1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * The input core
4 *
5 * Copyright (c) 1999-2002 Vojtech Pavlik
6 */
7
8
9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
10
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/idr.h>
14 #include <linux/input/mt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/poll.h>
23 #include <linux/device.h>
24 #include <linux/mutex.h>
25 #include <linux/rcupdate.h>
26 #include "input-compat.h"
27 #include "input-poller.h"
28
29 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
30 MODULE_DESCRIPTION("Input core");
31 MODULE_LICENSE("GPL");
32
33 #define INPUT_MAX_CHAR_DEVICES 1024
34 #define INPUT_FIRST_DYNAMIC_DEV 256
35 static DEFINE_IDA(input_ida);
36
37 static LIST_HEAD(input_dev_list);
38 static LIST_HEAD(input_handler_list);
39
40 /*
41 * input_mutex protects access to both input_dev_list and input_handler_list.
42 * This also causes input_[un]register_device and input_[un]register_handler
43 * be mutually exclusive which simplifies locking in drivers implementing
44 * input handlers.
45 */
46 static DEFINE_MUTEX(input_mutex);
47
48 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
49
is_event_supported(unsigned int code,unsigned long * bm,unsigned int max)50 static inline int is_event_supported(unsigned int code,
51 unsigned long *bm, unsigned int max)
52 {
53 return code <= max && test_bit(code, bm);
54 }
55
input_defuzz_abs_event(int value,int old_val,int fuzz)56 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
57 {
58 if (fuzz) {
59 if (value > (long)old_val - fuzz / 2 &&
60 value < (long)old_val + fuzz / 2)
61 return old_val;
62
63 if (value > (long)old_val - fuzz &&
64 value < (long)old_val + fuzz)
65 return ((long)old_val * 3 + value) / 4;
66
67 if (value > (long)old_val - fuzz * 2 &&
68 value < (long)old_val + fuzz * 2)
69 return ((long)old_val + value) / 2;
70 }
71
72 return value;
73 }
74
input_start_autorepeat(struct input_dev * dev,int code)75 static void input_start_autorepeat(struct input_dev *dev, int code)
76 {
77 if (test_bit(EV_REP, dev->evbit) &&
78 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
79 dev->timer.function) {
80 dev->repeat_key = code;
81 mod_timer(&dev->timer,
82 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
83 }
84 }
85
input_stop_autorepeat(struct input_dev * dev)86 static void input_stop_autorepeat(struct input_dev *dev)
87 {
88 del_timer(&dev->timer);
89 }
90
91 /*
92 * Pass event first through all filters and then, if event has not been
93 * filtered out, through all open handles. This function is called with
94 * dev->event_lock held and interrupts disabled.
95 */
input_to_handler(struct input_handle * handle,struct input_value * vals,unsigned int count)96 static unsigned int input_to_handler(struct input_handle *handle,
97 struct input_value *vals, unsigned int count)
98 {
99 struct input_handler *handler = handle->handler;
100 struct input_value *end = vals;
101 struct input_value *v;
102
103 if (handler->filter) {
104 for (v = vals; v != vals + count; v++) {
105 if (handler->filter(handle, v->type, v->code, v->value))
106 continue;
107 if (end != v)
108 *end = *v;
109 end++;
110 }
111 count = end - vals;
112 }
113
114 if (!count)
115 return 0;
116
117 if (handler->events)
118 handler->events(handle, vals, count);
119 else if (handler->event)
120 for (v = vals; v != vals + count; v++)
121 handler->event(handle, v->type, v->code, v->value);
122
123 return count;
124 }
125
126 /*
127 * Pass values first through all filters and then, if event has not been
128 * filtered out, through all open handles. This function is called with
129 * dev->event_lock held and interrupts disabled.
130 */
input_pass_values(struct input_dev * dev,struct input_value * vals,unsigned int count)131 static void input_pass_values(struct input_dev *dev,
132 struct input_value *vals, unsigned int count)
133 {
134 struct input_handle *handle;
135 struct input_value *v;
136
137 if (!count)
138 return;
139
140 rcu_read_lock();
141
142 handle = rcu_dereference(dev->grab);
143 if (handle) {
144 count = input_to_handler(handle, vals, count);
145 } else {
146 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
147 if (handle->open) {
148 count = input_to_handler(handle, vals, count);
149 if (!count)
150 break;
151 }
152 }
153
154 rcu_read_unlock();
155
156 /* trigger auto repeat for key events */
157 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
158 for (v = vals; v != vals + count; v++) {
159 if (v->type == EV_KEY && v->value != 2) {
160 if (v->value)
161 input_start_autorepeat(dev, v->code);
162 else
163 input_stop_autorepeat(dev);
164 }
165 }
166 }
167 }
168
input_pass_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)169 static void input_pass_event(struct input_dev *dev,
170 unsigned int type, unsigned int code, int value)
171 {
172 struct input_value vals[] = { { type, code, value } };
173
174 input_pass_values(dev, vals, ARRAY_SIZE(vals));
175 }
176
177 /*
178 * Generate software autorepeat event. Note that we take
179 * dev->event_lock here to avoid racing with input_event
180 * which may cause keys get "stuck".
181 */
input_repeat_key(struct timer_list * t)182 static void input_repeat_key(struct timer_list *t)
183 {
184 struct input_dev *dev = from_timer(dev, t, timer);
185 unsigned long flags;
186
187 spin_lock_irqsave(&dev->event_lock, flags);
188
189 if (test_bit(dev->repeat_key, dev->key) &&
190 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
191 struct input_value vals[] = {
192 { EV_KEY, dev->repeat_key, 2 },
193 input_value_sync
194 };
195
196 input_set_timestamp(dev, ktime_get());
197 input_pass_values(dev, vals, ARRAY_SIZE(vals));
198
199 if (dev->rep[REP_PERIOD])
200 mod_timer(&dev->timer, jiffies +
201 msecs_to_jiffies(dev->rep[REP_PERIOD]));
202 }
203
204 spin_unlock_irqrestore(&dev->event_lock, flags);
205 }
206
207 #define INPUT_IGNORE_EVENT 0
208 #define INPUT_PASS_TO_HANDLERS 1
209 #define INPUT_PASS_TO_DEVICE 2
210 #define INPUT_SLOT 4
211 #define INPUT_FLUSH 8
212 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
213
input_handle_abs_event(struct input_dev * dev,unsigned int code,int * pval)214 static int input_handle_abs_event(struct input_dev *dev,
215 unsigned int code, int *pval)
216 {
217 struct input_mt *mt = dev->mt;
218 bool is_mt_event;
219 int *pold;
220
221 if (code == ABS_MT_SLOT) {
222 /*
223 * "Stage" the event; we'll flush it later, when we
224 * get actual touch data.
225 */
226 if (mt && *pval >= 0 && *pval < mt->num_slots)
227 mt->slot = *pval;
228
229 return INPUT_IGNORE_EVENT;
230 }
231
232 is_mt_event = input_is_mt_value(code);
233
234 if (!is_mt_event) {
235 pold = &dev->absinfo[code].value;
236 } else if (mt) {
237 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
238 } else {
239 /*
240 * Bypass filtering for multi-touch events when
241 * not employing slots.
242 */
243 pold = NULL;
244 }
245
246 if (pold) {
247 *pval = input_defuzz_abs_event(*pval, *pold,
248 dev->absinfo[code].fuzz);
249 if (*pold == *pval)
250 return INPUT_IGNORE_EVENT;
251
252 *pold = *pval;
253 }
254
255 /* Flush pending "slot" event */
256 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
257 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
258 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
259 }
260
261 return INPUT_PASS_TO_HANDLERS;
262 }
263
input_get_disposition(struct input_dev * dev,unsigned int type,unsigned int code,int * pval)264 static int input_get_disposition(struct input_dev *dev,
265 unsigned int type, unsigned int code, int *pval)
266 {
267 int disposition = INPUT_IGNORE_EVENT;
268 int value = *pval;
269
270 switch (type) {
271
272 case EV_SYN:
273 switch (code) {
274 case SYN_CONFIG:
275 disposition = INPUT_PASS_TO_ALL;
276 break;
277
278 case SYN_REPORT:
279 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
280 break;
281 case SYN_MT_REPORT:
282 disposition = INPUT_PASS_TO_HANDLERS;
283 break;
284 }
285 break;
286
287 case EV_KEY:
288 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
289
290 /* auto-repeat bypasses state updates */
291 if (value == 2) {
292 disposition = INPUT_PASS_TO_HANDLERS;
293 break;
294 }
295
296 if (!!test_bit(code, dev->key) != !!value) {
297
298 __change_bit(code, dev->key);
299 disposition = INPUT_PASS_TO_HANDLERS;
300 }
301 }
302 break;
303
304 case EV_SW:
305 if (is_event_supported(code, dev->swbit, SW_MAX) &&
306 !!test_bit(code, dev->sw) != !!value) {
307
308 __change_bit(code, dev->sw);
309 disposition = INPUT_PASS_TO_HANDLERS;
310 }
311 break;
312
313 case EV_ABS:
314 if (is_event_supported(code, dev->absbit, ABS_MAX))
315 disposition = input_handle_abs_event(dev, code, &value);
316
317 break;
318
319 case EV_REL:
320 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
321 disposition = INPUT_PASS_TO_HANDLERS;
322
323 break;
324
325 case EV_MSC:
326 if (is_event_supported(code, dev->mscbit, MSC_MAX))
327 disposition = INPUT_PASS_TO_ALL;
328
329 break;
330
331 case EV_LED:
332 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
333 !!test_bit(code, dev->led) != !!value) {
334
335 __change_bit(code, dev->led);
336 disposition = INPUT_PASS_TO_ALL;
337 }
338 break;
339
340 case EV_SND:
341 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
342
343 if (!!test_bit(code, dev->snd) != !!value)
344 __change_bit(code, dev->snd);
345 disposition = INPUT_PASS_TO_ALL;
346 }
347 break;
348
349 case EV_REP:
350 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
351 dev->rep[code] = value;
352 disposition = INPUT_PASS_TO_ALL;
353 }
354 break;
355
356 case EV_FF:
357 if (value >= 0)
358 disposition = INPUT_PASS_TO_ALL;
359 break;
360
361 case EV_PWR:
362 disposition = INPUT_PASS_TO_ALL;
363 break;
364 }
365
366 *pval = value;
367 return disposition;
368 }
369
input_handle_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)370 static void input_handle_event(struct input_dev *dev,
371 unsigned int type, unsigned int code, int value)
372 {
373 int disposition = input_get_disposition(dev, type, code, &value);
374
375 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
376 add_input_randomness(type, code, value);
377
378 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
379 dev->event(dev, type, code, value);
380
381 if (!dev->vals)
382 return;
383
384 if (disposition & INPUT_PASS_TO_HANDLERS) {
385 struct input_value *v;
386
387 if (disposition & INPUT_SLOT) {
388 v = &dev->vals[dev->num_vals++];
389 v->type = EV_ABS;
390 v->code = ABS_MT_SLOT;
391 v->value = dev->mt->slot;
392 }
393
394 v = &dev->vals[dev->num_vals++];
395 v->type = type;
396 v->code = code;
397 v->value = value;
398 }
399
400 if (disposition & INPUT_FLUSH) {
401 if (dev->num_vals >= 2)
402 input_pass_values(dev, dev->vals, dev->num_vals);
403 dev->num_vals = 0;
404 /*
405 * Reset the timestamp on flush so we won't end up
406 * with a stale one. Note we only need to reset the
407 * monolithic one as we use its presence when deciding
408 * whether to generate a synthetic timestamp.
