SRCU
59 static DEFINE_MUTEX(device_links_lock);
60 DEFINE_STATIC_SRCU(device_links_srcu);
61
device_links_write_lock(void)62 static inline void device_links_write_lock(void)
63 {
64 mutex_lock(&device_links_lock);
65 }
66
device_links_write_unlock(void)67 static inline void device_links_write_unlock(void)
68 {
69 mutex_unlock(&device_links_lock);
70 }
71
device_links_read_lock(void)72 int device_links_read_lock(void) __acquires(&device_links_srcu)
73 {
74 return srcu_read_lock(&device_links_srcu);
75 }
76
device_links_read_unlock(int idx)77 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
78 {
79 srcu_read_unlock(&device_links_srcu, idx);
80 }
81
device_links_read_lock_held(void)82 int device_links_read_lock_held(void)
83 {
84 return srcu_read_lock_held(&device_links_srcu);
85 }
86
device_link_synchronize_removal(void)87 static void device_link_synchronize_removal(void)
88 {
89 synchronize_srcu(&device_links_srcu);
90 }
91 #else /* !CONFIG_SRCU */
92 static DECLARE_RWSEM(device_links_lock);
93
device_links_write_lock(void)94 static inline void device_links_write_lock(void)
95 {
96 down_write(&device_links_lock);
97 }
98
device_links_write_unlock(void)99 static inline void device_links_write_unlock(void)
100 {
101 up_write(&device_links_lock);
102 }
103
device_links_read_lock(void)104 int device_links_read_lock(void)
105 {
106 down_read(&device_links_lock);
107 return 0;
108 }
109
device_links_read_unlock(int not_used)110 void device_links_read_unlock(int not_used)
111 {
112 up_read(&device_links_lock);
113 }
114
115 #ifdef CONFIG_DEBUG_LOCK_ALLOC
device_links_read_lock_held(void)116 int device_links_read_lock_held(void)
117 {
118 return lockdep_is_held(&device_links_lock);
119 }
120 #endif
121
device_link_synchronize_removal(void)122 static inline void device_link_synchronize_removal(void)
123 {
124 }
125 #endif /* !CONFIG_SRCU */
126
device_is_ancestor(struct device * dev,struct device * target)127 static bool device_is_ancestor(struct device *dev, struct device *target)
128 {
129 while (target->parent) {
130 target = target->parent;
131 if (dev == target)
132 return true;
133 }
134 return false;
135 }
136
137 /**
138 * device_is_dependent - Check if one device depends on another one
139 * @dev: Device to check dependencies for.
140 * @target: Device to check against.
141 *
142 * Check if @target depends on @dev or any device dependent on it (its child or
143 * its consumer etc). Return 1 if that is the case or 0 otherwise.
144 */
device_is_dependent(struct device * dev,void * target)145 int device_is_dependent(struct device *dev, void *target)
146 {
147 struct device_link *link;
148 int ret;
149
150 /*
151 * The "ancestors" check is needed to catch the case when the target
152 * device has not been completely initialized yet and it is still
153 * missing from the list of children of its parent device.
154 */
155 if (dev == target || device_is_ancestor(dev, target))
156 return 1;
157
158 ret = device_for_each_child(dev, target, device_is_dependent);
159 if (ret)
160 return ret;
161
162 list_for_each_entry(link, &dev->links.consumers, s_node) {
163 if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
164 continue;
165
166 if (link->consumer == target)
167 return 1;
168
169 ret = device_is_dependent(link->consumer, target);
170 if (ret)
171 break;
172 }
173 return ret;
174 }
175
device_link_init_status(struct device_link * link,struct device * consumer,struct device * supplier)176 static void device_link_init_status(struct device_link *link,
177 struct device *consumer,
178 struct device *supplier)
179 {
180 switch (supplier->links.status) {
181 case DL_DEV_PROBING:
182 switch (consumer->links.status) {
183 case DL_DEV_PROBING:
184 /*
185 * A consumer driver can create a link to a supplier
186 * that has not completed its probing yet as long as it
187 * knows that the supplier is already functional (for
188 * example, it has just acquired some resources from the
189 * supplier).
190 */
191 link->status = DL_STATE_CONSUMER_PROBE;
192 break;
193 default:
194 link->status = DL_STATE_DORMANT;
195 break;
196 }
197 break;
198 case DL_DEV_DRIVER_BOUND:
199 switch (consumer->links.status) {
200 case DL_DEV_PROBING:
201 link->status = DL_STATE_CONSUMER_PROBE;
202 break;
203 case DL_DEV_DRIVER_BOUND:
204 link->status = DL_STATE_ACTIVE;
205 break;
206 default:
207 link->status = DL_STATE_AVAILABLE;
208 break;
209 }
210 break;
211 case DL_DEV_UNBINDING:
212 link->status = DL_STATE_SUPPLIER_UNBIND;
213 break;
214 default:
215 link->status = DL_STATE_DORMANT;
216 break;
217 }
218 }
219
device_reorder_to_tail(struct device * dev,void * not_used)220 static int device_reorder_to_tail(struct device *dev, void *not_used)
221 {
222 struct device_link *link;
223
224 /*
225 * Devices that have not been registered yet will be put to the ends
226 * of the lists during the registration, so skip them here.
227 */
228 if (device_is_registered(dev))
229 devices_kset_move_last(dev);
230
231 if (device_pm_initialized(dev))
232 device_pm_move_last(dev);
233
234 device_for_each_child(dev, NULL, device_reorder_to_tail);
235 list_for_each_entry(link, &dev->links.consumers, s_node) {
236 if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
237 continue;
238 device_reorder_to_tail(link->consumer, NULL);
239 }
240
241 return 0;
242 }
243
244 /**
245 * device_pm_move_to_tail - Move set of devices to the end of device lists
246 * @dev: Device to move
247 *
248 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
249 *
250 * It moves the @dev along with all of its children and all of its consumers
251 * to the ends of the device_kset and dpm_list, recursively.
252 */
device_pm_move_to_tail(struct device * dev)253 void device_pm_move_to_tail(struct device *dev)
254 {
255 int idx;
256
257 idx = device_links_read_lock();
258 device_pm_lock();
259 device_reorder_to_tail(dev, NULL);
260 device_pm_unlock();
261 device_links_read_unlock(idx);
262 }
263
264 #define to_devlink(dev) container_of((dev), struct device_link, link_dev)
265
status_show(struct device * dev,struct device_attribute * attr,char * buf)266 static ssize_t status_show(struct device *dev,
267 struct device_attribute *attr, char *buf)
268 {
269 const char *output;
270
271 switch (to_devlink(dev)->status) {
272 case DL_STATE_NONE:
273 output = "not tracked";
274 break;
275 case DL_STATE_DORMANT:
276 output = "dormant";
277 break;
278 case DL_STATE_AVAILABLE:
279 output = "available";
280 break;
281 case DL_STATE_CONSUMER_PROBE:
282 output = "consumer probing";
283 break;
284 case DL_STATE_ACTIVE:
285 output = "active";
286 break;
287 case DL_STATE_SUPPLIER_UNBIND:
288 output = "supplier unbinding";
289 break;
290 default:
291 output = "unknown";
292 break;
293 }
294
295 return sysfs_emit(buf, "%s\n", output);
296 }
297 static DEVICE_ATTR_RO(status);
298
auto_remove_on_show(struct device * dev,struct device_attribute * attr,char * buf)299 static ssize_t auto_remove_on_show(struct device *dev,
300 struct device_attribute *attr, char *buf)
301 {
302 struct device_link *link = to_devlink(dev);
303 const char *output;
304
305 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
306 output = "supplier unbind";
307 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
308 output = "consumer unbind";
309 else
310 output = "never";
311
312 return sysfs_emit(buf, "%s\n", output);
313 }
314 static DEVICE_ATTR_RO(auto_remove_on);
315
runtime_pm_show(struct device * dev,struct device_attribute * attr,char * buf)316 static ssize_t runtime_pm_show(struct device *dev,
317 struct device_attribute *attr, char *buf)
318 {
319 struct device_link *link = to_devlink(dev);
320
321 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
322 }
323 static DEVICE_ATTR_RO(runtime_pm);
324
sync_state_only_show(struct device * dev,struct device_attribute * attr,char * buf)325 static ssize_t sync_state_only_show(struct device *dev,
326 struct device_attribute *attr, char *buf)
327 {
328 struct device_link *link = to_devlink(dev);
329
330 return sysfs_emit(buf, "%d\n",
331 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
332 }
333 static DEVICE_ATTR_RO(sync_state_only);
334
335 static struct attribute *devlink_attrs[] = {
336 &dev_attr_status.attr,
337 &dev_attr_auto_remove_on.attr,
338 &dev_attr_runtime_pm.attr,
339 &dev_attr_sync_state_only.attr,
340 NULL,
341 };
342 ATTRIBUTE_GROUPS(devlink);
343
device_link_release_fn(struct work_struct * work)344 static void device_link_release_fn(struct work_struct *work)
345 {
346 struct device_link *link = container_of(work, struct device_link, rm_work);
347
348 /* Ensure that all references to the link object have been dropped. */
349 device_link_synchronize_removal();
350
351 pm_runtime_release_supplier(link, true);
352
353 put_device(link->consumer);
354 put_device(link->supplier);
355 kfree(link);
356 }
357
devlink_dev_release(struct device * dev)358 static void devlink_dev_release(struct device *dev)
359 {
360 struct device_link *link = to_devlink(dev);
361
362 INIT_WORK(&link->rm_work, device_link_release_fn);
363 /*
364 * It may take a while to complete this work because of the SRCU
365 * synchronization in device_link_release_fn() and if the consumer or
366 * supplier devices get deleted when it runs, so put it into the "long"
367 * workqueue.
368 */
369 queue_work(system_long_wq, &link->rm_work);
370 }
371
372 static struct class devlink_class = {
373 .name = "devlink",
374 .owner = THIS_MODULE,
375 .dev_groups = devlink_groups,
376 .dev_release = devlink_dev_release,
377 };
378
devlink_add_symlinks(struct device * dev,struct class_interface * class_intf)379 static int devlink_add_symlinks(struct device *dev,
380 struct class_interface *class_intf)
381 {
382 int ret;
383 size_t len;
384 struct device_link *link = to_devlink(dev);
385 struct device *sup = link->supplier;
386 struct device *con = link->consumer;
387 char *buf;
388
389 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
390 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
391 len += strlen(":");
392 len += strlen("supplier:") + 1;
393 buf = kzalloc(len, GFP_KERNEL);
394 if (!buf)
395 return -ENOMEM;
396
397 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
398 if (ret)
399 goto out;
400
401 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
402 if (ret)
403 goto err_con;
404
405 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
406 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
407 if (ret)
408 goto err_con_dev;
409
410 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
411 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
412 if (ret)
413 goto err_sup_dev;
414
415 goto out;
416
417 err_sup_dev:
418 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
419 sysfs_remove_link(&sup->kobj, buf);
420 err_con_dev:
421 sysfs_remove_link(&link->link_dev.kobj, "consumer");
422 err_con:
423 sysfs_remove_link(&link->link_dev.kobj, "supplier");
424 out:
425 kfree(buf);
426 return ret;
427 }
428
devlink_remove_symlinks(struct device * dev,struct class_interface * class_intf)429 static void devlink_remove_symlinks(struct device *dev,
430 struct class_interface *class_intf)
431 {
432 struct device_link *link = to_devlink(dev);
433 size_t len;
434 struct device *sup = link->supplier;
435 struct device *con = link->consumer;
436 char *buf;
437
438 sysfs_remove_link(&link->link_dev.kobj, "consumer");
439 sysfs_remove_link(&link->link_dev.kobj, "supplier");
440
441 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
442 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
443 len += strlen(":");
444 len += strlen("supplier:") + 1;
445 buf = kzalloc(len, GFP_KERNEL);
446 if (!buf) {
447 WARN(1, "Unable to properly free device link symlinks!\n");
448 return;
449 }
450
451 if (device_is_registered(con)) {
452 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
453 sysfs_remove_link(&con->kobj, buf);
454 }
455 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
456 sysfs_remove_link(&sup->kobj, buf);
457 kfree(buf);
458 }
459
460 static struct class_interface devlink_class_intf = {
461 .class = &devlink_class,
462 .add_dev = devlink_add_symlinks,
463 .remove_dev = devlink_remove_symlinks,
464 };
465
devlink_class_init(void)466 static int __init devlink_class_init(void)
467 {
468 int ret;
469
470 ret = class_register(&devlink_class);
471 if (ret)
472 return ret;
473
474 ret = class_interface_register(&devlink_class_intf);
475 if (ret)
476 class_unregister(&devlink_class);
477
478 return ret;
479 }
480 postcore_initcall(devlink_class_init);
481
482 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
483 DL_FLAG_AUTOREMOVE_SUPPLIER | \
484 DL_FLAG_AUTOPROBE_CONSUMER | \
485 DL_FLAG_SYNC_STATE_ONLY)
486
487 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
488 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
489
490 /**
491 * device_link_add - Create a link between two devices.
492 * @consumer: Consumer end of the link.
493 * @supplier: Supplier end of the link.
494 * @flags: Link flags.
495 *
496 * The caller is responsible for the proper synchronization of the link creation
497 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
498 * runtime PM framework to take the link into account. Second, if the
499 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
500 * be forced into the active metastate and reference-counted upon the creation
501 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
502 * ignored.
503 *
504 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
505 * expected to release the link returned by it directly with the help of either
506 * device_link_del() or device_link_remove().
507 *
508 * If that flag is not set, however, the caller of this function is handing the
509 * management of the link over to the driver core entirely and its return value
510 * can only be used to check whether or not the link is present. In that case,
511 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
512 * flags can be used to indicate to the driver core when the link can be safely
513 * deleted. Namely, setting one of them in @flags indicates to the driver core
514 * that the link is not going to be used (by the given caller of this function)
515 * after unbinding the consumer or supplier driver, respectively, from its
516 * device, so the link can be deleted at that point. If none of them is set,
517 * the link will be maintained until one of the devices pointed to by it (either
518 * the consumer or the supplier) is unregistered.
519 *
520 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
521 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
522 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
523 * be used to request the driver core to automaticall probe for a consmer
524 * driver after successfully binding a driver to the supplier device.
525 *
526 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
527 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
528 * the same time is invalid and will cause NULL to be returned upfront.
529 * However, if a device link between the given @consumer and @supplier pair
530 * exists already when this function is called for them, the existing link will
531 * be returned regardless of its current type and status (the link's flags may
532 * be modified then). The caller of this function is then expected to treat
533 * the link as though it has just been created, so (in particular) if
534 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
535 * explicitly when not needed any more (as stated above).
536 *
537 * A side effect of the link creation is re-ordering of dpm_list and the
538 * devices_kset list by moving the consumer device and all devices depending
539 * on it to the ends of these lists (that does not happen to devices that have
540 * not been registered when this function is called).
541 *
542 * The supplier device is required to be registered when this function is called
543 * and NULL will be returned if that is not the case. The consumer device need
544 * not be registered, however.
545 */
device_link_add(struct device * consumer,struct device * supplier,u32 flags)546 struct device_link *device_link_add(struct device *consumer,
547 struct device *supplier, u32 flags)
548 {
549 struct device_link *link;
550
551 if (!consumer || !supplier || consumer == supplier ||
552 flags & ~DL_ADD_VALID_FLAGS ||
553 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
554 (flags & DL_FLAG_SYNC_STATE_ONLY &&
555 flags != DL_FLAG_SYNC_STATE_ONLY) ||
556 (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
557 flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
558 DL_FLAG_AUTOREMOVE_SUPPLIER)))
559 return NULL;
560
561 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
562 if (pm_runtime_get_sync(supplier) < 0) {
563 pm_runtime_put_noidle(supplier);
564 return NULL;
565 }
566 }
567
568 if (!(flags & DL_FLAG_STATELESS))
569 flags |= DL_FLAG_MANAGED;
570
571 device_links_write_lock();
572 device_pm_lock();
573
574 /*
575 * If the supplier has not been fully registered yet or there is a
576 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
577 * the supplier already in the graph, return NULL. If the link is a
578 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
579 * because it only affects sync_state() callbacks.
580 */
581 if (!device_pm_initialized(supplier)
582 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
583 device_is_dependent(consumer, supplier))) {
584 link = NULL;
585 goto out;
586 }
587
588 /*
589 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
590 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
591 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
592 */
593 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
594 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
595
596 list_for_each_entry(link, &supplier->links.consumers, s_node) {
597 if (link->consumer != consumer)
598 continue;
599
600 if (flags & DL_FLAG_PM_RUNTIME) {
601 if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
602 pm_runtime_new_link(consumer);
603 link->flags |= DL_FLAG_PM_RUNTIME;
604 }
605 if (flags & DL_FLAG_RPM_ACTIVE)
606 refcount_inc(&link->rpm_active);
607 }
608
609 if (flags & DL_FLAG_STATELESS) {
610 kref_get(&link->kref);
611 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
612 !(link->flags & DL_FLAG_STATELESS)) {
613 link->flags |= DL_FLAG_STATELESS;
614 goto reorder;
615 } else {
616 link->flags |= DL_FLAG_STATELESS;
617 goto out;
618 }
619 }
620
621 /*
622 * If the life time of the link following from the new flags is
623 * longer than indicated by the flags of the existing link,
624 * update the existing link to stay around longer.
