• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 #include <linux/dax.h>
24 
25 #define DM_MSG_PREFIX "table"
26 
27 #define NODE_SIZE L1_CACHE_BYTES
28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30 
31 /*
32  * Similar to ceiling(log_size(n))
33  */
int_log(unsigned int n,unsigned int base)34 static unsigned int int_log(unsigned int n, unsigned int base)
35 {
36 	int result = 0;
37 
38 	while (n > 1) {
39 		n = dm_div_up(n, base);
40 		result++;
41 	}
42 
43 	return result;
44 }
45 
46 /*
47  * Calculate the index of the child node of the n'th node k'th key.
48  */
get_child(unsigned int n,unsigned int k)49 static inline unsigned int get_child(unsigned int n, unsigned int k)
50 {
51 	return (n * CHILDREN_PER_NODE) + k;
52 }
53 
54 /*
55  * Return the n'th node of level l from table t.
56  */
get_node(struct dm_table * t,unsigned int l,unsigned int n)57 static inline sector_t *get_node(struct dm_table *t,
58 				 unsigned int l, unsigned int n)
59 {
60 	return t->index[l] + (n * KEYS_PER_NODE);
61 }
62 
63 /*
64  * Return the highest key that you could lookup from the n'th
65  * node on level l of the btree.
66  */
high(struct dm_table * t,unsigned int l,unsigned int n)67 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
68 {
69 	for (; l < t->depth - 1; l++)
70 		n = get_child(n, CHILDREN_PER_NODE - 1);
71 
72 	if (n >= t->counts[l])
73 		return (sector_t) - 1;
74 
75 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
76 }
77 
78 /*
79  * Fills in a level of the btree based on the highs of the level
80  * below it.
81  */
setup_btree_index(unsigned int l,struct dm_table * t)82 static int setup_btree_index(unsigned int l, struct dm_table *t)
83 {
84 	unsigned int n, k;
85 	sector_t *node;
86 
87 	for (n = 0U; n < t->counts[l]; n++) {
88 		node = get_node(t, l, n);
89 
90 		for (k = 0U; k < KEYS_PER_NODE; k++)
91 			node[k] = high(t, l + 1, get_child(n, k));
92 	}
93 
94 	return 0;
95 }
96 
dm_vcalloc(unsigned long nmemb,unsigned long elem_size)97 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
98 {
99 	unsigned long size;
100 	void *addr;
101 
102 	/*
103 	 * Check that we're not going to overflow.
104 	 */
105 	if (nmemb > (ULONG_MAX / elem_size))
106 		return NULL;
107 
108 	size = nmemb * elem_size;
109 	addr = vzalloc(size);
110 
111 	return addr;
112 }
113 EXPORT_SYMBOL(dm_vcalloc);
114 
115 /*
116  * highs, and targets are managed as dynamic arrays during a
117  * table load.
118  */
alloc_targets(struct dm_table * t,unsigned int num)119 static int alloc_targets(struct dm_table *t, unsigned int num)
120 {
121 	sector_t *n_highs;
122 	struct dm_target *n_targets;
123 
124 	/*
125 	 * Allocate both the target array and offset array at once.
126 	 */
127 	n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) +
128 					  sizeof(sector_t));
129 	if (!n_highs)
130 		return -ENOMEM;
131 
132 	n_targets = (struct dm_target *) (n_highs + num);
133 
134 	memset(n_highs, -1, sizeof(*n_highs) * num);
135 	vfree(t->highs);
136 
137 	t->num_allocated = num;
138 	t->highs = n_highs;
139 	t->targets = n_targets;
140 
141 	return 0;
142 }
143 
dm_table_create(struct dm_table ** result,fmode_t mode,unsigned num_targets,struct mapped_device * md)144 int dm_table_create(struct dm_table **result, fmode_t mode,
145 		    unsigned num_targets, struct mapped_device *md)
146 {
147 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
148 
149 	if (!t)
150 		return -ENOMEM;
151 
152 	INIT_LIST_HEAD(&t->devices);
153 
154 	if (!num_targets)
155 		num_targets = KEYS_PER_NODE;
156 
157 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
158 
159 	if (!num_targets) {
160 		kfree(t);
161 		return -ENOMEM;
162 	}
163 
164 	if (alloc_targets(t, num_targets)) {
165 		kfree(t);
166 		return -ENOMEM;
167 	}
168 
169 	t->type = DM_TYPE_NONE;
170 	t->mode = mode;
171 	t->md = md;
172 	*result = t;
173 	return 0;
174 }
175 
free_devices(struct list_head * devices,struct mapped_device * md)176 static void free_devices(struct list_head *devices, struct mapped_device *md)
177 {
178 	struct list_head *tmp, *next;
179 
180 	list_for_each_safe(tmp, next, devices) {
181 		struct dm_dev_internal *dd =
182 		    list_entry(tmp, struct dm_dev_internal, list);
183 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
184 		       dm_device_name(md), dd->dm_dev->name);
185 		dm_put_table_device(md, dd->dm_dev);
186 		kfree(dd);
187 	}
188 }
189 
dm_table_destroy(struct dm_table * t)190 void dm_table_destroy(struct dm_table *t)
191 {
192 	unsigned int i;
193 
194 	if (!t)
195 		return;
196 
197 	/* free the indexes */
198 	if (t->depth >= 2)
199 		vfree(t->index[t->depth - 2]);
200 
201 	/* free the targets */
202 	for (i = 0; i < t->num_targets; i++) {
203 		struct dm_target *tgt = t->targets + i;
204 
205 		if (tgt->type->dtr)
206 			tgt->type->dtr(tgt);
207 
208 		dm_put_target_type(tgt->type);
209 	}
210 
211 	vfree(t->highs);
212 
213 	/* free the device list */
214 	free_devices(&t->devices, t->md);
215 
216 	dm_free_md_mempools(t->mempools);
217 
218 	kfree(t);
219 }
220 
221 /*
222  * See if we've already got a device in the list.
223  */
find_device(struct list_head * l,dev_t dev)224 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
225 {
226 	struct dm_dev_internal *dd;
227 
228 	list_for_each_entry (dd, l, list)
229 		if (dd->dm_dev->bdev->bd_dev == dev)
230 			return dd;
231 
232 	return NULL;
233 }
234 
235 /*
236  * If possible, this checks an area of a destination device is invalid.
237  */
device_area_is_invalid(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)238 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
239 				  sector_t start, sector_t len, void *data)
240 {
241 	struct queue_limits *limits = data;
242 	struct block_device *bdev = dev->bdev;
243 	sector_t dev_size =
244 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
245 	unsigned short logical_block_size_sectors =
246 		limits->logical_block_size >> SECTOR_SHIFT;
247 	char b[BDEVNAME_SIZE];
248 
249 	if (!dev_size)
250 		return 0;
251 
252 	if ((start >= dev_size) || (start + len > dev_size)) {
253 		DMWARN("%s: %s too small for target: "
254 		       "start=%llu, len=%llu, dev_size=%llu",
255 		       dm_device_name(ti->table->md), bdevname(bdev, b),
256 		       (unsigned long long)start,
257 		       (unsigned long long)len,
258 		       (unsigned long long)dev_size);
259 		return 1;
260 	}
261 
262 	/*
263 	 * If the target is mapped to zoned block device(s), check
264 	 * that the zones are not partially mapped.
265 	 */
266 	if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
267 		unsigned int zone_sectors = bdev_zone_sectors(bdev);
268 
269 		if (start & (zone_sectors - 1)) {
270 			DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
271 			       dm_device_name(ti->table->md),
272 			       (unsigned long long)start,
273 			       zone_sectors, bdevname(bdev, b));
274 			return 1;
275 		}
276 
277 		/*
278 		 * Note: The last zone of a zoned block device may be smaller
279 		 * than other zones. So for a target mapping the end of a
280 		 * zoned block device with such a zone, len would not be zone
281 		 * aligned. We do not allow such last smaller zone to be part
282 		 * of the mapping here to ensure that mappings with multiple
283 		 * devices do not end up with a smaller zone in the middle of
284 		 * the sector range.
