1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * arch/alpha/kernel/traps.c
4 *
5 * (C) Copyright 1994 Linus Torvalds
6 */
7
8 /*
9 * This file initializes the trap entry points
10 */
11
12 #include <linux/jiffies.h>
13 #include <linux/mm.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sched/debug.h>
16 #include <linux/tty.h>
17 #include <linux/delay.h>
18 #include <linux/extable.h>
19 #include <linux/kallsyms.h>
20 #include <linux/ratelimit.h>
21
22 #include <asm/gentrap.h>
23 #include <linux/uaccess.h>
24 #include <asm/unaligned.h>
25 #include <asm/sysinfo.h>
26 #include <asm/hwrpb.h>
27 #include <asm/mmu_context.h>
28 #include <asm/special_insns.h>
29
30 #include "proto.h"
31
32 /* Work-around for some SRMs which mishandle opDEC faults. */
33
34 static int opDEC_fix;
35
36 static void
opDEC_check(void)37 opDEC_check(void)
38 {
39 __asm__ __volatile__ (
40 /* Load the address of... */
41 " br $16, 1f\n"
42 /* A stub instruction fault handler. Just add 4 to the
43 pc and continue. */
44 " ldq $16, 8($sp)\n"
45 " addq $16, 4, $16\n"
46 " stq $16, 8($sp)\n"
47 " call_pal %[rti]\n"
48 /* Install the instruction fault handler. */
49 "1: lda $17, 3\n"
50 " call_pal %[wrent]\n"
51 /* With that in place, the fault from the round-to-minf fp
52 insn will arrive either at the "lda 4" insn (bad) or one
53 past that (good). This places the correct fixup in %0. */
54 " lda %[fix], 0\n"
55 " cvttq/svm $f31,$f31\n"
56 " lda %[fix], 4"
57 : [fix] "=r" (opDEC_fix)
58 : [rti] "n" (PAL_rti), [wrent] "n" (PAL_wrent)
59 : "$0", "$1", "$16", "$17", "$22", "$23", "$24", "$25");
60
61 if (opDEC_fix)
62 printk("opDEC fixup enabled.\n");
63 }
64
65 void
dik_show_regs(struct pt_regs * regs,unsigned long * r9_15)66 dik_show_regs(struct pt_regs *regs, unsigned long *r9_15)
67 {
68 printk("pc = [<%016lx>] ra = [<%016lx>] ps = %04lx %s\n",
69 regs->pc, regs->r26, regs->ps, print_tainted());
70 printk("pc is at %pSR\n", (void *)regs->pc);
71 printk("ra is at %pSR\n", (void *)regs->r26);
72 printk("v0 = %016lx t0 = %016lx t1 = %016lx\n",
73 regs->r0, regs->r1, regs->r2);
74 printk("t2 = %016lx t3 = %016lx t4 = %016lx\n",
75 regs->r3, regs->r4, regs->r5);
76 printk("t5 = %016lx t6 = %016lx t7 = %016lx\n",
77 regs->r6, regs->r7, regs->r8);
78
79 if (r9_15) {
80 printk("s0 = %016lx s1 = %016lx s2 = %016lx\n",
81 r9_15[9], r9_15[10], r9_15[11]);
82 printk("s3 = %016lx s4 = %016lx s5 = %016lx\n",
83 r9_15[12], r9_15[13], r9_15[14]);
84 printk("s6 = %016lx\n", r9_15[15]);
85 }
86
87 printk("a0 = %016lx a1 = %016lx a2 = %016lx\n",
88 regs->r16, regs->r17, regs->r18);
89 printk("a3 = %016lx a4 = %016lx a5 = %016lx\n",
90 regs->r19, regs->r20, regs->r21);
91 printk("t8 = %016lx t9 = %016lx t10= %016lx\n",
92 regs->r22, regs->r23, regs->r24);
93 printk("t11= %016lx pv = %016lx at = %016lx\n",
94 regs->r25, regs->r27, regs->r28);
95 printk("gp = %016lx sp = %p\n", regs->gp, regs+1);
96 #if 0
97 __halt();
98 #endif
99 }
100
101 #if 0
102 static char * ireg_name[] = {"v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
103 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6",
104 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
105 "t10", "t11", "ra", "pv", "at", "gp", "sp", "zero"};
106 #endif
107
108 static void
dik_show_code(unsigned int * pc)109 dik_show_code(unsigned int *pc)
110 {
111 long i;
112
113 printk("Code:");
114 for (i = -6; i < 2; i++) {
115 unsigned int insn;
116 if (__get_user(insn, (unsigned int __user *)pc + i))
117 break;
118 printk("%c%08x%c", i ? ' ' : '<', insn, i ? ' ' : '>');
119 }
120 printk("\n");
121 }
122
123 static void
dik_show_trace(unsigned long * sp,const char * loglvl)124 dik_show_trace(unsigned long *sp, const char *loglvl)
125 {
126 long i = 0;
127 printk("%sTrace:\n", loglvl);
128 while (0x1ff8 & (unsigned long) sp) {
129 extern char _stext[], _etext[];
130 unsigned long tmp = *sp;
131 sp++;
132 if (tmp < (unsigned long) &_stext)
133 continue;
134 if (tmp >= (unsigned long) &_etext)
135 continue;
136 printk("%s[<%lx>] %pSR\n", loglvl, tmp, (void *)tmp);
137 if (i > 40) {
138 printk("%s ...", loglvl);
139 break;
140 }
141 }
142 printk("%s\n", loglvl);
143 }
144
145 static int kstack_depth_to_print = 24;
146
show_stack(struct task_struct * task,unsigned long * sp,const char * loglvl)147 void show_stack(struct task_struct *task, unsigned long *sp, const char *loglvl)
148 {
149 unsigned long *stack;
150 int i;
151
152 /*
153 * debugging aid: "show_stack(NULL, NULL, KERN_EMERG);" prints the
154 * back trace for this cpu.
