1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_DMA_MAPPING_H
3 #define _LINUX_DMA_MAPPING_H
4
5 #include <linux/sizes.h>
6 #include <linux/string.h>
7 #include <linux/device.h>
8 #include <linux/err.h>
9 #include <linux/dma-direction.h>
10 #include <linux/scatterlist.h>
11 #include <linux/bug.h>
12 #include <linux/mem_encrypt.h>
13
14 /**
15 * List of possible attributes associated with a DMA mapping. The semantics
16 * of each attribute should be defined in Documentation/core-api/dma-attributes.rst.
17 */
18
19 /*
20 * DMA_ATTR_WEAK_ORDERING: Specifies that reads and writes to the mapping
21 * may be weakly ordered, that is that reads and writes may pass each other.
22 */
23 #define DMA_ATTR_WEAK_ORDERING (1UL << 1)
24 /*
25 * DMA_ATTR_WRITE_COMBINE: Specifies that writes to the mapping may be
26 * buffered to improve performance.
27 */
28 #define DMA_ATTR_WRITE_COMBINE (1UL << 2)
29 /*
30 * DMA_ATTR_NO_KERNEL_MAPPING: Lets the platform to avoid creating a kernel
31 * virtual mapping for the allocated buffer.
32 */
33 #define DMA_ATTR_NO_KERNEL_MAPPING (1UL << 4)
34 /*
35 * DMA_ATTR_SKIP_CPU_SYNC: Allows platform code to skip synchronization of
36 * the CPU cache for the given buffer assuming that it has been already
37 * transferred to 'device' domain.
38 */
39 #define DMA_ATTR_SKIP_CPU_SYNC (1UL << 5)
40 /*
41 * DMA_ATTR_FORCE_CONTIGUOUS: Forces contiguous allocation of the buffer
42 * in physical memory.
43 */
44 #define DMA_ATTR_FORCE_CONTIGUOUS (1UL << 6)
45 /*
46 * DMA_ATTR_ALLOC_SINGLE_PAGES: This is a hint to the DMA-mapping subsystem
47 * that it's probably not worth the time to try to allocate memory to in a way
48 * that gives better TLB efficiency.
49 */
50 #define DMA_ATTR_ALLOC_SINGLE_PAGES (1UL << 7)
51 /*
52 * DMA_ATTR_NO_WARN: This tells the DMA-mapping subsystem to suppress
53 * allocation failure reports (similarly to __GFP_NOWARN).
54 */
55 #define DMA_ATTR_NO_WARN (1UL << 8)
56
57 /*
58 * DMA_ATTR_PRIVILEGED: used to indicate that the buffer is fully
59 * accessible at an elevated privilege level (and ideally inaccessible or
60 * at least read-only at lesser-privileged levels).
61 */
62 #define DMA_ATTR_PRIVILEGED (1UL << 9)
63
64 /*
65 * A dma_addr_t can hold any valid DMA or bus address for the platform. It can
66 * be given to a device to use as a DMA source or target. It is specific to a
67 * given device and there may be a translation between the CPU physical address
68 * space and the bus address space.
69 *
70 * DMA_MAPPING_ERROR is the magic error code if a mapping failed. It should not
71 * be used directly in drivers, but checked for using dma_mapping_error()
72 * instead.