285 		 */
286 		if (len & (zone_sectors - 1)) {
287 			DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
288 			       dm_device_name(ti->table->md),
289 			       (unsigned long long)len,
290 			       zone_sectors, bdevname(bdev, b));
291 			return 1;
292 		}
293 	}
294 
295 	if (logical_block_size_sectors <= 1)
296 		return 0;
297 
298 	if (start & (logical_block_size_sectors - 1)) {
299 		DMWARN("%s: start=%llu not aligned to h/w "
300 		       "logical block size %u of %s",
301 		       dm_device_name(ti->table->md),
302 		       (unsigned long long)start,
303 		       limits->logical_block_size, bdevname(bdev, b));
304 		return 1;
305 	}
306 
307 	if (len & (logical_block_size_sectors - 1)) {
308 		DMWARN("%s: len=%llu not aligned to h/w "
309 		       "logical block size %u of %s",
310 		       dm_device_name(ti->table->md),
311 		       (unsigned long long)len,
312 		       limits->logical_block_size, bdevname(bdev, b));
313 		return 1;
314 	}
315 
316 	return 0;
317 }
318 
319 /*
320  * This upgrades the mode on an already open dm_dev, being
321  * careful to leave things as they were if we fail to reopen the
322  * device and not to touch the existing bdev field in case
323  * it is accessed concurrently.
324  */
upgrade_mode(struct dm_dev_internal * dd,fmode_t new_mode,struct mapped_device * md)325 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
326 			struct mapped_device *md)
327 {
328 	int r;
329 	struct dm_dev *old_dev, *new_dev;
330 
331 	old_dev = dd->dm_dev;
332 
333 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
334 				dd->dm_dev->mode | new_mode, &new_dev);
335 	if (r)
336 		return r;
337 
338 	dd->dm_dev = new_dev;
339 	dm_put_table_device(md, old_dev);
340 
341 	return 0;
342 }
343 
344 /*
345  * Convert the path to a device
346  */
dm_get_dev_t(const char * path)347 dev_t dm_get_dev_t(const char *path)
348 {
349 	dev_t dev;
350 	struct block_device *bdev;
351 
352 	bdev = lookup_bdev(path);
353 	if (IS_ERR(bdev))
354 		dev = name_to_dev_t(path);
355 	else {
356 		dev = bdev->bd_dev;
357 		bdput(bdev);
358 	}
359 
360 	return dev;
361 }
362 EXPORT_SYMBOL_GPL(dm_get_dev_t);
363 
364 /*
365  * Add a device to the list, or just increment the usage count if
366  * it's already present.
367  */
dm_get_device(struct dm_target * ti,const char * path,fmode_t mode,struct dm_dev ** result)368 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
369 		  struct dm_dev **result)
370 {
371 	int r;
372 	dev_t dev;
373 	unsigned int major, minor;
374 	char dummy;
375 	struct dm_dev_internal *dd;
376 	struct dm_table *t = ti->table;
377 
378 	BUG_ON(!t);
379 
380 	if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
381 		/* Extract the major/minor numbers */
382 		dev = MKDEV(major, minor);
383 		if (MAJOR(dev) != major || MINOR(dev) != minor)
384 			return -EOVERFLOW;
385 	} else {
386 		dev = dm_get_dev_t(path);
387 		if (!dev)
388 			return -ENODEV;
389 	}
390 
391 	dd = find_device(&t->devices, dev);
392 	if (!dd) {
393 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
394 		if (!dd)
395 			return -ENOMEM;
396 
397 		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
398 			kfree(dd);
399 			return r;
400 		}
401 
402 		refcount_set(&dd->count, 1);
403 		list_add(&dd->list, &t->devices);
404 		goto out;
405 
406 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
407 		r = upgrade_mode(dd, mode, t->md);
408 		if (r)
409 			return r;
410 	}
411 	refcount_inc(&dd->count);
412 out:
413 	*result = dd->dm_dev;
414 	return 0;
415 }
416 EXPORT_SYMBOL(dm_get_device);
417 
dm_set_device_limits(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)418 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
419 				sector_t start, sector_t len, void *data)
420 {
421 	struct queue_limits *limits = data;
422 	struct block_device *bdev = dev->bdev;
423 	struct request_queue *q = bdev_get_queue(bdev);
424 	char b[BDEVNAME_SIZE];
425 
426 	if (unlikely(!q)) {
427 		DMWARN("%s: Cannot set limits for nonexistent device %s",
428 		       dm_device_name(ti->table->md), bdevname(bdev, b));
429 		return 0;
430 	}
431 
432 	if (blk_stack_limits(limits, &q->limits,
433 			get_start_sect(bdev) + start) < 0)
434 		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
435 		       "physical_block_size=%u, logical_block_size=%u, "
436 		       "alignment_offset=%u, start=%llu",
437 		       dm_device_name(ti->table->md), bdevname(bdev, b),
438 		       q->limits.physical_block_size,
439 		       q->limits.logical_block_size,
440 		       q->limits.alignment_offset,
441 		       (unsigned long long) start << SECTOR_SHIFT);
442 	return 0;
443 }
444 
445 /*
446  * Decrement a device's use count and remove it if necessary.
447  */
dm_put_device(struct dm_target * ti,struct dm_dev * d)448 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
449 {
450 	int found = 0;
451 	struct list_head *devices = &ti->table->devices;
452 	struct dm_dev_internal *dd;
453 
454 	list_for_each_entry(dd, devices, list) {
455 		if (dd->dm_dev == d) {
456 			found = 1;
457 			break;
458 		}
459 	}
460 	if (!found) {
461 		DMWARN("%s: device %s not in table devices list",
462 		       dm_device_name(ti->table->md), d->name);
463 		return;
464 	}
465 	if (refcount_dec_and_test(&dd->count)) {
466 		dm_put_table_device(ti->table->md, d);
467 		list_del(&dd->list);
468 		kfree(dd);
469 	}
470 }
471 EXPORT_SYMBOL(dm_put_device);
472 
473 /*
474  * Checks to see if the target joins onto the end of the table.
475  */
adjoin(struct dm_table * table,struct dm_target * ti)476 static int adjoin(struct dm_table *table, struct dm_target *ti)
477 {
478 	struct dm_target *prev;
479 
480 	if (!table->num_targets)
481 		return !ti->begin;
482 
483 	prev = &table->targets[table->num_targets - 1];
484 	return (ti->begin == (prev->begin + prev->len));
485 }
486 
487 /*
488  * Used to dynamically allocate the arg array.
489  *
490  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
491  * process messages even if some device is suspended. These messages have a
492  * small fixed number of arguments.
493  *
494  * On the other hand, dm-switch needs to process bulk data using messages and
495  * excessive use of GFP_NOIO could cause trouble.
496  */
realloc_argv(unsigned * size,char ** old_argv)497 static char **realloc_argv(unsigned *size, char **old_argv)
498 {
499 	char **argv;
500 	unsigned new_size;
501 	gfp_t gfp;
502 
503 	if (*size) {
504 		new_size = *size * 2;
505 		gfp = GFP_KERNEL;
506 	} else {
507 		new_size = 8;
508 		gfp = GFP_NOIO;
509 	}
510 	argv = kmalloc_array(new_size, sizeof(*argv), gfp);
511 	if (argv && old_argv) {
512 		memcpy(argv, old_argv, *size * sizeof(*argv));
513 		*size = new_size;
514 	}
515 
516 	kfree(old_argv);
517 	return argv;
518 }
519 
520 /*
521  * Destructively splits up the argument list to pass to ctr.
