1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-core.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 #include <linux/dax.h>
24
25 #define DM_MSG_PREFIX "table"
26
27 #define NODE_SIZE L1_CACHE_BYTES
28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30
31 /*
32 * Similar to ceiling(log_size(n))
33 */
int_log(unsigned int n,unsigned int base)34 static unsigned int int_log(unsigned int n, unsigned int base)
35 {
36 int result = 0;
37
38 while (n > 1) {
39 n = dm_div_up(n, base);
40 result++;
41 }
42
43 return result;
44 }
45
46 /*
47 * Calculate the index of the child node of the n'th node k'th key.
48 */
get_child(unsigned int n,unsigned int k)49 static inline unsigned int get_child(unsigned int n, unsigned int k)
50 {
51 return (n * CHILDREN_PER_NODE) + k;
52 }
53
54 /*
55 * Return the n'th node of level l from table t.
56 */
get_node(struct dm_table * t,unsigned int l,unsigned int n)57 static inline sector_t *get_node(struct dm_table *t,
58 unsigned int l, unsigned int n)
59 {
60 return t->index[l] + (n * KEYS_PER_NODE);
61 }
62
63 /*
64 * Return the highest key that you could lookup from the n'th
65 * node on level l of the btree.
66 */
high(struct dm_table * t,unsigned int l,unsigned int n)67 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
68 {
69 for (; l < t->depth - 1; l++)
70 n = get_child(n, CHILDREN_PER_NODE - 1);
71
72 if (n >= t->counts[l])
73 return (sector_t) - 1;
74
75 return get_node(t, l, n)[KEYS_PER_NODE - 1];
76 }
77
78 /*
79 * Fills in a level of the btree based on the highs of the level
80 * below it.
81 */
setup_btree_index(unsigned int l,struct dm_table * t)82 static int setup_btree_index(unsigned int l, struct dm_table *t)
83 {
84 unsigned int n, k;
85 sector_t *node;
86
87 for (n = 0U; n < t->counts[l]; n++) {
88 node = get_node(t, l, n);
89
90 for (k = 0U; k < KEYS_PER_NODE; k++)
91 node[k] = high(t, l + 1, get_child(n, k));
92 }
93
94 return 0;
95 }
96
dm_vcalloc(unsigned long nmemb,unsigned long elem_size)97 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
98 {
99 unsigned long size;
100 void *addr;
101
102 /*
103 * Check that we're not going to overflow.
104 */
105 if (nmemb > (ULONG_MAX / elem_size))
106 return NULL;
107
108 size = nmemb * elem_size;
109 addr = vzalloc(size);
110
111 return addr;
112 }
113 EXPORT_SYMBOL(dm_vcalloc);
114
115 /*
116 * highs, and targets are managed as dynamic arrays during a
117 * table load.
118 */
alloc_targets(struct dm_table * t,unsigned int num)119 static int alloc_targets(struct dm_table *t, unsigned int num)
120 {
121 sector_t *n_highs;
122 struct dm_target *n_targets;
123
124 /*
125 * Allocate both the target array and offset array at once.
126 */
127 n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) +
128 sizeof(sector_t));
129 if (!n_highs)
130 return -ENOMEM;
131
132 n_targets = (struct dm_target *) (n_highs + num);
133
134 memset(n_highs, -1, sizeof(*n_highs) * num);
135 vfree(t->highs);
136
137 t->num_allocated = num;
138 t->highs = n_highs;
139 t->targets = n_targets;
140
141 return 0;
142 }
143
dm_table_create(struct dm_table ** result,fmode_t mode,unsigned num_targets,struct mapped_device * md)144 int dm_table_create(struct dm_table **result, fmode_t mode,
145 unsigned num_targets, struct mapped_device *md)
146 {
147 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
148
149 if (!t)
150 return -ENOMEM;
151
152 INIT_LIST_HEAD(&t->devices);
153
154 if (!num_targets)
155 num_targets = KEYS_PER_NODE;
156
157 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
158
159 if (!num_targets) {
160 kfree(t);
161 return -ENOMEM;
162 }
163
164 if (alloc_targets(t, num_targets)) {
165 kfree(t);
166 return -ENOMEM;
167 }
168
169 t->type = DM_TYPE_NONE;
170 t->mode = mode;
171 t->md = md;
172 *result = t;
173 return 0;
174 }
175
free_devices(struct list_head * devices,struct mapped_device * md)176 static void free_devices(struct list_head *devices, struct mapped_device *md)
177 {
178 struct list_head *tmp, *next;
179
180 list_for_each_safe(tmp, next, devices) {
181 struct dm_dev_internal *dd =
182 list_entry(tmp, struct dm_dev_internal, list);
183 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
184 dm_device_name(md), dd->dm_dev->name);
185 dm_put_table_device(md, dd->dm_dev);
186 kfree(dd);
187 }
188 }
189
dm_table_destroy(struct dm_table * t)190 void dm_table_destroy(struct dm_table *t)
191 {
192 unsigned int i;
193
194 if (!t)
195 return;
196
197 /* free the indexes */
198 if (t->depth >= 2)
199 vfree(t->index[t->depth - 2]);
200
201 /* free the targets */
202 for (i = 0; i < t->num_targets; i++) {
203 struct dm_target *tgt = t->targets + i;
204
205 if (tgt->type->dtr)
206 tgt->type->dtr(tgt);
207
208 dm_put_target_type(tgt->type);
209 }
210
211 vfree(t->highs);
212
213 /* free the device list */
214 free_devices(&t->devices, t->md);
215
216 dm_free_md_mempools(t->mempools);
217
218 kfree(t);
219 }
220
221 /*
222 * See if we've already got a device in the list.
223 */
find_device(struct list_head * l,dev_t dev)224 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
225 {
226 struct dm_dev_internal *dd;
227
228 list_for_each_entry (dd, l, list)
229 if (dd->dm_dev->bdev->bd_dev == dev)
230 return dd;
231
232 return NULL;
233 }
234
235 /*
236 * If possible, this checks an area of a destination device is invalid.
237 */
device_area_is_invalid(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)238 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
239 sector_t start, sector_t len, void *data)
240 {
241 struct queue_limits *limits = data;
242 struct block_device *bdev = dev->bdev;
243 sector_t dev_size =
244 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
245 unsigned short logical_block_size_sectors =
246 limits->logical_block_size >> SECTOR_SHIFT;
247 char b[BDEVNAME_SIZE];
248
249 if (!dev_size)
250 return 0;
251
252 if ((start >= dev_size) || (start + len > dev_size)) {
253 DMWARN("%s: %s too small for target: "
254 "start=%llu, len=%llu, dev_size=%llu",
255 dm_device_name(ti->table->md), bdevname(bdev, b),
256 (unsigned long long)start,
257 (unsigned long long)len,
258 (unsigned long long)dev_size);
259 return 1;
260 }
261
262 /*
263 * If the target is mapped to zoned block device(s), check
264 * that the zones are not partially mapped.
265 */
266 if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
267 unsigned int zone_sectors = bdev_zone_sectors(bdev);
268
269 if (start & (zone_sectors - 1)) {
270 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
271 dm_device_name(ti->table->md),
272 (unsigned long long)start,
273 zone_sectors, bdevname(bdev, b));
274 return 1;
275 }
276
277 /*
278 * Note: The last zone of a zoned block device may be smaller
279 * than other zones. So for a target mapping the end of a
280 * zoned block device with such a zone, len would not be zone
281 * aligned. We do not allow such last smaller zone to be part
282 * of the mapping here to ensure that mappings with multiple
283 * devices do not end up with a smaller zone in the middle of
284 * the sector range.