625 */
626 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
627 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
628 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
629 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
630 }
631 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
632 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
633 DL_FLAG_AUTOREMOVE_SUPPLIER);
634 }
635 if (!(link->flags & DL_FLAG_MANAGED)) {
636 kref_get(&link->kref);
637 link->flags |= DL_FLAG_MANAGED;
638 device_link_init_status(link, consumer, supplier);
639 }
640 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
641 !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
642 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
643 goto reorder;
644 }
645
646 goto out;
647 }
648
649 link = kzalloc(sizeof(*link), GFP_KERNEL);
650 if (!link)
651 goto out;
652
653 refcount_set(&link->rpm_active, 1);
654
655 get_device(supplier);
656 link->supplier = supplier;
657 INIT_LIST_HEAD(&link->s_node);
658 get_device(consumer);
659 link->consumer = consumer;
660 INIT_LIST_HEAD(&link->c_node);
661 link->flags = flags;
662 kref_init(&link->kref);
663
664 link->link_dev.class = &devlink_class;
665 device_set_pm_not_required(&link->link_dev);
666 dev_set_name(&link->link_dev, "%s:%s--%s:%s",
667 dev_bus_name(supplier), dev_name(supplier),
668 dev_bus_name(consumer), dev_name(consumer));
669 if (device_register(&link->link_dev)) {
670 put_device(&link->link_dev);
671 link = NULL;
672 goto out;
673 }
674
675 if (flags & DL_FLAG_PM_RUNTIME) {
676 if (flags & DL_FLAG_RPM_ACTIVE)
677 refcount_inc(&link->rpm_active);
678
679 pm_runtime_new_link(consumer);
680 }
681
682 /* Determine the initial link state. */
683 if (flags & DL_FLAG_STATELESS)
684 link->status = DL_STATE_NONE;
685 else
686 device_link_init_status(link, consumer, supplier);
687
688 /*
689 * Some callers expect the link creation during consumer driver probe to
690 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
691 */
692 if (link->status == DL_STATE_CONSUMER_PROBE &&
693 flags & DL_FLAG_PM_RUNTIME)
694 pm_runtime_resume(supplier);
695
696 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
697 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
698
699 if (flags & DL_FLAG_SYNC_STATE_ONLY) {
700 dev_dbg(consumer,
701 "Linked as a sync state only consumer to %s\n",
702 dev_name(supplier));
703 goto out;
704 }
705
706 reorder:
707 /*
708 * Move the consumer and all of the devices depending on it to the end
709 * of dpm_list and the devices_kset list.
710 *
711 * It is necessary to hold dpm_list locked throughout all that or else
712 * we may end up suspending with a wrong ordering of it.
713 */
714 device_reorder_to_tail(consumer, NULL);
715
716 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
717
718 out:
719 device_pm_unlock();
720 device_links_write_unlock();
721
722 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
723 pm_runtime_put(supplier);
724
725 return link;
726 }
727 EXPORT_SYMBOL_GPL(device_link_add);
728
729 /**
730 * device_link_wait_for_supplier - Add device to wait_for_suppliers list
731 * @consumer: Consumer device
732 *
733 * Marks the @consumer device as waiting for suppliers to become available by
734 * adding it to the wait_for_suppliers list. The consumer device will never be
735 * probed until it's removed from the wait_for_suppliers list.
736 *
737 * The caller is responsible for adding the links to the supplier devices once
738 * they are available and removing the @consumer device from the
739 * wait_for_suppliers list once links to all the suppliers have been created.
740 *
741 * This function is NOT meant to be called from the probe function of the
742 * consumer but rather from code that creates/adds the consumer device.
743 */
device_link_wait_for_supplier(struct device * consumer,bool need_for_probe)744 static void device_link_wait_for_supplier(struct device *consumer,
745 bool need_for_probe)
746 {
747 mutex_lock(&wfs_lock);
748 list_add_tail(&consumer->links.needs_suppliers, &wait_for_suppliers);
749 consumer->links.need_for_probe = need_for_probe;
750 mutex_unlock(&wfs_lock);
751 }
752
device_link_wait_for_mandatory_supplier(struct device * consumer)753 static void device_link_wait_for_mandatory_supplier(struct device *consumer)
754 {
755 device_link_wait_for_supplier(consumer, true);
756 }
757
device_link_wait_for_optional_supplier(struct device * consumer)758 static void device_link_wait_for_optional_supplier(struct device *consumer)
759 {
760 device_link_wait_for_supplier(consumer, false);
761 }
762
763 /**
764 * device_link_add_missing_supplier_links - Add links from consumer devices to
765 * supplier devices, leaving any
766 * consumer with inactive suppliers on
767 * the wait_for_suppliers list
768 *
769 * Loops through all consumers waiting on suppliers and tries to add all their
770 * supplier links. If that succeeds, the consumer device is removed from
771 * wait_for_suppliers list. Otherwise, they are left in the wait_for_suppliers
772 * list. Devices left on the wait_for_suppliers list will not be probed.
773 *
774 * The fwnode add_links callback is expected to return 0 if it has found and
775 * added all the supplier links for the consumer device. It should return an
776 * error if it isn't able to do so.
777 *
778 * The caller of device_link_wait_for_supplier() is expected to call this once
779 * it's aware of potential suppliers becoming available.
780 */
device_link_add_missing_supplier_links(void)781 static void device_link_add_missing_supplier_links(void)
782 {
783 struct device *dev, *tmp;
784
785 mutex_lock(&wfs_lock);
786 list_for_each_entry_safe(dev, tmp, &wait_for_suppliers,
787 links.needs_suppliers) {
788 int ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
789 if (!ret)
790 list_del_init(&dev->links.needs_suppliers);
791 else if (ret != -ENODEV || fw_devlink_is_permissive())
792 dev->links.need_for_probe = false;
793 }
794 mutex_unlock(&wfs_lock);
795 }
796
797 #ifdef CONFIG_SRCU
__device_link_del(struct kref * kref)798 static void __device_link_del(struct kref *kref)
799 {
800 struct device_link *link = container_of(kref, struct device_link, kref);
801
802 dev_dbg(link->consumer, "Dropping the link to %s\n",
803 dev_name(link->supplier));
804
805 pm_runtime_drop_link(link);
806
807 list_del_rcu(&link->s_node);
808 list_del_rcu(&link->c_node);
809 device_unregister(&link->link_dev);
810 }
811 #else /* !CONFIG_SRCU */
__device_link_del(struct kref * kref)812 static void __device_link_del(struct kref *kref)
813 {
814 struct device_link *link = container_of(kref, struct device_link, kref);
815
816 dev_info(link->consumer, "Dropping the link to %s\n",
817 dev_name(link->supplier));
818
819 pm_runtime_drop_link(link);
820
821 list_del(&link->s_node);
822 list_del(&link->c_node);
823 device_unregister(&link->link_dev);
824 }
825 #endif /* !CONFIG_SRCU */
826
device_link_put_kref(struct device_link * link)827 static void device_link_put_kref(struct device_link *link)
828 {
829 if (link->flags & DL_FLAG_STATELESS)
830 kref_put(&link->kref, __device_link_del);
831 else
832 WARN(1, "Unable to drop a managed device link reference\n");
833 }
834
835 /**
836 * device_link_del - Delete a stateless link between two devices.
837 * @link: Device link to delete.
838 *
839 * The caller must ensure proper synchronization of this function with runtime
840 * PM. If the link was added multiple times, it needs to be deleted as often.
841 * Care is required for hotplugged devices: Their links are purged on removal
842 * and calling device_link_del() is then no longer allowed.
843 */
device_link_del(struct device_link * link)844 void device_link_del(struct device_link *link)
845 {
846 device_links_write_lock();
847 device_link_put_kref(link);
848 device_links_write_unlock();
849 }
850 EXPORT_SYMBOL_GPL(device_link_del);
851
852 /**
853 * device_link_remove - Delete a stateless link between two devices.
854 * @consumer: Consumer end of the link.
855 * @supplier: Supplier end of the link.
856 *
857 * The caller must ensure proper synchronization of this function with runtime
858 * PM.
859 */
device_link_remove(void * consumer,struct device * supplier)860 void device_link_remove(void *consumer, struct device *supplier)
861 {
862 struct device_link *link;
863
864 if (WARN_ON(consumer == supplier))
865 return;
866
867 device_links_write_lock();
868
869 list_for_each_entry(link, &supplier->links.consumers, s_node) {
870 if (link->consumer == consumer) {
871 device_link_put_kref(link);
872 break;
873 }
874 }
875
876 device_links_write_unlock();
877 }
878 EXPORT_SYMBOL_GPL(device_link_remove);
879
device_links_missing_supplier(struct device * dev)880 static void device_links_missing_supplier(struct device *dev)
881 {
882 struct device_link *link;
883
884 list_for_each_entry(link, &dev->links.suppliers, c_node) {
885 if (link->status != DL_STATE_CONSUMER_PROBE)
886 continue;
887
888 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
889 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
890 } else {
891 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
892 WRITE_ONCE(link->status, DL_STATE_DORMANT);
893 }
894 }
895 }
896
897 /**
898 * device_links_check_suppliers - Check presence of supplier drivers.
899 * @dev: Consumer device.
900 *
901 * Check links from this device to any suppliers. Walk the list of the device's
902 * links to suppliers and see if all of them are available. If not, simply
903 * return -EPROBE_DEFER.
904 *
905 * We need to guarantee that the supplier will not go away after the check has
906 * been positive here. It only can go away in __device_release_driver() and
907 * that function checks the device's links to consumers. This means we need to
908 * mark the link as "consumer probe in progress" to make the supplier removal
909 * wait for us to complete (or bad things may happen).
910 *
911 * Links without the DL_FLAG_MANAGED flag set are ignored.
912 */
device_links_check_suppliers(struct device * dev)913 int device_links_check_suppliers(struct device *dev)
914 {
915 struct device_link *link;
916 int ret = 0;
917
918 /*
919 * Device waiting for supplier to become available is not allowed to
920 * probe.
921 */
922 mutex_lock(&wfs_lock);
923 if (!list_empty(&dev->links.needs_suppliers) &&
924 dev->links.need_for_probe) {
925 mutex_unlock(&wfs_lock);
926 return -EPROBE_DEFER;
927 }
928 mutex_unlock(&wfs_lock);
929
930 device_links_write_lock();
931
932 list_for_each_entry(link, &dev->links.suppliers, c_node) {
933 if (!(link->flags & DL_FLAG_MANAGED))
934 continue;
935
936 if (link->status != DL_STATE_AVAILABLE &&
937 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
938 device_links_missing_supplier(dev);
939 ret = -EPROBE_DEFER;
940 break;
941 }
942 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
943 }
944 dev->links.status = DL_DEV_PROBING;
945
946 device_links_write_unlock();
947 return ret;
948 }
949
950 /**
951 * __device_links_queue_sync_state - Queue a device for sync_state() callback
952 * @dev: Device to call sync_state() on
953 * @list: List head to queue the @dev on
954 *
955 * Queues a device for a sync_state() callback when the device links write lock
956 * isn't held. This allows the sync_state() execution flow to use device links
957 * APIs. The caller must ensure this function is called with
958 * device_links_write_lock() held.
959 *
960 * This function does a get_device() to make sure the device is not freed while
961 * on this list.
962 *
963 * So the caller must also ensure that device_links_flush_sync_list() is called
964 * as soon as the caller releases device_links_write_lock(). This is necessary
965 * to make sure the sync_state() is called in a timely fashion and the
966 * put_device() is called on this device.
967 */
__device_links_queue_sync_state(struct device * dev,struct list_head * list)968 static void __device_links_queue_sync_state(struct device *dev,
969 struct list_head *list)
970 {
971 struct device_link *link;
972
973 if (!dev_has_sync_state(dev))
974 return;
975 if (dev->state_synced)
976 return;
977
978 list_for_each_entry(link, &dev->links.consumers, s_node) {
979 if (!(link->flags & DL_FLAG_MANAGED))
980 continue;
981 if (link->status != DL_STATE_ACTIVE)
982 return;
983 }
984
985 /*
986 * Set the flag here to avoid adding the same device to a list more
987 * than once. This can happen if new consumers get added to the device
988 * and probed before the list is flushed.
989 */
990 dev->state_synced = true;
991
992 if (WARN_ON(!list_empty(&dev->links.defer_hook)))
993 return;
994
995 get_device(dev);
996 list_add_tail(&dev->links.defer_hook, list);
997 }
998
999 /**
1000 * device_links_flush_sync_list - Call sync_state() on a list of devices
1001 * @list: List of devices to call sync_state() on
1002 * @dont_lock_dev: Device for which lock is already held by the caller
1003 *
1004 * Calls sync_state() on all the devices that have been queued for it. This
1005 * function is used in conjunction with __device_links_queue_sync_state(). The
1006 * @dont_lock_dev parameter is useful when this function is called from a
1007 * context where a device lock is already held.
1008 */
device_links_flush_sync_list(struct list_head * list,struct device * dont_lock_dev)1009 static void device_links_flush_sync_list(struct list_head *list,
1010 struct device *dont_lock_dev)
1011 {
1012 struct device *dev, *tmp;
1013
1014 list_for_each_entry_safe(dev, tmp, list, links.defer_hook) {
1015 list_del_init(&dev->links.defer_hook);
1016
1017 if (dev != dont_lock_dev)
1018 device_lock(dev);
1019
1020 if (dev->bus->sync_state)
1021 dev->bus->sync_state(dev);
1022 else if (dev->driver && dev->driver->sync_state)
1023 dev->driver->sync_state(dev);
1024
1025 if (dev != dont_lock_dev)
1026 device_unlock(dev);
1027
1028 put_device(dev);
1029 }
1030 }
1031
device_links_supplier_sync_state_pause(void)1032 void device_links_supplier_sync_state_pause(void)
1033 {
1034 device_links_write_lock();
1035 defer_sync_state_count++;
1036 device_links_write_unlock();
1037 }
1038
device_links_supplier_sync_state_resume(void)1039 void device_links_supplier_sync_state_resume(void)
1040 {
1041 struct device *dev, *tmp;
1042 LIST_HEAD(sync_list);
1043
1044 device_links_write_lock();
1045 if (!defer_sync_state_count) {
1046 WARN(true, "Unmatched sync_state pause/resume!");
1047 goto out;
1048 }
1049 defer_sync_state_count--;
1050 if (defer_sync_state_count)
1051 goto out;
1052
1053 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_hook) {
1054 /*
1055 * Delete from deferred_sync list before queuing it to
1056 * sync_list because defer_hook is used for both lists.
1057 */
1058 list_del_init(&dev->links.defer_hook);
1059 __device_links_queue_sync_state(dev, &sync_list);
1060 }
1061 out:
1062 device_links_write_unlock();
1063
1064 device_links_flush_sync_list(&sync_list, NULL);
1065 }
1066
sync_state_resume_initcall(void)1067 static int sync_state_resume_initcall(void)
1068 {
1069 device_links_supplier_sync_state_resume();
1070 return 0;
1071 }
1072 late_initcall(sync_state_resume_initcall);
1073
__device_links_supplier_defer_sync(struct device * sup)1074 static void __device_links_supplier_defer_sync(struct device *sup)
1075 {
1076 if (list_empty(&sup->links.defer_hook) && dev_has_sync_state(sup))
1077 list_add_tail(&sup->links.defer_hook, &deferred_sync);
1078 }
1079
device_link_drop_managed(struct device_link * link)1080 static void device_link_drop_managed(struct device_link *link)
1081 {
1082 link->flags &= ~DL_FLAG_MANAGED;
1083 WRITE_ONCE(link->status, DL_STATE_NONE);
1084 kref_put(&link->kref, __device_link_del);
1085 }
1086
waiting_for_supplier_show(struct device * dev,struct device_attribute * attr,char * buf)1087 static ssize_t waiting_for_supplier_show(struct device *dev,
1088 struct device_attribute *attr,
1089 char *buf)
1090 {
1091 bool val;
1092
1093 device_lock(dev);
1094 mutex_lock(&wfs_lock);
1095 val = !list_empty(&dev->links.needs_suppliers)
1096 && dev->links.need_for_probe;
1097 mutex_unlock(&wfs_lock);
1098 device_unlock(dev);
1099 return sysfs_emit(buf, "%u\n", val);
1100 }
1101 static DEVICE_ATTR_RO(waiting_for_supplier);
1102
1103 /**
1104 * device_links_driver_bound - Update device links after probing its driver.
1105 * @dev: Device to update the links for.
1106 *
1107 * The probe has been successful, so update links from this device to any
1108 * consumers by changing their status to "available".
1109 *
1110 * Also change the status of @dev's links to suppliers to "active".
1111 *
1112 * Links without the DL_FLAG_MANAGED flag set are ignored.
1113 */
device_links_driver_bound(struct device * dev)1114 void device_links_driver_bound(struct device *dev)
1115 {
1116 struct device_link *link, *ln;
1117 LIST_HEAD(sync_list);
1118
1119 /*
1120 * If a device probes successfully, it's expected to have created all
1121 * the device links it needs to or make new device links as it needs
1122 * them. So, it no longer needs to wait on any suppliers.
1123 */
1124 mutex_lock(&wfs_lock);
1125 list_del_init(&dev->links.needs_suppliers);
1126 mutex_unlock(&wfs_lock);
1127 device_remove_file(dev, &dev_attr_waiting_for_supplier);
1128
1129 device_links_write_lock();
1130
1131 list_for_each_entry(link, &dev->links.consumers, s_node) {
1132 if (!(link->flags & DL_FLAG_MANAGED))
1133 continue;
1134
1135 /*
1136 * Links created during consumer probe may be in the "consumer
1137 * probe" state to start with if the supplier is still probing
1138 * when they are created and they may become "active" if the
1139 * consumer probe returns first. Skip them here.
1140 */
1141 if (link->status == DL_STATE_CONSUMER_PROBE ||
1142 link->status == DL_STATE_ACTIVE)
1143 continue;
1144
1145 WARN_ON(link->status != DL_STATE_DORMANT);
1146 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1147
1148 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1149 driver_deferred_probe_add(link->consumer);
1150 }
1151
1152 if (defer_sync_state_count)
1153 __device_links_supplier_defer_sync(dev);
1154 else
1155 __device_links_queue_sync_state(dev, &sync_list);
1156
1157 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1158 struct device *supplier;
1159
1160 if (!(link->flags & DL_FLAG_MANAGED))
1161 continue;
1162
1163 supplier = link->supplier;
1164 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1165 /*
1166 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1167 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1168 * save to drop the managed link completely.