73 */
74 #define DMA_MAPPING_ERROR (~(dma_addr_t)0)
75
76 #define DMA_BIT_MASK(n) (((n) == 64) ? ~0ULL : ((1ULL<<(n))-1))
77
78 #ifdef CONFIG_DMA_API_DEBUG
79 void debug_dma_mapping_error(struct device *dev, dma_addr_t dma_addr);
80 void debug_dma_map_single(struct device *dev, const void *addr,
81 unsigned long len);
82 #else
debug_dma_mapping_error(struct device * dev,dma_addr_t dma_addr)83 static inline void debug_dma_mapping_error(struct device *dev,
84 dma_addr_t dma_addr)
85 {
86 }
debug_dma_map_single(struct device * dev,const void * addr,unsigned long len)87 static inline void debug_dma_map_single(struct device *dev, const void *addr,
88 unsigned long len)
89 {
90 }
91 #endif /* CONFIG_DMA_API_DEBUG */
92
93 #ifdef CONFIG_HAS_DMA
dma_mapping_error(struct device * dev,dma_addr_t dma_addr)94 static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
95 {
96 debug_dma_mapping_error(dev, dma_addr);
97
98 if (dma_addr == DMA_MAPPING_ERROR)
99 return -ENOMEM;
100 return 0;
101 }
102
103 dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
104 size_t offset, size_t size, enum dma_data_direction dir,
105 unsigned long attrs);
106 void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
107 enum dma_data_direction dir, unsigned long attrs);
108 int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, int nents,
109 enum dma_data_direction dir, unsigned long attrs);
110 void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
111 int nents, enum dma_data_direction dir,
112 unsigned long attrs);
113 dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
114 size_t size, enum dma_data_direction dir, unsigned long attrs);
115 void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
116 enum dma_data_direction dir, unsigned long attrs);
117 void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
118 enum dma_data_direction dir);
119 void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
120 size_t size, enum dma_data_direction dir);
121 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
122 int nelems, enum dma_data_direction dir);
123 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
124 int nelems, enum dma_data_direction dir);
125 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
126 gfp_t flag, unsigned long attrs);
127 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
128 dma_addr_t dma_handle, unsigned long attrs);
129 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
130 gfp_t gfp, unsigned long attrs);
131 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
132 dma_addr_t dma_handle);
133 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
134 void *cpu_addr, dma_addr_t dma_addr, size_t size,
135 unsigned long attrs);
136 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
137 void *cpu_addr, dma_addr_t dma_addr, size_t size,
138 unsigned long attrs);
139 bool dma_can_mmap(struct device *dev);
140 int dma_supported(struct device *dev, u64 mask);
141 int dma_set_mask(struct device *dev, u64 mask);
142 int dma_set_coherent_mask(struct device *dev, u64 mask);
143 u64 dma_get_required_mask(struct device *dev);
144 size_t dma_max_mapping_size(struct device *dev);
145 bool dma_need_sync(struct device *dev, dma_addr_t dma_addr);
146 unsigned long dma_get_merge_boundary(struct device *dev);
147 #else /* CONFIG_HAS_DMA */
dma_map_page_attrs(struct device * dev,struct page * page,size_t offset,size_t size,enum dma_data_direction dir,unsigned long attrs)148 static inline dma_addr_t dma_map_page_attrs(struct device *dev,
149 struct page *page, size_t offset, size_t size,
150 enum dma_data_direction dir, unsigned long attrs)
151 {
152 return DMA_MAPPING_ERROR;
153 }
dma_unmap_page_attrs(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir,unsigned long attrs)154 static inline void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr,
155 size_t size, enum dma_data_direction dir, unsigned long attrs)
156 {
157 }
dma_map_sg_attrs(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)158 static inline int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
159 int nents, enum dma_data_direction dir, unsigned long attrs)
160 {
161 return 0;
162 }