285 */
286 if (len & (zone_sectors - 1)) {
287 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
288 dm_device_name(ti->table->md),
289 (unsigned long long)len,
290 zone_sectors, bdevname(bdev, b));
291 return 1;
292 }
293 }
294
295 if (logical_block_size_sectors <= 1)
296 return 0;
297
298 if (start & (logical_block_size_sectors - 1)) {
299 DMWARN("%s: start=%llu not aligned to h/w "
300 "logical block size %u of %s",
301 dm_device_name(ti->table->md),
302 (unsigned long long)start,
303 limits->logical_block_size, bdevname(bdev, b));
304 return 1;
305 }
306
307 if (len & (logical_block_size_sectors - 1)) {
308 DMWARN("%s: len=%llu not aligned to h/w "
309 "logical block size %u of %s",
310 dm_device_name(ti->table->md),
311 (unsigned long long)len,
312 limits->logical_block_size, bdevname(bdev, b));
313 return 1;
314 }
315
316 return 0;
317 }
318
319 /*
320 * This upgrades the mode on an already open dm_dev, being
321 * careful to leave things as they were if we fail to reopen the
322 * device and not to touch the existing bdev field in case
323 * it is accessed concurrently.
324 */
upgrade_mode(struct dm_dev_internal * dd,fmode_t new_mode,struct mapped_device * md)325 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
326 struct mapped_device *md)
327 {
328 int r;
329 struct dm_dev *old_dev, *new_dev;
330
331 old_dev = dd->dm_dev;
332
333 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
334 dd->dm_dev->mode | new_mode, &new_dev);
335 if (r)
336 return r;
337
338 dd->dm_dev = new_dev;
339 dm_put_table_device(md, old_dev);
340
341 return 0;
342 }
343
344 /*
345 * Convert the path to a device
346 */
dm_get_dev_t(const char * path)347 dev_t dm_get_dev_t(const char *path)
348 {
349 dev_t dev;
350 struct block_device *bdev;
351
352 bdev = lookup_bdev(path);
353 if (IS_ERR(bdev))
354 dev = name_to_dev_t(path);
355 else {
356 dev = bdev->bd_dev;
357 bdput(bdev);
358 }
359
360 return dev;
361 }
362 EXPORT_SYMBOL_GPL(dm_get_dev_t);
363
364 /*
365 * Add a device to the list, or just increment the usage count if
366 * it's already present.
367 */
dm_get_device(struct dm_target * ti,const char * path,fmode_t mode,struct dm_dev ** result)368 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
369 struct dm_dev **result)
370 {
371 int r;
372 dev_t dev;
373 unsigned int major, minor;
374 char dummy;
375 struct dm_dev_internal *dd;
376 struct dm_table *t = ti->table;
377
378 BUG_ON(!t);
379
380 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
381 /* Extract the major/minor numbers */
382 dev = MKDEV(major, minor);
383 if (MAJOR(dev) != major || MINOR(dev) != minor)
384 return -EOVERFLOW;
385 } else {
386 dev = dm_get_dev_t(path);
387 if (!dev)
388 return -ENODEV;
389 }
390
391 dd = find_device(&t->devices, dev);
392 if (!dd) {
393 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
394 if (!dd)
395 return -ENOMEM;
396
397 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
398 kfree(dd);
399 return r;
400 }
401
402 refcount_set(&dd->count, 1);
403 list_add(&dd->list, &t->devices);
404 goto out;
405
406 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
407 r = upgrade_mode(dd, mode, t->md);
408 if (r)
409 return r;
410 }
411 refcount_inc(&dd->count);
412 out:
413 *result = dd->dm_dev;
414 return 0;
415 }
416 EXPORT_SYMBOL(dm_get_device);
417
dm_set_device_limits(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)418 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
419 sector_t start, sector_t len, void *data)
420 {
421 struct queue_limits *limits = data;
422 struct block_device *bdev = dev->bdev;
423 struct request_queue *q = bdev_get_queue(bdev);
424 char b[BDEVNAME_SIZE];
425
426 if (unlikely(!q)) {
427 DMWARN("%s: Cannot set limits for nonexistent device %s",
428 dm_device_name(ti->table->md), bdevname(bdev, b));
429 return 0;
430 }
431
432 if (blk_stack_limits(limits, &q->limits,
433 get_start_sect(bdev) + start) < 0)
434 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
435 "physical_block_size=%u, logical_block_size=%u, "
436 "alignment_offset=%u, start=%llu",
437 dm_device_name(ti->table->md), bdevname(bdev, b),
438 q->limits.physical_block_size,
439 q->limits.logical_block_size,
440 q->limits.alignment_offset,
441 (unsigned long long) start << SECTOR_SHIFT);
442 return 0;
443 }
444
445 /*
446 * Decrement a device's use count and remove it if necessary.
447 */
dm_put_device(struct dm_target * ti,struct dm_dev * d)448 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
449 {
450 int found = 0;
451 struct list_head *devices = &ti->table->devices;
452 struct dm_dev_internal *dd;
453
454 list_for_each_entry(dd, devices, list) {
455 if (dd->dm_dev == d) {
456 found = 1;
457 break;
458 }
459 }
460 if (!found) {
461 DMWARN("%s: device %s not in table devices list",
462 dm_device_name(ti->table->md), d->name);
463 return;
464 }
465 if (refcount_dec_and_test(&dd->count)) {
466 dm_put_table_device(ti->table->md, d);
467 list_del(&dd->list);
468 kfree(dd);
469 }
470 }
471 EXPORT_SYMBOL(dm_put_device);
472
473 /*
474 * Checks to see if the target joins onto the end of the table.
475 */
adjoin(struct dm_table * table,struct dm_target * ti)476 static int adjoin(struct dm_table *table, struct dm_target *ti)
477 {
478 struct dm_target *prev;
479
480 if (!table->num_targets)
481 return !ti->begin;
482
483 prev = &table->targets[table->num_targets - 1];
484 return (ti->begin == (prev->begin + prev->len));
485 }
486
487 /*
488 * Used to dynamically allocate the arg array.
489 *
490 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
491 * process messages even if some device is suspended. These messages have a
492 * small fixed number of arguments.
493 *
494 * On the other hand, dm-switch needs to process bulk data using messages and
495 * excessive use of GFP_NOIO could cause trouble.
496 */
realloc_argv(unsigned * size,char ** old_argv)497 static char **realloc_argv(unsigned *size, char **old_argv)
498 {
499 char **argv;
500 unsigned new_size;
501 gfp_t gfp;
502
503 if (*size) {
504 new_size = *size * 2;
505 gfp = GFP_KERNEL;
506 } else {
507 new_size = 8;
508 gfp = GFP_NOIO;
509 }
510 argv = kmalloc_array(new_size, sizeof(*argv), gfp);
511 if (argv && old_argv) {
512 memcpy(argv, old_argv, *size * sizeof(*argv));
513 *size = new_size;
514 }
515
516 kfree(old_argv);
517 return argv;
518 }
519
520 /*
521 * Destructively splits up the argument list to pass to ctr.