155 */
156 if(sp==NULL)
157 sp=(unsigned long*)&sp;
158
159 stack = sp;
160 for(i=0; i < kstack_depth_to_print; i++) {
161 if (((long) stack & (THREAD_SIZE-1)) == 0)
162 break;
163 if ((i % 4) == 0) {
164 if (i)
165 pr_cont("\n");
166 printk("%s ", loglvl);
167 } else {
168 pr_cont(" ");
169 }
170 pr_cont("%016lx", *stack++);
171 }
172 pr_cont("\n");
173 dik_show_trace(sp, loglvl);
174 }
175
176 void
die_if_kernel(char * str,struct pt_regs * regs,long err,unsigned long * r9_15)177 die_if_kernel(char * str, struct pt_regs *regs, long err, unsigned long *r9_15)
178 {
179 if (regs->ps & 8)
180 return;
181 #ifdef CONFIG_SMP
182 printk("CPU %d ", hard_smp_processor_id());
183 #endif
184 printk("%s(%d): %s %ld\n", current->comm, task_pid_nr(current), str, err);
185 dik_show_regs(regs, r9_15);
186 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
187 dik_show_trace((unsigned long *)(regs+1), KERN_DEFAULT);
188 dik_show_code((unsigned int *)regs->pc);
189
190 if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) {
191 printk("die_if_kernel recursion detected.\n");
192 local_irq_enable();
193 while (1);
194 }
195 do_exit(SIGSEGV);
196 }
197
198 #ifndef CONFIG_MATHEMU
dummy_emul(void)199 static long dummy_emul(void) { return 0; }
200 long (*alpha_fp_emul_imprecise)(struct pt_regs *regs, unsigned long writemask)
201 = (void *)dummy_emul;
202 EXPORT_SYMBOL_GPL(alpha_fp_emul_imprecise);
203 long (*alpha_fp_emul) (unsigned long pc)
204 = (void *)dummy_emul;
205 EXPORT_SYMBOL_GPL(alpha_fp_emul);
206 #else
207 long alpha_fp_emul_imprecise(struct pt_regs *regs, unsigned long writemask);
208 long alpha_fp_emul (unsigned long pc);
209 #endif
210
211 asmlinkage void
do_entArith(unsigned long summary,unsigned long write_mask,struct pt_regs * regs)212 do_entArith(unsigned long summary, unsigned long write_mask,
213 struct pt_regs *regs)
214 {
215 long si_code = FPE_FLTINV;
216
217 if (summary & 1) {
218 /* Software-completion summary bit is set, so try to
219 emulate the instruction. If the processor supports
220 precise exceptions, we don't have to search. */
221 if (!amask(AMASK_PRECISE_TRAP))
222 si_code = alpha_fp_emul(regs->pc - 4);
223 else
224 si_code = alpha_fp_emul_imprecise(regs, write_mask);
225 if (si_code == 0)
226 return;
227 }
228 die_if_kernel("Arithmetic fault", regs, 0, NULL);
229
230 send_sig_fault(SIGFPE, si_code, (void __user *) regs->pc, 0, current);
231 }
232
233 asmlinkage void
do_entIF(unsigned long type,struct pt_regs * regs)234 do_entIF(unsigned long type, struct pt_regs *regs)
235 {
236 int signo, code;
237
238 if ((regs->ps & ~IPL_MAX) == 0) {
239 if (type == 1) {
240 const unsigned int *data
241 = (const unsigned int *) regs->pc;
242 printk("Kernel bug at %s:%d\n",
243 (const char *)(data[1] | (long)data[2] << 32),
244 data[0]);
245 }
246 #ifdef CONFIG_ALPHA_WTINT
247 if (type == 4) {
248 /* If CALL_PAL WTINT is totally unsupported by the
249 PALcode, e.g. MILO, "emulate" it by overwriting
250 the insn. */
251 unsigned int *pinsn
252 = (unsigned int *) regs->pc - 1;
253 if (*pinsn == PAL_wtint) {
254 *pinsn = 0x47e01400; /* mov 0,$0 */
255 imb();
256 regs->r0 = 0;
257 return;
258 }
259 }
260 #endif /* ALPHA_WTINT */
261 die_if_kernel((type == 1 ? "Kernel Bug" : "Instruction fault"),
262 regs, type, NULL);
263 }
264