1169 */
1170 device_link_drop_managed(link);
1171 } else {
1172 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1173 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1174 }
1175
1176 /*
1177 * This needs to be done even for the deleted
1178 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1179 * device link that was preventing the supplier from getting a
1180 * sync_state() call.
1181 */
1182 if (defer_sync_state_count)
1183 __device_links_supplier_defer_sync(supplier);
1184 else
1185 __device_links_queue_sync_state(supplier, &sync_list);
1186 }
1187
1188 dev->links.status = DL_DEV_DRIVER_BOUND;
1189
1190 device_links_write_unlock();
1191
1192 device_links_flush_sync_list(&sync_list, dev);
1193 }
1194
1195 /**
1196 * __device_links_no_driver - Update links of a device without a driver.
1197 * @dev: Device without a drvier.
1198 *
1199 * Delete all non-persistent links from this device to any suppliers.
1200 *
1201 * Persistent links stay around, but their status is changed to "available",
1202 * unless they already are in the "supplier unbind in progress" state in which
1203 * case they need not be updated.
1204 *
1205 * Links without the DL_FLAG_MANAGED flag set are ignored.
1206 */
__device_links_no_driver(struct device * dev)1207 static void __device_links_no_driver(struct device *dev)
1208 {
1209 struct device_link *link, *ln;
1210
1211 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1212 if (!(link->flags & DL_FLAG_MANAGED))
1213 continue;
1214
1215 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1216 device_link_drop_managed(link);
1217 continue;
1218 }
1219
1220 if (link->status != DL_STATE_CONSUMER_PROBE &&
1221 link->status != DL_STATE_ACTIVE)
1222 continue;
1223
1224 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1225 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1226 } else {
1227 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1228 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1229 }
1230 }
1231
1232 dev->links.status = DL_DEV_NO_DRIVER;
1233 }
1234
1235 /**
1236 * device_links_no_driver - Update links after failing driver probe.
1237 * @dev: Device whose driver has just failed to probe.
1238 *
1239 * Clean up leftover links to consumers for @dev and invoke
1240 * %__device_links_no_driver() to update links to suppliers for it as
1241 * appropriate.
1242 *
1243 * Links without the DL_FLAG_MANAGED flag set are ignored.
1244 */
device_links_no_driver(struct device * dev)1245 void device_links_no_driver(struct device *dev)
1246 {
1247 struct device_link *link;
1248
1249 device_links_write_lock();
1250
1251 list_for_each_entry(link, &dev->links.consumers, s_node) {
1252 if (!(link->flags & DL_FLAG_MANAGED))
1253 continue;
1254
1255 /*
1256 * The probe has failed, so if the status of the link is
1257 * "consumer probe" or "active", it must have been added by
1258 * a probing consumer while this device was still probing.
1259 * Change its state to "dormant", as it represents a valid
1260 * relationship, but it is not functionally meaningful.
1261 */
1262 if (link->status == DL_STATE_CONSUMER_PROBE ||
1263 link->status == DL_STATE_ACTIVE)
1264 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1265 }
1266
1267 __device_links_no_driver(dev);
1268
1269 device_links_write_unlock();
1270 }
1271
1272 /**
1273 * device_links_driver_cleanup - Update links after driver removal.
1274 * @dev: Device whose driver has just gone away.
1275 *
1276 * Update links to consumers for @dev by changing their status to "dormant" and
1277 * invoke %__device_links_no_driver() to update links to suppliers for it as
1278 * appropriate.
1279 *
1280 * Links without the DL_FLAG_MANAGED flag set are ignored.
1281 */
device_links_driver_cleanup(struct device * dev)1282 void device_links_driver_cleanup(struct device *dev)
1283 {
1284 struct device_link *link, *ln;
1285
1286 device_links_write_lock();
1287
1288 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1289 if (!(link->flags & DL_FLAG_MANAGED))
1290 continue;
1291
1292 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1293 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1294
1295 /*
1296 * autoremove the links between this @dev and its consumer
1297 * devices that are not active, i.e. where the link state
1298 * has moved to DL_STATE_SUPPLIER_UNBIND.
1299 */
1300 if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1301 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1302 device_link_drop_managed(link);
1303
1304 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1305 }
1306
1307 list_del_init(&dev->links.defer_hook);
1308 __device_links_no_driver(dev);
1309
1310 device_links_write_unlock();
1311 }
1312
1313 /**
1314 * device_links_busy - Check if there are any busy links to consumers.
1315 * @dev: Device to check.
1316 *
1317 * Check each consumer of the device and return 'true' if its link's status
1318 * is one of "consumer probe" or "active" (meaning that the given consumer is
1319 * probing right now or its driver is present). Otherwise, change the link
1320 * state to "supplier unbind" to prevent the consumer from being probed
1321 * successfully going forward.
1322 *
1323 * Return 'false' if there are no probing or active consumers.
1324 *
1325 * Links without the DL_FLAG_MANAGED flag set are ignored.
1326 */
device_links_busy(struct device * dev)1327 bool device_links_busy(struct device *dev)
1328 {
1329 struct device_link *link;
1330 bool ret = false;
1331
1332 device_links_write_lock();
1333
1334 list_for_each_entry(link, &dev->links.consumers, s_node) {
1335 if (!(link->flags & DL_FLAG_MANAGED))
1336 continue;
1337
1338 if (link->status == DL_STATE_CONSUMER_PROBE
1339 || link->status == DL_STATE_ACTIVE) {
1340 ret = true;
1341 break;
1342 }
1343 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1344 }
1345
1346 dev->links.status = DL_DEV_UNBINDING;
1347
1348 device_links_write_unlock();
1349 return ret;
1350 }
1351
1352 /**
1353 * device_links_unbind_consumers - Force unbind consumers of the given device.
1354 * @dev: Device to unbind the consumers of.
1355 *
1356 * Walk the list of links to consumers for @dev and if any of them is in the
1357 * "consumer probe" state, wait for all device probes in progress to complete
1358 * and start over.
1359 *
1360 * If that's not the case, change the status of the link to "supplier unbind"
1361 * and check if the link was in the "active" state. If so, force the consumer
1362 * driver to unbind and start over (the consumer will not re-probe as we have
1363 * changed the state of the link already).
1364 *
1365 * Links without the DL_FLAG_MANAGED flag set are ignored.
1366 */
device_links_unbind_consumers(struct device * dev)1367 void device_links_unbind_consumers(struct device *dev)
1368 {
1369 struct device_link *link;
1370
1371 start:
1372 device_links_write_lock();
1373
1374 list_for_each_entry(link, &dev->links.consumers, s_node) {
1375 enum device_link_state status;
1376
1377 if (!(link->flags & DL_FLAG_MANAGED) ||
1378 link->flags & DL_FLAG_SYNC_STATE_ONLY)
1379 continue;
1380
1381 status = link->status;
1382 if (status == DL_STATE_CONSUMER_PROBE) {
1383 device_links_write_unlock();
1384
1385 wait_for_device_probe();
1386 goto start;
1387 }
1388 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1389 if (status == DL_STATE_ACTIVE) {
1390 struct device *consumer = link->consumer;
1391
1392 get_device(consumer);
1393
1394 device_links_write_unlock();
1395
1396 device_release_driver_internal(consumer, NULL,
1397 consumer->parent);
1398 put_device(consumer);
1399 goto start;
1400 }
1401 }
1402
1403 device_links_write_unlock();
1404 }
1405
1406 /**
1407 * device_links_purge - Delete existing links to other devices.
1408 * @dev: Target device.
1409 */
device_links_purge(struct device * dev)1410 static void device_links_purge(struct device *dev)
1411 {
1412 struct device_link *link, *ln;
1413
1414 if (dev->class == &devlink_class)
1415 return;
1416
1417 mutex_lock(&wfs_lock);
1418 list_del_init(&dev->links.needs_suppliers);
1419 mutex_unlock(&wfs_lock);
1420
1421 /*
1422 * Delete all of the remaining links from this device to any other
1423 * devices (either consumers or suppliers).
1424 */
1425 device_links_write_lock();
1426
1427 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1428 WARN_ON(link->status == DL_STATE_ACTIVE);
1429 __device_link_del(&link->kref);
1430 }
1431
1432 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1433 WARN_ON(link->status != DL_STATE_DORMANT &&
1434 link->status != DL_STATE_NONE);
1435 __device_link_del(&link->kref);
1436 }
1437
1438 device_links_write_unlock();
1439 }
1440
1441 static u32 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
fw_devlink_setup(char * arg)1442 static int __init fw_devlink_setup(char *arg)
1443 {
1444 if (!arg)
1445 return -EINVAL;
1446
1447 if (strcmp(arg, "off") == 0) {
1448 fw_devlink_flags = 0;
1449 } else if (strcmp(arg, "permissive") == 0) {
1450 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
1451 } else if (strcmp(arg, "on") == 0) {
1452 fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER;
1453 } else if (strcmp(arg, "rpm") == 0) {
1454 fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER |
1455 DL_FLAG_PM_RUNTIME;
1456 }
1457 return 0;
1458 }
1459 early_param("fw_devlink", fw_devlink_setup);
1460
fw_devlink_get_flags(void)1461 u32 fw_devlink_get_flags(void)
1462 {
1463 return fw_devlink_flags;
1464 }
1465
fw_devlink_is_permissive(void)1466 static bool fw_devlink_is_permissive(void)
1467 {
1468 return fw_devlink_flags == DL_FLAG_SYNC_STATE_ONLY;
1469 }
1470
fw_devlink_link_device(struct device * dev)1471 static void fw_devlink_link_device(struct device *dev)
1472 {
1473 int fw_ret;
1474
1475 if (!fw_devlink_flags)
1476 return;
1477
1478 mutex_lock(&defer_fw_devlink_lock);
1479 if (!defer_fw_devlink_count)
1480 device_link_add_missing_supplier_links();
1481
1482 /*
1483 * The device's fwnode not having add_links() doesn't affect if other
1484 * consumers can find this device as a supplier. So, this check is
1485 * intentionally placed after device_link_add_missing_supplier_links().
1486 */
1487 if (!fwnode_has_op(dev->fwnode, add_links))
1488 goto out;
1489
1490 /*
1491 * If fw_devlink is being deferred, assume all devices have mandatory
1492 * suppliers they need to link to later. Then, when the fw_devlink is
1493 * resumed, all these devices will get a chance to try and link to any
1494 * suppliers they have.
1495 */
1496 if (!defer_fw_devlink_count) {
1497 fw_ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
1498 if (fw_ret == -ENODEV && fw_devlink_is_permissive())
1499 fw_ret = -EAGAIN;
1500 } else {
1501 fw_ret = -ENODEV;
1502 /*
1503 * defer_hook is not used to add device to deferred_sync list
1504 * until device is bound. Since deferred fw devlink also blocks
1505 * probing, same list hook can be used for deferred_fw_devlink.
1506 */
1507 list_add_tail(&dev->links.defer_hook, &deferred_fw_devlink);
1508 }
1509
1510 if (fw_ret == -ENODEV)
1511 device_link_wait_for_mandatory_supplier(dev);
1512 else if (fw_ret)
1513 device_link_wait_for_optional_supplier(dev);
1514
1515 out:
1516 mutex_unlock(&defer_fw_devlink_lock);
1517 }
1518
1519 /**
1520 * fw_devlink_pause - Pause parsing of fwnode to create device links
1521 *
1522 * Calling this function defers any fwnode parsing to create device links until
1523 * fw_devlink_resume() is called. Both these functions are ref counted and the
1524 * caller needs to match the calls.
1525 *
1526 * While fw_devlink is paused:
1527 * - Any device that is added won't have its fwnode parsed to create device
1528 * links.
1529 * - The probe of the device will also be deferred during this period.
1530 * - Any devices that were already added, but waiting for suppliers won't be
1531 * able to link to newly added devices.
1532 *
1533 * Once fw_devlink_resume():
1534 * - All the fwnodes that was not parsed will be parsed.
1535 * - All the devices that were deferred probing will be reattempted if they
1536 * aren't waiting for any more suppliers.
1537 *
1538 * This pair of functions, is mainly meant to optimize the parsing of fwnodes
1539 * when a lot of devices that need to link to each other are added in a short
1540 * interval of time. For example, adding all the top level devices in a system.
1541 *
1542 * For example, if N devices are added and:
1543 * - All the consumers are added before their suppliers
1544 * - All the suppliers of the N devices are part of the N devices
1545 *
1546 * Then:
1547 *
1548 * - With the use of fw_devlink_pause() and fw_devlink_resume(), each device
1549 * will only need one parsing of its fwnode because it is guaranteed to find
1550 * all the supplier devices already registered and ready to link to. It won't
1551 * have to do another pass later to find one or more suppliers it couldn't
1552 * find in the first parse of the fwnode. So, we'll only need O(N) fwnode
1553 * parses.
1554 *
1555 * - Without the use of fw_devlink_pause() and fw_devlink_resume(), we would
1556 * end up doing O(N^2) parses of fwnodes because every device that's added is
1557 * guaranteed to trigger a parse of the fwnode of every device added before
1558 * it. This O(N^2) parse is made worse by the fact that when a fwnode of a
1559 * device is parsed, all it descendant devices might need to have their
1560 * fwnodes parsed too (even if the devices themselves aren't added).
1561 */
fw_devlink_pause(void)1562 void fw_devlink_pause(void)
1563 {
1564 mutex_lock(&defer_fw_devlink_lock);
1565 defer_fw_devlink_count++;
1566 mutex_unlock(&defer_fw_devlink_lock);
1567 }
1568
1569 /** fw_devlink_resume - Resume parsing of fwnode to create device links
1570 *
1571 * This function is used in conjunction with fw_devlink_pause() and is ref
1572 * counted. See documentation for fw_devlink_pause() for more details.
1573 */
fw_devlink_resume(void)1574 void fw_devlink_resume(void)
1575 {
1576 struct device *dev, *tmp;
1577 LIST_HEAD(probe_list);
1578
1579 mutex_lock(&defer_fw_devlink_lock);
1580 if (!defer_fw_devlink_count) {
1581 WARN(true, "Unmatched fw_devlink pause/resume!");
1582 goto out;
1583 }
1584
1585 defer_fw_devlink_count--;
1586 if (defer_fw_devlink_count)
1587 goto out;
1588
1589 device_link_add_missing_supplier_links();
1590 list_splice_tail_init(&deferred_fw_devlink, &probe_list);
1591 out:
1592 mutex_unlock(&defer_fw_devlink_lock);
1593
1594 /*
1595 * bus_probe_device() can cause new devices to get added and they'll
1596 * try to grab defer_fw_devlink_lock. So, this needs to be done outside
1597 * the defer_fw_devlink_lock.
1598 */
1599 list_for_each_entry_safe(dev, tmp, &probe_list, links.defer_hook) {
1600 list_del_init(&dev->links.defer_hook);
1601 bus_probe_device(dev);
1602 }
1603 }
1604 /* Device links support end. */
1605
1606 int (*platform_notify)(struct device *dev) = NULL;
1607 int (*platform_notify_remove)(struct device *dev) = NULL;
1608 static struct kobject *dev_kobj;
1609 struct kobject *sysfs_dev_char_kobj;
1610 struct kobject *sysfs_dev_block_kobj;
1611
1612 static DEFINE_MUTEX(device_hotplug_lock);
1613
lock_device_hotplug(void)1614 void lock_device_hotplug(void)
1615 {
1616 mutex_lock(&device_hotplug_lock);
1617 }
1618
unlock_device_hotplug(void)1619 void unlock_device_hotplug(void)
1620 {
1621 mutex_unlock(&device_hotplug_lock);
1622 }
1623
lock_device_hotplug_sysfs(void)1624 int lock_device_hotplug_sysfs(void)
1625 {
1626 if (mutex_trylock(&device_hotplug_lock))
1627 return 0;
1628
1629 /* Avoid busy looping (5 ms of sleep should do). */
1630 msleep(5);
1631 return restart_syscall();
1632 }
1633
1634 #ifdef CONFIG_BLOCK
device_is_not_partition(struct device * dev)1635 static inline int device_is_not_partition(struct device *dev)
1636 {
1637 return !(dev->type == &part_type);
1638 }
1639 #else
device_is_not_partition(struct device * dev)1640 static inline int device_is_not_partition(struct device *dev)
1641 {
1642 return 1;
1643 }
1644 #endif
1645
1646 static int
device_platform_notify(struct device * dev,enum kobject_action action)1647 device_platform_notify(struct device *dev, enum kobject_action action)
1648 {
1649 int ret;
1650
1651 ret = acpi_platform_notify(dev, action);
1652 if (ret)
1653 return ret;
1654
1655 ret = software_node_notify(dev, action);
1656 if (ret)
1657 return ret;
1658
1659 if (platform_notify && action == KOBJ_ADD)
1660 platform_notify(dev);
1661 else if (platform_notify_remove && action == KOBJ_REMOVE)
1662 platform_notify_remove(dev);
1663 return 0;
1664 }
1665
1666 /**
1667 * dev_driver_string - Return a device's driver name, if at all possible
1668 * @dev: struct device to get the name of
1669 *
1670 * Will return the device's driver's name if it is bound to a device. If
1671 * the device is not bound to a driver, it will return the name of the bus
1672 * it is attached to. If it is not attached to a bus either, an empty
1673 * string will be returned.
1674 */
dev_driver_string(const struct device * dev)1675 const char *dev_driver_string(const struct device *dev)
1676 {
1677 struct device_driver *drv;
1678
1679 /* dev->driver can change to NULL underneath us because of unbinding,
1680 * so be careful about accessing it. dev->bus and dev->class should
1681 * never change once they are set, so they don't need special care.