522 */
dm_split_args(int * argc,char *** argvp,char * input)523 int dm_split_args(int *argc, char ***argvp, char *input)
524 {
525 char *start, *end = input, *out, **argv = NULL;
526 unsigned array_size = 0;
527
528 *argc = 0;
529
530 if (!input) {
531 *argvp = NULL;
532 return 0;
533 }
534
535 argv = realloc_argv(&array_size, argv);
536 if (!argv)
537 return -ENOMEM;
538
539 while (1) {
540 /* Skip whitespace */
541 start = skip_spaces(end);
542
543 if (!*start)
544 break; /* success, we hit the end */
545
546 /* 'out' is used to remove any back-quotes */
547 end = out = start;
548 while (*end) {
549 /* Everything apart from '\0' can be quoted */
550 if (*end == '\\' && *(end + 1)) {
551 *out++ = *(end + 1);
552 end += 2;
553 continue;
554 }
555
556 if (isspace(*end))
557 break; /* end of token */
558
559 *out++ = *end++;
560 }
561
562 /* have we already filled the array ? */
563 if ((*argc + 1) > array_size) {
564 argv = realloc_argv(&array_size, argv);
565 if (!argv)
566 return -ENOMEM;
567 }
568
569 /* we know this is whitespace */
570 if (*end)
571 end++;
572
573 /* terminate the string and put it in the array */
574 *out = '\0';
575 argv[*argc] = start;
576 (*argc)++;
577 }
578
579 *argvp = argv;
580 return 0;
581 }
582
583 /*
584 * Impose necessary and sufficient conditions on a devices's table such
585 * that any incoming bio which respects its logical_block_size can be
586 * processed successfully. If it falls across the boundary between
587 * two or more targets, the size of each piece it gets split into must
588 * be compatible with the logical_block_size of the target processing it.
589 */
validate_hardware_logical_block_alignment(struct dm_table * table,struct queue_limits * limits)590 static int validate_hardware_logical_block_alignment(struct dm_table *table,
591 struct queue_limits *limits)
592 {
593 /*
594 * This function uses arithmetic modulo the logical_block_size
595 * (in units of 512-byte sectors).
596 */
597 unsigned short device_logical_block_size_sects =
598 limits->logical_block_size >> SECTOR_SHIFT;
599
600 /*
601 * Offset of the start of the next table entry, mod logical_block_size.
602 */
603 unsigned short next_target_start = 0;
604
605 /*
606 * Given an aligned bio that extends beyond the end of a
607 * target, how many sectors must the next target handle?
608 */
609 unsigned short remaining = 0;
610
611 struct dm_target *ti;
612 struct queue_limits ti_limits;
613 unsigned i;
614
615 /*
616 * Check each entry in the table in turn.
617 */
618 for (i = 0; i < dm_table_get_num_targets(table); i++) {
619 ti = dm_table_get_target(table, i);
620
621 blk_set_stacking_limits(&ti_limits);
622
623 /* combine all target devices' limits */
624 if (ti->type->iterate_devices)
625 ti->type->iterate_devices(ti, dm_set_device_limits,
626 &ti_limits);
627
628 /*
629 * If the remaining sectors fall entirely within this
630 * table entry are they compatible with its logical_block_size?
631 */
632 if (remaining < ti->len &&
633 remaining & ((ti_limits.logical_block_size >>
634 SECTOR_SHIFT) - 1))
635 break; /* Error */
636
637 next_target_start =
638 (unsigned short) ((next_target_start + ti->len) &
639 (device_logical_block_size_sects - 1));
640 remaining = next_target_start ?
641 device_logical_block_size_sects - next_target_start : 0;
642 }
643
644 if (remaining) {
645 DMWARN("%s: table line %u (start sect %llu len %llu) "
646 "not aligned to h/w logical block size %u",
647 dm_device_name(table->md), i,
648 (unsigned long long) ti->begin,
649 (unsigned long long) ti->len,
650 limits->logical_block_size);
651 return -EINVAL;
652 }
653
654 return 0;
655 }
656
dm_table_add_target(struct dm_table * t,const char * type,sector_t start,sector_t len,char * params)657 int dm_table_add_target(struct dm_table *t, const char *type,
658 sector_t start, sector_t len, char *params)
659 {
660 int r = -EINVAL, argc;
661 char **argv;
662 struct dm_target *tgt;
663
664 if (t->singleton) {
665 DMERR("%s: target type %s must appear alone in table",
666 dm_device_name(t->md), t->targets->type->name);
667 return -EINVAL;
668 }
669
670 BUG_ON(t->num_targets >= t->num_allocated);
671
672 tgt = t->targets + t->num_targets;
673 memset(tgt, 0, sizeof(*tgt));
674
675 if (!len) {
676 DMERR("%s: zero-length target", dm_device_name(t->md));
677 return -EINVAL;
678 }
679
680 tgt->type = dm_get_target_type(type);
681 if (!tgt->type) {
682 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
683 return -EINVAL;
684 }
685
686 if (dm_target_needs_singleton(tgt->type)) {
687 if (t->num_targets) {
688 tgt->error = "singleton target type must appear alone in table";
689 goto bad;
690 }
691 t->singleton = true;
692 }
693
694 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
695 tgt->error = "target type may not be included in a read-only table";
696 goto bad;
697 }
698
699 if (t->immutable_target_type) {
700 if (t->immutable_target_type != tgt->type) {
701 tgt->error = "immutable target type cannot be mixed with other target types";
702 goto bad;
703 }
704 } else if (dm_target_is_immutable(tgt->type)) {
705 if (t->num_targets) {
706 tgt->error = "immutable target type cannot be mixed with other target types";
707 goto bad;
708 }
709 t->immutable_target_type = tgt->type;
710 }
711
712 if (dm_target_has_integrity(tgt->type))
713 t->integrity_added = 1;
714
715 tgt->table = t;
716 tgt->begin = start;
717 tgt->len = len;
718 tgt->error = "Unknown error";
719
720 /*
721 * Does this target adjoin the previous one ?
722 */
723 if (!adjoin(t, tgt)) {
724 tgt->error = "Gap in table";
725 goto bad;
726 }
727
728 r = dm_split_args(&argc, &argv, params);
729 if (r) {
730 tgt->error = "couldn't split parameters (insufficient memory)";
731 goto bad;
732 }
733
734 r = tgt->type->ctr(tgt, argc, argv);
735 kfree(argv);
736 if (r)
737 goto bad;
738
739 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
740
741 if (!tgt->num_discard_bios && tgt->discards_supported)
742 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
743 dm_device_name(t->md), type);
744
745 return 0;
746
747 bad:
748 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
749 dm_put_target_type(tgt->type);
750 return r;
751 }
752
753 /*
754 * Target argument parsing helpers.