dma_unmap_sg_attrs(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)163 static inline void dma_unmap_sg_attrs(struct device *dev,
164 struct scatterlist *sg, int nents, enum dma_data_direction dir,
165 unsigned long attrs)
166 {
167 }
dma_map_resource(struct device * dev,phys_addr_t phys_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)168 static inline dma_addr_t dma_map_resource(struct device *dev,
169 phys_addr_t phys_addr, size_t size, enum dma_data_direction dir,
170 unsigned long attrs)
171 {
172 return DMA_MAPPING_ERROR;
173 }
dma_unmap_resource(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir,unsigned long attrs)174 static inline void dma_unmap_resource(struct device *dev, dma_addr_t addr,
175 size_t size, enum dma_data_direction dir, unsigned long attrs)
176 {
177 }
dma_sync_single_for_cpu(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)178 static inline void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
179 size_t size, enum dma_data_direction dir)
180 {
181 }
dma_sync_single_for_device(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)182 static inline void dma_sync_single_for_device(struct device *dev,
183 dma_addr_t addr, size_t size, enum dma_data_direction dir)
184 {
185 }
dma_sync_sg_for_cpu(struct device * dev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)186 static inline void dma_sync_sg_for_cpu(struct device *dev,
187 struct scatterlist *sg, int nelems, enum dma_data_direction dir)
188 {
189 }
dma_sync_sg_for_device(struct device * dev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)190 static inline void dma_sync_sg_for_device(struct device *dev,
191 struct scatterlist *sg, int nelems, enum dma_data_direction dir)
192 {
193 }
dma_mapping_error(struct device * dev,dma_addr_t dma_addr)194 static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
195 {
196 return -ENOMEM;
197 }
dma_alloc_attrs(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t flag,unsigned long attrs)198 static inline void *dma_alloc_attrs(struct device *dev, size_t size,
199 dma_addr_t *dma_handle, gfp_t flag, unsigned long attrs)
200 {
201 return NULL;
202 }
dma_free_attrs(struct device * dev,size_t size,void * cpu_addr,dma_addr_t dma_handle,unsigned long attrs)203 static void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
204 dma_addr_t dma_handle, unsigned long attrs)
205 {
206 }
dmam_alloc_attrs(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)207 static inline void *dmam_alloc_attrs(struct device *dev, size_t size,
208 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
209 {
210 return NULL;
211 }
dmam_free_coherent(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_handle)212 static inline void dmam_free_coherent(struct device *dev, size_t size,
213 void *vaddr, dma_addr_t dma_handle)
214 {
215 }
dma_get_sgtable_attrs(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)216 static inline int dma_get_sgtable_attrs(struct device *dev,
217 struct sg_table *sgt, void *cpu_addr, dma_addr_t dma_addr,
218 size_t size, unsigned long attrs)
219 {
220 return -ENXIO;
221 }
dma_mmap_attrs(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)222 static inline int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
223 void *cpu_addr, dma_addr_t dma_addr, size_t size,
224 unsigned long attrs)
225 {
226 return -ENXIO;
227 }
dma_can_mmap(struct device * dev)228 static inline bool dma_can_mmap(struct device *dev)
229 {
230 return false;
231 }
dma_supported(struct device * dev,u64 mask)232 static inline int dma_supported(struct device *dev, u64 mask)
233 {
234 return 0;
235 }
dma_set_mask(struct device * dev,u64 mask)236 static inline int dma_set_mask(struct device *dev, u64 mask)
237 {
238 return -EIO;
239 }
dma_set_coherent_mask(struct device * dev,u64 mask)240 static inline int dma_set_coherent_mask(struct device *dev, u64 mask)
241 {
242 return -EIO;
243 }
dma_get_required_mask(struct device * dev)244 static inline u64 dma_get_required_mask(struct device *dev)
245 {
246 return 0;
247 }
dma_max_mapping_size(struct device * dev)248 static inline size_t dma_max_mapping_size(struct device *dev)
249 {
250 return 0;
251 }