265 switch (type) {
266 case 0: /* breakpoint */
267 if (ptrace_cancel_bpt(current)) {
268 regs->pc -= 4; /* make pc point to former bpt */
269 }
270
271 send_sig_fault(SIGTRAP, TRAP_BRKPT, (void __user *)regs->pc, 0,
272 current);
273 return;
274
275 case 1: /* bugcheck */
276 send_sig_fault(SIGTRAP, TRAP_UNK, (void __user *) regs->pc, 0,
277 current);
278 return;
279
280 case 2: /* gentrap */
281 switch ((long) regs->r16) {
282 case GEN_INTOVF:
283 signo = SIGFPE;
284 code = FPE_INTOVF;
285 break;
286 case GEN_INTDIV:
287 signo = SIGFPE;
288 code = FPE_INTDIV;
289 break;
290 case GEN_FLTOVF:
291 signo = SIGFPE;
292 code = FPE_FLTOVF;
293 break;
294 case GEN_FLTDIV:
295 signo = SIGFPE;
296 code = FPE_FLTDIV;
297 break;
298 case GEN_FLTUND:
299 signo = SIGFPE;
300 code = FPE_FLTUND;
301 break;
302 case GEN_FLTINV:
303 signo = SIGFPE;
304 code = FPE_FLTINV;
305 break;
306 case GEN_FLTINE:
307 signo = SIGFPE;
308 code = FPE_FLTRES;
309 break;
310 case GEN_ROPRAND:
311 signo = SIGFPE;
312 code = FPE_FLTUNK;
313 break;
314
315 case GEN_DECOVF:
316 case GEN_DECDIV:
317 case GEN_DECINV:
318 case GEN_ASSERTERR:
319 case GEN_NULPTRERR:
320 case GEN_STKOVF:
321 case GEN_STRLENERR:
322 case GEN_SUBSTRERR:
323 case GEN_RANGERR:
324 case GEN_SUBRNG:
325 case GEN_SUBRNG1:
326 case GEN_SUBRNG2:
327 case GEN_SUBRNG3:
328 case GEN_SUBRNG4:
329 case GEN_SUBRNG5:
330 case GEN_SUBRNG6:
331 case GEN_SUBRNG7:
332 default:
333 signo = SIGTRAP;
334 code = TRAP_UNK;
335 break;
336 }
337
338 send_sig_fault(signo, code, (void __user *) regs->pc, regs->r16,
339 current);
340 return;
341
342 case 4: /* opDEC */
343 if (implver() == IMPLVER_EV4) {
344 long si_code;
345
346 /* The some versions of SRM do not handle
347 the opDEC properly - they return the PC of the
348 opDEC fault, not the instruction after as the
349 Alpha architecture requires. Here we fix it up.
350 We do this by intentionally causing an opDEC
351 fault during the boot sequence and testing if
352 we get the correct PC. If not, we set a flag
353 to correct it every time through. */
354 regs->pc += opDEC_fix;
355
356 /* EV4 does not implement anything except normal
357 rounding. Everything else will come here as
358 an illegal instruction. Emulate them. */
359 si_code = alpha_fp_emul(regs->pc - 4);
360 if (si_code == 0)
361 return;
362 if (si_code > 0) {
363 send_sig_fault(SIGFPE, si_code,
364 (void __user *) regs->pc, 0,
365 current);
366 return;
367 }
368 }
369 break;
370
371 case 3: /* FEN fault */
372 /* Irritating users can call PAL_clrfen to disable the
373 FPU for the process. The kernel will then trap in
374 do_switch_stack and undo_switch_stack when we try
375 to save and restore the FP registers.
376
377 Given that GCC by default generates code that uses the
378 FP registers, PAL_clrfen is not useful except for DoS
379 attacks. So turn the bleeding FPU back on and be done
380 with it. */
381 current_thread_info()->pcb.flags |= 1;
382 __reload_thread(¤t_thread_info()->pcb);
383 return;
384
385 case 5: /* illoc */
386 default: /* unexpected instruction-fault type */
387 ;
388 }
389
390 send_sig_fault(SIGILL, ILL_ILLOPC, (void __user *)regs->pc, 0, current);
391 }
392
393 /* There is an ifdef in the PALcode in MILO that enables a
394 "kernel debugging entry point" as an unprivileged call_pal.