409 */
410 dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
411 } else if (dev->num_vals >= dev->max_vals - 2) {
412 dev->vals[dev->num_vals++] = input_value_sync;
413 input_pass_values(dev, dev->vals, dev->num_vals);
414 dev->num_vals = 0;
415 }
416
417 }
418
419 /**
420 * input_event() - report new input event
421 * @dev: device that generated the event
422 * @type: type of the event
423 * @code: event code
424 * @value: value of the event
425 *
426 * This function should be used by drivers implementing various input
427 * devices to report input events. See also input_inject_event().
428 *
429 * NOTE: input_event() may be safely used right after input device was
430 * allocated with input_allocate_device(), even before it is registered
431 * with input_register_device(), but the event will not reach any of the
432 * input handlers. Such early invocation of input_event() may be used
433 * to 'seed' initial state of a switch or initial position of absolute
434 * axis, etc.
435 */
input_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)436 void input_event(struct input_dev *dev,
437 unsigned int type, unsigned int code, int value)
438 {
439 unsigned long flags;
440
441 if (is_event_supported(type, dev->evbit, EV_MAX)) {
442
443 spin_lock_irqsave(&dev->event_lock, flags);
444 input_handle_event(dev, type, code, value);
445 spin_unlock_irqrestore(&dev->event_lock, flags);
446 }
447 }
448 EXPORT_SYMBOL(input_event);
449
450 /**
451 * input_inject_event() - send input event from input handler
452 * @handle: input handle to send event through
453 * @type: type of the event
454 * @code: event code
455 * @value: value of the event
456 *
457 * Similar to input_event() but will ignore event if device is
458 * "grabbed" and handle injecting event is not the one that owns
459 * the device.
460 */
input_inject_event(struct input_handle * handle,unsigned int type,unsigned int code,int value)461 void input_inject_event(struct input_handle *handle,
462 unsigned int type, unsigned int code, int value)
463 {
464 struct input_dev *dev = handle->dev;
465 struct input_handle *grab;
466 unsigned long flags;
467
468 if (is_event_supported(type, dev->evbit, EV_MAX)) {
469 spin_lock_irqsave(&dev->event_lock, flags);
470
471 rcu_read_lock();
472 grab = rcu_dereference(dev->grab);
473 if (!grab || grab == handle)
474 input_handle_event(dev, type, code, value);
475 rcu_read_unlock();
476
477 spin_unlock_irqrestore(&dev->event_lock, flags);
478 }
479 }
480 EXPORT_SYMBOL(input_inject_event);
481
482 /**
483 * input_alloc_absinfo - allocates array of input_absinfo structs
484 * @dev: the input device emitting absolute events
485 *
486 * If the absinfo struct the caller asked for is already allocated, this
487 * functions will not do anything.
488 */
input_alloc_absinfo(struct input_dev * dev)489 void input_alloc_absinfo(struct input_dev *dev)
490 {
491 if (dev->absinfo)
492 return;
493
494 dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
495 if (!dev->absinfo) {
496 dev_err(dev->dev.parent ?: &dev->dev,
497 "%s: unable to allocate memory\n", __func__);
498 /*
499 * We will handle this allocation failure in
500 * input_register_device() when we refuse to register input
501 * device with ABS bits but without absinfo.
502 */
503 }
504 }
505 EXPORT_SYMBOL(input_alloc_absinfo);
506
input_set_abs_params(struct input_dev * dev,unsigned int axis,int min,int max,int fuzz,int flat)507 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
508 int min, int max, int fuzz, int flat)
509 {
510 struct input_absinfo *absinfo;
511
512 input_alloc_absinfo(dev);
513 if (!dev->absinfo)
514 return;
515
516 absinfo = &dev->absinfo[axis];
517 absinfo->minimum = min;
518 absinfo->maximum = max;
519 absinfo->fuzz = fuzz;
520 absinfo->flat = flat;
521
522 __set_bit(EV_ABS, dev->evbit);
523 __set_bit(axis, dev->absbit);
524 }
525 EXPORT_SYMBOL(input_set_abs_params);
526
527
528 /**
529 * input_grab_device - grabs device for exclusive use
530 * @handle: input handle that wants to own the device
531 *
532 * When a device is grabbed by an input handle all events generated by
533 * the device are delivered only to this handle. Also events injected
534 * by other input handles are ignored while device is grabbed.
535 */
input_grab_device(struct input_handle * handle)536 int input_grab_device(struct input_handle *handle)
537 {
538 struct input_dev *dev = handle->dev;
539 int retval;
540
541 retval = mutex_lock_interruptible(&dev->mutex);
542 if (retval)
543 return retval;
544
545 if (dev->grab) {
546 retval = -EBUSY;
547 goto out;
548 }
549
550 rcu_assign_pointer(dev->grab, handle);
551
552 out:
553 mutex_unlock(&dev->mutex);
554 return retval;
555 }
556 EXPORT_SYMBOL(input_grab_device);
557
__input_release_device(struct input_handle * handle)558 static void __input_release_device(struct input_handle *handle)
559 {
560 struct input_dev *dev = handle->dev;
561 struct input_handle *grabber;
562
563 grabber = rcu_dereference_protected(dev->grab,
564 lockdep_is_held(&dev->mutex));
565 if (grabber == handle) {
566 rcu_assign_pointer(dev->grab, NULL);
567 /* Make sure input_pass_event() notices that grab is gone */
568 synchronize_rcu();
569
570 list_for_each_entry(handle, &dev->h_list, d_node)
571 if (handle->open && handle->handler->start)
572 handle->handler->start(handle);
573 }
574 }
575
576 /**
577 * input_release_device - release previously grabbed device
578 * @handle: input handle that owns the device
579 *
580 * Releases previously grabbed device so that other input handles can
581 * start receiving input events. Upon release all handlers attached
582 * to the device have their start() method called so they have a change
583 * to synchronize device state with the rest of the system.
584 */
input_release_device(struct input_handle * handle)585 void input_release_device(struct input_handle *handle)
586 {
587 struct input_dev *dev = handle->dev;
588
589 mutex_lock(&dev->mutex);
590 __input_release_device(handle);
591 mutex_unlock(&dev->mutex);
592 }
593 EXPORT_SYMBOL(input_release_device);
594
595 /**
596 * input_open_device - open input device
597 * @handle: handle through which device is being accessed
598 *
599 * This function should be called by input handlers when they
600 * want to start receive events from given input device.
601 */
input_open_device(struct input_handle * handle)602 int input_open_device(struct input_handle *handle)
603 {
604 struct input_dev *dev = handle->dev;
605 int retval;
606
607 retval = mutex_lock_interruptible(&dev->mutex);
608 if (retval)
609 return retval;
610
611 if (dev->going_away) {
612 retval = -ENODEV;
613 goto out;
614 }
615
616 handle->open++;
617
618 if (dev->users++) {
619 /*
620 * Device is already opened, so we can exit immediately and
621 * report success.
622 */
623 goto out;
624 }
625
626 if (dev->open) {
627 retval = dev->open(dev);
628 if (retval) {
629 dev->users--;
630 handle->open--;
631 /*
632 * Make sure we are not delivering any more events
633 * through this handle
634 */
635 synchronize_rcu();
636 goto out;
637 }
638 }
639
640 if (dev->poller)
641 input_dev_poller_start(dev->poller);
642
643 out:
644 mutex_unlock(&dev->mutex);
645 return retval;
646 }
647 EXPORT_SYMBOL(input_open_device);
648
input_flush_device(struct input_handle * handle,struct file * file)649 int input_flush_device(struct input_handle *handle, struct file *file)
650 {
651 struct input_dev *dev = handle->dev;
652 int retval;
653
654 retval = mutex_lock_interruptible(&dev->mutex);
655 if (retval)
656 return retval;
657
658 if (dev->flush)
659 retval = dev->flush(dev, file);
660
661 mutex_unlock(&dev->mutex);
662 return retval;
663 }
664 EXPORT_SYMBOL(input_flush_device);
665
666 /**
667 * input_close_device - close input device
668 * @handle: handle through which device is being accessed
669 *
670 * This function should be called by input handlers when they
671 * want to stop receive events from given input device.