522  */
dm_split_args(int * argc,char *** argvp,char * input)523 int dm_split_args(int *argc, char ***argvp, char *input)
524 {
525 	char *start, *end = input, *out, **argv = NULL;
526 	unsigned array_size = 0;
527 
528 	*argc = 0;
529 
530 	if (!input) {
531 		*argvp = NULL;
532 		return 0;
533 	}
534 
535 	argv = realloc_argv(&array_size, argv);
536 	if (!argv)
537 		return -ENOMEM;
538 
539 	while (1) {
540 		/* Skip whitespace */
541 		start = skip_spaces(end);
542 
543 		if (!*start)
544 			break;	/* success, we hit the end */
545 
546 		/* 'out' is used to remove any back-quotes */
547 		end = out = start;
548 		while (*end) {
549 			/* Everything apart from '\0' can be quoted */
550 			if (*end == '\\' && *(end + 1)) {
551 				*out++ = *(end + 1);
552 				end += 2;
553 				continue;
554 			}
555 
556 			if (isspace(*end))
557 				break;	/* end of token */
558 
559 			*out++ = *end++;
560 		}
561 
562 		/* have we already filled the array ? */
563 		if ((*argc + 1) > array_size) {
564 			argv = realloc_argv(&array_size, argv);
565 			if (!argv)
566 				return -ENOMEM;
567 		}
568 
569 		/* we know this is whitespace */
570 		if (*end)
571 			end++;
572 
573 		/* terminate the string and put it in the array */
574 		*out = '\0';
575 		argv[*argc] = start;
576 		(*argc)++;
577 	}
578 
579 	*argvp = argv;
580 	return 0;
581 }
582 
583 /*
584  * Impose necessary and sufficient conditions on a devices's table such
585  * that any incoming bio which respects its logical_block_size can be
586  * processed successfully.  If it falls across the boundary between
587  * two or more targets, the size of each piece it gets split into must
588  * be compatible with the logical_block_size of the target processing it.
589  */
validate_hardware_logical_block_alignment(struct dm_table * table,struct queue_limits * limits)590 static int validate_hardware_logical_block_alignment(struct dm_table *table,
591 						 struct queue_limits *limits)
592 {
593 	/*
594 	 * This function uses arithmetic modulo the logical_block_size
595 	 * (in units of 512-byte sectors).
596 	 */
597 	unsigned short device_logical_block_size_sects =
598 		limits->logical_block_size >> SECTOR_SHIFT;
599 
600 	/*
601 	 * Offset of the start of the next table entry, mod logical_block_size.
602 	 */
603 	unsigned short next_target_start = 0;
604 
605 	/*
606 	 * Given an aligned bio that extends beyond the end of a
607 	 * target, how many sectors must the next target handle?
608 	 */
609 	unsigned short remaining = 0;
610 
611 	struct dm_target *ti;
612 	struct queue_limits ti_limits;
613 	unsigned i;
614 
615 	/*
616 	 * Check each entry in the table in turn.
617 	 */
618 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
619 		ti = dm_table_get_target(table, i);
620 
621 		blk_set_stacking_limits(&ti_limits);
622 
623 		/* combine all target devices' limits */
624 		if (ti->type->iterate_devices)
625 			ti->type->iterate_devices(ti, dm_set_device_limits,
626 						  &ti_limits);
627 
628 		/*
629 		 * If the remaining sectors fall entirely within this
630 		 * table entry are they compatible with its logical_block_size?
631 		 */
632 		if (remaining < ti->len &&
633 		    remaining & ((ti_limits.logical_block_size >>
634 				  SECTOR_SHIFT) - 1))
635 			break;	/* Error */
636 
637 		next_target_start =
638 		    (unsigned short) ((next_target_start + ti->len) &
639 				      (device_logical_block_size_sects - 1));
640 		remaining = next_target_start ?
641 		    device_logical_block_size_sects - next_target_start : 0;
642 	}
643 
644 	if (remaining) {
645 		DMWARN("%s: table line %u (start sect %llu len %llu) "
646 		       "not aligned to h/w logical block size %u",
647 		       dm_device_name(table->md), i,
648 		       (unsigned long long) ti->begin,
649 		       (unsigned long long) ti->len,
650 		       limits->logical_block_size);
651 		return -EINVAL;
652 	}
653 
654 	return 0;
655 }
656 
dm_table_add_target(struct dm_table * t,const char * type,sector_t start,sector_t len,char * params)657 int dm_table_add_target(struct dm_table *t, const char *type,
658 			sector_t start, sector_t len, char *params)
659 {
660 	int r = -EINVAL, argc;
661 	char **argv;
662 	struct dm_target *tgt;
663 
664 	if (t->singleton) {
665 		DMERR("%s: target type %s must appear alone in table",
666 		      dm_device_name(t->md), t->targets->type->name);
667 		return -EINVAL;
668 	}
669 
670 	BUG_ON(t->num_targets >= t->num_allocated);
671 
672 	tgt = t->targets + t->num_targets;
673 	memset(tgt, 0, sizeof(*tgt));
674 
675 	if (!len) {
676 		DMERR("%s: zero-length target", dm_device_name(t->md));
677 		return -EINVAL;
678 	}
679 
680 	tgt->type = dm_get_target_type(type);
681 	if (!tgt->type) {
682 		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
683 		return -EINVAL;
684 	}
685 
686 	if (dm_target_needs_singleton(tgt->type)) {
687 		if (t->num_targets) {
688 			tgt->error = "singleton target type must appear alone in table";
689 			goto bad;
690 		}
691 		t->singleton = true;
692 	}
693 
694 	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
695 		tgt->error = "target type may not be included in a read-only table";
696 		goto bad;
697 	}
698 
699 	if (t->immutable_target_type) {
700 		if (t->immutable_target_type != tgt->type) {
701 			tgt->error = "immutable target type cannot be mixed with other target types";
702 			goto bad;
703 		}
704 	} else if (dm_target_is_immutable(tgt->type)) {
705 		if (t->num_targets) {
706 			tgt->error = "immutable target type cannot be mixed with other target types";
707 			goto bad;
708 		}
709 		t->immutable_target_type = tgt->type;
710 	}
711 
712 	if (dm_target_has_integrity(tgt->type))
713 		t->integrity_added = 1;
714 
715 	tgt->table = t;
716 	tgt->begin = start;
717 	tgt->len = len;
718 	tgt->error = "Unknown error";
719 
720 	/*
721 	 * Does this target adjoin the previous one ?
722 	 */
723 	if (!adjoin(t, tgt)) {
724 		tgt->error = "Gap in table";
725 		goto bad;
726 	}
727 
728 	r = dm_split_args(&argc, &argv, params);
729 	if (r) {
730 		tgt->error = "couldn't split parameters (insufficient memory)";
731 		goto bad;
732 	}
733 
734 	r = tgt->type->ctr(tgt, argc, argv);
735 	kfree(argv);
736 	if (r)
737 		goto bad;
738 
739 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
740 
741 	if (!tgt->num_discard_bios && tgt->discards_supported)
742 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
743 		       dm_device_name(t->md), type);
744 
745 	return 0;
746 
747  bad:
748 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
749 	dm_put_target_type(tgt->type);
750 	return r;
751 }
752 
753 /*
754  * Target argument parsing helpers.