395
396 We don't want to have anything to do with it, but unfortunately
397 several versions of MILO included in distributions have it enabled,
398 and if we don't put something on the entry point we'll oops. */
399
400 asmlinkage void
do_entDbg(struct pt_regs * regs)401 do_entDbg(struct pt_regs *regs)
402 {
403 die_if_kernel("Instruction fault", regs, 0, NULL);
404
405 force_sig_fault(SIGILL, ILL_ILLOPC, (void __user *)regs->pc, 0);
406 }
407
408
409 /*
410 * entUna has a different register layout to be reasonably simple. It
411 * needs access to all the integer registers (the kernel doesn't use
412 * fp-regs), and it needs to have them in order for simpler access.
413 *
414 * Due to the non-standard register layout (and because we don't want
415 * to handle floating-point regs), user-mode unaligned accesses are
416 * handled separately by do_entUnaUser below.
417 *
418 * Oh, btw, we don't handle the "gp" register correctly, but if we fault
419 * on a gp-register unaligned load/store, something is _very_ wrong
420 * in the kernel anyway..
421 */
422 struct allregs {
423 unsigned long regs[32];
424 unsigned long ps, pc, gp, a0, a1, a2;
425 };
426
427 struct unaligned_stat {
428 unsigned long count, va, pc;
429 } unaligned[2];
430
431
432 /* Macro for exception fixup code to access integer registers. */
433 #define una_reg(r) (_regs[(r) >= 16 && (r) <= 18 ? (r)+19 : (r)])
434
435
436 asmlinkage void
do_entUna(void * va,unsigned long opcode,unsigned long reg,struct allregs * regs)437 do_entUna(void * va, unsigned long opcode, unsigned long reg,
438 struct allregs *regs)
439 {
440 long error, tmp1, tmp2, tmp3, tmp4;
441 unsigned long pc = regs->pc - 4;
442 unsigned long *_regs = regs->regs;
443 const struct exception_table_entry *fixup;
444
445 unaligned[0].count++;
446 unaligned[0].va = (unsigned long) va;
447 unaligned[0].pc = pc;
448
449 /* We don't want to use the generic get/put unaligned macros as
450 we want to trap exceptions. Only if we actually get an
451 exception will we decide whether we should have caught it. */
452
453 switch (opcode) {
454 case 0x0c: /* ldwu */
455 __asm__ __volatile__(
456 "1: ldq_u %1,0(%3)\n"
457 "2: ldq_u %2,1(%3)\n"
458 " extwl %1,%3,%1\n"
459 " extwh %2,%3,%2\n"
460 "3:\n"
461 EXC(1b,3b,%1,%0)
462 EXC(2b,3b,%2,%0)
463 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
464 : "r"(va), "0"(0));
465 if (error)
466 goto got_exception;
467 una_reg(reg) = tmp1|tmp2;
468 return;
469
470 case 0x28: /* ldl */
471 __asm__ __volatile__(
472 "1: ldq_u %1,0(%3)\n"
473 "2: ldq_u %2,3(%3)\n"
474 " extll %1,%3,%1\n"
475 " extlh %2,%3,%2\n"
476 "3:\n"
477 EXC(1b,3b,%1,%0)
478 EXC(2b,3b,%2,%0)
479 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
480 : "r"(va), "0"(0));
481 if (error)
482 goto got_exception;
483 una_reg(reg) = (int)(tmp1|tmp2);
484 return;
485
486 case 0x29: /* ldq */
487 __asm__ __volatile__(
488 "1: ldq_u %1,0(%3)\n"
489 "2: ldq_u %2,7(%3)\n"
490 " extql %1,%3,%1\n"
491 " extqh %2,%3,%2\n"
492 "3:\n"
493 EXC(1b,3b,%1,%0)
494 EXC(2b,3b,%2,%0)
495 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
496 : "r"(va), "0"(0));
497 if (error)
498 goto got_exception;
499 una_reg(reg) = tmp1|tmp2;
500 return;
501
502 /* Note that the store sequences do not indicate that they change
503 memory because it _should_ be affecting nothing in this context.