dma_need_sync(struct device * dev,dma_addr_t dma_addr)252 static inline bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
253 {
254 return false;
255 }
dma_get_merge_boundary(struct device * dev)256 static inline unsigned long dma_get_merge_boundary(struct device *dev)
257 {
258 return 0;
259 }
260 #endif /* CONFIG_HAS_DMA */
261
262 struct page *dma_alloc_pages(struct device *dev, size_t size,
263 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp);
264 void dma_free_pages(struct device *dev, size_t size, struct page *page,
265 dma_addr_t dma_handle, enum dma_data_direction dir);
266 void *dma_alloc_noncoherent(struct device *dev, size_t size,
267 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp);
268 void dma_free_noncoherent(struct device *dev, size_t size, void *vaddr,
269 dma_addr_t dma_handle, enum dma_data_direction dir);
270
dma_map_single_attrs(struct device * dev,void * ptr,size_t size,enum dma_data_direction dir,unsigned long attrs)271 static inline dma_addr_t dma_map_single_attrs(struct device *dev, void *ptr,
272 size_t size, enum dma_data_direction dir, unsigned long attrs)
273 {
274 /* DMA must never operate on areas that might be remapped. */
275 if (dev_WARN_ONCE(dev, is_vmalloc_addr(ptr),
276 "rejecting DMA map of vmalloc memory\n"))
277 return DMA_MAPPING_ERROR;
278 debug_dma_map_single(dev, ptr, size);
279 return dma_map_page_attrs(dev, virt_to_page(ptr), offset_in_page(ptr),
280 size, dir, attrs);
281 }
282
dma_unmap_single_attrs(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir,unsigned long attrs)283 static inline void dma_unmap_single_attrs(struct device *dev, dma_addr_t addr,
284 size_t size, enum dma_data_direction dir, unsigned long attrs)
285 {
286 return dma_unmap_page_attrs(dev, addr, size, dir, attrs);
287 }
288
dma_sync_single_range_for_cpu(struct device * dev,dma_addr_t addr,unsigned long offset,size_t size,enum dma_data_direction dir)289 static inline void dma_sync_single_range_for_cpu(struct device *dev,
290 dma_addr_t addr, unsigned long offset, size_t size,
291 enum dma_data_direction dir)
292 {
293 return dma_sync_single_for_cpu(dev, addr + offset, size, dir);
294 }
295
dma_sync_single_range_for_device(struct device * dev,dma_addr_t addr,unsigned long offset,size_t size,enum dma_data_direction dir)296 static inline void dma_sync_single_range_for_device(struct device *dev,
297 dma_addr_t addr, unsigned long offset, size_t size,
298 enum dma_data_direction dir)
299 {
300 return dma_sync_single_for_device(dev, addr + offset, size, dir);
301 }
302
303 /**
304 * dma_map_sgtable - Map the given buffer for DMA
305 * @dev: The device for which to perform the DMA operation
306 * @sgt: The sg_table object describing the buffer
307 * @dir: DMA direction
308 * @attrs: Optional DMA attributes for the map operation
309 *
310 * Maps a buffer described by a scatterlist stored in the given sg_table
311 * object for the @dir DMA operation by the @dev device. After success the
312 * ownership for the buffer is transferred to the DMA domain. One has to
313 * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the
314 * ownership of the buffer back to the CPU domain before touching the
315 * buffer by the CPU.
316 *
317 * Returns 0 on success or -EINVAL on error during mapping the buffer.
318 */
dma_map_sgtable(struct device * dev,struct sg_table * sgt,enum dma_data_direction dir,unsigned long attrs)319 static inline int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
320 enum dma_data_direction dir, unsigned long attrs)
321 {
322 int nents;
323
324 nents = dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
325 if (nents <= 0)
326 return -EINVAL;
327 sgt->nents = nents;
328 return 0;
329 }
330
331 /**
332 * dma_unmap_sgtable - Unmap the given buffer for DMA
333 * @dev: The device for which to perform the DMA operation
334 * @sgt: The sg_table object describing the buffer
335 * @dir: DMA direction
336 * @attrs: Optional DMA attributes for the unmap operation
337 *
338 * Unmaps a buffer described by a scatterlist stored in the given sg_table
339 * object for the @dir DMA operation by the @dev device. After this function
340 * the ownership of the buffer is transferred back to the CPU domain.