1682 */
1683 drv = READ_ONCE(dev->driver);
1684 return drv ? drv->name : dev_bus_name(dev);
1685 }
1686 EXPORT_SYMBOL(dev_driver_string);
1687
1688 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
1689
dev_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)1690 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
1691 char *buf)
1692 {
1693 struct device_attribute *dev_attr = to_dev_attr(attr);
1694 struct device *dev = kobj_to_dev(kobj);
1695 ssize_t ret = -EIO;
1696
1697 if (dev_attr->show)
1698 ret = dev_attr->show(dev, dev_attr, buf);
1699 if (ret >= (ssize_t)PAGE_SIZE) {
1700 printk("dev_attr_show: %pS returned bad count\n",
1701 dev_attr->show);
1702 }
1703 return ret;
1704 }
1705
dev_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)1706 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
1707 const char *buf, size_t count)
1708 {
1709 struct device_attribute *dev_attr = to_dev_attr(attr);
1710 struct device *dev = kobj_to_dev(kobj);
1711 ssize_t ret = -EIO;
1712
1713 if (dev_attr->store)
1714 ret = dev_attr->store(dev, dev_attr, buf, count);
1715 return ret;
1716 }
1717
1718 static const struct sysfs_ops dev_sysfs_ops = {
1719 .show = dev_attr_show,
1720 .store = dev_attr_store,
1721 };
1722
1723 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
1724
device_store_ulong(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)1725 ssize_t device_store_ulong(struct device *dev,
1726 struct device_attribute *attr,
1727 const char *buf, size_t size)
1728 {
1729 struct dev_ext_attribute *ea = to_ext_attr(attr);
1730 int ret;
1731 unsigned long new;
1732
1733 ret = kstrtoul(buf, 0, &new);
1734 if (ret)
1735 return ret;
1736 *(unsigned long *)(ea->var) = new;
1737 /* Always return full write size even if we didn't consume all */
1738 return size;
1739 }
1740 EXPORT_SYMBOL_GPL(device_store_ulong);
1741
device_show_ulong(struct device * dev,struct device_attribute * attr,char * buf)1742 ssize_t device_show_ulong(struct device *dev,
1743 struct device_attribute *attr,
1744 char *buf)
1745 {
1746 struct dev_ext_attribute *ea = to_ext_attr(attr);
1747 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
1748 }
1749 EXPORT_SYMBOL_GPL(device_show_ulong);
1750
device_store_int(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)1751 ssize_t device_store_int(struct device *dev,
1752 struct device_attribute *attr,
1753 const char *buf, size_t size)
1754 {
1755 struct dev_ext_attribute *ea = to_ext_attr(attr);
1756 int ret;
1757 long new;
1758
1759 ret = kstrtol(buf, 0, &new);
1760 if (ret)
1761 return ret;
1762
1763 if (new > INT_MAX || new < INT_MIN)
1764 return -EINVAL;
1765 *(int *)(ea->var) = new;
1766 /* Always return full write size even if we didn't consume all */
1767 return size;
1768 }
1769 EXPORT_SYMBOL_GPL(device_store_int);
1770
device_show_int(struct device * dev,struct device_attribute * attr,char * buf)1771 ssize_t device_show_int(struct device *dev,
1772 struct device_attribute *attr,
1773 char *buf)
1774 {
1775 struct dev_ext_attribute *ea = to_ext_attr(attr);
1776
1777 return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
1778 }
1779 EXPORT_SYMBOL_GPL(device_show_int);
1780
device_store_bool(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)1781 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1782 const char *buf, size_t size)
1783 {
1784 struct dev_ext_attribute *ea = to_ext_attr(attr);
1785
1786 if (strtobool(buf, ea->var) < 0)
1787 return -EINVAL;
1788
1789 return size;
1790 }
1791 EXPORT_SYMBOL_GPL(device_store_bool);
1792
device_show_bool(struct device * dev,struct device_attribute * attr,char * buf)1793 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1794 char *buf)
1795 {
1796 struct dev_ext_attribute *ea = to_ext_attr(attr);
1797
1798 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
1799 }
1800 EXPORT_SYMBOL_GPL(device_show_bool);
1801
1802 /**
1803 * device_release - free device structure.
1804 * @kobj: device's kobject.
1805 *
1806 * This is called once the reference count for the object
1807 * reaches 0. We forward the call to the device's release
1808 * method, which should handle actually freeing the structure.
1809 */
device_release(struct kobject * kobj)1810 static void device_release(struct kobject *kobj)
1811 {
1812 struct device *dev = kobj_to_dev(kobj);
1813 struct device_private *p = dev->p;
1814
1815 /*
1816 * Some platform devices are driven without driver attached
1817 * and managed resources may have been acquired. Make sure
1818 * all resources are released.
1819 *
1820 * Drivers still can add resources into device after device
1821 * is deleted but alive, so release devres here to avoid
1822 * possible memory leak.
1823 */
1824 devres_release_all(dev);
1825
1826 kfree(dev->dma_range_map);
1827
1828 if (dev->release)
1829 dev->release(dev);
1830 else if (dev->type && dev->type->release)
1831 dev->type->release(dev);
1832 else if (dev->class && dev->class->dev_release)
1833 dev->class->dev_release(dev);
1834 else
1835 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
1836 dev_name(dev));
1837 kfree(p);
1838 }
1839
device_namespace(struct kobject * kobj)1840 static const void *device_namespace(struct kobject *kobj)
1841 {
1842 struct device *dev = kobj_to_dev(kobj);
1843 const void *ns = NULL;
1844
1845 if (dev->class && dev->class->ns_type)
1846 ns = dev->class->namespace(dev);
1847
1848 return ns;
1849 }
1850
device_get_ownership(struct kobject * kobj,kuid_t * uid,kgid_t * gid)1851 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1852 {
1853 struct device *dev = kobj_to_dev(kobj);
1854
1855 if (dev->class && dev->class->get_ownership)
1856 dev->class->get_ownership(dev, uid, gid);
1857 }
1858
1859 static struct kobj_type device_ktype = {
1860 .release = device_release,
1861 .sysfs_ops = &dev_sysfs_ops,
1862 .namespace = device_namespace,
1863 .get_ownership = device_get_ownership,
1864 };
1865
1866
dev_uevent_filter(struct kset * kset,struct kobject * kobj)1867 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
1868 {
1869 struct kobj_type *ktype = get_ktype(kobj);
1870
1871 if (ktype == &device_ktype) {
1872 struct device *dev = kobj_to_dev(kobj);
1873 if (dev->bus)
1874 return 1;
1875 if (dev->class)
1876 return 1;
1877 }
1878 return 0;
1879 }
1880
dev_uevent_name(struct kset * kset,struct kobject * kobj)1881 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
1882 {
1883 struct device *dev = kobj_to_dev(kobj);
1884
1885 if (dev->bus)
1886 return dev->bus->name;
1887 if (dev->class)
1888 return dev->class->name;
1889 return NULL;
1890 }
1891
dev_uevent(struct kset * kset,struct kobject * kobj,struct kobj_uevent_env * env)1892 static int dev_uevent(struct kset *kset, struct kobject *kobj,
1893 struct kobj_uevent_env *env)
1894 {
1895 struct device *dev = kobj_to_dev(kobj);
1896 int retval = 0;
1897
1898 /* add device node properties if present */
1899 if (MAJOR(dev->devt)) {
1900 const char *tmp;
1901 const char *name;
1902 umode_t mode = 0;
1903 kuid_t uid = GLOBAL_ROOT_UID;
1904 kgid_t gid = GLOBAL_ROOT_GID;
1905
1906 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
1907 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
1908 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
1909 if (name) {
1910 add_uevent_var(env, "DEVNAME=%s", name);
1911 if (mode)
1912 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
1913 if (!uid_eq(uid, GLOBAL_ROOT_UID))
1914 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
1915 if (!gid_eq(gid, GLOBAL_ROOT_GID))
1916 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
1917 kfree(tmp);
1918 }
1919 }
1920
1921 if (dev->type && dev->type->name)
1922 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
1923
1924 if (dev->driver)
1925 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
1926
1927 /* Add common DT information about the device */
1928 of_device_uevent(dev, env);
1929
1930 /* have the bus specific function add its stuff */
1931 if (dev->bus && dev->bus->uevent) {
1932 retval = dev->bus->uevent(dev, env);
1933 if (retval)
1934 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
1935 dev_name(dev), __func__, retval);
1936 }
1937
1938 /* have the class specific function add its stuff */
1939 if (dev->class && dev->class->dev_uevent) {
1940 retval = dev->class->dev_uevent(dev, env);
1941 if (retval)
1942 pr_debug("device: '%s': %s: class uevent() "
1943 "returned %d\n", dev_name(dev),
1944 __func__, retval);
1945 }
1946
1947 /* have the device type specific function add its stuff */
1948 if (dev->type && dev->type->uevent) {
1949 retval = dev->type->uevent(dev, env);
1950 if (retval)
1951 pr_debug("device: '%s': %s: dev_type uevent() "
1952 "returned %d\n", dev_name(dev),
1953 __func__, retval);
1954 }
1955
1956 return retval;
1957 }
1958
1959 static const struct kset_uevent_ops device_uevent_ops = {
1960 .filter = dev_uevent_filter,
1961 .name = dev_uevent_name,
1962 .uevent = dev_uevent,
1963 };
1964
uevent_show(struct device * dev,struct device_attribute * attr,char * buf)1965 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1966 char *buf)
1967 {
1968 struct kobject *top_kobj;
1969 struct kset *kset;
1970 struct kobj_uevent_env *env = NULL;
1971 int i;
1972 int len = 0;
1973 int retval;
1974
1975 /* search the kset, the device belongs to */
1976 top_kobj = &dev->kobj;
1977 while (!top_kobj->kset && top_kobj->parent)
1978 top_kobj = top_kobj->parent;
1979 if (!top_kobj->kset)
1980 goto out;
1981
1982 kset = top_kobj->kset;
1983 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1984 goto out;
1985
1986 /* respect filter */
1987 if (kset->uevent_ops && kset->uevent_ops->filter)
1988 if (!kset->uevent_ops->filter(kset, &dev->kobj))
1989 goto out;
1990
1991 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1992 if (!env)
1993 return -ENOMEM;
1994
1995 /* let the kset specific function add its keys */
1996 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
1997 if (retval)
1998 goto out;
1999
2000 /* copy keys to file */
2001 for (i = 0; i < env->envp_idx; i++)
2002 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2003 out:
2004 kfree(env);
2005 return len;
2006 }
2007
uevent_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2008 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2009 const char *buf, size_t count)
2010 {
2011 int rc;
2012
2013 rc = kobject_synth_uevent(&dev->kobj, buf, count);
2014
2015 if (rc) {
2016 dev_err(dev, "uevent: failed to send synthetic uevent\n");
2017 return rc;
2018 }
2019
2020 return count;
2021 }
2022 static DEVICE_ATTR_RW(uevent);
2023
online_show(struct device * dev,struct device_attribute * attr,char * buf)2024 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2025 char *buf)
2026 {
2027 bool val;
2028
2029 device_lock(dev);
2030 val = !dev->offline;
2031 device_unlock(dev);
2032 return sysfs_emit(buf, "%u\n", val);
2033 }
2034
online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2035 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2036 const char *buf, size_t count)
2037 {
2038 bool val;
2039 int ret;
2040
2041 ret = strtobool(buf, &val);
2042 if (ret < 0)
2043 return ret;
2044
2045 ret = lock_device_hotplug_sysfs();
2046 if (ret)
2047 return ret;
2048
2049 ret = val ? device_online(dev) : device_offline(dev);
2050 unlock_device_hotplug();
2051 return ret < 0 ? ret : count;
2052 }
2053 static DEVICE_ATTR_RW(online);
2054
device_add_groups(struct device * dev,const struct attribute_group ** groups)2055 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2056 {
2057 return sysfs_create_groups(&dev->kobj, groups);
2058 }
2059 EXPORT_SYMBOL_GPL(device_add_groups);
2060
device_remove_groups(struct device * dev,const struct attribute_group ** groups)2061 void device_remove_groups(struct device *dev,
2062 const struct attribute_group **groups)
2063 {
2064 sysfs_remove_groups(&dev->kobj, groups);
2065 }
2066 EXPORT_SYMBOL_GPL(device_remove_groups);
2067
2068 union device_attr_group_devres {
2069 const struct attribute_group *group;
2070 const struct attribute_group **groups;
2071 };
2072
devm_attr_group_match(struct device * dev,void * res,void * data)2073 static int devm_attr_group_match(struct device *dev, void *res, void *data)
2074 {
2075 return ((union device_attr_group_devres *)res)->group == data;
2076 }
2077
devm_attr_group_remove(struct device * dev,void * res)2078 static void devm_attr_group_remove(struct device *dev, void *res)
2079 {
2080 union device_attr_group_devres *devres = res;
2081 const struct attribute_group *group = devres->group;
2082
2083 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2084 sysfs_remove_group(&dev->kobj, group);
2085 }
2086
devm_attr_groups_remove(struct device * dev,void * res)2087 static void devm_attr_groups_remove(struct device *dev, void *res)
2088 {
2089 union device_attr_group_devres *devres = res;
2090 const struct attribute_group **groups = devres->groups;
2091
2092 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2093 sysfs_remove_groups(&dev->kobj, groups);
2094 }
2095
2096 /**
2097 * devm_device_add_group - given a device, create a managed attribute group
2098 * @dev: The device to create the group for
2099 * @grp: The attribute group to create
2100 *
2101 * This function creates a group for the first time. It will explicitly
2102 * warn and error if any of the attribute files being created already exist.
2103 *
2104 * Returns 0 on success or error code on failure.
2105 */
devm_device_add_group(struct device * dev,const struct attribute_group * grp)2106 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2107 {
2108 union device_attr_group_devres *devres;
2109 int error;
2110
2111 devres = devres_alloc(devm_attr_group_remove,
2112 sizeof(*devres), GFP_KERNEL);
2113 if (!devres)
2114 return -ENOMEM;
2115
2116 error = sysfs_create_group(&dev->kobj, grp);
2117 if (error) {
2118 devres_free(devres);
2119 return error;
2120 }
2121
2122 devres->group = grp;
2123 devres_add(dev, devres);
2124 return 0;
2125 }
2126 EXPORT_SYMBOL_GPL(devm_device_add_group);
2127
2128 /**
2129 * devm_device_remove_group: remove a managed group from a device
2130 * @dev: device to remove the group from
2131 * @grp: group to remove
2132 *
2133 * This function removes a group of attributes from a device. The attributes
2134 * previously have to have been created for this group, otherwise it will fail.
2135 */
devm_device_remove_group(struct device * dev,const struct attribute_group * grp)2136 void devm_device_remove_group(struct device *dev,
2137 const struct attribute_group *grp)
2138 {
2139 WARN_ON(devres_release(dev, devm_attr_group_remove,
2140 devm_attr_group_match,
2141 /* cast away const */ (void *)grp));
2142 }
2143 EXPORT_SYMBOL_GPL(devm_device_remove_group);
2144
2145 /**
2146 * devm_device_add_groups - create a bunch of managed attribute groups
2147 * @dev: The device to create the group for
2148 * @groups: The attribute groups to create, NULL terminated
2149 *
2150 * This function creates a bunch of managed attribute groups. If an error
2151 * occurs when creating a group, all previously created groups will be
2152 * removed, unwinding everything back to the original state when this
2153 * function was called. It will explicitly warn and error if any of the
2154 * attribute files being created already exist.
2155 *
2156 * Returns 0 on success or error code from sysfs_create_group on failure.
2157 */
devm_device_add_groups(struct device * dev,const struct attribute_group ** groups)2158 int devm_device_add_groups(struct device *dev,
2159 const struct attribute_group **groups)
2160 {
2161 union device_attr_group_devres *devres;
2162 int error;
2163
2164 devres = devres_alloc(devm_attr_groups_remove,
2165 sizeof(*devres), GFP_KERNEL);
2166 if (!devres)
2167 return -ENOMEM;
2168
2169 error = sysfs_create_groups(&dev->kobj, groups);
2170 if (error) {
2171 devres_free(devres);
2172 return error;
2173 }
2174
2175 devres->groups = groups;
2176 devres_add(dev, devres);
2177 return 0;
2178 }
2179 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2180
2181 /**
2182 * devm_device_remove_groups - remove a list of managed groups
2183 *
2184 * @dev: The device for the groups to be removed from
2185 * @groups: NULL terminated list of groups to be removed
2186 *
2187 * If groups is not NULL, remove the specified groups from the device.
2188 */
devm_device_remove_groups(struct device * dev,const struct attribute_group ** groups)2189 void devm_device_remove_groups(struct device *dev,
2190 const struct attribute_group **groups)
2191 {
2192 WARN_ON(devres_release(dev, devm_attr_groups_remove,
2193 devm_attr_group_match,
2194 /* cast away const */ (void *)groups));
2195 }
2196 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2197
device_add_attrs(struct device * dev)2198 static int device_add_attrs(struct device *dev)
2199 {
2200 struct class *class = dev->class;
2201 const struct device_type *type = dev->type;
2202 int error;
2203
2204 if (class) {
2205 error = device_add_groups(dev, class->dev_groups);
2206 if (error)
2207 return error;
2208 }
2209
2210 if (type) {
2211 error = device_add_groups(dev, type->groups);
2212 if (error)
2213 goto err_remove_class_groups;
2214 }
2215
2216 error = device_add_groups(dev, dev->groups);
2217 if (error)
2218 goto err_remove_type_groups;
2219
2220 if (device_supports_offline(dev) && !dev->offline_disabled) {
2221 error = device_create_file(dev, &dev_attr_online);
2222 if (error)
2223 goto err_remove_dev_groups;
2224 }
2225
2226 if (fw_devlink_flags && !fw_devlink_is_permissive()) {
2227 error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2228 if (error)
2229 goto err_remove_dev_online;
2230 }
2231
2232 return 0;
2233
2234 err_remove_dev_online:
2235 device_remove_file(dev, &dev_attr_online);
2236 err_remove_dev_groups:
2237 device_remove_groups(dev, dev->groups);
2238 err_remove_type_groups:
2239 if (type)
2240 device_remove_groups(dev, type->groups);
2241 err_remove_class_groups:
2242 if (class)
2243 device_remove_groups(dev, class->dev_groups);
2244
2245 return error;
2246 }
2247
device_remove_attrs(struct device * dev)2248 static void device_remove_attrs(struct device *dev)
2249 {
2250 struct class *class = dev->class;
2251 const struct device_type *type = dev->type;
2252
2253 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2254 device_remove_file(dev, &dev_attr_online);
2255 device_remove_groups(dev, dev->groups);
2256
2257 if (type)
2258 device_remove_groups(dev, type->groups);
2259
2260 if (class)
2261 device_remove_groups(dev, class->dev_groups);
2262 }
2263
dev_show(struct device * dev,struct device_attribute * attr,char * buf)2264 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2265 char *buf)
2266 {
2267 return print_dev_t(buf, dev->devt);
2268 }
2269 static DEVICE_ATTR_RO(dev);
2270
2271 /* /sys/devices/ */
2272 struct kset *devices_kset;
2273
2274 /**
2275 * devices_kset_move_before - Move device in the devices_kset's list.