504 (Otherwise we have other, much larger, problems.) */
505 case 0x0d: /* stw */
506 __asm__ __volatile__(
507 "1: ldq_u %2,1(%5)\n"
508 "2: ldq_u %1,0(%5)\n"
509 " inswh %6,%5,%4\n"
510 " inswl %6,%5,%3\n"
511 " mskwh %2,%5,%2\n"
512 " mskwl %1,%5,%1\n"
513 " or %2,%4,%2\n"
514 " or %1,%3,%1\n"
515 "3: stq_u %2,1(%5)\n"
516 "4: stq_u %1,0(%5)\n"
517 "5:\n"
518 EXC(1b,5b,%2,%0)
519 EXC(2b,5b,%1,%0)
520 EXC(3b,5b,$31,%0)
521 EXC(4b,5b,$31,%0)
522 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
523 "=&r"(tmp3), "=&r"(tmp4)
524 : "r"(va), "r"(una_reg(reg)), "0"(0));
525 if (error)
526 goto got_exception;
527 return;
528
529 case 0x2c: /* stl */
530 __asm__ __volatile__(
531 "1: ldq_u %2,3(%5)\n"
532 "2: ldq_u %1,0(%5)\n"
533 " inslh %6,%5,%4\n"
534 " insll %6,%5,%3\n"
535 " msklh %2,%5,%2\n"
536 " mskll %1,%5,%1\n"
537 " or %2,%4,%2\n"
538 " or %1,%3,%1\n"
539 "3: stq_u %2,3(%5)\n"
540 "4: stq_u %1,0(%5)\n"
541 "5:\n"
542 EXC(1b,5b,%2,%0)
543 EXC(2b,5b,%1,%0)
544 EXC(3b,5b,$31,%0)
545 EXC(4b,5b,$31,%0)
546 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
547 "=&r"(tmp3), "=&r"(tmp4)
548 : "r"(va), "r"(una_reg(reg)), "0"(0));
549 if (error)
550 goto got_exception;
551 return;
552
553 case 0x2d: /* stq */
554 __asm__ __volatile__(
555 "1: ldq_u %2,7(%5)\n"
556 "2: ldq_u %1,0(%5)\n"
557 " insqh %6,%5,%4\n"
558 " insql %6,%5,%3\n"
559 " mskqh %2,%5,%2\n"
560 " mskql %1,%5,%1\n"
561 " or %2,%4,%2\n"
562 " or %1,%3,%1\n"
563 "3: stq_u %2,7(%5)\n"
564 "4: stq_u %1,0(%5)\n"
565 "5:\n"
566 EXC(1b,5b,%2,%0)
567 EXC(2b,5b,%1,%0)
568 EXC(3b,5b,$31,%0)
569 EXC(4b,5b,$31,%0)
570 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
571 "=&r"(tmp3), "=&r"(tmp4)
572 : "r"(va), "r"(una_reg(reg)), "0"(0));
573 if (error)
574 goto got_exception;
575 return;
576 }
577
578 printk("Bad unaligned kernel access at %016lx: %p %lx %lu\n",
579 pc, va, opcode, reg);
580 do_exit(SIGSEGV);
581
582 got_exception:
583 /* Ok, we caught the exception, but we don't want it. Is there
584 someone to pass it along to? */
585 if ((fixup = search_exception_tables(pc)) != 0) {
586 unsigned long newpc;
587 newpc = fixup_exception(una_reg, fixup, pc);
588
589 printk("Forwarding unaligned exception at %lx (%lx)\n",
590 pc, newpc);
591
592 regs->pc = newpc;
593 return;
594 }
595
596 /*
597 * Yikes! No one to forward the exception to.
598 * Since the registers are in a weird format, dump them ourselves.
599 */
600
601 printk("%s(%d): unhandled unaligned exception\n",
602 current->comm, task_pid_nr(current));
603
604 printk("pc = [<%016lx>] ra = [<%016lx>] ps = %04lx\n",
605 pc, una_reg(26), regs->ps);
606 printk("r0 = %016lx r1 = %016lx r2 = %016lx\n",
607 una_reg(0), una_reg(1), una_reg(2));
608 printk("r3 = %016lx r4 = %016lx r5 = %016lx\n",
609 una_reg(3), una_reg(4), una_reg(5));
610 printk("r6 = %016lx r7 = %016lx r8 = %016lx\n",
611 una_reg(6), una_reg(7), una_reg(8));
612 printk("r9 = %016lx r10= %016lx r11= %016lx\n",
613 una_reg(9), una_reg(10), una_reg(11));
614 printk("r12= %016lx r13= %016lx r14= %016lx\n",
615 una_reg(12), una_reg(13), una_reg(14));
616 printk("r15= %016lx\n", una_reg(15));
617 printk("r16= %016lx r17= %016lx r18= %016lx\n",
618 una_reg(16), una_reg(17), una_reg(18));
619 printk("r19= %016lx r20= %016lx r21= %016lx\n",
620 una_reg(19), una_reg(20), una_reg(21));
621 printk("r22= %016lx r23= %016lx r24= %016lx\n",
622 una_reg(22), una_reg(23), una_reg(24));
623 printk("r25= %016lx r27= %016lx r28= %016lx\n",
624 una_reg(25), una_reg(27), una_reg(28));
625 printk("gp = %016lx sp = %p\n", regs->gp, regs+1);
626
627 dik_show_code((unsigned int *)pc);
628 dik_show_trace((unsigned long *)(regs+1), KERN_DEFAULT);
629
630 if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) {
631 printk("die_if_kernel recursion detected.\n");
632 local_irq_enable();
633 while (1);
634 }
635 do_exit(SIGSEGV);
636 }
637
638 /*
639 * Convert an s-floating point value in memory format to the
640 * corresponding value in register format. The exponent
641 * needs to be remapped to preserve non-finite values
642 * (infinities, not-a-numbers, denormals).