672 */
input_close_device(struct input_handle * handle)673 void input_close_device(struct input_handle *handle)
674 {
675 struct input_dev *dev = handle->dev;
676
677 mutex_lock(&dev->mutex);
678
679 __input_release_device(handle);
680
681 if (!--dev->users) {
682 if (dev->poller)
683 input_dev_poller_stop(dev->poller);
684
685 if (dev->close)
686 dev->close(dev);
687 }
688
689 if (!--handle->open) {
690 /*
691 * synchronize_rcu() makes sure that input_pass_event()
692 * completed and that no more input events are delivered
693 * through this handle
694 */
695 synchronize_rcu();
696 }
697
698 mutex_unlock(&dev->mutex);
699 }
700 EXPORT_SYMBOL(input_close_device);
701
702 /*
703 * Simulate keyup events for all keys that are marked as pressed.
704 * The function must be called with dev->event_lock held.
705 */
input_dev_release_keys(struct input_dev * dev)706 static void input_dev_release_keys(struct input_dev *dev)
707 {
708 bool need_sync = false;
709 int code;
710
711 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
712 for_each_set_bit(code, dev->key, KEY_CNT) {
713 input_pass_event(dev, EV_KEY, code, 0);
714 need_sync = true;
715 }
716
717 if (need_sync)
718 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
719
720 memset(dev->key, 0, sizeof(dev->key));
721 }
722 }
723
724 /*
725 * Prepare device for unregistering
726 */
input_disconnect_device(struct input_dev * dev)727 static void input_disconnect_device(struct input_dev *dev)
728 {
729 struct input_handle *handle;
730
731 /*
732 * Mark device as going away. Note that we take dev->mutex here
733 * not to protect access to dev->going_away but rather to ensure
734 * that there are no threads in the middle of input_open_device()
735 */
736 mutex_lock(&dev->mutex);
737 dev->going_away = true;
738 mutex_unlock(&dev->mutex);
739
740 spin_lock_irq(&dev->event_lock);
741
742 /*
743 * Simulate keyup events for all pressed keys so that handlers
744 * are not left with "stuck" keys. The driver may continue
745 * generate events even after we done here but they will not
746 * reach any handlers.
747 */
748 input_dev_release_keys(dev);
749
750 list_for_each_entry(handle, &dev->h_list, d_node)
751 handle->open = 0;
752
753 spin_unlock_irq(&dev->event_lock);
754 }
755
756 /**
757 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
758 * @ke: keymap entry containing scancode to be converted.
759 * @scancode: pointer to the location where converted scancode should
760 * be stored.
761 *
762 * This function is used to convert scancode stored in &struct keymap_entry
763 * into scalar form understood by legacy keymap handling methods. These
764 * methods expect scancodes to be represented as 'unsigned int'.
765 */
input_scancode_to_scalar(const struct input_keymap_entry * ke,unsigned int * scancode)766 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
767 unsigned int *scancode)
768 {
769 switch (ke->len) {
770 case 1:
771 *scancode = *((u8 *)ke->scancode);
772 break;
773
774 case 2:
775 *scancode = *((u16 *)ke->scancode);
776 break;
777
778 case 4:
779 *scancode = *((u32 *)ke->scancode);
780 break;
781
782 default:
783 return -EINVAL;
784 }
785
786 return 0;
787 }
788 EXPORT_SYMBOL(input_scancode_to_scalar);
789
790 /*
791 * Those routines handle the default case where no [gs]etkeycode() is
792 * defined. In this case, an array indexed by the scancode is used.
793 */
794
input_fetch_keycode(struct input_dev * dev,unsigned int index)795 static unsigned int input_fetch_keycode(struct input_dev *dev,
796 unsigned int index)
797 {
798 switch (dev->keycodesize) {
799 case 1:
800 return ((u8 *)dev->keycode)[index];
801
802 case 2:
803 return ((u16 *)dev->keycode)[index];
804
805 default:
806 return ((u32 *)dev->keycode)[index];
807 }
808 }
809
input_default_getkeycode(struct input_dev * dev,struct input_keymap_entry * ke)810 static int input_default_getkeycode(struct input_dev *dev,
811 struct input_keymap_entry *ke)
812 {
813 unsigned int index;
814 int error;
815
816 if (!dev->keycodesize)
817 return -EINVAL;
818
819 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
820 index = ke->index;
821 else {
822 error = input_scancode_to_scalar(ke, &index);
823 if (error)
824 return error;
825 }
826
827 if (index >= dev->keycodemax)
828 return -EINVAL;
829
830 ke->keycode = input_fetch_keycode(dev, index);
831 ke->index = index;
832 ke->len = sizeof(index);
833 memcpy(ke->scancode, &index, sizeof(index));
834
835 return 0;
836 }
837
input_default_setkeycode(struct input_dev * dev,const struct input_keymap_entry * ke,unsigned int * old_keycode)838 static int input_default_setkeycode(struct input_dev *dev,
839 const struct input_keymap_entry *ke,
840 unsigned int *old_keycode)
841 {
842 unsigned int index;
843 int error;
844 int i;
845
846 if (!dev->keycodesize)
847 return -EINVAL;
848
849 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
850 index = ke->index;
851 } else {
852 error = input_scancode_to_scalar(ke, &index);
853 if (error)
854 return error;
855 }
856
857 if (index >= dev->keycodemax)
858 return -EINVAL;
859
860 if (dev->keycodesize < sizeof(ke->keycode) &&
861 (ke->keycode >> (dev->keycodesize * 8)))
862 return -EINVAL;
863
864 switch (dev->keycodesize) {
865 case 1: {
866 u8 *k = (u8 *)dev->keycode;
867 *old_keycode = k[index];
868 k[index] = ke->keycode;
869 break;
870 }
871 case 2: {
872 u16 *k = (u16 *)dev->keycode;
873 *old_keycode = k[index];
874 k[index] = ke->keycode;
875 break;
876 }
877 default: {
878 u32 *k = (u32 *)dev->keycode;
879 *old_keycode = k[index];
880 k[index] = ke->keycode;
881 break;
882 }
883 }
884
885 if (*old_keycode <= KEY_MAX) {
886 __clear_bit(*old_keycode, dev->keybit);
887 for (i = 0; i < dev->keycodemax; i++) {
888 if (input_fetch_keycode(dev, i) == *old_keycode) {
889 __set_bit(*old_keycode, dev->keybit);
890 /* Setting the bit twice is useless, so break */
891 break;
892 }
893 }
894 }
895
896 __set_bit(ke->keycode, dev->keybit);
897 return 0;
898 }
899
900 /**
901 * input_get_keycode - retrieve keycode currently mapped to a given scancode
902 * @dev: input device which keymap is being queried
903 * @ke: keymap entry
904 *
905 * This function should be called by anyone interested in retrieving current
906 * keymap. Presently evdev handlers use it.
907 */
input_get_keycode(struct input_dev * dev,struct input_keymap_entry * ke)908 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
909 {
910 unsigned long flags;
911 int retval;
912
913 spin_lock_irqsave(&dev->event_lock, flags);
914 retval = dev->getkeycode(dev, ke);
915 spin_unlock_irqrestore(&dev->event_lock, flags);
916
917 return retval;
918 }
919 EXPORT_SYMBOL(input_get_keycode);
920
921 /**
922 * input_set_keycode - attribute a keycode to a given scancode
923 * @dev: input device which keymap is being updated
924 * @ke: new keymap entry
925 *
926 * This function should be called by anyone needing to update current
927 * keymap. Presently keyboard and evdev handlers use it.
928 */
input_set_keycode(struct input_dev * dev,const struct input_keymap_entry * ke)929 int input_set_keycode(struct input_dev *dev,
930 const struct input_keymap_entry *ke)
931 {
932 unsigned long flags;
933 unsigned int old_keycode;
934 int retval;
935
936 if (ke->keycode > KEY_MAX)
937 return -EINVAL;
938
939 spin_lock_irqsave(&dev->event_lock, flags);
940
941 retval = dev->setkeycode(dev, ke, &old_keycode);
942 if (retval)
943 goto out;
944
945 /* Make sure KEY_RESERVED did not get enabled. */
946 __clear_bit(KEY_RESERVED, dev->keybit);
947
948 /*
949 * Simulate keyup event if keycode is not present
950 * in the keymap anymore
951 */
952 if (old_keycode > KEY_MAX) {
953 dev_warn(dev->dev.parent ?: &dev->dev,
954 "%s: got too big old keycode %#x\n",
955 __func__, old_keycode);
956 } else if (test_bit(EV_KEY, dev->evbit) &&
957 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
958 __test_and_clear_bit(old_keycode, dev->key)) {
959 struct input_value vals[] = {
960 { EV_KEY, old_keycode, 0 },
961 input_value_sync
962 };
963
964 input_pass_values(dev, vals, ARRAY_SIZE(vals));
965 }
966
967 out:
968 spin_unlock_irqrestore(&dev->event_lock, flags);
969
970 return retval;
971 }
972 EXPORT_SYMBOL(input_set_keycode);
973
input_match_device_id(const struct input_dev * dev,const struct input_device_id * id)974 bool input_match_device_id(const struct input_dev *dev,
975 const struct input_device_id *id)
976 {
977 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
978 if (id->bustype != dev->id.bustype)
979 return false;
980
981 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
982 if (id->vendor != dev->id.vendor)
983 return false;
984
985 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
986 if (id->product != dev->id.product)
987 return false;
988
989 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
990 if (id->version != dev->id.version)
991 return false;
992
993 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
994 !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
995 !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
996 !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
997 !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
998 !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
999 !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
1000 !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
1001 !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
1002 !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
1003 return false;
1004 }
1005
1006 return true;
1007 }
1008 EXPORT_SYMBOL(input_match_device_id);
1009
input_match_device(struct input_handler * handler,struct input_dev * dev)1010 static const struct input_device_id *input_match_device(struct input_handler *handler,
1011 struct input_dev *dev)
1012 {
1013 const struct input_device_id *id;
1014
1015 for (id = handler->id_table; id->flags || id->driver_info; id++) {
1016 if (input_match_device_id(dev, id) &&
1017 (!handler->match || handler->match(handler, dev))) {
1018 return id;
1019 }
1020 }
1021
1022 return NULL;
1023 }
1024
input_attach_handler(struct input_dev * dev,struct input_handler * handler)1025 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1026 {
1027 const struct input_device_id *id;
1028 int error;
1029
1030 id = input_match_device(handler, dev);
1031 if (!id)
1032 return -ENODEV;
1033
1034 error = handler->connect(handler, dev, id);
1035 if (error && error != -ENODEV)
1036 pr_err("failed to attach handler %s to device %s, error: %d\n",
1037 handler->name, kobject_name(&dev->dev.kobj), error);
1038
1039 return error;
1040 }
1041
1042 #ifdef CONFIG_COMPAT
1043
input_bits_to_string(char * buf,int buf_size,unsigned long bits,bool skip_empty)1044 static int input_bits_to_string(char *buf, int buf_size,
1045 unsigned long bits, bool skip_empty)
1046 {
1047 int len = 0;
1048
1049 if (in_compat_syscall()) {
1050 u32 dword = bits >> 32;
1051 if (dword || !skip_empty)
1052 len += snprintf(buf, buf_size, "%x ", dword);
1053
1054 dword = bits & 0xffffffffUL;
1055 if (dword || !skip_empty || len)
1056 len += snprintf(buf + len, max(buf_size - len, 0),
1057 "%x", dword);
1058 } else {
1059 if (bits || !skip_empty)
1060 len += snprintf(buf, buf_size, "%lx", bits);
1061 }
1062
1063 return len;
1064 }
1065
1066 #else /* !CONFIG_COMPAT */
1067
input_bits_to_string(char * buf,int buf_size,unsigned long bits,bool skip_empty)1068 static int input_bits_to_string(char *buf, int buf_size,
1069 unsigned long bits, bool skip_empty)
1070 {
1071 return bits || !skip_empty ?