341 */
dma_unmap_sgtable(struct device * dev,struct sg_table * sgt,enum dma_data_direction dir,unsigned long attrs)342 static inline void dma_unmap_sgtable(struct device *dev, struct sg_table *sgt,
343 enum dma_data_direction dir, unsigned long attrs)
344 {
345 dma_unmap_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
346 }
347
348 /**
349 * dma_sync_sgtable_for_cpu - Synchronize the given buffer for CPU access
350 * @dev: The device for which to perform the DMA operation
351 * @sgt: The sg_table object describing the buffer
352 * @dir: DMA direction
353 *
354 * Performs the needed cache synchronization and moves the ownership of the
355 * buffer back to the CPU domain, so it is safe to perform any access to it
356 * by the CPU. Before doing any further DMA operations, one has to transfer
357 * the ownership of the buffer back to the DMA domain by calling the
358 * dma_sync_sgtable_for_device().
359 */
dma_sync_sgtable_for_cpu(struct device * dev,struct sg_table * sgt,enum dma_data_direction dir)360 static inline void dma_sync_sgtable_for_cpu(struct device *dev,
361 struct sg_table *sgt, enum dma_data_direction dir)
362 {
363 dma_sync_sg_for_cpu(dev, sgt->sgl, sgt->orig_nents, dir);
364 }
365
366 /**
367 * dma_sync_sgtable_for_device - Synchronize the given buffer for DMA
368 * @dev: The device for which to perform the DMA operation
369 * @sgt: The sg_table object describing the buffer
370 * @dir: DMA direction
371 *
372 * Performs the needed cache synchronization and moves the ownership of the
373 * buffer back to the DMA domain, so it is safe to perform the DMA operation.
374 * Once finished, one has to call dma_sync_sgtable_for_cpu() or
375 * dma_unmap_sgtable().
376 */
dma_sync_sgtable_for_device(struct device * dev,struct sg_table * sgt,enum dma_data_direction dir)377 static inline void dma_sync_sgtable_for_device(struct device *dev,
378 struct sg_table *sgt, enum dma_data_direction dir)
379 {
380 dma_sync_sg_for_device(dev, sgt->sgl, sgt->orig_nents, dir);
381 }
382
383 #define dma_map_single(d, a, s, r) dma_map_single_attrs(d, a, s, r, 0)
384 #define dma_unmap_single(d, a, s, r) dma_unmap_single_attrs(d, a, s, r, 0)
385 #define dma_map_sg(d, s, n, r) dma_map_sg_attrs(d, s, n, r, 0)
386 #define dma_unmap_sg(d, s, n, r) dma_unmap_sg_attrs(d, s, n, r, 0)
387 #define dma_map_page(d, p, o, s, r) dma_map_page_attrs(d, p, o, s, r, 0)
388 #define dma_unmap_page(d, a, s, r) dma_unmap_page_attrs(d, a, s, r, 0)
389 #define dma_get_sgtable(d, t, v, h, s) dma_get_sgtable_attrs(d, t, v, h, s, 0)
390 #define dma_mmap_coherent(d, v, c, h, s) dma_mmap_attrs(d, v, c, h, s, 0)
391
dma_alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp)392 static inline void *dma_alloc_coherent(struct device *dev, size_t size,
393 dma_addr_t *dma_handle, gfp_t gfp)
394 {
395
396 return dma_alloc_attrs(dev, size, dma_handle, gfp,
397 (gfp & __GFP_NOWARN) ? DMA_ATTR_NO_WARN : 0);
398 }
399
dma_free_coherent(struct device * dev,size_t size,void * cpu_addr,dma_addr_t dma_handle)400 static inline void dma_free_coherent(struct device *dev, size_t size,
401 void *cpu_addr, dma_addr_t dma_handle)
402 {
403 return dma_free_attrs(dev, size, cpu_addr, dma_handle, 0);
404 }
405
406
dma_get_mask(struct device * dev)407 static inline u64 dma_get_mask(struct device *dev)
408 {
409 if (dev->dma_mask && *dev->dma_mask)
410 return *dev->dma_mask;
411 return DMA_BIT_MASK(32);
412 }
413
414 /*
415 * Set both the DMA mask and the coherent DMA mask to the same thing.