755 */
validate_next_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error,unsigned grouped)756 static int validate_next_arg(const struct dm_arg *arg,
757 struct dm_arg_set *arg_set,
758 unsigned *value, char **error, unsigned grouped)
759 {
760 const char *arg_str = dm_shift_arg(arg_set);
761 char dummy;
762
763 if (!arg_str ||
764 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
765 (*value < arg->min) ||
766 (*value > arg->max) ||
767 (grouped && arg_set->argc < *value)) {
768 *error = arg->error;
769 return -EINVAL;
770 }
771
772 return 0;
773 }
774
dm_read_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error)775 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
776 unsigned *value, char **error)
777 {
778 return validate_next_arg(arg, arg_set, value, error, 0);
779 }
780 EXPORT_SYMBOL(dm_read_arg);
781
dm_read_arg_group(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error)782 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
783 unsigned *value, char **error)
784 {
785 return validate_next_arg(arg, arg_set, value, error, 1);
786 }
787 EXPORT_SYMBOL(dm_read_arg_group);
788
dm_shift_arg(struct dm_arg_set * as)789 const char *dm_shift_arg(struct dm_arg_set *as)
790 {
791 char *r;
792
793 if (as->argc) {
794 as->argc--;
795 r = *as->argv;
796 as->argv++;
797 return r;
798 }
799
800 return NULL;
801 }
802 EXPORT_SYMBOL(dm_shift_arg);
803
dm_consume_args(struct dm_arg_set * as,unsigned num_args)804 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
805 {
806 BUG_ON(as->argc < num_args);
807 as->argc -= num_args;
808 as->argv += num_args;
809 }
810 EXPORT_SYMBOL(dm_consume_args);
811
__table_type_bio_based(enum dm_queue_mode table_type)812 static bool __table_type_bio_based(enum dm_queue_mode table_type)
813 {
814 return (table_type == DM_TYPE_BIO_BASED ||
815 table_type == DM_TYPE_DAX_BIO_BASED);
816 }
817
__table_type_request_based(enum dm_queue_mode table_type)818 static bool __table_type_request_based(enum dm_queue_mode table_type)
819 {
820 return table_type == DM_TYPE_REQUEST_BASED;
821 }
822
dm_table_set_type(struct dm_table * t,enum dm_queue_mode type)823 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
824 {
825 t->type = type;
826 }
827 EXPORT_SYMBOL_GPL(dm_table_set_type);
828
829 /* validate the dax capability of the target device span */
device_not_dax_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)830 int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
831 sector_t start, sector_t len, void *data)
832 {
833 int blocksize = *(int *) data, id;
834 bool rc;
835
836 id = dax_read_lock();
837 rc = !dax_supported(dev->dax_dev, dev->bdev, blocksize, start, len);
838 dax_read_unlock(id);
839
840 return rc;
841 }
842
843 /* Check devices support synchronous DAX */
device_not_dax_synchronous_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)844 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
845 sector_t start, sector_t len, void *data)
846 {
847 return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
848 }
849
dm_table_supports_dax(struct dm_table * t,iterate_devices_callout_fn iterate_fn,int * blocksize)850 bool dm_table_supports_dax(struct dm_table *t,
851 iterate_devices_callout_fn iterate_fn, int *blocksize)
852 {
853 struct dm_target *ti;
854 unsigned i;
855
856 /* Ensure that all targets support DAX. */
857 for (i = 0; i < dm_table_get_num_targets(t); i++) {
858 ti = dm_table_get_target(t, i);
859
860 if (!ti->type->direct_access)
861 return false;
862
863 if (!ti->type->iterate_devices ||
864 ti->type->iterate_devices(ti, iterate_fn, blocksize))
865 return false;
866 }
867
868 return true;
869 }
870
device_is_rq_stackable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)871 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
872 sector_t start, sector_t len, void *data)
873 {
874 struct block_device *bdev = dev->bdev;
875 struct request_queue *q = bdev_get_queue(bdev);
876
877 /* request-based cannot stack on partitions! */
878 if (bdev_is_partition(bdev))
879 return false;
880
881 return queue_is_mq(q);
882 }
883
dm_table_determine_type(struct dm_table * t)884 static int dm_table_determine_type(struct dm_table *t)
885 {
886 unsigned i;
887 unsigned bio_based = 0, request_based = 0, hybrid = 0;
888 struct dm_target *tgt;
889 struct list_head *devices = dm_table_get_devices(t);
890 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
891 int page_size = PAGE_SIZE;
892
893 if (t->type != DM_TYPE_NONE) {
894 /* target already set the table's type */
895 if (t->type == DM_TYPE_BIO_BASED) {
896 /* possibly upgrade to a variant of bio-based */
897 goto verify_bio_based;
898 }
899 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
900 goto verify_rq_based;
901 }
902
903 for (i = 0; i < t->num_targets; i++) {
904 tgt = t->targets + i;
905 if (dm_target_hybrid(tgt))
906 hybrid = 1;
907 else if (dm_target_request_based(tgt))
908 request_based = 1;
909 else
910 bio_based = 1;
911
912 if (bio_based && request_based) {
913 DMERR("Inconsistent table: different target types"
914 " can't be mixed up");
915 return -EINVAL;
916 }
917 }
918
919 if (hybrid && !bio_based && !request_based) {
920 /*
921 * The targets can work either way.
922 * Determine the type from the live device.
923 * Default to bio-based if device is new.
924 */
925 if (__table_type_request_based(live_md_type))
926 request_based = 1;
927 else
928 bio_based = 1;
929 }
930
931 if (bio_based) {
932 verify_bio_based:
933 /* We must use this table as bio-based */
934 t->type = DM_TYPE_BIO_BASED;
935 if (dm_table_supports_dax(t, device_not_dax_capable, &page_size) ||
936 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
937 t->type = DM_TYPE_DAX_BIO_BASED;
938 }
939 return 0;
940 }
941
942 BUG_ON(!request_based); /* No targets in this table */
943
944 t->type = DM_TYPE_REQUEST_BASED;
945
946 verify_rq_based:
947 /*
948 * Request-based dm supports only tables that have a single target now.
949 * To support multiple targets, request splitting support is needed,
950 * and that needs lots of changes in the block-layer.
951 * (e.g. request completion process for partial completion.)
952 */
953 if (t->num_targets > 1) {
954 DMERR("request-based DM doesn't support multiple targets");
955 return -EINVAL;
956 }
957
958 if (list_empty(devices)) {
959 int srcu_idx;
960 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
961
962 /* inherit live table's type */
963 if (live_table)
964 t->type = live_table->type;
965 dm_put_live_table(t->md, srcu_idx);
966 return 0;
967 }
968
969 tgt = dm_table_get_immutable_target(t);
970 if (!tgt) {
971 DMERR("table load rejected: immutable target is required");
972 return -EINVAL;
973 } else if (tgt->max_io_len) {
974 DMERR("table load rejected: immutable target that splits IO is not supported");
975 return -EINVAL;
976 }
977
978 /* Non-request-stackable devices can't be used for request-based dm */
979 if (!tgt->type->iterate_devices ||
980 !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) {
981 DMERR("table load rejected: including non-request-stackable devices");
982 return -EINVAL;
983 }
984
985 return 0;
986 }
987
dm_table_get_type(struct dm_table * t)988 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
989 {
990 return t->type;
991 }
992
dm_table_get_immutable_target_type(struct dm_table * t)993 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
994 {
995 return t->immutable_target_type;
996 }
997
dm_table_get_immutable_target(struct dm_table * t)998 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
999 {
1000 /* Immutable target is implicitly a singleton */
1001 if (t->num_targets > 1 ||
1002 !dm_target_is_immutable(t->targets[0].type))
1003 return NULL;
1004
1005 return t->targets;
1006 }
1007
dm_table_get_wildcard_target(struct dm_table * t)1008 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1009 {
1010 struct dm_target *ti;
1011 unsigned i;
1012
1013 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1014 ti = dm_table_get_target(t, i);
1015 if (dm_target_is_wildcard(ti->type))
1016 return ti;
1017 }
1018
1019 return NULL;
1020 }
1021
dm_table_bio_based(struct dm_table * t)1022 bool dm_table_bio_based(struct dm_table *t)
1023 {
1024 return __table_type_bio_based(dm_table_get_type(t));
1025 }
1026
dm_table_request_based(struct dm_table * t)1027 bool dm_table_request_based(struct dm_table *t)
1028 {
1029 return __table_type_request_based(dm_table_get_type(t));
1030 }
1031
dm_table_alloc_md_mempools(struct dm_table * t,struct mapped_device * md)1032 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1033 {
1034 enum dm_queue_mode type = dm_table_get_type(t);
1035 unsigned per_io_data_size = 0;
1036 unsigned min_pool_size = 0;
1037 struct dm_target *ti;
1038 unsigned i;
1039
1040 if (unlikely(type == DM_TYPE_NONE)) {
1041 DMWARN("no table type is set, can't allocate mempools");
1042 return -EINVAL;
1043 }
1044
1045 if (__table_type_bio_based(type))
1046 for (i = 0; i < t->num_targets; i++) {
1047 ti = t->targets + i;
1048 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1049 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1050 }
1051
1052 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1053 per_io_data_size, min_pool_size);
1054 if (!t->mempools)
1055 return -ENOMEM;
1056
1057 return 0;
1058 }
1059
dm_table_free_md_mempools(struct dm_table * t)1060 void dm_table_free_md_mempools(struct dm_table *t)
1061 {
1062 dm_free_md_mempools(t->mempools);
1063 t->mempools = NULL;
1064 }
1065
dm_table_get_md_mempools(struct dm_table * t)1066 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1067 {
1068 return t->mempools;
1069 }
1070
setup_indexes(struct dm_table * t)1071 static int setup_indexes(struct dm_table *t)
1072 {
1073 int i;
1074 unsigned int total = 0;
1075 sector_t *indexes;
1076
1077 /* allocate the space for *all* the indexes */
1078 for (i = t->depth - 2; i >= 0; i--) {
1079 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1080 total += t->counts[i];
1081 }
1082
1083 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1084 if (!indexes)
1085 return -ENOMEM;
1086
1087 /* set up internal nodes, bottom-up */
1088 for (i = t->depth - 2; i >= 0; i--) {
1089 t->index[i] = indexes;
1090 indexes += (KEYS_PER_NODE * t->counts[i]);
1091 setup_btree_index(i, t);
1092 }
1093
1094 return 0;
1095 }
1096
1097 /*
1098 * Builds the btree to index the map.