643 */
644 static inline unsigned long
s_mem_to_reg(unsigned long s_mem)645 s_mem_to_reg (unsigned long s_mem)
646 {
647 unsigned long frac = (s_mem >> 0) & 0x7fffff;
648 unsigned long sign = (s_mem >> 31) & 0x1;
649 unsigned long exp_msb = (s_mem >> 30) & 0x1;
650 unsigned long exp_low = (s_mem >> 23) & 0x7f;
651 unsigned long exp;
652
653 exp = (exp_msb << 10) | exp_low; /* common case */
654 if (exp_msb) {
655 if (exp_low == 0x7f) {
656 exp = 0x7ff;
657 }
658 } else {
659 if (exp_low == 0x00) {
660 exp = 0x000;
661 } else {
662 exp |= (0x7 << 7);
663 }
664 }
665 return (sign << 63) | (exp << 52) | (frac << 29);
666 }
667
668 /*
669 * Convert an s-floating point value in register format to the
670 * corresponding value in memory format.
671 */
672 static inline unsigned long
s_reg_to_mem(unsigned long s_reg)673 s_reg_to_mem (unsigned long s_reg)
674 {
675 return ((s_reg >> 62) << 30) | ((s_reg << 5) >> 34);
676 }
677
678 /*
679 * Handle user-level unaligned fault. Handling user-level unaligned
680 * faults is *extremely* slow and produces nasty messages. A user
681 * program *should* fix unaligned faults ASAP.
682 *
683 * Notice that we have (almost) the regular kernel stack layout here,
684 * so finding the appropriate registers is a little more difficult
685 * than in the kernel case.
686 *
687 * Finally, we handle regular integer load/stores only. In
688 * particular, load-linked/store-conditionally and floating point
689 * load/stores are not supported. The former make no sense with
690 * unaligned faults (they are guaranteed to fail) and I don't think
691 * the latter will occur in any decent program.
692 *
693 * Sigh. We *do* have to handle some FP operations, because GCC will
694 * uses them as temporary storage for integer memory to memory copies.
695 * However, we need to deal with stt/ldt and sts/lds only.
696 */
697
698 #define OP_INT_MASK ( 1L << 0x28 | 1L << 0x2c /* ldl stl */ \
699 | 1L << 0x29 | 1L << 0x2d /* ldq stq */ \
700 | 1L << 0x0c | 1L << 0x0d /* ldwu stw */ \
701 | 1L << 0x0a | 1L << 0x0e ) /* ldbu stb */
702
703 #define OP_WRITE_MASK ( 1L << 0x26 | 1L << 0x27 /* sts stt */ \
704 | 1L << 0x2c | 1L << 0x2d /* stl stq */ \
705 | 1L << 0x0d | 1L << 0x0e ) /* stw stb */
706
707 #define R(x) ((size_t) &((struct pt_regs *)0)->x)
708
709 static int unauser_reg_offsets[32] = {
710 R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), R(r8),
711 /* r9 ... r15 are stored in front of regs. */
712 -56, -48, -40, -32, -24, -16, -8,
713 R(r16), R(r17), R(r18),
714 R(r19), R(r20), R(r21), R(r22), R(r23), R(r24), R(r25), R(r26),
715 R(r27), R(r28), R(gp),
716 0, 0
717 };
718
719 #undef R
720
721 asmlinkage void
do_entUnaUser(void __user * va,unsigned long opcode,unsigned long reg,struct pt_regs * regs)722 do_entUnaUser(void __user * va, unsigned long opcode,
723 unsigned long reg, struct pt_regs *regs)
724 {
725 static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5);
726
727 unsigned long tmp1, tmp2, tmp3, tmp4;
728 unsigned long fake_reg, *reg_addr = &fake_reg;
729 int si_code;
730 long error;
731
732 /* Check the UAC bits to decide what the user wants us to do
733 with the unaliged access. */
734
735 if (!(current_thread_info()->status & TS_UAC_NOPRINT)) {
736 if (__ratelimit(&ratelimit)) {