1072 snprintf(buf, buf_size, "%lx", bits) : 0;
1073 }
1074
1075 #endif
1076
1077 #ifdef CONFIG_PROC_FS
1078
1079 static struct proc_dir_entry *proc_bus_input_dir;
1080 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1081 static int input_devices_state;
1082
input_wakeup_procfs_readers(void)1083 static inline void input_wakeup_procfs_readers(void)
1084 {
1085 input_devices_state++;
1086 wake_up(&input_devices_poll_wait);
1087 }
1088
input_proc_devices_poll(struct file * file,poll_table * wait)1089 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1090 {
1091 poll_wait(file, &input_devices_poll_wait, wait);
1092 if (file->f_version != input_devices_state) {
1093 file->f_version = input_devices_state;
1094 return EPOLLIN | EPOLLRDNORM;
1095 }
1096
1097 return 0;
1098 }
1099
1100 union input_seq_state {
1101 struct {
1102 unsigned short pos;
1103 bool mutex_acquired;
1104 };
1105 void *p;
1106 };
1107
input_devices_seq_start(struct seq_file * seq,loff_t * pos)1108 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1109 {
1110 union input_seq_state *state = (union input_seq_state *)&seq->private;
1111 int error;
1112
1113 /* We need to fit into seq->private pointer */
1114 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1115
1116 error = mutex_lock_interruptible(&input_mutex);
1117 if (error) {
1118 state->mutex_acquired = false;
1119 return ERR_PTR(error);
1120 }
1121
1122 state->mutex_acquired = true;
1123
1124 return seq_list_start(&input_dev_list, *pos);
1125 }
1126
input_devices_seq_next(struct seq_file * seq,void * v,loff_t * pos)1127 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1128 {
1129 return seq_list_next(v, &input_dev_list, pos);
1130 }
1131
input_seq_stop(struct seq_file * seq,void * v)1132 static void input_seq_stop(struct seq_file *seq, void *v)
1133 {
1134 union input_seq_state *state = (union input_seq_state *)&seq->private;
1135
1136 if (state->mutex_acquired)
1137 mutex_unlock(&input_mutex);
1138 }
1139
input_seq_print_bitmap(struct seq_file * seq,const char * name,unsigned long * bitmap,int max)1140 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1141 unsigned long *bitmap, int max)
1142 {
1143 int i;
1144 bool skip_empty = true;
1145 char buf[18];
1146
1147 seq_printf(seq, "B: %s=", name);
1148
1149 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1150 if (input_bits_to_string(buf, sizeof(buf),
1151 bitmap[i], skip_empty)) {
1152 skip_empty = false;
1153 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1154 }
1155 }
1156
1157 /*
1158 * If no output was produced print a single 0.
1159 */
1160 if (skip_empty)
1161 seq_putc(seq, '0');
1162
1163 seq_putc(seq, '\n');
1164 }
1165
input_devices_seq_show(struct seq_file * seq,void * v)1166 static int input_devices_seq_show(struct seq_file *seq, void *v)
1167 {
1168 struct input_dev *dev = container_of(v, struct input_dev, node);
1169 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1170 struct input_handle *handle;
1171
1172 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1173 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1174
1175 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1176 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1177 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1178 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1179 seq_puts(seq, "H: Handlers=");
1180
1181 list_for_each_entry(handle, &dev->h_list, d_node)
1182 seq_printf(seq, "%s ", handle->name);
1183 seq_putc(seq, '\n');
1184
1185 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1186
1187 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1188 if (test_bit(EV_KEY, dev->evbit))
1189 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1190 if (test_bit(EV_REL, dev->evbit))
1191 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1192 if (test_bit(EV_ABS, dev->evbit))
1193 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1194 if (test_bit(EV_MSC, dev->evbit))
1195 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1196 if (test_bit(EV_LED, dev->evbit))
1197 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1198 if (test_bit(EV_SND, dev->evbit))
1199 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1200 if (test_bit(EV_FF, dev->evbit))
1201 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1202 if (test_bit(EV_SW, dev->evbit))
1203 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1204
1205 seq_putc(seq, '\n');
1206
1207 kfree(path);
1208 return 0;
1209 }
1210
1211 static const struct seq_operations input_devices_seq_ops = {
1212 .start = input_devices_seq_start,
1213 .next = input_devices_seq_next,
1214 .stop = input_seq_stop,
1215 .show = input_devices_seq_show,
1216 };
1217
input_proc_devices_open(struct inode * inode,struct file * file)1218 static int input_proc_devices_open(struct inode *inode, struct file *file)
1219 {
1220 return seq_open(file, &input_devices_seq_ops);
1221 }
1222
1223 static const struct proc_ops input_devices_proc_ops = {
1224 .proc_open = input_proc_devices_open,
1225 .proc_poll = input_proc_devices_poll,
1226 .proc_read = seq_read,
1227 .proc_lseek = seq_lseek,
1228 .proc_release = seq_release,
1229 };
1230
input_handlers_seq_start(struct seq_file * seq,loff_t * pos)1231 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1232 {
1233 union input_seq_state *state = (union input_seq_state *)&seq->private;
1234 int error;
1235
1236 /* We need to fit into seq->private pointer */
1237 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1238
1239 error = mutex_lock_interruptible(&input_mutex);
1240 if (error) {
1241 state->mutex_acquired = false;
1242 return ERR_PTR(error);
1243 }
1244
1245 state->mutex_acquired = true;
1246 state->pos = *pos;
1247
1248 return seq_list_start(&input_handler_list, *pos);
1249 }
1250
input_handlers_seq_next(struct seq_file * seq,void * v,loff_t * pos)1251 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1252 {
1253 union input_seq_state *state = (union input_seq_state *)&seq->private;
1254
1255 state->pos = *pos + 1;
1256 return seq_list_next(v, &input_handler_list, pos);
1257 }
1258
input_handlers_seq_show(struct seq_file * seq,void * v)1259 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1260 {
1261 struct input_handler *handler = container_of(v, struct input_handler, node);
1262 union input_seq_state *state = (union input_seq_state *)&seq->private;
1263
1264 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1265 if (handler->filter)
1266 seq_puts(seq, " (filter)");
1267 if (handler->legacy_minors)
1268 seq_printf(seq, " Minor=%d", handler->minor);
1269 seq_putc(seq, '\n');
1270
1271 return 0;
1272 }
1273
1274 static const struct seq_operations input_handlers_seq_ops = {
1275 .start = input_handlers_seq_start,
1276 .next = input_handlers_seq_next,
1277 .stop = input_seq_stop,
1278 .show = input_handlers_seq_show,
1279 };
1280
input_proc_handlers_open(struct inode * inode,struct file * file)1281 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1282 {
1283 return seq_open(file, &input_handlers_seq_ops);
1284 }
1285
1286 static const struct proc_ops input_handlers_proc_ops = {
1287 .proc_open = input_proc_handlers_open,
1288 .proc_read = seq_read,
1289 .proc_lseek = seq_lseek,
1290 .proc_release = seq_release,
1291 };
1292
input_proc_init(void)1293 static int __init input_proc_init(void)
1294 {
1295 struct proc_dir_entry *entry;
1296
1297 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1298 if (!proc_bus_input_dir)
1299 return -ENOMEM;
1300
1301 entry = proc_create("devices", 0, proc_bus_input_dir,
1302 &input_devices_proc_ops);
1303 if (!entry)
1304 goto fail1;
1305
1306 entry = proc_create("handlers", 0, proc_bus_input_dir,
1307 &input_handlers_proc_ops);
1308 if (!entry)
1309 goto fail2;
1310
1311 return 0;
1312
1313 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1314 fail1: remove_proc_entry("bus/input", NULL);