2276 * @deva: Device to move.
2277 * @devb: Device @deva should come before.
2278 */
devices_kset_move_before(struct device * deva,struct device * devb)2279 static void devices_kset_move_before(struct device *deva, struct device *devb)
2280 {
2281 if (!devices_kset)
2282 return;
2283 pr_debug("devices_kset: Moving %s before %s\n",
2284 dev_name(deva), dev_name(devb));
2285 spin_lock(&devices_kset->list_lock);
2286 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2287 spin_unlock(&devices_kset->list_lock);
2288 }
2289
2290 /**
2291 * devices_kset_move_after - Move device in the devices_kset's list.
2292 * @deva: Device to move
2293 * @devb: Device @deva should come after.
2294 */
devices_kset_move_after(struct device * deva,struct device * devb)2295 static void devices_kset_move_after(struct device *deva, struct device *devb)
2296 {
2297 if (!devices_kset)
2298 return;
2299 pr_debug("devices_kset: Moving %s after %s\n",
2300 dev_name(deva), dev_name(devb));
2301 spin_lock(&devices_kset->list_lock);
2302 list_move(&deva->kobj.entry, &devb->kobj.entry);
2303 spin_unlock(&devices_kset->list_lock);
2304 }
2305
2306 /**
2307 * devices_kset_move_last - move the device to the end of devices_kset's list.
2308 * @dev: device to move
2309 */
devices_kset_move_last(struct device * dev)2310 void devices_kset_move_last(struct device *dev)
2311 {
2312 if (!devices_kset)
2313 return;
2314 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2315 spin_lock(&devices_kset->list_lock);
2316 list_move_tail(&dev->kobj.entry, &devices_kset->list);
2317 spin_unlock(&devices_kset->list_lock);
2318 }
2319
2320 /**
2321 * device_create_file - create sysfs attribute file for device.
2322 * @dev: device.
2323 * @attr: device attribute descriptor.
2324 */
device_create_file(struct device * dev,const struct device_attribute * attr)2325 int device_create_file(struct device *dev,
2326 const struct device_attribute *attr)
2327 {
2328 int error = 0;
2329
2330 if (dev) {
2331 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2332 "Attribute %s: write permission without 'store'\n",
2333 attr->attr.name);
2334 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2335 "Attribute %s: read permission without 'show'\n",
2336 attr->attr.name);
2337 error = sysfs_create_file(&dev->kobj, &attr->attr);
2338 }
2339
2340 return error;
2341 }
2342 EXPORT_SYMBOL_GPL(device_create_file);
2343
2344 /**
2345 * device_remove_file - remove sysfs attribute file.
2346 * @dev: device.
2347 * @attr: device attribute descriptor.
2348 */
device_remove_file(struct device * dev,const struct device_attribute * attr)2349 void device_remove_file(struct device *dev,
2350 const struct device_attribute *attr)
2351 {
2352 if (dev)
2353 sysfs_remove_file(&dev->kobj, &attr->attr);
2354 }
2355 EXPORT_SYMBOL_GPL(device_remove_file);
2356
2357 /**
2358 * device_remove_file_self - remove sysfs attribute file from its own method.
2359 * @dev: device.
2360 * @attr: device attribute descriptor.
2361 *
2362 * See kernfs_remove_self() for details.
2363 */
device_remove_file_self(struct device * dev,const struct device_attribute * attr)2364 bool device_remove_file_self(struct device *dev,
2365 const struct device_attribute *attr)
2366 {
2367 if (dev)
2368 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2369 else
2370 return false;
2371 }
2372 EXPORT_SYMBOL_GPL(device_remove_file_self);
2373
2374 /**
2375 * device_create_bin_file - create sysfs binary attribute file for device.
2376 * @dev: device.
2377 * @attr: device binary attribute descriptor.
2378 */
device_create_bin_file(struct device * dev,const struct bin_attribute * attr)2379 int device_create_bin_file(struct device *dev,
2380 const struct bin_attribute *attr)
2381 {
2382 int error = -EINVAL;
2383 if (dev)
2384 error = sysfs_create_bin_file(&dev->kobj, attr);
2385 return error;
2386 }
2387 EXPORT_SYMBOL_GPL(device_create_bin_file);
2388
2389 /**
2390 * device_remove_bin_file - remove sysfs binary attribute file
2391 * @dev: device.
2392 * @attr: device binary attribute descriptor.
2393 */
device_remove_bin_file(struct device * dev,const struct bin_attribute * attr)2394 void device_remove_bin_file(struct device *dev,
2395 const struct bin_attribute *attr)
2396 {
2397 if (dev)
2398 sysfs_remove_bin_file(&dev->kobj, attr);
2399 }
2400 EXPORT_SYMBOL_GPL(device_remove_bin_file);
2401
klist_children_get(struct klist_node * n)2402 static void klist_children_get(struct klist_node *n)
2403 {
2404 struct device_private *p = to_device_private_parent(n);
2405 struct device *dev = p->device;
2406
2407 get_device(dev);
2408 }
2409
klist_children_put(struct klist_node * n)2410 static void klist_children_put(struct klist_node *n)
2411 {
2412 struct device_private *p = to_device_private_parent(n);
2413 struct device *dev = p->device;
2414
2415 put_device(dev);
2416 }
2417
2418 /**
2419 * device_initialize - init device structure.
2420 * @dev: device.
2421 *
2422 * This prepares the device for use by other layers by initializing
2423 * its fields.
2424 * It is the first half of device_register(), if called by
2425 * that function, though it can also be called separately, so one
2426 * may use @dev's fields. In particular, get_device()/put_device()
2427 * may be used for reference counting of @dev after calling this
2428 * function.
2429 *
2430 * All fields in @dev must be initialized by the caller to 0, except
2431 * for those explicitly set to some other value. The simplest
2432 * approach is to use kzalloc() to allocate the structure containing
2433 * @dev.
2434 *
2435 * NOTE: Use put_device() to give up your reference instead of freeing
2436 * @dev directly once you have called this function.
2437 */
device_initialize(struct device * dev)2438 void device_initialize(struct device *dev)
2439 {
2440 dev->kobj.kset = devices_kset;
2441 kobject_init(&dev->kobj, &device_ktype);
2442 INIT_LIST_HEAD(&dev->dma_pools);
2443 mutex_init(&dev->mutex);
2444 #ifdef CONFIG_PROVE_LOCKING
2445 mutex_init(&dev->lockdep_mutex);
2446 #endif
2447 lockdep_set_novalidate_class(&dev->mutex);
2448 spin_lock_init(&dev->devres_lock);
2449 INIT_LIST_HEAD(&dev->devres_head);
2450 device_pm_init(dev);
2451 set_dev_node(dev, -1);
2452 #ifdef CONFIG_GENERIC_MSI_IRQ
2453 raw_spin_lock_init(&dev->msi_lock);
2454 INIT_LIST_HEAD(&dev->msi_list);
2455 #endif
2456 INIT_LIST_HEAD(&dev->links.consumers);
2457 INIT_LIST_HEAD(&dev->links.suppliers);
2458 INIT_LIST_HEAD(&dev->links.needs_suppliers);
2459 INIT_LIST_HEAD(&dev->links.defer_hook);
2460 dev->links.status = DL_DEV_NO_DRIVER;
2461 }
2462 EXPORT_SYMBOL_GPL(device_initialize);
2463
virtual_device_parent(struct device * dev)2464 struct kobject *virtual_device_parent(struct device *dev)
2465 {
2466 static struct kobject *virtual_dir = NULL;
2467
2468 if (!virtual_dir)
2469 virtual_dir = kobject_create_and_add("virtual",
2470 &devices_kset->kobj);
2471
2472 return virtual_dir;
2473 }
2474
2475 struct class_dir {
2476 struct kobject kobj;
2477 struct class *class;
2478 };
2479
2480 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2481
class_dir_release(struct kobject * kobj)2482 static void class_dir_release(struct kobject *kobj)
2483 {
2484 struct class_dir *dir = to_class_dir(kobj);
2485 kfree(dir);
2486 }
2487
2488 static const
class_dir_child_ns_type(struct kobject * kobj)2489 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2490 {
2491 struct class_dir *dir = to_class_dir(kobj);
2492 return dir->class->ns_type;
2493 }
2494
2495 static struct kobj_type class_dir_ktype = {
2496 .release = class_dir_release,
2497 .sysfs_ops = &kobj_sysfs_ops,
2498 .child_ns_type = class_dir_child_ns_type
2499 };
2500
2501 static struct kobject *
class_dir_create_and_add(struct class * class,struct kobject * parent_kobj)2502 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2503 {
2504 struct class_dir *dir;
2505 int retval;
2506
2507 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2508 if (!dir)
2509 return ERR_PTR(-ENOMEM);
2510
2511 dir->class = class;
2512 kobject_init(&dir->kobj, &class_dir_ktype);
2513
2514 dir->kobj.kset = &class->p->glue_dirs;
2515
2516 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2517 if (retval < 0) {
2518 kobject_put(&dir->kobj);
2519 return ERR_PTR(retval);
2520 }
2521 return &dir->kobj;
2522 }
2523
2524 static DEFINE_MUTEX(gdp_mutex);
2525
get_device_parent(struct device * dev,struct device * parent)2526 static struct kobject *get_device_parent(struct device *dev,
2527 struct device *parent)
2528 {
2529 if (dev->class) {
2530 struct kobject *kobj = NULL;
2531 struct kobject *parent_kobj;
2532 struct kobject *k;
2533
2534 #ifdef CONFIG_BLOCK
2535 /* block disks show up in /sys/block */
2536 if (sysfs_deprecated && dev->class == &block_class) {
2537 if (parent && parent->class == &block_class)
2538 return &parent->kobj;
2539 return &block_class.p->subsys.kobj;
2540 }
2541 #endif
2542
2543 /*
2544 * If we have no parent, we live in "virtual".
2545 * Class-devices with a non class-device as parent, live
2546 * in a "glue" directory to prevent namespace collisions.
2547 */
2548 if (parent == NULL)
2549 parent_kobj = virtual_device_parent(dev);
2550 else if (parent->class && !dev->class->ns_type)
2551 return &parent->kobj;
2552 else
2553 parent_kobj = &parent->kobj;
2554
2555 mutex_lock(&gdp_mutex);
2556
2557 /* find our class-directory at the parent and reference it */
2558 spin_lock(&dev->class->p->glue_dirs.list_lock);
2559 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2560 if (k->parent == parent_kobj) {
2561 kobj = kobject_get(k);
2562 break;
2563 }
2564 spin_unlock(&dev->class->p->glue_dirs.list_lock);
2565 if (kobj) {
2566 mutex_unlock(&gdp_mutex);
2567 return kobj;
2568 }
2569
2570 /* or create a new class-directory at the parent device */
2571 k = class_dir_create_and_add(dev->class, parent_kobj);
2572 /* do not emit an uevent for this simple "glue" directory */
2573 mutex_unlock(&gdp_mutex);
2574 return k;
2575 }
2576
2577 /* subsystems can specify a default root directory for their devices */
2578 if (!parent && dev->bus && dev->bus->dev_root)
2579 return &dev->bus->dev_root->kobj;
2580
2581 if (parent)
2582 return &parent->kobj;
2583 return NULL;
2584 }
2585
live_in_glue_dir(struct kobject * kobj,struct device * dev)2586 static inline bool live_in_glue_dir(struct kobject *kobj,
2587 struct device *dev)
2588 {
2589 if (!kobj || !dev->class ||
2590 kobj->kset != &dev->class->p->glue_dirs)
2591 return false;
2592 return true;
2593 }
2594
get_glue_dir(struct device * dev)2595 static inline struct kobject *get_glue_dir(struct device *dev)
2596 {
2597 return dev->kobj.parent;
2598 }
2599
2600 /*
2601 * make sure cleaning up dir as the last step, we need to make
2602 * sure .release handler of kobject is run with holding the
2603 * global lock
2604 */
cleanup_glue_dir(struct device * dev,struct kobject * glue_dir)2605 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
2606 {
2607 unsigned int ref;
2608
2609 /* see if we live in a "glue" directory */
2610 if (!live_in_glue_dir(glue_dir, dev))
2611 return;
2612
2613 mutex_lock(&gdp_mutex);
2614 /**
2615 * There is a race condition between removing glue directory
2616 * and adding a new device under the glue directory.
2617 *
2618 * CPU1: CPU2:
2619 *
2620 * device_add()
2621 * get_device_parent()
2622 * class_dir_create_and_add()
2623 * kobject_add_internal()
2624 * create_dir() // create glue_dir
2625 *
2626 * device_add()
2627 * get_device_parent()
2628 * kobject_get() // get glue_dir
2629 *
2630 * device_del()
2631 * cleanup_glue_dir()
2632 * kobject_del(glue_dir)
2633 *
2634 * kobject_add()
2635 * kobject_add_internal()
2636 * create_dir() // in glue_dir
2637 * sysfs_create_dir_ns()
2638 * kernfs_create_dir_ns(sd)
2639 *
2640 * sysfs_remove_dir() // glue_dir->sd=NULL
2641 * sysfs_put() // free glue_dir->sd
2642 *
2643 * // sd is freed
2644 * kernfs_new_node(sd)
2645 * kernfs_get(glue_dir)
2646 * kernfs_add_one()
2647 * kernfs_put()
2648 *
2649 * Before CPU1 remove last child device under glue dir, if CPU2 add
2650 * a new device under glue dir, the glue_dir kobject reference count
2651 * will be increase to 2 in kobject_get(k). And CPU2 has been called
2652 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
2653 * and sysfs_put(). This result in glue_dir->sd is freed.
2654 *
2655 * Then the CPU2 will see a stale "empty" but still potentially used
2656 * glue dir around in kernfs_new_node().
2657 *
2658 * In order to avoid this happening, we also should make sure that
2659 * kernfs_node for glue_dir is released in CPU1 only when refcount
2660 * for glue_dir kobj is 1.
2661 */
2662 ref = kref_read(&glue_dir->kref);
2663 if (!kobject_has_children(glue_dir) && !--ref)
2664 kobject_del(glue_dir);
2665 kobject_put(glue_dir);
2666 mutex_unlock(&gdp_mutex);
2667 }
2668
device_add_class_symlinks(struct device * dev)2669 static int device_add_class_symlinks(struct device *dev)
2670 {
2671 struct device_node *of_node = dev_of_node(dev);
2672 int error;
2673
2674 if (of_node) {
2675 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
2676 if (error)
2677 dev_warn(dev, "Error %d creating of_node link\n",error);
2678 /* An error here doesn't warrant bringing down the device */
2679 }
2680
2681 if (!dev->class)
2682 return 0;
2683
2684 error = sysfs_create_link(&dev->kobj,
2685 &dev->class->p->subsys.kobj,
2686 "subsystem");
2687 if (error)
2688 goto out_devnode;
2689
2690 if (dev->parent && device_is_not_partition(dev)) {
2691 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
2692 "device");
2693 if (error)
2694 goto out_subsys;
2695 }
2696
2697 #ifdef CONFIG_BLOCK
2698 /* /sys/block has directories and does not need symlinks */
2699 if (sysfs_deprecated && dev->class == &block_class)
2700 return 0;
2701 #endif
2702
2703 /* link in the class directory pointing to the device */
2704 error = sysfs_create_link(&dev->class->p->subsys.kobj,
2705 &dev->kobj, dev_name(dev));
2706 if (error)
2707 goto out_device;
2708
2709 return 0;
2710
2711 out_device:
2712 sysfs_remove_link(&dev->kobj, "device");
2713
2714 out_subsys:
2715 sysfs_remove_link(&dev->kobj, "subsystem");
2716 out_devnode:
2717 sysfs_remove_link(&dev->kobj, "of_node");
2718 return error;
2719 }
2720
device_remove_class_symlinks(struct device * dev)2721 static void device_remove_class_symlinks(struct device *dev)
2722 {
2723 if (dev_of_node(dev))
2724 sysfs_remove_link(&dev->kobj, "of_node");
2725
2726 if (!dev->class)
2727 return;
2728
2729 if (dev->parent && device_is_not_partition(dev))
2730 sysfs_remove_link(&dev->kobj, "device");
2731 sysfs_remove_link(&dev->kobj, "subsystem");
2732 #ifdef CONFIG_BLOCK
2733 if (sysfs_deprecated && dev->class == &block_class)
2734 return;
2735 #endif
2736 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
2737 }
2738
2739 /**
2740 * dev_set_name - set a device name
2741 * @dev: device
2742 * @fmt: format string for the device's name
2743 */
dev_set_name(struct device * dev,const char * fmt,...)2744 int dev_set_name(struct device *dev, const char *fmt, ...)