755  */
validate_next_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error,unsigned grouped)756 static int validate_next_arg(const struct dm_arg *arg,
757 			     struct dm_arg_set *arg_set,
758 			     unsigned *value, char **error, unsigned grouped)
759 {
760 	const char *arg_str = dm_shift_arg(arg_set);
761 	char dummy;
762 
763 	if (!arg_str ||
764 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
765 	    (*value < arg->min) ||
766 	    (*value > arg->max) ||
767 	    (grouped && arg_set->argc < *value)) {
768 		*error = arg->error;
769 		return -EINVAL;
770 	}
771 
772 	return 0;
773 }
774 
dm_read_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error)775 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
776 		unsigned *value, char **error)
777 {
778 	return validate_next_arg(arg, arg_set, value, error, 0);
779 }
780 EXPORT_SYMBOL(dm_read_arg);
781 
dm_read_arg_group(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error)782 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
783 		      unsigned *value, char **error)
784 {
785 	return validate_next_arg(arg, arg_set, value, error, 1);
786 }
787 EXPORT_SYMBOL(dm_read_arg_group);
788 
dm_shift_arg(struct dm_arg_set * as)789 const char *dm_shift_arg(struct dm_arg_set *as)
790 {
791 	char *r;
792 
793 	if (as->argc) {
794 		as->argc--;
795 		r = *as->argv;
796 		as->argv++;
797 		return r;
798 	}
799 
800 	return NULL;
801 }
802 EXPORT_SYMBOL(dm_shift_arg);
803 
dm_consume_args(struct dm_arg_set * as,unsigned num_args)804 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
805 {
806 	BUG_ON(as->argc < num_args);
807 	as->argc -= num_args;
808 	as->argv += num_args;
809 }
810 EXPORT_SYMBOL(dm_consume_args);
811 
__table_type_bio_based(enum dm_queue_mode table_type)812 static bool __table_type_bio_based(enum dm_queue_mode table_type)
813 {
814 	return (table_type == DM_TYPE_BIO_BASED ||
815 		table_type == DM_TYPE_DAX_BIO_BASED);
816 }
817 
__table_type_request_based(enum dm_queue_mode table_type)818 static bool __table_type_request_based(enum dm_queue_mode table_type)
819 {
820 	return table_type == DM_TYPE_REQUEST_BASED;
821 }
822 
dm_table_set_type(struct dm_table * t,enum dm_queue_mode type)823 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
824 {
825 	t->type = type;
826 }
827 EXPORT_SYMBOL_GPL(dm_table_set_type);
828 
829 /* validate the dax capability of the target device span */
device_not_dax_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)830 int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
831 			sector_t start, sector_t len, void *data)
832 {
833 	int blocksize = *(int *) data, id;
834 	bool rc;
835 
836 	id = dax_read_lock();
837 	rc = !dax_supported(dev->dax_dev, dev->bdev, blocksize, start, len);
838 	dax_read_unlock(id);
839 
840 	return rc;
841 }
842 
843 /* Check devices support synchronous DAX */
device_not_dax_synchronous_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)844 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
845 					      sector_t start, sector_t len, void *data)
846 {
847 	return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
848 }
849 
dm_table_supports_dax(struct dm_table * t,iterate_devices_callout_fn iterate_fn,int * blocksize)850 bool dm_table_supports_dax(struct dm_table *t,
851 			   iterate_devices_callout_fn iterate_fn, int *blocksize)
852 {
853 	struct dm_target *ti;
854 	unsigned i;
855 
856 	/* Ensure that all targets support DAX. */
857 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
858 		ti = dm_table_get_target(t, i);
859 
860 		if (!ti->type->direct_access)
861 			return false;
862 
863 		if (!ti->type->iterate_devices ||
864 		    ti->type->iterate_devices(ti, iterate_fn, blocksize))
865 			return false;
866 	}
867 
868 	return true;
869 }
870 
device_is_rq_stackable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)871 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
872 				  sector_t start, sector_t len, void *data)
873 {
874 	struct block_device *bdev = dev->bdev;
875 	struct request_queue *q = bdev_get_queue(bdev);
876 
877 	/* request-based cannot stack on partitions! */
878 	if (bdev_is_partition(bdev))
879 		return false;
880 
881 	return queue_is_mq(q);
882 }
883 
dm_table_determine_type(struct dm_table * t)884 static int dm_table_determine_type(struct dm_table *t)
885 {
886 	unsigned i;
887 	unsigned bio_based = 0, request_based = 0, hybrid = 0;
888 	struct dm_target *tgt;
889 	struct list_head *devices = dm_table_get_devices(t);
890 	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
891 	int page_size = PAGE_SIZE;
892 
893 	if (t->type != DM_TYPE_NONE) {
894 		/* target already set the table's type */
895 		if (t->type == DM_TYPE_BIO_BASED) {
896 			/* possibly upgrade to a variant of bio-based */
897 			goto verify_bio_based;
898 		}
899 		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
900 		goto verify_rq_based;
901 	}
902 
903 	for (i = 0; i < t->num_targets; i++) {
904 		tgt = t->targets + i;
905 		if (dm_target_hybrid(tgt))
906 			hybrid = 1;
907 		else if (dm_target_request_based(tgt))
908 			request_based = 1;
909 		else
910 			bio_based = 1;
911 
912 		if (bio_based && request_based) {
913 			DMERR("Inconsistent table: different target types"
914 			      " can't be mixed up");
915 			return -EINVAL;
916 		}
917 	}
918 
919 	if (hybrid && !bio_based && !request_based) {
920 		/*
921 		 * The targets can work either way.
922 		 * Determine the type from the live device.
923 		 * Default to bio-based if device is new.
924 		 */
925 		if (__table_type_request_based(live_md_type))
926 			request_based = 1;
927 		else
928 			bio_based = 1;
929 	}
930 
931 	if (bio_based) {
932 verify_bio_based:
933 		/* We must use this table as bio-based */
934 		t->type = DM_TYPE_BIO_BASED;
935 		if (dm_table_supports_dax(t, device_not_dax_capable, &page_size) ||
936 		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
937 			t->type = DM_TYPE_DAX_BIO_BASED;
938 		}
939 		return 0;
940 	}
941 
942 	BUG_ON(!request_based); /* No targets in this table */
943 
944 	t->type = DM_TYPE_REQUEST_BASED;
945 
946 verify_rq_based:
947 	/*
948 	 * Request-based dm supports only tables that have a single target now.
949 	 * To support multiple targets, request splitting support is needed,
950 	 * and that needs lots of changes in the block-layer.
951 	 * (e.g. request completion process for partial completion.)
952 	 */
953 	if (t->num_targets > 1) {
954 		DMERR("request-based DM doesn't support multiple targets");
955 		return -EINVAL;
956 	}
957 
958 	if (list_empty(devices)) {
959 		int srcu_idx;
960 		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
961 
962 		/* inherit live table's type */
963 		if (live_table)
964 			t->type = live_table->type;
965 		dm_put_live_table(t->md, srcu_idx);
966 		return 0;
967 	}
968 
969 	tgt = dm_table_get_immutable_target(t);
970 	if (!tgt) {
971 		DMERR("table load rejected: immutable target is required");
972 		return -EINVAL;
973 	} else if (tgt->max_io_len) {
974 		DMERR("table load rejected: immutable target that splits IO is not supported");
975 		return -EINVAL;
976 	}
977 
978 	/* Non-request-stackable devices can't be used for request-based dm */
979 	if (!tgt->type->iterate_devices ||
980 	    !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) {
981 		DMERR("table load rejected: including non-request-stackable devices");
982 		return -EINVAL;
983 	}
984 
985 	return 0;
986 }
987 
dm_table_get_type(struct dm_table * t)988 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
989 {
990 	return t->type;
991 }
992 
dm_table_get_immutable_target_type(struct dm_table * t)993 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
994 {
995 	return t->immutable_target_type;
996 }
997 
dm_table_get_immutable_target(struct dm_table * t)998 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
999 {
1000 	/* Immutable target is implicitly a singleton */
1001 	if (t->num_targets > 1 ||
1002 	    !dm_target_is_immutable(t->targets[0].type))
1003 		return NULL;
1004 
1005 	return t->targets;
1006 }
1007 
dm_table_get_wildcard_target(struct dm_table * t)1008 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1009 {
1010 	struct dm_target *ti;
1011 	unsigned i;
1012 
1013 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1014 		ti = dm_table_get_target(t, i);
1015 		if (dm_target_is_wildcard(ti->type))
1016 			return ti;
1017 	}
1018 
1019 	return NULL;
1020 }
1021 
dm_table_bio_based(struct dm_table * t)1022 bool dm_table_bio_based(struct dm_table *t)
1023 {
1024 	return __table_type_bio_based(dm_table_get_type(t));
1025 }
1026 
dm_table_request_based(struct dm_table * t)1027 bool dm_table_request_based(struct dm_table *t)
1028 {
1029 	return __table_type_request_based(dm_table_get_type(t));
1030 }
1031 
dm_table_alloc_md_mempools(struct dm_table * t,struct mapped_device * md)1032 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1033 {
1034 	enum dm_queue_mode type = dm_table_get_type(t);
1035 	unsigned per_io_data_size = 0;
1036 	unsigned min_pool_size = 0;
1037 	struct dm_target *ti;
1038 	unsigned i;
1039 
1040 	if (unlikely(type == DM_TYPE_NONE)) {
1041 		DMWARN("no table type is set, can't allocate mempools");
1042 		return -EINVAL;
1043 	}
1044 
1045 	if (__table_type_bio_based(type))
1046 		for (i = 0; i < t->num_targets; i++) {
1047 			ti = t->targets + i;
1048 			per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1049 			min_pool_size = max(min_pool_size, ti->num_flush_bios);
1050 		}
1051 
1052 	t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1053 					   per_io_data_size, min_pool_size);
1054 	if (!t->mempools)
1055 		return -ENOMEM;
1056 
1057 	return 0;
1058 }
1059 
dm_table_free_md_mempools(struct dm_table * t)1060 void dm_table_free_md_mempools(struct dm_table *t)
1061 {
1062 	dm_free_md_mempools(t->mempools);
1063 	t->mempools = NULL;
1064 }
1065 
dm_table_get_md_mempools(struct dm_table * t)1066 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1067 {
1068 	return t->mempools;
1069 }
1070 
setup_indexes(struct dm_table * t)1071 static int setup_indexes(struct dm_table *t)
1072 {
1073 	int i;
1074 	unsigned int total = 0;
1075 	sector_t *indexes;
1076 
1077 	/* allocate the space for *all* the indexes */
1078 	for (i = t->depth - 2; i >= 0; i--) {
1079 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1080 		total += t->counts[i];
1081 	}
1082 
1083 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1084 	if (!indexes)
1085 		return -ENOMEM;
1086 
1087 	/* set up internal nodes, bottom-up */
1088 	for (i = t->depth - 2; i >= 0; i--) {
1089 		t->index[i] = indexes;
1090 		indexes += (KEYS_PER_NODE * t->counts[i]);
1091 		setup_btree_index(i, t);
1092 	}
1093 
1094 	return 0;
1095 }
1096 
1097 /*
1098  * Builds the btree to index the map.