1315 return -ENOMEM;
1316 }
1317
input_proc_exit(void)1318 static void input_proc_exit(void)
1319 {
1320 remove_proc_entry("devices", proc_bus_input_dir);
1321 remove_proc_entry("handlers", proc_bus_input_dir);
1322 remove_proc_entry("bus/input", NULL);
1323 }
1324
1325 #else /* !CONFIG_PROC_FS */
input_wakeup_procfs_readers(void)1326 static inline void input_wakeup_procfs_readers(void) { }
input_proc_init(void)1327 static inline int input_proc_init(void) { return 0; }
input_proc_exit(void)1328 static inline void input_proc_exit(void) { }
1329 #endif
1330
1331 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1332 static ssize_t input_dev_show_##name(struct device *dev, \
1333 struct device_attribute *attr, \
1334 char *buf) \
1335 { \
1336 struct input_dev *input_dev = to_input_dev(dev); \
1337 \
1338 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1339 input_dev->name ? input_dev->name : ""); \
1340 } \
1341 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1342
1343 INPUT_DEV_STRING_ATTR_SHOW(name);
1344 INPUT_DEV_STRING_ATTR_SHOW(phys);
1345 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1346
input_print_modalias_bits(char * buf,int size,char name,unsigned long * bm,unsigned int min_bit,unsigned int max_bit)1347 static int input_print_modalias_bits(char *buf, int size,
1348 char name, unsigned long *bm,
1349 unsigned int min_bit, unsigned int max_bit)
1350 {
1351 int len = 0, i;
1352
1353 len += snprintf(buf, max(size, 0), "%c", name);
1354 for (i = min_bit; i < max_bit; i++)
1355 if (bm[BIT_WORD(i)] & BIT_MASK(i))
1356 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1357 return len;
1358 }
1359
input_print_modalias(char * buf,int size,struct input_dev * id,int add_cr)1360 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1361 int add_cr)
1362 {
1363 int len;
1364
1365 len = snprintf(buf, max(size, 0),
1366 "input:b%04Xv%04Xp%04Xe%04X-",
1367 id->id.bustype, id->id.vendor,
1368 id->id.product, id->id.version);
1369
1370 len += input_print_modalias_bits(buf + len, size - len,
1371 'e', id->evbit, 0, EV_MAX);
1372 len += input_print_modalias_bits(buf + len, size - len,
1373 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1374 len += input_print_modalias_bits(buf + len, size - len,
1375 'r', id->relbit, 0, REL_MAX);
1376 len += input_print_modalias_bits(buf + len, size - len,
1377 'a', id->absbit, 0, ABS_MAX);
1378 len += input_print_modalias_bits(buf + len, size - len,
1379 'm', id->mscbit, 0, MSC_MAX);
1380 len += input_print_modalias_bits(buf + len, size - len,
1381 'l', id->ledbit, 0, LED_MAX);
1382 len += input_print_modalias_bits(buf + len, size - len,
1383 's', id->sndbit, 0, SND_MAX);
1384 len += input_print_modalias_bits(buf + len, size - len,
1385 'f', id->ffbit, 0, FF_MAX);
1386 len += input_print_modalias_bits(buf + len, size - len,
1387 'w', id->swbit, 0, SW_MAX);
1388
1389 if (add_cr)
1390 len += snprintf(buf + len, max(size - len, 0), "\n");
1391
1392 return len;
1393 }
1394
input_dev_show_modalias(struct device * dev,struct device_attribute * attr,char * buf)1395 static ssize_t input_dev_show_modalias(struct device *dev,
1396 struct device_attribute *attr,
1397 char *buf)
1398 {
1399 struct input_dev *id = to_input_dev(dev);
1400 ssize_t len;
1401
1402 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1403
1404 return min_t(int, len, PAGE_SIZE);
1405 }
1406 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1407
1408 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1409 int max, int add_cr);
1410
input_dev_show_properties(struct device * dev,struct device_attribute * attr,char * buf)1411 static ssize_t input_dev_show_properties(struct device *dev,
1412 struct device_attribute *attr,
1413 char *buf)
1414 {
1415 struct input_dev *input_dev = to_input_dev(dev);
1416 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1417 INPUT_PROP_MAX, true);
1418 return min_t(int, len, PAGE_SIZE);
1419 }
1420 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1421
1422 static struct attribute *input_dev_attrs[] = {
1423 &dev_attr_name.attr,
1424 &dev_attr_phys.attr,
1425 &dev_attr_uniq.attr,
1426 &dev_attr_modalias.attr,
1427 &dev_attr_properties.attr,
1428 NULL
1429 };
1430
1431 static const struct attribute_group input_dev_attr_group = {
1432 .attrs = input_dev_attrs,
1433 };
1434
1435 #define INPUT_DEV_ID_ATTR(name) \
1436 static ssize_t input_dev_show_id_##name(struct device *dev, \
1437 struct device_attribute *attr, \
1438 char *buf) \
1439 { \
1440 struct input_dev *input_dev = to_input_dev(dev); \
1441 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1442 } \
1443 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1444
1445 INPUT_DEV_ID_ATTR(bustype);
1446 INPUT_DEV_ID_ATTR(vendor);
1447 INPUT_DEV_ID_ATTR(product);
1448 INPUT_DEV_ID_ATTR(version);
1449
1450 static struct attribute *input_dev_id_attrs[] = {
1451 &dev_attr_bustype.attr,
1452 &dev_attr_vendor.attr,
1453 &dev_attr_product.attr,
1454 &dev_attr_version.attr,
1455 NULL
1456 };
1457
1458 static const struct attribute_group input_dev_id_attr_group = {
1459 .name = "id",
1460 .attrs = input_dev_id_attrs,
1461 };
1462
input_print_bitmap(char * buf,int buf_size,unsigned long * bitmap,int max,int add_cr)1463 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1464 int max, int add_cr)
1465 {
1466 int i;
1467 int len = 0;
1468 bool skip_empty = true;
1469
1470 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1471 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1472 bitmap[i], skip_empty);
1473 if (len) {
1474 skip_empty = false;
1475 if (i > 0)
1476 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1477 }
1478 }
1479
1480 /*
1481 * If no output was produced print a single 0.
1482 */
1483 if (len == 0)
1484 len = snprintf(buf, buf_size, "%d", 0);
1485
1486 if (add_cr)
1487 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1488
1489 return len;
1490 }
1491
1492 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1493 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1494 struct device_attribute *attr, \
1495 char *buf) \
1496 { \
1497 struct input_dev *input_dev = to_input_dev(dev); \
1498 int len = input_print_bitmap(buf, PAGE_SIZE, \
1499 input_dev->bm##bit, ev##_MAX, \
1500 true); \
1501 return min_t(int, len, PAGE_SIZE); \
1502 } \
1503 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1504
1505 INPUT_DEV_CAP_ATTR(EV, ev);
1506 INPUT_DEV_CAP_ATTR(KEY, key);
1507 INPUT_DEV_CAP_ATTR(REL, rel);
1508 INPUT_DEV_CAP_ATTR(ABS, abs);
1509 INPUT_DEV_CAP_ATTR(MSC, msc);
1510 INPUT_DEV_CAP_ATTR(LED, led);
1511 INPUT_DEV_CAP_ATTR(SND, snd);
1512 INPUT_DEV_CAP_ATTR(FF, ff);
1513 INPUT_DEV_CAP_ATTR(SW, sw);
1514
1515 static struct attribute *input_dev_caps_attrs[] = {
1516 &dev_attr_ev.attr,
1517 &dev_attr_key.attr,
1518 &dev_attr_rel.attr,
1519 &dev_attr_abs.attr,
1520 &dev_attr_msc.attr,
1521 &dev_attr_led.attr,
1522 &dev_attr_snd.attr,
1523 &dev_attr_ff.attr,
1524 &dev_attr_sw.attr,
1525 NULL
1526 };
1527
1528 static const struct attribute_group input_dev_caps_attr_group = {
1529 .name = "capabilities",
1530 .attrs = input_dev_caps_attrs,
1531 };
1532
1533 static const struct attribute_group *input_dev_attr_groups[] = {
1534 &input_dev_attr_group,
1535 &input_dev_id_attr_group,
1536 &input_dev_caps_attr_group,
1537 &input_poller_attribute_group,
1538 NULL
1539 };
1540
input_dev_release(struct device * device)1541 static void input_dev_release(struct device *device)
1542 {
1543 struct input_dev *dev = to_input_dev(device);
1544
1545 input_ff_destroy(dev);
1546 input_mt_destroy_slots(dev);
1547 kfree(dev->poller);
1548 kfree(dev->absinfo);
1549 kfree(dev->vals);
1550 kfree(dev);
1551
1552 module_put(THIS_MODULE);
1553 }
1554
1555 /*
1556 * Input uevent interface - loading event handlers based on
1557 * device bitfields.