2745 {
2746 va_list vargs;
2747 int err;
2748
2749 va_start(vargs, fmt);
2750 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
2751 va_end(vargs);
2752 return err;
2753 }
2754 EXPORT_SYMBOL_GPL(dev_set_name);
2755
2756 /**
2757 * device_to_dev_kobj - select a /sys/dev/ directory for the device
2758 * @dev: device
2759 *
2760 * By default we select char/ for new entries. Setting class->dev_obj
2761 * to NULL prevents an entry from being created. class->dev_kobj must
2762 * be set (or cleared) before any devices are registered to the class
2763 * otherwise device_create_sys_dev_entry() and
2764 * device_remove_sys_dev_entry() will disagree about the presence of
2765 * the link.
2766 */
device_to_dev_kobj(struct device * dev)2767 static struct kobject *device_to_dev_kobj(struct device *dev)
2768 {
2769 struct kobject *kobj;
2770
2771 if (dev->class)
2772 kobj = dev->class->dev_kobj;
2773 else
2774 kobj = sysfs_dev_char_kobj;
2775
2776 return kobj;
2777 }
2778
device_create_sys_dev_entry(struct device * dev)2779 static int device_create_sys_dev_entry(struct device *dev)
2780 {
2781 struct kobject *kobj = device_to_dev_kobj(dev);
2782 int error = 0;
2783 char devt_str[15];
2784
2785 if (kobj) {
2786 format_dev_t(devt_str, dev->devt);
2787 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
2788 }
2789
2790 return error;
2791 }
2792
device_remove_sys_dev_entry(struct device * dev)2793 static void device_remove_sys_dev_entry(struct device *dev)
2794 {
2795 struct kobject *kobj = device_to_dev_kobj(dev);
2796 char devt_str[15];
2797
2798 if (kobj) {
2799 format_dev_t(devt_str, dev->devt);
2800 sysfs_remove_link(kobj, devt_str);
2801 }
2802 }
2803
device_private_init(struct device * dev)2804 static int device_private_init(struct device *dev)
2805 {
2806 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
2807 if (!dev->p)
2808 return -ENOMEM;
2809 dev->p->device = dev;
2810 klist_init(&dev->p->klist_children, klist_children_get,
2811 klist_children_put);
2812 INIT_LIST_HEAD(&dev->p->deferred_probe);
2813 return 0;
2814 }
2815
2816 /**
2817 * device_add - add device to device hierarchy.
2818 * @dev: device.
2819 *
2820 * This is part 2 of device_register(), though may be called
2821 * separately _iff_ device_initialize() has been called separately.
2822 *
2823 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
2824 * to the global and sibling lists for the device, then
2825 * adds it to the other relevant subsystems of the driver model.
2826 *
2827 * Do not call this routine or device_register() more than once for
2828 * any device structure. The driver model core is not designed to work
2829 * with devices that get unregistered and then spring back to life.
2830 * (Among other things, it's very hard to guarantee that all references
2831 * to the previous incarnation of @dev have been dropped.) Allocate
2832 * and register a fresh new struct device instead.
2833 *
2834 * NOTE: _Never_ directly free @dev after calling this function, even
2835 * if it returned an error! Always use put_device() to give up your
2836 * reference instead.
2837 *
2838 * Rule of thumb is: if device_add() succeeds, you should call
2839 * device_del() when you want to get rid of it. If device_add() has
2840 * *not* succeeded, use *only* put_device() to drop the reference
2841 * count.
2842 */
device_add(struct device * dev)2843 int device_add(struct device *dev)
2844 {
2845 struct device *parent;
2846 struct kobject *kobj;
2847 struct class_interface *class_intf;
2848 int error = -EINVAL;
2849 struct kobject *glue_dir = NULL;
2850
2851 dev = get_device(dev);
2852 if (!dev)
2853 goto done;
2854
2855 if (!dev->p) {
2856 error = device_private_init(dev);
2857 if (error)
2858 goto done;
2859 }
2860
2861 /*
2862 * for statically allocated devices, which should all be converted
2863 * some day, we need to initialize the name. We prevent reading back
2864 * the name, and force the use of dev_name()
2865 */
2866 if (dev->init_name) {
2867 dev_set_name(dev, "%s", dev->init_name);
2868 dev->init_name = NULL;
2869 }
2870
2871 /* subsystems can specify simple device enumeration */
2872 if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
2873 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
2874
2875 if (!dev_name(dev)) {
2876 error = -EINVAL;
2877 goto name_error;
2878 }
2879
2880 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2881
2882 parent = get_device(dev->parent);
2883 kobj = get_device_parent(dev, parent);
2884 if (IS_ERR(kobj)) {
2885 error = PTR_ERR(kobj);
2886 goto parent_error;
2887 }
2888 if (kobj)
2889 dev->kobj.parent = kobj;
2890
2891 /* use parent numa_node */
2892 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
2893 set_dev_node(dev, dev_to_node(parent));
2894
2895 /* first, register with generic layer. */
2896 /* we require the name to be set before, and pass NULL */
2897 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
2898 if (error) {
2899 glue_dir = get_glue_dir(dev);
2900 goto Error;
2901 }
2902
2903 /* notify platform of device entry */
2904 error = device_platform_notify(dev, KOBJ_ADD);
2905 if (error)
2906 goto platform_error;
2907
2908 error = device_create_file(dev, &dev_attr_uevent);
2909 if (error)
2910 goto attrError;
2911
2912 error = device_add_class_symlinks(dev);
2913 if (error)
2914 goto SymlinkError;
2915 error = device_add_attrs(dev);
2916 if (error)
2917 goto AttrsError;
2918 error = bus_add_device(dev);
2919 if (error)
2920 goto BusError;
2921 error = dpm_sysfs_add(dev);
2922 if (error)
2923 goto DPMError;
2924 device_pm_add(dev);
2925
2926 if (MAJOR(dev->devt)) {
2927 error = device_create_file(dev, &dev_attr_dev);
2928 if (error)
2929 goto DevAttrError;
2930
2931 error = device_create_sys_dev_entry(dev);
2932 if (error)
2933 goto SysEntryError;
2934
2935 devtmpfs_create_node(dev);
2936 }
2937
2938 /* Notify clients of device addition. This call must come
2939 * after dpm_sysfs_add() and before kobject_uevent().
2940 */
2941 if (dev->bus)
2942 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2943 BUS_NOTIFY_ADD_DEVICE, dev);
2944
2945 kobject_uevent(&dev->kobj, KOBJ_ADD);
2946
2947 /*
2948 * Check if any of the other devices (consumers) have been waiting for
2949 * this device (supplier) to be added so that they can create a device
2950 * link to it.
2951 *
2952 * This needs to happen after device_pm_add() because device_link_add()
2953 * requires the supplier be registered before it's called.
2954 *
2955 * But this also needs to happen before bus_probe_device() to make sure
2956 * waiting consumers can link to it before the driver is bound to the
2957 * device and the driver sync_state callback is called for this device.
2958 */
2959 if (dev->fwnode && !dev->fwnode->dev) {
2960 dev->fwnode->dev = dev;
2961 fw_devlink_link_device(dev);
2962 }
2963
2964 bus_probe_device(dev);
2965 if (parent)
2966 klist_add_tail(&dev->p->knode_parent,
2967 &parent->p->klist_children);
2968
2969 if (dev->class) {
2970 mutex_lock(&dev->class->p->mutex);
2971 /* tie the class to the device */
2972 klist_add_tail(&dev->p->knode_class,
2973 &dev->class->p->klist_devices);
2974
2975 /* notify any interfaces that the device is here */
2976 list_for_each_entry(class_intf,
2977 &dev->class->p->interfaces, node)
2978 if (class_intf->add_dev)
2979 class_intf->add_dev(dev, class_intf);
2980 mutex_unlock(&dev->class->p->mutex);
2981 }
2982 done:
2983 put_device(dev);
2984 return error;
2985 SysEntryError:
2986 if (MAJOR(dev->devt))
2987 device_remove_file(dev, &dev_attr_dev);
2988 DevAttrError:
2989 device_pm_remove(dev);
2990 dpm_sysfs_remove(dev);
2991 DPMError:
2992 bus_remove_device(dev);
2993 BusError:
2994 device_remove_attrs(dev);
2995 AttrsError:
2996 device_remove_class_symlinks(dev);
2997 SymlinkError:
2998 device_remove_file(dev, &dev_attr_uevent);
2999 attrError:
3000 device_platform_notify(dev, KOBJ_REMOVE);
3001 platform_error:
3002 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3003 glue_dir = get_glue_dir(dev);
3004 kobject_del(&dev->kobj);
3005 Error:
3006 cleanup_glue_dir(dev, glue_dir);
3007 parent_error:
3008 put_device(parent);
3009 name_error:
3010 kfree(dev->p);
3011 dev->p = NULL;
3012 goto done;
3013 }
3014 EXPORT_SYMBOL_GPL(device_add);
3015
3016 /**
3017 * device_register - register a device with the system.
3018 * @dev: pointer to the device structure
3019 *
3020 * This happens in two clean steps - initialize the device
3021 * and add it to the system. The two steps can be called
3022 * separately, but this is the easiest and most common.
3023 * I.e. you should only call the two helpers separately if
3024 * have a clearly defined need to use and refcount the device
3025 * before it is added to the hierarchy.
3026 *
3027 * For more information, see the kerneldoc for device_initialize()
3028 * and device_add().
3029 *
3030 * NOTE: _Never_ directly free @dev after calling this function, even
3031 * if it returned an error! Always use put_device() to give up the
3032 * reference initialized in this function instead.
3033 */
device_register(struct device * dev)3034 int device_register(struct device *dev)
3035 {
3036 device_initialize(dev);
3037 return device_add(dev);
3038 }
3039 EXPORT_SYMBOL_GPL(device_register);
3040
3041 /**
3042 * get_device - increment reference count for device.
3043 * @dev: device.
3044 *
3045 * This simply forwards the call to kobject_get(), though
3046 * we do take care to provide for the case that we get a NULL
3047 * pointer passed in.
3048 */
get_device(struct device * dev)3049 struct device *get_device(struct device *dev)
3050 {
3051 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3052 }
3053 EXPORT_SYMBOL_GPL(get_device);
3054
3055 /**
3056 * put_device - decrement reference count.
3057 * @dev: device in question.
3058 */
put_device(struct device * dev)3059 void put_device(struct device *dev)
3060 {
3061 /* might_sleep(); */
3062 if (dev)
3063 kobject_put(&dev->kobj);
3064 }
3065 EXPORT_SYMBOL_GPL(put_device);
3066
kill_device(struct device * dev)3067 bool kill_device(struct device *dev)
3068 {
3069 /*
3070 * Require the device lock and set the "dead" flag to guarantee that
3071 * the update behavior is consistent with the other bitfields near
3072 * it and that we cannot have an asynchronous probe routine trying
3073 * to run while we are tearing out the bus/class/sysfs from
3074 * underneath the device.
3075 */
3076 lockdep_assert_held(&dev->mutex);
3077
3078 if (dev->p->dead)
3079 return false;
3080 dev->p->dead = true;
3081 return true;
3082 }
3083 EXPORT_SYMBOL_GPL(kill_device);
3084
3085 /**
3086 * device_del - delete device from system.
3087 * @dev: device.
3088 *
3089 * This is the first part of the device unregistration
3090 * sequence. This removes the device from the lists we control
3091 * from here, has it removed from the other driver model
3092 * subsystems it was added to in device_add(), and removes it
3093 * from the kobject hierarchy.
3094 *
3095 * NOTE: this should be called manually _iff_ device_add() was
3096 * also called manually.
3097 */
device_del(struct device * dev)3098 void device_del(struct device *dev)
3099 {
3100 struct device *parent = dev->parent;
3101 struct kobject *glue_dir = NULL;
3102 struct class_interface *class_intf;
3103 unsigned int noio_flag;
3104
3105 device_lock(dev);
3106 kill_device(dev);
3107 device_unlock(dev);
3108
3109 if (dev->fwnode && dev->fwnode->dev == dev)
3110 dev->fwnode->dev = NULL;
3111
3112 /* Notify clients of device removal. This call must come
3113 * before dpm_sysfs_remove().
3114 */
3115 noio_flag = memalloc_noio_save();
3116 if (dev->bus)
3117 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3118 BUS_NOTIFY_DEL_DEVICE, dev);
3119
3120 dpm_sysfs_remove(dev);
3121 if (parent)
3122 klist_del(&dev->p->knode_parent);
3123 if (MAJOR(dev->devt)) {
3124 devtmpfs_delete_node(dev);
3125 device_remove_sys_dev_entry(dev);
3126 device_remove_file(dev, &dev_attr_dev);
3127 }
3128 if (dev->class) {
3129 device_remove_class_symlinks(dev);
3130
3131 mutex_lock(&dev->class->p->mutex);
3132 /* notify any interfaces that the device is now gone */
3133 list_for_each_entry(class_intf,
3134 &dev->class->p->interfaces, node)
3135 if (class_intf->remove_dev)
3136 class_intf->remove_dev(dev, class_intf);
3137 /* remove the device from the class list */
3138 klist_del(&dev->p->knode_class);
3139 mutex_unlock(&dev->class->p->mutex);
3140 }
3141 device_remove_file(dev, &dev_attr_uevent);
3142 device_remove_attrs(dev);
3143 bus_remove_device(dev);
3144 device_pm_remove(dev);
3145 driver_deferred_probe_del(dev);
3146 device_platform_notify(dev, KOBJ_REMOVE);
3147 device_remove_properties(dev);
3148 device_links_purge(dev);
3149
3150 if (dev->bus)
3151 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3152 BUS_NOTIFY_REMOVED_DEVICE, dev);
3153 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3154 glue_dir = get_glue_dir(dev);
3155 kobject_del(&dev->kobj);
3156 cleanup_glue_dir(dev, glue_dir);
3157 memalloc_noio_restore(noio_flag);
3158 put_device(parent);
3159 }
3160 EXPORT_SYMBOL_GPL(device_del);
3161
3162 /**
3163 * device_unregister - unregister device from system.
3164 * @dev: device going away.
3165 *
3166 * We do this in two parts, like we do device_register(). First,
3167 * we remove it from all the subsystems with device_del(), then
3168 * we decrement the reference count via put_device(). If that
3169 * is the final reference count, the device will be cleaned up
3170 * via device_release() above. Otherwise, the structure will
3171 * stick around until the final reference to the device is dropped.
3172 */
device_unregister(struct device * dev)3173 void device_unregister(struct device *dev)
3174 {
3175 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3176 device_del(dev);
3177 put_device(dev);
3178 }
3179 EXPORT_SYMBOL_GPL(device_unregister);
3180
prev_device(struct klist_iter * i)3181 static struct device *prev_device(struct klist_iter *i)
3182 {
3183 struct klist_node *n = klist_prev(i);
3184 struct device *dev = NULL;
3185 struct device_private *p;
3186
3187 if (n) {
3188 p = to_device_private_parent(n);
3189 dev = p->device;
3190 }
3191 return dev;
3192 }
3193
next_device(struct klist_iter * i)3194 static struct device *next_device(struct klist_iter *i)
3195 {
3196 struct klist_node *n = klist_next(i);
3197 struct device *dev = NULL;
3198 struct device_private *p;
3199
3200 if (n) {
3201 p = to_device_private_parent(n);
3202 dev = p->device;
3203 }
3204 return dev;
3205 }
3206
3207 /**
3208 * device_get_devnode - path of device node file
3209 * @dev: device
3210 * @mode: returned file access mode
3211 * @uid: returned file owner
3212 * @gid: returned file group
3213 * @tmp: possibly allocated string
3214 *
3215 * Return the relative path of a possible device node.
3216 * Non-default names may need to allocate a memory to compose
3217 * a name. This memory is returned in tmp and needs to be
3218 * freed by the caller.
3219 */
device_get_devnode(struct device * dev,umode_t * mode,kuid_t * uid,kgid_t * gid,const char ** tmp)3220 const char *device_get_devnode(struct device *dev,
3221 umode_t *mode, kuid_t *uid, kgid_t *gid,
3222 const char **tmp)
3223 {
3224 char *s;
3225
3226 *tmp = NULL;
3227
3228 /* the device type may provide a specific name */
3229 if (dev->type && dev->type->devnode)
3230 *tmp = dev->type->devnode(dev, mode, uid, gid);
3231 if (*tmp)
3232 return *tmp;
3233
3234 /* the class may provide a specific name */
3235 if (dev->class && dev->class->devnode)
3236 *tmp = dev->class->devnode(dev, mode);
3237 if (*tmp)
3238 return *tmp;
3239
3240 /* return name without allocation, tmp == NULL */
3241 if (strchr(dev_name(dev), '!') == NULL)
3242 return dev_name(dev);
3243
3244 /* replace '!' in the name with '/' */
3245 s = kstrdup(dev_name(dev), GFP_KERNEL);
3246 if (!s)
3247 return NULL;
3248 strreplace(s, '!', '/');
3249 return *tmp = s;
3250 }
3251
3252 /**
3253 * device_for_each_child - device child iterator.
3254 * @parent: parent struct device.
3255 * @fn: function to be called for each device.
3256 * @data: data for the callback.
3257 *
3258 * Iterate over @parent's child devices, and call @fn for each,
3259 * passing it @data.
3260 *
3261 * We check the return of @fn each time. If it returns anything
3262 * other than 0, we break out and return that value.
3263 */
device_for_each_child(struct device * parent,void * data,int (* fn)(struct device * dev,void * data))3264 int device_for_each_child(struct device *parent, void *data,
3265 int (*fn)(struct device *dev, void *data))
3266 {
3267 struct klist_iter i;
3268 struct device *child;
3269 int error = 0;
3270
3271 if (!parent->p)
3272 return 0;
3273
3274 klist_iter_init(&parent->p->klist_children, &i);
3275 while (!error && (child = next_device(&i)))
3276 error = fn(child, data);
3277 klist_iter_exit(&i);
3278 return error;
3279 }
3280 EXPORT_SYMBOL_GPL(device_for_each_child);
3281
3282 /**
3283 * device_for_each_child_reverse - device child iterator in reversed order.
3284 * @parent: parent struct device.
3285 * @fn: function to be called for each device.
3286 * @data: data for the callback.