1099 */
dm_table_build_index(struct dm_table * t)1100 static int dm_table_build_index(struct dm_table *t)
1101 {
1102 int r = 0;
1103 unsigned int leaf_nodes;
1104
1105 /* how many indexes will the btree have ? */
1106 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1107 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1108
1109 /* leaf layer has already been set up */
1110 t->counts[t->depth - 1] = leaf_nodes;
1111 t->index[t->depth - 1] = t->highs;
1112
1113 if (t->depth >= 2)
1114 r = setup_indexes(t);
1115
1116 return r;
1117 }
1118
integrity_profile_exists(struct gendisk * disk)1119 static bool integrity_profile_exists(struct gendisk *disk)
1120 {
1121 return !!blk_get_integrity(disk);
1122 }
1123
1124 /*
1125 * Get a disk whose integrity profile reflects the table's profile.
1126 * Returns NULL if integrity support was inconsistent or unavailable.
1127 */
dm_table_get_integrity_disk(struct dm_table * t)1128 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1129 {
1130 struct list_head *devices = dm_table_get_devices(t);
1131 struct dm_dev_internal *dd = NULL;
1132 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1133 unsigned i;
1134
1135 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1136 struct dm_target *ti = dm_table_get_target(t, i);
1137 if (!dm_target_passes_integrity(ti->type))
1138 goto no_integrity;
1139 }
1140
1141 list_for_each_entry(dd, devices, list) {
1142 template_disk = dd->dm_dev->bdev->bd_disk;
1143 if (!integrity_profile_exists(template_disk))
1144 goto no_integrity;
1145 else if (prev_disk &&
1146 blk_integrity_compare(prev_disk, template_disk) < 0)
1147 goto no_integrity;
1148 prev_disk = template_disk;
1149 }
1150
1151 return template_disk;
1152
1153 no_integrity:
1154 if (prev_disk)
1155 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1156 dm_device_name(t->md),
1157 prev_disk->disk_name,
1158 template_disk->disk_name);
1159 return NULL;
1160 }
1161
1162 /*
1163 * Register the mapped device for blk_integrity support if the
1164 * underlying devices have an integrity profile. But all devices may
1165 * not have matching profiles (checking all devices isn't reliable
1166 * during table load because this table may use other DM device(s) which
1167 * must be resumed before they will have an initialized integity
1168 * profile). Consequently, stacked DM devices force a 2 stage integrity
1169 * profile validation: First pass during table load, final pass during
1170 * resume.
1171 */
dm_table_register_integrity(struct dm_table * t)1172 static int dm_table_register_integrity(struct dm_table *t)
1173 {
1174 struct mapped_device *md = t->md;
1175 struct gendisk *template_disk = NULL;
1176
1177 /* If target handles integrity itself do not register it here. */
1178 if (t->integrity_added)
1179 return 0;
1180
1181 template_disk = dm_table_get_integrity_disk(t);
1182 if (!template_disk)
1183 return 0;
1184
1185 if (!integrity_profile_exists(dm_disk(md))) {
1186 t->integrity_supported = true;
1187 /*
1188 * Register integrity profile during table load; we can do
1189 * this because the final profile must match during resume.
1190 */
1191 blk_integrity_register(dm_disk(md),
1192 blk_get_integrity(template_disk));
1193 return 0;
1194 }
1195
1196 /*
1197 * If DM device already has an initialized integrity
1198 * profile the new profile should not conflict.
1199 */
1200 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1201 DMWARN("%s: conflict with existing integrity profile: "
1202 "%s profile mismatch",
1203 dm_device_name(t->md),
1204 template_disk->disk_name);
1205 return 1;
1206 }
1207
1208 /* Preserve existing integrity profile */
1209 t->integrity_supported = true;
1210 return 0;
1211 }
1212
1213 /*
1214 * Prepares the table for use by building the indices,
1215 * setting the type, and allocating mempools.
1216 */
dm_table_complete(struct dm_table * t)1217 int dm_table_complete(struct dm_table *t)
1218 {
1219 int r;
1220
1221 r = dm_table_determine_type(t);
1222 if (r) {
1223 DMERR("unable to determine table type");
1224 return r;
1225 }
1226
1227 r = dm_table_build_index(t);
1228 if (r) {
1229 DMERR("unable to build btrees");
1230 return r;
1231 }
1232
1233 r = dm_table_register_integrity(t);
1234 if (r) {
1235 DMERR("could not register integrity profile.");
1236 return r;
1237 }
1238
1239 r = dm_table_alloc_md_mempools(t, t->md);
1240 if (r)
1241 DMERR("unable to allocate mempools");
1242
1243 return r;
1244 }
1245
1246 static DEFINE_MUTEX(_event_lock);
dm_table_event_callback(struct dm_table * t,void (* fn)(void *),void * context)1247 void dm_table_event_callback(struct dm_table *t,
1248 void (*fn)(void *), void *context)
1249 {
1250 mutex_lock(&_event_lock);
1251 t->event_fn = fn;
1252 t->event_context = context;
1253 mutex_unlock(&_event_lock);
1254 }
1255
dm_table_event(struct dm_table * t)1256 void dm_table_event(struct dm_table *t)
1257 {
1258 mutex_lock(&_event_lock);
1259 if (t->event_fn)
1260 t->event_fn(t->event_context);
1261 mutex_unlock(&_event_lock);
1262 }
1263 EXPORT_SYMBOL(dm_table_event);
1264
dm_table_get_size(struct dm_table * t)1265 inline sector_t dm_table_get_size(struct dm_table *t)
1266 {
1267 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1268 }
1269 EXPORT_SYMBOL(dm_table_get_size);
1270
dm_table_get_target(struct dm_table * t,unsigned int index)1271 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1272 {
1273 if (index >= t->num_targets)
1274 return NULL;
1275
1276 return t->targets + index;
1277 }
1278
1279 /*
1280 * Search the btree for the correct target.
1281 *
1282 * Caller should check returned pointer for NULL
1283 * to trap I/O beyond end of device.