1558 */
input_add_uevent_bm_var(struct kobj_uevent_env * env,const char * name,unsigned long * bitmap,int max)1559 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1560 const char *name, unsigned long *bitmap, int max)
1561 {
1562 int len;
1563
1564 if (add_uevent_var(env, "%s", name))
1565 return -ENOMEM;
1566
1567 len = input_print_bitmap(&env->buf[env->buflen - 1],
1568 sizeof(env->buf) - env->buflen,
1569 bitmap, max, false);
1570 if (len >= (sizeof(env->buf) - env->buflen))
1571 return -ENOMEM;
1572
1573 env->buflen += len;
1574 return 0;
1575 }
1576
input_add_uevent_modalias_var(struct kobj_uevent_env * env,struct input_dev * dev)1577 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1578 struct input_dev *dev)
1579 {
1580 int len;
1581
1582 if (add_uevent_var(env, "MODALIAS="))
1583 return -ENOMEM;
1584
1585 len = input_print_modalias(&env->buf[env->buflen - 1],
1586 sizeof(env->buf) - env->buflen,
1587 dev, 0);
1588 if (len >= (sizeof(env->buf) - env->buflen))
1589 return -ENOMEM;
1590
1591 env->buflen += len;
1592 return 0;
1593 }
1594
1595 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1596 do { \
1597 int err = add_uevent_var(env, fmt, val); \
1598 if (err) \
1599 return err; \
1600 } while (0)
1601
1602 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1603 do { \
1604 int err = input_add_uevent_bm_var(env, name, bm, max); \
1605 if (err) \
1606 return err; \
1607 } while (0)
1608
1609 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1610 do { \
1611 int err = input_add_uevent_modalias_var(env, dev); \
1612 if (err) \
1613 return err; \
1614 } while (0)
1615
input_dev_uevent(struct device * device,struct kobj_uevent_env * env)1616 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1617 {
1618 struct input_dev *dev = to_input_dev(device);
1619
1620 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1621 dev->id.bustype, dev->id.vendor,
1622 dev->id.product, dev->id.version);
1623 if (dev->name)
1624 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1625 if (dev->phys)
1626 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1627 if (dev->uniq)
1628 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1629
1630 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1631
1632 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1633 if (test_bit(EV_KEY, dev->evbit))
1634 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1635 if (test_bit(EV_REL, dev->evbit))
1636 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1637 if (test_bit(EV_ABS, dev->evbit))
1638 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1639 if (test_bit(EV_MSC, dev->evbit))
1640 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1641 if (test_bit(EV_LED, dev->evbit))
1642 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1643 if (test_bit(EV_SND, dev->evbit))
1644 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1645 if (test_bit(EV_FF, dev->evbit))
1646 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1647 if (test_bit(EV_SW, dev->evbit))
1648 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1649
1650 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1651
1652 return 0;
1653 }
1654
1655 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1656 do { \
1657 int i; \
1658 bool active; \
1659 \
1660 if (!test_bit(EV_##type, dev->evbit)) \
1661 break; \
1662 \
1663 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \
1664 active = test_bit(i, dev->bits); \
1665 if (!active && !on) \
1666 continue; \
1667 \
1668 dev->event(dev, EV_##type, i, on ? active : 0); \
1669 } \
1670 } while (0)
1671
input_dev_toggle(struct input_dev * dev,bool activate)1672 static void input_dev_toggle(struct input_dev *dev, bool activate)
1673 {
1674 if (!dev->event)
1675 return;
1676
1677 INPUT_DO_TOGGLE(dev, LED, led, activate);
1678 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1679
1680 if (activate && test_bit(EV_REP, dev->evbit)) {
1681 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1682 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1683 }
1684 }
1685
1686 /**
1687 * input_reset_device() - reset/restore the state of input device
1688 * @dev: input device whose state needs to be reset
1689 *
1690 * This function tries to reset the state of an opened input device and
1691 * bring internal state and state if the hardware in sync with each other.
1692 * We mark all keys as released, restore LED state, repeat rate, etc.
1693 */
input_reset_device(struct input_dev * dev)1694 void input_reset_device(struct input_dev *dev)
1695 {
1696 unsigned long flags;
1697
1698 mutex_lock(&dev->mutex);
1699 spin_lock_irqsave(&dev->event_lock, flags);
1700
1701 input_dev_toggle(dev, true);
1702 input_dev_release_keys(dev);
1703
1704 spin_unlock_irqrestore(&dev->event_lock, flags);
1705 mutex_unlock(&dev->mutex);
1706 }
1707 EXPORT_SYMBOL(input_reset_device);
1708
1709 #ifdef CONFIG_PM_SLEEP
input_dev_suspend(struct device * dev)1710 static int input_dev_suspend(struct device *dev)
1711 {
1712 struct input_dev *input_dev = to_input_dev(dev);
1713
1714 spin_lock_irq(&input_dev->event_lock);
1715
1716 /*
1717 * Keys that are pressed now are unlikely to be
1718 * still pressed when we resume.
1719 */
1720 input_dev_release_keys(input_dev);
1721
1722 /* Turn off LEDs and sounds, if any are active. */
1723 input_dev_toggle(input_dev, false);
1724
1725 spin_unlock_irq(&input_dev->event_lock);
1726
1727 return 0;
1728 }
1729
input_dev_resume(struct device * dev)1730 static int input_dev_resume(struct device *dev)
1731 {
1732 struct input_dev *input_dev = to_input_dev(dev);
1733
1734 spin_lock_irq(&input_dev->event_lock);
1735
1736 /* Restore state of LEDs and sounds, if any were active. */
1737 input_dev_toggle(input_dev, true);
1738
1739 spin_unlock_irq(&input_dev->event_lock);
1740
1741 return 0;
1742 }
1743
input_dev_freeze(struct device * dev)1744 static int input_dev_freeze(struct device *dev)
1745 {
1746 struct input_dev *input_dev = to_input_dev(dev);
1747
1748 spin_lock_irq(&input_dev->event_lock);
1749
1750 /*
1751 * Keys that are pressed now are unlikely to be
1752 * still pressed when we resume.
1753 */
1754 input_dev_release_keys(input_dev);
1755
1756 spin_unlock_irq(&input_dev->event_lock);
1757
1758 return 0;
1759 }
1760
input_dev_poweroff(struct device * dev)1761 static int input_dev_poweroff(struct device *dev)
1762 {
1763 struct input_dev *input_dev = to_input_dev(dev);
1764
1765 spin_lock_irq(&input_dev->event_lock);
1766
1767 /* Turn off LEDs and sounds, if any are active. */
1768 input_dev_toggle(input_dev, false);
1769
1770 spin_unlock_irq(&input_dev->event_lock);
1771
1772 return 0;
1773 }
1774
1775 static const struct dev_pm_ops input_dev_pm_ops = {
1776 .suspend = input_dev_suspend,
1777 .resume = input_dev_resume,
1778 .freeze = input_dev_freeze,
1779 .poweroff = input_dev_poweroff,
1780 .restore = input_dev_resume,
1781 };
1782 #endif /* CONFIG_PM */
1783
1784 static const struct device_type input_dev_type = {
1785 .groups = input_dev_attr_groups,
1786 .release = input_dev_release,
1787 .uevent = input_dev_uevent,
1788 #ifdef CONFIG_PM_SLEEP
1789 .pm = &input_dev_pm_ops,
1790 #endif
1791 };
1792
input_devnode(struct device * dev,umode_t * mode)1793 static char *input_devnode(struct device *dev, umode_t *mode)
1794 {
1795 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1796 }
1797
1798 struct class input_class = {
1799 .name = "input",
1800 .devnode = input_devnode,
1801 };
1802 EXPORT_SYMBOL_GPL(input_class);
1803
1804 /**
1805 * input_allocate_device - allocate memory for new input device
1806 *
1807 * Returns prepared struct input_dev or %NULL.
1808 *
1809 * NOTE: Use input_free_device() to free devices that have not been
1810 * registered; input_unregister_device() should be used for already
1811 * registered devices.
1812 */
input_allocate_device(void)1813 struct input_dev *input_allocate_device(void)
1814 {
1815 static atomic_t input_no = ATOMIC_INIT(-1);
1816 struct input_dev *dev;
1817
1818 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1819 if (dev) {
1820 dev->dev.type = &input_dev_type;
1821 dev->dev.class = &input_class;
1822 device_initialize(&dev->dev);
1823 mutex_init(&dev->mutex);
1824 spin_lock_init(&dev->event_lock);
1825 timer_setup(&dev->timer, NULL, 0);
1826 INIT_LIST_HEAD(&dev->h_list);
1827 INIT_LIST_HEAD(&dev->node);
1828
1829 dev_set_name(&dev->dev, "input%lu",
1830 (unsigned long)atomic_inc_return(&input_no));
1831
1832 __module_get(THIS_MODULE);
1833 }
1834
1835 return dev;
1836 }
1837 EXPORT_SYMBOL(input_allocate_device);
1838
1839 struct input_devres {
1840 struct input_dev *input;
1841 };
1842
devm_input_device_match(struct device * dev,void * res,void * data)1843 static int devm_input_device_match(struct device *dev, void *res, void *data)
1844 {
1845 struct input_devres *devres = res;
1846
1847 return devres->input == data;
1848 }
1849
devm_input_device_release(struct device * dev,void * res)1850 static void devm_input_device_release(struct device *dev, void *res)
1851 {
1852 struct input_devres *devres = res;
1853 struct input_dev *input = devres->input;
1854
1855 dev_dbg(dev, "%s: dropping reference to %s\n",
1856 __func__, dev_name(&input->dev));
1857 input_put_device(input);
1858 }
1859
1860 /**
1861 * devm_input_allocate_device - allocate managed input device
1862 * @dev: device owning the input device being created
1863 *
1864 * Returns prepared struct input_dev or %NULL.
1865 *
1866 * Managed input devices do not need to be explicitly unregistered or
1867 * freed as it will be done automatically when owner device unbinds from
1868 * its driver (or binding fails). Once managed input device is allocated,
1869 * it is ready to be set up and registered in the same fashion as regular
1870 * input device. There are no special devm_input_device_[un]register()
1871 * variants, regular ones work with both managed and unmanaged devices,
1872 * should you need them. In most cases however, managed input device need
1873 * not be explicitly unregistered or freed.
1874 *
1875 * NOTE: the owner device is set up as parent of input device and users
1876 * should not override it.
1877 */
devm_input_allocate_device(struct device * dev)1878 struct input_dev *devm_input_allocate_device(struct device *dev)
1879 {
1880 struct input_dev *input;
1881 struct input_devres *devres;
1882
1883 devres = devres_alloc(devm_input_device_release,
1884 sizeof(*devres), GFP_KERNEL);
1885 if (!devres)
1886 return NULL;
1887
1888 input = input_allocate_device();
1889 if (!input) {
1890 devres_free(devres);
1891 return NULL;
1892 }
1893
1894 input->dev.parent = dev;
1895 input->devres_managed = true;
1896
1897 devres->input = input;
1898 devres_add(dev, devres);
1899
1900 return input;
1901 }
1902 EXPORT_SYMBOL(devm_input_allocate_device);
1903
1904 /**
1905 * input_free_device - free memory occupied by input_dev structure
1906 * @dev: input device to free
1907 *
1908 * This function should only be used if input_register_device()
1909 * was not called yet or if it failed. Once device was registered
1910 * use input_unregister_device() and memory will be freed once last
1911 * reference to the device is dropped.
1912 *
1913 * Device should be allocated by input_allocate_device().
1914 *
1915 * NOTE: If there are references to the input device then memory
1916 * will not be freed until last reference is dropped.