3287 *
3288 * Iterate over @parent's child devices, and call @fn for each,
3289 * passing it @data.
3290 *
3291 * We check the return of @fn each time. If it returns anything
3292 * other than 0, we break out and return that value.
3293 */
device_for_each_child_reverse(struct device * parent,void * data,int (* fn)(struct device * dev,void * data))3294 int device_for_each_child_reverse(struct device *parent, void *data,
3295 int (*fn)(struct device *dev, void *data))
3296 {
3297 struct klist_iter i;
3298 struct device *child;
3299 int error = 0;
3300
3301 if (!parent->p)
3302 return 0;
3303
3304 klist_iter_init(&parent->p->klist_children, &i);
3305 while ((child = prev_device(&i)) && !error)
3306 error = fn(child, data);
3307 klist_iter_exit(&i);
3308 return error;
3309 }
3310 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3311
3312 /**
3313 * device_find_child - device iterator for locating a particular device.
3314 * @parent: parent struct device
3315 * @match: Callback function to check device
3316 * @data: Data to pass to match function
3317 *
3318 * This is similar to the device_for_each_child() function above, but it
3319 * returns a reference to a device that is 'found' for later use, as
3320 * determined by the @match callback.
3321 *
3322 * The callback should return 0 if the device doesn't match and non-zero
3323 * if it does. If the callback returns non-zero and a reference to the
3324 * current device can be obtained, this function will return to the caller
3325 * and not iterate over any more devices.
3326 *
3327 * NOTE: you will need to drop the reference with put_device() after use.
3328 */
device_find_child(struct device * parent,void * data,int (* match)(struct device * dev,void * data))3329 struct device *device_find_child(struct device *parent, void *data,
3330 int (*match)(struct device *dev, void *data))
3331 {
3332 struct klist_iter i;
3333 struct device *child;
3334
3335 if (!parent)
3336 return NULL;
3337
3338 klist_iter_init(&parent->p->klist_children, &i);
3339 while ((child = next_device(&i)))
3340 if (match(child, data) && get_device(child))
3341 break;
3342 klist_iter_exit(&i);
3343 return child;
3344 }
3345 EXPORT_SYMBOL_GPL(device_find_child);
3346
3347 /**
3348 * device_find_child_by_name - device iterator for locating a child device.
3349 * @parent: parent struct device
3350 * @name: name of the child device
3351 *
3352 * This is similar to the device_find_child() function above, but it
3353 * returns a reference to a device that has the name @name.
3354 *
3355 * NOTE: you will need to drop the reference with put_device() after use.
3356 */
device_find_child_by_name(struct device * parent,const char * name)3357 struct device *device_find_child_by_name(struct device *parent,
3358 const char *name)
3359 {
3360 struct klist_iter i;
3361 struct device *child;
3362
3363 if (!parent)
3364 return NULL;
3365
3366 klist_iter_init(&parent->p->klist_children, &i);
3367 while ((child = next_device(&i)))
3368 if (sysfs_streq(dev_name(child), name) && get_device(child))
3369 break;
3370 klist_iter_exit(&i);
3371 return child;
3372 }
3373 EXPORT_SYMBOL_GPL(device_find_child_by_name);
3374
devices_init(void)3375 int __init devices_init(void)
3376 {
3377 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3378 if (!devices_kset)
3379 return -ENOMEM;
3380 dev_kobj = kobject_create_and_add("dev", NULL);
3381 if (!dev_kobj)
3382 goto dev_kobj_err;
3383 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3384 if (!sysfs_dev_block_kobj)
3385 goto block_kobj_err;
3386 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3387 if (!sysfs_dev_char_kobj)
3388 goto char_kobj_err;
3389
3390 return 0;
3391
3392 char_kobj_err:
3393 kobject_put(sysfs_dev_block_kobj);
3394 block_kobj_err:
3395 kobject_put(dev_kobj);
3396 dev_kobj_err:
3397 kset_unregister(devices_kset);
3398 return -ENOMEM;
3399 }
3400
device_check_offline(struct device * dev,void * not_used)3401 static int device_check_offline(struct device *dev, void *not_used)
3402 {
3403 int ret;
3404
3405 ret = device_for_each_child(dev, NULL, device_check_offline);
3406 if (ret)
3407 return ret;
3408
3409 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3410 }
3411
3412 /**
3413 * device_offline - Prepare the device for hot-removal.
3414 * @dev: Device to be put offline.
3415 *
3416 * Execute the device bus type's .offline() callback, if present, to prepare
3417 * the device for a subsequent hot-removal. If that succeeds, the device must
3418 * not be used until either it is removed or its bus type's .online() callback
3419 * is executed.
3420 *
3421 * Call under device_hotplug_lock.
3422 */
device_offline(struct device * dev)3423 int device_offline(struct device *dev)
3424 {
3425 int ret;
3426
3427 if (dev->offline_disabled)
3428 return -EPERM;
3429
3430 ret = device_for_each_child(dev, NULL, device_check_offline);
3431 if (ret)
3432 return ret;
3433
3434 device_lock(dev);
3435 if (device_supports_offline(dev)) {
3436 if (dev->offline) {
3437 ret = 1;
3438 } else {
3439 ret = dev->bus->offline(dev);
3440 if (!ret) {
3441 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3442 dev->offline = true;
3443 }
3444 }
3445 }
3446 device_unlock(dev);
3447
3448 return ret;
3449 }
3450
3451 /**
3452 * device_online - Put the device back online after successful device_offline().
3453 * @dev: Device to be put back online.
3454 *
3455 * If device_offline() has been successfully executed for @dev, but the device
3456 * has not been removed subsequently, execute its bus type's .online() callback
3457 * to indicate that the device can be used again.
3458 *
3459 * Call under device_hotplug_lock.
3460 */
device_online(struct device * dev)3461 int device_online(struct device *dev)
3462 {
3463 int ret = 0;
3464
3465 device_lock(dev);
3466 if (device_supports_offline(dev)) {
3467 if (dev->offline) {
3468 ret = dev->bus->online(dev);
3469 if (!ret) {
3470 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3471 dev->offline = false;
3472 }
3473 } else {
3474 ret = 1;
3475 }
3476 }
3477 device_unlock(dev);
3478
3479 return ret;
3480 }
3481
3482 struct root_device {
3483 struct device dev;
3484 struct module *owner;
3485 };
3486
to_root_device(struct device * d)3487 static inline struct root_device *to_root_device(struct device *d)
3488 {
3489 return container_of(d, struct root_device, dev);
3490 }
3491
root_device_release(struct device * dev)3492 static void root_device_release(struct device *dev)
3493 {
3494 kfree(to_root_device(dev));
3495 }
3496
3497 /**
3498 * __root_device_register - allocate and register a root device
3499 * @name: root device name
3500 * @owner: owner module of the root device, usually THIS_MODULE
3501 *
3502 * This function allocates a root device and registers it
3503 * using device_register(). In order to free the returned
3504 * device, use root_device_unregister().
3505 *
3506 * Root devices are dummy devices which allow other devices
3507 * to be grouped under /sys/devices. Use this function to
3508 * allocate a root device and then use it as the parent of
3509 * any device which should appear under /sys/devices/{name}
3510 *
3511 * The /sys/devices/{name} directory will also contain a
3512 * 'module' symlink which points to the @owner directory
3513 * in sysfs.
3514 *
3515 * Returns &struct device pointer on success, or ERR_PTR() on error.
3516 *
3517 * Note: You probably want to use root_device_register().
3518 */
__root_device_register(const char * name,struct module * owner)3519 struct device *__root_device_register(const char *name, struct module *owner)
3520 {
3521 struct root_device *root;
3522 int err = -ENOMEM;
3523
3524 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3525 if (!root)
3526 return ERR_PTR(err);
3527
3528 err = dev_set_name(&root->dev, "%s", name);
3529 if (err) {
3530 kfree(root);
3531 return ERR_PTR(err);
3532 }
3533
3534 root->dev.release = root_device_release;
3535
3536 err = device_register(&root->dev);
3537 if (err) {
3538 put_device(&root->dev);
3539 return ERR_PTR(err);
3540 }
3541
3542 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
3543 if (owner) {
3544 struct module_kobject *mk = &owner->mkobj;
3545
3546 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3547 if (err) {
3548 device_unregister(&root->dev);
3549 return ERR_PTR(err);
3550 }
3551 root->owner = owner;
3552 }
3553 #endif
3554
3555 return &root->dev;
3556 }
3557 EXPORT_SYMBOL_GPL(__root_device_register);
3558
3559 /**
3560 * root_device_unregister - unregister and free a root device
3561 * @dev: device going away
3562 *
3563 * This function unregisters and cleans up a device that was created by
3564 * root_device_register().
3565 */
root_device_unregister(struct device * dev)3566 void root_device_unregister(struct device *dev)
3567 {
3568 struct root_device *root = to_root_device(dev);
3569
3570 if (root->owner)
3571 sysfs_remove_link(&root->dev.kobj, "module");
3572
3573 device_unregister(dev);
3574 }
3575 EXPORT_SYMBOL_GPL(root_device_unregister);
3576
3577
device_create_release(struct device * dev)3578 static void device_create_release(struct device *dev)
3579 {
3580 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3581 kfree(dev);
3582 }
3583
3584 static __printf(6, 0) struct device *
device_create_groups_vargs(struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,va_list args)3585 device_create_groups_vargs(struct class *class, struct device *parent,
3586 dev_t devt, void *drvdata,
3587 const struct attribute_group **groups,
3588 const char *fmt, va_list args)
3589 {
3590 struct device *dev = NULL;
3591 int retval = -ENODEV;
3592
3593 if (class == NULL || IS_ERR(class))
3594 goto error;
3595
3596 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3597 if (!dev) {
3598 retval = -ENOMEM;
3599 goto error;
3600 }
3601
3602 device_initialize(dev);
3603 dev->devt = devt;
3604 dev->class = class;
3605 dev->parent = parent;
3606 dev->groups = groups;
3607 dev->release = device_create_release;
3608 dev_set_drvdata(dev, drvdata);
3609
3610 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
3611 if (retval)
3612 goto error;
3613
3614 retval = device_add(dev);
3615 if (retval)
3616 goto error;
3617
3618 return dev;
3619
3620 error:
3621 put_device(dev);
3622 return ERR_PTR(retval);
3623 }
3624
3625 /**
3626 * device_create - creates a device and registers it with sysfs
3627 * @class: pointer to the struct class that this device should be registered to
3628 * @parent: pointer to the parent struct device of this new device, if any
3629 * @devt: the dev_t for the char device to be added
3630 * @drvdata: the data to be added to the device for callbacks
3631 * @fmt: string for the device's name
3632 *
3633 * This function can be used by char device classes. A struct device
3634 * will be created in sysfs, registered to the specified class.
3635 *
3636 * A "dev" file will be created, showing the dev_t for the device, if
3637 * the dev_t is not 0,0.
3638 * If a pointer to a parent struct device is passed in, the newly created
3639 * struct device will be a child of that device in sysfs.
3640 * The pointer to the struct device will be returned from the call.
3641 * Any further sysfs files that might be required can be created using this
3642 * pointer.
3643 *
3644 * Returns &struct device pointer on success, or ERR_PTR() on error.
3645 *
3646 * Note: the struct class passed to this function must have previously
3647 * been created with a call to class_create().
3648 */
device_create(struct class * class,struct device * parent,dev_t devt,void * drvdata,const char * fmt,...)3649 struct device *device_create(struct class *class, struct device *parent,
3650 dev_t devt, void *drvdata, const char *fmt, ...)
3651 {
3652 va_list vargs;
3653 struct device *dev;
3654
3655 va_start(vargs, fmt);
3656 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
3657 fmt, vargs);
3658 va_end(vargs);
3659 return dev;
3660 }
3661 EXPORT_SYMBOL_GPL(device_create);
3662
3663 /**
3664 * device_create_with_groups - creates a device and registers it with sysfs
3665 * @class: pointer to the struct class that this device should be registered to
3666 * @parent: pointer to the parent struct device of this new device, if any
3667 * @devt: the dev_t for the char device to be added
3668 * @drvdata: the data to be added to the device for callbacks
3669 * @groups: NULL-terminated list of attribute groups to be created
3670 * @fmt: string for the device's name
3671 *
3672 * This function can be used by char device classes. A struct device
3673 * will be created in sysfs, registered to the specified class.
3674 * Additional attributes specified in the groups parameter will also
3675 * be created automatically.
3676 *
3677 * A "dev" file will be created, showing the dev_t for the device, if
3678 * the dev_t is not 0,0.
3679 * If a pointer to a parent struct device is passed in, the newly created
3680 * struct device will be a child of that device in sysfs.
3681 * The pointer to the struct device will be returned from the call.
3682 * Any further sysfs files that might be required can be created using this
3683 * pointer.
3684 *
3685 * Returns &struct device pointer on success, or ERR_PTR() on error.
3686 *
3687 * Note: the struct class passed to this function must have previously
3688 * been created with a call to class_create().
3689 */
device_create_with_groups(struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,...)3690 struct device *device_create_with_groups(struct class *class,
3691 struct device *parent, dev_t devt,
3692 void *drvdata,
3693 const struct attribute_group **groups,
3694 const char *fmt, ...)
3695 {
3696 va_list vargs;
3697 struct device *dev;
3698
3699 va_start(vargs, fmt);
3700 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
3701 fmt, vargs);
3702 va_end(vargs);
3703 return dev;
3704 }
3705 EXPORT_SYMBOL_GPL(device_create_with_groups);
3706
3707 /**
3708 * device_destroy - removes a device that was created with device_create()
3709 * @class: pointer to the struct class that this device was registered with
3710 * @devt: the dev_t of the device that was previously registered
3711 *
3712 * This call unregisters and cleans up a device that was created with a
3713 * call to device_create().
3714 */
device_destroy(struct class * class,dev_t devt)3715 void device_destroy(struct class *class, dev_t devt)
3716 {
3717 struct device *dev;
3718
3719 dev = class_find_device_by_devt(class, devt);
3720 if (dev) {
3721 put_device(dev);
3722 device_unregister(dev);
3723 }
3724 }
3725 EXPORT_SYMBOL_GPL(device_destroy);
3726
3727 /**
3728 * device_rename - renames a device
3729 * @dev: the pointer to the struct device to be renamed
3730 * @new_name: the new name of the device
3731 *
3732 * It is the responsibility of the caller to provide mutual
3733 * exclusion between two different calls of device_rename
3734 * on the same device to ensure that new_name is valid and
3735 * won't conflict with other devices.
3736 *
3737 * Note: Don't call this function. Currently, the networking layer calls this
3738 * function, but that will change. The following text from Kay Sievers offers
3739 * some insight:
3740 *
3741 * Renaming devices is racy at many levels, symlinks and other stuff are not
3742 * replaced atomically, and you get a "move" uevent, but it's not easy to
3743 * connect the event to the old and new device. Device nodes are not renamed at
3744 * all, there isn't even support for that in the kernel now.
3745 *
3746 * In the meantime, during renaming, your target name might be taken by another
3747 * driver, creating conflicts. Or the old name is taken directly after you
3748 * renamed it -- then you get events for the same DEVPATH, before you even see
3749 * the "move" event. It's just a mess, and nothing new should ever rely on
3750 * kernel device renaming. Besides that, it's not even implemented now for
3751 * other things than (driver-core wise very simple) network devices.
3752 *
3753 * We are currently about to change network renaming in udev to completely
3754 * disallow renaming of devices in the same namespace as the kernel uses,
3755 * because we can't solve the problems properly, that arise with swapping names
3756 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
3757 * be allowed to some other name than eth[0-9]*, for the aforementioned
3758 * reasons.