416 * Note that we don't check the return value from dma_set_coherent_mask()
417 * as the DMA API guarantees that the coherent DMA mask can be set to
418 * the same or smaller than the streaming DMA mask.
419 */
dma_set_mask_and_coherent(struct device * dev,u64 mask)420 static inline int dma_set_mask_and_coherent(struct device *dev, u64 mask)
421 {
422 int rc = dma_set_mask(dev, mask);
423 if (rc == 0)
424 dma_set_coherent_mask(dev, mask);
425 return rc;
426 }
427
428 /*
429 * Similar to the above, except it deals with the case where the device
430 * does not have dev->dma_mask appropriately setup.
431 */
dma_coerce_mask_and_coherent(struct device * dev,u64 mask)432 static inline int dma_coerce_mask_and_coherent(struct device *dev, u64 mask)
433 {
434 dev->dma_mask = &dev->coherent_dma_mask;
435 return dma_set_mask_and_coherent(dev, mask);
436 }
437
438 /**
439 * dma_addressing_limited - return if the device is addressing limited
440 * @dev: device to check
441 *
442 * Return %true if the devices DMA mask is too small to address all memory in
443 * the system, else %false. Lack of addressing bits is the prime reason for
444 * bounce buffering, but might not be the only one.
445 */
dma_addressing_limited(struct device * dev)446 static inline bool dma_addressing_limited(struct device *dev)
447 {
448 return min_not_zero(dma_get_mask(dev), dev->bus_dma_limit) <
449 dma_get_required_mask(dev);
450 }
451
dma_get_max_seg_size(struct device * dev)452 static inline unsigned int dma_get_max_seg_size(struct device *dev)
453 {
454 if (dev->dma_parms && dev->dma_parms->max_segment_size)
455 return dev->dma_parms->max_segment_size;
456 return SZ_64K;
457 }
458
dma_set_max_seg_size(struct device * dev,unsigned int size)459 static inline int dma_set_max_seg_size(struct device *dev, unsigned int size)
460 {
461 if (dev->dma_parms) {
462 dev->dma_parms->max_segment_size = size;
463 return 0;
464 }
465 return -EIO;
466 }
467
dma_get_seg_boundary(struct device * dev)468 static inline unsigned long dma_get_seg_boundary(struct device *dev)
469 {
470 if (dev->dma_parms && dev->dma_parms->segment_boundary_mask)
471 return dev->dma_parms->segment_boundary_mask;
472 return ULONG_MAX;
473 }
474
475 /**
476 * dma_get_seg_boundary_nr_pages - return the segment boundary in "page" units
477 * @dev: device to guery the boundary for
478 * @page_shift: ilog() of the IOMMU page size
479 *
480 * Return the segment boundary in IOMMU page units (which may be different from
481 * the CPU page size) for the passed in device.
482 *
483 * If @dev is NULL a boundary of U32_MAX is assumed, this case is just for
484 * non-DMA API callers.