1917 */
input_free_device(struct input_dev * dev)1918 void input_free_device(struct input_dev *dev)
1919 {
1920 if (dev) {
1921 if (dev->devres_managed)
1922 WARN_ON(devres_destroy(dev->dev.parent,
1923 devm_input_device_release,
1924 devm_input_device_match,
1925 dev));
1926 input_put_device(dev);
1927 }
1928 }
1929 EXPORT_SYMBOL(input_free_device);
1930
1931 /**
1932 * input_set_timestamp - set timestamp for input events
1933 * @dev: input device to set timestamp for
1934 * @timestamp: the time at which the event has occurred
1935 * in CLOCK_MONOTONIC
1936 *
1937 * This function is intended to provide to the input system a more
1938 * accurate time of when an event actually occurred. The driver should
1939 * call this function as soon as a timestamp is acquired ensuring
1940 * clock conversions in input_set_timestamp are done correctly.
1941 *
1942 * The system entering suspend state between timestamp acquisition and
1943 * calling input_set_timestamp can result in inaccurate conversions.
1944 */
input_set_timestamp(struct input_dev * dev,ktime_t timestamp)1945 void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
1946 {
1947 dev->timestamp[INPUT_CLK_MONO] = timestamp;
1948 dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
1949 dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
1950 TK_OFFS_BOOT);
1951 }
1952 EXPORT_SYMBOL(input_set_timestamp);
1953
1954 /**
1955 * input_get_timestamp - get timestamp for input events
1956 * @dev: input device to get timestamp from
1957 *
1958 * A valid timestamp is a timestamp of non-zero value.
1959 */
input_get_timestamp(struct input_dev * dev)1960 ktime_t *input_get_timestamp(struct input_dev *dev)
1961 {
1962 const ktime_t invalid_timestamp = ktime_set(0, 0);
1963
1964 if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
1965 input_set_timestamp(dev, ktime_get());
1966
1967 return dev->timestamp;
1968 }
1969 EXPORT_SYMBOL(input_get_timestamp);
1970
1971 /**
1972 * input_set_capability - mark device as capable of a certain event
1973 * @dev: device that is capable of emitting or accepting event
1974 * @type: type of the event (EV_KEY, EV_REL, etc...)
1975 * @code: event code
1976 *
1977 * In addition to setting up corresponding bit in appropriate capability
1978 * bitmap the function also adjusts dev->evbit.
1979 */
input_set_capability(struct input_dev * dev,unsigned int type,unsigned int code)1980 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1981 {
1982 switch (type) {
1983 case EV_KEY:
1984 __set_bit(code, dev->keybit);
1985 break;
1986
1987 case EV_REL:
1988 __set_bit(code, dev->relbit);
1989 break;
1990
1991 case EV_ABS:
1992 input_alloc_absinfo(dev);
1993 if (!dev->absinfo)
1994 return;
1995
1996 __set_bit(code, dev->absbit);
1997 break;
1998
1999 case EV_MSC:
2000 __set_bit(code, dev->mscbit);
2001 break;
2002
2003 case EV_SW:
2004 __set_bit(code, dev->swbit);
2005 break;
2006
2007 case EV_LED:
2008 __set_bit(code, dev->ledbit);
2009 break;
2010
2011 case EV_SND:
2012 __set_bit(code, dev->sndbit);
2013 break;
2014
2015 case EV_FF:
2016 __set_bit(code, dev->ffbit);
2017 break;
2018
2019 case EV_PWR:
2020 /* do nothing */
2021 break;
2022
2023 default:
2024 pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2025 dump_stack();
2026 return;
2027 }
2028
2029 __set_bit(type, dev->evbit);
2030 }
2031 EXPORT_SYMBOL(input_set_capability);
2032
input_estimate_events_per_packet(struct input_dev * dev)2033 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2034 {
2035 int mt_slots;
2036 int i;
2037 unsigned int events;
2038
2039 if (dev->mt) {
2040 mt_slots = dev->mt->num_slots;
2041 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2042 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2043 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
2044 mt_slots = clamp(mt_slots, 2, 32);
2045 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2046 mt_slots = 2;
2047 } else {
2048 mt_slots = 0;
2049 }
2050
2051 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2052
2053 if (test_bit(EV_ABS, dev->evbit))
2054 for_each_set_bit(i, dev->absbit, ABS_CNT)
2055 events += input_is_mt_axis(i) ? mt_slots : 1;
2056
2057 if (test_bit(EV_REL, dev->evbit))
2058 events += bitmap_weight(dev->relbit, REL_CNT);
2059
2060 /* Make room for KEY and MSC events */
2061 events += 7;
2062
2063 return events;
2064 }
2065
2066 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
2067 do { \
2068 if (!test_bit(EV_##type, dev->evbit)) \
2069 memset(dev->bits##bit, 0, \
2070 sizeof(dev->bits##bit)); \
2071 } while (0)
2072
input_cleanse_bitmasks(struct input_dev * dev)2073 static void input_cleanse_bitmasks(struct input_dev *dev)
2074 {
2075 INPUT_CLEANSE_BITMASK(dev, KEY, key);
2076 INPUT_CLEANSE_BITMASK(dev, REL, rel);
2077 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2078 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2079 INPUT_CLEANSE_BITMASK(dev, LED, led);
2080 INPUT_CLEANSE_BITMASK(dev, SND, snd);
2081 INPUT_CLEANSE_BITMASK(dev, FF, ff);
2082 INPUT_CLEANSE_BITMASK(dev, SW, sw);
2083 }
2084
__input_unregister_device(struct input_dev * dev)2085 static void __input_unregister_device(struct input_dev *dev)
2086 {
2087 struct input_handle *handle, *next;
2088
2089 input_disconnect_device(dev);
2090
2091 mutex_lock(&input_mutex);
2092
2093 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2094 handle->handler->disconnect(handle);
2095 WARN_ON(!list_empty(&dev->h_list));
2096
2097 del_timer_sync(&dev->timer);
2098 list_del_init(&dev->node);
2099
2100 input_wakeup_procfs_readers();
2101
2102 mutex_unlock(&input_mutex);
2103
2104 device_del(&dev->dev);
2105 }
2106
devm_input_device_unregister(struct device * dev,void * res)2107 static void devm_input_device_unregister(struct device *dev, void *res)
2108 {
2109 struct input_devres *devres = res;
2110 struct input_dev *input = devres->input;
2111
2112 dev_dbg(dev, "%s: unregistering device %s\n",
2113 __func__, dev_name(&input->dev));
2114 __input_unregister_device(input);
2115 }
2116
2117 /**
2118 * input_enable_softrepeat - enable software autorepeat
2119 * @dev: input device
2120 * @delay: repeat delay
2121 * @period: repeat period
2122 *
2123 * Enable software autorepeat on the input device.
2124 */
input_enable_softrepeat(struct input_dev * dev,int delay,int period)2125 void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2126 {
2127 dev->timer.function = input_repeat_key;
2128 dev->rep[REP_DELAY] = delay;
2129 dev->rep[REP_PERIOD] = period;
2130 }
2131 EXPORT_SYMBOL(input_enable_softrepeat);
2132
2133 /**
2134 * input_register_device - register device with input core
2135 * @dev: device to be registered
2136 *
2137 * This function registers device with input core. The device must be
2138 * allocated with input_allocate_device() and all it's capabilities
2139 * set up before registering.
2140 * If function fails the device must be freed with input_free_device().
2141 * Once device has been successfully registered it can be unregistered
2142 * with input_unregister_device(); input_free_device() should not be
2143 * called in this case.
2144 *
2145 * Note that this function is also used to register managed input devices
2146 * (ones allocated with devm_input_allocate_device()). Such managed input
2147 * devices need not be explicitly unregistered or freed, their tear down
2148 * is controlled by the devres infrastructure. It is also worth noting
2149 * that tear down of managed input devices is internally a 2-step process:
2150 * registered managed input device is first unregistered, but stays in
2151 * memory and can still handle input_event() calls (although events will
2152 * not be delivered anywhere). The freeing of managed input device will
2153 * happen later, when devres stack is unwound to the point where device
2154 * allocation was made.
2155 */
input_register_device(struct input_dev * dev)2156 int input_register_device(struct input_dev *dev)
2157 {
2158 struct input_devres *devres = NULL;
2159 struct input_handler *handler;
2160 unsigned int packet_size;
2161 const char *path;
2162 int error;
2163
2164 if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2165 dev_err(&dev->dev,
2166 "Absolute device without dev->absinfo, refusing to register\n");
2167 return -EINVAL;
2168 }
2169
2170 if (dev->devres_managed) {
2171 devres = devres_alloc(devm_input_device_unregister,
2172 sizeof(*devres), GFP_KERNEL);
2173 if (!devres)
2174 return -ENOMEM;
2175
2176 devres->input = dev;
2177 }
2178
2179 /* Every input device generates EV_SYN/SYN_REPORT events. */
2180 __set_bit(EV_SYN, dev->evbit);
2181
2182 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2183 __clear_bit(KEY_RESERVED, dev->keybit);
2184
2185 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2186 input_cleanse_bitmasks(dev);
2187
2188 packet_size = input_estimate_events_per_packet(dev);
2189 if (dev->hint_events_per_packet < packet_size)
2190 dev->hint_events_per_packet = packet_size;
2191
2192 dev->max_vals = dev->hint_events_per_packet + 2;
2193 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2194 if (!dev->vals) {
2195 error = -ENOMEM;
2196 goto err_devres_free;
2197 }
2198
2199 /*
2200 * If delay and period are pre-set by the driver, then autorepeating
2201 * is handled by the driver itself and we don't do it in input.c.