3759 *
3760 * Make up a "real" name in the driver before you register anything, or add
3761 * some other attributes for userspace to find the device, or use udev to add
3762 * symlinks -- but never rename kernel devices later, it's a complete mess. We
3763 * don't even want to get into that and try to implement the missing pieces in
3764 * the core. We really have other pieces to fix in the driver core mess. :)
3765 */
device_rename(struct device * dev,const char * new_name)3766 int device_rename(struct device *dev, const char *new_name)
3767 {
3768 struct kobject *kobj = &dev->kobj;
3769 char *old_device_name = NULL;
3770 int error;
3771
3772 dev = get_device(dev);
3773 if (!dev)
3774 return -EINVAL;
3775
3776 dev_dbg(dev, "renaming to %s\n", new_name);
3777
3778 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
3779 if (!old_device_name) {
3780 error = -ENOMEM;
3781 goto out;
3782 }
3783
3784 if (dev->class) {
3785 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
3786 kobj, old_device_name,
3787 new_name, kobject_namespace(kobj));
3788 if (error)
3789 goto out;
3790 }
3791
3792 error = kobject_rename(kobj, new_name);
3793 if (error)
3794 goto out;
3795
3796 out:
3797 put_device(dev);
3798
3799 kfree(old_device_name);
3800
3801 return error;
3802 }
3803 EXPORT_SYMBOL_GPL(device_rename);
3804
device_move_class_links(struct device * dev,struct device * old_parent,struct device * new_parent)3805 static int device_move_class_links(struct device *dev,
3806 struct device *old_parent,
3807 struct device *new_parent)
3808 {
3809 int error = 0;
3810
3811 if (old_parent)
3812 sysfs_remove_link(&dev->kobj, "device");
3813 if (new_parent)
3814 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
3815 "device");
3816 return error;
3817 }
3818
3819 /**
3820 * device_move - moves a device to a new parent
3821 * @dev: the pointer to the struct device to be moved
3822 * @new_parent: the new parent of the device (can be NULL)
3823 * @dpm_order: how to reorder the dpm_list
3824 */
device_move(struct device * dev,struct device * new_parent,enum dpm_order dpm_order)3825 int device_move(struct device *dev, struct device *new_parent,
3826 enum dpm_order dpm_order)
3827 {
3828 int error;
3829 struct device *old_parent;
3830 struct kobject *new_parent_kobj;
3831
3832 dev = get_device(dev);
3833 if (!dev)
3834 return -EINVAL;
3835
3836 device_pm_lock();
3837 new_parent = get_device(new_parent);
3838 new_parent_kobj = get_device_parent(dev, new_parent);
3839 if (IS_ERR(new_parent_kobj)) {
3840 error = PTR_ERR(new_parent_kobj);
3841 put_device(new_parent);
3842 goto out;
3843 }
3844
3845 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
3846 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
3847 error = kobject_move(&dev->kobj, new_parent_kobj);
3848 if (error) {
3849 cleanup_glue_dir(dev, new_parent_kobj);
3850 put_device(new_parent);
3851 goto out;
3852 }
3853 old_parent = dev->parent;
3854 dev->parent = new_parent;
3855 if (old_parent)
3856 klist_remove(&dev->p->knode_parent);
3857 if (new_parent) {
3858 klist_add_tail(&dev->p->knode_parent,
3859 &new_parent->p->klist_children);
3860 set_dev_node(dev, dev_to_node(new_parent));
3861 }
3862
3863 if (dev->class) {
3864 error = device_move_class_links(dev, old_parent, new_parent);
3865 if (error) {
3866 /* We ignore errors on cleanup since we're hosed anyway... */
3867 device_move_class_links(dev, new_parent, old_parent);
3868 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
3869 if (new_parent)
3870 klist_remove(&dev->p->knode_parent);
3871 dev->parent = old_parent;
3872 if (old_parent) {
3873 klist_add_tail(&dev->p->knode_parent,
3874 &old_parent->p->klist_children);
3875 set_dev_node(dev, dev_to_node(old_parent));
3876 }
3877 }
3878 cleanup_glue_dir(dev, new_parent_kobj);
3879 put_device(new_parent);
3880 goto out;
3881 }
3882 }
3883 switch (dpm_order) {
3884 case DPM_ORDER_NONE:
3885 break;
3886 case DPM_ORDER_DEV_AFTER_PARENT:
3887 device_pm_move_after(dev, new_parent);
3888 devices_kset_move_after(dev, new_parent);
3889 break;
3890 case DPM_ORDER_PARENT_BEFORE_DEV:
3891 device_pm_move_before(new_parent, dev);
3892 devices_kset_move_before(new_parent, dev);
3893 break;
3894 case DPM_ORDER_DEV_LAST:
3895 device_pm_move_last(dev);
3896 devices_kset_move_last(dev);
3897 break;
3898 }
3899
3900 put_device(old_parent);
3901 out:
3902 device_pm_unlock();
3903 put_device(dev);
3904 return error;
3905 }
3906 EXPORT_SYMBOL_GPL(device_move);
3907
device_attrs_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)3908 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
3909 kgid_t kgid)
3910 {
3911 struct kobject *kobj = &dev->kobj;
3912 struct class *class = dev->class;
3913 const struct device_type *type = dev->type;
3914 int error;
3915
3916 if (class) {
3917 /*
3918 * Change the device groups of the device class for @dev to
3919 * @kuid/@kgid.
3920 */
3921 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
3922 kgid);
3923 if (error)
3924 return error;
3925 }
3926
3927 if (type) {
3928 /*
3929 * Change the device groups of the device type for @dev to
3930 * @kuid/@kgid.
3931 */
3932 error = sysfs_groups_change_owner(kobj, type->groups, kuid,
3933 kgid);
3934 if (error)
3935 return error;
3936 }
3937
3938 /* Change the device groups of @dev to @kuid/@kgid. */
3939 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
3940 if (error)
3941 return error;
3942
3943 if (device_supports_offline(dev) && !dev->offline_disabled) {
3944 /* Change online device attributes of @dev to @kuid/@kgid. */
3945 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
3946 kuid, kgid);
3947 if (error)
3948 return error;
3949 }
3950
3951 return 0;
3952 }
3953
3954 /**
3955 * device_change_owner - change the owner of an existing device.
3956 * @dev: device.
3957 * @kuid: new owner's kuid
3958 * @kgid: new owner's kgid
3959 *
3960 * This changes the owner of @dev and its corresponding sysfs entries to
3961 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
3962 * core.
3963 *
3964 * Returns 0 on success or error code on failure.
3965 */
device_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)3966 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
3967 {
3968 int error;
3969 struct kobject *kobj = &dev->kobj;
3970
3971 dev = get_device(dev);
3972 if (!dev)
3973 return -EINVAL;
3974
3975 /*
3976 * Change the kobject and the default attributes and groups of the
3977 * ktype associated with it to @kuid/@kgid.
3978 */
3979 error = sysfs_change_owner(kobj, kuid, kgid);
3980 if (error)
3981 goto out;
3982
3983 /*
3984 * Change the uevent file for @dev to the new owner. The uevent file
3985 * was created in a separate step when @dev got added and we mirror
3986 * that step here.
3987 */
3988 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
3989 kgid);
3990 if (error)
3991 goto out;
3992
3993 /*
3994 * Change the device groups, the device groups associated with the
3995 * device class, and the groups associated with the device type of @dev
3996 * to @kuid/@kgid.
3997 */
3998 error = device_attrs_change_owner(dev, kuid, kgid);
3999 if (error)
4000 goto out;
4001
4002 error = dpm_sysfs_change_owner(dev, kuid, kgid);
4003 if (error)
4004 goto out;
4005
4006 #ifdef CONFIG_BLOCK
4007 if (sysfs_deprecated && dev->class == &block_class)
4008 goto out;
4009 #endif
4010
4011 /*
4012 * Change the owner of the symlink located in the class directory of
4013 * the device class associated with @dev which points to the actual
4014 * directory entry for @dev to @kuid/@kgid. This ensures that the
4015 * symlink shows the same permissions as its target.
4016 */
4017 error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4018 dev_name(dev), kuid, kgid);
4019 if (error)
4020 goto out;
4021
4022 out:
4023 put_device(dev);
4024 return error;
4025 }
4026 EXPORT_SYMBOL_GPL(device_change_owner);
4027
4028 /**
4029 * device_shutdown - call ->shutdown() on each device to shutdown.
4030 */
device_shutdown(void)4031 void device_shutdown(void)
4032 {
4033 struct device *dev, *parent;
4034
4035 wait_for_device_probe();
4036 device_block_probing();
4037
4038 cpufreq_suspend();
4039
4040 spin_lock(&devices_kset->list_lock);
4041 /*
4042 * Walk the devices list backward, shutting down each in turn.
4043 * Beware that device unplug events may also start pulling
4044 * devices offline, even as the system is shutting down.
4045 */
4046 while (!list_empty(&devices_kset->list)) {
4047 dev = list_entry(devices_kset->list.prev, struct device,
4048 kobj.entry);
4049
4050 /*
4051 * hold reference count of device's parent to
4052 * prevent it from being freed because parent's
4053 * lock is to be held
4054 */
4055 parent = get_device(dev->parent);
4056 get_device(dev);
4057 /*
4058 * Make sure the device is off the kset list, in the
4059 * event that dev->*->shutdown() doesn't remove it.
4060 */
4061 list_del_init(&dev->kobj.entry);
4062 spin_unlock(&devices_kset->list_lock);
4063
4064 /* hold lock to avoid race with probe/release */
4065 if (parent)
4066 device_lock(parent);
4067 device_lock(dev);
4068
4069 /* Don't allow any more runtime suspends */
4070 pm_runtime_get_noresume(dev);
4071 pm_runtime_barrier(dev);
4072
4073 if (dev->class && dev->class->shutdown_pre) {
4074 if (initcall_debug)
4075 dev_info(dev, "shutdown_pre\n");
4076 dev->class->shutdown_pre(dev);
4077 }
4078 if (dev->bus && dev->bus->shutdown) {
4079 if (initcall_debug)
4080 dev_info(dev, "shutdown\n");
4081 dev->bus->shutdown(dev);
4082 } else if (dev->driver && dev->driver->shutdown) {
4083 if (initcall_debug)
4084 dev_info(dev, "shutdown\n");
4085 dev->driver->shutdown(dev);
4086 }
4087
4088 device_unlock(dev);
4089 if (parent)
4090 device_unlock(parent);
4091
4092 put_device(dev);
4093 put_device(parent);
4094
4095 spin_lock(&devices_kset->list_lock);
4096 }
4097 spin_unlock(&devices_kset->list_lock);
4098 }
4099
4100 /*
4101 * Device logging functions
4102 */
4103
4104 #ifdef CONFIG_PRINTK
4105 static void
set_dev_info(const struct device * dev,struct dev_printk_info * dev_info)4106 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4107 {
4108 const char *subsys;
4109
4110 memset(dev_info, 0, sizeof(*dev_info));
4111
4112 if (dev->class)
4113 subsys = dev->class->name;
4114 else if (dev->bus)
4115 subsys = dev->bus->name;
4116 else
4117 return;
4118
4119 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4120
4121 /*
4122 * Add device identifier DEVICE=:
4123 * b12:8 block dev_t
4124 * c127:3 char dev_t
4125 * n8 netdev ifindex
4126 * +sound:card0 subsystem:devname
4127 */
4128 if (MAJOR(dev->devt)) {
4129 char c;
4130
4131 if (strcmp(subsys, "block") == 0)
4132 c = 'b';
4133 else
4134 c = 'c';
4135
4136 snprintf(dev_info->device, sizeof(dev_info->device),
4137 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4138 } else if (strcmp(subsys, "net") == 0) {
4139 struct net_device *net = to_net_dev(dev);
4140
4141 snprintf(dev_info->device, sizeof(dev_info->device),
4142 "n%u", net->ifindex);
4143 } else {
4144 snprintf(dev_info->device, sizeof(dev_info->device),
4145 "+%s:%s", subsys, dev_name(dev));
4146 }
4147 }
4148
dev_vprintk_emit(int level,const struct device * dev,const char * fmt,va_list args)4149 int dev_vprintk_emit(int level, const struct device *dev,
4150 const char *fmt, va_list args)
4151 {
4152 struct dev_printk_info dev_info;
4153
4154 set_dev_info(dev, &dev_info);
4155
4156 return vprintk_emit(0, level, &dev_info, fmt, args);
4157 }
4158 EXPORT_SYMBOL(dev_vprintk_emit);
4159
dev_printk_emit(int level,const struct device * dev,const char * fmt,...)4160 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4161 {
4162 va_list args;
4163 int r;
4164
4165 va_start(args, fmt);
4166
4167 r = dev_vprintk_emit(level, dev, fmt, args);
4168
4169 va_end(args);
4170
4171 return r;
4172 }
4173 EXPORT_SYMBOL(dev_printk_emit);
4174
__dev_printk(const char * level,const struct device * dev,struct va_format * vaf)4175 static void __dev_printk(const char *level, const struct device *dev,
4176 struct va_format *vaf)
4177 {
4178 if (dev)
4179 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4180 dev_driver_string(dev), dev_name(dev), vaf);
4181 else
4182 printk("%s(NULL device *): %pV", level, vaf);
4183 }
4184
dev_printk(const char * level,const struct device * dev,const char * fmt,...)4185 void dev_printk(const char *level, const struct device *dev,
4186 const char *fmt, ...)
4187 {
4188 struct va_format vaf;
4189 va_list args;
4190
4191 va_start(args, fmt);
4192
4193 vaf.fmt = fmt;
4194 vaf.va = &args;
4195
4196 __dev_printk(level, dev, &vaf);
4197
4198 va_end(args);
4199 }
4200 EXPORT_SYMBOL(dev_printk);
4201
4202 #define define_dev_printk_level(func, kern_level) \
4203 void func(const struct device *dev, const char *fmt, ...) \
4204 { \
4205 struct va_format vaf; \
4206 va_list args; \
4207 \
4208 va_start(args, fmt); \
4209 \
4210 vaf.fmt = fmt; \
4211 vaf.va = &args; \
4212 \
4213 __dev_printk(kern_level, dev, &vaf); \
4214 \
4215 va_end(args); \
4216 } \
4217 EXPORT_SYMBOL(func);
4218
4219 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4220 define_dev_printk_level(_dev_alert, KERN_ALERT);
4221 define_dev_printk_level(_dev_crit, KERN_CRIT);
4222 define_dev_printk_level(_dev_err, KERN_ERR);
4223 define_dev_printk_level(_dev_warn, KERN_WARNING);
4224 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4225 define_dev_printk_level(_dev_info, KERN_INFO);
4226
4227 #endif
4228
4229 /**
4230 * dev_err_probe - probe error check and log helper
4231 * @dev: the pointer to the struct device
4232 * @err: error value to test
4233 * @fmt: printf-style format string
4234 * @...: arguments as specified in the format string
4235 *
4236 * This helper implements common pattern present in probe functions for error
4237 * checking: print debug or error message depending if the error value is
4238 * -EPROBE_DEFER and propagate error upwards.
4239 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4240 * checked later by reading devices_deferred debugfs attribute.
4241 * It replaces code sequence::
4242 *
4243 * if (err != -EPROBE_DEFER)
4244 * dev_err(dev, ...);
4245 * else
4246 * dev_dbg(dev, ...);
4247 * return err;
4248 *
4249 * with::
4250 *
4251 * return dev_err_probe(dev, err, ...);
4252 *
4253 * Returns @err.
4254 *
4255 */
dev_err_probe(const struct device * dev,int err,const char * fmt,...)4256 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4257 {
4258 struct va_format vaf;
4259 va_list args;
4260
4261 va_start(args, fmt);
4262 vaf.fmt = fmt;
4263 vaf.va = &args;
4264
4265 if (err != -EPROBE_DEFER) {
4266 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4267 } else {
4268 device_set_deferred_probe_reason(dev, &vaf);
4269 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4270 }
4271
4272 va_end(args);
4273
4274 return err;
4275 }
4276 EXPORT_SYMBOL_GPL(dev_err_probe);
4277
fwnode_is_primary(struct fwnode_handle * fwnode)4278 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4279 {
4280 return fwnode && !IS_ERR(fwnode->secondary);
4281 }
4282
4283 /**
4284 * set_primary_fwnode - Change the primary firmware node of a given device.
4285 * @dev: Device to handle.
4286 * @fwnode: New primary firmware node of the device.
4287 *
4288 * Set the device's firmware node pointer to @fwnode, but if a secondary
4289 * firmware node of the device is present, preserve it.
4290 */
set_primary_fwnode(struct device * dev,struct fwnode_handle * fwnode)4291 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4292 {
4293 struct device *parent = dev->parent;
4294 struct fwnode_handle *fn = dev->fwnode;
4295
4296 if (fwnode) {
4297 if (fwnode_is_primary(fn))
4298 fn = fn->secondary;
4299
4300 if (fn) {
4301 WARN_ON(fwnode->secondary);
4302 fwnode->secondary = fn;
4303 }
4304 dev->fwnode = fwnode;
4305 } else {
4306 if (fwnode_is_primary(fn)) {
4307 dev->fwnode = fn->secondary;
4308 if (!(parent && fn == parent->fwnode))
4309 fn->secondary = NULL;
4310 } else {
4311 dev->fwnode = NULL;
4312 }
4313 }
4314 }
4315 EXPORT_SYMBOL_GPL(set_primary_fwnode);
4316
4317 /**
4318 * set_secondary_fwnode - Change the secondary firmware node of a given device.
4319 * @dev: Device to handle.
4320 * @fwnode: New secondary firmware node of the device.
4321 *
4322 * If a primary firmware node of the device is present, set its secondary
4323 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
4324 * @fwnode.
4325 */
set_secondary_fwnode(struct device * dev,struct fwnode_handle * fwnode)4326 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4327 {
4328 if (fwnode)
4329 fwnode->secondary = ERR_PTR(-ENODEV);
4330
4331 if (fwnode_is_primary(dev->fwnode))
4332 dev->fwnode->secondary = fwnode;
4333 else
4334 dev->fwnode = fwnode;
4335 }
4336 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4337
4338 /**
4339 * device_set_of_node_from_dev - reuse device-tree node of another device
4340 * @dev: device whose device-tree node is being set
4341 * @dev2: device whose device-tree node is being reused
4342 *
4343 * Takes another reference to the new device-tree node after first dropping
4344 * any reference held to the old node.
4345 */
device_set_of_node_from_dev(struct device * dev,const struct device * dev2)4346 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4347 {
4348 of_node_put(dev->of_node);
4349 dev->of_node = of_node_get(dev2->of_node);
4350 dev->of_node_reused = true;
4351 }
4352 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4353
device_match_name(struct device * dev,const void * name)4354 int device_match_name(struct device *dev, const void *name)
4355 {
4356 return sysfs_streq(dev_name(dev), name);
4357 }
4358 EXPORT_SYMBOL_GPL(device_match_name);
4359
device_match_of_node(struct device * dev,const void * np)4360 int device_match_of_node(struct device *dev, const void *np)
4361 {
4362 return dev->of_node == np;
4363 }
4364 EXPORT_SYMBOL_GPL(device_match_of_node);
4365
device_match_fwnode(struct device * dev,const void * fwnode)4366 int device_match_fwnode(struct device *dev, const void *fwnode)
4367 {
4368 return dev_fwnode(dev) == fwnode;
4369 }
4370 EXPORT_SYMBOL_GPL(device_match_fwnode);
4371
device_match_devt(struct device * dev,const void * pdevt)4372 int device_match_devt(struct device *dev, const void *pdevt)
4373 {
4374 return dev->devt == *(dev_t *)pdevt;
4375 }
4376 EXPORT_SYMBOL_GPL(device_match_devt);
4377
device_match_acpi_dev(struct device * dev,const void * adev)4378 int device_match_acpi_dev(struct device *dev, const void *adev)
4379 {
4380 return ACPI_COMPANION(dev) == adev;
4381 }
4382 EXPORT_SYMBOL(device_match_acpi_dev);
4383
device_match_any(struct device * dev,const void * unused)4384 int device_match_any(struct device *dev, const void *unused)
4385 {
4386 return 1;
4387 }
4388 EXPORT_SYMBOL_GPL(device_match_any);
4389