1284 */
dm_table_find_target(struct dm_table * t,sector_t sector)1285 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1286 {
1287 unsigned int l, n = 0, k = 0;
1288 sector_t *node;
1289
1290 if (unlikely(sector >= dm_table_get_size(t)))
1291 return NULL;
1292
1293 for (l = 0; l < t->depth; l++) {
1294 n = get_child(n, k);
1295 node = get_node(t, l, n);
1296
1297 for (k = 0; k < KEYS_PER_NODE; k++)
1298 if (node[k] >= sector)
1299 break;
1300 }
1301
1302 return &t->targets[(KEYS_PER_NODE * n) + k];
1303 }
1304
1305 /*
1306 * type->iterate_devices() should be called when the sanity check needs to
1307 * iterate and check all underlying data devices. iterate_devices() will
1308 * iterate all underlying data devices until it encounters a non-zero return
1309 * code, returned by whether the input iterate_devices_callout_fn, or
1310 * iterate_devices() itself internally.
1311 *
1312 * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1313 * iterate multiple underlying devices internally, in which case a non-zero
1314 * return code returned by iterate_devices_callout_fn will stop the iteration
1315 * in advance.
1316 *
1317 * Cases requiring _any_ underlying device supporting some kind of attribute,
1318 * should use the iteration structure like dm_table_any_dev_attr(), or call
1319 * it directly. @func should handle semantics of positive examples, e.g.
1320 * capable of something.
1321 *
1322 * Cases requiring _all_ underlying devices supporting some kind of attribute,
1323 * should use the iteration structure like dm_table_supports_nowait() or
1324 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1325 * uses an @anti_func that handle semantics of counter examples, e.g. not
1326 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1327 */
dm_table_any_dev_attr(struct dm_table * t,iterate_devices_callout_fn func,void * data)1328 static bool dm_table_any_dev_attr(struct dm_table *t,
1329 iterate_devices_callout_fn func, void *data)
1330 {
1331 struct dm_target *ti;
1332 unsigned int i;
1333
1334 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1335 ti = dm_table_get_target(t, i);
1336
1337 if (ti->type->iterate_devices &&
1338 ti->type->iterate_devices(ti, func, data))
1339 return true;
1340 }
1341
1342 return false;
1343 }
1344
count_device(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1345 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1346 sector_t start, sector_t len, void *data)
1347 {
1348 unsigned *num_devices = data;
1349
1350 (*num_devices)++;
1351
1352 return 0;
1353 }
1354
1355 /*
1356 * Check whether a table has no data devices attached using each
1357 * target's iterate_devices method.
1358 * Returns false if the result is unknown because a target doesn't
1359 * support iterate_devices.
1360 */
dm_table_has_no_data_devices(struct dm_table * table)1361 bool dm_table_has_no_data_devices(struct dm_table *table)
1362 {
1363 struct dm_target *ti;
1364 unsigned i, num_devices;
1365
1366 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1367 ti = dm_table_get_target(table, i);
1368
1369 if (!ti->type->iterate_devices)
1370 return false;
1371
1372 num_devices = 0;
1373 ti->type->iterate_devices(ti, count_device, &num_devices);
1374 if (num_devices)
1375 return false;
1376 }
1377
1378 return true;
1379 }
1380
device_not_zoned_model(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1381 static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1382 sector_t start, sector_t len, void *data)
1383 {
1384 struct request_queue *q = bdev_get_queue(dev->bdev);
1385 enum blk_zoned_model *zoned_model = data;
1386
1387 return !q || blk_queue_zoned_model(q) != *zoned_model;
1388 }
1389
1390 /*
1391 * Check the device zoned model based on the target feature flag. If the target
1392 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1393 * also accepted but all devices must have the same zoned model. If the target
1394 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1395 * zoned model with all zoned devices having the same zone size.
1396 */
dm_table_supports_zoned_model(struct dm_table * t,enum blk_zoned_model zoned_model)1397 static bool dm_table_supports_zoned_model(struct dm_table *t,
1398 enum blk_zoned_model zoned_model)
1399 {
1400 struct dm_target *ti;
1401 unsigned i;
1402
1403 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1404 ti = dm_table_get_target(t, i);
1405
1406 if (dm_target_supports_zoned_hm(ti->type)) {
1407 if (!ti->type->iterate_devices ||
1408 ti->type->iterate_devices(ti, device_not_zoned_model,
1409 &zoned_model))
1410 return false;
1411 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1412 if (zoned_model == BLK_ZONED_HM)
1413 return false;
1414 }
1415 }
1416
1417 return true;
1418 }
1419
device_not_matches_zone_sectors(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1420 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1421 sector_t start, sector_t len, void *data)
1422 {
1423 struct request_queue *q = bdev_get_queue(dev->bdev);
1424 unsigned int *zone_sectors = data;
1425
1426 if (!blk_queue_is_zoned(q))
1427 return 0;
1428
1429 return !q || blk_queue_zone_sectors(q) != *zone_sectors;
1430 }
1431
1432 /*
1433 * Check consistency of zoned model and zone sectors across all targets. For
1434 * zone sectors, if the destination device is a zoned block device, it shall
1435 * have the specified zone_sectors.
1436 */
validate_hardware_zoned_model(struct dm_table * table,enum blk_zoned_model zoned_model,unsigned int zone_sectors)1437 static int validate_hardware_zoned_model(struct dm_table *table,
1438 enum blk_zoned_model zoned_model,
1439 unsigned int zone_sectors)
1440 {
1441 if (zoned_model == BLK_ZONED_NONE)
1442 return 0;
1443
1444 if (!dm_table_supports_zoned_model(table, zoned_model)) {
1445 DMERR("%s: zoned model is not consistent across all devices",
1446 dm_device_name(table->md));
1447 return -EINVAL;
1448 }
1449
1450 /* Check zone size validity and compatibility */
1451 if (!zone_sectors || !is_power_of_2(zone_sectors))
1452 return -EINVAL;
1453
1454 if (dm_table_any_dev_attr(table, device_not_matches_zone_sectors, &zone_sectors)) {
1455 DMERR("%s: zone sectors is not consistent across all zoned devices",
1456 dm_device_name(table->md));
1457 return -EINVAL;
1458 }
1459
1460 return 0;
1461 }
1462
1463 /*
1464 * Establish the new table's queue_limits and validate them.
1465 */
dm_calculate_queue_limits(struct dm_table * table,struct queue_limits * limits)1466 int dm_calculate_queue_limits(struct dm_table *table,
1467 struct queue_limits *limits)
1468 {
1469 struct dm_target *ti;
1470 struct queue_limits ti_limits;
1471 unsigned i;
1472 enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1473 unsigned int zone_sectors = 0;
1474
1475 blk_set_stacking_limits(limits);
1476
1477 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1478 blk_set_stacking_limits(&ti_limits);
1479
1480 ti = dm_table_get_target(table, i);
1481
1482 if (!ti->type->iterate_devices)
1483 goto combine_limits;
1484
1485 /*
1486 * Combine queue limits of all the devices this target uses.
1487 */
1488 ti->type->iterate_devices(ti, dm_set_device_limits,
1489 &ti_limits);
1490
1491 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1492 /*
1493 * After stacking all limits, validate all devices
1494 * in table support this zoned model and zone sectors.
1495 */
1496 zoned_model = ti_limits.zoned;
1497 zone_sectors = ti_limits.chunk_sectors;
1498 }
1499
1500 /* Set I/O hints portion of queue limits */
1501 if (ti->type->io_hints)
1502 ti->type->io_hints(ti, &ti_limits);
1503
1504 /*
1505 * Check each device area is consistent with the target's
1506 * overall queue limits.
1507 */
1508 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1509 &ti_limits))
1510 return -EINVAL;
1511
1512 combine_limits:
1513 /*
1514 * Merge this target's queue limits into the overall limits
1515 * for the table.