2202 */
2203 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2204 input_enable_softrepeat(dev, 250, 33);
2205
2206 if (!dev->getkeycode)
2207 dev->getkeycode = input_default_getkeycode;
2208
2209 if (!dev->setkeycode)
2210 dev->setkeycode = input_default_setkeycode;
2211
2212 if (dev->poller)
2213 input_dev_poller_finalize(dev->poller);
2214
2215 error = device_add(&dev->dev);
2216 if (error)
2217 goto err_free_vals;
2218
2219 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2220 pr_info("%s as %s\n",
2221 dev->name ? dev->name : "Unspecified device",
2222 path ? path : "N/A");
2223 kfree(path);
2224
2225 error = mutex_lock_interruptible(&input_mutex);
2226 if (error)
2227 goto err_device_del;
2228
2229 list_add_tail(&dev->node, &input_dev_list);
2230
2231 list_for_each_entry(handler, &input_handler_list, node)
2232 input_attach_handler(dev, handler);
2233
2234 input_wakeup_procfs_readers();
2235
2236 mutex_unlock(&input_mutex);
2237
2238 if (dev->devres_managed) {
2239 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2240 __func__, dev_name(&dev->dev));
2241 devres_add(dev->dev.parent, devres);
2242 }
2243 return 0;
2244
2245 err_device_del:
2246 device_del(&dev->dev);
2247 err_free_vals:
2248 kfree(dev->vals);
2249 dev->vals = NULL;
2250 err_devres_free:
2251 devres_free(devres);
2252 return error;
2253 }
2254 EXPORT_SYMBOL(input_register_device);
2255
2256 /**
2257 * input_unregister_device - unregister previously registered device
2258 * @dev: device to be unregistered
2259 *
2260 * This function unregisters an input device. Once device is unregistered
2261 * the caller should not try to access it as it may get freed at any moment.
2262 */
input_unregister_device(struct input_dev * dev)2263 void input_unregister_device(struct input_dev *dev)
2264 {
2265 if (dev->devres_managed) {
2266 WARN_ON(devres_destroy(dev->dev.parent,
2267 devm_input_device_unregister,
2268 devm_input_device_match,
2269 dev));
2270 __input_unregister_device(dev);
2271 /*
2272 * We do not do input_put_device() here because it will be done
2273 * when 2nd devres fires up.
2274 */
2275 } else {
2276 __input_unregister_device(dev);
2277 input_put_device(dev);
2278 }
2279 }
2280 EXPORT_SYMBOL(input_unregister_device);
2281
2282 /**
2283 * input_register_handler - register a new input handler
2284 * @handler: handler to be registered
2285 *
2286 * This function registers a new input handler (interface) for input
2287 * devices in the system and attaches it to all input devices that
2288 * are compatible with the handler.
2289 */
input_register_handler(struct input_handler * handler)2290 int input_register_handler(struct input_handler *handler)
2291 {
2292 struct input_dev *dev;
2293 int error;
2294
2295 error = mutex_lock_interruptible(&input_mutex);
2296 if (error)
2297 return error;
2298
2299 INIT_LIST_HEAD(&handler->h_list);
2300
2301 list_add_tail(&handler->node, &input_handler_list);
2302
2303 list_for_each_entry(dev, &input_dev_list, node)
2304 input_attach_handler(dev, handler);
2305
2306 input_wakeup_procfs_readers();
2307
2308 mutex_unlock(&input_mutex);
2309 return 0;
2310 }
2311 EXPORT_SYMBOL(input_register_handler);
2312
2313 /**
2314 * input_unregister_handler - unregisters an input handler
2315 * @handler: handler to be unregistered
2316 *
2317 * This function disconnects a handler from its input devices and
2318 * removes it from lists of known handlers.
2319 */
input_unregister_handler(struct input_handler * handler)2320 void input_unregister_handler(struct input_handler *handler)
2321 {
2322 struct input_handle *handle, *next;
2323
2324 mutex_lock(&input_mutex);
2325
2326 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2327 handler->disconnect(handle);
2328 WARN_ON(!list_empty(&handler->h_list));
2329
2330 list_del_init(&handler->node);
2331
2332 input_wakeup_procfs_readers();
2333
2334 mutex_unlock(&input_mutex);
2335 }
2336 EXPORT_SYMBOL(input_unregister_handler);
2337
2338 /**
2339 * input_handler_for_each_handle - handle iterator
2340 * @handler: input handler to iterate
2341 * @data: data for the callback
2342 * @fn: function to be called for each handle
2343 *
2344 * Iterate over @bus's list of devices, and call @fn for each, passing
2345 * it @data and stop when @fn returns a non-zero value. The function is
2346 * using RCU to traverse the list and therefore may be using in atomic
2347 * contexts. The @fn callback is invoked from RCU critical section and
2348 * thus must not sleep.
2349 */
input_handler_for_each_handle(struct input_handler * handler,void * data,int (* fn)(struct input_handle *,void *))2350 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2351 int (*fn)(struct input_handle *, void *))
2352 {
2353 struct input_handle *handle;
2354 int retval = 0;
2355
2356 rcu_read_lock();
2357
2358 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2359 retval = fn(handle, data);
2360 if (retval)
2361 break;
2362 }
2363
2364 rcu_read_unlock();
2365
2366 return retval;
2367 }
2368 EXPORT_SYMBOL(input_handler_for_each_handle);
2369
2370 /**
2371 * input_register_handle - register a new input handle
2372 * @handle: handle to register
2373 *
2374 * This function puts a new input handle onto device's
2375 * and handler's lists so that events can flow through
2376 * it once it is opened using input_open_device().
2377 *
2378 * This function is supposed to be called from handler's
2379 * connect() method.
2380 */
input_register_handle(struct input_handle * handle)2381 int input_register_handle(struct input_handle *handle)
2382 {
2383 struct input_handler *handler = handle->handler;
2384 struct input_dev *dev = handle->dev;
2385 int error;
2386
2387 /*
2388 * We take dev->mutex here to prevent race with
2389 * input_release_device().
2390 */
2391 error = mutex_lock_interruptible(&dev->mutex);
2392 if (error)
2393 return error;
2394
2395 /*
2396 * Filters go to the head of the list, normal handlers
2397 * to the tail.
2398 */
2399 if (handler->filter)
2400 list_add_rcu(&handle->d_node, &dev->h_list);
2401 else
2402 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2403
2404 mutex_unlock(&dev->mutex);
2405
2406 /*
2407 * Since we are supposed to be called from ->connect()
2408 * which is mutually exclusive with ->disconnect()
2409 * we can't be racing with input_unregister_handle()
2410 * and so separate lock is not needed here.
2411 */
2412 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2413
2414 if (handler->start)
2415 handler->start(handle);
2416
2417 return 0;
2418 }
2419 EXPORT_SYMBOL(input_register_handle);
2420
2421 /**
2422 * input_unregister_handle - unregister an input handle
2423 * @handle: handle to unregister
2424 *
2425 * This function removes input handle from device's
2426 * and handler's lists.
2427 *
2428 * This function is supposed to be called from handler's
2429 * disconnect() method.
2430 */
input_unregister_handle(struct input_handle * handle)2431 void input_unregister_handle(struct input_handle *handle)
2432 {
2433 struct input_dev *dev = handle->dev;
2434
2435 list_del_rcu(&handle->h_node);
2436
2437 /*
2438 * Take dev->mutex to prevent race with input_release_device().
2439 */
2440 mutex_lock(&dev->mutex);
2441 list_del_rcu(&handle->d_node);
2442 mutex_unlock(&dev->mutex);
2443
2444 synchronize_rcu();
2445 }
2446 EXPORT_SYMBOL(input_unregister_handle);
2447
2448 /**
2449 * input_get_new_minor - allocates a new input minor number
2450 * @legacy_base: beginning or the legacy range to be searched
2451 * @legacy_num: size of legacy range
2452 * @allow_dynamic: whether we can also take ID from the dynamic range
2453 *
2454 * This function allocates a new device minor for from input major namespace.
2455 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2456 * parameters and whether ID can be allocated from dynamic range if there are
2457 * no free IDs in legacy range.
2458 */
input_get_new_minor(int legacy_base,unsigned int legacy_num,bool allow_dynamic)2459 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2460 bool allow_dynamic)
2461 {
2462 /*
2463 * This function should be called from input handler's ->connect()
2464 * methods, which are serialized with input_mutex, so no additional
2465 * locking is needed here.
2466 */
2467 if (legacy_base >= 0) {
2468 int minor = ida_simple_get(&input_ida,
2469 legacy_base,
2470 legacy_base + legacy_num,
2471 GFP_KERNEL);
2472 if (minor >= 0 || !allow_dynamic)
2473 return minor;
2474 }
2475
2476 return ida_simple_get(&input_ida,
2477 INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2478 GFP_KERNEL);
2479 }
2480 EXPORT_SYMBOL(input_get_new_minor);
2481
2482 /**
2483 * input_free_minor - release previously allocated minor
2484 * @minor: minor to be released
2485 *
2486 * This function releases previously allocated input minor so that it can be
2487 * reused later.
2488 */
input_free_minor(unsigned int minor)2489 void input_free_minor(unsigned int minor)
2490 {
2491 ida_simple_remove(&input_ida, minor);
2492 }
2493 EXPORT_SYMBOL(input_free_minor);
2494
input_init(void)2495 static int __init input_init(void)
2496 {
2497 int err;
2498
2499 err = class_register(&input_class);
2500 if (err) {
2501 pr_err("unable to register input_dev class\n");
2502 return err;
2503 }
2504
2505 err = input_proc_init();
2506 if (err)
2507 goto fail1;
2508
2509 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2510 INPUT_MAX_CHAR_DEVICES, "input");
2511 if (err) {
2512 pr_err("unable to register char major %d", INPUT_MAJOR);
2513 goto fail2;
2514 }
2515
2516 return 0;
2517
2518 fail2: input_proc_exit();
2519 fail1: class_unregister(&input_class);
2520 return err;
2521 }
2522
input_exit(void)2523 static void __exit input_exit(void)
2524 {
2525 input_proc_exit();
2526 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2527 INPUT_MAX_CHAR_DEVICES);
2528 class_unregister(&input_class);
2529 }
2530
2531 subsys_initcall(input_init);
2532 module_exit(input_exit);
2533