1099  */
dm_table_build_index(struct dm_table * t)1100 static int dm_table_build_index(struct dm_table *t)
1101 {
1102 	int r = 0;
1103 	unsigned int leaf_nodes;
1104 
1105 	/* how many indexes will the btree have ? */
1106 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1107 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1108 
1109 	/* leaf layer has already been set up */
1110 	t->counts[t->depth - 1] = leaf_nodes;
1111 	t->index[t->depth - 1] = t->highs;
1112 
1113 	if (t->depth >= 2)
1114 		r = setup_indexes(t);
1115 
1116 	return r;
1117 }
1118 
integrity_profile_exists(struct gendisk * disk)1119 static bool integrity_profile_exists(struct gendisk *disk)
1120 {
1121 	return !!blk_get_integrity(disk);
1122 }
1123 
1124 /*
1125  * Get a disk whose integrity profile reflects the table's profile.
1126  * Returns NULL if integrity support was inconsistent or unavailable.
1127  */
dm_table_get_integrity_disk(struct dm_table * t)1128 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1129 {
1130 	struct list_head *devices = dm_table_get_devices(t);
1131 	struct dm_dev_internal *dd = NULL;
1132 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1133 	unsigned i;
1134 
1135 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1136 		struct dm_target *ti = dm_table_get_target(t, i);
1137 		if (!dm_target_passes_integrity(ti->type))
1138 			goto no_integrity;
1139 	}
1140 
1141 	list_for_each_entry(dd, devices, list) {
1142 		template_disk = dd->dm_dev->bdev->bd_disk;
1143 		if (!integrity_profile_exists(template_disk))
1144 			goto no_integrity;
1145 		else if (prev_disk &&
1146 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1147 			goto no_integrity;
1148 		prev_disk = template_disk;
1149 	}
1150 
1151 	return template_disk;
1152 
1153 no_integrity:
1154 	if (prev_disk)
1155 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1156 		       dm_device_name(t->md),
1157 		       prev_disk->disk_name,
1158 		       template_disk->disk_name);
1159 	return NULL;
1160 }
1161 
1162 /*
1163  * Register the mapped device for blk_integrity support if the
1164  * underlying devices have an integrity profile.  But all devices may
1165  * not have matching profiles (checking all devices isn't reliable
1166  * during table load because this table may use other DM device(s) which
1167  * must be resumed before they will have an initialized integity
1168  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1169  * profile validation: First pass during table load, final pass during
1170  * resume.
1171  */
dm_table_register_integrity(struct dm_table * t)1172 static int dm_table_register_integrity(struct dm_table *t)
1173 {
1174 	struct mapped_device *md = t->md;
1175 	struct gendisk *template_disk = NULL;
1176 
1177 	/* If target handles integrity itself do not register it here. */
1178 	if (t->integrity_added)
1179 		return 0;
1180 
1181 	template_disk = dm_table_get_integrity_disk(t);
1182 	if (!template_disk)
1183 		return 0;
1184 
1185 	if (!integrity_profile_exists(dm_disk(md))) {
1186 		t->integrity_supported = true;
1187 		/*
1188 		 * Register integrity profile during table load; we can do
1189 		 * this because the final profile must match during resume.
1190 		 */
1191 		blk_integrity_register(dm_disk(md),
1192 				       blk_get_integrity(template_disk));
1193 		return 0;
1194 	}
1195 
1196 	/*
1197 	 * If DM device already has an initialized integrity
1198 	 * profile the new profile should not conflict.
1199 	 */
1200 	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1201 		DMWARN("%s: conflict with existing integrity profile: "
1202 		       "%s profile mismatch",
1203 		       dm_device_name(t->md),
1204 		       template_disk->disk_name);
1205 		return 1;
1206 	}
1207 
1208 	/* Preserve existing integrity profile */
1209 	t->integrity_supported = true;
1210 	return 0;
1211 }
1212 
1213 /*
1214  * Prepares the table for use by building the indices,
1215  * setting the type, and allocating mempools.
1216  */
dm_table_complete(struct dm_table * t)1217 int dm_table_complete(struct dm_table *t)
1218 {
1219 	int r;
1220 
1221 	r = dm_table_determine_type(t);
1222 	if (r) {
1223 		DMERR("unable to determine table type");
1224 		return r;
1225 	}
1226 
1227 	r = dm_table_build_index(t);
1228 	if (r) {
1229 		DMERR("unable to build btrees");
1230 		return r;
1231 	}
1232 
1233 	r = dm_table_register_integrity(t);
1234 	if (r) {
1235 		DMERR("could not register integrity profile.");
1236 		return r;
1237 	}
1238 
1239 	r = dm_table_alloc_md_mempools(t, t->md);
1240 	if (r)
1241 		DMERR("unable to allocate mempools");
1242 
1243 	return r;
1244 }
1245 
1246 static DEFINE_MUTEX(_event_lock);
dm_table_event_callback(struct dm_table * t,void (* fn)(void *),void * context)1247 void dm_table_event_callback(struct dm_table *t,
1248 			     void (*fn)(void *), void *context)
1249 {
1250 	mutex_lock(&_event_lock);
1251 	t->event_fn = fn;
1252 	t->event_context = context;
1253 	mutex_unlock(&_event_lock);
1254 }
1255 
dm_table_event(struct dm_table * t)1256 void dm_table_event(struct dm_table *t)
1257 {
1258 	mutex_lock(&_event_lock);
1259 	if (t->event_fn)
1260 		t->event_fn(t->event_context);
1261 	mutex_unlock(&_event_lock);
1262 }
1263 EXPORT_SYMBOL(dm_table_event);
1264 
dm_table_get_size(struct dm_table * t)1265 inline sector_t dm_table_get_size(struct dm_table *t)
1266 {
1267 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1268 }
1269 EXPORT_SYMBOL(dm_table_get_size);
1270 
dm_table_get_target(struct dm_table * t,unsigned int index)1271 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1272 {
1273 	if (index >= t->num_targets)
1274 		return NULL;
1275 
1276 	return t->targets + index;
1277 }
1278 
1279 /*
1280  * Search the btree for the correct target.
1281  *
1282  * Caller should check returned pointer for NULL
1283  * to trap I/O beyond end of device.