485 */
dma_get_seg_boundary_nr_pages(struct device * dev,unsigned int page_shift)486 static inline unsigned long dma_get_seg_boundary_nr_pages(struct device *dev,
487 unsigned int page_shift)
488 {
489 if (!dev)
490 return (U32_MAX >> page_shift) + 1;
491 return (dma_get_seg_boundary(dev) >> page_shift) + 1;
492 }
493
dma_set_seg_boundary(struct device * dev,unsigned long mask)494 static inline int dma_set_seg_boundary(struct device *dev, unsigned long mask)
495 {
496 if (dev->dma_parms) {
497 dev->dma_parms->segment_boundary_mask = mask;
498 return 0;
499 }
500 return -EIO;
501 }
502
dma_get_min_align_mask(struct device * dev)503 static inline unsigned int dma_get_min_align_mask(struct device *dev)
504 {
505 if (dev->dma_parms)
506 return dev->dma_parms->min_align_mask;
507 return 0;
508 }
509
dma_set_min_align_mask(struct device * dev,unsigned int min_align_mask)510 static inline int dma_set_min_align_mask(struct device *dev,
511 unsigned int min_align_mask)
512 {
513 if (WARN_ON_ONCE(!dev->dma_parms))
514 return -EIO;
515 dev->dma_parms->min_align_mask = min_align_mask;
516 return 0;
517 }
518
dma_get_cache_alignment(void)519 static inline int dma_get_cache_alignment(void)
520 {
521 #ifdef ARCH_DMA_MINALIGN
522 return ARCH_DMA_MINALIGN;
523 #endif
524 return 1;
525 }
526
dmam_alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp)527 static inline void *dmam_alloc_coherent(struct device *dev, size_t size,
528 dma_addr_t *dma_handle, gfp_t gfp)
529 {
530 return dmam_alloc_attrs(dev, size, dma_handle, gfp,
531 (gfp & __GFP_NOWARN) ? DMA_ATTR_NO_WARN : 0);
532 }
533
dma_alloc_wc(struct device * dev,size_t size,dma_addr_t * dma_addr,gfp_t gfp)534 static inline void *dma_alloc_wc(struct device *dev, size_t size,
535 dma_addr_t *dma_addr, gfp_t gfp)
536 {
537 unsigned long attrs = DMA_ATTR_WRITE_COMBINE;
538
539 if (gfp & __GFP_NOWARN)
540 attrs |= DMA_ATTR_NO_WARN;
541
542 return dma_alloc_attrs(dev, size, dma_addr, gfp, attrs);
543 }
544
dma_free_wc(struct device * dev,size_t size,void * cpu_addr,dma_addr_t dma_addr)545 static inline void dma_free_wc(struct device *dev, size_t size,
546 void *cpu_addr, dma_addr_t dma_addr)
547 {
548 return dma_free_attrs(dev, size, cpu_addr, dma_addr,
549 DMA_ATTR_WRITE_COMBINE);
550 }
551
dma_mmap_wc(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size)552 static inline int dma_mmap_wc(struct device *dev,
553 struct vm_area_struct *vma,
554 void *cpu_addr, dma_addr_t dma_addr,
555 size_t size)
556 {
557 return dma_mmap_attrs(dev, vma, cpu_addr, dma_addr, size,
558 DMA_ATTR_WRITE_COMBINE);
559 }
560
561 #ifdef CONFIG_NEED_DMA_MAP_STATE
562 #define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME) dma_addr_t ADDR_NAME
563 #define DEFINE_DMA_UNMAP_LEN(LEN_NAME) __u32 LEN_NAME
564 #define dma_unmap_addr(PTR, ADDR_NAME) ((PTR)->ADDR_NAME)
565 #define dma_unmap_addr_set(PTR, ADDR_NAME, VAL) (((PTR)->ADDR_NAME) = (VAL))
566 #define dma_unmap_len(PTR, LEN_NAME) ((PTR)->LEN_NAME)
567 #define dma_unmap_len_set(PTR, LEN_NAME, VAL) (((PTR)->LEN_NAME) = (VAL))
568 #else
569 #define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME)
570 #define DEFINE_DMA_UNMAP_LEN(LEN_NAME)
571 #define dma_unmap_addr(PTR, ADDR_NAME) (0)
572 #define dma_unmap_addr_set(PTR, ADDR_NAME, VAL) do { } while (0)
573 #define dma_unmap_len(PTR, LEN_NAME) (0)
574 #define dma_unmap_len_set(PTR, LEN_NAME, VAL) do { } while (0)
575 #endif
576
577 /*
578 * Legacy interface to set up the dma offset map. Drivers really should not
579 * actually use it, but we have a few legacy cases left.
580 */
581 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
582 dma_addr_t dma_start, u64 size);
583
584 extern const struct dma_map_ops dma_virt_ops;
585
586 #endif /* _LINUX_DMA_MAPPING_H */
587