1516 */
1517 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1518 DMWARN("%s: adding target device "
1519 "(start sect %llu len %llu) "
1520 "caused an alignment inconsistency",
1521 dm_device_name(table->md),
1522 (unsigned long long) ti->begin,
1523 (unsigned long long) ti->len);
1524 }
1525
1526 /*
1527 * Verify that the zoned model and zone sectors, as determined before
1528 * any .io_hints override, are the same across all devices in the table.
1529 * - this is especially relevant if .io_hints is emulating a disk-managed
1530 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1531 * BUT...
1532 */
1533 if (limits->zoned != BLK_ZONED_NONE) {
1534 /*
1535 * ...IF the above limits stacking determined a zoned model
1536 * validate that all of the table's devices conform to it.
1537 */
1538 zoned_model = limits->zoned;
1539 zone_sectors = limits->chunk_sectors;
1540 }
1541 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1542 return -EINVAL;
1543
1544 return validate_hardware_logical_block_alignment(table, limits);
1545 }
1546
1547 /*
1548 * Verify that all devices have an integrity profile that matches the
1549 * DM device's registered integrity profile. If the profiles don't
1550 * match then unregister the DM device's integrity profile.
1551 */
dm_table_verify_integrity(struct dm_table * t)1552 static void dm_table_verify_integrity(struct dm_table *t)
1553 {
1554 struct gendisk *template_disk = NULL;
1555
1556 if (t->integrity_added)
1557 return;
1558
1559 if (t->integrity_supported) {
1560 /*
1561 * Verify that the original integrity profile
1562 * matches all the devices in this table.
1563 */
1564 template_disk = dm_table_get_integrity_disk(t);
1565 if (template_disk &&
1566 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1567 return;
1568 }
1569
1570 if (integrity_profile_exists(dm_disk(t->md))) {
1571 DMWARN("%s: unable to establish an integrity profile",
1572 dm_device_name(t->md));
1573 blk_integrity_unregister(dm_disk(t->md));
1574 }
1575 }
1576
device_flush_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1577 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1578 sector_t start, sector_t len, void *data)
1579 {
1580 unsigned long flush = (unsigned long) data;
1581 struct request_queue *q = bdev_get_queue(dev->bdev);
1582
1583 return q && (q->queue_flags & flush);
1584 }
1585
dm_table_supports_flush(struct dm_table * t,unsigned long flush)1586 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1587 {
1588 struct dm_target *ti;
1589 unsigned i;
1590
1591 /*
1592 * Require at least one underlying device to support flushes.
1593 * t->devices includes internal dm devices such as mirror logs
1594 * so we need to use iterate_devices here, which targets
1595 * supporting flushes must provide.
1596 */
1597 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1598 ti = dm_table_get_target(t, i);
1599
1600 if (!ti->num_flush_bios)
1601 continue;
1602
1603 if (ti->flush_supported)
1604 return true;
1605
1606 if (ti->type->iterate_devices &&
1607 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1608 return true;
1609 }
1610
1611 return false;
1612 }
1613
device_dax_write_cache_enabled(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1614 static int device_dax_write_cache_enabled(struct dm_target *ti,
1615 struct dm_dev *dev, sector_t start,
1616 sector_t len, void *data)
1617 {
1618 struct dax_device *dax_dev = dev->dax_dev;
1619
1620 if (!dax_dev)
1621 return false;
1622
1623 if (dax_write_cache_enabled(dax_dev))
1624 return true;
1625 return false;
1626 }
1627
device_is_rotational(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1628 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1629 sector_t start, sector_t len, void *data)
1630 {
1631 struct request_queue *q = bdev_get_queue(dev->bdev);
1632
1633 return q && !blk_queue_nonrot(q);
1634 }
1635
device_is_not_random(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1636 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1637 sector_t start, sector_t len, void *data)
1638 {
1639 struct request_queue *q = bdev_get_queue(dev->bdev);
1640
1641 return q && !blk_queue_add_random(q);
1642 }
1643
device_not_write_same_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1644 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1645 sector_t start, sector_t len, void *data)
1646 {
1647 struct request_queue *q = bdev_get_queue(dev->bdev);
1648
1649 return q && !q->limits.max_write_same_sectors;
1650 }
1651
dm_table_supports_write_same(struct dm_table * t)1652 static bool dm_table_supports_write_same(struct dm_table *t)
1653 {
1654 struct dm_target *ti;
1655 unsigned i;
1656
1657 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1658 ti = dm_table_get_target(t, i);
1659
1660 if (!ti->num_write_same_bios)
1661 return false;
1662
1663 if (!ti->type->iterate_devices ||
1664 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1665 return false;
1666 }
1667
1668 return true;
1669 }
1670
device_not_write_zeroes_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1671 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1672 sector_t start, sector_t len, void *data)
1673 {
1674 struct request_queue *q = bdev_get_queue(dev->bdev);
1675
1676 return q && !q->limits.max_write_zeroes_sectors;
1677 }
1678
dm_table_supports_write_zeroes(struct dm_table * t)1679 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1680 {
1681 struct dm_target *ti;
1682 unsigned i = 0;
1683
1684 while (i < dm_table_get_num_targets(t)) {
1685 ti = dm_table_get_target(t, i++);
1686
1687 if (!ti->num_write_zeroes_bios)
1688 return false;
1689
1690 if (!ti->type->iterate_devices ||
1691 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1692 return false;
1693 }
1694
1695 return true;
1696 }
1697
device_not_nowait_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1698 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1699 sector_t start, sector_t len, void *data)
1700 {
1701 struct request_queue *q = bdev_get_queue(dev->bdev);
1702
1703 return q && !blk_queue_nowait(q);
1704 }
1705
dm_table_supports_nowait(struct dm_table * t)1706 static bool dm_table_supports_nowait(struct dm_table *t)
1707 {
1708 struct dm_target *ti;
1709 unsigned i = 0;
1710
1711 while (i < dm_table_get_num_targets(t)) {
1712 ti = dm_table_get_target(t, i++);
1713
1714 if (!dm_target_supports_nowait(ti->type))
1715 return false;
1716
1717 if (!ti->type->iterate_devices ||
1718 ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1719 return false;
1720 }
1721
1722 return true;
1723 }
1724
device_not_discard_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1725 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1726 sector_t start, sector_t len, void *data)
1727 {
1728 struct request_queue *q = bdev_get_queue(dev->bdev);
1729
1730 return q && !blk_queue_discard(q);
1731 }
1732
dm_table_supports_discards(struct dm_table * t)1733 static bool dm_table_supports_discards(struct dm_table *t)
1734 {
1735 struct dm_target *ti;
1736 unsigned i;
1737
1738 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1739 ti = dm_table_get_target(t, i);
1740
1741 if (!ti->num_discard_bios)
1742 return false;
1743
1744 /*
1745 * Either the target provides discard support (as implied by setting
1746 * 'discards_supported') or it relies on _all_ data devices having
1747 * discard support.