1284  */
dm_table_find_target(struct dm_table * t,sector_t sector)1285 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1286 {
1287 	unsigned int l, n = 0, k = 0;
1288 	sector_t *node;
1289 
1290 	if (unlikely(sector >= dm_table_get_size(t)))
1291 		return NULL;
1292 
1293 	for (l = 0; l < t->depth; l++) {
1294 		n = get_child(n, k);
1295 		node = get_node(t, l, n);
1296 
1297 		for (k = 0; k < KEYS_PER_NODE; k++)
1298 			if (node[k] >= sector)
1299 				break;
1300 	}
1301 
1302 	return &t->targets[(KEYS_PER_NODE * n) + k];
1303 }
1304 
1305 /*
1306  * type->iterate_devices() should be called when the sanity check needs to
1307  * iterate and check all underlying data devices. iterate_devices() will
1308  * iterate all underlying data devices until it encounters a non-zero return
1309  * code, returned by whether the input iterate_devices_callout_fn, or
1310  * iterate_devices() itself internally.
1311  *
1312  * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1313  * iterate multiple underlying devices internally, in which case a non-zero
1314  * return code returned by iterate_devices_callout_fn will stop the iteration
1315  * in advance.
1316  *
1317  * Cases requiring _any_ underlying device supporting some kind of attribute,
1318  * should use the iteration structure like dm_table_any_dev_attr(), or call
1319  * it directly. @func should handle semantics of positive examples, e.g.
1320  * capable of something.
1321  *
1322  * Cases requiring _all_ underlying devices supporting some kind of attribute,
1323  * should use the iteration structure like dm_table_supports_nowait() or
1324  * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1325  * uses an @anti_func that handle semantics of counter examples, e.g. not
1326  * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1327  */
dm_table_any_dev_attr(struct dm_table * t,iterate_devices_callout_fn func,void * data)1328 static bool dm_table_any_dev_attr(struct dm_table *t,
1329 				  iterate_devices_callout_fn func, void *data)
1330 {
1331 	struct dm_target *ti;
1332 	unsigned int i;
1333 
1334 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1335 		ti = dm_table_get_target(t, i);
1336 
1337 		if (ti->type->iterate_devices &&
1338 		    ti->type->iterate_devices(ti, func, data))
1339 			return true;
1340         }
1341 
1342 	return false;
1343 }
1344 
count_device(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1345 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1346 			sector_t start, sector_t len, void *data)
1347 {
1348 	unsigned *num_devices = data;
1349 
1350 	(*num_devices)++;
1351 
1352 	return 0;
1353 }
1354 
1355 /*
1356  * Check whether a table has no data devices attached using each
1357  * target's iterate_devices method.
1358  * Returns false if the result is unknown because a target doesn't
1359  * support iterate_devices.
1360  */
dm_table_has_no_data_devices(struct dm_table * table)1361 bool dm_table_has_no_data_devices(struct dm_table *table)
1362 {
1363 	struct dm_target *ti;
1364 	unsigned i, num_devices;
1365 
1366 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1367 		ti = dm_table_get_target(table, i);
1368 
1369 		if (!ti->type->iterate_devices)
1370 			return false;
1371 
1372 		num_devices = 0;
1373 		ti->type->iterate_devices(ti, count_device, &num_devices);
1374 		if (num_devices)
1375 			return false;
1376 	}
1377 
1378 	return true;
1379 }
1380 
device_not_zoned_model(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1381 static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1382 				  sector_t start, sector_t len, void *data)
1383 {
1384 	struct request_queue *q = bdev_get_queue(dev->bdev);
1385 	enum blk_zoned_model *zoned_model = data;
1386 
1387 	return !q || blk_queue_zoned_model(q) != *zoned_model;
1388 }
1389 
1390 /*
1391  * Check the device zoned model based on the target feature flag. If the target
1392  * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1393  * also accepted but all devices must have the same zoned model. If the target
1394  * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1395  * zoned model with all zoned devices having the same zone size.
1396  */
dm_table_supports_zoned_model(struct dm_table * t,enum blk_zoned_model zoned_model)1397 static bool dm_table_supports_zoned_model(struct dm_table *t,
1398 					  enum blk_zoned_model zoned_model)
1399 {
1400 	struct dm_target *ti;
1401 	unsigned i;
1402 
1403 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1404 		ti = dm_table_get_target(t, i);
1405 
1406 		if (dm_target_supports_zoned_hm(ti->type)) {
1407 			if (!ti->type->iterate_devices ||
1408 			    ti->type->iterate_devices(ti, device_not_zoned_model,
1409 						      &zoned_model))
1410 				return false;
1411 		} else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1412 			if (zoned_model == BLK_ZONED_HM)
1413 				return false;
1414 		}
1415 	}
1416 
1417 	return true;
1418 }
1419 
device_not_matches_zone_sectors(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1420 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1421 					   sector_t start, sector_t len, void *data)
1422 {
1423 	struct request_queue *q = bdev_get_queue(dev->bdev);
1424 	unsigned int *zone_sectors = data;
1425 
1426 	if (!blk_queue_is_zoned(q))
1427 		return 0;
1428 
1429 	return !q || blk_queue_zone_sectors(q) != *zone_sectors;
1430 }
1431 
1432 /*
1433  * Check consistency of zoned model and zone sectors across all targets. For
1434  * zone sectors, if the destination device is a zoned block device, it shall
1435  * have the specified zone_sectors.
1436  */
validate_hardware_zoned_model(struct dm_table * table,enum blk_zoned_model zoned_model,unsigned int zone_sectors)1437 static int validate_hardware_zoned_model(struct dm_table *table,
1438 					 enum blk_zoned_model zoned_model,
1439 					 unsigned int zone_sectors)
1440 {
1441 	if (zoned_model == BLK_ZONED_NONE)
1442 		return 0;
1443 
1444 	if (!dm_table_supports_zoned_model(table, zoned_model)) {
1445 		DMERR("%s: zoned model is not consistent across all devices",
1446 		      dm_device_name(table->md));
1447 		return -EINVAL;
1448 	}
1449 
1450 	/* Check zone size validity and compatibility */
1451 	if (!zone_sectors || !is_power_of_2(zone_sectors))
1452 		return -EINVAL;
1453 
1454 	if (dm_table_any_dev_attr(table, device_not_matches_zone_sectors, &zone_sectors)) {
1455 		DMERR("%s: zone sectors is not consistent across all zoned devices",
1456 		      dm_device_name(table->md));
1457 		return -EINVAL;
1458 	}
1459 
1460 	return 0;
1461 }
1462 
1463 /*
1464  * Establish the new table's queue_limits and validate them.
1465  */
dm_calculate_queue_limits(struct dm_table * table,struct queue_limits * limits)1466 int dm_calculate_queue_limits(struct dm_table *table,
1467 			      struct queue_limits *limits)
1468 {
1469 	struct dm_target *ti;
1470 	struct queue_limits ti_limits;
1471 	unsigned i;
1472 	enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1473 	unsigned int zone_sectors = 0;
1474 
1475 	blk_set_stacking_limits(limits);
1476 
1477 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1478 		blk_set_stacking_limits(&ti_limits);
1479 
1480 		ti = dm_table_get_target(table, i);
1481 
1482 		if (!ti->type->iterate_devices)
1483 			goto combine_limits;
1484 
1485 		/*
1486 		 * Combine queue limits of all the devices this target uses.
1487 		 */
1488 		ti->type->iterate_devices(ti, dm_set_device_limits,
1489 					  &ti_limits);
1490 
1491 		if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1492 			/*
1493 			 * After stacking all limits, validate all devices
1494 			 * in table support this zoned model and zone sectors.
1495 			 */
1496 			zoned_model = ti_limits.zoned;
1497 			zone_sectors = ti_limits.chunk_sectors;
1498 		}
1499 
1500 		/* Set I/O hints portion of queue limits */
1501 		if (ti->type->io_hints)
1502 			ti->type->io_hints(ti, &ti_limits);
1503 
1504 		/*
1505 		 * Check each device area is consistent with the target's
1506 		 * overall queue limits.
1507 		 */
1508 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1509 					      &ti_limits))
1510 			return -EINVAL;
1511 
1512 combine_limits:
1513 		/*
1514 		 * Merge this target's queue limits into the overall limits
1515 		 * for the table.
1516 		 */
1517 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1518 			DMWARN("%s: adding target device "
1519 			       "(start sect %llu len %llu) "
1520 			       "caused an alignment inconsistency",
1521 			       dm_device_name(table->md),
1522 			       (unsigned long long) ti->begin,
1523 			       (unsigned long long) ti->len);
1524 	}
1525 
1526 	/*
1527 	 * Verify that the zoned model and zone sectors, as determined before
1528 	 * any .io_hints override, are the same across all devices in the table.