737 printk("%s(%d): unaligned trap at %016lx: %p %lx %ld\n",
738 current->comm, task_pid_nr(current),
739 regs->pc - 4, va, opcode, reg);
740 }
741 }
742 if ((current_thread_info()->status & TS_UAC_SIGBUS))
743 goto give_sigbus;
744 /* Not sure why you'd want to use this, but... */
745 if ((current_thread_info()->status & TS_UAC_NOFIX))
746 return;
747
748 /* Don't bother reading ds in the access check since we already
749 know that this came from the user. Also rely on the fact that
750 the page at TASK_SIZE is unmapped and so can't be touched anyway. */
751 if ((unsigned long)va >= TASK_SIZE)
752 goto give_sigsegv;
753
754 ++unaligned[1].count;
755 unaligned[1].va = (unsigned long)va;
756 unaligned[1].pc = regs->pc - 4;
757
758 if ((1L << opcode) & OP_INT_MASK) {
759 /* it's an integer load/store */
760 if (reg < 30) {
761 reg_addr = (unsigned long *)
762 ((char *)regs + unauser_reg_offsets[reg]);
763 } else if (reg == 30) {
764 /* usp in PAL regs */
765 fake_reg = rdusp();
766 } else {
767 /* zero "register" */
768 fake_reg = 0;
769 }
770 }
771
772 /* We don't want to use the generic get/put unaligned macros as
773 we want to trap exceptions. Only if we actually get an
774 exception will we decide whether we should have caught it. */
775
776 switch (opcode) {
777 case 0x0c: /* ldwu */
778 __asm__ __volatile__(
779 "1: ldq_u %1,0(%3)\n"
780 "2: ldq_u %2,1(%3)\n"
781 " extwl %1,%3,%1\n"
782 " extwh %2,%3,%2\n"
783 "3:\n"
784 EXC(1b,3b,%1,%0)
785 EXC(2b,3b,%2,%0)
786 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
787 : "r"(va), "0"(0));
788 if (error)
789 goto give_sigsegv;
790 *reg_addr = tmp1|tmp2;
791 break;
792
793 case 0x22: /* lds */
794 __asm__ __volatile__(
795 "1: ldq_u %1,0(%3)\n"
796 "2: ldq_u %2,3(%3)\n"
797 " extll %1,%3,%1\n"
798 " extlh %2,%3,%2\n"
799 "3:\n"
800 EXC(1b,3b,%1,%0)
801 EXC(2b,3b,%2,%0)
802 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
803 : "r"(va), "0"(0));
804 if (error)
805 goto give_sigsegv;
806 alpha_write_fp_reg(reg, s_mem_to_reg((int)(tmp1|tmp2)));
807 return;
808
809 case 0x23: /* ldt */
810 __asm__ __volatile__(
811 "1: ldq_u %1,0(%3)\n"
812 "2: ldq_u %2,7(%3)\n"
813 " extql %1,%3,%1\n"
814 " extqh %2,%3,%2\n"
815 "3:\n"
816 EXC(1b,3b,%1,%0)
817 EXC(2b,3b,%2,%0)
818 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
819 : "r"(va), "0"(0));
820 if (error)
821 goto give_sigsegv;
822 alpha_write_fp_reg(reg, tmp1|tmp2);
823 return;
824
825 case 0x28: /* ldl */
826 __asm__ __volatile__(
827 "1: ldq_u %1,0(%3)\n"
828 "2: ldq_u %2,3(%3)\n"
829 " extll %1,%3,%1\n"
830 " extlh %2,%3,%2\n"
831 "3:\n"
832 EXC(1b,3b,%1,%0)
833 EXC(2b,3b,%2,%0)
834 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
835 : "r"(va), "0"(0));
836 if (error)
837 goto give_sigsegv;
838 *reg_addr = (int)(tmp1|tmp2);
839 break;
840
841 case 0x29: /* ldq */
842 __asm__ __volatile__(
843 "1: ldq_u %1,0(%3)\n"
844 "2: ldq_u %2,7(%3)\n"
845 " extql %1,%3,%1\n"
846 " extqh %2,%3,%2\n"
847 "3:\n"
848 EXC(1b,3b,%1,%0)
849 EXC(2b,3b,%2,%0)
850 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
851 : "r"(va), "0"(0));
852 if (error)
853 goto give_sigsegv;
854 *reg_addr = tmp1|tmp2;
855 break;
856
857 /* Note that the store sequences do not indicate that they change
858 memory because it _should_ be affecting nothing in this context.