1748 */
1749 if (!ti->discards_supported &&
1750 (!ti->type->iterate_devices ||
1751 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1752 return false;
1753 }
1754
1755 return true;
1756 }
1757
device_not_secure_erase_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1758 static int device_not_secure_erase_capable(struct dm_target *ti,
1759 struct dm_dev *dev, sector_t start,
1760 sector_t len, void *data)
1761 {
1762 struct request_queue *q = bdev_get_queue(dev->bdev);
1763
1764 return q && !blk_queue_secure_erase(q);
1765 }
1766
dm_table_supports_secure_erase(struct dm_table * t)1767 static bool dm_table_supports_secure_erase(struct dm_table *t)
1768 {
1769 struct dm_target *ti;
1770 unsigned int i;
1771
1772 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1773 ti = dm_table_get_target(t, i);
1774
1775 if (!ti->num_secure_erase_bios)
1776 return false;
1777
1778 if (!ti->type->iterate_devices ||
1779 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1780 return false;
1781 }
1782
1783 return true;
1784 }
1785
device_requires_stable_pages(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1786 static int device_requires_stable_pages(struct dm_target *ti,
1787 struct dm_dev *dev, sector_t start,
1788 sector_t len, void *data)
1789 {
1790 struct request_queue *q = bdev_get_queue(dev->bdev);
1791
1792 return q && blk_queue_stable_writes(q);
1793 }
1794
dm_table_set_restrictions(struct dm_table * t,struct request_queue * q,struct queue_limits * limits)1795 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1796 struct queue_limits *limits)
1797 {
1798 bool wc = false, fua = false;
1799 int page_size = PAGE_SIZE;
1800
1801 /*
1802 * Copy table's limits to the DM device's request_queue
1803 */
1804 q->limits = *limits;
1805
1806 if (dm_table_supports_nowait(t))
1807 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1808 else
1809 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1810
1811 if (!dm_table_supports_discards(t)) {
1812 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1813 /* Must also clear discard limits... */
1814 q->limits.max_discard_sectors = 0;
1815 q->limits.max_hw_discard_sectors = 0;
1816 q->limits.discard_granularity = 0;
1817 q->limits.discard_alignment = 0;
1818 q->limits.discard_misaligned = 0;
1819 } else
1820 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
1821
1822 if (dm_table_supports_secure_erase(t))
1823 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
1824
1825 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1826 wc = true;
1827 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1828 fua = true;
1829 }
1830 blk_queue_write_cache(q, wc, fua);
1831
1832 if (dm_table_supports_dax(t, device_not_dax_capable, &page_size)) {
1833 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1834 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable, NULL))
1835 set_dax_synchronous(t->md->dax_dev);
1836 }
1837 else
1838 blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1839
1840 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
1841 dax_write_cache(t->md->dax_dev, true);
1842
1843 /* Ensure that all underlying devices are non-rotational. */
1844 if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
1845 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1846 else
1847 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1848
1849 if (!dm_table_supports_write_same(t))
1850 q->limits.max_write_same_sectors = 0;
1851 if (!dm_table_supports_write_zeroes(t))
1852 q->limits.max_write_zeroes_sectors = 0;
1853
1854 dm_table_verify_integrity(t);
1855
1856 /*
1857 * Some devices don't use blk_integrity but still want stable pages
1858 * because they do their own checksumming.
1859 * If any underlying device requires stable pages, a table must require
1860 * them as well. Only targets that support iterate_devices are considered:
1861 * don't want error, zero, etc to require stable pages.
1862 */
1863 if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
1864 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
1865 else
1866 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
1867
1868 /*
1869 * Determine whether or not this queue's I/O timings contribute
1870 * to the entropy pool, Only request-based targets use this.
1871 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1872 * have it set.
1873 */
1874 if (blk_queue_add_random(q) &&
1875 dm_table_any_dev_attr(t, device_is_not_random, NULL))
1876 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
1877
1878 /*
1879 * For a zoned target, the number of zones should be updated for the
1880 * correct value to be exposed in sysfs queue/nr_zones. For a BIO based
1881 * target, this is all that is needed.
1882 */
1883 #ifdef CONFIG_BLK_DEV_ZONED
1884 if (blk_queue_is_zoned(q)) {
1885 WARN_ON_ONCE(queue_is_mq(q));
1886 q->nr_zones = blkdev_nr_zones(t->md->disk);
1887 }
1888 #endif
1889
1890 blk_queue_update_readahead(q);
1891 }
1892
dm_table_get_num_targets(struct dm_table * t)1893 unsigned int dm_table_get_num_targets(struct dm_table *t)
1894 {
1895 return t->num_targets;
1896 }
1897
dm_table_get_devices(struct dm_table * t)1898 struct list_head *dm_table_get_devices(struct dm_table *t)
1899 {
1900 return &t->devices;
1901 }
1902
dm_table_get_mode(struct dm_table * t)1903 fmode_t dm_table_get_mode(struct dm_table *t)
1904 {
1905 return t->mode;
1906 }
1907 EXPORT_SYMBOL(dm_table_get_mode);
1908
1909 enum suspend_mode {
1910 PRESUSPEND,
1911 PRESUSPEND_UNDO,
1912 POSTSUSPEND,
1913 };
1914
suspend_targets(struct dm_table * t,enum suspend_mode mode)1915 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1916 {
1917 int i = t->num_targets;
1918 struct dm_target *ti = t->targets;
1919
1920 lockdep_assert_held(&t->md->suspend_lock);
1921
1922 while (i--) {
1923 switch (mode) {
1924 case PRESUSPEND:
1925 if (ti->type->presuspend)
1926 ti->type->presuspend(ti);
1927 break;
1928 case PRESUSPEND_UNDO:
1929 if (ti->type->presuspend_undo)
1930 ti->type->presuspend_undo(ti);
1931 break;
1932 case POSTSUSPEND:
1933 if (ti->type->postsuspend)
1934 ti->type->postsuspend(ti);
1935 break;
1936 }
1937 ti++;
1938 }
1939 }
1940
dm_table_presuspend_targets(struct dm_table * t)1941 void dm_table_presuspend_targets(struct dm_table *t)
1942 {
1943 if (!t)
1944 return;
1945
1946 suspend_targets(t, PRESUSPEND);
1947 }
1948
dm_table_presuspend_undo_targets(struct dm_table * t)1949 void dm_table_presuspend_undo_targets(struct dm_table *t)
1950 {
1951 if (!t)
1952 return;
1953
1954 suspend_targets(t, PRESUSPEND_UNDO);
1955 }
1956
dm_table_postsuspend_targets(struct dm_table * t)1957 void dm_table_postsuspend_targets(struct dm_table *t)
1958 {
1959 if (!t)
1960 return;
1961
1962 suspend_targets(t, POSTSUSPEND);
1963 }
1964
dm_table_resume_targets(struct dm_table * t)1965 int dm_table_resume_targets(struct dm_table *t)
1966 {
1967 int i, r = 0;
1968
1969 lockdep_assert_held(&t->md->suspend_lock);
1970
1971 for (i = 0; i < t->num_targets; i++) {
1972 struct dm_target *ti = t->targets + i;
1973
1974 if (!ti->type->preresume)
1975 continue;
1976
1977 r = ti->type->preresume(ti);
1978 if (r) {
1979 DMERR("%s: %s: preresume failed, error = %d",
1980 dm_device_name(t->md), ti->type->name, r);
1981 return r;
1982 }
1983 }
1984
1985 for (i = 0; i < t->num_targets; i++) {
1986 struct dm_target *ti = t->targets + i;
1987
1988 if (ti->type->resume)
1989 ti->type->resume(ti);
1990 }
1991
1992 return 0;
1993 }
1994
dm_table_get_md(struct dm_table * t)1995 struct mapped_device *dm_table_get_md(struct dm_table *t)
1996 {
1997 return t->md;
1998 }
1999 EXPORT_SYMBOL(dm_table_get_md);
2000
dm_table_device_name(struct dm_table * t)2001 const char *dm_table_device_name(struct dm_table *t)
2002 {
2003 return dm_device_name(t->md);
2004 }
2005 EXPORT_SYMBOL_GPL(dm_table_device_name);
2006
dm_table_run_md_queue_async(struct dm_table * t)2007 void dm_table_run_md_queue_async(struct dm_table *t)
2008 {
2009 if (!dm_table_request_based(t))
2010 return;
2011
2012 if (t->md->queue)
2013 blk_mq_run_hw_queues(t->md->queue, true);
2014 }
2015 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2016
2017