1529 	 * - this is especially relevant if .io_hints is emulating a disk-managed
1530 	 *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1531 	 * BUT...
1532 	 */
1533 	if (limits->zoned != BLK_ZONED_NONE) {
1534 		/*
1535 		 * ...IF the above limits stacking determined a zoned model
1536 		 * validate that all of the table's devices conform to it.
1537 		 */
1538 		zoned_model = limits->zoned;
1539 		zone_sectors = limits->chunk_sectors;
1540 	}
1541 	if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1542 		return -EINVAL;
1543 
1544 	return validate_hardware_logical_block_alignment(table, limits);
1545 }
1546 
1547 /*
1548  * Verify that all devices have an integrity profile that matches the
1549  * DM device's registered integrity profile.  If the profiles don't
1550  * match then unregister the DM device's integrity profile.
1551  */
dm_table_verify_integrity(struct dm_table * t)1552 static void dm_table_verify_integrity(struct dm_table *t)
1553 {
1554 	struct gendisk *template_disk = NULL;
1555 
1556 	if (t->integrity_added)
1557 		return;
1558 
1559 	if (t->integrity_supported) {
1560 		/*
1561 		 * Verify that the original integrity profile
1562 		 * matches all the devices in this table.
1563 		 */
1564 		template_disk = dm_table_get_integrity_disk(t);
1565 		if (template_disk &&
1566 		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1567 			return;
1568 	}
1569 
1570 	if (integrity_profile_exists(dm_disk(t->md))) {
1571 		DMWARN("%s: unable to establish an integrity profile",
1572 		       dm_device_name(t->md));
1573 		blk_integrity_unregister(dm_disk(t->md));
1574 	}
1575 }
1576 
device_flush_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1577 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1578 				sector_t start, sector_t len, void *data)
1579 {
1580 	unsigned long flush = (unsigned long) data;
1581 	struct request_queue *q = bdev_get_queue(dev->bdev);
1582 
1583 	return q && (q->queue_flags & flush);
1584 }
1585 
dm_table_supports_flush(struct dm_table * t,unsigned long flush)1586 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1587 {
1588 	struct dm_target *ti;
1589 	unsigned i;
1590 
1591 	/*
1592 	 * Require at least one underlying device to support flushes.
1593 	 * t->devices includes internal dm devices such as mirror logs
1594 	 * so we need to use iterate_devices here, which targets
1595 	 * supporting flushes must provide.
1596 	 */
1597 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1598 		ti = dm_table_get_target(t, i);
1599 
1600 		if (!ti->num_flush_bios)
1601 			continue;
1602 
1603 		if (ti->flush_supported)
1604 			return true;
1605 
1606 		if (ti->type->iterate_devices &&
1607 		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1608 			return true;
1609 	}
1610 
1611 	return false;
1612 }
1613 
device_dax_write_cache_enabled(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1614 static int device_dax_write_cache_enabled(struct dm_target *ti,
1615 					  struct dm_dev *dev, sector_t start,
1616 					  sector_t len, void *data)
1617 {
1618 	struct dax_device *dax_dev = dev->dax_dev;
1619 
1620 	if (!dax_dev)
1621 		return false;
1622 
1623 	if (dax_write_cache_enabled(dax_dev))
1624 		return true;
1625 	return false;
1626 }
1627 
device_is_rotational(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1628 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1629 				sector_t start, sector_t len, void *data)
1630 {
1631 	struct request_queue *q = bdev_get_queue(dev->bdev);
1632 
1633 	return q && !blk_queue_nonrot(q);
1634 }
1635 
device_is_not_random(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1636 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1637 			     sector_t start, sector_t len, void *data)
1638 {
1639 	struct request_queue *q = bdev_get_queue(dev->bdev);
1640 
1641 	return q && !blk_queue_add_random(q);
1642 }
1643 
device_not_write_same_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1644 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1645 					 sector_t start, sector_t len, void *data)
1646 {
1647 	struct request_queue *q = bdev_get_queue(dev->bdev);
1648 
1649 	return q && !q->limits.max_write_same_sectors;
1650 }
1651 
dm_table_supports_write_same(struct dm_table * t)1652 static bool dm_table_supports_write_same(struct dm_table *t)
1653 {
1654 	struct dm_target *ti;
1655 	unsigned i;
1656 
1657 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1658 		ti = dm_table_get_target(t, i);
1659 
1660 		if (!ti->num_write_same_bios)
1661 			return false;
1662 
1663 		if (!ti->type->iterate_devices ||
1664 		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1665 			return false;
1666 	}
1667 
1668 	return true;
1669 }
1670 
device_not_write_zeroes_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1671 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1672 					   sector_t start, sector_t len, void *data)
1673 {
1674 	struct request_queue *q = bdev_get_queue(dev->bdev);
1675 
1676 	return q && !q->limits.max_write_zeroes_sectors;
1677 }
1678 
dm_table_supports_write_zeroes(struct dm_table * t)1679 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1680 {
1681 	struct dm_target *ti;
1682 	unsigned i = 0;
1683 
1684 	while (i < dm_table_get_num_targets(t)) {
1685 		ti = dm_table_get_target(t, i++);
1686 
1687 		if (!ti->num_write_zeroes_bios)
1688 			return false;
1689 
1690 		if (!ti->type->iterate_devices ||
1691 		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1692 			return false;
1693 	}
1694 
1695 	return true;
1696 }
1697 
device_not_nowait_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1698 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1699 				     sector_t start, sector_t len, void *data)
1700 {
1701 	struct request_queue *q = bdev_get_queue(dev->bdev);
1702 
1703 	return q && !blk_queue_nowait(q);
1704 }
1705 
dm_table_supports_nowait(struct dm_table * t)1706 static bool dm_table_supports_nowait(struct dm_table *t)
1707 {
1708 	struct dm_target *ti;
1709 	unsigned i = 0;
1710 
1711 	while (i < dm_table_get_num_targets(t)) {
1712 		ti = dm_table_get_target(t, i++);
1713 
1714 		if (!dm_target_supports_nowait(ti->type))
1715 			return false;
1716 
1717 		if (!ti->type->iterate_devices ||
1718 		    ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1719 			return false;
1720 	}
1721 
1722 	return true;
1723 }
1724 
device_not_discard_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1725 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1726 				      sector_t start, sector_t len, void *data)
1727 {
1728 	struct request_queue *q = bdev_get_queue(dev->bdev);
1729 
1730 	return q && !blk_queue_discard(q);
1731 }
1732 
dm_table_supports_discards(struct dm_table * t)1733 static bool dm_table_supports_discards(struct dm_table *t)
1734 {
1735 	struct dm_target *ti;
1736 	unsigned i;
1737 
1738 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1739 		ti = dm_table_get_target(t, i);
1740 
1741 		if (!ti->num_discard_bios)
1742 			return false;
1743 
1744 		/*
1745 		 * Either the target provides discard support (as implied by setting
1746 		 * 'discards_supported') or it relies on _all_ data devices having
1747 		 * discard support.