859 (Otherwise we have other, much larger, problems.) */
860 case 0x0d: /* stw */
861 __asm__ __volatile__(
862 "1: ldq_u %2,1(%5)\n"
863 "2: ldq_u %1,0(%5)\n"
864 " inswh %6,%5,%4\n"
865 " inswl %6,%5,%3\n"
866 " mskwh %2,%5,%2\n"
867 " mskwl %1,%5,%1\n"
868 " or %2,%4,%2\n"
869 " or %1,%3,%1\n"
870 "3: stq_u %2,1(%5)\n"
871 "4: stq_u %1,0(%5)\n"
872 "5:\n"
873 EXC(1b,5b,%2,%0)
874 EXC(2b,5b,%1,%0)
875 EXC(3b,5b,$31,%0)
876 EXC(4b,5b,$31,%0)
877 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
878 "=&r"(tmp3), "=&r"(tmp4)
879 : "r"(va), "r"(*reg_addr), "0"(0));
880 if (error)
881 goto give_sigsegv;
882 return;
883
884 case 0x26: /* sts */
885 fake_reg = s_reg_to_mem(alpha_read_fp_reg(reg));
886 fallthrough;
887
888 case 0x2c: /* stl */
889 __asm__ __volatile__(
890 "1: ldq_u %2,3(%5)\n"
891 "2: ldq_u %1,0(%5)\n"
892 " inslh %6,%5,%4\n"
893 " insll %6,%5,%3\n"
894 " msklh %2,%5,%2\n"
895 " mskll %1,%5,%1\n"
896 " or %2,%4,%2\n"
897 " or %1,%3,%1\n"
898 "3: stq_u %2,3(%5)\n"
899 "4: stq_u %1,0(%5)\n"
900 "5:\n"
901 EXC(1b,5b,%2,%0)
902 EXC(2b,5b,%1,%0)
903 EXC(3b,5b,$31,%0)
904 EXC(4b,5b,$31,%0)
905 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
906 "=&r"(tmp3), "=&r"(tmp4)
907 : "r"(va), "r"(*reg_addr), "0"(0));
908 if (error)
909 goto give_sigsegv;
910 return;
911
912 case 0x27: /* stt */
913 fake_reg = alpha_read_fp_reg(reg);
914 fallthrough;
915
916 case 0x2d: /* stq */
917 __asm__ __volatile__(
918 "1: ldq_u %2,7(%5)\n"
919 "2: ldq_u %1,0(%5)\n"
920 " insqh %6,%5,%4\n"
921 " insql %6,%5,%3\n"
922 " mskqh %2,%5,%2\n"
923 " mskql %1,%5,%1\n"
924 " or %2,%4,%2\n"
925 " or %1,%3,%1\n"
926 "3: stq_u %2,7(%5)\n"
927 "4: stq_u %1,0(%5)\n"
928 "5:\n"
929 EXC(1b,5b,%2,%0)
930 EXC(2b,5b,%1,%0)
931 EXC(3b,5b,$31,%0)
932 EXC(4b,5b,$31,%0)
933 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
934 "=&r"(tmp3), "=&r"(tmp4)
935 : "r"(va), "r"(*reg_addr), "0"(0));
936 if (error)
937 goto give_sigsegv;
938 return;
939
940 default:
941 /* What instruction were you trying to use, exactly? */
942 goto give_sigbus;
943 }
944
945 /* Only integer loads should get here; everyone else returns early. */
946 if (reg == 30)
947 wrusp(fake_reg);
948 return;
949
950 give_sigsegv:
951 regs->pc -= 4; /* make pc point to faulting insn */
952
953 /* We need to replicate some of the logic in mm/fault.c,
954 since we don't have access to the fault code in the
955 exception handling return path. */
956 if ((unsigned long)va >= TASK_SIZE)
957 si_code = SEGV_ACCERR;
958 else {
959 struct mm_struct *mm = current->mm;
960 mmap_read_lock(mm);
961 if (find_vma(mm, (unsigned long)va))
962 si_code = SEGV_ACCERR;
963 else
964 si_code = SEGV_MAPERR;
965 mmap_read_unlock(mm);
966 }
967 send_sig_fault(SIGSEGV, si_code, va, 0, current);
968 return;
969
970 give_sigbus:
971 regs->pc -= 4;
972 send_sig_fault(SIGBUS, BUS_ADRALN, va, 0, current);
973 return;
974 }
975
976 void
trap_init(void)977 trap_init(void)
978 {
979 /* Tell PAL-code what global pointer we want in the kernel. */
980 register unsigned long gptr __asm__("$29");
981 wrkgp(gptr);
982
983 /* Hack for Multia (UDB) and JENSEN: some of their SRMs have
984 a bug in the handling of the opDEC fault. Fix it up if so. */
985 if (implver() == IMPLVER_EV4)
986 opDEC_check();
987
988 wrent(entArith, 1);
989 wrent(entMM, 2);
990 wrent(entIF, 3);
991 wrent(entUna, 4);
992 wrent(entSys, 5);
993 wrent(entDbg, 6);
994 }
995