1748 		 */
1749 		if (!ti->discards_supported &&
1750 		    (!ti->type->iterate_devices ||
1751 		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1752 			return false;
1753 	}
1754 
1755 	return true;
1756 }
1757 
device_not_secure_erase_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1758 static int device_not_secure_erase_capable(struct dm_target *ti,
1759 					   struct dm_dev *dev, sector_t start,
1760 					   sector_t len, void *data)
1761 {
1762 	struct request_queue *q = bdev_get_queue(dev->bdev);
1763 
1764 	return q && !blk_queue_secure_erase(q);
1765 }
1766 
dm_table_supports_secure_erase(struct dm_table * t)1767 static bool dm_table_supports_secure_erase(struct dm_table *t)
1768 {
1769 	struct dm_target *ti;
1770 	unsigned int i;
1771 
1772 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1773 		ti = dm_table_get_target(t, i);
1774 
1775 		if (!ti->num_secure_erase_bios)
1776 			return false;
1777 
1778 		if (!ti->type->iterate_devices ||
1779 		    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1780 			return false;
1781 	}
1782 
1783 	return true;
1784 }
1785 
device_requires_stable_pages(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1786 static int device_requires_stable_pages(struct dm_target *ti,
1787 					struct dm_dev *dev, sector_t start,
1788 					sector_t len, void *data)
1789 {
1790 	struct request_queue *q = bdev_get_queue(dev->bdev);
1791 
1792 	return q && blk_queue_stable_writes(q);
1793 }
1794 
dm_table_set_restrictions(struct dm_table * t,struct request_queue * q,struct queue_limits * limits)1795 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1796 			       struct queue_limits *limits)
1797 {
1798 	bool wc = false, fua = false;
1799 	int page_size = PAGE_SIZE;
1800 
1801 	/*
1802 	 * Copy table's limits to the DM device's request_queue
1803 	 */
1804 	q->limits = *limits;
1805 
1806 	if (dm_table_supports_nowait(t))
1807 		blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1808 	else
1809 		blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1810 
1811 	if (!dm_table_supports_discards(t)) {
1812 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1813 		/* Must also clear discard limits... */
1814 		q->limits.max_discard_sectors = 0;
1815 		q->limits.max_hw_discard_sectors = 0;
1816 		q->limits.discard_granularity = 0;
1817 		q->limits.discard_alignment = 0;
1818 		q->limits.discard_misaligned = 0;
1819 	} else
1820 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
1821 
1822 	if (dm_table_supports_secure_erase(t))
1823 		blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
1824 
1825 	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1826 		wc = true;
1827 		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1828 			fua = true;
1829 	}
1830 	blk_queue_write_cache(q, wc, fua);
1831 
1832 	if (dm_table_supports_dax(t, device_not_dax_capable, &page_size)) {
1833 		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1834 		if (dm_table_supports_dax(t, device_not_dax_synchronous_capable, NULL))
1835 			set_dax_synchronous(t->md->dax_dev);
1836 	}
1837 	else
1838 		blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1839 
1840 	if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
1841 		dax_write_cache(t->md->dax_dev, true);
1842 
1843 	/* Ensure that all underlying devices are non-rotational. */
1844 	if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
1845 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1846 	else
1847 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1848 
1849 	if (!dm_table_supports_write_same(t))
1850 		q->limits.max_write_same_sectors = 0;
1851 	if (!dm_table_supports_write_zeroes(t))
1852 		q->limits.max_write_zeroes_sectors = 0;
1853 
1854 	dm_table_verify_integrity(t);
1855 
1856 	/*
1857 	 * Some devices don't use blk_integrity but still want stable pages
1858 	 * because they do their own checksumming.
1859 	 * If any underlying device requires stable pages, a table must require
1860 	 * them as well.  Only targets that support iterate_devices are considered:
1861 	 * don't want error, zero, etc to require stable pages.
1862 	 */
1863 	if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
1864 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
1865 	else
1866 		blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
1867 
1868 	/*
1869 	 * Determine whether or not this queue's I/O timings contribute
1870 	 * to the entropy pool, Only request-based targets use this.
1871 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1872 	 * have it set.
1873 	 */
1874 	if (blk_queue_add_random(q) &&
1875 	    dm_table_any_dev_attr(t, device_is_not_random, NULL))
1876 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
1877 
1878 	/*
1879 	 * For a zoned target, the number of zones should be updated for the
1880 	 * correct value to be exposed in sysfs queue/nr_zones. For a BIO based
1881 	 * target, this is all that is needed.
1882 	 */
1883 #ifdef CONFIG_BLK_DEV_ZONED
1884 	if (blk_queue_is_zoned(q)) {
1885 		WARN_ON_ONCE(queue_is_mq(q));
1886 		q->nr_zones = blkdev_nr_zones(t->md->disk);
1887 	}
1888 #endif
1889 
1890 	blk_queue_update_readahead(q);
1891 }
1892 
dm_table_get_num_targets(struct dm_table * t)1893 unsigned int dm_table_get_num_targets(struct dm_table *t)
1894 {
1895 	return t->num_targets;
1896 }
1897 
dm_table_get_devices(struct dm_table * t)1898 struct list_head *dm_table_get_devices(struct dm_table *t)
1899 {
1900 	return &t->devices;
1901 }
1902 
dm_table_get_mode(struct dm_table * t)1903 fmode_t dm_table_get_mode(struct dm_table *t)
1904 {
1905 	return t->mode;
1906 }
1907 EXPORT_SYMBOL(dm_table_get_mode);
1908 
1909 enum suspend_mode {
1910 	PRESUSPEND,
1911 	PRESUSPEND_UNDO,
1912 	POSTSUSPEND,
1913 };
1914 
suspend_targets(struct dm_table * t,enum suspend_mode mode)1915 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1916 {
1917 	int i = t->num_targets;
1918 	struct dm_target *ti = t->targets;
1919 
1920 	lockdep_assert_held(&t->md->suspend_lock);
1921 
1922 	while (i--) {
1923 		switch (mode) {
1924 		case PRESUSPEND:
1925 			if (ti->type->presuspend)
1926 				ti->type->presuspend(ti);
1927 			break;
1928 		case PRESUSPEND_UNDO:
1929 			if (ti->type->presuspend_undo)
1930 				ti->type->presuspend_undo(ti);
1931 			break;
1932 		case POSTSUSPEND:
1933 			if (ti->type->postsuspend)
1934 				ti->type->postsuspend(ti);
1935 			break;
1936 		}
1937 		ti++;
1938 	}
1939 }
1940 
dm_table_presuspend_targets(struct dm_table * t)1941 void dm_table_presuspend_targets(struct dm_table *t)
1942 {
1943 	if (!t)
1944 		return;
1945 
1946 	suspend_targets(t, PRESUSPEND);
1947 }
1948 
dm_table_presuspend_undo_targets(struct dm_table * t)1949 void dm_table_presuspend_undo_targets(struct dm_table *t)
1950 {
1951 	if (!t)
1952 		return;
1953 
1954 	suspend_targets(t, PRESUSPEND_UNDO);
1955 }
1956 
dm_table_postsuspend_targets(struct dm_table * t)1957 void dm_table_postsuspend_targets(struct dm_table *t)
1958 {
1959 	if (!t)
1960 		return;
1961 
1962 	suspend_targets(t, POSTSUSPEND);
1963 }
1964 
dm_table_resume_targets(struct dm_table * t)1965 int dm_table_resume_targets(struct dm_table *t)
1966 {
1967 	int i, r = 0;
1968 
1969 	lockdep_assert_held(&t->md->suspend_lock);
1970 
1971 	for (i = 0; i < t->num_targets; i++) {
1972 		struct dm_target *ti = t->targets + i;
1973 
1974 		if (!ti->type->preresume)
1975 			continue;
1976 
1977 		r = ti->type->preresume(ti);
1978 		if (r) {
1979 			DMERR("%s: %s: preresume failed, error = %d",
1980 			      dm_device_name(t->md), ti->type->name, r);
1981 			return r;
1982 		}
1983 	}
1984 
1985 	for (i = 0; i < t->num_targets; i++) {
1986 		struct dm_target *ti = t->targets + i;
1987 
1988 		if (ti->type->resume)
1989 			ti->type->resume(ti);
1990 	}
1991 
1992 	return 0;
1993 }
1994 
dm_table_get_md(struct dm_table * t)1995 struct mapped_device *dm_table_get_md(struct dm_table *t)
1996 {
1997 	return t->md;
1998 }
1999 EXPORT_SYMBOL(dm_table_get_md);
2000 
dm_table_device_name(struct dm_table * t)2001 const char *dm_table_device_name(struct dm_table *t)
2002 {
2003 	return dm_device_name(t->md);
2004 }
2005 EXPORT_SYMBOL_GPL(dm_table_device_name);
2006 
dm_table_run_md_queue_async(struct dm_table * t)2007 void dm_table_run_md_queue_async(struct dm_table *t)
2008 {
2009 	if (!dm_table_request_based(t))
2010 		return;
2011 
2012 	if (t->md->queue)
2013 		blk_mq_run_hw_queues(t->md->queue, true);
2014 }
2015 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2016 
2017